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Preface
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of Electrical Engineering of the Technical University of Denmark in partial fulfillment of the
requirements for acquiring the degree of Doctor of Philosophy in Engineering.

The Ph.D. studies were funded by the Danish EUD Programme through the ’Coordinated Operation
of Integrated Energy Systems (CORE)’ project under the grant 64017-0005. This dissertation
summarizes the work carried out by the author during her Ph.D. project, which started on 1st

September 2017 and was completed on 31st August 2020.

The thesis consists of a summary of the four attached scientific papers, of which three have been
peer-reviewed and published, and the remaining one is currently under review. While the research
details are left to the specific publications in appendix, the main body of the thesis is conceived as
a guide on how these scientific papers can be contextualized in the bigger picture of coordination
of integrated energy systems.
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Abstract
Higher shares of uncertain and variable renewable energy sources challenge the way energy systems
are currently operated and increase the need for system-wide flexibility. Energy infrastructures are
becoming more interdependent with growing physical, operational and economic interactions
across multiple energy sectors. Increased couplings among power, natural gas and heat systems
provide untapped sources of cross-carrier synergies, while uncertainty and variability of renewables
will eventually affect the operation of all systems. In order to facilitate the transition towards a
renewable-based energy system, revealing and exploiting potential flexibility from energy system
integration is key.

In this context, the objective of this thesis is to improve coordination of power, heat and natural
gas systems with a particular attention to “market-based” coordination schemes by defining new
market products and mechanisms. Enhanced coordination aims at unveiling potential synergies
and harvesting flexible assets in a way that benefits the overall energy system. This work aims to
quantify potential flexibility from multi-energy coordination and investigates how markets can
facilitate the utilization of available synergies. The new concepts introduced in this thesis span
different degrees of coordination for power, natural gas and heat systems and awareness of the
uncertainty introduced by renewable energy sources such as wind power production.

Full coordination schemes, which assume that energy systems are operated centrally, help to reveal
and quantify the amount of available operational flexibility. Comprehensive models with accurate
representation of energy flow dynamics and flexible assets, which link energy sectors together, are
proposed to unlock the potential of energy storage from gas and heat grids to cope with uncertainty
and variability. The propagation of uncertainty between sectors is studied and tools that reveal
and harvest existing synergies are developed to mitigate this uncertainty. Policy-based reserves
are introduced as new products for the coordinated response of flexible assets interfacing multiple
sectors to uncertainty. Full coordination highlights the importance of proper modeling of complex
multi-carrier flexibility in short-term operations, but is incompatible with current market designs.

Soft coordination approaches, which respect the sequential order of energy markets, provide
independent, yet coordinated frameworks for energy systems in view of uncertainty. Market-based
mechanisms, that create soft links via increased information exchange and financial interactions,
are proposed to support coordination in interdependent electricity and natural gas systems.
These market-based mechanisms focus on increasing awareness among sectors and trading floors
such that each sector dispatches flexible assets in a way that benefits the overall energy system.
Specifically, financial instruments in the form of virtual bidders are introduced to improve the
coordination between separate and sequential electricity and natural gas markets under uncertainty
without the need for major updates of current market setups and rules.

Finally, this thesis motivates more coordination of power, natural gas and heat systems and outlines
future challenges from technical, computational and economic perspectives.
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Resumé
En højere andel af usikkerhed og variation i vedvarende energikilder skaber udfordringer i driften
af de nuværende energiinfrastrukturer og øger behovet for fleksibilitet over hele netværket. De
forskellige energiinfrastrukturer bliver i en øget grad mere sammenknyttet hvor der er en stigning i
både fysiske, driftsmæssige og økonomiske forbindelser. Øgede koblinger mellem strøm, naturgas
og fjernvarme giver uudnyttede kilder til tværsbærer synergier, mens usikkerheden og variationen
i vedvarende energikilder vil påvirke driften af alle energisystemer. Til at facilitere overgangen
imod en energiinfrastruktur bygget på vedvarende energikilder, bliver det vigtigt at udnytte den
mulige fleksibilitet ved integration af de forskellige energisystemer.

I denne sammenhæng er formålet med denne afhandling at forbedre koordinering af strøm, naturgas
og fjernvarme med særlig fokus på “markedsbaseret” koordineringsordninger ved at definere nye
markedsprodukter og mekanismer. Forbedret koordinering sigter mod at identificere potentielle
synergier og udnytte fleksible aktiver på en måde, der gavner den samlede energiinfrastruktur.
Dette arbejde sigter mod at kvantificere potentiel fleksibilitet fra koordinering af flere energisystemer
og undersøger, hvordan markeder kan lette anvendelsen af tilgængelige synergier. De nye
koncepter, der introduceres i denne afhandling, spænder over forskellige grader af koordination for
strøm-, naturgas- og varmesystemer og påpeger den usikkerhed, der er introduceret af vedvarende
energikilder såsom vindenergi.

Fulde koordineringsordninger, der antager, at energisystemer drives centralt, hjælper med at afsløre
og kvantificere mængden af tilgængelig operationel fleksibilitet. Omfattende modeller med præcis
repræsentation af energistrømningsdynamik og fleksible aktiver, der forbinder energisektorer
sammen, foreslås for at skabe et potentiale for energilagring i gas- og varmesystemer for at
klare usikkerhed og variation. Udbredelsen af usikkerhed mellem sektorer undersøges, og
værktøjer, der afslører og høster eksisterende synergier, udvikles for at mindske denne usikkerhed.
Politiskbaserede reserver introduceres som nye produkter til den koordinerede reaktion på fleksible
aktiver, der forbinder flere sektorer til usikkerhed. Fuld koordinering understreger vigtigheden af
korrekt modellering af kompleks flerudbyder energiinfrastruktur fleksibilitet i kortvarig drift, men
er uforenelig med nuværende markedsdesign.

Blød koordinationsmetoder, som respekterer den sekventielle rækkefølge af energimarkeder,
giver uafhængige, men alligevel koordinerede rammer for energisystemer i lyset af usikkerhed.
Markedsbaserede mekanismer, der skaber bløde forbindelser via øget informationsudveksling og
finansielle interaktioner, foreslås for at understøtte koordinering i indbyrdes afhængige elektricitets-
og naturgassystemer. Disse markedsbaserede mekanismer fokuserer på at øge bevidstheden blandt
sektorer og handel, således at hver sektor benytter fleksible aktiver på en måde, der gavner det
samlede energisystem. Specifikt introduceres finansielle instrumenter i form af virtuelle byder, for
at forbedre koordineringen mellem separate og sekventielle elektricitets- og naturgasmarkeder
under usikkerhed uden behov for større opdateringer af de nuværende markedsopsætninger og
regler.
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xiv RESUMÉ

Endelig motiverer denne afhandling yderligere koordinering af strøm-, naturgas- og varmesyste-
mer og beskriver fremtidige udfordringer ud fra tekniske, beregningsmæssige og økonomiske
perspektiver.



CHAPTER1
Introduction

1.1 Energy sector coordination as a multidisciplinary challenge

Increasing penetration of variable and intermittent renewables is pushing energy infrastructures
to become more interdependent. Physical, operational and economic interactions exist not only
across geographically interconnected energy systems [4], but also across multiple energy carriers
[5–8]. However, in the current energy system perspective, each energy sector operates separately
and as if independent from other sectors. Growing interactions among energy sectors, on the
one hand, challenge this operational paradigm, on the other hand, they provide opportunities for
cross-carrier synergies.

Exploiting potential synergies among energy systems is a key solution to achieve flexibility and
security of supply in a modern and sustainable energy system. Classic flexibility options, e.g.,
flexible dispatchable thermal plants, storage, and expanding transmission grids, require significant
investments. A broader view of the overall energy system encouraging interactions among multiple
energy carriers is able to achieve additional flexibility to further accommodate the variability and
uncertainty of demand and supply balance in a cost-effective manner.

Increased coupling and synergies can be identified across multiple sectors and infrastructures,
e.g., power, heat, cooling, gas, hydrogen, transportation, and water. Energy system integration is
most valuable at the interfaces where the coupling and interactions between energy vectors are
strong. In particular, the coupling among the three main energy grid infrastructures, i.e., electricity,
district heating and natural gas, is increasing with higher shares of renewable energy penetrations.
Several units operate at the interfaces of the three systems, e.g., gas-fired generators, power-to-gas
(P2G) and power-to-heat (P2H) units, and combined heat and power (CHP) plants, intensifying the
technical and economic interactions among sectors. As flexible technologies these units typically
provide electricity generation- and demand-side flexibility. Furthermore, heat and gas grids can
deliver network energy storage capacities for balancing the generation from renewables. Thus,
integrating the electricity, heat and gas networks and leveraging this energy storage can unlock
flexibility using the existing infrastructure when their interdependencies are properly accounted
for.

Planning and operations of integrated energy systems are demanding tasks from modeling,
optimization, and computational perspectives. Hybrid models accounting for the power system as
well as the gas and heat systems require detailed modeling in order to optimize energy systems
across multiple domains and scales. The dimension and complexity of decision-making problems
for multi-energy systems are challenging. Uncertainty arising from increasing penetration of
intermittent and variable renewables adds to this challenge requiring more advanced optimization
techniques [9, 10]. In such a complex interconnected system with uncertainties, decision-makers
including system operators, suppliers and load entities require advanced mathematical tools to
be able to make informed decisions. Game-theoretic models are needed to develop and analyse

1
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Figure 1.1: Multidisciplinary nature of energy sector coordination problem

coupling behaviours and coordination mechanisms in a more complex environment with several
stakeholders, each with their distinct objectives, incentives, and information. Holistic approaches to
design and operate such an integrated energy system in a cost efficient and secure way are needed.
This multi-energy coordination problem poses technical, operational and economic challenges, that
can be addressed by combining tools from operations research and game theory. Thus, building
upon tools not only from energy engineering [11], but also using operations research [12] and
game-theoretic concepts [13, 14], energy sector coordination becomes a multi-disciplinary challenge,
see Figure 1.1.

In particular, this thesis studies the coordination problem arising in multi-energy systems. In
this regard, different levels of coordination for integrated energy systems are proposed with
a focus on power, gas and heat infrastructures. The main focus of this work is to connect
optimization frameworks in the context of multi-energy systems with efficient solution methods
while accounting for uncertainty, regulatory frameworks, and interactions of agents. For this
purpose, optimization models that allow efficient modeling for complex interconnected systems are
proposed and equilibrium models are used as market simulation tools. The integrated operation
strategies and market frameworks developed in this thesis shall help to maximize social welfare
and performance for better cost efficiency and reliability of the whole energy system.

1.2 From ideal to practical coordination schemes

1.2.1 How can the coordination of multi-energy systems be improved?

High shares of power production from renewable sources like wind and solar units increase the
need for operational flexibility to cope with variability and uncertainty. Flexibility describes the
concept that supply and demand have to be balanced by providing the capability of a system to
modify its output or state in response to a change in net load, i.e., total demand minus renewable
generation [15]. Flexible units that provide generation- or demand-side adaptability like gas-fired
generators, CHP units, and heat pumps often operate at the interface of several energy systems.
Recent studies aim at dispatching these units in a smarter way highlighting both the potential
advantages and the current lack of coordination [16–22]. Additionally, the natural gas and heating
networks can provide flexibility through stored energy in the pipelines, the so-called linepack
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[17, 23] and delayed heat propagation [24, 25]. The idea of multi-energy hubs was proposed for the
first time in [26] as poly-fuel systems with multiple inputs and multiple outputs. Unlocking these
existing sources of flexibility propagates demand fluctuations and uncertainty from the electricity
side into the gas and heat systems and markets. This can already be seen in the trend towards
increasing volumes in gas trading in short-term spot markets like Gaspoint Nordic [27] and wind
curtailment due to naive dispatch of CHPs [28]. In most countries, energy markets are cleared
separately and sequentially [29] and dispatch decisions are made unaware of influences to and
from other sectors. However, the increasing coupling of energy systems on the physical layer
requires stronger coordination among market layers as well. How each system is operated and
how markets are cleared need an update. Full coordination of integrated energy systems ranges
from allowing interactions with other sectors to be adequately reflected in the scheduling process
of each sector, to strengthening the flow of shared information, and to matching the timing of
decisions and market clearings. However, full coordination cannot directly be applied to current
market structures and operational setups, since independent system operators are in charge of
individual energy sectors with limited information exchange, privacy requirements, potentially
competing objectives, and asynchronous timing of market clearing. In contrast, soft coordination
describes any mechanism or process that increases the efficiency of the overall system, adhering
to the current setup and regulations. These non-disruptive coordination mechanisms can be of
financial, operational or communicative nature.

In order to evolve from current separate and oblivious sectors to integrated energy systems,
different levels of coordination need to be evaluated focusing on quantification of flexibility, the
impact of uncertainty and compatibility with regulatory frameworks. Important issues to be
addressed are how to quantify the potential flexibility from multi-energy coordination and how
market designs, policies, and regulations affect or facilitate exploiting potential synergies and
flexibility options. To this extent, different levels of coordination and the impact of uncertainty
shall be investigated on operations and dispatch decisions as well as market design options for the
multi-energy system.

1.2.2 Research questions

The objective to improve coordination in multi-energy systems leads to the following two main
research questions which touch upon different levels of coordination and adherence to current
regulations.

I) How much value can be derived through coordination of integrated energy systems?

Potential synergies and available flexibility arising from multi-energy coordination need to be
properly defined and quantified. The monetary value can be deduced in terms of reduced
total system cost under perfect coordination compared to the (current) uncoordinated setup.
Furthermore, economic dispatch and scheduling tools need to be updated with more detailed
information about gas and heat grids, energy flows and interactions among the systems to
incorporate all potential flexibility for valuation. The physics of the multi-energy system and
uncertainty from renewable generation are identified as key challenges for determining the value of
coordination that can be unlocked. Based on the case of full coordination assuming energy carriers
are operated centrally, synergies and operational flexibility shall be investigated, specifically: (i)
how much flexibility can be derived and (ii) how can these synergies be revealed and harvested
when accounting for uncertainty. Full coordination results in optimizing electricity, gas, and heat
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networks as one comprehensive co-optimization problem. This requires advanced optimization
models for detailed and accurate representation of complex energy systems, their dynamics
and interactions [23, 30, 31]. The flexibility derived from accurate representation of energy flow
dynamics can help mitigate variability inherent in renewable energies. As uncertainty from
renewables propagates among the energy systems, the stochastic nature of renewable energy
sources needs to be considered by means of probabilistic methods [32]. Concepts from energy
engineering and physics as well as operations research tools are necessary to determine the value
of multi-energy coordination. Through comparison of the ideal benchmark, i.e., the perfect case
of full coordination, with other implemented setups the value of coordination can be quantified
while accounting for energy flows, network flexibility and uncertainty.

However, this ideal benchmark of fully coordinated energy systems with a single central system
coordinator or perfect information exchange and timing among systems is not implementable in
current practice, which motivates the second conceptual question.

II) How can the value of multi-energy coordination be harvested while respecting the current
regulatory framework?

While full coordination in an integrated energy system can be viewed as the ideal benchmark of a
perfectly cooperative game [33], game-theoretic considerations are required to move towards more
realistic and implementable mechanisms that adhere to the current regulation and organisation of
energy markets. As opposed to the disruptive re-design of a fully coordinated integrated energy
system, soft, market-based coordination mechanisms can be realized by increasing awareness
among the sectors [18, 34–37] and by introducing new market products [38–40], new bidding
formats [41–44] or new market players. These market mechanisms act as coordinator at the interface
of different sectors and can enable flexibility provision from multi-carrier resources. Creating
and analysing coordination mechanisms require proper understanding of the different agents
involved, along with their motivations and incentives, operational constraints, the information
each agent has access to, and the sequence of decision-making. For this purpose, optimization and
equilibrium models need to be developed to support decision-making of various agents in the
energy market environment. Complementarity models and variational inequalities [45–47] are
used for in-depth analysis of energy markets with the concept of Nash equilibria as solutions of
non-cooperative games involving multiple decision-makers [48]. These non-cooperative games
in which each player solves a separate but related optimization problem can be more effective
towards compatibility and real-life implementation. Furthermore, the impacts of soft coordination
mechanisms on energy sector integration need to be evaluated in terms of harnessed flexibility,
market efficiency, and social welfare.

1.3 Contributions

This thesis answers the two main research questions in Section 1.2.2 by developing tools applying
concepts from the fields of energy system engineering, operations research and game theory. The
main contribution of this thesis is improving the coordination of multi-energy systems through
updated operational strategies and market design. For that purpose, this thesis develops new
notions and methods for better coordination of multi-energy systems and concludes with several
policy recommendations.
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1.3.1 Conceptual contributions

The scientific contributions of this thesis span the aspects of different levels of coordination for
heat, natural gas and electricity systems. The new concepts introduced in this thesis range from
full to soft coordination. The proposed full coordination approaches focus on unlocking energy
storage from gas and heat grids to cope with variability and responding to uncertainty from the
power side. For this purpose, [Paper A] and [Paper B] account for energy flow dynamics and
storage effects of multi-energy networks, quantifying the value of the revealed network flexibility.
While [Paper A] is the first work that comprises all three energy systems accounting for heat and
gas grid dynamics, [Paper B] focuses on the added power system flexibility from natural gas
networks when accounting for both linepack and bidirectional gas flow. [Paper C] extends the
valuation of the natural gas network as a provider of short-term flexibility to power systems under
uncertainty. Specifically, [Paper C] investigates how affine policies can bring linepack flexibility
from the gas network to the day-ahead power scheduling stage. This work for the first time in the
literature extends response actions based on linear decision rules from the power side to include gas
sector flexibility mitigating renewable forecast uncertainty. The uncertainty propagation between
energy sectors is studied. Policy-based reserve products for coordinated response of flexible
multi-energy assets to uncertainty are introduced as flexibility-oriented products to represent
operational flexibility of market participants across various energy carriers.

Although full coordination violates existing market regulations, the approaches in [Paper A],
[Paper B] and [Paper C] motivate the need to develop mechanisms to unlock and exploit the
revealed flexibility within the current regulatory framework. The proposed representation of
multi-energy synergies opens up various directions for exploiting the available flexibility in a
market environment. Additionally, these works provide a basis to evaluate the efficiency of
market-based mechanisms enabling power, gas and heat system agents and the respective energy
networks to actively contribute to providing flexibility. The foundation is laid for a comprehensive
market design evaluation to improve sector coordination. This translates in a novel market-based
approach that aims at coordinating the operation of multi-energy systems and exploiting the
revealed flexibility. For that purpose, a soft coordination approach via financial instruments is
proposed to improve coordination between energy sectors under uncertainty in [Paper D]. In view
of real-life implementation, an investigation is conducted of utilizing the concept of virtual bidding
in two-settlement markets to enhance coordination. Virtual bidders perform financial arbitrage
between two trading floors in energy markets. By taking advantage of price differences, these
virtual bidders are defined to improve efficiency in two-settlement wholesale markets [49–51].
Thus, the role of market participants who perform arbitrage can be expected to bring value to
the overall system. These virtual bidders can be players without physical assets or players at the
interface of multiple energy sectors. Allowing key players to extend their bidding capabilities to
virtual bids does not require major changes for market setup and rules. For the first time, [Paper
D] proposes the introduction of virtual bidders specifically in natural gas markets. Furthermore,
the capability of units at the interface of energy sectors, e.g., gas-fired generators, to improve
coordination by performing arbitrage is investigated. Simultaneously, the impact of virtual bidding
on coordination of electricity and natural gas markets is analysed.

1.3.2 Methodological contributions and applications

The methodological contributions of this thesis include the development of new efficient opti-
mization and equilibrium models enabling the coordination of electricity, natural gas and heat
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infrastructures and markets. One methodological contribution is to develop optimal dispatch
algorithms for the integrated energy system accounting for inter-sectoral synergies and interactions
with a focus on potential network flexibility from gas and thermal storage systems. Another
contribution is to investigate the impact of uncertainty and probabilistic modeling on coordination
efforts and revealed flexibility. For this purpose, two different techniques based on stochastic
optimization are used to account for the effects of uncertainty propagation among energy systems:
distributionally robust chance-constrained optimization [52, 53] and scenario-based programming
[54]. The last methodological contribution is to develop equilibrium models as market simulation
tools to evaluate coordination mechanisms.

Based on the view that energy carriers are operated centrally, this work starts by investigating
the potential synergies and available flexibility in [Paper A] and [Paper B]. Full coordination of
electricity, heat and natural gas systems is proposed in the form of a deterministic benchmark
model for the combined power, heat and gas dispatch that accounts for sector interactions and
network flexibility in [Paper A]. This work addresses the challenge of energy flow dynamics
from both natural gas and district heating. For this purpose, the work incorporates the efficient,
convexified heat flow modeling technique from [24] and the gas flow modeling technique from
[55] to extend the concept of energy-hubs [26]. Quadratic relaxation, linearization, and McCormick
relaxation techniques are used to include detailed physical flow dynamics while maintaining
tractability of the problem along with preserving convexity, thereby ensuring global optimality
is reached within reasonable computation times. The resulting combined integrated energy
dispatch model is formulated as a mixed-integer second-order cone program (MISOCP) and
allows to quantify the potential flexibility that can be unlocked from multi-energy coordination.
In order to address the complexity of modeling natural gas flow dynamics, [Paper B] proposes a
novel convexification method based on quadratic relaxation, McCormick relaxation and the Big-M
method. The deterministic combined power and gas dispatch model proposes a convexified natural
gas flow model, that allows efficient modeling of both bi-directional gas flow and linepack flexibility.
The resulting MISOCP is compared to a mixed-integer linear program (MILP) which uses the outer
linear approximation from [17]. Finally, [Paper C] proposes the first tractable reformulation of the
distributionally robust chance-constrained power and gas co-optimization accounting for linepack.
Distributionally robust optimization and affine response policies are used to account for forecast
uncertainty in the day-ahead stage. First an ambiguity set is defined to represent uncertainty
arising from wind power production forecasts and then affine policies are derived for flexibility
providers, especially those interfacing gas and electricity sectors. The recourse actions in both
systems are based on linear decision rules and allow scheduling adjustments when the uncertainty
is revealed. Once the chance-constrained power flow has been generalized to include natural gas
flow dynamics, the resulting second order cone program (SOCP) enables to study how uncertainty
propagates from the power to the gas side and how the short-term gas storage in pipelines, i.e.,
linepack flexibility, can help mitigate this uncertainty.

While the distributionally robust method with affine policies in [Paper C] focuses on the day-ahead
stage and adjusting dispatch decisions according to participation factors as forecast uncertainty
is resolved, [Paper D] uses scenario-based stochastic market clearing in day-ahead to deal with
uncertainty from real-time operations. The real-time recourse actions in the stochastic setup are less
rigid than participation factors. A soft market-based mechanism for improving the coordination
of existing energy infrastructures with a focus on natural gas and power systems is proposed in
[Paper D]. The set of market participants is extended to include virtual bidders and self-schedulers,
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where these financial market agents act as coordinators between energy sectors and trading floors.
While the full coordination model is used as a benchmark based on stochastic market clearing, this
work proposes a less disruptive solution that preserves the current regulatory framework with
separate and sequential clearing of markets. Multi-period complementarity models are build for
identifying the equilibria. These mixed complementarity programs (MCP) simulate the market
behavior of all market agents, i.e., market operators, market participants and virtual bidders,
and can be characterized as generalized Nash equilibrium problems [47, 56]. These equilibria
are analyzed under different levels of coordination. Our results show that virtual bidders help
reveal and exploit the existing flexibility in the systems while preserving the current sequential and
separated market setup. Finally, policy recommendations are derived for regulators to improve
coordination among energy infrastructures.

1.4 Thesis structure

The Ph.D. thesis is structured as a report introducing the main concepts that are at the core of
this study and summarizing the contributions of the papers developed during this Ph.D. project.
Chapter 2 provides an overview of power, heat and natural gas markets with a focus on the Danish
case along with an overview of electricity, district heating and natural gas network modeling
methods and different levels of coordination among energy systems. The contributions, main
methodologies and summary of the results obtained in the papers included in this thesis are given
in Chapters 3-5, while the scientific publications are attached in an appendix. Chapters 3 and 4
investigate full coordination of energy sectors, while Chapter 5 moves towards non-disruptive, soft
coordination mechanisms. In particular, Chapter 3 focuses on efficient modeling of the combined
integrated energy dispatch, with an emphasis on storage capabilities of natural gas and district
heating networks. Building on this work, Chapter 4 explores the coordination of power and gas
systems under uncertainty introduced by renewables. Chapter 5 presents a new soft, market-based
coordination mechanism introducing financial players, i.e., virtual bidders, to enhance the efficiency
of electricity and natural gas markets under the current regulatory framework. Finally, Chapter 6
concludes and discusses possible directions for future work.

1.5 List of publications

The relevant publications which are the core of this thesis are collected in the appendix attached
and listed as follows:

[Paper A] A. Schwele, A. Arrigo, C. Vervaeren, J. Kazempour and F. Vallée, “Coordination of Electricity,
Heat, and Natural Gas Systems Accounting for Network Flexibility”, in Proceedings of 21st
Power Systems Computation Conference (PSCC), Porto, Portugal, June 2020. Published in special
issue of Electric Power Systems Research (EPSR), Volume 189, Article No: 106776, December
2020.

[Paper B] A. Schwele, C. Ordoudis, J. Kazempour and P. Pinson, “Coordination of power and natural
gas systems: Convexification approaches for linepack modeling”, in Proceedings of IEEE
PowerTech Conference, Milan, Italy, June 2019. Recipient of Basil C. Papadias - Second Best
Student Paper Award.
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[Paper C] A. Ratha, A. Schwele, J. Kazempour, P. Pinson, S. Torbaghan and A. Virag, “Affine Policies
for Flexibility Provision by Natural Gas Networks to Power Systems”, in Proceedings of 21st
Power Systems Computation Conference (PSCC), Porto, Portugal, June 2020. Published in special
issue of Electric Power Systems Research (EPSR), Volume 189, Article No: 106565, December
2020.

[Paper D] A. Schwele, C. Ordoudis, P. Pinson and J. Kazempour, “Coordination of Electricity and
Natural Gas Markets via Financial Instruments”, submitted to Computational Management
Science, (under review), 2020.

The following publication has also been prepared during the course of the Ph.D. study, but has
been omitted from the thesis:

[Paper E] A. Schwele, J. Kazempour and P. Pinson, “Do unit commitment constraints affect generation
expansion planning? A scalable stochastic model”, in Energy Systems, vol. 11, pp. 247-282,
May 2020.



CHAPTER2
Coordination Schemes for

Multi-Energy Systems
The energy sectors are experiencing fundamental changes leading to tighter techno-economic
interdependencies among them. As markets interface physical and economic aspects of energy
systems, market-based coordination mechanisms supported by accurate physical modeling shall
be used to enhance the overall efficiency of energy systems1. The objective of this chapter is to
provide context for this work and introduce essential concepts and tools that will be required in
future chapters. The transition towards renewable-based energy systems is outlined in Section 2.1
and the general organization of electricity, gas and heat markets is discussed in Section 2.2. Section
2.3 describes the physical modeling of energy flows. Finally, Section 2.4 addresses various degrees
of coordination and options to improve the coordination of power, gas and heat systems. Since
Denmark has an extensive district heating system, a nationwide natural gas system, and broad
experience in handling a high share of wind power penetration, most examples are drawn from
the Danish energy system.

2.1 Towards renewable-based energy systems

The share of power production from renewable energy sources is steadily increasing, reaching
27.5% of installed electricity capacity in the European Union (EU) in 2017 [57] and covering 50%
of total electricity consumption in Denmark in 2019 [1]. Especially wind power generation has
been growing rapidly, hence 47% of the Danish power consumption were generated by wind in
2019 [1], see Figure 2.1. In addition, 3% came from solar units. The intermittency, variability and
uncertainty of renewable energy production require more operational flexibility system-wide. In
order to provide supply-demand balance across spatial and temporal scales, various flexible assets
exist to be leveraged for operational flexibility in the power system including controllable power
generation, transmission via international interconnectors, storage, and demand response [58]. A
broader definition of power system flexibility to multi-energy system flexibility in [59] accounts
for the fact that smart interactions among power, gas, and heating systems have the potential
to provide new services for storage and balancing of electricity. Ultimately, flexible assets at the
interface with other energy systems, e.g., gas-fired generators, combined heat and power (CHP)
units, heat pumps, power-to-gas units, as well as solutions for more efficient interactions among
power, gas and heat sectors strengthen the flexibility of the overall energy system.

At the same time, natural gas and heat systems are undergoing revolutionary changes, too. Natural
gas is considered as a transition fuel towards energy systems based on higher shares of renewable
energy. Other gaseous fuels, which are produced from biomass and waste by thermal gasification

1Throughout this thesis, the term coupling describes physical and economic interactions and links resulting in
interdependencies of systems for given setups, while efforts to optimize these interactions are referred to as coordination.
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Figure 2.1: Trend of electricity production from wind and solar as a share of Danish electricity
consumption (Figure reproduced from [1]).
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Figure 2.2: Historical and the expected future biogas production and its use in Denmark (Figure
reproduced from [2]).

or from electricity via electrolysis, based on renewable energy, e.g., biogas, biomethane, hydrogen
or synthetic gases, are expected to gain importance in the future energy mix [27, 60, 61]. In
Denmark, production and consumption of biogas are on the rise, as is its injection into the gas grid,
see Figure 2.2. Furthermore, natural and renewable gases can serve as seasonal storage and buffers
in periods in which production of renewable energy from uncertain sources is low. Indeed, there
has been significant growth of gas as fuel for electricity production, since gas is typically used to
produce electricity in peak load situations and to mitigate real-time deviations [8, 62, 63].

The heat sector, which used to be dominated by fossil fuels, is also experiencing an increase
in renewable energy production, mostly via bio-fuels and electrification. Heating in buildings
and industry is the largest energy demand representing roughly half of all energy consumption
in the EU [5]. Energy-efficient and cost-effective heating is key for sustainable energy systems.
In particular, Denmark has heavily relied on district heating for heat consumption covering
approximately 60% of the heat supply [61]. CHP plants produce a large share of both heat and
thermal electricity production in Denmark [5]. Since heat and power output of CHP units are
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Figure 2.3: Heat sector energy mix in Denmark, as a percentage of the total consumption (Figure
reproduced from [3]).

linked, these units induce strong physical and economic couplings between heat and electricity
systems. Additionally, heat pumps are starting to leverage on excess wind production and low
electricity prices for heat production, see Figure 2.3.

Increased coupling of energy sectors is identified as one of the main opportunities for a sustainable
energy future [64]. This recognizes the potential to exploit untapped synergies and flexibility
from existing infrastructures yielding possibly advantageous technical and economic interactions.
At the same time, the interdependencies among energy carriers are amplified under extreme
situations. For example, in winter 2014 North American system operators faced difficulties in
operating the power system during periods of high heat and electricity demand because of the
reliance on natural gas for both heating and peak electricity load [65]. In China, the heat-driven
dispatch of CHP units caused a significant wind curtailment due to minimum power production
requirements [28]. In Nordic countries, where CHPs cover a large share of both heat demand and
thermal electricity capacity [5], issues regarding market power and competitiveness arise in both
electricity and heat markets [66, 67].

Without appropriate market structures, these uncoordinated couplings may not only fail to optimally
exploit existing synergies but even be damaging for the overall energy system. However, despite
their interdependencies the three energy systems are typically operated separately, sequentially,
and as if independent. In Denmark, the heat system is dispatched prior to the electricity system
based on estimated electricity prices. The power system is dispatched prior to the gas system
based on estimations of natural gas price and availability. This potentially leads to suboptimal
dispatch decisions, particularly for CHPs, heat pumps and natural gas-fired generators at the
interface between different systems.

The interested reader is referred to [11, 68, 69] for a detailed overview of electricity markets and
power system economics, while [35, 70, 71] provide an overview of heat systems and markets. In
addition, a comprehensive overview of natural gas markets can be found in [72, 73].
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2.2 On the sequence of energy market clearings

Energy markets organize physical and economic aspects of energy via proper trading mechanisms
to ensure security of supply and competitiveness. Energy products are traded as commodities
at different time scales in wholesale markets. Trading takes place in various time spans and
settlements from long-term financial contracts to real-time operations. Long-term financial products
are traded via bilateral agreements and contracts or in futures markets, which allow the market
participants to hedge against volatile prices. This thesis focuses on short-term trading floors only,
i.e., within a day to actual delivery. Since spot markets are cleared 12 to 36 hours before the actual
delivery of electricity, they are also referred to as day-ahead markets. The amount of heat and gas
traded in dedicated day-ahead markets is also becoming more prominent [27]. After the day-ahead
market is cleared, market participants can adjust their positions or dispatch in intra-day markets to
mitigate possible deviations from the day-ahead schedule. The liquidity of these intra-day markets
differs and they are country- and design-specific. Closer to real-time operations, deviations are
balanced in the real-time market by transmission system operators. Note that energy and reserve
markets are cleared separately in European markets [74], and the latter is not the focus of this
thesis.

