A post-IR IRSL chronology and dust mass accumulation rates of the Nosak loess-palaeosol sequence in northeastern Serbia

Peri, Zoran M.; Markovi, Slobodan B.; Sipos, György; Gavrilov, Milivoj B.; Thiel, Christine; Zeeden, Christian; Murray, Andrew S.

Published in:
Boreas

Link to article, DOI:
10.1111/bor.12459

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
A post-IR IRSL chronology and dust mass accumulation rates of the Nosak loess-palaeosol sequence in northeastern Serbia

ZORAN M. PERIĆ, SLOBODAN B. MARKOVIĆ, GYÖRGY SIPOS, MILIVOJ B. GAVRILON, CHRISTINE THIEL, CHRISTIAN ZEEDEN AND ANDREW S. MURRAY

The focus of most Quaternary research conducted in Serbia to date was related to the loess plateaus situated in the Vojvodina region. These studies contributed to the better understanding of climate changes during the Pleistocene in this part of Europe (e.g. Marković et al. 2008, 2015; Obreht et al. 2019). However, beside these extensive and continuous loess-palaeosol sequences, there are also numerous loess areas in the southeastern, central and northeastern parts of the country (Marković et al. 2014a; Obreht et al. 2014, 2016). These sequences appear as smaller, isolated loess spots and do not show the continuity that is recorded in the loess plateaus in the Vojvodina region, which was one of the reasons why these sites remained almost unexplored. Nevertheless, recent findings revealed that, beside unique fossil records (Dimitrijević et al. 2015; Tomić et al. 2015), these loess sequences contain an exceptional record of palaeoclimatic and palaeoenvironmental conditions during the Quaternary, on the transitional zone between the Balkan region and the Carpathian Basin.

One of the most important sites in this region is the Nosak loess-palaeosol section located in the Kostolac Coal Basin. The Kostolac Basin hosts the second largest active lignite mine in Europe, where extensive coal exploitation began at the end of the 19th century, and continues until this day (Dimitrijević et al. 2015). The coal mining has led to several archaeological, palaeontological and geological findings, raising the public interest in this region. The most significant discoveries to date have been a Kostolac steppe mammoth skeleton from Middle Pleistocene fluvial deposits, discovered in 2009 (Lister et al. 2012) and the later finding of a rich palaeontological layer, including further steppe mammoth fossils from the latest Middle Pleistocene loess-palaeosol succession, in 2012 (Marković et al. 2014a; Dimitrijević et al. 2015; Tomić et al. 2015). The discovery of the mammoth skeletons, after which the mining operations in this area came to a temporary halt, gave us the opportunity to further investigate the Nosak loess-palaeosol profile. At the site, environmental magnetic analyses, malacological analysis, general reconstruction of environmental dynamics, preliminary luminescence dating of two samples and ESR dating of an enamel plate removed from a mandibula mammoth tooth were performed (e.g. Marković et al. 2014a; Dimitrijević et al. 2015). These studies yielded valuable results, which established the Nosak section as one of the most significant representative records of Middle and Late Pleistocene palaeoclimate and palaeoenvironment dynamics as well
as mammot distribution in this region (Marković et al. 2014a).

The most critical requirements for retrieving accurate climate records are independent chronologies and sedimentation rates. In order to establish the first chronology of the Nosak loess-palaeosol sequence, we are employing a two-step post-IR IRSL (Thomsen et al. 2008) protocol. This method has been proven to produce a stable elevated temperature IRSL signal recorded after a preceding lower temperature IR stimulation, and seemingly does not suffer from anomalous fading, which is commonly an undesirable effect in feldspar IRSL (Huntley & Lamothe 2001). One further advantage of this approach is the ability to date material from the last three glacial-interglacials, as opposed to quartz OSL dating, which cannot be used to reliably date samples from Serbian loess records beyond a \(D_e \) value of ~120 Gy (36 ka; Perić et al. 2019).

This study aims to establish the first luminescence-based chronology of a site in northeastern Serbia from the last three glacial–interglacial cycles and investigate the past dust activity in this area by calculating the MARs for the Nosak loess-palaeosol sequence.

Regional setting

The Nosak loess-palaeosol sequence is situated in northeastern Serbia (latitude 44°44′31″N, longitude 21°15′28″E) in a lowland region at the southeastern limit of the great Carpathian (Pannonian, Middle Danube) Basin in between the Danube and Mlava rivers (17 km north from the city of Požarevac) (Fig. 1). This area is also referred to as the Kostolac Basin, which is enclosed by the Danube River to the north, the Velika Morava River to the west, while to the east the Basin extends to the Požarevacka greda, a geological structure that rises over an alluvial plain of the Danube and Mlava rivers (Dimitrijević et al. 2015).

The Basin was formed during the Lower through Upper Miocene due to strong tectonic movements (faulting) during the formation of the Pannonian Basin alongside favourable peat-forming conditions (Marković et al. 2014a; Muttoni et al. 2018). The base of the Kostolac Basin is composed of Devonian crystalline rocks and is covered by Neogene sediments. The total thickness of the Neogene sediments ranges from 300 to 5000 m in the central part of the depression (Marković et al. 2014a).

Litho- and pedostratigraphy

At the Nosak section, modern soil (S0) and four recent glacial loess units L1, L2, L3 and L4 associated with several weakly developed interstadial soils, as well as interglacial pedocomplexes S1, S2 and S3 are present (Fig. 2). The nomenclature for this chronostratigraphy follows the Danubian loess stratigraphical model developed by Marković et al. (2015). This model was established to correlate the loess-palaeosol units of the Danube Basin with the Chinese Loess plateau stratigraphy ‘L and S’ labelling system (e.g. Kukla 1987; Kukla & An 1989). The modern soil (S0) covering the top of the section is represented by a 90-cm-thick chernozem layer (10 YR 4/2 – colour is determined for dry samples using the Munsell soil colour chart). The 870-cm-thick Last Glacial loess unit L1 (10 YR 7/3) is intercalated with numerous weakly developed palaeosols (10 YR 5/3). The last interglacial pedocomplex S1 is 295 cm thick and composed of a lower dark Ah horizon indicating a fossil chernozem formation (10 YR 4/2) overlain by a middle lighter A horizon (10 YR 5/3) and the uppermost weakly developed A horizon (10 YR 5/2) characterized by numerous crotovinas. The underlying succession has a thickness of ~600 cm and contains the penultimate glacial L2 loess unit (10 YR 7/3), intercalated with numerous weakly developed palaeosols (Marković et al. 2014a). This loess unit covers a double pedocomplex (S2) including a lower strongly developed S2SS2 fossil cambisol B horizon that is gradually transformed to an upper altered A horizon (7.5 YR 5/8) and upper weakly developed A horizon (S2SS1; 7.5 YR 5/8) intercalated by a darker loessic layer (S2LL1). The approximately 150-cm-thick L3 loess, which is in a zone close to the boundary with palaeosol S2SS2, is heavily bioturbated and rich in carbonate concretions. The lowermost pedocomplex S3 is ~180 cm thick and has a very similar morphology to the upper S2SS2 fossil cambisol. The lowermost, 50-cm-thick L4 loess has many carbonate concretions and humic infiltrations in fossil root channels. At the transitional zone between the palaeosol S2SS1 and the overlying L2 loess, a palaeontological layer was discovered (Marković et al. 2014a).

