Convex Relaxations of Chance Constrained AC Optimal Power Flow

Venzke, Andreas; Halilbasic, Lejla; Markovic, Uros; Hug, Gabriela; Chatzivasileiadis, Spyros

Published in:
IEEE Transactions on Power Systems

Link to article, DOI:
10.1109/TPWRS.2017.2760699

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Comments and Corrections

Correction to “Convex Relaxations of Chance Constrained AC Optimal Power Flow”

Andreas Venzke, Student Member, IEEE, Lejla Halilbasic, Student Member, IEEE, Uros Markovic, Student Member, IEEE, Gabriela Hug, Senior Member, IEEE, and Spyros Chatzivasileiadis, Member, IEEE

In the article [1], there is a typo in the equation in (45) in (Section III.D). The correct formula should read:

\[
N_s \geq \frac{1}{e} \left(\ln \frac{1}{\beta} + 2n_W - 1 \right)
\]

In addition, the statement in (Section III.V) that the approximation of the joint chance constraint with individual chance constraints with the same maximum allowable violation probability \(\epsilon\) is “conservative” is incorrect. In fact, the maximum of the observed individual chance constraint violation probabilities only provides a lower bound on the joint chance constraint violation probability.

Reference

Andreas Venzke, Lejla Halilbasic, and Spyros Chatzivasileiadis are with the Department of Electrical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark (e-mail: avenzke@gmx.net; lhal@elektro.dtu.dk; spyros.chatz@gmail.com).

Uros Markovic and Gabriela Hug are with the Power Systems Laboratory, ETH Zurich, 8092 Zurich, Switzerland (e-mail: markovic@eeh.ee.ethz.ch; ghug@ethz.ch).

Color versions of one or more of the figures in this article are available online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2020.3011092