In European countries, electricity, natural gas and heat systems are operated by competitive auction-
based markets that interface the physical, technical and economic aspects of each system. These
wholesale markets are typically cleared in several settlements including day-ahead, intra-day and
real-time balancing clearings. These energy markets operate as energy exchanges in which market
participants submit bids and offers which implicitly embed their techno-economic characteristics.
In day-ahead markets, each market participant submits bids for each hour of the following day.
These bids are dispatched by heat, electricity and gas market operators based on a merit-order and
least-cost principle. Note that electricity, gas and heat market operators are not necessarily the
same entities. Energy markets usually operate heat, power and gas systems in the day-ahead stage
sequentially and separately [8, 29]. For instance, in Denmark, the day-ahead heat market is cleared
by Varmelast.dk before the electricity market Nordpool [75]. Moreover, the timing of electricity and
natural gas day-ahead markets is not aligned [8, 29, 76]. Due to the asynchronous timing, physical
and economic couplings are not properly accounted for. For instance, heat pumps are dispatched
based on estimated production costs which depend on electricity prices. Similarly, gas-fired
power plants face uncertainty about fuel price and natural gas availability which determine their
production cost. CHP units need to decide both heat and electricity production with regards to
opportunity cost and operational limitations.

The greater Copenhagen area was the first region in Denmark that implemented a wholesale
heat market. The heat market operator, Varmelast.dk, which is owned by the three major heat
distribution companies VEKS, CTR, and HOFOR, prepares a day-ahead heat dispatch based on
a least-cost principle [75]. Because of limited competition on both supply and retail sides, heat
market prices are still highly regulated. Heat producers compete on production costs since retail
heat prices are predetermined and fixed [75]. CHP plants make up the largest share of total
installed heating capacity in the Danish system. Electricity prices and opportunity cost impact the
heat production cost of these CHP units that subsequently participate in the electricity market.

Once the heat market has been cleared, each electricity market participant, including CHPs and
heat pumps, submits offers and bids for each hour of the following day, which are dispatched based
on the merit order principle. Merit order describes the ranking of power plants with an ascending
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order of price-bids, i.e., marginal production costs. This economic dispatch does not explicitly
describe the techno-economic characteristic of power plants or physical networks. However, the
bids submitted can range from simple hourly price-quantity bids to more complex bids, e.g., block
orders [44]. These bids can implicitly embed technical characteristics such as minimum production
levels. Congestion management mechanisms complement these auctions. The market is cleared
by intersection of aggregate supply and demand curves and uniform market-clearing prices are
derived for the case of no congestion in transmission lines. In case of congestion, zonal prices
are derived with different market prices for zones linked by congested lines [77]. Thus, uniform
prices are obtained as the marginal prices in each market zone and physical flows in each market
zone are managed a posteriori by the transmission system operators. Alternative to this zonal
market scheme is power pools that takes techno-economic characteristics and physical network
directly into account. Thus, locational marginal prices are derived for each node of the network
based on centralized market-clearing algorithms and these nodal prices are used for settlements
and payments [78]. Note that the production cost of the marginal technology, which is often
combined-cycle gas turbine [63], sets the price. The production costs of gas-fired units directly
depend on the spot market-clearing price for natural gas.

PEGAS, now comprising the former Gaspoint Nordic, is the primary trading platform of the Danish
gas spot market [79]. Trading natural gas takes place according to the entry-exit model [80, 81],
which assumes virtual trading hubs with entry and exit points, i.e., large trading areas fragmented
into zones with limited interconnection capacities, while network and technical characteristics
are allocated implicitly. Thus, all injections and withdrawals bought and sold through shippers
are considered to have the same price, compared to a point-to-point trading [63] representing the
actual physical characteristics of each trade. Energinet.dk controls not only the Danish power
transmission system but also the natural gas system, managing required scheduling adjustments
and ensuring operational feasibility.

Disadvantages of the sequential market clearings arise from limited information exchange among
the systems and markets potentially resulting in misrepresentation of actual operational cost,
merit-order shift, or unavailability of flexible multi-energy assets. These issues may cause potential
lack of flexibility in the systems, hinder the increasing penetration of renewable energy sources,
eventually leading to loss of social welfare. Moreover, current energy markets clear several
sequential trading floors, e.g., day-ahead and real-time stages, with deterministic description of
uncertain supply and demand [82], see Figure 2.4. The changes mentioned in Section 2.1 towards
increasing renewables in energy systems pose challenges for the current design paradigm. The
deterministic forecast of stochastic renewable energy sources used for the day-ahead clearing
is unaware of real-time deviations and resulting balancing costs, which may lead to inefficient
dispatch decisions [83]. Tools from decision-making under uncertainty and probabilistic market
clearings [84, 85] have been proposed to overcome the shortcomings of the current deterministic
clearings and improve the coordination between trading floors.

Furthermore, the simple economic dispatch based on least-cost and merit order principles does
not consider any network flows or network constraints and assumes lossless and unrestricted
flow of energy. In order to better represent the underlying physics and improve the efficiency of
market clearing and dispatch decisions, the economic dispatch can be extended to incorporate
unit commitment decisions [66, 86], optimal power flow models [77], as well as gas and heat flow
models [17, 24]. Accurate representation of the physical characteristics of technical operations and
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Figure 2.4: Temporal dimension of two-stage trading floors in short run.

networks of each energy carrier inside clearing models can help efficient and accurate pricing,
especially for flexibility products. However, the non-convexities introduced in these optimization
problems give rise to another challenge, specifically for convergence, solution quality guarantees
and pricing non-convexities [87].

2.3 Energy flow modeling
The physical representation of energy flows can be described by mathematical models presented
in the following.

2.3.1 Power flow modeling

The power flow in electricity networks is given by alternating current (AC) power flow equations
which describe active and reactive power, losses along lines, and voltages at nodes according to
Kirchhoff’s laws [9]. However, these non-linear and non-convex equations pose computational and
optimality challenges. Several works have addressed this challenge proposing convex relaxations
of the original formulation [9, 88, 89]. In this thesis, the original AC power flow equations are
approximated by the linearized lossless DC power flow equations, which neglect losses and
reactive power flows, under the following three assumptions. Firstly, voltage magnitudes are
close to their nominal values at all nodes. Secondly, differences between voltage angles θn and
θr at adjacent nodes n and r are small. Thirdly, line resistances are negligible compared to line
reactances, so transmission lines are assumed to be lossless. Under these assumptions flow fn,r

along transmission line (n, r) ∈ L is described as a linear equation, i.e.,

fn,r = Bn,r(θn − θr), ∀(n, r) ∈ L, (2.1)

where Bn,r denotes the line susceptance.

Alternatively, Power Transfer Distribution Factor (PTDF) matrix PTDF(n,r),n which describes the
linear relation between power injections at node n and active power flows through transmission
lines (n, r) can represent DC power flows [90]. PTDFs are linear sensitivities derived from the
reactances of power transmission lines and relate line flows to nodal power injections pn according
to

fn,r = PTDF(n,r),n pn, ∀(n, r) ∈ L. (2.2)

While power flow dynamics are fast (microseconds to seconds) such that supply and demand need
to be balanced instantaneously, gas and heat flows have slower time dynamics (minutes to hours)
leading to longer transmission times but also to potential storage capacity of pipelines.
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2.3.2 Natural gas flow modeling

Because of slow gas flow dynamics and the ability of pipelines to store a substantial mass of gas
internally, gas networks provide short-term storage. Dynamic models are needed to capture this
ability to accumulate and then release gas in a pipeline. The compressible gas flow through a
network of pipelines in the ideal gas regime is governed by three conservation laws: conservation
of mass, momentum and energy [73]. Assuming slow transients that do not excite shocks or
waves, the temporal and spatial dimensions of natural gas flow are described by partial differential
equations that model the dynamics of flow and pressure. Optimization of the physical operation
based on the transient approach can be solved by spatial and temporal discretization [16, 36, 91–94].
However, these models are highly non-linear yielding challenges for computational tractability.

In this thesis, we refer to the stationary model of gas flow assuming isothermal flow in horizontal
pipelines. The Weymouth equation describes the steady-state gas flow along pipeline (m,u) ∈ Z
by

qm,u|qm,u| = K2
m,u(pr2

m − pr2
u),∀(m,u) ∈ Z, (2.3)

which relates flow qm,u to the difference of squared pressure prm and pru at both ends of the
pipeline. Weymouth equation (2.3) is piecewise quadratic, non-linear and non-convex. Parameter
Km,u is the Weymouth constant that describes pipeline characteristics including pipeline length,
diameter, and compressibility factor [95]. Hence, constant flow along a pipeline depends on
pressure at adjacent nodes and physical pipeline properties. The gas flow is also defined as the
arithmetic mean of pipeline in- and outflow (qin

m,u and qout
m,u) according to

qm,u =
qin
m,u + qout

m,u

2 ,∀(m,u) ∈ Z. (2.4)

Because of friction, the pressure of gas flowing through a pipeline gradually decreases, and is
boosted by compressors so that it exceeds the minimum for delivery to customers [73]. These
gas compressors are used to control the flow of gas and maintain pressure throughout a pipeline.
Compressor action is modeled in a simplified manner as a multiplicative change in pressure at
fixed compression factors. Hence, exit pressure should be at least equal to inlet pressure and can
be as high as inlet pressure times compression ratio Γm,u according to

pru ≤ Γm,u prm,∀(m,u) ∈ Z. (2.5)

Similarly, valves can be used for pressure reduction.

Because natural gas is compressible, injection and withdrawal rates can be unbalanced and the
amount of gas stored in the network in short term is variable [17, 23, 73, 95, 96]. Pressures at both
ends of a pipeline can be varied maintaining the same level of flow while accumulating or releasing
gas inside the pipeline. The concept of storage of natural gas in pipelines due to available slack in
pressure drop is called linepack. Linepack flexibility means that the total injection does not need
to match the total consumption at each time step [95]. This storage capability enables gas-fired
generators to withdraw gas in excess of the scheduled rate for a limited duration without violating
pipeline operating limits [97]. Balance of injection and withdrawal is achieved over longer time
periods, e.g., a day. Linepack mass hm,u is proportional to average pressure at both ends of a
pipeline, given by

hm,u = Sm,u
prm + pru

2 ,∀(m,u) ∈ Z, (2.6)
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where the proportionality factor Sm,u depends on pipeline and gas flow characteristics. The
amount of gas contained in a pipeline is tracked through time and discretized over hourly time
steps t as follows

hm,u,t = hm,u,(t−1) + qin
m,u,t − qout

m,u,t,∀(m,u) ∈ Z, t. (2.7)

2.3.3 Heat flow modeling

District heating is distributed via water as the heat medium flowing through parallel supply and
return pipelines that are connected by heat exchange stations. Control variables for the district
heating network are inlet temperatures and mass flow rates. While in China control strategies
typically use varying temperature levels keeping mass flow rates constant [98], Danish district
heating networks are operated at constant temperature levels with adjustable mass flow rates [75].
Modeling of district heating includes hydraulic and thermal equations [99].

The hydraulic constraints represent continuity of mass flow at all nodes and the relation between
pressure drop and mass flow rate in pipelines. Since water is incompressible, the sum of incoming
flow is equal to the total outflow at each node and heat is distributed from high to low pressure
nodes. The Darcy-Weisbach equation (2.8) relates pressure losses (pro − prv) due to friction inside
the supply and return pipelines (o, v) ∈ P to mass flow rates mfo,v via pressure loss coefficient
Lo,v according to

Lo,v(mfo,v)2 = pro − prv,∀(o, v) ∈ P, (2.8)

which is a non-convex equality constraint.

Thermal equations characterize the changes in temperature levels within the district heating
network including heat balance in heat sources and heat exchange station, mass flow and
temperature mixing at nodes, and time delay of heat propagation. Heat Qo generated at node o is
transferred to the heating network at heat sources and delivered to consumers at heat-exchange
stations according to the product of mass flow and temperatures differences T S

o − TR
o with the

specific heat capacity of water c given as

Qo = c mfo(T S
o − TR

o ),∀o. (2.9)

The energy extracted from heat exchangers is proportional to the difference of temperatures
between supply and return pipelines at the station. All incoming water flow is fully mixed at each
node described by temperature mixing equations that determine the temperature at each node of
supply and return networks to be a mix of mass flow-weighted outlet temperatures from pipelines
arriving at that node.

In the dynamic model, the working fluid temperature is a function of time and position, which
is expressed as a spatio-temporal partial differential equation. Assuming laminar flows in well
insulated pipelines neglecting thermal losses due to exchange with the outside, in [100] a solution
for the partial differential equations of heat propagation is given, which can be approximated and
linearized using first order Taylor series expansion [24]. For discretized time steps t, the outlet
temperature of a pipeline is defined as a nonlinear function of the inlet temperature at previous
time slots according to

T out
o,v,t = T in

o,v,(t−τ)(1−
2µo,v
cρRo,v

τo,v,t),∀(o, v) ∈ P, t, (2.10)
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which relates the outlet temperature T out
o,v,t at time t to past inlet temperature T in

o,v,(t−τ) at previous
time t− τo,v,t minus heat losses. These losses are given by thermal loss coefficient µo,v, specific
water capacity c, water density ρ and the radius of the pipe Ro,v . The time it takes for the fluid to
travel along the pipeline is defined as varying time delay τo,v,t over pipeline length PLo,v by

τo,v,t = min
{
η ∈ {0, ..., τo,v}, s.t.

t∑
δ=t−η

mfo,v,δ
πR2

o,vρ
∆t ≥ PLo,v

}
,∀(o, v) ∈ P, t. (2.11)

This transmission delay of heat networks can reach up to several hours (τo,v), allowing to temporally
decouple heat production and consumption. Following the approach in [24], constraints (2.10)-(2.11)
can be linearized using auxiliary binary variables and a Big-M formulation.

2.4 Coordination strategies

A major challenge for energy market design is to facilitate market access to flexible assets at the
interface between systems to exploit this untapped source of flexibility. Currently, operation,
planning, and the economics of different energy networks are managed in an uncoordinated
manner as if completely decoupled. While the share of renewable energy sources is increasing, this
lack of coordination among electricity, natural gas and heat sectors may cause market inefficiency,
in the sense that the overall cost of operating the energy systems might be higher than theoretically
necessary. Reasons for such an inefficiency are non-optimal dispatch decisions due to uncoordinated
market clearing neglecting coupling effects. If flexible assets that operate at the interface of several
energy systems are dispatched inefficiently, they impose stronger technical constraints in another
system or are not available to mitigate imbalances. As a consequence, other actions, e.g., load or
wind curtailment, might be required. The increasing coupling of energy carriers demands stronger
coordination mechanisms. Stronger coordination of multiple energy systems requires adopting a
more holistic market perspective acknowledging the growing interactions and interdependencies
among energy carriers and considering the economic and physical aspects simultaneously. The
coordination among power, natural gas and heat systems during the day-ahead dispatch has been
a topic of research interest in recent years. Indeed, several works have highlighted the impact of
natural gas supply and price uncertainty on scheduling in electricity systems [101, 102] and the
effect of heat dispatch on available flexibility and electricity prices [28, 67]. Coordinated long-term
planning is proposed in [103, 104] for coupled power and gas systems and in [105] for integrated
electricity-heat systems, while the next sections describe coordination for short-term operational
integration. The works in [17, 96, 106–108] and [35] investigate different levels of coordination
for the short-term operation of power and natural gas systems as well as for power and heat
systems, respectively. Coordination options range from re-design of integrated energy systems
for full coordination to non-disruptive options improving the exchange and acknowledging the
interactions and interdependencies among the systems via soft coordination, see Figure 2.5.

2.4.1 Full coordination

Full coordination of integrated energy systems requires re-designing the current market clearing
and operations framework. This disruptive solution allows the interactions and interdependencies
among the sectors to be explicitly anticipated and adequately reflected in the scheduling processes.
Usually a central entity operates the whole integrated energy system such that information is
shared among the specific sectors and the timing of decision making is aligned. Full coordination
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Figure 2.5: Different levels of energy systems coordination.

approaches with central control of gas-electric systems emphasize the importance of uncertainty
[17, 109–116], detailed network modeling [17, 109, 117], and natural gas security constraints
[19, 20, 118, 119] for decision-making and efficient dispatch. Full coordination models for power
and heat systems in [24, 25, 28, 31, 98] focus on revealing operational flexibility from multi-carrier
resources. Full coordination setups show the full potential of flexibility that can be harvested
among energy carriers. Although these approaches are not directly implementable in practice,
they are very useful as benchmark, providing the basis for evaluating other practical coordination
schemes that align with current market regulations. Such market-based mechanisms are introduced
in the following.

2.4.2 Soft coordination

As opposed to the disruptive re-design of perfectly coordinated energy systems, soft market-based
mechanisms for enhancing the coordination of power, natural gas and heat markets preserve
the current sequential and independent operations framework. Any mechanism or process that
increases the overall system efficiency while respecting the current operational and economic
setup and regulations provides what is referred to as soft coordination. These mechanisms aim
at enhancing the information flow among the systems and creating incentives for each sector to
dispatch resources in a way that benefits the overall system. These tools work as coordinator at
the interface of different sectors and can enable flexibility provision from multi-carrier resources.
Moreover, these proposed mechanisms should support decision-making in real-life markets. For a
review on the literature dealing with design of market mechanisms, see [120–123].

Improved information exchange

Among others, less-disruptive, soft coordination of power, gas, and heat systems can be achieved
by higher degrees of information exchange and awareness among energy markets. For example,
[124] and [36] propose the exchange of physical and pricing data between electricity and natural
gas markets in the intra-day stage for balancing purposes. The quality and accuracy of pricing
data exchanged between power and gas systems in day-ahead are investigated in [37]. Natural
gas price and fuel availability for gas-fired units are used as coordination parameters in [107] and
[108] to generate proper flexibility signals for day-ahead electricity scheduling. More awareness
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between power and gas and between heat and power systems are introduced in [34] and [18, 35],
respectively, while adhering to sequential clearing of markets. This requires the exchange of
proprietary information, which can be mitigated using privacy preserving mechanisms proposed
in [125, 126].

New market products

Several market products and services for flexibility options like generators and storage units have
been proposed and introduced in electricity markets to cope with uncertainty and variability. Ex-
tending these flexibility-oriented products and concepts allows to incorporate flexibility interfacing
multiple energy carriers. For example, ramp products like “flexiramp” or “ramp capability” [40] as
reserved and committed generation capacity, and affine reserve participation policies [39, 127] can
be traded in day-ahead for reserve provision to meet deviations in real-time. These new trading
mechanisms facilitate flexibility activation.

New bidding formats

Similarly to new flexibility products, new bidding formats can reveal the value of operational
flexibility [41–44]. The existing bidding mechanisms in day-ahead markets, i.e., price-quantity
and block bids, do not capture the specific techno-economic characteristics of flexibility resources
at the interface with other energy markets. Bid formats can be extended to mimic the specific
characteristics of flexible assets [34, 35, 42, 128]. In this direction, [129] generalizes bid formats to
represent the complexity of cross-carrier load flexibility at the interface between heat and electricity
systems.

New market players

Market players can act as coordinators at the interface of different energy markets and sectors.
Self-scheduling market participants who decide their dispatch themselves instead of submitting
bids to the day-ahead market [130], can enhance efficiency of electricity markets [51]. Especially
the participation of CHP units, heat pumps, and gas fired-generators in power, gas and heat
markets has potential to enhance the coordination among the systems through smarter coupling.
While extending the toolbox of existing players with new products and bidding formats can help
exploit existing synergies and flexibility more efficiently, introducing new market players can
also bring more information and liquidity to the markets. For instance, virtual bidders, who are
purely financial players, are supposed to enhance the efficiency of the two-settlement markets by
arbitraging and bringing more competitiveness and transparency to energy markets [49, 131–133].





CHAPTER3
Full Coordination: A

Deterministic Benchmark
Since the need for operational flexibility to cope with variability and uncertainty increases with
higher shares of renewables, growing interactions among energy systems pose the opportunity
to reveal cross-carrier synergies. Flexible assets often operate at the interface of energy sectors
and markets. Apart from that, the inherent ability of natural gas and district heating networks to
store energy can provide additional flexibility. The goal of this chapter is to reveal the flexibility
that natural gas and heat networks can potentially provide for power systems. For that purpose,
combined multi-energy dispatch models are proposed, assuming either a single central system
operator or perfect information exchange and timing among the systems. These full coordination
models provide ideal benchmarks to quantify the added value of accounting for energy flow
dynamics in terms of increased flexibility to the power system.

In general, it is quite complex to holistically model the multi-energy systems while incorporating
flow dynamics of each specific energy network. The proposed fully coordinated benchmark aims
at accounting for energy flow dynamics and network flexibility in an efficient manner. On top
of the energy flow modeling described in Section 2.3, convexification strategies are described for
improved tractability and computational efficiency towards market-compatibility.

First, Section 3.1 focuses on incorporating natural gas flow dynamics in the integrated energy
dispatch model, while the heat system is added in Section 3.2. For notational simplicity general
formulations of the proposed models are introduced, while the reader is referred to [Paper A] and
[Paper B] for more detailed descriptions. Key results highlighting the added value in terms of
reduced total system cost from coordination accounting for network flexibility and cross-carrier
synergies are shown in Section 3.3.

3.1 Linepack flexibility

Strong links between electricity and natural gas systems play a major role in providing system
flexibility. Natural gas-fired generators provide short-term flexibility and strengthen the inter-
dependence between power and gas systems. When gas-fired power units are used to mitigate
the uncertainty and intermittency of wind power production, the resulting variability and un-
predictability of gas demand challenge natural gas system operations and fuel availability. At
the same time, increasing injection of biogas into the natural gas network adds variability to gas
network operations. On the gas side, there is potential of storing energy in pipelines since inflow
into the pipeline is not necessarily equal to the respective outflow. This concept is called linepack.
Linepack flexibility is accumulated by making use of available pressure differences which results
in the storage of gas inside the pipeline. Linepack flexibility operates like a buffer that is filled first,
and emptied at a later time. Thus, massive amounts of energy in form of natural gas can be stored

21
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in pipelines. In order to harvest this source of short-term flexibility to be provided by the natural
gas network to the power system, the direction of gas flows and the linepack, both controlled via
pressure differences, need to be optimized as additional degrees of freedom.

3.1.1 Combined power and gas dispatch

The proposed co-optimization aims at minimizing the total cost of operating power and natural
gas systems accounting for operational constraints of both power and gas sides as well as coupling
constraints linking the two systems together. The power system is described by a simplified lossless
DC power flow model, as outlined in Section 2.3.1, including operational limits on electricity
generation, transmission, and nodal voltage angles. Nodal power balance ensures that power
supply and demand are matched at all times. On the gas side, natural gas flow is represented by
its steady-state gas flow equation, see Section 2.3.2. Natural gas flow and the amount of linepack
are dependent on the pressure drop along a pipeline. In order to efficiently model gas flow and
linepack, the flow dynamics are embedded by accounting for linepack through varying in- and
outflows of pipelines. Compressor stations are represented in a simplified way, relating pressures
at adjacent nodes linearly with constant compression factor. Natural gas supply capacity and
nodal pressure bounds are limited by operational bounds. Coupling constraints describe the
interdependencies among the energy carriers and how the units at the interface link the two
systems together. Here, the dispatch of gas-fired units is translated into fuel consumption which
constitutes a time varying nodal gas demand so that the nodal gas supply balance couples the
systems. A general form of the combined power and natural gas dispatch problem is given as

min
xE,xG

f(xE) + f(xG) (3.1a)

subject to hE(xE) = 0, gE(xE) ≤ 0, (3.1b)

hG(xG) = 0, gG(xG) ≤ 0, (3.1c)

hE,G(xE,xG) = 0, (3.1d)

where xE and xG are vectors of power and natural gas variables, respectively. The components of
the linear objective function f(xE) and f(xG) pertain to power and natural-gas systems, respectively.
Constraints hE(xE) = 0 and gE(xE) ≤ 0 are the power system equality and inequality constraints,
hG(xG) = 0 and gG(xG) ≤ 0 are natural gas system constraints, and hE,G(xE,xG) = 0 represents
coupling constraints linking both systems together. Linear DC power flow equations represent the
power system constraints (3.1b), as described in Section 2.3. The natural-gas system constraints
(3.1c) are modeled by non-linear and non-convex natural gas flow equations for which linearization
or convexification is generally required to attain computational tractability and efficiency. Coupling
constraints (3.1d) are linear.

Under the assumption that the direction of gas flow in all pipelines Z is known a priori, i.e.,
qm,u ≥ 0,∀(m,u) ∈ Z , Weymouth equation (2.3) becomes quadratic non-convex and non-linear
and overall the proposed combined integrated energy dispatch results in a non-linear program
(NLP). While known gas flow direction used to be a reasonable assumption in day-ahead operations
of gas networks, the growing operational variability in natural gas networks due to increasingly
intermittent fuel off-take by gas-fired power generators and injection of biogas into the grid
challenges this assumption. Since the original steady-state equation (2.3) is piecewise quadratic
and non-convex, binary decision variables uG ∈ {0, 1} are introduced to account for the direction
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of gas flow efficiently. Then the gas system inequality constraints gE(xE,uG) ≤ 0 contain both
continuous and binary variables. Including the additional degree of freedom from modeling
bidirectional gas flow renders the co-optimization problem a mixed-integer non-linear program
(MINLP). Note that non-convexities arise from non-convex constraints and discrete variables. Gas
flow (not necessarily “optimal” gas flow) problems are typically solved using Newton-Raphson-
based solvers. However, the main disadvantages of these approaches are that their convergence
can be sensitive to the initialization and that they do not provide any guarantee on the quality of
solution, whereas convexification provides bounds on the global optimum. Convex problems are
also preferred towards market compatibility and deduction of meaningful prices. Convexification
strategies are introduced in Section 3.1.2, while the reader is referred to [Paper B] for a detailed
version of the MINLP, where the time horizon considered is one day divided into 24 hourly
intervals.

3.1.2 Convexification strategies

Since non-convexities that arise from the energy flow dynamics lead to tractability and optimality
issues, relaxation and approximation techniques are used to model energy flow dynamics efficiently.
The steady-state gas flow equation (2.3) can be made convex using relaxation or approximation
techniques. When these techniques do not provide exact solutions, at least bounds on the global
optimum can be derived. The convexification techniques are described in the following.

Quadratic relaxation

Non-convex quadratic equality constraints x>A>Ax + b>x + d = 0 can be made convex using
second-order cone relaxation [134, 135]. Then these constraints can be reformulated to the
second-order cone standard form

‖Ax+ b‖2 ≤ c
>x+ d, (3.2)

with variable x and parameters A ∈ Rm×n, b ∈ Rm, c ∈ Rn, d ∈ R. Operator ‖·‖2 indicates the
Euclidean norm and (·)> the transpose operator.

When assuming the direction of gas flow in pipelines to be known, the steady-state equation
(2.3) reduces to qm,u = Km,u

√
pr2
m − pr2

u, ∀(m,u) ∈ Z , which is a quadratic equality constraint.
Hence, under the assumption of uni-directional gas flow along a pipeline, the steady-state equation
(2.3) can be relaxed into the following second-order cone constraint,∥∥∥∥∥ qm,u

Km,u pru

∥∥∥∥∥
2

≤ Km,u prm. (3.3)

This concept is illustrated in Figs. 3.1 and 3.2. The original quadratic equality constraint is given
by only the surface area in Figure 3.1 and, hence, is non-convex. The second-order cone relaxation
extends the feasible space to include the interior of the cone, see Figure 3.2. If the optimal point
over the second-order feasible set coincides with the surface area, the relaxation is exact. On
the other hand, the relaxation is not exact if the optimal point is inside the cone and the optimal
solution of the relaxation is infeasible for the original problem.
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Figure 3.1: Quadratic equality. Figure 3.2: Relaxation. Figure 3.3: Approximation.

Outer linear approximation

For outer linear approximation, Taylor series expansion can be used [17, 136]. Instead of relaxing
the original constraint, the approximation technique creates a number of planes tangent to the
cone. Thus, the original equality constraint is replaced by a number of linear inequality constraints,
see Figure 3.3.

The non-convex Weymouth equation can be replaced by a set of linear inequalities using an outer
approximation based on Taylor series expansion around fixed pressured points v ∈ V . The outer
approximation is given by a number of tangent planes to the cone defined by the Weymouth
equation, see Figure 3.3, using a set of fixed pressure points PRm,v, PRu,v,∀(m,u) ∈ Z, v ∈ V
[17, 136, 137]. These linear constraints are calculated based on fixed pressure points generated by
choosing multiple pressure values for adjacent nodes within pressure limits as

qm,u ≤
Km,u PRm,v√
PR2

m,v − PR2
u,v

prm −
Km,u PRu,v√
PR2

m,v − PR2
u,v

pru,∀(m,u) ∈ Z, v. (3.4)

The natural gas flow in each pipeline is approximated by the one linear inequality constraint that
is binding out of set (3.4) [17, 136, 137].

For the next part, the assumption of known natural gas flow directions is dropped and both convex
relaxation and linear approximation approaches are introduced for the bidirectional gas flow
model.

Big-M method

Weymouth equation (2.3), which is piecewise quadratic due to the absolute value, can be rewritten
as

qm,u = Km,u

√
pr2
m − pr2

u for qm,u ≥ 0; or (3.5a)

qm,u = Km,u

√
pr2
u − pr2

m for qm,u ≤ 0, (3.5b)

functionally describing the sign of gas flow. The two cases can be differentiated using binary
variable um,u, which determines the direction of gas flow. The following Big-M formulation
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Figure 3.4: McCormick envelopes of bilinear term xy.

enforces auxiliary variables q+
m,u, q

−
m,u ∈ R+ to describe bidirectional gas flow qm,u ∈ R:

qm,u = q+
m,u − q−m,u, (3.6a)

0 ≤ q+
m,u,t ≤M um,u, (3.6b)

0 ≤ q−m,u,t ≤M(1− um,u). (3.6c)

Adding binary variables introduces non-convexities since discrete spaces are not convex. However,
there are off-the-shelf solvers available to solve MILP and MISOCP to optimality. Therefore, the
energy flow model is partly convexified by introducing discrete variables. Applying the outer
linear approximation approach to the case of bidirectional gas flow is straightforward, while
additional steps become necessary to achieve convex relaxation [55, 138].

Despite the relaxation reformulation, there are bilinear terms that make the aforementioned
constraint non-convex. The McCormick relaxation [139], popular for approximating multi-linear
terms by their linear convex envelopes, can be used to handle these bilinear terms as described in
the next section.

Relaxation of bilinear terms

Pursuing convexity, bilinear terms xy = z can be linearized using McCormick envelopes [139, 140].
This relaxation technique defines envelopes of a bilinear function based on variable bounds
x ≤ x ≤ x, y ≤ y ≤ y. The following set of linear upper and lower bounding inequalities defines
McCormick envelopes to replace the original bilinear term,

z ≥ xy + xy − xy (3.7a)

z ≥ xy + xy − xy (3.7b)

z ≤ xy + xy − xy (3.7c)

z ≤ xy + xy − xy. (3.7d)

This McCormick relaxation handles bilinear terms efficiently, see Figure 3.4. For further tightening
McCormick envelopes, bounds can be tightened in an iterative manner, see [141].

To sum up, the original NLP (3.1) under the assumption of known gas flow direction can be relaxed
into an SOCP or approximated by an LP. Including binary variables to account for variable flow
directions renders model (3.1) an MINLP which can be relaxed into an MISOCP or approximated
by an MILP.
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3.2 Energy network flexibility

In this section, the heat sector in form of district heating networks is incorporated resulting in the
combined power, gas and heat dispatch formulated as a co-optimization problem. The gas system
is modeled based on the assumption of known flow directions and the steady-state equation is
relaxed into a second-order cone constraint, as described in Section 3.1.2. The propagation of heat
flow through parallel supply and return pipelines in the heating network was described in Section
2.3.3. The time delay of heat propagation allows to temporally decouple the heat production from
the heat consumption. Since mass flow rates in the pipelines directly impact the time it takes for
heat to propagate throughout the pipelines, there is potential to store a large amount of heat inside
the pipelines. In particular, having both inlet temperatures and mass flow rates as control variables
allows to optimize the energy stored in the pipelines. Thus, on top of linepack from the gas side,
mass flow rates and inlet temperatures are modeled as control variables to account for the energy
storage capacity in heat pipelines based on the model proposed in [24]. With these additional
degrees of freedom the delay of heat propagation is optimized for energy storage purposes.

