

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jan 15, 2021

The CAMS eSense Framework
Enabling Earable Computing for mHealth Apps and Digital Phenotyping

Bardram, Jakob Eyvind

Published in:
Proceedings of the 1st International Workshop on Earable Computing

Link to article, DOI:
10.1145/3345615.3361137

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bardram, J. E. (2019). The CAMS eSense Framework: Enabling Earable Computing for mHealth Apps and
Digital Phenotyping. In Proceedings of the 1st International Workshop on Earable Computing (pp. 3-7).
Association for Computing Machinery. Proceedings of the 1st International Workshop on Earable Computing
https://doi.org/10.1145/3345615.3361137

https://doi.org/10.1145/3345615.3361137
https://orbit.dtu.dk/en/publications/3563e6a3-a22a-45e2-be33-e2ae50a3b119
https://doi.org/10.1145/3345615.3361137

The CAMS eSense Framework: Enabling Earable Computing for
mHealth Apps and Digital Phenotyping

Jakob E. Bardram
jakba@dtu.dk

Copenhagen Center for Health Technology
Department of Health Technology, Technical University of Denmark

Copenhagen, Denmark

ABSTRACT
Earable computing devices can be an important platform for mobile
health (mHealth) applications and digital phenotyping, since they
allow for collection of detailed sensory data while also providing a
platform for contextual delivery of interventions. In this paper we
describe how the eSense earable computing platform has been inte-
grated with a programming framework and runtime platform for
the design of mHealth applications. The paper details how this pro-
gramming framework can be used in the design of custom mHealth
technologies. It also provide data and insight from an initial study
in which this framework was used to collect real-life contextual
data, including sensory data from the eSense device.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Software and its engineering→Development frame-
works and environments; • Applied computing →Health in-
formatics.

KEYWORDS
digital phenotyping, mobile health, mobile sensing, eSense, earable
computing
ACM Reference Format:
Jakob E. Bardram. 2019. The CAMS eSense Framework: Enabling Earable
Computing for mHealth Apps and Digital Phenotyping. In Proceedings of
1st International Workshop on Earable Computing (EarComp’19). ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3345615.3361137

1 INTRODUCTION
A significant body of research has been applying mobile sensing
to health and wellness applications [3] including, for example,
the EmotionSense [11], BeWell [10], and StudentLife [15] systems,
which classify physical activity, sleep, and social interaction based
on sensor data. Similarly, studies in mental health have demon-
strated correlations and predictive power between phone-based
features on physical activity, mobility, social activity, phone usage,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EarComp’19, September 9, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6902-2/19/09. . . $15.00
https://doi.org/10.1145/3345615.3361137

and voice data on the one side, and mental health symptoms in e.g.,
depression [14], bipolar disorder [5, 7], and schizophrenia [4] on
the other side.

More generally, it has been argued that obtaining a more pre-
cise understanding of a disease can happen in multiple dimensions,
and one new dimension is the use of mobile devices to measure
people’s activity and other factors more continuously and accu-
rately. As such, mobile sensing has been defined as central to the
‘Precision Medicine’ initiative; genotypic information can become
more powerful if phenotypic information is also available [1]. The
use of everyday mobile and wearable technology for collection of
behavioral, psychological, and health data has been termed ‘digital
phenotyping’ [8, 13], which can be defined as;

continuous and unobtrusive measurement and inference
of health, behavior, and other parameters fromwearable
and mobile technology.

Earable computing devices provide a novel and significant tech-
nological platform for the design of mobile health (mHealth) tech-
nologies and digital phenotyping. First of all because earable com-
puting enables new sensor modalities and the collection of a new
type of data, including head movement (from accelerometers and
gyroscopes), sound and noise levels as experienced by the user
(and not by the phone which might be in a pocket), as well as more
health andwell-being features related to e.g. cardio-vascular activity
(pulse, heart rate (HR), and heart rate variability (HRV)), sleep detec-
tion, etc. Secondly because earable computing might be a platform
for delivering Just-in-Time Adaptive Interventions (JITAI) [12], by
coupling contextual sensing with the delivery of a personalized
and private intervention using the headset speakers. Hence, an
mHealth intervention no longer needs to rely on notifications on
the user’s phone screen (with all the problems of notification fa-
tigue associated with this), but instead can be delivered as small
audio messages targeted for the specific person only. Thirdly, if the
earable device has some input modalities – like a push button –
simple Ecological Momentary Assessment (EMA) sampling can be
done.