Sampling, preparation and facilities

The sampling was performed during the palaeontological excavations in 2012, after the discovery of the palaeontological layer and the mammoth skeleton by the research team from the Institute of Archaeology at the Serbian Academy of Sciences and Arts. The samples for luminescence dating were recovered by hammering black PVC tubes (15 cm long and 5 cm in diameter) into the face of the freshly cleaned profile (Fig. 3). In total, 15 samples were collected where most of the samples yielded enough polymineral grains for \(D_e \) measurements. The samples were processed in the Nordic Laboratory for Luminescence Dating (NLL), Aarhus University, Risø Campus, Denmark, under subdued orange light. The inner material of the cylinders was used for equivalent dose measurements (conducted at the Luminescence Dating Laboratory, University of Szeged, Hungary) and the outer, light-exposed material for the water content and dose rate determination (conducted at the NLL).
The inner, non-light-exposed material was sieved through 90, 63 and 40 μm sieves. The <40 μm material was first treated with 32% HCl to remove carbonates followed by a 30% H₂O₂ treatment to remove organic matter, and finally with sodium oxalate (Na₂C₂O₄) to avoid aggregation. The 4–11 μm polymineral fine grains were extracted by settling according to Stoke’s law. The fine-grained quartz was obtained by immersing a part of the polymineral samples in 32% fluorosilicic acid (H₂SiF₆) for 7 days. Finally, in order to remove fluorides, the grains were rinsed with 32% HCl. Unfortunately, we were not able to extract a sufficient amount of quartz grains to produce any reliable data. After every treatment step, the samples were washed 3–5 times with deionized water. Subsequently, the polymineral grains were settled on 9.8 mm stainless steel cups with acetone (~2 mg L⁻¹) using the pipette method. Luminescence measurements for the polymineral extracts were conducted on an automated Risø TL/OSL DA20 reader, equipped with a ⁹⁰Sr/⁹⁰Y beta source calibrated for quartz fine grains (Borter-Jensen et al. 2010). The stimulation of the polymineral grains employed IR (870 nm; ~140 mW cm⁻²) LEDs with the IRSL signal detected through a Schott BG-39/CN-7-59 glass filter combination. The equivalent doses of all the samples were measured using a single aliquot regenerative (SAR) pIRIR₂₉₀ protocol (Table 1). The choice of the first IR stimulation temperature was part of the pre-investigations and is discussed below. All the luminescence data were analysed using the Risø Analyst software, version 4.31.9.

Dose rate measurements

For the dose rate determination, the sediment was first dried at 50 °C, then crushed (<200 μm) using a ring-grinder, ignited at 450 °C for 24 h to remove organic matter, and finally cast in wax in Marinelli-type moulds to retain ²²²Rn. The solid cup moulded samples were then stored for >3 weeks to allow ²²²Rn to build up to equilibrium with ²²⁶Ra. Subsequently, the concentrations of ²³⁸U, ²³²Th and ⁴⁰K were determined by analysing the samples for >24 h on a gamma spectrometer with a high-purity Germanium detector at the NLL. The calibration of the spectrometers is presented in Murray et al. (1987). The radionuclide concentrations were converted to dry dose rates according to the conversion factors presented by Guérin et al. (2011). The activities of ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K are shown in Table 2 and Fig. 4. The contribution of cosmic rays to the total dose rate was calculated according to Prescott & Hutton (1994), using depth, altitude, density, latitude and longitude for each sample, assuming an uncertainty of 5%. The field water content was measured directly on the samples. However, in several cases, the calculated water content displayed very low values. For the middle part of the profile (L1-S1), the water content varied between 1% (samples 133056 and 133057) and 7% (sample 133053). Such low values may be the result of the exposure of the Nosak section to air for a long period of time prior to sampling. For this reason, we do not consider the measured water content
to be reliable estimates over the geological time. Thus, based on field observations and previous studies conducted in this region (Schmidt et al. 2010; Antoine et al. 2009), the water content was estimated to be 12±5% and was assumed to apply throughout the burial period. For the 4–11 μm polymineral grains an internal α dose rate contribution from U and Th of 0.08±0.02 was assumed (Rees-Jones 1995). Disequilibrium between ^{238}U and ^{226}Ra was not detected in any sample (average of the ^{238}U to ^{226}Ra ratio is 1.03±0.24), except for the lowermost sample (133046 – 2320 cm depth). Here, a disequilibrium was observed with a calculated ratio of 7.33±24.81. The reason for this may be associated with the groundwater, as indicated by hydromorphic features and bioturbation at the depth where the sample was collected. The dose rates for the polymineral fraction range from 2.58±0.10 Gy ka$^{-1}$ for sample 133046, to 4.37±0.19 Gy ka$^{-1}$ for sample 133048. The resulting total dose rates do not vary significantly with depth (except for sample 133046), and are summarized in Fig. 4 and Table 2.