3.2.1 Combined power, natural gas and heat dispatch

In the following, the co-optimization from Section 3.1.1 is extended to include district heating
networks. Heat demand and production are modeled as a combination of temperature difference
between supply and return networks and mass flow at heat exchange stations, see equations (2.9).
Limits on heat production capacity, mass flow rates, nodal pressures and nodal temperatures
are enforced. Mass flows at network nodes are balanced. Heat propagation is defined by outlet
temperatures depending on past inlet temperatures, heat losses, and varying time delays, see
equations (2.10)-(2.11). Darcy-Weisbach equation (2.8) given in Section 2.3.3 describes the pressure
loss along a pipeline due to friction. The minimum pressure drop is enforced between supply
and return pipelines at heat exchange stations. Additional coupling constraints translate heat
production by heat pumps into time varying nodal electricity load, and power and heat outputs of
combined heat and power (CHP) units are linked through an output ratio describing the feasible
operating region. A general form of the combined power, natural gas and heat dispatch problem is
given as

min
xE,xG,xH,uH

fxE) + f(xG) + f(xH) (3.8a)

subject to hE(xE) = 0, gE(xE) ≤ 0, (3.8b)

hG(xG) = 0, gG(xG) ≤ 0, (3.8c)

hH(xH,uH) = 0, gH(xH,uH) ≤ 0, (3.8d)

hE,G(xE,xG) = 0, (3.8e)

hE,H(xE,xH) = 0, gE,H(xE,xH) ≤ 0, (3.8f)

where xH and uH are vectors of continuous and binary heat variables, respectively. Compared to
the co-optimization problem (3.1), component f(xH) pertaining to the heat system is added to the
objective function. Constraints hH(xH,uH) = 0 and gH(xH,uH) ≤ 0 are the heat system equality
and inequality constraints, respectively. In these constraints, binary variables uH ∈ {0, 1} are
required to model the time delays and temperature mixing. The additional coupling constraints
hE,H(xE,xH) = 0 and gE,H(xE,xH) ≤ 0 in (3.8f) link power and heat systems together. Linear
inequality gE,H(xE,xH) ≤ 00 describes the feasible operating regions of CHP units linking power
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and heat outputs. Linear equality constraints hE,H(xE,xH) = give heat production and power
consumption of heat pumps as well as nodal power balance including electricity share of CHP
generation and time-varying nodal electricity demand from heat pumps. Note that incorporating
further coupling between heat and natural gas systems, e.g., via gas-fired boilers and gas-fired
CHPs, is straightforward. The detailed version of MINLP (3.8) is given in [Paper A].

Heat system constraints (3.8f) are mixed-integer and non-convex. Discrete variables model the
time delay of heat propagation in heat pipelines. Quadratic equality constraints (2.8) describe the
pressure drop along pipelines. Bilinear terms are used to model heat demand and production as
mass flow times nodal temperature difference between supply and return networks in (2.9). The
relationship of heat propagation in heat pipelines, varying time delays and mass flow rates in
equations (2.10)-(2.11) is non-convex.

3.2.2 Convexification

Apart from the discrete solution space, the non-convexities that arise from heat dynamics can
be made convex using the techniques from Section 3.1.2. Quadratic relaxation is applied to the
quadratic Darcy-Weisbach equation (2.8), see Figure 3.2. The equality is relaxed by allowing the
pressure differences to be equal to or greater than the square of the mass flow rates resulting in
second-order cone constraints. Additionally, McCormick envelopes are used to linearize bilinear
terms. The products of temperature gradients and mass flow rates used to model heat production
and consumption at heat exchange stations in (2.9) are relaxed into McCormick envelopes (3.7).
Following the approach from [24], variable delay of heat propagation in (2.10)-(2.11) can be
linearized using auxiliary binary variables and a Big-M formulation. Finally, the non-convex and
non-linear relationship for mass flow of heat transfer in the pipelines is linearized in an exact way
using auxiliary binary variables and Big-M formulation using the approach from [24]. Applying
these convexification strategies to (3.8) results in a MISOCP which can be solved to optimality
using off-the-shelf solvers.

3.3 Numerical examples: Value of multi-energy system coordination

This section analyzes the additional flexibility and synergies that can be harnessed among natural
gas, heat and electricity systems. In this section, the proposed conic relaxation of the multi-energy
dispatch models are compared to models neglecting energy flow dynamics and thus the energy
storage capacity of gas and heat networks. The models are evaluated in terms of the total system
cost and the share of power production covered by wind production.

Modified case studies are built upon the IEEE 24-bus Reliability Test System [142] and a 12-node
natural gas system based on [17] and the 3-node district heating network in [24]. The scheduling
horizon is 24 hours. Data and network topologies are provided in [Paper A] and [Paper B] and
their online appendices, respectively.

3.3.1 Added value from cross-carrier synergies and network flexibility

The numerical results emphasize that gas-fired generators, CHP units and heat pumps offer cross-
carrier flexibility. Gas-fired generators are used for covering peak load and reacting to variability
of wind power production. Similarly, CHP units produce both electricity and heat during periods
of high electricity demand or low wind production. When electricity demand is low and wind
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production is high, heat pumps are used to produce heat from excess wind. This highlights the
benefits of modeling and harnessing the cross-carrier flexibility of gas-fired units, CHPs and heat
pumps. Furthermore, the flexibility from energy storage in gas and heat pipelines is unlocked.
First, results are discussed for the combined natural gas and power dispatch model (3.1) including
linepack and bidirectional gas flow from Section 3.1.1, comparing the relaxation technique with the
outer linear approximation explained in Section 3.1.2. Afterwards, heat infrastructure is included
and results for the convexified combined power, natural gas and heat dispatch model (3.8) from
Section 3.2.1 are presented.

Linepack flexibility for power systems

Accounting for natural gas and heat flow dynamics using relaxation or approximation techniques
unlocks the storage capacity of these energy networks. Figs. 3.5 and 3.6 show the total supply
and consumption of natural gas over 24-hour time horizon. These graphs show that demand
and supply of gas do not necessarily need to be matched in each time period. Supply and
consumption are decoupled due to the amounts of energy stored in the pipelines as linepack, which
is highlighted in shaded areas. Linepack is accumulated inside the pipelines, especially during
periods of high wind power production and low levels of power and gas loads, e.g., during hours
1-9. This corresponds to “charging” the storage of natural gas network and the stored energy can
be consumed later, i.e., “discharging”. This storage function of the network directly impacts the
profile of gas supply. Profiles of consumption, supply and linepack storage are slightly different
for the relaxation technique compared to the approximation. While with the relaxation technique
the gas supply profile completely flattens (see Figure 3.5), the linepack accumulated throughout
the day under the approximation approach varies slightly such that the energy storage in pipelines
is not sufficient to fuel all natural gas consumption in the last hours of the day in Figure 3.6.

Figure 3.7 shows the total cost of the integrated power and gas systems under varying levels of
wind penetration which is defined as total wind power capacity divided by total power load. It is
evident that the cost is decreasing with increasing levels of wind penetration. This plot shows
the comparison of total system cost for four cases: i) neglecting linepack flexibility, ii) accounting
for network flexibility using relaxation, or iii) approximation techniques, and iv) assuming ideal
electricity storage. The ideal electricity storage allows shifting of power demand and supply over
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Figure 3.7: Total cost of the fully coordinated power and gas systems for different levels of wind
power penetration, i.e., the share of total installed wind power capacity on maximum power
demand.

the planning horizon, assuming unlimited storage as well as charging and discharging capacities.
Upper and lower bounds for the total system cost are provided by the cases neglecting linepack
and assuming ideal storage, respectively. Revealing linepack flexibility decreases the total system
cost. Accounting for linepack by relaxing or approximating the gas flow dynamics results in a
decreased total system cost by 2% and 1% on average, respectively. These two approaches yield
mean cost savings equal to 25.5% and 13.1% of the ideal storage.

Network flexibility as virtual electricity storage

The supply and consumption of natural gas and heat over the simulated 24 hours are depicted in
Figs. 3.8 and 3.10, respectively. These graphs show that demand and supply of gas and heat do not
necessarily need to be matched in each time period. Supply and consumption are decoupled due
to the amounts of energy stored in the pipelines, which are highlighted as shaded areas in Figs. 3.9
and 3.11. Accounting for the natural gas and heat flow dynamics unlocks the storage capacity
of these energy networks. The storage function of the networks directly impacts the profiles of
gas and heat supply. Energy is accumulated inside the pipelines, especially during periods of
high wind power production and low levels of energy loads, e.g., in hours 1-8, 16-17 and 24. This
corresponds to charging the virtual electricity storage, while the stored energy can be consumed
later during discharging of the network storage. This leads to a cost-efficient shift of gas, heat
and even power supply and demand. The flexibility revealed from the pipelines decreases the
total system cost, see Figure 3.12. This plot shows the total cost of the integrated energy system
with and without accounting for flow dynamics and network flexibility for different rates of wind
power penetration. Results from the convexified version of model (3.8) are compared to a dispatch
that does not account for network flexibility. By having network flexibility the total system cost
decreases by around 2% on average.

Moreover, the revealed network flexibility allows to shift electricity production and consumption
such that wind curtailment can be reduced. Figure 3.13 shows the effect of network flexibility on
renewable penetration. Wind curtailment lowers by 1.2% on average, solely thanks to network
flexibility from heat and gas sectors. This effect is mainly driven by power-to-heat units, i.e., heat
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pumps, and can be expected to become even more important with power-to-gas units.

3.3.2 Feasibility evaluation

Since the presented solutions are based on relaxations and approximations of the original constraints,
a check to see if the original constraints actually hold is performed a posteriori. This shows whether
the relaxations and approximations are exact.

For the heat side, binary variables and mass flow rates are fixed to the results derived from the
relaxation and then a linear program is solved for the original constraints. A feasible solution
is obtained when adjusting the parametric temperature bounds. For the gas side, the left- and
right-hand sides of the relaxed Weymouth equations for all time steps and all pipelines are
compared. The relative error of the mismatch is computed as the inexactness gap and is below 2%
for the unidirectional case as well as approximation and relaxation in the bidirectional case. The
second-order cone relaxation of bidirectional gas flow without linepack dynamics is proven to
provide a tight lower bound in [143] and proven exact for non-radial networks in [138]. Although
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the relaxation is applied to a meshed network and linepack dynamics are included, the occurrence
of mismatch is very low and mostly pipelines within the loop of the gas network are at risk
of inexact relaxation. However, for the bidirectional case, the occurrence rate is higher since
McCormick relaxation is also used, which is not exact. As potential ways to further tighten
SOC and McCormick relaxations, see [141, 144]. Trade-offs need to be made between tightness,
computational complexity and accuracy of the proposed solution methods.

The proposed co-optimization models provide an ideal benchmark of the optimal operation of
integrated electricity, natural gas and heat systems at the day-ahead stage. Although this approach
is not practical in the current market regulations, it provides the basis to quantify the value
of increasing the coordination among energy systems. Coordination of energy carriers is an
inexpensive solution to provide operational flexibility to the power system. Especially natural
gas and heat networks provide flexibility to mitigate the variability of renewables in the power
system. This motivates investigating the impact of uncertainty arising from wind power forecasts
in Chapter 4 as well as new market-based coordination approaches, which will be presented in
Chapter 5. While the next two chapters focus on power-gas coordination, the concepts can be
deduced for the heat side given some modifications.





CHAPTER4
Full Coordination: An

Uncertainty-Aware Benchmark
The growing interdependence of power and natural gas systems causes short-term uncertainty to
propagate from the power to the gas side1. Efficient procurement of flexibility for the power system
from interfacing with the natural gas system requires not only the consideration of operational
constraints of the natural gas system, but also awareness of existing uncertainty. In order to deal
with uncertainty and correctly anticipate flexibility from natural gas systems, a unified power
and gas coordination mechanism is developed that models the uncertainty propagation from the
power to the gas side and enables the provision of short-term flexibility by the gas system. This
chapter introduces policy-based reserve products enabling the coordinated response of agents in both
sectors to deviations in power and gas systems due to uncertainty originated from the power side.

This chapter firstly discusses the concept of uncertainty awareness for coordination problems
in Section 4.1. Then distributionally robust chance-constrained co-optimization of power and
natural gas systems is introduced in Section 4.2. Since the resulting model is intractable, Section 4.3
describes the steps towards achieving tractability by defining affine policies for recourse actions of
flexible assets, reformulating objective function and balance constraints, and eventually by conic
approximation of probabilistic chance constraints. Finally, a case study in Section 4.4 numerically
studies the mitigation of short-term uncertainty propagated from the power side to the gas system.
The introduced reserve products reveal short-term operational flexibility that can be harnessed
from flexible assets. Specifically, gas-side players including gas-fired units, gas suppliers, and the
gas network are activated to provide response in real-time when facing spatio-temporal uncertainty.

4.1 Towards uncertainty awareness in coordination problems

The existing uncertainty-aware coordination problems in the literature for multi-energy systems
are based on scenario-based stochastic programming [17, 18, 35, 145, 146], robust optimization
[110, 147, 148], and chance-constrained optimization [111]. However, all these techniques have
their own shortcomings. Since a large number of scenarios is in general necessary to adequately
characterize the true probability distribution of the source of uncertainty, scenario-based approaches
suffer from high computational expense [54, 149, 150]. Reducing the number of scenarios restores
tractability, but may lead to weak out-of-sample performance [151]. Robust optimization, on
the other hand, encapsulates the underlying distribution of uncertainty in a set, the so-called
uncertainty set, assuming such a distribution is known [152]. Uncertainty sets are often ellipsoidal,
polyhedral, or built in a data-driven way [86, 153]. A robust model optimizes against the worst-
case realization over the support of the uncertainty set [154, 155], which may provide overly

1Uncertainty propagation could be in both directions in the future by integrating renewable biogas sources.
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conservative decisions [156]. Chance-constrained optimization is used to obtain the optimal
solution that satisfies constraints at certain probabilities, i.e., the user-defined constraint violation
probabilities [52, 53, 111]. Chance-constrained programming allows for tuning the probability of
violating operational limits under extreme realizations of uncertainty. Analytical reformulation
and convexification strategies for chance constraints allow adjustable conservativeness at low
computational cost providing a satisfactory out-of-sample performance [157, 158].

While the aforementioned approaches usually assume some knowledge of the underlying distribu-
tion of the uncertain parameter, distributionally robust optimization as a data-driven approach
assumes partial distributional information only. This approach, firstly introduced in [52], has
conceptual and computational advantages for coping with uncertainty [159]. The distribution of
uncertain parameters can be unknown while available information regarding uncertainty is taken
into account without relying on a single probabilistic model. Distributionally robust programming
optimizes in expectation against the worst-case distribution among a family of distributions collected
in a set, the so-called ambiguity set. Outcomes of distributionally robust optimization offer a strong
performance guarantee for all distributions in the ambiguity set. Moreover, distributionally robust
optimization problems can often be solved exactly while maintaining computational efficiency
[53, 159]. In summary, in contrast to other uncertainty modeling techniques, the distributionally ro-
bust approach bridges the gap between robustness and assumptions on distributional information
while allowing tractability and computational efficiency [159].

A comprehensive review for distributionally robust optimization is available in [159], a tutorial
is found in [160], while [161] provides a technical survey. Distributionally robust optimal power
flow problems are explored in [162–166], a distributionally robust electricity market clearing is
proposed in [167], while a distributionally robust power and gas coordination problem is proposed
in [168, 169].

4.2 Distributionally robust chance-constrained power and gas coordination

The concept of distributionally robust power and gas coordination is illustrated in Figure 4.1.
Out-of-sample simulations are necessary to assess the performance of the optimal solution based on
the “training” dataset with respect to “test datasets” during real-time operations. However, in this
chapter out-of-sample simulations are conducted without re-optimization. Thus, the out-of-sample
analysis is carried out based on projected instead of realistic operations [169]. These projected
out-of-sample simulations without re-optimization are referred to as “ex-ante” out-of-sample
simulations in the following and are used to evaluate the quality of optimal day-ahead schedules
and affine policies.

4.2.1 Definition of moment-based ambiguity sets

The key feature of distributionally robust optimization is the representation of uncertainty through
an ambiguity set, which describes a family of probability distributions consistent with available
data. In order to reduce conservativeness while keeping the problem robust against the unknown
true distribution, the ambiguity set should be chosen to be as small as possible, while containing the
unknown true distribution with certainty or at least with a high confidence [159]. Using data-driven
approaches to build ambiguity sets facilitates them to comprise probability distributions consistent
with available information. Based on the construction method, ambiguity sets can be separated
into two categories: Metric-based ambiguity sets are determined by the distributions that are close
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Figure 4.1: Uncertainty-aware coordinated power and natural gas day-ahead dispatch: A distribu-
tionally robust approach.

to an empirical one with respect to a discrepancy measure [53], while moment-based ambiguity sets
are defined by imposing constraints on moments of the distribution [52, 170]. For metric-based
ambiguity sets showing the notion of distance from a reference distribution, the interested reader
is referred to [53, 171], whereas the focus is on moment-based ambiguity sets in the following.

Typically, a family of probability distributions with identical first- and second-order moments, i.e.,
mean vector and its covariance matrix, is selected, since second-order moment information helps
to properly model existing spatial and temporal correlations of uncertainties.

An ambiguity set Π is defined as a collection of all multivariate probability distributions P ∈ Π with
the same first and second-order moments µΠ and ΣΠ, respectively. When the value for these two
moments is derived from historical data, this approach can be treated as a “data-driven” method.
The moment-based ambiguity set is given as

Π = {P ∈ Π : EP [Ω] = µΠ,EP
[
ΩΩ>

]
= ΣΠ}, (4.1)

with E as the expectation operator and Ω denoting the vector of uncertainties. Each probability
distribution P in the ambiguity set represents a potential distribution of uncertainty faced by the
problem and the true probability distribution is assumed to come from within this moment-based
ambiguity set Π. Thus, the true values of moments are assumed to be estimated from historical
data, while for inexact moments see [163]. The moment-based ambiguity set can be shrunk further
by adding higher-order moments [151] or additional features, e.g., uni-modality [172].

4.2.2 Distributionally robust chance-constrained modeling framework

The full coordination models (3.1) and (3.8) in Chapter 3 dealt with uncertainty in an agnostic
manner using deterministic forecasts of uncertain renewable power production. However, the
combined energy dispatch is affected by substantial short-term uncertainty because wind power
forecast parametersW are subject to errors at the day-ahead scheduling stage. The full coordination
model is extended to embed the characterization of short-term uncertainty following an unknown
distribution, see Figure 4.1. Here, Ω denotes the vector of forecast errors, which is assumed to
follow a distribution whose first- and second-order moments can be estimated from historical data.

The proposed uncertainty-aware combined power and natural gas dispatch model determines
the optimal power generation and gas supply schedules, resulting in the minimum expected
total system cost under the worst-case distribution in the ambiguity set. This distribution is
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endogenously determined by the proposed model. Operational limits are enforced in the form
of distributionally robust chance constraints which enable adjusting the conservativeness of
operational decisions against the worst distribution of short-term uncertainties, i.e., wind power
forecast errors. Assuming that uncertainty distributions are not perfectly known, distributionally
robust chance-constraints ensure that operational limits are satisfied with a certain probability for
any distribution in an ambiguity set. In a generic form the coordinated optimal dispatch problem
is written as

min
x̃E(Ω),x̃G(Ω)

max
P∈Π

EP
[
cE>x̃E(Ω) + cG>x̃G(Ω)

]
(4.2a)

subject to min
P∈Π

P
[
x̃E
i (Ω) ≤ xE

i

]
≥ (1− εi), ∀i, (4.2b)

min
P∈Π

P
[
x̃G
k (Ω) ≤ xG

k

]
≥ (1− εk), ∀k, (4.2c)

e>x̃E(Ω)− e> (W − Ω)− e>DE = 0, (4.2d)

e>x̃G(Ω)− φ>x̃E(Ω)− e>DG = 0, (4.2e)

hE (x̃E(Ω)
)

= 0, hG (x̃G(Ω)
)

= 0, (4.2f)

where the vector of stochastic decision variables x̃E(Ω) =
[
x̃E

1(Ω) ... x̃E
i (Ω) ... x̃E

I (Ω)
]> contains vari-

ables pertaining to the power side including generator power production and nodal power injections.
Similarly, for the gas side the vector of stochastic variables x̃G(Ω) =

[
x̃G

1 (Ω) ... x̃G
k (Ω) ... x̃G

K(Ω)
]>

comprises gas supplier injections, pressure at gas nodes, gas flow rates, and linepack. Note that
e is an appropriately sized vector of ones and that there are different sets of individual chance
constraints indexed by i ∈ I and k ∈ K for power and gas systems, respectively.

The objective function (4.2a) with a two-stage min-max structure seeks to minimize the expected
total system cost under the worst probability distribution P within the ambiguity set Π. The first
term describes power production cost and the second term gas supply cost with parameters cE and
cG as marginal costs.

Note that x̃E
i (Ω) ≤ xE

i and x̃G
k (Ω) ≤ xG

k in (4.2b) and (4.2c) are infinite-dimensional constraints,
i.e., they are valid for the entire distribution representing Ω. In order to make these constraints
single-dimensional and therefore tractable, an operator is needed, in this case chance-constraints.
Alternatively, Conditional Value-at-Risk (CVaR) [173] operator could be used, but at the expense of
additional modeling complexity and potentially conservativeness [174]. By using CVaR constraints,
not only the violation probability but also the violation magnitude can be limited, but it is outside
the scope of this thesis. Here, operational bounds and limits (4.2b) and (4.2c) are formulated as
distributionally robust individual chance constraints defined over ambiguity set Π. These chance
constraints need to be satisfied for all distributions within the moment-based ambiguity set (4.1)
with predefined violation probabilities εi and εk, respectively. Parameters εi, εk ∈ [0, 1] reflect the
safety factor for the ambiguous chance constraints to hold or the risk attitude of the decision maker,
such that under the worst distribution in ambiguity set Π, the probability that each constraint is
met is greater than or equal to 1− εi or 1− εk, respectively. In this manner, the conservativeness
of the model can be adjusted. Inequalities (4.2b) include parameters xi for generator limits and
power line flow limits. The bounds (4.2c) denote gas supply limits, pressure limits and direction of
gas flow with parameters xk. Note that the worst distribution is not necessarily identical for each
individual chance constraint (4.2b) and (4.2c) or identical to that of objective function (4.2a). For
distributionally robust joint chance constraints see [170, 175].
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Nodal power balance (4.2d) ensures that the total deterministic fixed power load DE is met by
power production from conventional and wind units with parameterW as the mean forecast, and
W −Ω as the uncertain wind production containing the mean wind forecast and the forecast error.

Nodal gas balance (4.2e) couples the gas and power systems together, by ensuring that gas supply
meets total gas demand including fuel consumption of gas-fired units via fuel conversion factor φ
and deterministic fixed gas demandDG. Linear functions hE

(
x̃E(Ω)

)
and hG

(
x̃G(Ω)

)
represent

other equality constraints pertaining to power and gas systems, respectively. For instance, the
power flow through the transmission lines is determined using the power transfer distribution
factor matrix, which defines the power flow as a linear function of nodal injections and withdrawals,
as described in equation (2.2) in Section 2.3. Intertemporal dynamics of operating linepack in
pipelines as well as quadratic unidirectional Weymouth equation governing the physics of steady-
state gas flow are captured in hG

(
x̃G(Ω)

)
. All equality constraints are enforced surely and are

supposed to be respected for any potential realization of uncertainty, though they also depend
on short-term uncertainty Ω. The reason is twofold: On the one hand, balance constraints are
considered crucial for the physical operation meaning that they should be satisfied for entire Ω.
On the other hand, the probabilistic nature of equalities can be handled mathematically (unlike
inequalities (4.2b) and (4.2c)), as it will be described later in Sections 4.3.3 and 4.3.2.

The distributionally robust chance-constrained power and natural gas co-optimization model (4.2)
is intractable due to the infinite-dimensional nature of the problem. To achieve computational
tractability, linear decision rules [176] are applied to analytically reformulate the probabilistic
constraints (4.2b) and (4.2c), as well as the objective function and equality constraints. Furthermore,
quadratic and McCormick relaxations are used to convexify gas flow equations as described in
Section 3.1.2.

4.3 Towards tractability

The issue with the current formulation of model (4.2) is that the stochastic nature of decision
variables makes the constraints infinite-dimensional and the problem becomes unsolvable. To
ensure solvability a moment-based ambiguity set Π of uncertainty is defined that contains all
probability distributions with zero mean, i.e., µΠ = 0, and covariance ΣΠ available through
analysis of historical forecast errors. Note that the wind power forecast W can be adjusted so
that the mean of forecast errors µΠ becomes 0 without loss of generality. In the following, affine
policies are introduced and reformulation of the objective function, equality constraints and chance
constraints are explained. These steps allow recasting the proposed model as a second-order cone
program with reasonable computational performance such that a tractable reformulation of the
distributionally robust chance-constrained problem (4.2) is achieved.

Alternatively, a solution for (4.2) can be obtained via a sample average approximation (SAA) based
on randomization of uncertainty bounds and computation by scenario-based approach, see [177].

4.3.1 Affine policies

To mitigate the intractability of the proposed model, recourse actions for real-time adjustments are
defined as affine policies based on linear decision rules [176]. Restricting the adjustable variables
to be affine functions of the uncertain data was initially proposed in [178] and referred to as the
linear decision rule approach in [176]. These affine policies are developed to control the flexibility
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procurement from conventional power generators, gas suppliers, and gas network operator to react
to deviations in real-time operations. Moreover, the affine policies help to analytically reformulate
the distributionally robust chance constraints. Affine policies are useful tools for approximation
of adjustable robust optimization problems since linear decision rules have been proven to be
effective for decision making under uncertainty [179] and even optimal under some conditions
[180]. Reference [179] empirically shows the appropriate performance of affine policies in two-stage
robust optimization problems. In [180] necessary and sufficient conditions are provided for affine
policies to be optimal in multi-stage robust optimization problems. Generalized (e.g., non-linear)
decision rules are discussed in [181].

Following the approach in [127], affine policies are selected such that the activation of flexibility
during the real-time operation stage is a linear function of the total balancing need due to wind
power deviation system-wide. Assets from both power and gas systems can contribute to these
recourse actions. Affine policies for flexible agents to perform recourse actions that can be activated
in real-time are defined as a function of uncertainty Ω. The eventual schedules x̃E(Ω) and x̃G(Ω)
are given by the tentative day-ahead schedules xE and xG and the recourse actions with respect to
the forecast deviation of uncertainty Ω and participation factors α ∈ [−1, 1] and β according to

x̃E(Ω) = xE + (e>Ω)α, (4.3a)

x̃G(Ω) = xG + (e>Ω)β, (4.3b)

such that schedules are defined as the sum of a deterministic and a stochastic component. Tentative
schedules and affine policies are decided endogenously through the day-ahead dispatch. The
participation factor determines the share each flexible unit provides towards the mitigation of
uncertainty. In other words, depending on whether there is a surplus or deficit in the system due
to forecast errors, flexible assets adjust by increasing or decreasing their supply to balance the
deviation in the system. Affine policies are optimized so that the cost of redispatch, which needs
to be done closer to real-time, can be reduced.

Using these affine control policies with µΠ = 0, objective function (4.2a), and equality constraints
(4.2d), (4.2e) and (4.2f) can be analytically reformulated as explained below.

4.3.2 Reformulation of objective function

Following the argumentation of [182], objective function (4.2a), which is a two-stage min-max
problem, can be recast as a single-stage minimization problem. Stochastic variables x̃E(Ω) and
x̃E(Ω) are substituted with linear decision rules (4.3), so that (4.2a) rewrites as

min
xE,α,xG,β

max
P∈Π

EP
[
cE> (xE + (e>Ω)α

)
+ cG> (xG + (e>Ω)β

)]
. (4.4)

As the ambiguity set Π is chosen with zero-mean forecast error distribution, i.e., EP(Ω) = µΠ = 0,
in expectation the cost of recourse actions EP

[
cE>(e>Ω)α+ cG>(e>Ω)β

]
is zero and (4.4) reduces

to
min

xE,xG,α,β

[
cE>xE + cG>xG

]
. (4.5)

Since forecast error Ω is no longer in the objective function, maxP∈Π can be removed [164] and the
objective function reduces to an uncertainty-independent linear minimization. Note that the set of
decision variables is updated to incorporate nominal dispatch and recourse decisions substituting
the stochastic variables as described in decision rules (4.3).
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4.3.3 Reformulation of equality constraints

Given the recourse actions based on linear decision rules (4.3), equality constraints (4.2d) can be
reformulated to

e>
(
xE + (e>Ω)α

)
− e> (W − Ω)− e>DE = 0. (4.6)

When separating the terms based on their independence and dependence of Ω, balance of supply
and demand as well as activation of flexibility during real time to counter the random forecast
errors are ensured in the power system by

e>xE + e>W − e>DE = 0, (4.7a)

e>α = 1, (4.7b)

which hold true for any realization of uncertainty Ω. Constraints (4.7) are uncertainty-independent
equality constraints, as Ω was canceled out on both sides of (4.7b).

Recourse actions for gas-fired generators require response to uncertainty by flexible assets from
the gas system. Therefore, deviations from wind power forecast and resulting mitigation actions
of flexible power units translate into uncertainty in the natural gas system. Nodal gas balance
(4.2e) coupling power and gas systems together can also be reformulated such that Ω is no longer
included. Consequently, the gas system is balanced by

e>xG − φ>xE − e>DG = 0, (4.8a)

e>β = φ>α, (4.8b)

so that responses β by gas suppliers and network assets depend on response actions by gas-fired
units reflected in α. These balance constraints (4.7) and (4.8) are derived from (4.2d) and (4.2e) by
separating the nominal and uncertainty-dependent terms, respectively.

During the real-time operation power flows change depending on the realization of uncertainty,
affine responses and spatial configuration of wind farms and generators. Moreover, the recourse
actions from the gas system depend on the allocation of affine policies subject to the gas network
topology and physical gas flow constraints. Despite the non-linearity inherent in the network
flow dynamics, changes in power and gas flows can be approximated through affine functions. In
order to properly model the effect of adjustments throughout the gas system, auxiliary variables
describing the sensitivities of gas flows and nodal pressures to uncertainty are introduced, which
depend on β and thus,α. It is worth noting that linepack dynamics impose intertemporal coupling
between dispatch decisions requiring proper modeling of spatial and temporal correlation of the
uncertain parameter. Note that the non-convex Weymouth equation in (4.2f) under uncertainty can
be split into three separate equality constraints when differentiating terms which are independent,
quadratically-, and linearly-dependent on uncertainty. While the former two can be relaxed into
second-order cone constraints following the approach in Section 3.1.2, bilinear terms in the latter
need to be replaced with their McCormick envelopes (3.7). See [Paper C] for detailed reformulation.

Lastly, the distributionally robust chance constraints (4.2b) and (4.2c) need to be reformulated in
order to make the original problem tractable, which is described in the following.
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4.3.4 Conic approximation of probabilistic constraints

Probabilistic chance constraints can be analytically reformulated under certain assumptions. Most
chance-constrained approaches assume that wind power forecast errors are Gaussian to analytically
reformulate chance constraints [157, 158, 183]. In fact, each chance constraint with a Gaussian
distribution can be analytically reformulated as a second-order cone constraint [157]. However,
since the accurate distribution of wind power forecast errors is unknown, distributionally robust
chance constraints (4.2b) and (4.2c) can be approximated by applying Chebyshev’s inequality, see
[163, 182, 184]. Using linear decision rules (4.3) the distribitionally robust chance constraints (4.2b)
and (4.2c) are rewritten as

min
P∈Π

P
[(
xE
i + (e>Ω)αi

)
≤ xE

i

]
≥ (1− εi), ∀i, (4.9a)

min
P∈Π

P
[(
xG
k + (e>Ω)βk

)
≤ xG

k

]
≥ (1− εk), ∀k, (4.9b)

with the vectors of participation factors α = [α1 ... αi ... αI ]> and β = [β ... βk ... βK ]>. Following
the approach in [163, 182, 184] to apply Chebyshev’s inequality with µΠ = 0 the distribitionally
robust chance-constraints are approximated by

xE
i ≤ xE

i −
√

1− εi
εi

√
αie>ΣΠeαi, ∀i, (4.10a)

xG
k ≤ xG

k −
√

1− εk
εk

√
βke>ΣΠeβk, ∀k, (4.10b)

which can be finally be rewritten as the following convex second-order cone constraints√
1− εi
εi
||αie>(ΣΠ)1/2||2 ≤ −xE

i + xE
i , ∀i, (4.11a)√

1− εk
εk
||βke>(ΣΠ)1/2||2 ≤ −xG

k + xG
k , ∀k. (4.11b)

However, this reformulation approach is not exact and the accuracy of the provided approximation
depends on the confidence levels 1− εi and 1− εk. The accuracy of the approximation reduces
when εi and εk are close to zero, i.e., when confidence levels are close to 1, resulting in overly
conservative solutions and ultimately infeasibility. Thus, this reformulation requires that large
enough violation probabilities εi and εk are considered to avoid infeasibility [164, 167]. For exact
reformulation of chance constraints, which increases the modeling complexity, see [164].

