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Abstract 

Prediction of protein stability changes caused by mutation is of major importance to protein engineering 

and for understanding protein misfolding diseases and protein evolution. The major limitation to these 

applications is the fact that different prediction methods vary substantially in terms of performance for 

specific proteins, i.e. performance is not transferable from one type of mutations or protein to another. 

In this study, we investigated the performance and transferability of eight widely used methods. We first 

constructed a new dataset comprised of 2647 mutations using strict selection criteria for the experimental 

data, and then defined a variety of sub-datasets that are unbiased with respect to various aspects such as 

mutation type, stabilization extent, structure type and solvent exposure. Benchmarking the methods 

against these sub-datasets enabled us to systematically investigate how data set biases affect predictor 

performance. In particular, we use a reduced amino acid alphabet to quantify the bias towards mutation 

type, which we identify as the major bias in current approaches. Our results show that all prediction 

methods exhibit large biases, stemming not from failures of the models applied, but mostly from the 

selection biases of experimental data used for training or parametrization. Our identification of these 

biases and the construction of a new mutation-type-balanced data should lead to the development of 

more balanced and transferable prediction methods in the future.
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Reduced amino-acid alphabet

For the analysis of mutation types, we used a reduced amino-acid alphabet to minimize the number of 

mutation types, since not all mutation types are covered by the experimentally known data, which 

produces a bias problem. This alphabet was computed from local structure features of amino acids in 

approximately 1400 structures in the PDB53. While multiple groupings were proposed by the authors, we 

use here the alphabet consisting of eight groups, with the letter denoting each group in parentheses: 

Hydrophobic – A, L, M (A); aliphatic – I, V (I); aromatic – F, Y, W (F); long polar amino-acids – E, Q, K, R (X); 

short charged/polar amino-acids – D, N (N); short polar amino-acids – H, S, T, C (S) and two groups 

consisting of one structure-breaking amino-acid each, G and P. We refer to this reduced alphabet as the 

Etchebest alphabet throughout the paper.

Calculating global and local variables of a mutated amino-acid

Relative solvent accessibility was calculated with Naccess54,55, using default van der Waals atomic radii. 

The length of the proteins was computed as the number of amino-acids in each PDB file. The secondary 

structure composition of the proteins was taken from the CATH structural database56. A mutation was 

considered to be volume-changing if it changed the volume of the residue by more than 30 Å3 

(approximately the volume of a water molecule).

Statistical measures

The predictors’ performance was evaluated based on three metrics. The Pearson correlation coefficient 

(R) describes the ability of a method to provide the correct trend in a data set. The mean absolute error 

(MAE) describes the overall numerical accuracy of a method compared to the experimental data. The 

mean signed error (MSE) shows the systematic error of a method towards stabilization or destabilization.
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Since O2567 is partly a subset of the ProTherm database, it is expected that it will have some overlap 

with the training sets of the studied prediction methods. Figure 2a shows the number of mutations in 

common between O2567 and the training and test sets of each predictor. Data for CUPSAT were not 

available to us and were thus excluded from the analysis. The overlap is less than 50% with all training 

sets except that of Automute 2. Accordingly, O2567 is a distinct dataset with a good balance between 

similarities and differences relative to other data sets, in particular considering the data-quality-based 

selection criteria that we applied. When applying the different methods to the O2567 data set, the trend 

accuracy, as estimated from the correlation coefficient, correlates fairly linearly with the overlap of O2567 

with the method’s training set (R = 0.77, Figure 2b). This suggests that the data used in the training of the 

methods largely control the performance of a given method, as shown before,32 and raises a concern 

about overfitting and transferability of these methods in general.