Post-IR IRSL measurements

In order to establish the temperature for a stable pIRIR signal, we tested the dependence of D_e on the first stimulation temperature on 15 aliquots of the sample 133057. The results of the IR stimulation plateau showed that there are no significant variations of the pIRIR$_{290} D_e$ with temperature. The pIRIR$_{290}$ signal intensity did not display a considerable decrease with increasing first IR stimulation temperature and we can conclude that even for first IR stimulation temperatures as low as 50 °C and as high as 250 °C, the intensity of the signals is sufficient to allow precise measurements of the D_e (Fig. 5). However, the most stable signal was observed at the first IR stimulation temperature of 200 °C. Based on these observations, the pIRIR$_{290}$ signal was chosen for all polymineral measurements in this study.
After a preheat of 320 °C for 60 s, the aliquots were stimulated twice with IR diodes for 200 s. During the first stimulation, the temperature was kept at 200 °C (IR signal), while the second IR stimulation temperature was held at 290 °C (post-IR IRSL signal, pIRIR200, 290). The test dose signal (~40 to ~260 Gy) was measured in the same way. At the end of each measurement cycle, a high-temperature IR clean-out at 325 °C for 200 s was carried out. All aliquots were measured ‘one at a time’. For each sample, at least six aliquots were measured, except for samples 133052 and 133051 (five aliquots per sample), as we were not able to extract a greater amount of 4–11 μm polynuclear grains. For the calculation, the signal from the initial 2 s of stimulation, less a background from the last 50 s, was used. The dose response curves were fitted with single exponential functions using Analyst version 4.31.9. A representative dose response and decay curve for the pIRIR200, 290 signal are presented in Fig. 6.

In every measurement, we included the standard recycling and recuperation tests (Wintle & Murray 2006). Recycling ratios within a maximum deviation of 10% from unity were considered acceptable, as was a recuperation signal amounting to less than 5% of the natural signal. The aliquots that did not meet these criteria were rejected and not used in the age calculation. The average D_0 value for all the accepted aliquots was ~567 Gy. The uncertainty on D_e was calculated as the standard error of the mean. The average SAR pIRIR290 recycling ratio (99 aliquots from 15 samples) is 1.03±0.02. Recuperation and recycling ratios are presented in Table 2.

To test the ability of the pIRIR200, 290 to accurately measure laboratory doses given prior to any laboratory heat treatment, a dose recovery test was performed on bleached aliquots (24 h in a Hönle SOL2 solar simulator) of sample 133057. Doses ranging from 100 to 800 Gy were administered (three aliquots per dose), and then measured in the same manner as the equivalent dose. The test dose was set between 30 and 50% of the given dose. Three aliquots were measured to determine the residual dose for this sample after bleaching in the solar simulator. The residual dose was 25±1 Gy and was subtracted from the measured D_e. The result of this test is presented in Fig. 7 and shows that our SAR pIRIR200, 290 protocol is able to successfully recover laboratory doses up to at least ~800 Gy. From the results of the dose recovery test, it was noticeable that the best measured to given dose ratio (6% of unity) was found when the test dose of ~30% of the total dose was applied. The ratio was higher (~9–10% of unity) when the test dose of ~50% of the total dose was employed. Similar results are presented in the study of Yi et al. (2016), where it was concluded that the ideal

Table 1. Single aliquot regenerative (SAR) protocol used for D_e measurements.

<table>
<thead>
<tr>
<th>Step</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pIRIR_{200, 290}</td>
<td>IR_{50}</td>
</tr>
<tr>
<td>1</td>
<td>Give dose</td>
<td>Give dose</td>
</tr>
<tr>
<td>2</td>
<td>Preheat 320 °C for 60 s</td>
<td>Preheat 250 °C for 60 s</td>
</tr>
<tr>
<td>3</td>
<td>IRSL 200 °C for 200 s</td>
<td>IRSL 50 °C for 200 s → L_x</td>
</tr>
<tr>
<td>4</td>
<td>IRSL 290 °C for 200 s → L_x</td>
<td>Give test dose</td>
</tr>
<tr>
<td>5</td>
<td>Give test dose</td>
<td>Give test dose</td>
</tr>
<tr>
<td>6</td>
<td>Preheat 320 °C for 60 s</td>
<td>Preheat 250 °C for 60 s</td>
</tr>
<tr>
<td>7</td>
<td>IRSL 200 °C for 200 s</td>
<td>IRSL 50 °C for 200 s → T_x</td>
</tr>
<tr>
<td>8</td>
<td>IRSL 290 °C for 200 s → T_x</td>
<td>→</td>
</tr>
<tr>
<td>9</td>
<td>IR bleach at 325 °C for 200 s</td>
<td>IRSL 290 °C for 200 s</td>
</tr>
<tr>
<td>10</td>
<td>Return to step 1</td>
<td>Return to step 1</td>
</tr>
</tbody>
</table>
Despite the good dose recovery test results, the calculated residual dose appeared to be surprisingly high. Various authors have reported that the bleaching of high temperature pIRIR signals is more problematic than the bleaching of low temperature IRSL signals (Li & Li 2011; Buylaert et al. 2012). It was suggested that a longer exposure of the samples to sunlight or a solar simulator can reduce the pIRIR signals significantly. However, in several studies, it has been shown that the residual dose measured after bleaching in a solar simulator is not consistent with the residual dose after bleaching in sunlight (e.g. Stevens et al. 2011). Bleaching of aeolian dust in nature is likely to be conducted over repeated intervals and to take place over much longer times than in the laboratory, meaning that the pIRIR$_{290}$ signal can be reset to a negligible value (Buylaert et al. 2012; Yi et al. 2015). To test this and possibly determine a lower residual dose for the D_r calculations than the one established for the dose recovery test, we exposed six aliquots of the sample 133046 to direct sunlight over a period of 30 days. The aliquots were kept in a glass Petri dish and placed outside during the months of June and July. The calculated residual dose in this case was 3.4±0.4 Gy, confirming that natural sunlight is able to reset the pIRIR$_{290}$ signal far more efficiently than the solar simulator. This remaining D_r value, which is negligible compared to the measured D_s, was assumed to be an unbleachable residual dose and was subsequently subtracted from all D_r results prior to the age calculation.