In summary, the original problem (4.2) can be recast as a second-order cone program (SOCP),
whose detailed formulation is given in [Paper C]. This proposed framework is efficiently solvable
allowing to harvest flexibility from agents in power and gas systems, i.e., flexible power generators,
natural gas suppliers and gas grid assets, based on affine policies deriving tentative dispatch
schedules and recourse actions for mitigation of uncertainty. The features of uncertainty are drawn
from historical measurement without specific distributional restrictions or assumptions on random
variables.

4.4 Numerical results: Uncertainty propagation and mitigation

The proposed methodology is tested on a modified case study based on the 24-bus IEEE reliability
test system [142] and a 12-node gas system [17] over one day with hourly time granularity. Mean
and covariance of wind power production forecast errors are extracted from historical data. A set of



4.4. NUMERICAL RESULTS: UNCERTAINTY PROPAGATION AND MITIGATION 41

1,000 wind forecast scenarios of wind farms located in Denmark [185] is used to compute the mean
and the covariance for the central system operator to assign not only the optimal dispatch but also
the optimal flexibility procurement in the form of affine policies. The tractable SOCP form of the
distributionally robust chance-constrained energy dispatch provides optimal day-ahead dispatch
schedules for power and gas systems and affine participation policies for power generators, gas
suppliers and network operators for the flexibility provision in real-time. Parameters εi and εk

are chosen such that they represent the risk tolerance and preference of the system operator. For
simplicity, identical values ε for all chance constraints are selected, consequently 1− ε becomes the
confidence level that chance constraints hold.

4.4.1 Optimal affine policies

The optimal affine policies obtained from solving the uncertainty-aware power and gas dispatch
model can be interpreted as flexibility-oriented products that represent the operational reserve
of market participants across temporal and spatial dimensions as well as across multiple energy
carriers. The framework of policy-based reserve products allows the coordinated reaction of
market participants to deviations in electricity and subsequently natural gas systems as linear
decision rules. Figure 4.2 shows the optimal dispatch and affine policies for power generators,
grouped into gas-fired and non gas-fired units for ε = 0.05. Only units that are dispatched below
full capacity are assigned affine policies to participate in the provision of flexibility. For economic
reasons, low-cost options are preferred as flexibility sources. Not only the cost but also the spatial
correlation of uncertainty sources and locations of flexible agents decide the allocation of affine
policies. As natural gas-fired units are the main flexibility providers during hours 8-24, the gas
system needs to react to the uncertainty resulting from variable gas-off take. Gas injections into the
grid in the early hours of the day ensure fuel availability via linepack towards later hours of the
day, effectively decoupling supply and demand in the gas system, see Figure 4.3. With gas-fired
power plants providing real-time recourse actions, gas suppliers are also assigned affine policies to
mitigate the uncertain fuel consumption. Scheduling decisions and the allocation of affine policies
in the gas system depend on both cost and network effects, such that the most expensive gas
supplier is only dispatched and assigned affine policies in few hours late in the day, to compensate
for the depletion of linepack in pipelines.

4.4.2 A trade off between system cost and violation probabilities

Choosing appropriate confidence levels for chance constraints to hold is not straightforward.
Figure 4.4 shows that with increasing confidence level the cost of dispatch increases. This represents
the trade-off between risk and cost for the system operator.

Ex-ante out-of-sample simulations help to choose appropriate confidence level 1− ε and also to
evaluate the quality of the solution. The day-ahead decision, i.e., tentative schedules and affine
policies, are fixed to their optimal values in the solution. Then another set of wind forecast scenarios
(test dataset), different from the set used to obtain the covariance matrix (training dataset), is
simulated and the violation probability of the distributionally robust chance constraints under
these new scenarios is computed. For given optimal in-sample values obtained for the tentative
day-ahead schedule and participation factor of generating units, the linear decision rule is applied
to calculate the recourse action of each unit under each test sample. In this way, the feasibility of
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Figure 4.2: Optimal dispatch and affine policies for power generators with ε = 0.05.
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Figure 4.3: Optimal dispatch and affine policies for gas suppliers with ε = 0.05.
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Figure 4.4: Day-ahead dispatch cost as func-
tion of confidence levels for distributionally
robust chance constraints.
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distributionally robust chance constraints,
evaluated for 1,000 new test samples.

chance-constraints in real-time is tested. Figure 4.5 shows that by increasing the confidence level
the ex-ante violation probability over all constraints decreases.

The individual violation probability of each group of distributionally robust chance constraints
are shown in Figure 4.6 for different values of ε. The plot illustrates the susceptibility of the
individual groups of constraints showing that while the violation probability decreases for
increasing confidence levels, generation production limits, gas flow unidirectionality and pressure
bounds stay the constraints most prone to violations. Line flow limits and maintaining linepack
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Figure 4.6: Ex-ante violation probabilities by constraint type. Corners of the hexagons represent a
violation probability of 0.3 and 0.005 for the plot on the left- and right-hand side, respectively.

are not susceptible to violation in this specific case study.





CHAPTER5
Soft Coordination Via Financial

Instruments
The goal of coordination among energy markets is to dispatch flexible assets in a way that enables
them to serve all sectors. The lack of coordination among energy markets and trading floors may
result in day-ahead dispatch decisions that are suboptimal for the overall energy system. Among
all potential coordination schemes, recall from Chapter 2 that soft coordination approaches respect
the current market frameworks and regulations. Non-disruptive, market-based coordination
mechanisms enhance the information flow among sectors and create incentives for each sector to
dispatch flexible resources in a way that benefits the overall energy system.

The main goal of this chapter is to explore how financial instruments can help as a coordination tool
in interdependent but independently operated power and natural gas markets. This chapter first
discusses different levels of sectoral and temporal coordination in coupled two-settlement power
and natural gas markets in Section 5.1. Fully coordinated and uncoordinated market-clearing
frameworks are formulated as optimization and equivalent equilibrium models in Section 5.2. The
concept of virtual bidding for agents with and without physical assets is introduced in Section
5.3. Virtual bidders are included in the market clearing-formulation in Section 5.4. The solution
methodologies for the respective Nash and generalized Nash equilibrium problems are explained.
Finally, a case study in Section 5.5 shows that virtual bidding is able to bring additional efficiency
to coupled electricity and natural gas markets in comparison to the current sequential setup. A
stochastic integrated market clearing is used as an ideal benchmark.

5.1 Sectoral and temporal coordination

The current design of energy markets requires separate and sequential clearing of power and
natural gas markets. Two dimensions for improved coordination in separate and sequential
two-settlement electricity and natural gas markets are identified: Sectoral and temporal coordination.
These two dimensions are described in the following and then different degrees of sectoral and
temporal coordination are summarized.

5.1.1 Sectoral coordination

As detailed in Section 2.4, there are different degrees of coordination among energy sectors. In the
sectorally uncoordinated setup with sequential timing, the electricity market is cleared based on
estimated natural gas prices. Since gas prices affect power generation costs, realized or expected
prices in one market affect offers in the other. Therefore, the merit order in the electricity market is
affected by potentially inaccurate gas price estimation. The gas market is cleared afterwards for
given fuel demand from gas-fired units, which is determined by their dispatch in the electricity
market, and actual gas prices are derived. Due to growing interactions and flexibility requirements,

45
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Figure 5.1: Different degrees of sectoral and temporal coordination between electricity and natural
gas markets in day-ahead (DA) and real-time (RT) stages.

sectoral coordination becomes crucial. Full coordination approaches require major updates of
the current practice. Necessary updates include aligning market timings, enabling information
exchange between system operators or centralizing decision making. Alternatively, the interactions
between sectors can be improved via soft coordination. These coordination mechanisms are
based on widening the scope of operational information exchanged by the two sectors. With such
mechanisms, the electricity market becomes “gas-aware”, while respecting the sequential order of
markets.

5.1.2 Temporal coordination

Market operators clear day-ahead and real-time markets separately and sequentially for power and
gas sectors. Without coordination, the day-ahead market is cleared with deterministic description
of forecast uncertainties. Deviations from fixed day-ahead schedules are then balanced in the
real-time stage once uncertainty is realized. In the real-time market, adjustments are made to the
day-ahead schedules in order to offset imbalances. With significant shares of uncertain renewable
energy sources, lacking foresight into potential deviations in real-time results in high balancing
cost to mitigate erroneous forecasts. While full temporal coordination implies explicit probabilistic
representation of uncertainties in day-ahead scheduling, soft temporal coordination includes any
mechanisms that maintain deterministic day-ahead market clearing while improving “real-time
awareness” in the day-ahead stage.
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5.1.3 Degrees of sectoral and temporal coordination

The three different degrees of sectoral and temporal coordination between electricity and natural
gas systems and trading floors, i.e., no coordination, full coordination and soft coordination, are
illustrated in Figure 5.1. No coordination in Figure 5.1 (a) resembles the current sequential setup of
markets with only limited coordination between sectors and trading floors. Full coordination in
Figure 5.1 (b) is uncertainty-aware and treats the overall energy system holistically anticipating
future uncertainties in day-ahead. Full coordination requires complete redesign of markets but
serves as an ideal benchmark. Soft coordination illustrated in Figure 5.1 (c) gradually strengthens
the coordination between sectors and trading floors via mechanisms that create implicit exchange
of information and market interactions. Virtual bidders as financial instruments can act as soft
coordinators among trading floors and sectors. Market clearing models for different levels of
sectoral and temporal coordination are provided in the following.

5.2 Market clearing: Optimization and equilibrium frameworks

Market operators clear power and natural gas markets in day-ahead and real-time stages aiming
at maximizing the social welfare. When demand is inelastic to price, maximum social welfare is
achieved by minimizing operational cost. Under the assumption of perfect competition, all market
players act competitively, non-strategically and in a risk-neutral manner when participating in the
markets so that they offer at prices identical to their marginal cost.

The optimization problem for clearing markets is equivalent to an equilibrium model. This
equilibrium model comprises a set of optimization problems of profit-maximizing agents along
with a price-setting agent determining the market-clearing prices. This means that any solution
for the optimization problem is a solution for the corresponding equilibrium problem, and vice
versa. This is proven by the fact that the Karush-Kuhn-Tucker (KKT) optimality conditions of
the optimization problem and those of the corresponding equilibrium problem are identical.
Optimization and equilibrium problems modeling different levels of coordination will be provided
in the rest of this chapter and their equivalence will be discussed.

The probability distribution of uncertainty is represented by a set of scenarios indexed by ω. Wind
power forecast in day-ahead is the only source of uncertainty and actual wind power production
is realized in real-time. The wind power forecast in day-ahead is a single-point (deterministic)
value, while different scenarios may occur in real-time. Functions f(·), g(·), h(·), and p(·) denote
linear functions. Note that these functions are not necessarily identical for different optimization
problems. In the next section, full coordination of electricity and natural gas systems in day-ahead
and real-time is described.

5.2.1 Full coordination: Ideal benchmark

Full sectoral and temporal coordination based on Figure 5.1 (a) is achieved by designing a stochastic
integrated energy market in a disruptive way disregarding the current sequence of market clearings.
The co-optimization of power and natural gas markets anticipates potential recourse actions in
real-time already in the day-ahead decision-making, and thus allocates flexible assets, especially
those at the interface of the sectors, with all available information and foresight.
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Stochastic co-optimized power and natural gas market clearing

Stochastic integrated power and natural gas market clearing aims at minimizing the total expected
operational cost of both sectors with respect to operational constraints as well as supply and
demand balances in day-ahead and real-time stages. The central market operator solves a two-
stage stochastic linear program to optimize day-ahead schedules (here-and-now decisions) in the
first-stage and adjust energy imbalances due to wind power deviations (wait-and see decisions) in
the second stage, thus minimizing the total expected cost of the whole energy system, according to

min
xE,xG,x̂E

ω,x̂
G
ω

f(xE,xG) + E
[
f(x̂E

ω, x̂
G
ω)
]

(5.1a)

subject to gE(xE) ≤ 0, hE(xE) = 0 : λE, (5.1b)

gG(xG) ≤ 0, hG(xG,xE) = 0 : λG, (5.1c)

gE(x̂E
ω,x

E) ≤ 0, hE(x̂E
ω) = 0 : λ̂E

ω, ∀ω, (5.1d)

gG(x̂G
ω,x

G) ≤ 0, hG(x̂G
ω, x̂

E
ω) = 0 : λ̂G

ω, ∀ω, (5.1e)

where xE and xG denote the vectors of day-ahead scheduling decisions in power and gas systems,
respectively. In addition, x̂E

ω and x̂G
ω are the adjustments in real-time for power and gas markets

under scenario ω. Objective function (5.1a) minimizes the total expected system cost including
cost of day-ahead power production and gas supply schedules in the first term f(xE,xG) and
the expected real-time balancing cost in both sectors to cover excess or deficit of wind power
production in the second term E

[
f(x̂E

ω, x̂
G
ω)
]
. Day-ahead operational constraints (5.1b) and (5.1c)

include operational limits of the power system as linear inequalities gE(xE) ≤ 0 and linear power
balance equality hE(xE) = 0, as well as operational limits of the gas system (linear inequalities
gG(xG) ≤ 0) and balance of gas supply and demand (linear equality constraint hG(xG,xE) = 0).
Note that the dispatch of gas-fired units is translated into fuel consumption, which represents gas
load in the gas balance. The dispatch of gas-fired units is endogenously optimized taking true
marginal cost and its effect on the gas system into account. The real-time constraints are enforced
by (5.1d) and (5.1e) for every scenario ω which ensure that adjustments lie within operational limits
in power and gas sectors in gE(x̂E

ω,x
E) ≤ 0 and gG(x̂G

ω,x
G) ≤ 0, respectively. Deficit or excess of

wind power production due to day-ahead forecast error is balanced out in hE(x̂E
ω) = 0 and changes

in gas demand due to variable fuel consumption of gas-fired units mitigating wind forecast error
are offset in hG(x̂G

ω, x̂
E
ω) = 0. Dual variables associated with equality constraints, which enforce

balance of production and consumption in day-ahead and real-time, present day-ahead power and
natural gas prices (λE and λG) as well as probability-weighted real-time prices (λ̂E

ω and λ̂G
ω).

The linear program (5.1) can be equivalently reformulated as an equilibrium problem in which each
market player is a stochastic decision-maker with perfect and symmetric information regarding
uncertainty and prices in both sectors, see Figure 5.2. This equivalent equilibrium problem is given
in the following.

Stochastic Nash equilibrium model

In the context of a market game with price-taking agents, each player chooses quantities to
maximize her expected profit, subject to day-ahead and real-time operational constraints. Within
the equilibrium model (5.2)-(5.8), optimization problem (5.2) represents the expected profit
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Stochastic equilibrium model

Player 1
max expected profit

in DA and RT

···

Player N
max expected profit

in DA and RT

Stochastic optimization model

Central market operator
min total expected system

cost in DA and RT

Figure 5.2: Full coordination: Stochastic equilibrium model (5.2)-(5.8) equivalent to stochastic
optimization model (5.1). Player 1 to Player N represent all agents participating in either power or
gas market as well as agents at the interface of the markets, i.e., gas-fired units. DA: day-ahead; RT:
real-time.

maximization problem for each power market participant I as given below:

max
xE,x̂E

ω

p(xE,λE) + E
[
p(x̂E

ω, λ̂
E
ω)
]

(5.2a)

subject to gE(xE) ≤ 0, gE(x̂E
ω,x

E) ≤ 0, ∀ω. (5.2b)

Note that day-ahead and expected real-time prices λE and λ̂E
ω are variables within the equilibrium

model but treated as exogenous parameters within the agents’ optimization problems. Each agent’s
feasible space is determined by her operational limits in day-ahead and real-time in (5.2b).

Similarly, each agent G at the interface of power and gas markets, e.g., gas-fired units, maximizes
her expected profit depending on day-ahead and expected real-time prices for power (λE, λ̂E

ω) and
natural gas (λG, λ̂G

ω) according to

max
xE,x̂E

ω

p(xE,λE,λG) + E
[
p(x̂E

ω, λ̂
E
ω, λ̂

G
ω)
]

(5.3a)

subject to gE(xE) ≤ 0, gE(x̂E
ω,x

E) ≤ 0, ∀ω. (5.3b)

Furthermore, each natural gas market participant Kmaximizes her expected profit as

max
xG,x̂G

ω

p(xG,λG) + E
[
p(x̂G

ω, λ̂
G
ω)
]

(5.4a)

subject to gG(xG) ≤ 0, gG(x̂G
ω,x

G) ≤ 0, ∀ω. (5.4b)

These agents I, G and K choose vectors xE and x̂E
ω as well as xG and x̂G

ω , respectively, subject to
operational restrictions, which are independent of others’ actions, and receive profits according
to their individual linear payoff functions p(·). A Nash equilibrium is a set of strategies, one
for each player, such that each player’s strategy is her best response to others’ strategies. In
combination with market-clearing constraints, this results in a market equilibrium. As proposed
in [186], market constraints for power and gas balances in day-ahead and real-time are included
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by a fictitious market participant who chooses prices. This price-setting agent determines the
day-ahead electricity price λE for given dispatch decisions as

min
λE

λE>
hE(xE). (5.5)

Note that KKT condition of unconstrained optimization (5.5) simply enforces power balance
equality, i.e., hE(xE) = 0. Similarly, the day-ahead natural gas price λG is chosen as

min
λG

λG>
hG(xG,xE). (5.6)

Finally, the real-time electricity and gas prices are determined for each scenario ω according to{
min
λ̂E

ω

λ̂E>

ω hE(x̂E
ω) = 0

}
∀ω, (5.7)

and {
min
λ̂G

ω

λ̂G>

ω hG(x̂G
ω, x̂

E
ω) = 0

}
∀ω, (5.8)

respectively. In equilibrium, (5.5)-(5.8) precisely balance supply and demand.

Following the argumentation in [85], the equilibrium model given by (5.2)-(5.8) is mathematically
proven to be equivalent to optimization model (5.1). As illustrated in Figure 5.2, the KKT conditions
of (5.1) are identical to those of the equilibrium model (5.2)-(5.8).

5.2.2 No coordination: Separate and sequential setup

Without coordination as illustrated in Figure 5.1 (b), the coupled electricity and natural gas markets
are cleared separately and sequentially, first in the day-ahead stage with deterministic forecast of
uncertain wind power production and then in real-time to adjust imbalances once uncertainty is
realized. In this setup, the exchange of information between sectors and trading floors is limited.
The day-ahead electricity market clears based on estimated natural gas prices and deterministic
forecast of uncertain wind power production. Then, the natural gas market clears in day-ahead
based on fixed fuel demand derived from the day-ahead schedule of natural gas-fired units from
the power side. These day-ahead decisions are adjusted in real-time markets once uncertainty is
realized. After the real-time electricity market is cleared to resolve imbalances caused by wind
power forecast errors, deviations due to updated real-time production schedules of gas-fired power
plants are balanced in the real-time gas market.

Day-ahead electricity market

For given estimation of natural gas prices λ̃G in order to forecast the production cost of gas-fired
power producers, the electricity day-ahead market clears as

min
xE

f(xE, λ̃G) (5.9a)

subject to gE(xE) ≤ 0, hE(xE) = 0, (5.9b)

aiming at minimizing the total day-ahead power generation cost in objective function (5.9a), which
stems from operational cost of non gas-fired and gas-fired power plants. Constraints (5.9b) describe
the operational constraints and power balance in the power system given deterministic forecast of
wind power production.
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Day-ahead market
equilibrium

Real-time market
equilibrium

for scenario ω

Player 1
max profit in DA

···

Player N
max profit in DA

Player 1
max profit in RT
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···

Player N
max profit in RT
under scenario ω

Day-ahead market
optimization

Real-time market
optimization

for scenario ω
Market operator
min total system

cost in DA

Market operator
min total system

cost in RT
under scenario ω

Day-ahead schedules

Figure 5.3: No coordination: Each optimization problem for day-ahead (DA) and real-time (RT)
stage is equivalent to an equilibrium problem for DA and for RT market clearing for both sequential
power and gas markets.

Note that (5.9) is a deterministic linear program. The optimization problem for day-ahead electricity
market clearing can be equivalently formulated as the following equilibrium model with each unit
maximizing her profit and a price-setting agent. Each non gas-fired generator I maximizes her
day-ahead profit with respect to her operational constraints according to

max
xE

p(xE,λE) (5.10a)

subject to gE(xE) ≤ 0. (5.10b)

Similarly, each gas-fired unit G determines her day-ahead production based on the forecasted
marginal cost given natural gas price estimation λ̃G:

max
xE

p(xE,λE, λ̃G) (5.11a)

subject to gE(xE) ≤ 0. (5.11b)

A price-setting agent reveals the day-ahead electricity price λE according to

min
λE

λE>
hE(xE). (5.12)

The equilibrium problem (5.10)-(5.12) is equivalent to the day-ahead market optimization problem
(5.9), see Figure 5.3.

Day-ahead natural gas market

The optimal day-ahead dispatch of gas-fired units xE?

derived from (5.9) is taken as input into the
day-ahead natural gas market clearing (5.13). The aim is to minimize the operating cost f(xG) of
the natural gas system according to

min
xG

f(xG) (5.13a)

subject to gG(xG) ≤ 0, hG(xG,xE?

) = 0, (5.13b)
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where operational constraints and system-wide natural gas balance are given in (5.13b).

Optimization problem (5.13) for day-ahead gas market clearing can be equivalently formulated
as the following equilibrium model with each supplier maximizing her profit and a price-setting
agent.

Each natural gas agentKmaximizes her day-ahead profit with respect to her operational constraints
according to

max
xG

p(xG,λG) (5.14a)

subject to gG(xG) ≤ 0, (5.14b)

and the true natural gas price λG in day-ahead is determined by

min
λG

λG>
hG(xG,xE?

). (5.15)

In real-time operations, wind power production scenario ω is realized, which may not be identical
to the deterministic forecast, and real-time markets are cleared to adjust for imbalances. Optimal
day-ahead schedules xE?

and xG?

are treated as fixed inputs in the following formulations and
real-time markets are cleared for the realization of uncertainty ω.

Real-time electricity market

In the real-time market, the cost of power adjustments is minimized under scenario ω as{
min
x̂E

ω

f(x̂E
ω, λ̃

G
ω) (5.16a)

subject to gE(x̂E
ω,x

E?

) ≤ 0, hE(x̂E
ω) = 0

}
∀ω, (5.16b)

where objective function (5.16a) describes the real-time cost of power adjustments to cover excess or
deficit of wind power production based on real-time natural gas price estimation λ̃G

ω . Operational
constraints in the real-time stage (5.16b) depend on given day-ahead schedules xE?

and any
imbalance due to deviation from the day-ahead forecast is mitigated in real-time power balance.

The following equilibrium problem (5.17)-(5.19) is equivalent to the real-time market optimization
problem (5.16) for each scenario ω, as illustrated in Figure 5.3.

Each non gas-fired generator I maximizes her profit in scenario ω with respect to her fixed
day-ahead schedule xE?

as {
max
x̂E

ω

p(x̂E
ω, λ̂

E
ω) (5.17a)

subject to gE(x̂E
ω,x

E?

) ≤ 0
}
∀ω. (5.17b)

Similarly, gas-fired generator G optimizes her production in real-time based on real-time natural
gas price estimation λ̃G

ω as {
max
x̂E

ω

p(x̂E
ω, λ̂

E
ω, λ̃

G
ω) (5.18a)

subject to gE(x̂E
ω,x

E?

) ≤ 0
}
∀ω. (5.18b)

For each scenario, the real-time electricity price is set according to{
min
λ̂E

ω

λ̂E>

ω hE(x̂E
ω)
}
∀ω. (5.19)
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Table 5.1: Equivalence of optimization and equilibrium models for full coordination and no
coordination.

Optimization Equilibirum

Full coordination (Ideal) Stochastic integrated energy market (5.1) (5.2)-(5.8)

No coordination (Seq)

Day-ahead electricity market (5.9) (5.10)-(5.12)
Day-ahead natural gas market (5.13) (5.14),(5.15)
Real-time electricity market (5.16),∀ω (5.17)-(5.19),∀ω
Real-time natural gas market (5.20),∀ω (5.21)-(5.22),∀ω

Real-time natural gas market

Lastly, the real-time natural gas market is cleared for adjusted fuel consumption by gas-fired units
based on the real-time adjustment of their dispatch x̂E?

ω . The day-ahead schedule of electricity
and natural gas systems as well as the real-time adjustments of gas-fired units are treated as fixed
parameters in the following formulation:{

min
x̂G

ω

f(x̂G
ω) (5.20a)

subject to gG(x̂G
ω,x

G?

) ≤ 0, hG(x̂G
ω, x̂

E?

ω ) = 0
}
∀ω. (5.20b)

Real-time natural gas market-clearing problem (5.20) is equivalent to the following equilibrium
problem (5.21)-(5.22). Each gas supplier maximizes her profit in real-time as{

max
x̂G

ω

p(x̂G
ω, λ̂

G
ω) (5.21a)

subject to gG
k (x̂G

ω,x
G?

) ≤ 0
}
∀ω, (5.21b)

and real-time natural gas price vector λ̂G
ω is decided for each scenario ω as{

min
λ̂G

ω

λ̂G>

ω hG(x̂G
ω, x̂

E
ω)
}
∀ω. (5.22)

Table 5.1 summarizes all proposed optimization problems and corresponding equilibrium models
for the two extreme forms of coordination, no and full coordination. In the following soft
coordination via financial instruments is introduced.

5.3 The concept of virtual bidding

Virtual bidding is a purely financial instrument, which allows market players including suppliers,
consumers and financial traders, to do arbitrage based on price differences between two trading
floors in energy markets, e.g., day-ahead and real-time, without physically consuming or producing
energy [49, 50, 131, 133]. Market players who anticipate price differences between day-ahead
and real-time markets can earn profit from this price spread by performing arbitrage. Virtual
bidding is also called “convergence bidding” [131], because this form of arbitraging leads to
price convergence, which will be shown in the following. Virtual bidders have the potential to
improve coordination between trading floors by fostering competition and improving market
efficiency [49, 51]. Due to price convergence in expectation, the coordination between day-ahead
and real-time markets is improved so that day-ahead prices already reflect anticipated real-time
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Figure 5.4: An example of day-ahead and real-time trades by an explicit virtual bidder.

uncertainty, making the day-ahead stage more “real-time aware”. This is supposed to update
schedules in the day-ahead market towards allocating available flexibility more efficiently. Virtual
bidders are supposed to bring more information, competitiveness, liquidity and transparency
to two-settlement energy markets [51, 133]. However, transaction cost associated with financial
transactions, risk awareness of financial players, and potential strategic behaviour reduce the
effectiveness of virtual bidding [50, 132]. Undesirable effects from cross-product manipulations
with other financial products are discussed in [187]. Two categories of virtual bidding, i.e., explicit
and implicit, are described in the following.

5.3.1 Explicit virtual bidding for temporal coordination

An explicit virtual bidder does not own any physical assets. Thus, her positions in day-ahead and
real-time markets need to cancel each other out. In other words, if the explicit virtual bidder buys
or sells a certain amount of energy for a specific hour in the day-ahead market, she needs to sell or
buy back the exact same amount at the same hour in the real-time market, see Figure 5.4. Payoffs
from virtual transactions amount to the difference between day-ahead and real-time prices times
the amount of virtually traded energy.

Under the assumptions that explicit virtual bidders are price-taker with perfect knowledge of the
distribution of real-time prices, the expected profit maximization problem of each explicit virtual
bidderR participating in the electricity market is given as a two-stage stochastic linear program
below:

max
vE,v̂E

λE>
vE + E

[
λ̂E>

ω v̂
E
]

(5.23a)

subject to vE + v̂E = 0, (5.23b)

wherevE and v̂E denote the vectors of virtual trades in day-ahead and real-time markets, respectively.
Objective function (5.23a) maximizes the expected profit of arbitraging in the day-ahead and
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real-time electricity markets. Equation (5.23b) ensures that the explicit virtual bidder sells (buys)
the same amount back in the real-time market that was bought (sold) in the day-ahead market.
Note that the amount of virtual trade in real-time v̂E is not indexed by scenario ω, since all virtual
bids need to be cleared in real-time irrespective of uncertainty realization. Market clearing prices
λE and λ̂E

ω are exogenous variables in the explicit virtual bidder’s optimization problem.

The KKT optimality conditions of the linear program (5.23) enforce day-ahead and real-time
prices to converge in expectation [51], i.e., λE = E[λ̂E

ω]. The day-ahead stage implicitly becomes
more aware of real-time uncertainty through prices. In this way, explicit virtual bidders improve
coordination between day-ahead and real-time trading floors.

Explicit virtual bidding is also introduced in the natural gas markets. Similarly to explicit virtual
bidding in electricity markets, the profit maximization problem of each explicit virtual bidder Q
participating in natural gas markets is given below for day-ahead and real-time distribution of
natural gas prices (λG and λ̂G

ω):

max
vG,v̂G

λG>
vG + E

[
λ̂G>

ω v̂G
]

(5.24a)

subject to vG + v̂G = 0, (5.24b)

where vG and v̂G denote the vectors of virtual trades in natural gas day-ahead and real-time
markets, respectively. Objective function (5.24a) maximizes the expected profit of the explicit
virtual bidder participating in the day-ahead and real-time natural gas markets and equation
(5.24b) balances the explicit virtual bidder’s day-ahead and real-time trade. In the same way (5.23)
enforces electricity prices to converge in expectation, the optimality conditions of (5.24) enforce
day-ahead and expected real-time prices of natural gas to be equal, i.e., λG = E[λ̂G

ω].

5.3.2 Implicit virtual bidding for sectoral and temporal coordination

Implicit virtual bidding blends virtual bids with physical bids [133, 188]. This method of arbitrage
is limited to market participants with physical assets or load. Market participants who own
physical assets can benefit from self-scheduling by solving a more detailed optimization with better
representation of uncertainty and technical constraints for a longer time horizon [51, 130, 189].
These self-scheduling units, who determine their actual production level outside the market, can
use existing physical assets to arbitrage prices and also perform (purely) financial transactions. The
terms “implicit virtual bidding” and “self-scheduling” are used interchangeably in the following.

Gas-fired generators who operate at the interface of power and natural gas markets may find it
profitable to forgo the market and dispatch their production themselves outside the market [190].
Since these units link the systems economically and physically, they have additional incentives to
self-schedule if they can better anticipate real-time cost and availability of fuel. Each gas-fired unit
decides her power dispatch and fuel consumption schedule to maximize her expected profit for
given day-ahead and expected real-time prices in power and gas markets. The profit maximization
problem of implicit virtual bidder G participating in electricity and natural gas markets is given
below:

max
xE,x̂E

ω

p(xE,λE,λG) + E
[
p(x̂E

ω, λ̂
E
ω, λ̂

G
ω)
]

(5.25a)

subject to gE(x̂E
ω,x

E) ≤ 0, ∀ω, (5.25b)
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Figure 5.5: Soft-coordination: Equilibrium problem with virtual bidding integrated in market
clearing.

where objective function (5.25a) maximizes the expected profit of self-scheduling gas-fired genera-
tors and simultaneously considering only real-time operation constraints (5.25b), so that gas-fired
units can participate in virtual trading as long as final real-time positions lie within their actual
operational limits.

5.4 Augmented market clearing with virtual bidders: An equilibrium model

5.4.1 Soft coordination

Figure 5.5 illustrates how virtual bidders, either explicit or implicit, are integrated into the separate
and sequential market setup. In the following, virtual bidders are assumed to perfectly anticipate
the distribution of real-time prices across scenarios in both sectors. Prices are treated as exogenous
values in the problems of virtual bidders, while market operators treat the dispatch decisions of
virtual bidders as fixed inputs into the market-clearing problems. Therefore, balance constraints in
power and gas day-ahead and real-time markets need to be updated to account for the amount
of virtual trade by explicit and implicit virtual traders as exogenous variables. In the electricity
markets, balance constraints in day-ahead and real-time are extended to include virtual trades as
hE(xE,vE) = 0 and hE(x̂E

ω, v̂
E) = 0, ∀ω. Gas markets account for virtual trades in day-ahead and

real-time with hG(xG,xE,vG) = 0 and hG(x̂G
ω, x̂

E
ω, v̂

G) = 0, ∀ω. Note that the dispatch decisions
of self-scheduling gas-fired generators are also treated as fixed parameters in all four equality
constraints. Thus, optimization problems (5.23)-(5.25) become interrelated with the models from
the no coordination approach Seq, resulting in stochastic equilibrium problems. These equilibrium
problems are summarized in Table 5.2 and provide simulation tools for exploring how much virtual
bidding can improve sectoral and temporal coordination. Due to virtual bidders solving stochastic
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Table 5.2: Equilibrium models for soft coordination.