Method performance for the full O2567 data set

As a first blind test of the eight methods, we studied in detail how they perform for all the mutations of 

the O2567 dataset. We note that among them, Maestro could not be applied to structures that contained 

missing residues, resulting in only 2/3 of the mutations being calculated. This can cause a slight inflation 

in all the performance metrics of Maestro reported herein.
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the highest trend accuracy (Maestro) being only 0.3. The differences in performance were also reduced 

correspondingly. This behavior is not surprising and reflects the circularity issue that has been observed 

when testing other types of machine-learning prediction methods, which results in inflated performance 

metrics for methods that have the same data points in the training and test datasets.57 Our analysis allows 

us to address this important issue by quantifying the training set bias and producing sub-datasets that are 

more representative and relevant, qualities necessary for proper analysis.58

The MAE values (Figure 3b) indicate a similar tendency, with Maestro, PoPMuSiC, Automute, mCSM 

and I-Mutant 3.0 performing better for this data set than SDM, FoldX and CUPSAT. This tendency was 

maintained when data points were removed from any training set (Table S3), although the MAE increased 

by approximately 0.2 kcal/mol for all methods. The errors of the better performing methods were ~1.0 

kcal/mol, similar to what has been reported previously in independent benchmarks.13,32,59
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Figure 3. (a) Pearson correlation coefficient, R (b) mean absolute error (MAE, in kcal/mol) and (c) mean 

signed error (MSE, in kcal/mol) for the eight prediction methods against the full O2567 dataset. (d) R, (e) 

MAE (kcal/mol) and (f) MSE (kcal/mol) for the eight prediction methods against the balanced dataset with 

maximum five mutations of each type.

From Figure 3c, PoPMuSiC and mCSM displayed MSE values close to 0 kcal/mol, indicating a balanced 

description of stabilization effects (no systematic stabilization error). On the other hand, FoldX predicted 

too destabilizing mutations (MSE = -0.41 kcal/mol), whereas SDM displayed too much stabilization for the 

total data set (MSE = 0.63 kcal/mol). However, as seen already from Figure 2b, such performance is largely 

a matter of overlap with the data points of the test and training sets, i.e. predictive capacity is much 

smaller for all methods outside their parameterization range, a typical shortcoming of empirical methods. 

To handle this issue, one needs to either use more sophisticated methods, or to train the methods on 

balanced data sets that are more universal, as discussed below. 
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whereas LM and ML show mostly neutral changes. Thus, we decided to separate the A group into two 

groups: A (A) and L, M (L).

Our resulting customized reduced alphabet thus consists of nine groups of amino-acids, and accordingly 

78 possible mutation types (9 x 9 – 3 for AA, PP, and GG). This reduces the number of mutation types by 

a factor of ~5 and increases the number of data points for each mutation type (Figure 4b), making 

statistical analysis possible. Two mutation types (PX and PN) have no representation in the data set and 

six mutation types possess fewer than five data points. All these seven mutation types involve proline, 

and we thus note that we cannot draw any significant conclusions regarding mutations involving proline; 

due to the strong structure-disturbing character, such mutations are typically highly destabilizing and 

potentially denaturing, which is probably why they are so under-represented in the first place.

To properly quantify how each prediction method performs based on mutation type, we computed 

predictions for all mutation types in the reduced alphabet (Figure 4b). The correlation of all methods per 

mutation type is shown in Figure 5a. Mutations to glycine displayed good correlation for all prediction 

methods. Similarly, most intra-group mutations (except LL), which are mostly neutral, showed good 

correlation for all predictors. Maestro and Automute displayed the best correlation for 19 mutation types 

each, and PoPMuSiC had the best correlation for 15 mutation types. Although CUPSAT and FoldX showed 

poorer correlation for the full dataset, they have the best correlation for 8 and 6 mutation types, 

respectively. In particular, FoldX performed well for mutations involving large, charged residues. mCSM 

exhibited the best correlation for only two mutation types, despite performing well on the full dataset. 

This indicates that mCSM is more transferable across mutation types, which is also confirmed by its box 

plot (Figure 6). All methods produced negative correlation for certain mutation types. Very interestingly, 

the trend for the FS mutation type is negative for all methods apart from Automute. I-Mutant 3.0 is the 

method that displays most negative correlation for mutation types, whereas mCSM has the fewest. 
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Figure 5. (a) Pearson correlation coefficient, R (b) MAE (in kcal/mol) and (c) MSE (in kcal/mol) of the 

prediction methods against sub-datasets containing only one mutation type from the modified Etchebest 

reduced alphabet. Mutation types with fewer than five data points have been excluded.
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Figure 6. Box plots of (a) Pearson correlation coefficients, (b), mean absolute errors (kcal/mol) and (c) 

mean signed errors (kcal/mol) for the eight studied methods on mutation-type balanced sub-datasets 

containing only one mutation type from the modified Etchebest reduced alphabet.