In several studies (e.g. Buylaert et al. 2012, 2015; Roberts 2012) where the pIRIR$_{290}$ signals from both sand-sized K-rich feldspar and polymineral fine grains have been investigated, evidence has been presented that fading uncorrected pIRIR$_{290}$ ages show a very good agreement with independent age control for a world-wide set of samples. In the study of Buylaert et al. (2012), fading tests on three quartz samples and the standard Riso calibration quartz were performed. The test yielded a mean g_2 days value of 0.98±0.08% per decade. Such a fading rate would result in age underestimates of ~10% when employing a standard fading model. These findings suggest that the pIRIR$_{290}$ signal is unlikely to suffer from fading to a greater degree than the quartz OSL fast component. Even though in some studies (e.g. Lauer et al. 2017) a detectable fading value was observed when using the pIRIR$_{290}$ signal, most fading rates were <2, and the mean value (16 samples: 3–6 aliquots per sample) of all obtained g-values was 1.6±0.1. According to Buylaert et al. (2012) even in such cases where there exists a detectable fading when employing the pIRIR$_{290}$ signal, this may be an artefact related to the measurement procedure. Consequently, the ages are less reliant on the

Table 2. Summary of pIRIR$_{290}$ dose recovery tests on quartz sand-sized K-rich feldspars and polymineral fine grains. In the study of Buylaert et al. (2012), fading tests on three quartz samples and the standard Riso calibration quartz were performed. The test yielded a mean g_2 days value of 0.98±0.08% per decade. Such a fading rate would result in age underestimates of ~10% when employing a standard fading model. These findings suggest that the pIRIR$_{290}$ signal is unlikely to suffer from fading to a greater degree than the quartz OSL fast component. Even though in some studies (e.g. Lauer et al. 2017) a detectable fading value was observed when using the pIRIR$_{290}$ signal, most fading rates were <2, and the mean value (16 samples: 3–6 aliquots per sample) of all obtained g-values was 1.6±0.1. According to Buylaert et al. (2012) even in such cases where there exists a detectable fading when employing the pIRIR$_{290}$ signal, this may be an artefact related to the measurement procedure. Consequently, the ages are less reliant on the
assumptions included in the fading correction models. In our study, such a fading correction would not improve the calculated ages, which is why we do not attempt any fading correction.

Incomplete bleaching detection

The calculated ages in most cases show a stratigraphically consistent increase, ranging from 261±23 ka (sample 133046) to 25±6 ka (sample 133059), except for the uppermost sample (taken at the S0–L1 boundary), which displayed an age overestimation of ~30 ka, possibly because of incomplete bleaching. The most reliable way to test if a younger sample is affected by poor bleaching is to compare the pIRIR ages with the ages obtained from blue OSL on quartz grains. However, no usable amount of quartz fine grains could be recovered from the Nosak samples, which is why we were not able to perform this comparison. An alternative method to examine whether the pIRIR290 signal is likely to have been fully reset is comparison with other IR signals that have different sensitivities to daylight. It is known that the IR50 signal bleaches more rapidly in sunlight than IR signals stimulated at elevated temperatures (Thomsen et al. 2008) or the pIRIR290 signal (Buylaert et al. 2012; Murray et al. 2012). In order to test whether sample 133060 was actually not fully reset, we exposed 42 aliquots of the polymineral fine grains to artificial sunlight in a solar simulator for different lengths of time, ranging from 1 to 100 000 s. Subsequently, we measured the relative bleaching of the IR50 and pIRIR290 signals using protocols presented in Table 1. The results of the test (Fig. 8) showed that the IR50 signal bleaches at a significantly faster rate than the pIRIR290 signal. After 10 000 seconds of bleaching, the normalized IR50 signal was reduced to ~7% of the natural, while the equivalent pIRIR290 signal displayed a decrease of barely ~40%. The pIRIR290 to IR50 ratio of the natural measured D_e in this case was 1.4 (pIRIR290 = 151 Gy; IR50 = 107 Gy), which lies outside the 10% rejection criterion and is consistent
with the assumption that the pIRIR290 is less well bleached than the corresponding IR50 signal. In the studies of Thiel et al. (2011) and Buylaert et al. (2013), similar IR50 to pIRIR290 \(D_e\) ratios for some of their samples were reported, where it was suggested that the reason for this may be incomplete bleaching of the pIRIR290 signal during post depositional reworking.

Given that the sample was recovered at the S0–L1 boundary, we have to also consider the possibility that the pIRIR290 protocol is not suited for dating Holocene samples and that using post-IR IRSL stimulation at lower temperatures would yield a more consistent age. In the study of Kars et al. (2014) measurements of young samples using the pIRIR290 showed large variations in residual doses. In some cases, the residual dose even exceeded the equivalent dose. In the same study, based on the presented data, it has been advised that for dating young sediments, a low temperature pIR protocol should be used and for the identification of well-bleached coarse grains the single grain dating method (Reimann et al. 2012; van Gorp et al. 2013). Unfortunately, in this case, we are not able to perform any additional measurements because of the lack of material. In order to get more clarity on the problems stated above, high sampling resolution dating must be applied, preferably using quartz OSL dating.

Nevertheless, here we argue that the sample 133060 is most likely incompletely bleached due to post depositional processes and choose to reject and not consider it for further analysis. At this point, we have to state that we cannot exclude the possibility that some of the other samples could also be affected by incomplete bleaching. However, we do not find it likely, given that all of the calculated ages passed the conducted internal tests and in most cases show a fairly good agreement with the expected ages and are stratigraphically consistent.

Age-depth modelling

The luminescence ages allow the development of a continuous and fully independent age vs. depth model for the Nosak site. At this point, we have to underline that the sampling resolution is not high enough to detect slight accumulation variations and hiatuses; however, it is
sufficient to identify general accumulation trends and patterns of dust deposition.

The methods for developing continuous age-depth models from discrete luminescence age points differ in the literature (e.g. Ujvári et al. 2014; Kang et al. 2015; Stevens et al. 2016; Zeeden et al. 2018) and most of them are based on contrasting assumptions. Here we chose to implement the ADmin age-depth model (Zeeden et al. 2018) based on 14 pIRIR200, 290 data points, which was designed specifically for application to luminescence dates. Contrary to other methods (e.g. Bacon model of Blaauw & Christen 2011) the ADmin age-depth model does not make any assumptions on sedimentation rates. We first created a density function for random and systematic uncertainty from the data set, assuming that both ages and uncertainties are correct. Here we use an adjusted computer code, which also puts out all individual Monte Carlo (MC) chains, and derives sedimentation rates and their variability directly from these individual (MC) chains, which yields more precise results than using the distributions of these. The modelling results are presented in Fig. 9. The data set shows a single inversion of the mean ages, but none when uncertainty is considered. Therefore, the age-depth model was created with rather few resampling attempts for stratigraphically consistent data. It can be seen that the applied ADmin age-depth model is sensitive to changes in luminescence age with depth, which resulted in a nonlinear age-depth function, indicating variable sedimentation rates (SRs), at least within the error limits of the technique. The resulting SRs are presented in Table S1 and varied between 0.04 and 0.46 mm a⁻¹ with median (x̄) and mean (x̄) values of 0.13 and 0.18 mm a⁻¹, respectively.