The eSense device from Nokia Bell Labs provide such an earable
computing platform [9]. In combination with a more general data
sampling platform, this device can provide important additional
sensing modalities for digital phenotyping as well as in the design
of mHealth applications. In this paper we describe how the eSense
technology has been integrated into a larger runtime platform and
programming framework for digital phenotyping and mHealth ap-
plication development, which then allows researchers and mHealth
application designers to achieve the visions for earable computing,
as outlined above. The paper also reports from a small study in

3

https://doi.org/10.1145/3345615.3361137
https://doi.org/10.1145/3345615.3361137

EarComp’19, September 9, 2019, London, United Kingdom Bardram

FileDataManager

Runtime

FirebaseStorage
DataManager

...
DataManager

Data Managers

Sampling
Schema

Sensor
Package

Context
Package

DataManager

...
Package

eSense
Package

...
Package

wifi

location activity

accelerometer

Operating System

Sampling Packages

Study
Executor

Privacy
Schema

Data
Transformer

Study Controller

io.esense.
esenselib

sensors

pedometer

light

location

weather
...

Flutter Plugins

CARP Mobile Sensing

activity

esense

 WEARABLE COMPUTING

Figure 1. eSense system. (a) Audio, motion, and Bluetooth Low Energy radio sensing are powered
by a CSR processor and a 40-mAH battery. (b) Schematic design. (c) Front and back of the printed
circuit board.

Hardware
Two main concerns drove the hardware design of eSense (see Figure 1): physical size and func-
tional requirements. Physically, we wanted eSense to equal the size of a standard wireless earbud
(including battery, electronics, and all outside connections) to ensure that it could be worn natu-
rally with comfort. Functionally, we wanted eSense to permit reprogramming the sensors and
recharging of the battery by users. Taking both of these concerns into account, we used a cus-
tom-designed 15 × 15 × 3 mm PCB. eSense is composed of a Qualcomm CSR8670, a program-
mable Bluetooth dual-mode flash audio system-on-chip (SoC) with one microphone; a TDK
MPU6050 six-axis inertial measurement unit (IMU) including a three-axis accelerometer, a
three-axis gyroscope, a digital motion processor, and a two-state button; a circular LED; associ-
ated power regulation; and battery-charging circuitry. There is no internal storage or real-time
clock. We opted for an ultra-thin 40-mAh LiPo battery to provide the system with power. This
battery offers a reasonable energy profile: 3.0 h of inertial sensing at 50 Hz and 1.2 h for simul-
taneous audio sensing at 16 kHz and inertial sensing at 50 Hz. The carrier casing is equipped
with an external battery enabling recharging of eSense earbuds on the go. Each earbud weights
20 g and is 18 × 20 × 20 mm.

Firmware
We developed an energy-aware firmware that implements the classic Bluetooth stack including
the Advanced Audio Distribution Profile (A2DP) for high-definition audio streaming, and mono
channel recording. The firmware also implements the full BLE radio stack for delivering the
accelerometer and gyroscope data and configuring different parameters. A set of BLE character-
istics expose these functionalities for setting the sampling rate and duty cycle of the microphone
and IMU, setting the advertisement packet interval and connection interval of BLE, and receiv-
ing the sensor data. Also, we have designed standard BLE characteristics for receiving the bat-
tery voltage and advertisement packets. In our design, continuous bi-directional audio streaming
uses classical Bluetooth, and motion data streaming uses BLE. To accommodate simultaneous
audio and motion data transfer, eSense implements a multiplexing protocol transparently without
requiring any modification to the host device stack. Finally, to enable continuous proximity sens-
ing, eSense broadcasts advertisement packets continuously, and the advertisement interval can be
configured programmatically to maintain a right balance between battery life and application
requirements.

��+VMZo4FQUFNCFS����� XXX�DPNQVUFS�PSH�QFSWBTJWF

Figure 1: A simplified view on the CAMS architecture high-
lighting how the eSense device is integrated into the frame-
work using both a Flutter plugin and aCAMS sampling pack-
age.

which the eSense device was used in data collection and where
earable sensor data is combined with ‘traditional’ mobile sensing
modalities, like location, connectivity, communication patterns, ac-
tivity recognition, noise, etc. The earable computing programming
framework presented in this paper is open source and we hope that
others in the earable community can benefit from using this.