Substantial variations in MAE due to mutation type is apparent from Figure 5b. Mutations involving 

large aromatic residues or tiny, glycine residues show large errors for most prediction methods, especially 

for FoldX, which has a MAE > 5 kcal/mol for mutations from glycine to other residues. Other mutation 

types, such as AN or IL, are much less problematic and exhibit errors <1.0 kcal/mol for all prediction 

methods. Automute showed the smallest absolute errors for 18 mutation types, followed by Maestro for 

16 mutation types and PoPMuSiC for 14. CUPSAT and FoldX show a poorer performance, only displaying 

lowest MAEs for 3 and 4 mutation types, respectively. 

The MSE for each prediction method per mutation type (Figure 5c) generally follow the observations 

from the full dataset. FoldX has very few mutation types for which it shows a positive (stabilizing) MSE. 

All the FoldX outliers in MSE are strongly destabilizing. Similarly, but not to the same extent, CUPSAT and 

Automute exhibit a systematic destabilization bias. Conversely, SDM shows only positive MSE outliers, 

although, unlike FoldX it also has mutation types for which it has a systematic negative MSE. 

Figure 6 summarizes the performance of the eight methods for the mutation-balanced data sets. SDM 

and CUPSAT show the fewest outliers in correlation per mutation type, but a quite low average R. 

Automute and Maestro display the highest average R ~ 0.5, whereas mCSM and PoPMuSiC are the most 
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Method performance also strongly depended on the relative volume of residues involved in the 

mutation (Figure 8a). In general, the correlation was lower for all methods predicting same-to-same 

mutations, R = 0.27 – 0.44, but displayed lower MAE, 0.93 – 1.41 kcal/mol. This can again be explained by 

the small effect of same-to-same mutations on the overall stability of the proteins. Interestingly, not all 

mutations performed worse on predicting small-to-large mutations than on predicting large-to-small 

mutations. This behavior would be expected as small-to-large mutations should change more drastically 

the structure of the protein due to clashes with other residues, which prediction algorithms cannot 

generally model. In particular, CUPSAT displayed a higher correlation (R = 0.38) and a lower MAE (1.45 

kcal/mol) for small-to-large mutations than for large-to-small mutations (R = 0.25, MAE = 1.75 kcal/mol). 

Conversely, I-Mutant 3.0 behaved as expected, with a much lower ability to predict the trend of small-to-

large mutations, with R = 0.16 and MAE = 1.27 kcal/mol. The performance of the methods on these sub-

datasets is not driven by the composition of the training datasets, as all training datasets have the same 

composition of large-to-small, same-to-same and small-to-large mutations as the O2567 dataset, with 

only around 15% small-to-large mutations (Table S7).

It is well-known that oligomerization and ligand-binding contribute to the overall stability of a protein, 

yet ideally the sample used to determine the mutant stability should reflect the crystal structure 

composition. Oligomer states in real cells and even in experimental samples can be very heterogeneous 

and complex, and thus we define here oligomer state as that extracted from the PDB. Of the studied 

methods, only PoPMuSiC and Maestro take oligomerization into account; mCSM has a version specific for 

this purpose, which was not tested (mCSMppi)60. Predictors that calculate interactions through an 

empirical or statistical potential add the contribution of the ligand but probably feature worse 

parameterization for ligands. 
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Figure 8. Performance of methods based on mutation properties(a) Pearson correlation coefficient, R, (b) 

mean absolute error (MAE, in kcal/mol) and (c) mean signed error (MSE, in kcal/mol) for the eight 

prediction methods against sub-datasets containing only mutations from a large residue to a smaller one 

(L2S), a small residue to a larger one (S2L) or keeping the volume of the residues constant (S2S). (d) R, (e) 

MAE (kcal/mol) and (f) MSE (kcal/mol) for the eight prediction methods against the datasets containing 

mutations only in monomeric proteins, or only in oligomeric proteins, according to their PDB structure. 

(g) R, (h) MAE (kcal/mol) and (i) MSE (kcal/mol) for the eight methods against datasets containing 

mutations only in proteins without ligands (Apo) or with ligands (Holo), according to their PDB structures.
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