In order to reliably estimate past atmospheric dust flux (Albani et al. 2015), we calculated the mass accumulation rate (MAR) (Kohfeld & Harrison 2003) for the Nosak site. Reconstructing dust MARs from loess deposits is critical to understanding past atmospheric mineral dust activity and requires accurate independent age models from loess deposits. In the territory of Serbia, except for the dust MAR investigations focused on the last glacial–interglacial cycle (e.g. Ujvári et al. 2010; Stevens et al. 2011; Perić et al. 2019), thus far, no such studies have been conducted. Hence, we use the SRs provided by the ADmin age-depth modelling to calculate the MAR for the Nosak loess-palaeosol section. Again, it has to be pointed out that the resolution of luminescence ages is not sufficient to allow for robust interpretation at a millennial level.

The aeolian MAR (g m⁻² a⁻¹) (Kohfeld & Harrison 2003) was calculated using the following equation:

\[\text{MAR} = \text{SR} \times f_{\text{eol}} \times \text{BD} \]

where SR is the sedimentation rate (m a⁻¹), f_{eol} is the proportion of the sediment that is aeolian (assumed value is 1) and BD is bulk density of the loess (g cm⁻³). The value of dry bulk density (BD) for loess deposits varies in the literature, ranging from 1.3 to 1.7 g cm⁻³ (Ujvári et al. 2010). For the Chinese Loess Plateau, the measured average BD was 1.48 g cm⁻³ (Kohfeld & Harrison 2003), while for North America the value was 1.45 g cm⁻³ (Muhs et al. 2003). Frechen et al. (2003) used 1.65 g cm⁻³ for European loess deposits, which appears to be too high when compared to the previously mentioned values. Here we measured the BD directly using the volumetric cylinder method (direct core method). In total, 268 samples were collected by hammering a steel ring (7.0 cm height; 3.8 cm internal diameter; 79.0 cm⁻³ volume) into the face of the undisturbed loess profile. The collected samples were individually packed in plastic zip-lock bags after which they were dried in a microwave oven for 600 s. The dry BD was subsequently calculated using the formula:

\[\rho_b = \frac{M_s}{V_s} \]

where \(\rho_b \) is the dry bulk density in mg m⁻³, \(M_s \) is the weight of the dry soil sample in mg, and \(V_s \) is the volume of the dry soil sample in m³ (Han et al. 2016).

The measured values range from ~1.22 to 1.83 g cm⁻³ with a mean of 1.491±0.008 g cm⁻³ (Table S1). This equals nearly exactly the most recent measurements of loess dry BD in the Carpathian Basin carried out for the deposits at Dunaföldvár (Hungary) where a mean dry value of 1.497±0.079 g cm⁻³ was determined (Ujvári et al. 2010). Hence, we use the dry BD of 1.49 g cm⁻³ for the MAR calculations in this study.
of the upper palaeosol of the Last Glacial unit at the Tokaj section in Hungary (Schatz et al. 2012), although the soil at Nosak is far less developed, which is possibly the result of diverse palaeoclimatic conditions. Similar ages of the upper palaeosols have been also reported in the Vojvodina region at Surduk: 31.8±3.7 ka (Fuchs et al. 2008), Stari Slankamen: 34.4±2.2 ka, (Schmidt et al. 2010), Crvenka: 38.±4 ka (Stevens et al. 2011), and Veliki Surduk at the Titel loess plateau: 34.2±2.4 ka (Perič et al. 2019), implying that the soil formation might have had a similar timing across the Carpathian Basin. However, it should be noted that these ages do not necessarily specify the time of soil formation, but rather the time of deposition of the sediment in which the soil subsequently developed (Schatz et al. 2012). The two underlying loess layers were dated at 39±3 ka (sample 133057) and 41±3 ka (sample 133056), respectively, falling into MIS 3. Even though this stage is generally characterized by soil formation, loess deposition during MIS 3 has been reported at a number of sites in the Carpathian Basin, most recently at Tokaj in Hungary (e.g. Schatz et al. 2012) and Stratzing in Lower Austria (Thiel et al. 2011). The pIRIR200–290 age of the lowermost L1 sample is consistent with MIS 4 (69±7 ka).

The S1 soil is represented by two samples and also presents a good pedostratigraphical age control for it was formed during MIS 5 (130–75 ka; Yi et al. 2015). The upper sample taken from the upper part of the S1 pedocomplex (sample 133054) was dated at 110±6 ka falling into MIS 5. Sample 133053, recovered from the middle part of S1 (1160 cm depth), is dated at 112±7 ka, (MIS 5e) defined as the peak of the Eemian substage. This is in good agreement with the expected age, confirming the reliability of our results. These results imply that, most likely, the complete last glacial–interglacial cycle is represented at the Nosak site. The penultimate glacial is represented by the L2 unit where five samples were recovered. The uppermost intercalated L2 palaeosol is dated at 130±10 ka indicating that it formed at the transition of MIS 5 and MIS 6. The overlying loess layer displayed an age of 120±10 ka. This date suggests that the L2 loess may have continued deposition well into the MIS 5 stage. The following two samples display a steady age increase with depth; however, the lowermost L2 sample (sample 133048 – 1725 cm depth) displayed an age inversion of ~15 ka.

The S2 palaeosol where one sample was taken at the approximate depth of the palaeontological layer, was dated at 185±13 ka, falling into the transition of MIS 7 to MIS 6. The calculated age also showed a good agreement (within the error limits) with the ESR date (192±5 ka; Fig. 2) of the mandibular tooth of the mammoth skeleton discovered in 2012. The L3 loess, where one sample was recovered from the lower part of the layer, which is affected by hydromorphic features, was dated at 261±23 ka, suggesting that it accumulated during the late phase of MIS 8.