Soft coordination Equilibrium

Temporal via explicit virtual bidders Seq+eVB (5.9), (5.16)∀ω, (5.23)
(5.13), (5.20)∀ω, (5.24)

Sectoral and temporal via implicit virtual bidders Seq+iVB (5.9), (5.13), (5.16)∀ω, (5.20)∀ω, (5.25)
Sectoral and temporal via all virtual bidders Seq+VB (5.9), (5.13), (5.16)∀ω, (5.20)∀ω, (5.23)-(5.25)

optimization problems, market clearing problems are solved simultaneously in the equilibrium
problem, but the sequentiality and independence of sectors and trading floors are maintained in
the models.

Soft temporal coordination via explicit virtual bidders

In order to improve temporal coordination explicit virtual bidding is included in both electricity
and natural gas markets such that two stochastic equilibrium problems are solved sequentially,
one per energy sector. First the equilibrium problem related to the electricity sector is solved
based on estimated natural gas prices and then the natural gas equilibrium is solved for given
day-ahead and real-time schedules of gas-fired power plants. Explicit virtual bidders increase
“real-time awareness” of the day-ahead stage in both electricity and natural gas markets by enforcing
day-ahead and real-time prices to be equal in expectation, but do not specifically create links
between the sectors.

Soft sectoral and temporal coordination via implicit virtual bidders

For improving sectoral coordination, natural gas-fired units are allowed to self-schedule outside
the markets as implicit virtual bidders for optimally allocating their flexibility in power and natural
gas markets. Allowing units at the interface of power and gas sectors, e.g., gas-fired units, to
submit virtual bids and maximize their expected profit participating in both sectors, links energy
sectors and trading floors. Including these gas-fired generators as self-schedulers in the model
links power and natural gas markets requiring a single stochastic equilibrium problem to be solved.

Soft sectoral and temporal coordination via explicit and implicit virtual bidders

Soft coordination with explicit and implicit virtual bidders is proven to provide the same solution
as full coordination in some cases. Under the conditions that inequality constraints in day-ahead
(gE(xE) ≤ 0 and gG(xG) ≤ 0) are non-binding, day-ahead and real-time prices converge in
expectation in the full coordination model (5.1). All gas-fired units acting as self-schedulers with
perfect price anticipation at the interface of power and gas markets lead to sector integration.
Under these conditions, the KKT optimality conditions of the stochastic two-stage optimization
problem Ideal and equilibrium problem Seq+VB are identical, see [Paper D]. Thus, the equilibrium
solution for Seq+VB may be identical to the outcomes of the fully integrated, stochastic energy
market.

5.4.2 Equilibrium analysis

Equilibrium problems Seq+eVB, Seq+iVB, and Seq+VB describe non-cooperative games with
dependent or joint strategy sets because some agents’ strategies affect not only the payoff functions
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but also the feasible set of others. The feasibility interactions arise from virtual bidders as stochastic
decision-makers participating simultaneously in the deterministic day-ahead and real-time setups,
such that one player’s decision variables appear in the constraint set of others. In the equilibrium
model depicted on the left-hand side of Figure 5.5, each player’s day-ahead schedule decisions
impact the same player’s real-time constraints. In the equivalent equilibrium on the right-hand
side of Figure 5.5, each virtual bidder’s decisions (i.e., virtual trades) appear in market operators’
balance constraints. Since the feasible sets of some players (players in real-time or market operators)
depend on other players’ decisions (players in day-ahead or virtual bidders), generalized Nash
equilibrium (GNE) problems emerge [191]. Mathematically, such a GNE problem is formulated
as a quasi-variational inequality (QVI) [46], which may admit multiple solutions that arise from
coupling constraints. Note that the coupling constraints are not shared among players, so that
a normalized Nash equilibrium [192] cannot be derived as a subset of the GNE and the QVI
cannot be reduced to a variational inequality [14]. All equilibrium models are recast as mixed-
complementarity problems (MCP) by concatenating the KKT optimality conditions of all players
[193]. No equivalent optimization problem can be derived [45, 46]. Following the argumentation
in [47], existence of solutions for GNE can be proven under mild assumption. Provided that each
agent’s feasible set is non-empty, convex and compact by assuming caps on market prices and
budget constraints for virtual bidders, there exists at least one solution to each equilibrium problem
Seq+eVB, Seq+iVB, and Seq+VB. However, there are potentially multiple solutions, since proving
uniqueness of solution for GNE is not straightforward [47, 56].

5.5 Numerical results: Virtual bidding as an effective tool for improving
coordination

The proposed levels of coordination are tested on a case study given in [Paper D] based on a power
system with six non gas-fired generators and four gas-fired generators connected to a natural
gas system with four gas suppliers over a 24-hour time horizon. The electricity market operator
uses the average gas supply cost as a deterministic and static estimation of natural gas prices λ̃G

and λ̃G
ω . The wind power penetration, i.e., total wind power capacity installed divided by the

total electricity demand, is 34%. The profiles of deterministic wind power day-ahead forecast
and expected real-time realization based on five equiprobable wind scenarios ω are illustrated
in Fig. 5.6. Due to potential forecast errors in day-ahead, the deterministic point forecast is not
necessarily identical to the expected wind power realization in real-time so that available wind
power production is underestimated during hours 1 to 6 and 19 to 23 and overestimated in hours 7
to 18.

5.5.1 Total system cost

Table 5.3 compares the total expected cost of electricity and natural gas systems for different
levels of coordination. As expected, the lack of coordination incurs the highest system cost. Full
coordination in model Ideal yields the lowest cost as the ideal benchmark with 7.06% cost reduction
compared to no coordination in Seq. System costs achieved in soft coordination setups Seq+eVB,
Seq+iVB and Seq+VB lie between the two extremes. Soft sectoral and temporal coordination via
virtual bidding provides partial coordination. Among these soft coordination approaches, Seq+VB
with both implicit and explicit virtual bidders yields the highest cost saving, which is 6.94%.
Opening the market to more players and bidding activity creates soft temporal and sectoral market
coordination.
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Figure 5.6: Wind power forecast in day-ahead (DA) and potential scenarios in real-time (RT): The
left-hand side plot shows the deterministic wind power forecast in DA and the expected value
of five wind power scenarios in RT. These five equiprobable scenarios in RT are depicted in the
right-hand side plot.

No Soft temporal Soft sectoral Soft sectoral Full
coordination coordination and temporal and temporal coordination

(Seq) via explicit coordination coordination (Ideal)
virtual bidders via implicit via explicit

(Seq+eVB) virtual bidders and implicit
(Seq+iVB) virtual bidders

(Seq+VB)

In-sample $1,464,369 -6.83% -6.37% -6.94% -7.06%

Out-of-sample $1,360,886 -4.49% -3.36% -4.29% -5.33%

Table 5.3: Total expected cost of the electricity and natural gas systems under different levels of
coordination. The percentages show the differences in the total expected system cost compared to
that cost in the fully uncoordinated sequential setup (first column).

5.5.2 Market-clearing prices

The increased cost efficiency indicates that soft coordination reveals available flexibility and
better allocates flexible resources. Better price signals are supposed to improve day-ahead
schedules. Improved day-ahead scheduling makes relatively more flexibility available. Since with
no coordination in Seq, day-ahead schedules are unaware of uncertainty in real-time operations and
sectoral interactions between power and gas systems, day-ahead and expected real-time market
prices can significantly differ, see Figure 5.7 (a). In Figure 5.7 (b) with full coordination, day-ahead
and expected real-time prices converge in both electricity and natural gas markets. Explicit virtual
bidders in Seq+eVB improve coordination between trading floors so that day-ahead price signals
better reflect the uncertainty inherent in real-time operations. This is shown in price convergence
in both power and gas markets in Figure 5.7 (c) illustrating stronger coordination between trading
floors via real-time awareness in the day-ahead stage through improved price signals. Implicit
virtual bidders improve sectoral and temporal coordination in Seq+iVB. Unlike explicit virtual
bidders, they do not enforce price convergence in expectation. However, as Figure 5.7 (d) shows,
price differences between day-ahead and expected real-time prices decrease compared to Seq
because of soft coordination via gas-fired self-scheduler with better foresight of natural gas and
real-time prices. Finally, soft coordination with both explicit and implicit virtual bidders in Seq+VB
leads to price convergence in Figure 5.7 (e).
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Figure 5.7: Hourly day-ahead (DA) and expected real-time (RT) market clearing prices obtained
for different levels of coordination: (a) No coordination, (b) full coordination, and (c)-(e) soft
coordination. Soft coordination approaches include (c) improved temporal coordination via explicit
virtual bidders and improved sectoral and temporal coordination via (d) implicit virtual bidders
and (e) explicit and implicit virtual bidders.

5.5.3 Imperfect knowledge of virtual bidders

An ex-post out-of-sample analysis is conducted in order to evaluate the performance of the
proposed coordination approaches against the assumption of perfect knowledge of virtual bidders.
For this purpose, the impact of unseen scenarios is tested for different degrees of coordination. A
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set of 100 new scenarios is generated from the same distribution as the original scenarios in Figure
5.6. After fixing the day-ahead schedules to those obtained for the in-sample simulations, real-time
electricity market model (5.16) and real-time gas market (5.20) are solved for each out-of-sample
scenario. Since out-of-sample cost decrease with financial instruments, the effectiveness of virtual
bidding to increase sectoral and temporal coordination and make day-ahead schedules more
efficient depends on the quality of information available to virtual bidders, but not necessarily on
perfect knowledge.





CHAPTER6
Conclusion and Perspectives

In this thesis, the main challenge of improving the coordination in multi-energy systems in response
to the ongoing shift towards renewable-based integrated energy systems was addressed. The
focus was directed at two main research questions regarding the coordination of electricity, natural
gas and heat systems. The first research question focused on quantifying the value of improving
coordination among energy sectors. Full coordination approaches, that centrally operate all energy
carriers, were proposed to reveal and exploit existing cross-carrier synergies in deterministic
and uncertainty-aware manners. The potential value of flexibility available from multi-energy
networks was shown, providing the basis to investigate new market-based tools to enhance the
utilization of the revealed synergies while respecting existing market structure. In this direction,
the second question aimed at strengthening the coordination of multi-energy systems from a
pure market perspective. A non-disruptive option adhering to the current market regulations
was introduced in the form of virtual bidders at the interface of sectors and trading floors. As
financial instruments, virtual bidders without physical assets perform arbitrage by anticipating
price differences between trading floors. Market players at the interface of sectors submit virtual
bids by self-scheduling their dispatch. Through comparison of different degrees of sectoral and
temporal coordination including no coordination, soft coordination, and full coordination, the
value and the effectiveness of financial instruments to contribute to coordination efforts was shown.
This chapter concludes with an overview of the contributions to coordinate electricity, natural gas
and heat systems and identifies challenges that should be addressed as future research.

6.1 Overview of contributions

The new concepts introduced in this thesis included both full and soft coordination of power,
natural gas and heat systems. In order to apply these new concepts, various optimization and
equilibrium models were proposed to investigate the coordination of energy infrastructures and
markets. The proposed full coordination approaches focused on accounting for energy storage in
gas and heat networks to mitigate variability and uncertainty in the power system. In order to
account for all potential flexibility, detailed information about natural gas and heat flow dynamics
and networks were incorporated in economic dispatch and scheduling tools. For that purpose,
co-optimization problems were developed using advanced optimization models and probabilistic
methods. These models accounted for energy flow dynamics and virtual electricity storage of
multi-energy networks. A holistic model of fully coordinated power, gas, and heat systems
accounting for gas and district heating grids was proposed and efficiently solved. The impact
of linepack and flow directions as additional degrees of freedom to provide flexibility from gas
networks to power systems was investigated. Furthermore, the characterization of uncertainty
was embedded to investigate the ability of natural gas systems to provide short-term flexibility to
power systems, highlighting the propagation of uncertainty between energy sectors.
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Policy-based recourse actions were extended to include flexible assets from the gas system for
mitigation of uncertainty. As new reserve products they were shown to bring linepack flexibility
from the gas side to the day-ahead power scheduling stage. These perfectly coordinated setups
enabled to properly account for potential synergies and available flexibility among the energy
systems.

Combined dispatch models were proposed for coordinated scheduling of power, gas and heat
systems. Based on a centrally operated energy system, these models accounted for cross-carrier
interactions and synergies as well as potential network flexibility from gas and heat storage in
pipelines. Full coordination of electricity, heat and natural gas systems was represented in a
combined energy dispatch model that served as a deterministic benchmark. Energy flow dynamics
were incorporated based on convexification techniques accounting for delay of heat propagation
and linepack in pipelines. Second-order cone relaxation, McCormick envelopes and linearization
methods were applied to efficiently account for gas and heat network storage effects. Thus,
the combined multi-energy dispatch could be formulated as a mixed-integer second-order cone
program (MISOCP). The value of energy flow dynamics was quantified when accounting for inlet
temperatures, mass flow rates and linepack as controllable variables. This facilitated shifting
demand and supply in all energy systems in a cost efficient manner. Focusing on linepack flexibility
from the natural gas network for the power system, a deterministic combined power and gas
dispatch model was proposed that accounted for bi-directional gas flow and linepack. A novel
convexification method using quadratic relaxation, McCormick relaxation and the Big-M method
was compared to an outer linear approximation technique from the literature. The resulting
combined power and gas dispatch models formulated as MISOCP and mixed-integer linear
program showed a trade-off between computational efficiency and accuracy of the two approaches.

In order to investigate the impact of uncertainty in coordinated energy systems, probabilistic
modeling was included in the combined energy dispatch. In particular, the propagation of wind
power forecast uncertainty from the power system to the gas sector was investigated. For that
purpose, a tractable reformulation of the distributionally robust chance-constrained power and
gas co-optimization was developed that accounted for flexibility procurement from flexible assets
in power and gas systems as well as at the interface of the sectors. The chance-constrained power
flow model was extended to include the natural gas system controlling gas supply, flow, and
linepack. Moment-based ambiguity sets were defined to represent short-term uncertainty arising
from wind power forecast errors without perfect knowledge of its probability distribution. This
uncertainty in real-time operations was anticipated in day-ahead scheduling by defining affine
policies for flexibility providers. These affine policies, which were based on linear decision rules
act as reserve products modeling the coordinated response of market participants to deviations in
energy systems. Day-ahead scheduling and dispatch decisions were adjusted via participation
factors that define each agent’s reaction to deviations in real-time. A tractable reformulation
of the distributionally robust chance-constrained power and gas co-optimization was given as
a second-order cone program. Numerical results showed propagation of wind power forecast
uncertainty to the gas system and the effectiveness of affine policies to activate flexible assets in the
gas system to help mitigate this effect. Total system cost and violation probabilities of operational
limits depended on confidence levels chosen by the central system operator. Therefore, a trade-off

between economic objectives and risk aversion was explored.

Since the full coordination approaches do not align with current regulations and practices
of operating energy systems separately and sequentially, a novel market-based coordination
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mechanism was developed and investigated. Specifically, virtual bidders as financial instruments
and market agents were introduced in both electricity and natural gas markets to enhance the
coordination between sectors and trading floors. This soft coordination approach was designed
to harness the value of flexible multi-energy resources and synergies between energy carriers
while respecting the sequential order of energy markets. The efficiency of this soft coordination
mechanism was evaluated against the ideal benchmark of full coordination. Virtual bidders,
who take advantage of price differences between trading floors by performing arbitrage in two-
settlement markets, were shown to improve the efficiency of markets and bring value to the overall
energy system by facilitating smart scheduling decisions for flexible assets in the day-ahead stage.

Equilibrium models were proposed as market simulation tools. These multi-period mixed-
complementarity programs were based on deterministic and scenario-based stochastic program-
ming. A full coordination model as stochastic market clearing was used as an ideal benchmark to
evaluate the proposed coordination mechanisms against the uncoordinated setup with separate and
sequential clearing of markets. While electricity and gas market operators optimized total system
cost based on deterministic information, virtual bidders solved two-stage stochastic programs to
maximize their expected profit by optimizing their bidding in day-ahead and real-time markets
simultaneously. Similarly, self-scheduling gas-fired units optimized their expected profit when par-
ticipating in electricity and natural gas day-ahead markets anticipating real-time adjustments. This
non-cooperative game with coupled strategy sets resulted in a generalized Nash equilibrium with
potentially multiple solutions. Explicit and implicit virtual bidders at the interface of power and
gas sectors and trading floors were shown both analytically and numerically to help approximate
the ideal stochastic integrated energy market while preserving the current sequential and separated
market setup. It was shown that virtual bidding in interdependent energy markets helped unlock
and exploit the existing sources of cross-carrier flexibility within the current regulatory framework.

6.2 Perspectives for future research

Overall, the work in this thesis motivates more coordination among energy systems either through
disruptive restructuring and alignment of energy markets or in a less-disruptive way via financial
instruments. This thesis has addressed a number of challenges related to integrated energy
systems. While the proposed coordination approaches for power, gas and heat systems are not
comprehensive, this work has opened up several directions for future research. Future research
directions should also account for interactions and synergies with other energy vectors, e.g.,
cooling, hydrogen, transportation and water. The proposed frameworks can be adapted to improve
coordination of coupled network infrastructures beyond power, gas and heat systems. Different
aspects to be addressed in the future range from the technical level to systems, markets, and
regulatory implications in the context of accommodating even larger shares of renewable energy
sources system-wide. Hereby, some other interesting and challenging ideas are outlined from
technical, computational and economic perspectives.

The tightness of relaxation techniques used in the mathematical models introduced in this thesis
needs to be further investigated. In particular, quadratic relaxations can be tightened by adding
planes approximating the dropped non-convex constraints. Since the quality of McCormick
envelopes depends on the choice of upper and lower bounds of each variable, iteratively deriving
tighter bounds for each variable could further improve the tightness of the relaxation. Incorporating
multi-energy technologies, e.g., power-to-gas units, gas-fueled combined heat and power plants,
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and power-fueled compressors or water pumps, is expected to strengthen the coupling between
energy sectors and bidirectional interactions. The proposed combined energy dispatch models
highlighted the need for more accurate representation of energy networks in a market environment.
Advanced non-convex mathematical models accurately representing the (alternating current) AC
power flow as well as the underlying physics of energy networks including partial differential
equations and non-convex constraints may become critical for real-time operations.

With increasing complexity of mathematical models, full coordination approaches can be solved in
a distributed manner. Distributed optimization techniques provide not only computational benefits
but also opportunities for the design of market schemes. In order to integrate comprehensive
energy flow models in a market environment while preserving the current setup, decentralized
optimization tools based on Lagrangian relaxation and consensus-based alternating direction
method of multipliers (ADMM) can simulate appropriate market-clearing procedures limiting
the information exchange among the systems. Similarly, equilibrium problems can be solved as
iterative Walrasian auction using distributed optimization, e.g., ADMM-based algorithms. Such
approaches may lead to finding potentially multiple solutions for generalized Nash equilibrium
problems.

The accurate representation of energy flows in a market context, particularly spatial and temporal
dimensions of network storage, requires extending products, bidding and pricing methods to deal
with added complexity and non-convexities. Given different maturity levels of energy markets
with limited efficiency, mechanisms similar to financial transmission and storage rights in the
power system could be defined for heat and gas markets to hedge prices in space and time, creating
financial incentives to fully exploit temporal and spatial dimension of flexibility from multi-energy
assets and energy storage in networks. Generalized policies can be introduced to reflect the
non-linearity and complexity of reserves provided by multi-energy assets to fully capture flexibility
of diverse assets.

It will be interesting to consider energy arbitragers with different information and risk attitudes
and how strategic behaviour in multi-commodity trading affects market outcomes. In particular,
financial implications of risk attitudes and risk-aware coordination mechanisms should be studied
with a focus on incentivizing risk-aware solution in interconnected energy systems.

The study of uncertainty propagation among energy systems and markets can be extended to
account for additional sources of uncertainty and bidirectional migration of uncertainty between
systems. Metric-based ambiguity sets could be used without any assumptions regarding parametric
family of the true distribution. Joint chance constraints that can handle multiple constraints
simultaneously, would allow to define a joint violation probability achieving integrated scheduling
with probabilistic and robust safety guarantees. This is important for system operators, since
system-wide risk parameters for the overall system security can be established leading to a rigorous
study of systemic risk due to interactions and coupling of energy systems. To strengthen resilience
and reliability of integrated energy systems, uncertainty and risk should be revealed, accounted
for and properly controlled. Market-based control mechanisms to manage the propagation of
uncertainty in interdependent energy systems are needed and the value of assets not only for
providing flexibility but also resilience to the overall energy system should be quantified. While
energy sector coordination provides flexibility and supports the accommodation of renewable
energy, it becomes crucial to ensure awareness and management of uncertainty propagation due
to sector coupling so that the security of supply is guaranteed in integrated energy systems.
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Abstract—Existing energy networks can foster the integration
of uncertain and variable renewable energy sources by providing
additional operational flexibility. In this direction, we propose a
combined power, heat, and natural gas dispatch model to reveal
the maximum potential “network flexibility”, corresponding to
the ability of natural gas and district heating pipelines to store
energy. To account for both energy transport and linepack in
the pipelines in a computational efficient manner, we explore
convex quadratic relaxations of the nonconvex flow dynamics of
gas and heat. The resulting model is a mixed-integer second-
order cone program. An ex-post analysis ensures feasibility of
the heat dispatch, while keeping the relaxation of the gas flow
model sufficiently tight. The revealed flexibility is quantified in
terms of system cost compared to a dispatch model neglecting
the ability of natural gas and district heating networks to store
energy.

Index Terms—Combined power-heat-gas dispatch, Convex
relaxation, Ex-post feasibility analysis, Multi-energy systems,
Second-order cone program.

I. INTRODUCTION

Operational flexibility is required to deal with the un-
certainty and variability of growing renewable power gen-
eration. Flexibility for power systems is often provided by
units interfacing other energy sectors, e.g., gas-fired units,
combined heat and power (CHP) plants, and heat pumps.
These units link the power system with the natural gas and
district heating systems, both physically and economically.
The gas-fired units usually provide flexibility thanks to their
fast-start and ramping capabilities [1]. Similarly, the CHP
units can provide flexibility [2], especially extraction CHPs,
as they are able to vary their heat to power ratio. Besides,
the heat pumps producing heat from electricity can act as
power demand side flexibility. The key point is that a strong
coordination between power, heat, and natural gas systems is
needed to efficiently utilize those existing sources of flexibility.
Unlike the power system, in which supply and demand have
to be matched instantaneously, there is potential to use the
district heating and natural gas networks as energy storage.

The work was supported by the Danish EUD Programme through the
‘Coordinated Operation of Integrated Energy Systems (CORE)’ project under
the grant 64017-0005. We thank Lesia Mitridati for her thoughtful discussions
and inputs for the heat system model.

The district heating and natural gas networks have the ability
to store energy in pipelines in the form of time delays of heat
propagation and natural gas linepack. This flexibility, the so-
called “network flexibility”, is provided through the dynamics
of energy flow in pipelines, serving as energy storage (known
as “virtual storage”). Accounting for these network dynamics
can unlock an additional source of flexibility. The existing
energy infrastructure in countries with multi-carrier systems,
e.g., Denmark, can help mitigate the uncertainty and variability
induced by large-scale renewable power penetration.

It is in general a complex task to holistically model the
interdependent multi-energy systems while incorporating the
energy flow dynamics of each specific energy network. Al-
though there is an extensive literature on integrated energy
systems, the majority of previous works either focused on two
out of the three (i.e., power, natural gas, and heat) systems, or
discarded the network flexibility in heat and natural gas sides,
or provided generalized aggregate models, called “energy
hubs”. With a focus on network flexibility, we first review
the existing works addressing the coordination of power and
gas systems, then power and heat systems, and finally energy
hubs.

The available works in the literature addressing integrated
power and natural gas systems model the gas flow dynamics
either through partial differential equations [3] or using a
reduced version, resulting in a set of nonlinear and nonconvex
steady-state equations [4]. These steady-state equations are
still complex and cause computational challenges. Therefore,
linear approximations [5], [6] or quadratic relaxation [7], [8]
are used to manage the complexity of the natural gas flow
dynamics, while accounting for the linepack.

In a similar direction, integrated power and heat dispatch
models are introduced in [9], [10], [11], [12], [13]. A proper
framework for modeling temperature dynamics in pipelines,
time delay of heat transmission, variable supply temperature,
and variable mass flow rates will enable exploiting the flexibil-
ity from district heating networks. While [9] and [10] consider
a constant mass flow rate in pipelines, the heat dispatch models
in [11], [12], [13] account for both mass flow rates and inlet
temperatures as “control variables”, allowing for more degrees
of freedom.

The last strand that we explore in the literature is about
energy hubs. The concept of energy hubs as a generic ag-



Fig. 1. Interdependent power, natural gas, heat systems.

gregate framework for modeling and optimization of multi-
energy systems was firstly proposed in [14]. An energy hub is
a unified unit where multiple energy carriers can be converted,
conditioned, and stored. However, this generic model fails
in accounting for the specific flow dynamics of the energy
carriers.

To the best of our knowledge, this is the first work
that optimizes the combined dispatch problem for the three
energy systems together, accounting for their network and
flow dynamics, while dealing with arising nonconvexities.
We propose a combined power-heat-gas dispatch that models
the interactions of the three energy carriers as well as the
network flexibility. As an ideal benchmark, this combined
energy dispatch assesses the maximum potential of flexibility
that the natural gas and district heating networks can provide
for renewable-based power systems. This revealed flexibility is
quantified in terms of the reduced operational cost of the entire
system compared to a dispatch model neglecting the ability
of natural gas and district heating networks to store energy.
Since the dynamics of heat and natural gas flow introduce
nonconvexities, we explore convex quadratic relaxations of
the energy flow model in gas [8], [15] and heat [11] systems,
including the gas linepack, variable heat temperature and heat
mass flow rates as the three degrees of freedom. We recast
the original non-convex model as a mixed-integer second-
order cone program (MISOCP), and eventually explore the
feasibility of solutions achieved.

II. INTERACTIONS OF POWER, NATURAL GAS, AND HEAT
SYSTEMS

Fig. 1 illustrates the interactions among power, heat, and
natural gas systems considered in this paper. The dependency
of heat and electricity outputs by CHPs and heat pumps
induces strong interdependencies between the heat and elec-
tricity systems. The heat pumps produce heat from electricity
providing electricity demand side flexibility through power-
to-heat (P2H). The CHPs produce both electricity and heat
from the combustion of a fuel, e.g., biomass or fossil fuels.

These synergies physically link the power and heat systems.
On the market perspective, the electricity and heat prices are
related and determine the profitability and dispatch decision
of CHPs and heat pumps. The cost of heat produced by
heat pumps depends on electricity prices while the CHP units
need to decide both power and heat dispatch with respect to
opportunity cost.

The gas-fired power plants are usually flexible units that
operate at the interface of the power and the natural gas sys-
tems, yielding both physical and economic interactions. The
gas-fired generators produce electricity from the combustion of
natural gas. This conversion is characterized by a conversion
factor that accounts for the energy losses. The power output
of gas-fired units is directly linked to their fuel consumption.
An intermittent dispatch of gas-fired units in the power system
and thus gas withdrawal from the gas network brings demand
fluctuations and uncertainty into the gas system. Economically,
the price of natural gas at which gas-fired units acquire fuel
impacts the marginal power production cost of these units, and
thus the merit-order in the electricity system.

In addition, there is potential of storing energy in the natural
gas and district heating pipelines, which are expected to be
even more increased through power-to-gas (P2G) and P2H
technologies [16]. This additional source of flexibility from
existing infrastructure is explored in the next section.

III. INTEGRATED MULTI-ENERGY DISPATCH

This section develops an integrated multi-energy dispatch
model, co-optimizing the operation of electricity, heat, and
natural gas systems.

A. Assumptions

The integrated energy systems assume either a single system
operator or a perfect information exchange and timing among
the systems. However, in most countries the energy systems
are operated independently and sequentially [17]. See [3], [18]
and [19] for different levels of coordination among energy sec-
tors. The focus of this paper is set on modeling the flexibility
provided by the heat and natural gas networks in an efficient
manner. Thus, we aim at accurately modeling the heat and
gas flow problems and put less attention to the power side by
using a simplified lossless DC power flow model. We assume
isothermal energy flow in horizontal heat and gas pipelines.
We also consider parallel supply and return pipelines for the
heating network with both mass flow rates and temperatures
as control variables to account for the energy storage capacity
in heat pipelines. The natural gas flow is represented by its
steady-state gas flow equation. The dynamics in gas pipelines
are approximated by accounting for linepack through varying
in- and outflows. Compressor stations and water pumps are
modeled with a constant factor, while neglecting their fuel
and power consumption.

B. Objective Function

The co-optimization problem aims at minimizing the total
cost of operating power, heat, and natural gas systems over



time steps t in the planning horizon T . Accordingly, the
objective function reads as

min
Θ

∑

t∈T

(∑

i∈C
CE
i pi,t +
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k∈K
CG
k gk,t +
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i Qi,t

+
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i Qi,t)
)
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where the set of decision variables is Θ = {pi,t, wj,t, θn,t,
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o,v,η,t}. The first term of

(1a) represents the operating cost of non-gas fired units i ∈ C
given marginal cost parameters CE

i and power production pi,t.
The second term corresponds to the cost of gas suppliers
k ∈ K with marginal gas supply cost parameters CG

i and
gas supply gk,t. The third term refers to the operating cost
of heat boilers i ∈ HS given marginal cost parameters CH

i

and heat production Qi,t. The last term models the operating
cost of CHPs i ∈ CHP as a linear function of marginal cost
Ci, electricity and heat fuel efficiency ρE

i and ρH
i , and the

respective power and heat production level.
The objective function (1a) is subject to power constraints

(2), heat constraints (3), natural gas constraints (4), as well
as constraints (5) which couple the three systems. All these
constraints are described in the following.

C. Power System Constraints

The power system constraints taking into account a lossless
DC power flow model are

0 ≤ pi,t ≤ pi,∀i, t, (2a)
0 ≤ wj,t ≤ wj,t,∀j, t, (2b)
fn,r,t = Bn,r(θn,t − θr,t),∀(n, r) ∈ L, t, (2c)

− fn,r ≤ fn,r,t ≤ fn,r,∀(n, r) ∈ L, t, (2d)

− π ≤ θn,t ≤ π,∀n, t, θn,t = 0,∀n : ref, t, (2e)

where parameters pi and wj,t in (2a) and (2b) restrict the
power production pi,t and wj,t of conventional generators i ∈
I and renewable generators j ∈ J , respectively. Constraints
(2c) define the power flow fn,r,t along transmission line (n, r)
by line susceptance Bn,r and voltage angles θn,t at adjacent
nodes n and r. The power flow is restricted to transmission line
limits fn,r by (2d). Constraints (2e) limit the voltage angles,
and set the voltage angle to zero at the reference node.

D. Heat System Constraints

Following [11], the heat dispatch model considers both
mass flow rates and inlet temperatures as control variables,
accounting for temperature dynamics and time delays as

DH
o,t = c mfHES

o,t (T S
o,t − TR

o,t),∀o, t, (3a)

Qi,t = c mfHS
i,t (T S

o,t − TR
o,t),∀o, i ∈ AHS

o , t, (3b)

0 ≤ Qi,t ≤ Qi,∀i ∈ HS, t, (3c)

prHES
o
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o,t − prR
o,t,∀o, t, (3d)

mfHES
o
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o ,∀o, t, (3e)
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i ,∀i ∈ HS, t, (3f)
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mfS
o,v,η̃

πR2
o,vρ
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τS
o,v,t =

τS
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η=1

η(uS
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τR
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η(uR
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In (3a), the inelastic heat demand DH
o,t in each district heating

node o is related to the specific heat capacity of water c,
heat exchanger mass flows mfHES

o,t and temperatures at node
o of both supply T S

o,t and return network TR
o,t. Constraints

(3b) relate heat production Qi,t, which is limited by its
capacity Qi in (3c), to heat station mass flows mfHS

i,t and
temperature gradients between supply and return networks at
heat stations i ∈ AHS

o located at node o. The minimum pressure
gradient prHES

o
between the pressures prS

o,t and prR
o,t between

supply and return network at heat exchanger station node o
is enforced by (3d). The mass flows are restricted in (3e)-
(3h) at heat exchange stations by lower bound mfHES

o
and

upper bound mf
HES
o , at heat stations i ∈ HS by mfHS

i
and

mf
HS
i , and supply and return pipelines (o, v) ∈ P by mfS/R

o,v

and mf
S/R
o,v , respectively. Constraints (3i) and (3j) balance

mass flow for supply and return network nodes. The Darcy-
Weisbach equations (3k) and (3l) relate pressure losses due
to friction inside the supply and return pipelines to mass flow



Fig. 2. Heat flow in parallel supply and return pipeline (time index t is
dropped for notational clarity).

rates via pressure loss coefficient Lo,v . Constraints (3m) and
(3n) put upper and lower bounds on nodal pressure (prS/R

o
,

prS/R
o , ) and temperature (T S/R

o , T
S/R
o ) in both supply and return

networks. Pursuing further clarity, the concept of heat flows
in these parallel pipelines is shown in Fig. 2.