2 CAMS ESENSE FRAMEWORK
The eSense technology has been integrated into the CARP Mo-
bile Sensing (CAMS) framework [2]1. CAMS have been described
elsewhere and there are plenty of online resources in terms of
application programming interface (API) documentation and tuto-
rial available – see Appendix A.2. CAMS is a cross-platform (iOS &
Android) programming framework for building mHealth technol-
ogy that incorporates mobile and wearable sensing. It is designed

1CARP is an abbreviation of the CACHET Research Platform.

to be highly extensible allowing for; (i) adding new data sampling
modalities (such as wearable devices like the eSense device), (ii)
implementing different kinds of data transformation (e.g. transform-
ing sensor data to standardized formats or on-phone pre-processing
before upload), (iii) using data sampling actively in app design, and
(iii) supporting different data off-loading strategies (such as local
file storage or cloud-based upload of data). CAMS is implemented in
Flutter, which is Google’s cross-platform portable toolkit for build-
ing natively-compiled applications for mobile, web, and desktop
from a single codebase [6]. Flutter rely on Dart, which is a mod-
ern object-oriented, reactive programming language optimized for
non-blocking user-interface programming with a mature and com-
plete async-await event-driven code style, paired with isolate-based
concurrency.

As illustrated in Figure 1, CAMS has three main layers; (i) a
runtime layer (in the middle), (ii) a set of data mangers (top layer),
and (iii) a set of sampling packages (bottom layer). CAMS is a very
flexible and extensible ‘plug-and-play’ architecture, in which most
of the components show in Figure 1 can be tailored, extended, or
replaced, and customized components can be added. For example,
a new sampling package can be added, which supports sampling
of data from a new source – both from on-board phone sources
(such as a phone sensor or log) or off-board wearable sensors which
can be accessed e.g. via Bluetooth Low Energy (BTLE). The inte-
gration of eSense into CAMS is an example of the latter, where an
eSense sampling package have been implemented, which then can
be linked and used in app development. The implementation of a
sampling package in CAMS rely on access to one or more Flutter
plugins for data access. These Flutter plugins are strictly speaking
not a part of CAMS, but are a generic way to access the phone’s
operating system (OS) in a cross-platform manner. A Flutter plugin
is often implemented using the ‘Platform Channel’ technology in
Dart/Flutter, which allow Flutter to access the native OS API on
both Android and iOS2.

Hence, in order to support the eSense device in CAMS, we have
implemented two components; (i) a Flutter plugin which uses a
platform channel to access the eSense Java API, and (ii) an eSense
sampling package which integrates support for eSense into CAMS.

2.1 The eSense Flutter Plugin
The eSense Flutter plugin is designed to be used directly in a Flutter
app and is hence an independent library. It has been designed
to resemble the Android eSense API almost 1:1 and the eSense
Android programmer will be able to recognize the names of the
different classes, methods, and class variables. For example, the
methods on the ESenseManager class is mapped 1:1. However, one
major design change has been done; the eSense Flutter plugin
follows the Dart/Flutter reactive programming architecture using
streams. Hence, you do not ‘add listeners’ to an eSense device (as
you do in Java) – rather, you obtain a Dart stream and listen to this
stream, and utilize all the other very nice stream operations that
are available in Dart – including creating very beautiful reactive
user interfaces (UIs). Listing 1 shows the basic Dart code on how to
use the eSense plugin. As can be seen, it quite straight-forward and

2More information on how to write platform-specific code in Flutter is available at
https://flutter.dev/docs/development/platform-integration/platform-channels.

4

https://flutter.dev/docs/development/platform-integration/platform-channels

The CAMS eSense Framework EarComp’19, September 9, 2019, London, United Kingdom

it only requires a few lines of code to use the plugin. The reader
familiar with the eSense Java API will recognize the way to use the
API and its names.

1 import 'package:esense_flutter/esense.dart';

2
3 // listen to connection events before connecting

4 ESenseManager.connectionEvents.listen ((event)

5 => print('CONNECTION event: $event ');

6
7 // try to connect to the eSense device with a given name

8 success = await ESenseManager.connect('eSense -0332');

9
10 // listen to sensor events and print them

11 ESenseManager.sensorEvents.listen ((event)

12 => print('SENSOR event: $event ');

Listing 1: Using the eSense Flutter plugin.