Results

pIRIR chronology

The pIRIR200–290 ages are presented against depth in Fig. 10A as closed and open circles and in Table 2. The calculated ages of the Nosak loess-palaeosol section generally show a consistent increase with depth, ranging from 261±23 ka for sample 133046 (2320 cm depth) to 25±6 ka for the uppermost sample (133059 – 185 cm depth). The proposed multi-millennial chronostratigraphy for Serbian loess (Martinson et al. 1987; Lisiecki & Raymo 2005; Thompson & Goldstein 2006; Marković et al. 2008, 2015) suggests that the S0 unit corresponds with MIS 1 (0.0–12.1±3.1 ka), L1 most likely covers MIS 2-4 (12.1±3.1 to 80.5±0.9 ka), S1 corresponds to MIS 5 (80.5±0.9 to 129.3±1.0 ka), L2 is equivalent to MIS 6 (129.3±1.0 to 179.2±1.7 ka), S2 is consistent with MIS 7 (179.2±1.7 to 243.0±2.1 ka), L3 is related to MIS 8 (243.0±2.1 to 291.5±0.0 ka), and finally S3 is equivalent to MIS 9 (291.5±0.0 to 337±0.0 ka). In this study, the Last Glacial loess unit L1 is represented by six samples in total, and accumulated between 69±7 and 25±6 ka (MIS 4 – MIS 2). As expected, most of the samples from the upper part of the L1 unit fall into MIS 3, except for the sample 133059, which is at the transition to MIS 2, defined as the Last Glacial Maximum. The uppermost intercalated soil (sample 133058) was dated at 31±4 ka, which suggests that it developed during the late stage of MIS 3. This age shows a good match with the 27±2 ka age
Mass accumulation rates

The calculated MARs based on the modelled pIRIR290 ages are presented in Fig. 11 and Table S1. Although in most studies the MAR calculations of aeolian sediments are based on the mean ages, according to Leighton et al. (2014), this can result in misinterpretations of the luminescence ages. Accordingly, we include the results for the minimum MAR values. The resulting MARs show the data structure where jumps in ages correspond to low MARs and similar ages relate to higher MARs. Whether this is always a true representation of MARs or partly the result of luminescence age uncertainty is here not perfectly clear (Perić/C19/C19 et al. 2019). The MAR estimates range between 56 and 684 g m\(^{-2}\) a\(^{-1}\) (minimum values ~385 and 265 g m\(^{-2}\) a\(^{-1}\)). For the penultimate glacial period the MAR record is characterized by high variability with values ranging from 97 to 450 g m\(^{-2}\) a\(^{-1}\) (minimum values 61 to 95 g m\(^{-2}\) a\(^{-1}\)), peaking between ~160 and 185 ka, during the MIS 6 stage. During MIS 5, the MARs on average display lower values reaching 293 g m\(^{-2}\) a\(^{-1}\) (minimum ~127 g m\(^{-2}\) a\(^{-1}\)); however, a rapid increase was observed between ~112 and 120 ka. For the Last Glacial the absolute values range from 262 to 682 g m\(^{-2}\) a\(^{-1}\) (minimum values 106 to 204 g m\(^{-2}\) a\(^{-1}\)) peaking between 39 and 41 ka. The weighted mean for the interval covering ~25 to 31 ka is 262 g m\(^{-2}\) a\(^{-1}\) (minimum ~106 g m\(^{-2}\) a\(^{-1}\)). Similar values for the Carpathian Basin were reported by Újavári et al. (2010) for the period between 12 and 28 ka where the calculated MARs were ~385 and 417 g m\(^{-2}\) a\(^{-1}\) (range 150–1422 g m\(^{-2}\) a\(^{-1}\)). For the loess sites in Serbia average values of MARs range from 150 to 510 g m\(^{-2}\) a\(^{-1}\): Batajnica 329; Irig 192; Mošorin 395; Petrovaradin 174; Stari Slankamen 168; Surduk 434; Susek 150 and Titel 510 g m\(^{-2}\) a\(^{-1}\) (Újavári et al. 2010), which generally agrees with the calculated MARs at Nosak. It has been reported by both Frechen et al. (2003) and Újavári et al. (2010) that lower MARs occur in plain and hill slope settings while the highest MAR values appear to be related to terrace deposition in major river systems. This also seems to be the case at Nosak. This suggests that, at a broad scale, during the Last Glacial cycle, the past atmospheric dust activity may have had a similar trend across the Carpathian Basin.

Discussion

Lithology and stratigraphical position of the luminescence samples are presented in Fig. 2 and the post-IR IRSL ages are presented in Fig. 10A as a function of depth. The dose rates do not show any detectable trend with depth, which is also noticeable in the \(D_v\) values and the resulting ages. Figure 10B shows the expected age model according to the ages of the MIS transitions (Martinson et al. 1987; Thompson & Goldstein 2006) together with the calculated age model for the Nosak sequence. It can be seen that the pIRIR200, 290 ages...
partially display a good agreement with the expected ages and are stratigraphically consistent, however, with some noticeable irregularities. Most ages of the L1 loess are coherent with MIS 2 and MIS 3, suggesting that the entire Last Glacial–interglacial cycle is represented at the Nosak site. While it can be observed that our luminescence dates show a very good agreement from the top to the base of L1, the upper S1 sample displayed a higher age than expected from the MIS chronostratigraphy (Fig. 10B). In this case, it is conceivable that the proposed multi-millennial chronostratigraphy for Serbian loess does not entirely apply to the Nosak loess-palaeosol sequence. In several studies, it has been discussed that there are reasons why the accuracy of the MIS based correlation ages should be taken with caution. It is known that soil development into underlying glacial-age loess has been detected in many loess regions, which could potentially conceal the true depositional age of sediments at a soil–loess boundary (e.g. Liu et al. 2004). Moreover, it is often the case that correlation based models do not consider postdepositional processes such as mixing, erosion or bioturbation (Stevens et al. 2006; Buylaert et al. 2007; Lai et al. 2007; Lai 2010), which can result in very large inconsistencies between correlation and independent age models (Stevens et al. 2008, 2011). Here we argue that in the case of the sample 133054 taken at the S1–L1 boundary, the proposed chronostratigraphy might be in error. It is possible that soil development continued to a later stage than is generally accepted from the marine record, which resulted in the difference to the expected age. Nevertheless, despite the offset, the calculated age shows an acceptable agreement with the proposed chronostratigraphy within the uncertainty limits (1-sigma uncertainty is reported here). The ages for the L2 loess layer show a steady increase with depth and are in good accordance with the MIS chronostratigraphy. This stratigraphical interpretation is largely confirmed by the published post-IR ages of Stari Slankamen (from 186±11 to 146±9 ka) presented by Schmidt et al. (2010). However, the lowermost L2 sample (133048) displayed an age drop of ~15 ka compared to the overlying sample. Here we have to consider the possibility that there might be a discontinuity above the sample where the age inversion was observed. It is possible that there was a break in sedimentation or an erosion event around 170–165 ka. After such an event, the underlying soil might have been reworked, which would result in the resetting of the luminescence signal. Unfortunately, the sampling resolution is not sufficient to identify the extent and precise position of this hiatus and these require additional investigation. Still, the calculated age displayed a satisfactory agreement with the expected age (within the error limit), which allowed us to include it in the age-depth modelling.