The temperature at the entrance of the pipe T S/R,in
o,v,t is defined

in (3o). Temperature mixing is given by outlet temperatures
T S/R,out
o,v,t in (3p). The heat losses are approximated using first-

order Taylor series expansion of the heat propagation equations
(3q) and (3r) for supply and return pipelines, respectively. The
water temperatures at the outlet of a pipe T S/R,out

o,v,t corresponds
to past temperatures at the inlet T S/R,in

o,v,(t−τ) at previous time
t− τ minus heat losses in the pipe. These losses are given by
thermal loss coefficient µo,v , specific water capacity c, water
density ρ and the radius of the pipe Ro,v . We introduce auxil-
iary binary variables uS/R

o,v,η,t ∈ {0, 1} and the sufficiently large
positive constant M to help define the varying time delays
τS/R
o,v,t. The delay of heat propagation depends on the mass

flow rate at each time step and for each pipe and the length
of the pipe and is defined by (3s) and (3t). Finally, (3u) and
(3v) ensure the minimum delay with the maximum time delay
parameters τS/R

o,v , depending on the physical characteristics of
the pipelines.

E. Natural Gas System Constraints

Similar to the models in [7] and [8], we dispatch the
natural gas system using a steady-state natural gas flow model
accounting for linepack in the pipelines. The constraints are

0 ≤ gk,t ≤ gk,∀k, t, (4a)
pr
m
≤ prm,t ≤ prm,∀m, t, (4b)

pru,t ≤ Γm,u prm,t,∀(m,u) ∈ Z, t, (4c)

qm,u,t = Km,u

√
pr2
m,t − pr2

u,t,∀(m,u) ∈ Z, t, (4d)

qm,u,t =
qin
m,u,t + qout

m,u,t

2
,∀(m,u) ∈ Z, t, (4e)

hm,u,t = Sm,u
prm,t + pru,t

2
,∀(m,u) ∈ Z, t, (4f)

hm,u,t = hm,u,(t−1) + qin
m,u,t − qout

m,u,t,∀(m,u) ∈ Z, t > 1, (4g)

hm,u,t = H0
m,u + qin

m,u,t − qout
m,u,t,∀(m,u) ∈ Z, t = 1, (4h)

H0
m,u ≤ hm,u,t,∀(m,u) ∈ Z, t = |T |, (4i)

Fig. 3. Natural gas flow along a pipeline (time index t is removed).

where (4a) enforces the capacity gk for gas supply gk,t,
whereas (4b) imposes the upper and lower limits pr

m
and

prm for pressure prm,t at each gas node m. Constraints
(4c) provide a linearized representation of compressor stations
along pipeline (m,u) ∈ Z with fixed compression ratio Γm,u.
The non-negative natural gas flow qm,u,t ≥ 0 from node
m to u is defined by the Weymouth equation (4d). This
equation relates the flow along a pipeline to the difference
of squared pressures at beginning node m and ending node
u of the pipeline and Weymouth constant Km,u. We define
this natural gas flow along a pipe as the average of inflows
qin
m,u,t into a pipeline and outflows qout

m,u,t out of each pipeline
in (4e), see Fig. 3. Constraints (4f) define linepack hm,u,t as a
function of pressures at both ends of the pipeline and pipeline
characteristics Sm,u. Constraints (4g) balance in- and outflows
with linepack storage in pipelines. Initial linepack H0

m,u at
the beginning of the planning horizon and minimum linepack
level in the final time period of the optimization horizon are
ensured by (4h) and (4i) to avoid depletion of natural gas in
the network.

F. Coupling Constraints

The units at the interface, i.e., CHPs, heat pumps, and
gas-fired generators, link the three systems, see Fig. 1. The
following coupling constraints describe the interdependencies
among the energy carriers and how the units at the interfaces
link the systems linearly:
∑

k∈AK
m

gk,t −
∑

i∈AG
m

φi pi,t −
∑

u:(m,u)∈Z
(qin
m,u,t − qout

u,m,t) = DG
m,t,∀m, t, (5a)

riQi,t ≤ pi,t,∀i ∈ CHP, t, (5b)

0 ≤ ρE
i pi,t + ρH

i Qi,t ≤ pi,∀i ∈ CHP, t, (5c)

Qi,t = COPiD
HP
i,t ,∀i ∈ HP, t, (5d)

∑

i∈AI
n

pi,t +
∑

j∈AJ
n

wj,t −
∑

r:(n,r)∈L
fn,r,t = DE

n,t +
∑

i∈AHP
n

DHP
i,t ,∀n, t. (5e)

Constraints (5a) balance gas injection and inelastic demand
DG
m,t of unitsA(.)

m located at node m with in- and outflow from
and to adjacent nodes u of the natural gas network. The fuel
consumption of natural gas-fired generators is translated into
a nodal, time-varying gas demand φi pi,t via fuel conversion
factor φi. Constraints (5b) and (5c) define the joint feasible
operating region of an extraction CHP. The heat and electricity
outputs Qi,t and pi,t of each CHP are linked through output
ratio ri in (5b). The total capacity limits of CHP units are
enforced by (5c). Constraints (5d) translate the heat produc-
tion of heat pumps Qi,t to power consumption DHP

i,t by the
coefficient of performance COPi. Nodal power balance (5e)
matches the inelastic electricity demand DE

n,t and electricity
consumption by heat pumps DHP

i,t with the power generation



from conventional, gas-fired, CHP and renewable units A(.)
n

located at node n accounting for power flows along adjacent
power transmission lines.

The resulting model (1)-(5) is a mixed-integer non-linear
program (MINLP). It is a challenging problem to deal with, as
there is no off-the-shelf solver available for a MINLP problem.
In the next section, while keeping the binary variables, we
convexify the nonlinearities arising from heat and gas flow
models. This will eventually result in a MISOCP.

IV. CONVEXIFICATION

The non-convexities of MINLP model (1)-(5) arise from
quadratic equality constraints (3k), (3l), and (4d), as well as
bilinear terms in (3a), (3b), (3q), and (3r). We first apply
quadratic relaxations that allow for modeling both natural
gas flow and heat mass flow related to pressure drops. Then,
bilinear terms are convexified using a linearization technique
[11] and McCormick relaxations [20].

A. Quadratic Relaxation

The steady-state gas flow equation (4d) can be made convex
using a second-order cone (SOC) relaxation. We first reformu-
late (4d) as

q2
m,u,t ≤ K2

m,u(pr2
m,t − pr2

u,t),∀(m,u) ∈ Z, t, (6a)

q2
m,u,t ≥ K2

m,u(pr2
m,t − pr2

u,t),∀(m,u) ∈ Z, t, (6b)

and then drop (6b). Now, (6a) is a SOC constraint, see left
plot in Fig. 4. Reference [21] proves the SOC relaxation to
be exact under several conditions. The pressure loss equations
(3k) and (3l) can be convexified in a similar manner. After
reformulating them as

Lo,v(mf
S/R
o,v,t)

2 ≤ prS/R
v,t − prS/R

o,t ,∀(o, v) ∈ P, t, (7a)

Lo,v(mf
S/R
o,v,t)

2 ≥ prS/R
v,t − prS/R

o,t ,∀(o, v) ∈ P, t, (7b)

and dropping (7b), the remaining (7a) are SOC constraints, as
shown in the middle plot of Fig. 4.

B. Linearization and Relaxation of Bilinear Terms

1) Linearization: The heat propagation equations (3q)
and (3r) are non-convex due to the bilinear terms
T S/R,in
o,v,(t−τS/R

o,v,t)
τS/R
o,v,t and the use of varying time delays τS/R

o,v,t

as indices. We follow the approach in [11] to linearize these
constraints in an exact way using auxiliary binary variables
vS/R
o,v,η,t ∈ {0, 1} as well as a sufficiently large positive constant
M . Pursuing linearity of (3q), we include the following
constraints:

−M vS
o,v,η,t ≤ T̃ S,in

o,v,η,t ≤M vS
o,v,η,t,

∀(o, v) ∈ P, η ∈ {0, ..., τS
o,v}, t, (8a)

M(vS
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η
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M(vS
o,v,η,t − 1) ≤ η − τS

o,v,t ≤M(1− vS
o,v,η,t),

∀(o, v) ∈ P, η ∈ {0, ..., τS
o,v}, t, (8c)

τS∑

η=0

vS
o,v,η,t = 1,∀(o, v) ∈ P, t, (8d)

T S,out
o,v,t =

τS
o,v∑

η=0

T̃ S,in
o,v,η,t,∀(o, v) ∈ P, t. (8e)

Note that (3r) can be reformulated in the same manner.
2) McCormick Relaxation: Pursuing convexity, bilinear

terms mf(T S − TR) in (3a) and (3b) are linearized using
McCormick envelopes [20], illustrated in the right plot of Fig.
4. We can now solve (1)-(3p), (3s)-(4c), (4e)-(5), (6a), (7a),
(8) as a MISOCP.

V. CASE STUDY

A. Input Data

We apply the proposed combined power-heat-gas dispatch
(1)-(5) with convexified formulation from Section IV on an
integrated energy model based on the IEEE 24-bus reliability
test system [22], coupled with a 12-node gas network [5] and a
3-node district heating network [11] over a 24-hour scheduling
horizon. This integrated energy system is depicted in Fig. 5.
All input data can be found in the online appendix [23]. A
wind farm, whose power output realization is given in Fig.
6, five non-gas-fired units, six gas-fired units and a biomass-
fueled CHP unit are available to supply electricity load. The
CHP unit and a heat pump cover the heat demand, while gas
fuel is provided by three gas suppliers. The electricity, heat
and natural gas loads are shown in Fig. 6.

The optimization problem is solved on an Intel core i5
computer clocking at 2.3 GHz, using Gurobi solver 8.0 with
Python, allowing the instance to reach an optimality gap of
0.02% in less than one second.

B. Numerical Results

We first provide the results obtained for the total operational
cost of the integrated energy system, i.e., the optimal value of
objective function (1a). This cost is achieved under varying
levels of wind power penetration, which is defined as the
ratio of total wind power capacity to maximum electricity
demand. Fig. 7 shows decreasing operational cost of the
integrated energy system for increasing levels of wind power
penetration. We compare these results to a dispatch that does
not account for network flexibility. We replace gas linepack
constraints (4f)-(4i) by qin

m,u,t = qout
m,u,t,∀(m,u) ∈ Z, t,

balancing in- and outflow of gas pipelines neglecting the
linepack. The flexibility from the heating network given in
constraints (3) is omitted by dispatching heat according to
heat production capacity limits (3c) and system-wide heat
balance

∑
i∈HES D

H
i,t =

∑
i∈HS Qi,t,∀t. Accounting for flow

dynamics and storage in gas and heat pipelines decreases the
total system cost by 2% on average compared with the case
neglecting network flexibility.

Fig. 8 shows the total amount of natural gas and heat
supplied and consumed for the entire 24-hour horizon. When
modeling linepack, consumption and supply of natural gas
and heat do not necessarily need to be matched in each time
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period. The amount of energy stored in the pipelines (which
is highlighted in shaded zones in Fig. 8) directly impacts the
profiles of natural gas and heat supply. When the wind power
generation is high in the beginning hours of the time horizon,
heat is produced by heat pumps and stored in the district
heating system in the first seven hours. Simultaneously, natural
gas is accumulated within pipelines until hour 11. During a
period of low output from wind power and high power and heat
demand in hours 19-23, the linepack stored in gas pipelines is
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Fig. 7. Total operational cost of the entire integrated energy system in cases
with and without considering network flexibility as a function of wind power
penetration, i.e., the total wind power capacity divided by the maximum power
demand.

used to fuel electricity production and heat that was previously
stored in the district heating network is consumed.

The flexibility provided by energy storage in the networks
allows not only to decouple gas supply from consumption
and heat production from demand, but also shifting electricity
production and consumption. Network flexibility improves uti-
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lization of power production from variable renewable sources.
This is evident in reduced wind curtailment over the planning
horizon. As shown in Fig. 9, the wind curtailment is reduced
by 1.2% on average when accounting for energy storage in
networks.

C. Feasibility Verification

Relaxing the original MINLP into a MISOCP enables us to
efficiently find an optimal solution. However, this solution is
based on relaxations of the original constraints, and therefore,
the original constraints might not be hold. Thus, an ex-post
evaluation of the results obtained from the MISOCP with
respect to the original set of constraints is required.

First, we check the feasibility of results for the heat system.
We fix all mass flow rates and binary variables to the optimal
value obtained from the MISCOP. We then solve the original
set of constraints resulting in a linear set of equations to obtain
new values for pressures and temperatures at heat nodes. To
solve the resulting system of equations, we adjust the nodal
temperature bounds, which results in about 1% increase of the
temperature interval. We recover a feasible solution for the
real equations of the heat network under this slight parametric
change.
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Fig. 10. Matrix plot of the relative error between right-hand and left-hand
sides of relaxed Weymouth equations (6a) for each time step (x-axis) and
each pipeline (y-axis).

Then, we check the feasibility of solution achieved for
the natural gas system. We compute the normalized root
mean square error (NRMSE), where the error is defined as
the difference between the left-hand and right-hand sides of
the relaxed Weymouth equations (6a) for all time steps and
pipelines. The average NRMSE for the different wind power
penetrations is 1.84%. We observe that there is no mismatch in
most pipelines and time steps, but it reaches 100% in pipelines
3, 7 and 8 during particular periods, see Fig. 10. Note that the
pipelines in the network loop are prone to mismatch. Since the
occurrence rate of error is low, the relaxation seems sufficiently
tight.

VI. CONCLUSION

We introduced an integrated power-heat-gas dispatch ac-
counting for the interactions of the three energy carriers and
flow dynamics in an efficient manner using convex relaxations.
This ideal benchmark showed the maximum potential of
flexibility provided by the existing natural gas and heating in-
frastructure. We quantified the social value in terms of reduced
total system cost that short-term operational flexibility from
energy storage in district heating and natural gas networks
can provide for the power system. This coordination of energy
carriers is an inexpensive solution for increasing the flexibility
of the system compared to investing in other storage options
and grid reinforcement and interconnections.

As future works, it is of interest to explore the additional
alternatives to further tighten the relaxation techniques used.
It is also of interest to investigate how the natural gas and heat
networks can provide the flexibility without need to solve a
co-optimization, and how this flexibility should be monetized
and paid. Furthermore, increasing the interactions among all
systems, e.g., gas-fueled CHPs, P2G units, natural gas boilers,
and multi-generation units, in a larger test case is left for future
research.
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This document serves as an electronic companion for the paper “Coordination of Electricity, Heat and

Natural Gas Systems Accounting for Network Flexibility”. It contains the nomenclature, Section 1 presents

the detailed formulation of mixed-integer second-order cone program (MISOCP) from the original manuscript,

and Section 2 gives the technical characteristics of power generators, gas suppliers, and heat stations for the

case study presented in the paper.

Nomenclature

Sets
I Set of dispatchable generation units i.

C Subset of dispatchable power plants excluding natural gas-fired ones (C ⊂ I).

G Subset of natural gas-fired power plants (G ⊂ I).

J Set of wind power units j.

CHP Subset of combined heat and power plants (CHP ⊂ HS ⊂ I).

HP Subset of heat pumps (HP ⊂ HS ⊂ I).

HS Subset of heat stations (HS ⊂ I).

HES Set of heat exchange stations o.

T Set of time periods t.

L Set of electricity transmission lines (n, r).

N Set of electricity network nodes n.

O Set of heat network nodes o.

P Set of heat pipelines (o, v).

K Set of natural gas supply units k.

Z Set of natural gas pipelines (m,u).

M Set of natural gas network nodes m.

A(.)
n Set of assets located at electricity network node n.

A(.)
o Set of assets located at heat network node o.

A(.)
m Set of assets located at natural gas network node m.

Θ Set of optimization variables.

Variables
pi,t Power dispatch of units i in period t [MW].

wj,t Dispatch of units j in period t [MW].

Qi,t Heat dispatch of units i in period t [MW].

gk,t Dispatch of unit k in period t [kcf/h].

θn,t Voltage angle at node n in period t [rad].

fn,r,t Power flow in line (n, r) in period t [MW].

prm,t Pressure at node m in period t [psig].

hm,u,t Average mass of natural gas (linepack) in pipeline (m,u) in period t [kcf].

q
in/out
m,u,t Inflow/outflow natural gas rate of pipeline (m,u) in period t [kcf/h].

qm,u,t Natural gas flow in pipeline (m,u) in period t [kcf/h].

mfHES
o,t Heat exchanger mass flows at network node o in period t [kg m−3].

mfHS
i,t Mass flows at heat station i in period t [kg m−3].

1
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T S
o,t Temperature at supply network node o in period t [K].

T R
o,t Temperature at return network node o in period t [K].

T S,in
o,v,t Temperature at the entrance of the pipe (o, v) in period t [K].

T R,in
o,v,t Temperature at the entrance of the pipe (o, v) in period t [K].

T S,out
o,v,t Temperature at the outlet of the pipe (o, v) in period t [K].

T R,out
o,v,t Temperature at the outlet of the pipe (o, v) in period t [K].

prSo,t Pressure at supply network node o in period t [psig].

prRo,t Pressure at return network node o in period t [psig].

DHP
i,t Power consumption of heat pump i in period t [MWh].

τ
S/R
o,v,t Time delay of heat propagation in supply and return pipeline (o, v) in period t [h].

u
S/R
o,v,η,t Auxiliary binary variable defining varying time delays in pipeline (o, v) in period t {0,1}.
v
S/R
o,v,η,t Auxiliary binary variable defining varying time delays in pipeline (o, v) in period t {0,1}.

Parameters
DE
n,t Electricity demand at node n in period t [MWh].

DH
o,t Heat demand at node o in period t [MWh].

DG
m,t Natural gas demand at node m in period t [kcf/h].

CE
i Power production cost of unit i [$/MWh].

CH
i Heat production cost of unit i [$/MWh].

Ci Marginal production cost of unit i [$/MWh].

CG
k Supply cost of unit k [$/kcf].

pi Capacity of dispatchable unit i [MW].

Qi Capacity of dispatchable unit i [MW].

ρEi Electricity fuel efficiency of CHP unit i ∈ CHP .

ρHi Heat fuel efficiency of CHP unit i ∈ CHP .

prHES
o

Minimum pressure gradient at heat exchanger station node o [psig].

ri Output ratio of unit i ∈ CHP.

COPi Coefficient of performance of unit i ∈ HP.

φi Power conversion factor of natural gas unit i ∈ G [kcf/MWh].

wj,t Wind power realization for unit j in period t [MW].

gk Capacity of natural gas unit k [kcf].

Bn,r Susceptance of line (n, r) [S].

fn,r Transmission capacity of line (n, r) [MW].

Km,u Natural gas flow constant of pipeline (m,u) [kcf/psig].

Sm,u Linepack constant of pipeline (m,u) [kcf/(psig h)].

H0
m,u Initial linepack in pipeline (m,u) [kcf].

prS
o

Minimum pressure at supply network node o [psig].

prSo Maximum pressure at supply network node o [psig].

prR
o

Minimum pressure at return network node o [psig].

prRo Maximum pressure at return network node o [psig].

T S
o Minimum temperature at supply network node o [K].

T
S
o Maximum temperature at supply network node o [K].

T R
o Minimum temperature at return network node o [K].

T
R
o Maximum temperature at return network node o [K].

mfHES

o
Minimum mass flow at heat exchange station o [kg/h].

mf
HES

o Maximum mass flow at heat exchange station o [kg/h].

mfHS

i
Minimum mass flow at heat station i ∈ HS [kg/h].

mf
HS

i Maximum mass flow at heat station i ∈ HS [kg/h].

mfS

o,v
Minimum mass flow in supply pipeline (o, v) ∈ P [kg/h].

mf
S

o,v Maximum mass flow in supply pipeline (o, v) ∈ P [kg/h].

mfR

o,v
Minimum mass flow in return pipeline (o, v) ∈ P [kg/h].

mf
R

o,v Maximum mass flow in return pipeline (o, v) ∈ P [kg/h].
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Lo,v Pressure loss coefficient pipeline (o, v) ∈ P.

pr
m

Minimum pressure limit at node m [psig].

prm Maximum pressure limit at node m [psig].

Γm,u Compressor factor at natural gas pipeline (m,u).

c Specific heat capacity of water [J kg−1K−1].

µo,v Thermal loss coefficient [J m−2s−2K−1].

ρ Water density [kg m−3].

Ro,v Radius of the pipeline (o, v) [m].

τ
S/R
o,v Maximum time delay parameters of pipeline (o, v).

M A sufficiently large positive constant.

1. MISOCP for the Integrated Multi-energy Dispatch

min
Θ

∑

t∈T

(∑

i∈C
CE
i pi,t +

∑

k∈K
CG
k gk,t +

∑

i∈HS
CH
i Qi,t +

∑

i∈CHP
Ci(ρ

E
i pi,t + ρH

i Qi,t)
)
, (1a)

subject to

0 ≤ pi,t ≤ pi,∀i, t, (1b)

0 ≤ wj,t ≤ wj,t,∀j, t, (1c)

fn,r,t = Bn,r(θn,t − θr,t),∀(n, r) ∈ L, t, (1d)

− fn,r ≤ fn,r,t ≤ fn,r,∀(n, r) ∈ L, t, (1e)

− π ≤ θn,t ≤ π,∀n, t, θn,t = 0,∀n : ref, t, (1f)

DH
o,t ≥ c mf

HES

o (T S
o,t − TR

o,t) + c mfHES
o,t (T

S

o − TR
o )− c mfHES

o (T
S

o − TR
o ),∀o, t, (1g)

DH
o,t ≥ c mfHES

o
(T S
o,t − TR

o,t) + c mfHES
o,t (T S

o − T
R

o )− c mfHES

o
(T S

o − T
R

o ),∀o, t, (1h)

DH
o,t ≤ c mf

HES

o (T S
o,t − TR

o,t) + c mfHES
o,t (T S

o − T
R

o )− c mfHES

o (T S
o − T

R

o ),∀o, t, (1i)

DH
o,t ≤ c mfHES

o
(T S
o,t − TR

o,t) + c mfHES
o,t (T

S

o − TR
o )− c mfHES

o
(T

S

o − TR
o ),∀o, t, (1j)

Qi,t ≥ c mf
HS

i (T S
o,t − TR

o,t) + c mfHS
i,t (T

S

o − TR
o )− c mfHS

i (T
S

o − TR
o ),∀o, i ∈ AHS

o , t, (1k)

Qi,t ≥ c mfHS

i
(T S
o,t − TR

o,t) + c mfHS
i,t (T S

o − T
R

o )− c mfHS

i
(T

S

o − T
R

o ),∀o, i ∈ AHS
o , t, (1l)

Qi,t ≤ c mf
HS

i (T S
o,t − TR

o,t) + c mfHS
i,t (T S

o − T
R

o )− c mfHS

i (T S
o − T

R

o ),∀o, i ∈ AHS
o , t, (1m)

Qi,t ≤ c mfHS

i
(T S
o,t − TR

o,t) + c mfHS
i,t (T

S

o − TR
o )− c mfHS

i
(T

S

o − TR
o ),∀o, i ∈ AHS

o , t, (1n)

0 ≤ Qi,t ≤ Qi,∀i ∈ HS, t, (1o)

prHES
o
≤ prS

o,t − prR
o,t,∀o, t, (1p)

mfHES

o
≤ mfHES

o,t ≤ mf
HES

o ,∀o, t, (1q)

mfHS

i,
≤ mfHS

i,t ≤ mf
HS

i ,∀i ∈ HS, t, (1r)

mfS

o,v
≤ mfS

o,v,t ≤ mf
S

o,v,∀(o, v) ∈ P, t, (1s)

mfR

o,v
≤ mfR

o,v,t ≤ mf
R

o,v,∀(o, v) ∈ P, t, (1t)
∑

v:(o,v)∈P
mfS

v,o,t +
∑

i∈AHS
o

mfHS
i,t =

∑

v:(o,v)∈P
mfS

o,v,t +mfHES
o,t ,∀o, t, (1u)

∑

v:(o,v)∈P
mfR

v,o,t +
∑

i∈AHS
o

mfHS
i,t =

∑

v:(o,v)∈P
mfR

o,v,t +mfHES
o,t ,∀o, t, (1v)

Lo,v(mf
S
o,v,t)

2 ≤ prS
v,t − prS

o,t,∀(o, v) ∈ P, t, (1w)
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Lo,v(mf
R
o,v,t)

2 ≤ prR
v,t − prR

o,t,∀(o, v) ∈ P, t, (1x)

prS
o
≤ prS

o,t ≤ prS
o , pr

R
o
≤ prR

o,t ≤ prR
o ,∀o, t, (1y)

T S
o ≤ T S

o,t ≤ T
S

o , T
R
o ≤ TR

o,t ≤ R
S

o ,∀o, t, (1z)

T S,in
o,v,t = T S

o,t, T
R,in
o,v,t = TR

v,t, ∀(o, v) ∈ P, t, (1aa)

T S
v,t = T S,out

o,v,t , T
R
o,t = TR,out

o,v,t ,∀(o, v) ∈ P, t, (1ab)

−M vS
o,v,η,t ≤ T̃ S,in

o,v,η,t ≤M vS
o,v,η,t,∀(o, v) ∈ P, η ∈ {0, ..., τS

o,v}, t, (1ac)

M(vS
o,v,η,t − 1) ≤ T̃ S,in

o,v,η,t − T̃ S,in
o,v,(t−η)

(
1− 2µo,v

cρRo,v
η

)
≤M(1− vS

o,v,η,t),∀(o, v) ∈ P, η ∈ {0, ..., τS
o,v}, t, (1ad)

M(vS
o,v,η,t − 1) ≤ η − τS

o,v,t ≤M(1− vS
o,v,η,t),∀(o, v) ∈ P, η ∈ {0, ..., τS

o,v}, t, (1ae)

τS∑

η=0

vS
o,v,η,t = 1,∀(o, v) ∈ P, t, (1af)

T S,out
o,v,t =

τS
o,v∑

η=0

T̃ S,in
o,v,η,t,∀(o, v) ∈ P, t. (1ag)

−M vS
o,v,η,t ≤ T̃ S,in

o,v,η,t ≤M vS
o,v,η,t,∀(o, v) ∈ P, η ∈ {0, ..., τS

o,v}, t, (1ah)

M(vS
o,v,η,t − 1) ≤ T̃ S,in

o,v,η,t − T̃ S,in
o,v,(t−η)

(
1− 2µo,v

cρRo,v
η

)
≤M(1− vS

o,v,η,t),∀(o, v) ∈ P, η ∈ {0, ..., τS
o,v}, t, (1ai)

M(vS
o,v,η,t − 1) ≤ η − τS

o,v,t ≤M(1− vS
o,v,η,t),∀(o, v) ∈ P, η ∈ {0, ..., τS

o,v}, t, (1aj)

τS∑

η=0

vS
o,v,η,t = 1,∀(o, v) ∈ P, t, (1ak)

T S,out
o,v,t =

τS
o,v∑

η=0

T̃ S,in
o,v,η,t,∀(o, v) ∈ P, t, (1al)

M(uS
o,v,η,t − 1) ≤

t∑

η̃=t−η

mfS
o,v,η̃

πR2
o,vρ

∆t− Lo,v ≤M uS
o,v,η,t,∀(o, v) ∈ P, η ∈ {0, ..., τS

o,v}, t, (1am)

M(uR
o,v,η,t − 1) ≤

t∑

η̃=t−η

mfR
o,v,η̃

πR2
o,vρ

∆t− Lo,v ≤M uR
o,v,η,t,∀(o, v) ∈ P, η ∈ {0, ..., τR

o,v}, t, (1an)

τS
o,v,t =

τS
o,v∑

η=1

η(uS
o,v,η,t − uS

o,v,(η−1),t),∀(o, v) ∈ P, t, (1ao)

τR
o,v,t =

τR
o,v∑

η=1

η(uR
o,v,η,t − uR

o,v,(η−1),t),∀(o, v) ∈ P, t, (1ap)

0 ≤ gk,t ≤ gk,∀k, t, (1aq)

pr
m
≤ prm,t ≤ prm,∀m, t, (1ar)

pru,t ≤ Γm,u prm,t,∀(m,u) ∈ Z, t, (1as)

q2
m,u,t ≤ K2

m,u(pr2
m,t − pr2

u,t),∀(m,u) ∈ Z, t, (1at)

qm,u,t =
qin
m,u,t + qout

m,u,t

2
,∀(m,u) ∈ Z, t, (1au)

hm,u,t = Sm,u
prm,t + pru,t

2
,∀(m,u) ∈ Z, t, (1av)
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hm,u,t = hm,u,(t−1) + qin
m,u,t − qout

m,u,t,∀(m,u) ∈ Z, t > 1, (1aw)

hm,u,t = H0
m,u + qin

m,u,t − qout
m,u,t,∀(m,u) ∈ Z, t = 1, (1ax)

H0
m,u ≤ hm,u,t,∀(m,u) ∈ Z, t = |T |, (1ay)
∑

k∈AK
m

gk,t −
∑

i∈AG
m

φi pi,t −
∑

u:(m,u)∈Z
(qin
m,u,t − qout

u,m,t) = DG
m,t,∀m, t, (1az)

riQi,t ≤ pi,t,∀i ∈ CHP, t, (1ba)

0 ≤ ρE
i pi,t + ρH

i Qi,t ≤ pi,∀i ∈ CHP, t, (1bb)

Qi,t = COPiD
HP
i,t ,∀i ∈ HP, t, (1bc)

∑

i∈AI
n

pi,t +
∑

j∈AJ
n

wj,t −
∑

r:(n,r)∈L
fn,r,t = DE

n,t +
∑

i∈AHP
n

DHP
i,t ,∀n, t. (1bd)

2. Input Data

Table 1 gives the technical characteristics of power generators and transmission lines, Table 2 provides the

technical characteristics of the gas system and Table 3 contains the input data for the heat network.

Generator i 1 2 3 4 5 6 7 8 9 10 11 12

Located at bus n 1 2 7 13 15 15 16 18 21 22 23 23

Connected to gas node m 12 12 - - 10 10 7 - - 6 - -

Connected to heat node o - - - - - - - - - - - 2

CE
i [$/MWh] - - 65.61 30.82 - - - 20.84 26.9 - 32.22 -

Ci [$/MWh] - - - - - - - - - - - 17.5

pi [MW] 152 152 300 591 60 155 155 400 400 300 350 1000

Type G G C C G G G C C G C CHP
φi [kcf/MWh] 12.65 20.25 - - 11.12 15.1 14.88 - - 13.3 - -

Wind farm j 1

Located at bus n 5

W j [MW] 2100

Power load 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

At bus n 1 2 3 4 5 6 7 8 9 10 13 14 15 16 18 19 20 23

Share of total load 0.038 0.044 0.063 0.026 0.025 0.048 0.044 0.060 0.061 0.068 0.093 0.073 0.111 0.035 0.117 0.014 0.04 0.04

Line (n, r) ∈ L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

n 1 1 1 2 2 3 3 4 5 6 7 8 8 9 9 10 10 11

r 2 3 5 4 6 9 24 9 10 10 8 9 10 11 12 11 12 13

1/Bn,r [pu] 0.0146 0.2253 0.0907 0.1356 0.205 0.1271 0.084 0.111 0.094 0.0642 0.0652 0.1762 0.1762 0.084 0.084 0.084 0.084 0.0488

fn,r [MW] 175 175 350 175 175 175 400 175 350 175 350 175 175 400 400 400 400 500

Line (n, r) ∈ L 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

n 11 12 12 13 14 15 15 15 16 16 17 17 18 19 20 21

r 14 13 23 23 16 16 21 24 17 19 18 22 21 20 23 22

1/Bn,r [pu] 0.0426 0.0488 0.0985 0.0884 0.0594 0.0172 0.0249 0.0529 0.0263 0.0234 0.0143 0.1069 0.0132 0.0203 0.0112 0.0692

fn,r [MW] 500 500 500 250 250 500 400 500 500 500 500 500 1000 1000 1000 500

Table 1. Power system input data for generators, wind farms, loads and transmission lines
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Gas supplier k 1 2 3

Located at node m 1 3 11

gk [kcf] 7200 7200 18000

CG
k [$/kcf] 2 2.4 3.2

Demand 1 2 3 4

At node m 5 6 7 12

Share of total demand 0.25 0.35 0.25 0.15

Pipeline (m,u) ∈ Z 1 2 3 4 5 6 7 8 9 10 11 12

m 1 2 3 4 5 4 6 7 8 9 10 11

u 2 4 5 5 6 7 8 8 9 10 11 12

Km,u [kcf/psig h] 28 28 28 21 21 21 28 21 28 28 28 28

Γm,u - 1.2 - - - - - - 1.3 - - -

Sm,u [kcf/psig] 121 121 150 186 189 184 150 179 149 148 150 130

H0
m,u [kcf] 39300 39300 49300 59300 54300 54300 39300 44300 39300 39300 39300 29300

Table 2. Input data for gas system. Note that minimum and maximum pressure limits pr
m

and prm are 100 psig and 500 psig for all nodes m, respectively.