Note that playing and recording audio are performed via the
Bluetooth Classic interface and are not supported by the eSense plu-
gin. However, as we shall present below, CAMS supports sampling
of audio and noise, which is done via the eSense device microphone,
once connected.

The eSense Flutter plugin has been released to the Flutter pack-
age sharing site3 using the name esense_flutter including docu-
mentation on the API and how to use the plugin4. Links to online
resources are provided in Appendix A.1. The eSense Flutter plugin
has implemented support for both Android – using the Nokia Bell
Labs implementation – as well as for iOS – using the eSense iOS
Library from the University of Tokyo. This means that all eSense
apps implemented using Flutter and CAMS will run on both An-
droid and iOS without any platform-specific development needed.
This is the true strength of using Flutter.

2.2 The eSense Sampling Package
A CAMS sampling package basically consists of three components;
(i) a Measure which defines what data to collect, (ii) a Probe that
implements how data is collected, and (iii) a Datum object which
specify the data format of the collected data. Two types of data can
be collected from the eSense device; (a) button pressed / released
events and (b) sensor events from the device’s inertial measurement
unit (IMU) (accelerometer and gyroscope). CAMS supports both
these type of measures, using two different probes, and stores it in
two different datum objects. Hence, the two types of measures are
independent and the app developer can choose to use one and/or
the other.

Listing 2 shows how the eSense measures are configured to
be part of a CAMS study. A Study object is created with a name
and a file storage as the data endpoint (line 1–3), and then a list of
measures are added to a task and a trigger, which basically just starts
the sampling immediately and runs forever (line 4–15). The study
is configured to sample eSense button events, eSense sensor events,
noise, location, activities, local weather information, and scans for
Bluetooth devices in the phone’s proximity. The exact configuration
of these measures is defined in a so-called SamplingSchema, where
the common schema is used in this case.

3http://pub.dev
4https://pub.dev/packages/esense_flutter

1 study = Study('1234', 'user@dtu.dk')

2 ..name = 'CARP Mobile Sensing - eSense sampling demo'

3 .. dataEndPoint = getDataEndpoint(DataEndPointTypes.FILE)

4 .. addTriggerTask(

5 ImmediateTrigger (),

6 Task()

7 .. measures = SamplingSchema.common ().getMeasureList ([

8 ESenseSamplingPackage.ESENSE_BUTTON ,

9 ESenseSamplingPackage.ESENSE_SENSOR ,

10 AudioSamplingPackage.NOISE ,

11 ContextSamplingPackage.LOCATION ,

12 ContextSamplingPackage.ACTIVITY ,

13 ContextSamplingPackage.WEATHER ,

14 ConnectivitySamplingPackage.BLUETOOTH ,

15]));

Listing 2: Using the eSense measure types as part of a CAMS
study.

Once the study is defined, it can be handed over to the CAMS
StudyController as shown in Listing 3. This paper do not allow
for going into the details of CAMS, but the code examples hopefully
illustrates that a sampling study can be configured and executed
quite easily.

1 // Create a controller for this study , initialize it , and start it

2 controller = StudyController(study);

3 await controller.initialize ();

4 controller.start();

5
6 // listening on all data events from the study and print it

7 controller.events.forEach(print);

Listing 3: Starting a study.

3 ESENSE STUDY
In order to evaluate the eSense Flutter plugin and the eSense CAMS
sampling package, we created the study listed in Listing 2 and de-
ployed it in the CAMS client app. This study configuration invokes
a set of corresponding probes, which samples the specified data
types. The CAMS client app with this list of probes is shown in
Figure 2. The following measures were configured:

• eSense button events
• eSense sensor events with a sampling rate of 10 Hz
• Ambient noise, sampled over a 5 seconds window every 45
seconds.

• Location triggered by the phone on movement.
• Activity as recognized by the activity recognition API on the
phone.

• Local weather as collected from the WeatherAPI service.
• Scanning of nearby Bluetooth devices every 60 seconds.

The main goal of this sampling schema is to sample data in a
scenario where a user is physically active during a day, performing
different activities (e.g. biking, walking, sitting), at different loca-
tions, with different weather, with different noise levels, and with
different people (the Bluetooth scan). The eSense sensor data is
collected to see if this can be correlated or used in classification of
activities. The user is instructed to press the eSense button when
starting a new activity and/or changing context.