Marković et al. (2014a) proposed that the S1 unit represents a single pedocomplex and is equivalent to MIS 5. Nevertheless, contrary to these conclusions, the initial low field magnetic susceptibility record (for details see Marković et al. 2014a) and our data suggest that S1 comprises three subunits: (i) S1SS2 (corresponding with the S1 pedocomplex previously described by Marković et al. (2014a)), (ii) a thin, weakly developed palaeosol (S1SS1), and (iii) a thin loess layer (S1LL1). The S1SS1 and S1LL2 subunits can be described as a palaeosol–loess ‘couple’, which was previously interpreted as the oldest part of the composite last glacial loess L1, or the introductory part of MIS 4 (Marković et al. 2014a). However, according to the pIRIR age of sample 133054 (110±6 ka), this part of the sequence falls into MIS 5.

Fig. 11. Dust mass accumulation rate (MAR) as a function of age for the Nosak site. The MAR values were obtained using the model of Zeeden et al. (2018). The solid black line represents the mean MAR values, while the dashed grey line shows the lower 95% probability. Because some ages are almost overlapping, the values of the upper 95% probability of the MARs are in some intervals very high, which is why they are not presentable in this figure. These high MARs are not always realistic but represent the result of not assuming strict sedimentation boundaries. For details see text and Table S1.
This can be explained by the proximity of the main dust source (Danube alluvial plain) and high dust input during the latter stage of MIS 5, contributing to the distinctive composition of the S1 pedocomplex at Nosak.

Based on the presented luminescence age of the overlying loess unit (260 ± 23 ka; Fig. 2), the lowermost palaeosol (S2SS2 according to Marković et al. 2014a) previously correlated with the oldest part of MIS 7 needs to be re-interpreted as S3 and equivalent to MIS 9. Given the fact this loess layer is represented by only one age, which is not sufficient to draw a definitive conclusion, we cannot exclude the possibility of age overestimation for sample 133046 due to bioturbation and that the palaeosol we labelled as S3 does not represent MIS 7. It is also conceivable that the soil development started earlier than suggested by the MIS record; however, we find it more probable that the L3 sample slightly underestimates the true age. It is possible that the soil development during MIS 9 resulted in mixing and bioturbation of the overlying loess that caused the resetting of the luminescence signal during this period. This would result in an age underestimation that cannot be detected by the MIS chronostratigraphy. Thus, based on calculated age and field observations, we conclude that the loess layer previously indicated as S2LL1 should, most likely, be re-labelled as L3 corresponding with MIS 8. This is the main re-interpretation of the stratigraphical model presented by Marković et al. (2014a).

The arguments stated above illustrate the complexity of the establishment of accurate chronologies for loess sites when applying age models based on correlation. This is especially true for luminescence based models where the uncertainties about the time of the last signal resetting caused by postdepositional processes may be very significant. While these uncertainties can impact the luminescence age model considerably, a correlation based age model would not be able to detect such variations. Similar problems in this region were reported by Stevens et al. (2011) for the Crvenka loess-palaeosol sequence where age underestimation and reversals were observed for several samples. These issues were attributed mainly to postdepositional processes (i.e. mixing, erosion, bioturbation and sedimentation changes). It would seem that this problem is not confined solely to the Nosak site, but may have also played a major role in the development of further loess sites in the Middle Danube Basin. In order to definitively identify such problems, high sampling resolution dating is required. Nevertheless, in the case of the Nosak site, we argue that postdepositional processes are, most likely, the main cause for the observed discrepancies in the age model.

The MAR values at the Nosak site are highly variable over the last three glacial–interglacial cycles, demonstrating the importance of local conditions and the changing position of the Danube River and its alluvial plain as the main silt source (towards the south). Generally, our MARs displayed higher and more variable values during the glacial periods when compared with interglacial intervals, which is consistent with the findings of e.g. Zhang et al. (1999, 2002), Kohfeld & Harrison (2003), Sun et al. (2005), and Stevens et al. (2011). The MARs displayed values of $\bar{x} = 195$ and 265 g m$^{-2}$ a$^{-1}$ (minimum values $\bar{x} = 85$ and 105 g m$^{-2}$ a$^{-1}$), which is in good accordance with the results reported by Ujvári et al. (2010) for the Carpathian Basin. However, these values are considerably lower than reported for other European sites. One of the main reasons for this is that loess accumulations in the Carpathian basin are mostly represented by loess plateaus, contrary to other European regions where loess formation is usually related to slope sedimentation conditions (Marković et al. 2018). Frechen et al. (2003) reported MARs around the River Rhine ranging from 800 to 3200 g m$^{-2}$ a$^{-1}$. At Wallertheim (terrace) the reported mean value was 6930 g m$^{-2}$ a$^{-1}$ (Wintle & Brunnacker 1982) while for the Nussloch site the values ranged from 1213 to 6129 g m$^{-2}$ a$^{-1}$ (Lang et al. 2003). The lowest MARs were reported in Belgium at Kesselt (Van den Haute et al. 1998), Remicourt (Frechen et al. 2003) and Rocourt (Wintle 1987) and in eastern France at Achenheim (Rousseau et al. 1998) represented by three slope sites and one terrace location where the values range from 93 to 450 g m$^{-2}$ a$^{-1}$. Extremely high MARs were observed at Grubgraben in Lower Austria (Damblon et al. 1996) and Paks in Hungary (Frechen et al. 1997) with values between 1600 and 3200 g m$^{-2}$ a$^{-1}$ along the Danube. The comparison between the MARs at Nosak and those at other European loess sites shows, in some cases, significant inconsistencies. The disagreements are partially the result of different dating methods, BDs and SRs used in the MAR calculations, partially because various time periods are investigated but probably mostly due to the different local conditions. In order to make a realistic comparison (and determine the degree to which local conditions impact the MAR values more accurately) it would be necessary to calculate MARs for similar types of loess profiles, applying the same dating method, and averaging over the same time interval. However, this would require an extensive study that would necessitate an enormous amount of resources and time, which is, at least currently, not possible. Nonetheless, the general conclusion that can be drawn from these comparisons is that the amplitudes of MAR records for the majority of the investigated sites in Europe display similar glacial–interglacial fluctuations. Furthermore, it is apparent that, as already stated, lower MARs occur in plain and hill slope settings while the highest MAR values are found at sites along major rivers in Europe (e.g. Rhine and Danube), which is also applicable for the Nosak site.