Heat unit i CHP HP
Located at node o 1 2

Qi [MW] 250 150

mfHS

i
[kg/h] 0 0

mf
HS

i [kg/h] 300 300

COPi - 2.5

ri 0.6 -

ρE
i 2.4 -

ρH
i 0.25 -

Ci [$/MWh] 17.5 -

Node o 1 2 3

mfHES

o
[kg/h] - - 50

mf
HES

o [kg/h] - - 300

TR
o [C] 30 30 30

T
R

o [C] 60 60 60

T S
o [C] 90 90 90

T
S

o [C] 120 120 120

prS/R
o

[psig] 0 0 0

pr
S/R
o [psig] 100 100 100

Pipeline (o, v) ∈ P 1 2

o 1 2

v 2 3

Ro,v [m] 2 3

µo,v [MW m−2 K−1] 20 20

νo,v [10−3] 1.93 1.93

mfS/R

o,v
[kg/h] 50 50

mf
S/R

o,v [kg/h] 300 300

Table 3. District heating system characteristics. Note that c=1.17 Wh/(kg K), ρ=988 kg/m3.
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Abstract—Utilizing operational flexibility from natural gas
networks can foster the integration of uncertain and variable
renewable power production. We model a combined power
and natural gas dispatch to reveal the maximum potential of
linepack, i.e., energy storage in the pipelines, as a source of
flexibility for the power system. The natural gas flow dynamics
are approximated by a combination of steady-state equations
and varying incoming and outgoing flows in the pipelines to
account for both natural gas transport and linepack. This steady-
state natural gas flow results in a nonlinear and nonconvex
formulation. To cope with the computational challenges, we
explore convex quadratic relaxations and linear approximations.
We propose a novel mixed-integer second-order cone formulation
including McCormick relaxations to model the bidirectional
natural gas flow accounting for linepack. Flexibility is quantified
in terms of system cost compared to a dispatch model that either
neglects linepack or assumes infinite storage capability.

Index Terms—Combined power and natural gas dispatch, con-
vexification, McCormick relaxation, second-order cone program,
steady-state gas flow.

NOMENCLATURE

Sets
I Set of dispatchable power plants i.
C Subset of dispatchable power plants excluding natural

gas-fired ones (C ⊂ I).
G Subset of natural gas-fired power plants (G ⊂ I).
J Set of wind power units j.
T Set of time periods t.
L Set of electricity transmission lines (n, r).
N Set of electricity network nodes n.
K Set of natural gas supply units k.
Z Set of natural gas pipelines (m,u).
M Set of natural gas network nodes m.
V Set of fixed pressure points v.
A(.)

n Set of assets located at electricity network node n.
A(.)

m Set of assets located at natural gas network node m.
Θ Set of optimization variables.
Variables
pi,t, wj,t Dispatch of units i and j in period t, respectively [MW].
gk,t Dispatch of unit k in period t [kcf/h].
θn,t Voltage angle at node n in period t [rad].
fn,r,t Power flow in line (n, r) in period t [MW].
prm,t Pressure at node m in period t [psig].
hm,u,t Average mass of natural gas (linepack) in pipeline (m,u)

in period t [kcf].
qin/out
m,u,t Inflow/outflow natural gas rate of pipeline (m,u) in

period t [kcf/h].
qm,u,t Natural gas flow in pipeline (m,u) in period t [kcf/h].
q
+/−
m,u,t Natural gas flow in pipeline (m,u) from node m to

u/from node u to m in period t [kcf/h].
ym,u,t Binary variable defining the direction of the natural gas

flow in pipeline (m,u) in period t {0,1}.

Parameters
DE

n,t Electricity demand at node n in period t [MW].
DG

m,t Natural gas demand at node m in period t [kcf/h].
CE

i Production cost of unit i [$/MWh].
CG

k Supply cost of unit k [$/kcf].
Pmax
i Capacity of dispatchable unit i [MW].
φi Power conversion factor of natural gas unit i ∈ G

[kcf/MWh].
Wj,t Wind power forecast for unit j in period t [MW].
Gmax

k Capacity of natural gas unit k [kcf].
Bn,r Susceptance of line (n, r) [S].
Fmax
n,r Transmission capacity of line (n, r) [MW].
Km,u Natural gas flow constant of pipeline (m,u) [kcf/(psig h)].
Sm,u Linepack constant of pipeline (m,u) [kcf/psig].
H0

m,u Initial linepack in pipeline (m,u) [kcf].
PRmin

m Minimum pressure limit at node m [psig].
PRmax

m Maximum pressure limit at node m [psig].
Γm,u Compressor factor at natural gas pipeline (m,u).
M A sufficiently large constant.

I. INTRODUCTION

The growing share of stochastic renewable energy sources
that introduce uncertainty and variability into the operation
of power system increases the need for flexible resources.
Natural gas-fired power plants (NGFPP) typically provide
operational flexibility in systems with high share of renewable
energy penetration [1], thus linking the power and natural gas
systems [2]. In power system operations, security and network
constraints related to the natural gas system are becoming
important for generation scheduling [3], unit commitment [4],
and reserve scheduling decisions [5] to ensure fuel availability
for NGFPPs. Apart from ensuring technical feasibility of short-
term operations, accounting for the natural gas network un-
locks its inherent flexibility in order to facilitate the integration
of renewables and deal with uncertainties and variability from
large-scale wind power penetration [6], [7]. This necessitates
a proper coordination between power and natural gas systems.

Several works in the literature have investigated different
coordination levels of power and natural gas systems in terms
of short-term operational integration, proving the advantages
of such coupling for the whole system, see [6]–[9]. A full
coupling (co-optimization) of the two energy systems is not
compatible with the current market regulations in most coun-
tries which usually require decoupled operations on different
temporal scales [10]. The full coupling requires a single entity
to operate the whole integrated system. This is the case in
Denmark, where Energinet.dk is operating both systems, but
separately [11]. The co-optimization model yields an ideal



benchmark showing the maximum potential flexibility that
can be unlocked, obtaining the minimum overall cost for
the two systems [12]. This benchmark, though not directly
implementable in practice, is highly useful, since it provides
a lower bound for system cost, and can be used to assess the
performance of any other coordination scheme that aligns with
current market regulations.

The ability to store natural gas in the pipelines is referred
to as linepack, and can provide short-term flexibility to the
power system. Unlocking linepack flexibility requires accurate
modeling of natural gas flow dynamics along pipelines as well
as efficient solution methods. Different integrated natural gas
and power flow models are presented in [8] using dynamic nat-
ural gas flow models, while [13] models steady-state gas flow
constraints. It is worth mentioning that modeling bidirectional
gas flow is crucial, since the direction of natural gas flow in
the pipeline may change due to sudden off-take from NGFPPs
to compensate for variability from renewable generation.

Several works have aimed at convexifying the steady-state
natural gas flow via linear approximation or convex relaxation
techniques. Reference [14] introduces a semidefinite program-
ming (SDP) relaxation for the natural gas flow, assuming that
the flow direction is known. Similarly, [15] proposes a second-
order cone (SOC) relaxation for modeling optimal power and
natural gas flows, assuming fixed flow directions and ignoring
compressors, linepack and storage. A mixed-integer second-
order cone programming (MISOCP) relaxation is proposed in
[16] to represent natural gas flows for expansion planning of
natural gas and power systems with unidirectional gas flow,
while the expansion planning model in [17] allows for varying
flow directions along a pipeline. Reference [18] proposes a
MISOCP relaxation model treating gas flow direction in each
pipeline as a variable, proving the uniqueness and exactness
of the solution, but ignoring linepack. The piecewise lin-
ear approximation model in [19] also considers bidirectional
gas flows but neglects linepack. The mixed-integer linear
programming (MILP) models proposed in [6] and [7] yield
improved flexibility and reliability when accounting for the
bidirectional gas flows and linepack. More specifically, the
models in [6] and [7] are able to incorporate linepack dynamics
while allowing for bidirectional natural gas flow using an outer
linear approximation and a piecewise linear approximation, re-
spectively. Table I summarizes the convexification approaches
for steady-state natural gas flow models in the literature, and
compares them with the proposed model in this paper.

To the best of our knowledge, the existing quadratic and
semidefinite relaxation models either assume known flow
directions or neglect the ability of pipelines to store natural
gas, see [14]–[18]. Thus, we propose a novel MISOCP model
including McCormick relaxations of the steady-state natural
gas flow to incorporate both linepack and bidirectional flow.
Similar to the approach in [20], which investigates the linepack
flexibility provided by district heating networks for the power
system, our work evaluates the social value of short-term op-
erational flexibility that the natural gas network can provide to
the electricity system. The objective of this paper is to present

TABLE I
COMPARISON OF NATURAL GAS FLOW CONVEXIFICATION APPROACHES

Reference Natural gas flow model Bidirectional flow Linepack

[14] Relaxation (SDP) No No
[15] Relaxation (SOCP) No No
[16] Relaxation (MISOCP) No No

[17], [18] Relaxation (MISOCP) Yes No
[19] Approximation (MILP) Yes No

[6], [7] Approximation (MILP) Yes Yes
This paper Relaxation (MISOCP) Yes Yes

a methodology for a combined electricity and natural gas
dispatch as an ideal benchmark that appropriately models the
dynamics of gas flow. We use this model to assess the ability
of the natural gas network to react to changes in the power
system due to intermittent renewables. In order to evaluate the
modeling of the linepack properties to account for inherent
flexibility of the natural gas system, we compare the proposed
MISOCP relaxation of the bidirectional nonconvex steady-
state natural gas flow under different levels of wind penetration
to the MILP approximation proposed in [6]. Finally, the value
of linepack flexibility provided by the gas network is quantified
in terms of system cost compared to the coupled dispatch of
the electricity and natural gas systems either without linepack
modeling or with infinite storage capability.

The paper is organized as follows. Section II introduces
the formulation of the combined power and natural gas dis-
patch model. In Section III, we explore two convexification
approaches for efficiently solving the natural gas flow model,
which are compared in Section IV for a case study quantifying
the value of natural gas network flexibility for the power
system. Section V draws the conclusion.

II. COMBINED POWER AND NATURAL GAS DISPATCH

A. Model framework and assumptions

We propose a fully coupled electricity and natural gas
dispatch that co-optimizes the operations in both systems. Both
wind power production and wind spillage costs are assumed
to be zero. Since the focus of this paper is modeling the
flexibility provided by the natural gas network, we aim at
accurately modeling the gas flow problem, while we use a
lossless DC model for the power flows on the electricity
side. Under the assumption of isothermal natural gas flow in
horizontal pipelines, the natural gas flow is represented by its
steady-state gas flow equation. The dynamics in pipelines are
approximated by accounting for the energy storage capacity
of gas networks in the form of linepack through varying in-
and outflows. Compressor stations are modeled with a constant
compressor factor neglecting fuel and power consumption of
compressors [3].

B. Co-optimization Model

The original combined dispatch problem, which is mixed-
integer and nonconvex, is formulated by the following opti-
mization problem (1):

min
Θ

∑

t∈T

(∑

i∈C
CE

i pi,t +
∑

k∈K
CG

k gk,t

)
(1a)



subject to

0 ≤ pi,t ≤ Pmax
i ,∀i, t, (1b)

0 ≤ wj,t ≤Wj,t,∀j, t, (1c)
fn,r,t = Bn,r(θn,t − θr,t),∀(n, r) ∈ L, t, (1d)
− Fmax

n,r ≤ fn,r,t ≤ Fmax
n,r ,∀(n, r) ∈ L, t, (1e)

− π ≤ θn,t ≤ π,∀n, t, θn,t = 0,∀n:ref, t, (1f)∑

i∈AI
n

pi,t +
∑

j∈AJ
n

wj,t −
∑

(n,r)∈L
fn,r,t = DE

n,t,∀n, t, (1g)

0 ≤ gk,t ≤ Gmax
k ,∀k, t, (1h)

PRmin
m ≤ prm,t ≤ PRmax

m ,∀m, t, (1i)
pru,t ≤ Γm,u prm,t,∀(m,u) ∈ Z, t, (1j)

qm,u,t|qm,u,t| = K2
m,u(pr2

m,t − pr2
u,t),∀(m,u) ∈ Z, t, (1k)

qm,u,t = q+
m,u,t − q−m,u,t,∀(m,u) ∈ Z, t, (1l)

0 ≤ q+
m,u,t ≤M ym,u,t,∀(m,u) ∈ Z, t, (1m)

0 ≤ q−m,u,t ≤M(1− ym,u,t),∀(m,u) ∈ Z, t, (1n)

q+
m,u,t =

qin
m,u,t + qout

m,u,t

2
,∀(m,u) ∈ Z, t, (1o)

q−m,u,t =
qin
u,m,t + qout

u,m,t

2
,∀(m,u) ∈ Z, t, (1p)

hm,u,t = Sm,u
prm,t + pru,t

2
,∀(m,u) ∈ Z, t, (1q)

hm,u,t = hm,u,(t−1) + qin
m,u,t − qout

m,u,t + qin
u,m,t − qout

u,m,t,

∀(m,u) ∈ Z, t > 1, (1r)

hm,u,t = H0
m,u + qin

m,u,t − qout
m,u,t + qin

u,m,t − qout
u,m,t,

∀(m,u) ∈ Z, t = 1, (1s)

H0
m,u ≤ hm,u,t,∀(m,u) ∈ Z, t = |T |, (1t)
∑

k∈AK
m

gk,t −
∑

i∈AG
m

φi pi,t

−
∑

u:(m,u)∈Z
(qin

m,u,t − qout
u,m,t) = DG

m,t,∀m, t, (1u)

where the set of optimization variables is Θ = {qm,u,t, ym,u,t,
q+
m,u,t, q

−
m,u,t, q

in
m,u,t, q

out
m,u,t, hm,u,t, prm,t, gk,t, pi,t, wj,t, θn,t,

fn,r,t}. Objective function (1a) minimizes the total cost of
operating the power and natural gas systems, i.e., the produc-
tion cost of non-NGFPPs and natural gas supply cost. The
model contains two sets of constraints: (1b)-(1g) correspond
to the power system while (1h)-(1u) pertain to the natural gas
system. The two systems are coupled through (1u) translating
the dispatch of NGFPPs into a time-varying nodal demand for
natural gas by

∑
i∈AG

m
φi pi,t,∀m, t. Constraints (1b) and (1c)

impose capacity limits of the power plants and wind farms,
respectively. Constraints (1d) and (1e) define power flows
along each transmission line and bound them to transmission
capacity. In (1f) the voltage angles are restricted and that of
the reference node is set to zero. Constraint (1g) enforces
the power balance at each node. Constraints (1h) and (1i)
impose limits on capacity of natural gas supply and nodal
pressure, respectively. Pipelines with compressors relate the
inlet and outlet pressures between two adjacent nodes via

Fig. 1. Bidirectional flow along a pipeline (time index t is dropped for
notational clarity)

compressor factor Γm,u in (1j). The piecewise quadratic and
nonconvex constraint (1k), known as Weymouth equation,
describes the steady-state gas flow between nodes m and u,
which depends on the pressure at the adjacent nodes and
the physical properties of the pipeline reflected in parameter
Km,u. The natural gas flow in each pipeline is decomposed
in (1l) to two non-negative variables q+

m,u,t and q−m,u,t, which
are required to determine the direction of flow using binary
variable ym,u,t in (1m) and (1n). Note that the big constant
M is set to the maximum gas flow along a pipeline to ensure
that either (1m) or (1n) is active. The flow in each pipeline is
defined as the average of inflow and outflow according to (1o)
and (1p), see Fig. 1. The average mass in each pipeline is given
by (1q) which determines the linepack on pipelines based on
pressures at adjacent nodes and parameter Sm,u reflecting the
pipeline properties. The mass conservation at each pipeline
is enforced by (1r). Constraint (1s) sets the initial amount
of linepack, while (1t) imposes a minimum linepack level at
the end of time period to ensure that the natural gas in the
network is not depleted. Finally, constraint (1u) imposes the
nodal natural gas balance, and couples the power and natural
gas systems through fuel consumption of NGFPPs.
Note that the resulting mixed-integer and nonlinear program-
ming (MINLP) model (1) is computationally challenging,
since there is currently no off-the-shelf solver to efficiently
solve such a problem. In the next section, we investigate the
two options to convexify the nonlinearities of this model.

III. LINEPACK CONVEXIFICATION APPROACHES

We first propose a novel MISOCP relaxation that allows for
modeling both bidirectional natural gas flow and convexified
dynamics of linepack in pipelines. Then, for comparison
purposes, another convexification alternative based on a linear
approximation method proposed in [6] is briefly explained.

A. Proposed MISOCP Relaxation

Weymouth equation (1k) can be equivalently written as:

qm,u,t|qm,u,t| ≤ K2
m,u(pr2

m,t − pr2
u,t),∀(m,u) ∈ Z, t, (2a)

qm,u,t|qm,u,t| ≥ K2
m,u(pr2

m,t − pr2
u,t),∀(m,u) ∈ Z, t. (2b)

We drop (2b) and then replace (2a) by the following set of
constraints in (3). Compared to (2a), note that the absolute
function is omitted in (3) but the bidirectional flows along
pipelines are still modeled by additional terms related to binary
variable ym,u,t [18].
{
−M(1− ym,u,t) ≤ qm,u,t ≤M ym,u,t, (3a)



q2
m,u,t ≤ K2

m,u(pr2
m,t − pr2

u,t) +M2(1− ym,u,t), (3b)

q2
m,u,t ≤ K2

m,u(pr2
u,t − pr2

m,t) +M2 ym,u,t,
}

(3c)

∀(m,u) ∈ Z, t.
While (3a) is a linear constraint, (3b) and (3c) are still not
in the form of SOC constraints. We introduce two auxiliary
variables ϕ+

m,u,t = prm,t + pru,t and ϕ−m,u,t = prm,t − pru,t,
so that ϕ+

m,u,t ϕ−m,u,t = pr2
m,t − pr2

u,t. Accordingly, we
reformulate (3b) and (3c) as
{
q2
m,u,t ≤ K2

m,u(ϕ+
m,u,t ϕ

−
m,u,t) +M2(1− ym,u,t), (4a)

q2
m,u,t ≤ K2

m,u(−ϕ+
m,u,t ϕ

−
m,u,t) +M2 ym,u,t,

}
(4b)

∀(m,u) ∈ Z, t.
Similarly, constraints (1j) and (1q) in the original problem are
replaced by
{1

2
(ϕ+

m,u,t − ϕ−m,u,t) ≤ Γm,u
1

2
(ϕ+

m,u,t + ϕ−m,u,t), (5a)

hm,u,t = Sm,u

ϕ+
m,u,t

2
,
}
∀(m,u) ∈ Z, t. (5b)

Since prm,t is substituted by auxiliary variables, we drop the
pressure bounds (1i), and then introduce parameters ϕ+

m,u,t
=

PRmin
m +PRmin

u , ϕ+
m,u,t = PRmax

m +PRmax
u , ϕ−

m,u,t
= PRmin

m −
PRmax

u , and ϕ−m,u,t = PRmax
m −PRmin

u to limit those auxiliary
variables as

{
ϕ+
m,u,t

≤ ϕ+
m,u,t ≤ ϕ+

m,u,t, (6a)

ϕ−
m,u,t

≤ ϕ−m,u,t ≤ ϕ−m,u,t,
}
∀(m,u) ∈ Z, t. (6b)

We still need to rephrase (4a) and (4b) due to the bilinear
term ϕ+

m,u,t ϕ
−
m,u,t. Therefore, we use McCormick relaxation

technique by introducing a new auxiliary variable, denoted
as ψm,u,t, and defining the McCormick envelopes [21]. For
notional clarity, we drop subscripts m, u and n from all
variables and parameters. These envelopes are:

ψ ≥ ϕ+ ϕ− + ϕ+ ϕ− − ϕ+ ϕ− (7a)

ψ ≥ ϕ+ ϕ− + ϕ+ ϕ− − ϕ+ ϕ− (7b)
ψ ≤ ϕ+ ϕ− + ϕ+ ϕ− − ϕ+ ϕ− (7c)

ψ ≤ ϕ+ ϕ− + ϕ+ ϕ− − ϕ+ ϕ−. (7d)

Now, (4a) and (4b) are expressed by mixed-integer second-
order cone constraints:

{
q2
m,u,t ≤ K2

m,u ψm,u,t +M2(1− ym,u,t), (8a)

q2
m,u,t ≤ −K2

m,u ψm,u,t +M2 ym,u,t,
}

(8b)

∀(m,u) ∈ Z, t.
Note that if ym,u,t = 0, then (8a) is satisfied trivially, while
(8b) becomes q2

m,u,t ≤ −K2
m,uψm,u,t. Similarly, (8b) is non-

binding when ym,u,t = 1, while (8b) reads as q2
m,u,t ≤

K2
m,uψm,u,t. The resulting MISOCP model includes (1a)-(1h),

(1l)-(1p), (1r)-(1u), (3a), and (5)-(8).

(pr2
m − pr2

u)

qm,u

qm,u ≤ Km,u

√
pr2

m − pr2
u

qm,u = Km,u

√
pr2

m − pr2
u

qm,u ≤ Km,u PRm,v√
PR2

m,v−PR2
u,v

prm − Km,u PRu,v√
PR2

m,v−PR2
u,v

pru

Fig. 2. SOC relaxation and outer linear approximation of (1k)

B. MILP Approximation

We compare the proposed MISOCP relaxation to the outer
approximation approach based on the Taylor series expansion
around fixed pressure points from [6]. This tractable MILP
formulation of bidirectional gas flow model accounts for
linepack flexibility. Instead of relaxing the solution space
described by the Weymouth equation into a SOC as in (2a),
the approach in [6] defines a number of planes tangent to the
cone described by (1k), see Fig. 2. Each equality constraint
(1k) is replaced by a set of linear inequalities (9), that linearly
approximate the Weymouth equation around fixed pressure
points PRm,v, PRu,v,∀(m,u) ∈ Z, v ∈ V:

q+
m,u,t ≤

Km,u PRm,v√
PR2

m,v − PR2
u,v

prm,t −
Km,u PRu,v√
PR2

m,v − PR2
u,v

pru,t

+M(1− ym,u,t),∀{(m,u) ∈ Z|m > u}, v, t, (9a)

q−m,u,t ≤
Km,u PRu,v√
PR2

u,v − PR2
m,v

pru,t −
Km,u PRm,v√
PR2

u,v − PR2
m,v

prm,t

+M ym,u,t,∀{(m,u) ∈ Z|m < u}, v, t. (9b)

Table II summarizes the introduced models. Note that the
solutions obtained from both MISOCP and MILP approaches
may not be necessarily feasible for the original model (1).
However, these models are still useful as benchmarks to assess
the value of linepack flexibility.

IV. NUMERICAL STUDY

We compare the convexification approaches presented in
Section III using an integrated energy system consisting of a
12-node natural gas system and the IEEE 24-node reliability
test system [6]. The forecast profiles of total electricity load
and wind power production over the 24-hour scheduling
horizon are illustrated in Fig. 3. We solve all models using
an Intel CoreTM i7-7820HQ with four processors clocking at
2.70 GHz and 16 GB of RAM in Python using Gurobi solver

TABLE II
SUMMARY OF COMBINED POWER AND NATURAL GAS DISPATCH MODELS

Model Properties

MINLP Original model; no off-the-shelf solver
MISOCP Quadratic relaxation of the original MINLP model
MILP Linear approximation of the original MINLP model
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package 7.5.2. All input data and codes used are available in
[22].

We now present our results. Fig. 4 shows the total system
cost, which is the optimal value obtained for (1a), under
different levels of wind power penetration, i.e., the total
installed wind power capacity divided by total demand of
power system. We first quantify the value of modeling the
linepack by comparing the total system cost obtained in
MISOCP and MILP models with that of a case neglecting
linepack (green curve in Fig. 4). This comparison indicates that
the flexibility revealed from the pipelines decreases the total
system cost. This cost reduction in MISOCP and MILP models
is 2% and 1% on average across different levels of wind
penetration, respectively. In order to quantify the amount of
flexibility unveiled from linepack, we now compare the results
achieved with a case including an ideal electricity storage.
This storage has infinite capacity, charging and discharging
rates allowing for the most cost-efficient shift of the electricity
demand over hours. According to a performance ratio defined
as costNo linepack−costMISOCP

costNo linepack−costIdeal storage , the MISOCP model yields on average
a cost saving equal to 25.5% of that in the ideal storage case,
while this value is 13.1% for the MILP model.

For the case of 50% wind penetration, Fig. 5 shows the
daily profiles of total charging and discharging of energy
in the natural gas pipelines as well as the total amount of
natural gas supplied and consumed by NGFPPs. The total
linepack increases from the initial 526,600 kcf to maximum
570,193 kcf and 572,578 kcf in the MISOCP and MILP mod-
els, respectively. For the two convexification approaches the
charging and discharging profiles of the natural gas network
are slightly different, see Figs. 5(a) and 5(b). Compared to the
case neglecting linepack (Figs. 5(c) and 5(f)), both approaches
result in shifting the natural gas demand profile in a more cost-
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Fig. 4. Total system cost as a function of wind power penetration

efficient manner and thus, utilizing less expensive natural gas
supply for electricity production (Figs. 5(d) and 5(e)). The
amount of energy stored in the pipelines directly impacts the
profiles of natural gas supply and consumption by NGFPPs,
see Figs. 5(d)-5(f). According to these plots, the gas supply
curve in the model neglecting linepack is highly volatile (Fig.
5(f)), while it is entirely flat in the MISOCP model (Fig.
5(d)). This profile is also flat during the most hours of the
day considered (i.e., from hour 1 to 17) in the MILP model
(Fig. 5(e)).

To gain better insight into the impacts of modeling linepack,
we focus on hours 18-22 with comparatively low wind power
production (Fig. 3). During these hours, the NGFPPs need to
consume more natural gas to compensate the lack of wind
power production. In the MISOCP model the increased need
for natural gas during these hours is fully supplied by linepack,
while keeping the gas supply profile still flat (Fig. 5(d)).
Compared to the MISOCP model, linepack in the MILP model
is not sufficient to fuel the increased power production of
NGFPPs in hours 18 to 21. Therefore, the natural gas supply is
increased (Fig. 5(e)). Without modeling linepack, the natural
gas consumption and supply need to be matched in each time
period as illustrated in Fig. 5(f).

Based on the above results, the MISOCP model seems
to reveal more linepack flexibility than the MILP model.
However, compared to the MILP approximation, the MISOCP
relaxation is less accurate in modeling the original constraints
(1k). For both convexification models, we check the potential
mismatch between the values obtained for the right- and
left-hand sides of each equality constraint (1k). We quantify
this mismatch using the normalized root mean squared error
(NRMSE) with respect to the average flow. This error is 0.95%
in the MISOCP model, while it is 0.03% only in the MILP
model. A potential interpretation for the lower accuracy of the
MISOCP model is that we used one relaxation technique (i.e.,
McCormick) within the process to achieve another relaxation,
i.e., SOC constraints.

Regarding the computational aspects of the two models, the
MISOCP model is solved on average within 10 seconds, while
the MILP model requires 1,000 seconds to be solved with an
optimality gap tolerance of 0.02%. This implies that there is
a trade-off between computational efficiency and accuracy of
the flow representation in the two convexification approaches.

V. CONCLUSION

This paper proposed a new MISOCP model for efficiently
solving a combined power and natural gas dispatch problem,
while accounting for both linepack and bidirectional flow
in pipelines. The performance of the proposed model was
compared against three models: (i) a similar problem but
with MILP approximations of the linepack, (ii) a model
neglecting the linepack, and (iii) a benchmark model with an
ideal electric storage. Our results showed that the proposed
model can be solved faster than the MILP model, but is
less accurate. As potential future works, it is of interest to
improve the accuracy of the MISOCP model by tightening
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Fig. 5. Comparison of the results obtained from convexification approaches over 24 hours for 50% wind penetration. Plots (a) and (d) correspond to the
MISOCP model, illustrating the hourly charging/discharging profile of linepack storage and the hourly profile of natural gas supply/consumption, respectively.
The similar results for the MILP model are presented in plots (b) and (e), while they are depicted in plots (c) and (f) for a case ignoring linepack

McCormick relaxation [23], to investigate the possibility of
adding sufficient conditions to tighten the SOC relaxation [18],
and to explore alternatives for ex-post feasibility recovery [24].
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Abstract—Using flexibility from the coordination of power
and natural gas systems helps with the integration of variable
renewable energy in power systems. To include this flexibility
into the operational decision-making problem, we propose a dis-
tributionally robust chance-constrained co-optimization of power
and natural gas systems considering flexibility from short-term
gas storage in pipelines, i.e., linepack. Recourse actions in both
systems, based on linear decision rules, allow adjustments to
the dispatch and operating set-points during real-time operation
when the uncertainty in wind power production is revealed. We
convexify the non-linear and non-convex power and gas flow
equations using DC power flow approximation and second-order
cone relaxation, respectively. Our coordination approach enables
a study of the mitigation of short-term uncertainty propagated
from the power system to the gas side. We analyze the results of
the proposed approach on a case study and evaluate the solution
quality via out-of-sample simulations performed ex-ante.

Index Terms—Linear decision rules, Distributionally robust
chance constraints, Linepack flexibility, Power and natural gas
coordination, Second-order cone program.

I. INTRODUCTION

Natural gas-fired power plants (NGFPPs) typically provide
operational flexibility to power systems with a high share of
intermittent renewable energy. Short-term gas storage in nat-
ural gas pipelines, known as linepack, provides an additional
source of flexibility [1] at no extra investment cost. Efficient
procurement of flexibility from the natural gas system during
day-ahead scheduling of power systems requires consideration
of the operational constraints of the natural gas system.
Further, with the increasing share of intermittent renewable
energy sources in the power system, the need for flexibility and
thereby, the interdependence between power and natural gas
systems is becoming stronger [2]. As a result, the coordination
between power and natural gas systems during the day-ahead
dispatch has been a topic of research interest in recent years.
For example, various levels of coordination and information
exchange between the systems are discussed in [3], [4], while
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Institute for Technological Research (VITO) and scholarship from Technical
University of Denmark (DTU). The work of A. Schwele and J. Kazempour
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[5], [6], [7], [8], [9] model full integration of the power
with the natural gas system. The value of gas system related
flexibility for the power system is quantified in [6] and [7] in
a deterministic manner.

Increasing interactions between power and natural gas sys-
tems, however, result in the propagation of short-term uncer-
tainty faced by power systems to the gas side. Prior works on
the coordinated operation of power and natural gas systems
have largely ignored this short-term uncertainty. This may
result in additional recourse actions necessary during the real-
time operation stage when the flexibility from the natural gas
system is not correctly anticipated. Affine policies, built on the
theory of linear decision rules, have been a preferred choice for
day-ahead decision making, wherein nominal dispatch sched-
ules along with the recourse actions for real-time operation
are optimally decided [10]. In this paper, we introduce a
unified framework to elicit flexibility based on affine policies
from agents, e.g., power producers, natural gas suppliers as
well as the network assets, i.e., linepack. Our affine policies
are decided based on the features of uncertainty drawn from
the historical measurements, with no distributional restriction
imposed on the random variables.