We ran the study for one day which included activities of walk-
ing, driving, sitting at a desk, and biking. During the study we
collected more than 150,000 data points (61 MB data), of which the
vast majority was the detailed sensor data from the eSense IMU
sensor. All of this data was stored locally on the phone (hence,

5

http://pub.dev
https://pub.dev/packages/esense_flutter

EarComp’19, September 9, 2019, London, United Kingdom Bardram

Figure 2: The study configured in Listing 2 shown in the list
of probes in the CAMS mobile sensing app.

offloading to e.g. Firebase was not used in this study). The app
and the eSense device ran continuously during the entire day (8
hours) without any significant breakdowns and problems. However,
valuable experience in handling the eSense device was obtained.
For example, there might be inference between the eSense Blue-
tooth connectivity while doing the Bluetooth scan in CAMS and
the BTLE connection to the eSense IMU could break, if the earplug
was used for streaming music. Hence, this study gave some input
in how to make the data sampling package and the eSense probes
more robust in handling disconnection and re-connection scenarios.
At the time of writing the collected data has not been analysed.
But the study demonstrated the feasibility of using CAMS with the
eSense sampling package in such digital phenotyping studies. The
data is available for download – see Appendix A.3 for details.

4 CONCLUSION
This paper has presented the integration of the eSense earable
computing platform from Nokia Bell Labs into the CARP Mobile
Sensing (CAMS) framework. This integration allows software de-
velopers of mHealth apps to include mobile and wearable sensing to
their app design, which now also include the eSense device. More-
over, the framework allows for using eSense in digital phenotyping,
as demonstrated by a small study. Now that this infrastructure is
in place, we plan to set up more studies where the eSense earable

computing technology can be used in combination with all the
other sampling measures available in CAMS.

ACKNOWLEDGMENTS
This work has been funded by the Copenhagen Center for Health
Technology (CACHET) [www.cachet.dk].

REFERENCES
[1] Euan A. Ashley. 2015. The precision medicine initiative: A new national effort.

JAMA 313, 21 (2015), 2119–2120.
[2] Jakob E. Bardram. 2019. The CARPMobile Sensing Framework: A Cross-platform,

Reactive, Programming Framework and Micro-service Runtime Environment for
Digital Phenotyping. In Submission (2019).

[3] Jakob E Bardram and Mads Frost. 2016. The Personal Health Technology Design
Space. IEEE Pervasive Computing 15, 2 (2016), 70–78.

[4] Ian Barnett, John Torous, Patrick Staples, Luis Sandoval, Matcheri Keshavan, and
Jukka-Pekka Onnela. 2018. Relapse prediction in schizophrenia through digital
phenotyping: a pilot study. Neuropsychopharmacology (2018), 1.

[5] Maria Faurholt-Jepsen, Jonas Busk, Mads Frost, Maj Vinberg, EllenMChristensen,
Ole Winther, Jakob E Bardram, and Lars V Kessing. 2016. Voice analysis as an
objective state marker in bipolar disorder. Translational psychiatry 6, 7 (2016),
e856.

[6] Flutter 2019. Flutter – Google’s portable UI toolkit for building beautiful, natively-
compiled applications for mobile, web, and desktop from a single codebase.
Retrieved July 12, 2019 from https://flutter.dev

[7] Agnes Grünerbl, Amir Muaremi, Venet Osmani, Gernot Bahle, Stefan Oehler,
Gerhard Tröster, Oscar Mayora, Christian Haring, and Paul Lukowicz. 2014.
Smartphone-based recognition of states and state changes in bipolar disorder
patients. IEEE Journal of Biomedical and Health Informatics 19, 1 (2014), 140–148.

[8] Sachin H Jain, Brian W Powers, Jared B Hawkins, and John S Brownstein. 2015.
The digital phenotype. Nat Biotech 33, 5 (may 2015), 462–463.

[9] Fahim Kawsar, Chulhong Min, Akhil Mathur, and Allesandro Montanari. 2018.
Earables for Personal-Scale Behavior Analytics. IEEE Pervasive Computing 17, 3
(2018), 83–89.

[10] Nicholas D Lane, Mashfiqui Mohammod, Mu Lin, Xiaochao Yang, Hong Lu,
Shahid Ali, Afsaneh Doryab, Ethan Berke, Tanzeem Choudhury, and Andrew
Campbell. 2011. Bewell: A smartphone application tomonitor, model and promote
wellbeing. In 5th international ICST conference on pervasive computing technologies
for healthcare. 23–26.