Based on the calculated pIRIR ages a rapid MAR increase is observed at Nosak during MIS 4 peaking ~70 ka, with values ranging from 219 to 682 g m$^{-2}$ a$^{-1}$ (minimum 171–204 g m$^{-2}$ a$^{-1}$). However, the MARs
remain high also during MIS 3, although they are much more variable (Fig. 11). In spite of the proximity of the Nosak site and the loess sequences in Vojvodina, it is obvious that the maximum MARs during the Last Glacial period appear to occur during different time intervals. At most investigated sites in the Vojvodina region, maximum MAR values were recorded during MIS 2 while during MIS 3 lower and more constant MARs were detected (e.g. Újvári et al. 2010; Perić et al. 2019). Unfortunately, we are missing samples for MIS 1 and MIS 2, which is why we cannot have certainty whether the MARs at Nosak truly peak during MIS 3 or if the values may have been higher in MIS 2. Even though the average MARs display lower values during MIS 5, a short term peak was observed between ~112 and 120 ka during MIS 5e. However, between 109 and 112 ka the MARs display a rapid decrease to a value of 56 g m\(^{-2}\) a\(^{-1}\) (minimum 45 g m\(^{-2}\) a\(^{-1}\)). Such fluctuations could be the result of changes in the main silt source, wind intensity and direction shifts, activation of an additional silt source or a combination of these factors.

For the high MAR values during the MIS 3 stage at Nosak, we cannot exclude or prove site-specific reasons as similar results have also been reported at other sites in the Carpathian Basin, most notably at Surduk (Fuchs et al. 2008), Sütő (Novothny et al. 2009, 2011) and Paks (Thiel et al. 2014), or for the MAR peak during MIS 5. Higher transport rates, more efficient trapping, palaeowind intensity (e.g. Gavrilov et al. 2018) or the relative proximity of the Danube River may have contributed to the apparently continuous loess accumulation at the Nosak site. The high accumulation rates could also be an artefact of dating uncertainty (see Perić et al. 2019 for uncertainty) or of sampling resolution, which is here not high enough to detect all the breaks and decreases in dust input over time, but may also represent a true feature.

According to the presented MARs, it is obvious that loess accumulation at Nosak was highly variable. This is contrary to most assumptions where continuous loess deposition is assumed. Furthermore, loess profiles mostly appear to have a uniform composition, which is why hiatuses are often very hard to detect solely by stratigraphical interpretation. This also seems to be the case at Nosak. In order to have a more complete insight into the extent to which hiatuses and postdepositional processes affected the formation of the Nosak profile, further dating is needed, with a higher sampling resolution, especially for the uppermost part of the L1 loess.

The main palaeo-environmental pattern of the Nosak loess sequence is evidence of progressive aridization of the reconstructed ancient landscapes. The lower penultimate interglacial S2 pedocomplex indicates more humid conditions than during the formation of the last interglacial S1 pedocomplex. This may be the consequence of more shallow groundwater at the Nosak loess sequence, which can support the existence of a more intensive vegetation cover during the enhanced pedogenesis of the older pedocomplexes.

Conclusions

Our study presents the first pIRIR chronology over the last three glacial-interglacial cycles for northeastern Serbia. The pIRIR\(_{200, 290}\) based age model is in good agreement with the geological situation; however, it suggests the need for a partial revision of the chronostatigraphical model proposed by Marković et al. (2014a) for the Nosak loess-palaeosol sequence. The presented results suggest a chronological re-interpreta- tion of the oldest palaeosol-loess couple (previously indicated as S2SS2 and S2LL1 by Marković et al. 2014a) and their stratigraphical re-labelling as L3 and S3 respectively. Our results also imply that the S1–L1 boundary is located stratigraphically higher in the sequence than proposed in previous studies (Marković et al. 2014a; Muttoni et al. 2018). Thus, the S1 soil development continued to a later stage than previously assumed and here we suggest a revision of the S1–L1 boundary and a reinterpretation of the S1 pedocomplex composition.

The mean MAR value of 265 g m\(^{-2}\) a\(^{-1}\) shows a good agreement with the MAR values of other sites in the Carpathian Basin, although our model shows much higher variability especially during the Last Glacial. This discrepancy might be the result of the applied age-depth modelling methodology where each method makes diverse assumptions over loess accumulation rates (or not) and the weight given to individual age points but could also represent a true feature. Contrary to most of the investigated sites in the region (e.g. Újvári et al. 2010; Stevens et al. 2011), very high MAR values were recorded during the MIS 3 stage, which may be a consequence of missing samples from the upper part of the L1 loess at the Nosak site. However, at this point, we cannot absolutely exclude the possibility that site-specific reasons caused peak MAR values during the MIS 3 stage as similar results have been reported at other loess-palaeosol sequences in the Carpathian Basin.

In order to obtain a better understanding of the deposition evolution of the Nosak sequence and establish a more accurate chronostratigraphy (especially for the transition zone between the L1 loess layer and the pedocomplex S1), further studies are required by applying pIRIR measurements with a higher sampling resolution. Additionally, for the upper part of the L1 loess unit, quartz OSL measurements are needed as these are considered to be more suitable for younger samples. This would allow us to gain more insights into the deposits of the Last Glacial period and atmospheric dust flux estimates at the Nosak site.

Acknowledgements. – The authors would like to thank Dr Miomir Korac and Dr Nemanja Mrdjić from the Viminacium Archeological
Park for their help during fieldwork. We thank Dr Jan-Pieter Buylaert for the delivery of the prepared luminescence samples. We also express our gratitude to the reviewer Dr Frank Lehnhuñl and the anonymous reviewer for their helpful comments and suggestions on the original manuscript. We especially thank Prof. Jan A. Piotrowski for his help in the final correction of this paper.

Author contributions. – Sample collection: SBM; gamma-spectrometry measurements: CT and ASM; sample preparation: CT and ZMP; luminescence measurements: GS and ZMP; age-depth modelling: CZ; data analysis: ZMP and SBM; data presentation: ZMP and SBM; original draft preparation: ZMP, ASM and MBG; review and editing: all authors. The authors declare no conflict of interest.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article at http://www.boreas.dk.

Table S1. Summary of bulk density measurements and age-depth modelling results.