[11] Neal Lathia, Veljko Pejovic, Kiran K Rachuri, Cecilia Mascolo, Mirco Musolesi,
and Peter J Rentfrow. 2013. Smartphones for Large-Scale Behavior Change
Interventions. IEEE Pervasive Computing 12, 3 (2013), 66–73.

[12] Inbal Nahum-Shani, Shawna N Smith, Bonnie J Spring, Linda M Collins, Katie
Witkiewitz, Ambuj Tewari, and Susan A Murphy. 2017. Just-in-Time Adaptive
Interventions (JITAIs) in Mobile Health: Key Components and Design Principles
for Ongoing Health Behavior Support. Annals of Behavioral Medicine 52, 6 (12
2017), 446–462.

[13] Jukka-Pekka Onnela and Scott L Rauch. 2016. Harnessing Smartphone-Based
Digital Phenotyping to Enhance Behavioral andMental Health. Neuropsychophar-
macology 41, 7 (2016).

[14] Sohrab Saeb, Emily G Lattie, Stephen M Schueller, Konrad P Kording, and David C
Mohr. 2016. The relationship between mobile phone location sensor data and
depressive symptom severity. PeerJ 4 (2016), e2537.

[15] Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, Stefanie
Tignor, Xia Zhou, Dror Ben-Zeev, and Andrew T Campbell. 2014. StudentLife:
assessing mental health, academic performance and behavioral trends of college
students using smartphones. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. ACM, 3–14.

6

www.cachet.dk
https://flutter.dev

The CAMS eSense Framework EarComp’19, September 9, 2019, London, United Kingdom

A ONLINE RESOURCES
This appendix provides link to different online resources relevant
for the eSense Flutter plugin, CAMS, and the CAMS eSense sam-
pling packages, as well as the data from the small study reported
in this paper.

A.1 eSense Flutter Plugin
• The esense Plugin at pub.dev – https://pub.dev/packages/
esense_flutter

• The esenseAPI documentation – https://pub.dev/documentation/
esense_flutter/latest/

• The esense Plugin GitHub – https://github.com/cph-cachet/
flutter-plugins/tree/master/packages/esense_flutter

A.2 CAMS Framework and Documentation
• The CARP Mobile Sensing (CAMS) core Flutter Plugin at
pub.dev – https://pub.dev/packages/carp_mobile_sensing

• The CAMS tutorials and documentation – https://github.
com/cph-cachet/carp.sensing-flutter/wiki

• TheCAMSAPI documentation – https://pub.dev/documentation/
carp_mobile_sensing/latest/

• The CAMS eSense Sampling Package at pub.dev – https:
//pub.dev/packages/carp_esense_package

• The CAMS GitHub – https://github.com/cph-cachet/carp.
sensing-flutter

A.3 Data from the eSense Study
The data and description from this small (N=1) study can be accessed
from:

• https://github.com/cph-cachet/data/tree/master/2019.08.28.eSense

7

https://pub.dev/packages/esense_flutter
https://pub.dev/packages/esense_flutter
https://pub.dev/documentation/esense_flutter/latest/
https://pub.dev/documentation/esense_flutter/latest/
https://github.com/cph-cachet/flutter-plugins/tree/master/packages/esense_flutter
https://github.com/cph-cachet/flutter-plugins/tree/master/packages/esense_flutter
https://pub.dev/packages/carp_mobile_sensing
https://github.com/cph-cachet/carp.sensing-flutter/wiki
https://github.com/cph-cachet/carp.sensing-flutter/wiki
https://pub.dev/documentation/carp_mobile_sensing/latest/
https://pub.dev/documentation/carp_mobile_sensing/latest/
https://pub.dev/packages/carp_esense_package
https://pub.dev/packages/carp_esense_package
https://github.com/cph-cachet/carp.sensing-flutter
https://github.com/cph-cachet/carp.sensing-flutter
https://github.com/cph-cachet/data/tree/master/2019.08.28.eSense

	Abstract
	1 Introduction
	2 CAMS eSense Framework
	2.1 The eSense Flutter Plugin
	2.2 The eSense Sampling Package

	3 eSense Study
	4 Conclusion
	Acknowledgments
	References
	A Online Resources
	A.1 eSense Flutter Plugin
	A.2 CAMS Framework and Documentation
	A.3 Data from the eSense Study