Previous works discussing uncertainty-aware coordination
between power and natural gas systems use stochastic pro-
gramming approaches such as scenario-based [5], robust [8],
and chance-constrained optimization [9]. Reference [5] pro-
poses a two-stage stochastic program for the day-ahead and
real-time operations of integrated power and natural gas sys-
tem under uncertainty from renewable generation. In a similar
direction, a robust dispatch framework is proposed in [8]
which models uncertainty through intervals and extreme sce-
nario approximation. Chance-constraints are introduced into
the planning problem of the integrated power and natural gas
system [9]. While scenario-based approaches [5] incur a high
computational expense due to a large number of scenarios
needed to characterize the uncertainty properly, robust ap-
proaches [8] often suffer from over-conservativeness of the
solution due to the design objective to minimize worst-case
cost. Distributionally robust chance-constrained formulation of
the problem [11] allows for a tunable probabilistic violation
of operational limits when facing extreme realizations of
uncertainty which is characterized by an ambiguity set.



In this work, we adopt a distributionally robust chance-
constrained optimization technique, considering its advantages
over other stochastic programming approaches [11], to intro-
duce a coordinated day-ahead dispatch of power and natural
gas systems taking the flexibility provided by linepack into
account. To the best of our knowledge, this is the first paper
to bring linepack flexibility to the day-ahead dispatch problem,
while modeling and mitigating the short-term uncertainty
propagated from the power system to the natural gas system.
Studying this uncertainty propagation opens new pathways
for the endogenous valuation of the natural gas network as
a provider of short-term flexibility to power systems. This
could potentially result in the design of new market-based
coordination mechanisms and market products enabling gas
system agents and the network to play an active role in pro-
viding flexibility to the power system. From a methodological
perspective, our main contribution is a tractable reformulation
of distributionally robust chance constraints for the combined
power and gas dispatch problem considering linepack.

The rest of this paper is organized as follows: Section II
presents the distributionally robust chance-constrained power
and natural gas dispatch problem. Section III discusses the
solution methodology, which is then applied to a case study
in Section IV. Finally, conclusions are drawn and the avenues
for future work are discussed in Section V.

II. PROBLEM FORMULATION

A. Preliminaries

In the following, we introduce the operation of a coupled
power and natural gas system, wherein power generated from
dispatchable power plants i ∈ I and wind farms j ∈ J is used
to meet the inelastic electricity demand from a set of loads
d ∈ D. The dispatchable generators comprise of NGFPPs
i ∈ G and non-NGFPPs i ∈ C, such that G∩C = ∅ and G∪C =
I. On the gas side, natural gas suppliers k ∈ K, together with
available linepack in the gas network, are dispatched to meet
the natural gas demand from inelastic gas loads and the fuel
needed by NGFPPs. The non-linear and non-convex power
and gas flow equations are convexified using DC power flow
approximation and second-order cone relaxation, respectively.
We assume that wind power is available at zero marginal cost
of production. Power produced by wind farms during real-time
operation is the sole uncertainty source considered.

B. Uncertainty Model

For wind farm j, the day-ahead point forecast for time
period t ∈ T is given by W PF

j,t . The forecast error observed
in real-time is assumed to be a random variable δj,t, such
that the overall system uncertainty can be characterized by
Ω = [δ11 δ21 . . . δ|J |t . . . δ|J ||T |]> ∈ R|J ||T |, where R is
the set of real numbers and | · | is the cardinality operator over
a set. We consider that Ω follows an unknown multivariate
probability distribution P ∈ Π, where Π is an ambiguity set
defined as

Π = {P ∈ Π0(R|J |) : EP[Ω] = µΠ,EP[ΩΩ>] = ΣΠ}, (1)

such that the family of distributions, Π0(R|J |) contains all
probability distributions whose first and second-order mo-
ments are given by known parameters µΠ ∈ R|J ||T | and
ΣΠ ∈ R|J ||T |×|J ||T |, respectively. Further, EP[·] denotes
expectation with respect to the distribution P and (·)> is
the transpose operator. Without any loss of generality, we
assume that the mean µΠ = 0 and that the covariance
matrix ΣΠ can be empirically estimated from historical record
of wind forecast errors. The structure of the positive semi-
definite covariance matrix, ΣΠ is such that its diagonal blocks,
comprised of sub-matrices, ΣΠ

t ∈ R|J |×|J |,∀t ∈ T , capture
the spatial correlation among the wind forecast errors in period
t, while the off-diagonal blocks contain information about
spatio-temporal correlation of the uncertain parameters.

With this description of uncertain wind forecast errors, the
net deviation from the point forecasts of all wind farms in the
time period t is e>Ωt where e ∈ R|J | is a vector of all ones.
The temporally collapsed random vector is formed as: Ωt =
FtΩ, where Ft ∈ R|J |×|J ||T | is a selector matrix formed by
blocks of null matrices 0 ∈ R|J |×|J | and a single block of
identity matrix 1 ∈ R|J |×|J |, starting at column (|J |(t−1)+
1), ∀t ∈ T . As a sign convention, e>Ωt > 0 implies deficit of
wind power available in the system during real-time operation
stage as compared to the day-ahead forecast.

C. Uncertainty-Aware Power and Natural Gas Coordination

The proposed day-ahead coordinated electricity and natural
gas model is a stochastic program, presented in (2) in the
following. The objective function has a min-max structure such
that the total expected system dispatch cost is minimized while
the uncertain variable Ω draws from a probability distribution
P ∈ Π that results in maximizing the expected cost of dispatch,
i.e., the worst-case probability distribution.

min
Θ1

max
P∈Π

EP

[∑

t∈T

(∑

i∈C
CE
i p̃i,t +

∑

k∈K
CG
k g̃k,t

)]
(2a)

subject to

e>p̃t + e>(WPF
t − Ωt) = e>DE

t , ∀t, (2b)

P̃inj
t = ΨIp̃t + ΨJ(W

PF
t − Ωt)−ΨDDE

t , ∀t, (2c)

min
P∈Π

P[{ΨP̃inj
t }(n,r) ≥ −{F}(n,r)]

≥ (1− εnr), ∀(n, r) ∈ L, ∀t, (2d)

min
P∈Π

P[{ΨP̃inj
t }(n,r) ≤ {F}(n,r)]

≥ (1− εnr), ∀(n, r) ∈ L, ∀t, (2e)
min
P∈Π

P[p̃i,t ≥ P i] ≥ (1− εi), ∀i, ∀t, (2f)

min
P∈Π

P[p̃i,t ≤ P i] ≥ (1− εi), ∀i, ∀t, (2g)

min
P∈Π

P[g̃k,t ≥ Gk] ≥ (1− εk), ∀k, ∀t, (2h)

min
P∈Π

P[g̃k,t ≤ Gk] ≥ (1− εk), ∀k, ∀t, (2i)

min
P∈Π

P[p̃rm,t ≥ PRm] ≥ (1− εm), ∀m, ∀t, (2j)

min
P∈Π

P[p̃rm,t ≤ PRm] ≥ (1− εm), ∀m, ∀t, (2k)



min
P∈Π

P[p̃ru,t ≤ Γm,u p̃rm,t] ≥ (1− εmu),

∀(m,u) ∈ Zc, ∀t, (2l)
min
P∈Π

P[q̃m,u,t ≥ 0] ≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (2m)

min
P∈Π

P[q̃in
m,u,t ≥ 0] ≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (2n)

min
P∈Π

P[q̃out
m,u,t ≥ 0] ≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (2o)

q̃2
m,u,t = K2

m,u(p̃r2
m,t − p̃r2

u,t), ∀(m,u) ∈ Z, ∀t, (2p)

q̃m,u,t =
q̃in
m,u,t + q̃out

m,u,t

2
, ∀(m,u) ∈ Z, ∀t, (2q)

h̃m,u,t = Sm,u
p̃rm,t + p̃ru,t

2
, ∀(m,u) ∈ Z, ∀t, (2r)

h̃m,u,t = H0
m,u + q̃in

m,u,t − q̃out
m,u,t,∀(m,u) ∈ Z, t = 1, (2s)

h̃m,u,t = h̃m,u,(t−1) + q̃in
m,u,t − q̃out

m,u,t,

∀(m,u) ∈ Z, t > 1, (2t)

min
P∈Π

P[h̃m,u,t ≥ H0
m,u] ≥ (1− εmu),

∀(m,u) ∈ Z, t = |T |, (2u)∑

k∈AK
m

g̃k,t −
∑

i∈AG
m

φi p̃i,t

−
∑

u:(m,u)∈Z
(q̃in
m,u,t − q̃out

u,m,t) = DG
m,t, ∀m, ∀t, (2v)

where the set of stochastic variables is Θ1={p̃i,t, g̃k,t, p̃rm,t,
q̃m,u,t, q̃in

m,u,t, q̃
out
m,u,t, h̃m,u,t}. The terms in objective (2a) are

the expected cost of power generation by non-NGFPPs and
the cost of natural gas supply by gas suppliers derived from
marginal production cost CE

i and CG
k , respectively.

The inequalities (2d)-(2o) and (2u) are modeled as distribu-
tionally robust chance constraints. This means that at the op-
timal solution to problem (2), the probability of meeting each
individual constraint inside the square brackets P[·] is modeled
to have a confidence level of at least (1 − ε(·)), where each
ε(·) lies within 0 and 1, i.e., ε(·) ∈ [0, 1]. Subscripts (·) take
the appropriate indices from the set {i, (n, r), k, m, (m,u)}
depending on the individual constraint.

Constraints (2b)-(2g) pertain to the power system. These
constraints include the power balance (2b), limits on the
stochastic power flows in the transmission lines (2c)-(2e) and
the upper (P i) and lower bounds (P i) on the stochastic power
production of generators (2f) and (2g). Vectors p̃t ∈ R|I|,
WPF

t ∈ R|J | and DE
t ∈ R|D| represent the power produced

by generators, wind forecasts for wind farms and electricity
demand from loads in period t, while Ωt is the random vector
of forecast errors, as previously defined. Vector coefficients,
e in (2b) are of appropriate dimensions such that the total
supply and demand are balanced in each period t. The matrix
Ψ ∈ R|L|×|N| represents the Power Transfer Distribution
Factor (PTDF) matrix, derived from the reactances of power
transmission lines [12], which maps the injections P̃inj

t ∈ R|N |
at the electricity nodes to the power flows in each of the
power lines (n, r) ∈ L respecting capacity limits F in the
network. Similarly, matrices ΨI ∈ R|N |×|I|, ΨJ ∈ R|N |×|J |,

and ΨD ∈ R|N |×|D| map generators, wind farms and loads
to the electricity nodes, such that (2c) gives the nodal power
injections for all electricity nodes in the system.

Natural gas system constraints are given in (2h)-(2u). While
constraints (2h) and (2i) limit the stochastic gas supply g̃k,t by
supplier k in time period t to Gk and Gk, (2j) and (2k) limit
the nodal gas pressure p̃rm,t at each gas node m ∈M to be
within the physical limits PRm and PRm. For the natural gas
pipelines with compressors, Zc ⊂ Z , compression is modeled
linearly in (2l), which relate the inlet and outlet pressures
of two adjacent nodes through compression factor Γm,u.
We consider that the direction of gas flow in each pipeline
(m,u) ∈ Z is predetermined and (2m)-(2o) enforce this flow
direction in real-time. As remarked in [1], this assumption is
non-limiting for the high-pressure, gas transmission networks
when considering day-ahead operational problems. On the
contrary, it can be a limiting assumption while considering
a network expansion planning problem or a gas distribution
system wherein injections from distributed gas producers (e.g.,
biogas plants) cannot be neglected1. Equality constraints (2p),
known as Weymouth equation, describe the flow q̃m,u,t (given
by (2q) as the average of inflow, q̃in

m,u,t and outflow, q̃out
m,u,t)

along pipeline (m,u) as a quadratic non-convex function of
the pressures p̃rm,t and p̃ru,t at the inlet (m) and outlet
(u) nodes of the pipeline scaled by the pipeline resistance
constant Km,u. Constraints (2r) define the amount of linepack
in the pipelines as the average of inlet and outlet pressures,
scaled by the pipeline parameter Sm,u. Following the modeling
approach in [7], (2s)-(2u) describe the evolution of the amount
of linepack h̃m,u,t in a pipeline over time, with (2u) ensuring
that the linepack is not depleted at the end of the simulation
horizon beyond initial linepack amount H0

m,u. Supply-demand
balance of natural gas at each node is ensured in real-time
by equality constraints (2v) which also couple the power and
natural gas systems through the fuel consumed by the NGFPPs
scaled by a fuel conversion factor φi. The sets AK

m ⊂ K and
AG
m ⊂ G collect gas suppliers and NGFPPs that are located at

node m, respectively, while DG
m,t is the nodal gas demand.

The requirement to solve the stochastic program (2) during
the day-ahead stage renders the problem infinite dimensional,
as the optimization variables are a function of uncertain
parameters that are only revealed during real-time operation
on the next day. To enable solvability of the problem, we
adopt recourse actions based on linear decision rules [13]
for the sources of flexibility in the coupled system, i.e.,
flexible power generation and natural gas supply and linepack.
The assumption of affine response to uncertainty by flexible
agents, although somewhat limiting in light of the non-linear
dynamics of natural gas flow in the network, provides an
intuitive understanding of the methodology behind uncertainty
propagation from power system to natural gas system at a
lower complexity of exposition. Generalized decision rules,
for instance as discussed in [14], are left for future work.

1The assumptions on fixed gas flow directions may be violated in extreme
uncertainty realizations.



D. Affine Policies

When solving the day-ahead dispatch problem, flexible and
adjustable agents in the coupled system, i.e., power producers
and gas suppliers, are assigned optimal affine policies in addi-
tion to the nominal schedule. These affine policies govern their
response to the realizations of uncertainty in wind forecast
errors during the real-time operation.

a) Power producers: The affine response from dispatch-
able power plants (NGFPPs and non-NGFPPs) is given by

p̃i,t = pi,t + (e>Ωt)αi,t, ∀i ∈ I, ∀t (3)

where p̃i,t is the stochastic power production of unit i in real-
time, pi,t is the nominal power production schedule if the
uncertainty were absent (perfect forecasts) and αi,t ∈ [−1, 1]
denotes the participation factor of the unit towards mitigation
of the deviation.

b) Gas suppliers: The stochastic natural gas supply by
supplier k is given by

g̃k,t = gk,t + (e>Ωt)βk,t, ∀k ∈ K, ∀t (4)

where gk,t is the nominal gas supply and βk,t is the partici-
pation factor of the supplier towards uncertainty mitigation.

The response to uncertainty by flexible network asset, i.e.,
linepack, is not directly adjustable as it depends on the
allocation of the above affine policies, subject to the topology
of the gas network and the physical gas flow constraints.

E. Uncertainty Response by Power and Gas Networks

Here, we discuss how uncertainty affects the flows in the
power and gas networks. We consider the case of imperfect
forecasts, i.e., e>Ωt 6= 0.

During the real-time operation, power flows in the trans-
mission lines, modeled by (2c)-(2e) change depending on
the realized uncertainty Ωt, the affine responses of power
producers αi,t, and the spatial configuration of wind farms
and power producers. Moreover, given the response from
dispatchable power plants αi,t, the power balance constraint
(2b) holds true for any realization of uncertainty Ωt iff

e>pt + e>WPF
t = e>DE

t , ∀t, (5a)

e>αt = 1, ∀t. (5b)

Constraints (5) are derived from (2b) by separating the nominal
and uncertainty-dependent terms.

On the gas side, the uncertainty in gas flows, in response to
changes in gas supply βk,t and in fuel demand from NGFPPs
φiαi,t, ∀i ∈ G, is mitigated by the flexibility provided by
linepack. It is vital to note that the real-time natural gas flows
and nodal pressures are functions of βk,t and αi,t, ∀i ∈ G.
However, the analytical derivation of this relationship is not
straightforward, given the non-linear gas flow dynamics and
the inter-temporal linkages associated with the linepack model.
As a simplification, we model the flow and pressure changes

as affine functions of uncertainty2. We model the real-time
natural gas flows in the pipelines as

q̃m,u,t = qm,u,t + (e>Ωt)γm,u,t, ∀(m,u) ∈ Z, ∀t, (6a)

q̃in
m,u,t = qin

m,u,t + (e>Ωt)γ
in
m,u,t, ∀(m,u) ∈ Z, ∀t, (6b)

q̃out
m,u,t = qout

m,u,t + (e>Ωt)γ
out
m,u,t, ∀(m,u) ∈ Z, ∀t, (6c)

where qm,u,t, qin
m,u,t, q

out
m,u,t denote the average flow rate, in-

flow and outflow rate of natural gas in the pipeline connecting
nodes m and u, in absence of forecast errors and the variables
γm,u,t, γ

in
m,u,t, γ

out
m,u,t represent the auxiliary variables which

model changes in these flow rates during real-time.
Consequently, the nodal balance constraint for natural gas

(2v) holds true for any realization of uncertainty Ωt iff
∑

k∈AK
m

gk,t −
∑

i∈AG
m

φi pi,t

−
∑

u:(m,u)∈Z
(qin
m,u,t − qout

u,m,t) = DG
m,t, ∀m, ∀t, (7a)

∑

k∈AK
m

βk,t −
∑

i∈AG
m

φiαi,t

−
∑

u:(m,u)∈Z
(γin
m,u,t − γout

u,m,t) = 0 ∀m, ∀t. (7b)

Constraints (7) are derived by separating the nominal and
uncertainty-dependent terms in (2v). Following a similar ap-
proach, (2q), ∀(m,u) ∈ Z, ∀t, decomposes into

qm,u,t =
qin
m,u,t + qout

m,u,t

2
; γm,u,t =

γin
m,u,t + γout

m,u,t

2
. (8)

We model real-time pressures at gas nodes as

p̃rm,t = prm,t + (e>Ωt)ρm,t, ∀m, ∀t, (9)

where prm,t and ρm,t denote the nominal pressure and the
auxiliary variable that models the change in pressure at node
m in real-time, respectively. This allows us to expand the
Weymouth equation in (2p) as, ∀(m,u) ∈ Z, ∀t,

(q2
m,u,t + (e>Ωt)

2γ2
m,u,t + 2(e>Ωt)γm,u,tqm,u,t) =

K2
m,u(pr2

m,t − pr2
u,t) + (e>Ωt)

2K2
m,u(ρ2

m,t − ρ2
u,t)

+ 2(e>Ωt)K
2
m,u(ρm,tprm,t − ρu,tpru,t). (10)

Separating terms that are independent of, quadratically- and
linearly-dependent on uncertainty in (10), it can be replaced
by the equalities (11) that must hold true for any realization
of the uncertainty3. For pipelines ∀(m,u) ∈ Z, ∀t,

q2
m,u,t = K2

m,u(pr2
m,t − pr2

u,t), (11a)

γ2
m,u,t = K2

m,u(ρ2
m,t − ρ2

u,t), (11b)

γm,u,tqm,u,t = K2
m,u(ρm,tprm,t − ρu,tpru,t). (11c)

2In future works, the simplified approach adopted in this paper must be
enhanced by considering the true, non-linear analytical relationship of changes
in real-time flows and nodal pressures to the affine policies.

3Modeling of uncertainty propagation to physical variables such as q̃m,u,t

and p̃rm,t by estimating sensitivities using Taylor series expansion around the
forecast has recently been applied to AC optimal power flow (see, e.g., [15]).
Since we solve the dispatch problem in day-ahead, wherein uncertainty around
the forecast point is non-negligible, we cannot justify such a sensitivity-based
approach.
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Fig. 1. Coordinated power and natural gas day-ahead dispatch

In addition to the Weymouth equations, the auxiliary variables
for flow changes (γm,u,t, γin

m,u,t, γ
out
m,u,t) and pressure changes

(ρm,t) are coupled by the equality constraints (2r)-(2t) that
govern the amount of linepack and evolution of linepack in the
pipelines. On separating nominal and uncertainty-dependent
terms, these constraints should hold true for any realization of
Ωt iff the equalities (12) hold. For pipelines ∀(m,u) ∈ Z ,

hm,u,t = H0
m,u + qin

m,u,t − qout
m,u,t, t = 1, (12a)

hm,u,t = hm,u,(t−1) + (qin
m,u,t − qout

m,u,t), t > 1, (12b)
Sm,u

2
(ρm,t + ρu,t − ρm,(t−1) − ρu,(t−1))

= (γin
m,u,t − γout

m,u,t), t > 1, (12c)

where hm,u,t is the nominal linepack in the pipeline in case
perfect forecasts of wind power production were to be realized.
It is worth noting that, considering the initial linepack amount
H0
m,u is uncertainty-independent, constraint (2s) decomposes

solely as (12a). Whereas the linepack amount in hours t > 1,
given by (2t), decomposes as nominal (12b) and uncertainty-
dependent (12c) equalities, which govern the change in nom-
inal linepack amount and the response to uncertainty during
real-time operation, respectively.

F. Power and Natural Gas Coordination with Affine Policies

In the following we present a finite-dimensional solvable
approximation of the stochastic program (2), under the strategy
of affine response to uncertainty. As shown in Fig. 1, this day-
ahead problem is solved by a central system operator.

min
Θ2

∑

t∈T

(∑

i∈C
CE
i pi,t +

∑

k∈K
CG
k gk,t

)
(13a)

subject to

min
P∈Π

P[pi,t + (e>Ωt)αi,t ≥ P i] ≥ (1− εi), ∀i, ∀t, (13b)

min
P∈Π

P[pi,t + (e>Ωt)αi,t ≤ P i] ≥ (1− εi), ∀i, ∀t, (13c)

min
P∈Π

P[gk,t + (e>Ωt)βk,t ≥ Gk] ≥ (1− εk), ∀k, ∀t, (13d)

min
P∈Π

P[gk,t + (e>Ωt)βk,t ≤ Gk] ≥ (1− εk), ∀k, ∀t, (13e)

min
P∈Π

P[prm,t + (e>Ωt)ρm,t ≥ PRm] ≥ (1− εm),∀m,∀t, (13f)

min
P∈Π

P[prm,t + (e>Ωt)ρm,t ≤ PRm]

≥ (1− εm), ∀m, ∀t, (13g)

min
P∈Π

P[(pru,t − Γm,u prm,t) + (e>Ωt)(ρu,t (13h)

− Γm,u ρm,t) ≤ 0] ≥ (1− εmu), ∀(m,u) ∈ Zc, ∀t, (13i)

min
P∈Π

P[qm,u,t + (e>Ωt)γm,u,t ≥ 0]

≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (13j)

min
P∈Π

P[qin
m,u,t + (e>Ωt)γ

in
m,u,t ≥ 0]

≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (13k)

min
P∈Π

P[qout
m,u,t + (e>Ωt)γ

out
m,u,t ≥ 0]

≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (13l)

min
P∈Π

P[hm,u,t + Sm,u(e>Ωt)
ρm,t + ρu,t

2
≥ H0

m,u]

≥ (1− εmu), ∀(m,u) ∈ Z, t = |T |, (13m)
(2c) - (2e), (5), (7), (8), (11), (12), (13n)

where the optimization variables are Θ2 = { pi,t, αi,t, gk,t,
βk,t, prm,t, ρm,t, qm,u,t, γm,u,t, q

in
m,u,t, γ

in
m,u,t, q

out
m,u,t, γ

out
m,u,t,

hm,u,t}. The expectation term in objective (2a) reduces to
(13a) on account of the zero-mean assumption of Ωt. As
discussed in [16] for programs with a similar structure, the
stochastic program (13) is computationally intractable due
to the probabilistic distributionally robust chance constraints.
To achieve tractability, a convex second-order cone (SOC)
approximation of the non-convex individual distributionally
robust chance constraints is adopted. Furthermore, the non-
convex quadratic equality constraints (11) representing the
Weymouth equation for the uncertainty-aware gas flows re-
quire convexification. The approach towards solving (13) along
with its final tractable form is discussed in the next section.

III. SOLUTION APPROACH

A. SOC Reformulation of Probabilistic Constraints
For distributionally robust individual chance constraints

under the assumption of known first and second-order mo-
ments of the underlying probability distribution, [17, Theorem
2.2] provides a SOC approximation based on a variant of
Chebyshev’s Inequality. While interested readers are directed
to [17] for a proof, convex reformulation of constraint (13c)
is presented below as an illustration.

With ΣΠ
t ∈ R|J |×|J | as the t-th diagonal sub-matrix of the

covariance matrix ΣΠ in time period t and e ∈ R|J | denoting
a vector of all ones, the probabilistic chance constraints (13c)
can be approximated by the following SOC constraints:
√

1− εi
εi

∥∥∥αi,te>(ΣΠ
t )1/2

∥∥∥
2
≤ −pi,t + P i, ∀i, ∀t. (14)

Similar reformulation is performed for the other distribution-
ally robust chance constraints in (13). References [18] and [19]
remark that such conic reformulation based on Chebyshev’s
Inequality results in over-conservative solutions as εi → 0
while approaching infeasibility for εi ≈ 0. Exact reformulation
of such chance constraints improving on this issue has been
recently proposed in [18]. However, since the focus of this
work is on uncertainty-aware coordination between electricity
and natural gas systems, our formulation is limited to the conic
approximation. We ensure that large enough risk measures
ε(·) are considered in the case study (Section IV) such that
infeasibility is avoided.



TABLE I
VARIABLE BOUNDS FOR MCCORMICK RELAXATION.

Variable Lower bound Upper bound

prm,t PRm PRm

ρm,t −(PRm − PRm)/Ŵ (PRm − PRm)/Ŵ

qm,u,t 0 Q

γm,u,t −Q/Ŵ Q/Ŵ

B. Convex Relaxation of Weymouth Equation

The non-convex quadratic equality constraints in (11a) can
be equivalently written as

q2
m,u,t ≤ K2

m,u(pr2
m,t − pr2

u,t), ∀(m,u) ∈ Z, ∀t, (15a)

q2
m,u,t ≥ K2

m,u(pr2
m,t − pr2

u,t), ∀(m,u) ∈ Z, ∀t. (15b)

To relax (11a), we adopt the convex SOC constraints (15a) and
drop the non-convex constraints (15b)4. The tightness of this
relaxation is analyzed in [20] and will be further examined
in Section IV. Note that (11b) can be convexified in the
same manner. However, this convexification strategy cannot
be applied to (11c). We adopt McCormick relaxation [21],
defining rectangular envelopes around the bi-linear terms in
(11c) based on the known and estimated bounds on variables.
We first define auxiliary variables νm,t for gas nodes m ∈M
and λm,u,t for the pipelines (m,u) ∈ Z, ∀t and then replace
(11c) by the following set of constraints:

λm,u,t −K2
m,uνm,t +K2

m,uνu,t = 0, ∀(m,u) ∈ Z, ∀t, (16a)
λm,u,t = qm,u,tγm,u,t,∀(m,u) ∈ Z,∀t, (16b)
νm,t = prm,tρm,t, ∀m, ∀t, (16c)

νu,t = pru,tρu,t, ∀u : (m,u) ∈ Z, ∀t. (16d)

To illustrate the McCormick relaxation, the inequalities that
replace the non-convex constraints (16c) are

∀m, t





ρLm,tprm,t + prLm,tρm,t ≤ νm,t + prLm,tρ
L
m,t

ρUm,tprm,t + prUm,tρm,t ≤ νm,t + prUm,tρ
U
m,t

ρLm,tprm,t + prUm,tρm,t ≥ νm,t + prUm,tρ
L
m,t

ρUm,tprm,t + prLm,tρm,t ≥ νm,t + prLm,tρ
U
m,t,

(17)

where superscripts L and U indicate lower and upper bounds
of the variables, respectively. Constraints (16b) and (16d) are
treated similarly. The variable bounds used to construct the
McCormick envelopes are listed in Table I. Parameter Ŵ is
the total installed wind capacity in the system and parameter
Q denotes the upper bound on gas flow in the pipelines, which
we obtain by solving a deterministic version of problem (2)
with e>Ωt = 0. The bounds for network response variables,
γm,u,t and ρm,u,t are trivially deduced from equations (6a)
and (9), respectively.

Following the convex approximation of probabilistic con-
straints and relaxation of Weymouth equations, the tractable

4Linear approximations of the dropped non-convex constraints, as proposed
by [1] in a deterministic setting, may also be included to the problem.

form of the distributionally robust chance-constrained day-
ahead coordinated power and natural gas dispatch is presented
in Appendix A. Problem (20) is a convex second-order cone
program (SOCP) and is solvable using off-the-shelf convex
optimization solvers.

IV. CASE STUDY

A. Input Data

A coupled power and natural gas system consisting of a
12-node gas network connected to the IEEE 24-bus reliability
test system [5] is used to evaluate our proposed coordinated
dispatch. The installed wind capacity reaches one-thirds of
the peak demand in the simulation horizon of 24 hours. Data
for the parameters of the power and natural gas networks
and for the operational characteristics of all assets in the
system are provided in online appendix [22]. A dataset of
1,000 zero-mean wind forecast error scenarios based on actual
measurements recorded in Western Denmark [23] is used to
empirically estimate the covariance matrix ΣΠ. The param-
eters ε(·) for all distributionally robust chance constraints in
(20) are set to identical values.

The problem is implemented in Julia v1.1.1 modeled with
JuMP v0.2 and solved to optimality by Mosek v9.0 with an
average CPU time of 1.67 seconds on a personal computer
with 8GB memory running on Intel Core i5 clocked at 2.3
GHz. The optimal solution provides nominal dispatch schedule
as well as affine policies that quantify the response to uncertain
wind realizations during real-time.

B. Optimal Affine Policies

In Fig. 2, we show the optimal allocations from the dis-
tributionally robust chance-constrained day-ahead coordinated
power and natural gas model (20) for violation probabilities
ε(·) set to 0.05. Fig. 2(a) shows the nominal dispatch of NGF-
PPs and non-NGFPPS to meet the forecasted net electricity
demand, i.e., load minus wind production forecast, while Fig.
2(b) shows their affine responses to uncertainty. Similarly,
Figs. 2(c)-(d) present the nominal schedule and the response
policies for the three gas suppliers. We highlight our main
observations in the following.

First, when power producers and gas suppliers are either
dispatched not at all or at full capacity, they are not eligible to
adjust their output to mitigate uncertainty. Thus, the response
policies for these units are zero. As a result, expensive
generators, which are not dispatched in hours with low net
demand, are assigned zero αi in these hours. Similarly, the
most expensive gas supplier (k3) is not expected to respond to
uncertainty in hours 1-13, while not dispatched. On the other
hand, the least expensive gas supplier (k1) cannot provide a
response to uncertainty in hours 1-10, because her nominal
dispatch is already at maximum capacity.

Second, NGFPPs are the main providers of flexibility in
response to wind uncertainty during hours 8-24, see Fig. 2(b).
Although the volatility of gas demand from NGFPPs can
be mitigated by linepack, gas suppliers are also required to
respond to uncertainty, especially in hours 14-24, see Fig. 2(d).
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Fig. 2. Optimal dispatch and affine policies for ε(·) = 0.05 for the simulation
horizon of 24 hours.

Not only the availability and cost structure of power and gas
supply, but also network effects impact the optimal response.
The spatial correlations of uncertain wind forecasts and loca-
tion of flexibility providers in both power and gas networks
affect the response policies. An example of network effects is
the allocation of affine policies in hour 4 in Fig. 2(b). Here,
flexibility is provided not only with respect to cost efficiency,
but also considering locational benefits and preferable energy
flow effects.

C. Choice of Violation Probabilities ε(·)
To evaluate the quality of the solution obtained and to make

an informed choice for ε(·), we perform ex-ante simulations
using a test dataset of wind realization scenarios, distinct
from those used to estimate the covariance matrix. With
fixed day-ahead decisions, i.e., nominal production schedules
and affine policies, we compute the violation probability of
the distributionally robust chance constraints (13b)-(13m) and
(2d)-(2e) for a choice of ε(·) as

ηε =
1

Ns

Ns∑

s=1

Is. (18)

The indicator function Is takes a value 1 if at least one of these
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Fig. 3. Day-ahead dispatch cost (left y-axis) with values of ε(·) chosen for
the distributionally robust chance constraints is shown by line with markers .
The ex-ante violation probability (right y-axis) of these constraints, evaluated
for 1,000 test samples, is shown in bars.

constraints is violated for the wind realization that corresponds
to scenario s. Referring to the left-hand y-axis, the lineplot
in Fig. 3 shows the expected cost of day-ahead dispatch
at various values of confidence levels (1 − ε(·)) imposed
on the probabilistic constraints. With a higher confidence
of meeting the constraints, the expected cost of day-ahead
dispatch increases. The bars, which refer to the right-hand
y-axis, show the ex-ante violation probability computed at
selected confidence level values. For ε(·) = 0.05, an ex-
ante violation probability of 0.003 is expected at a day-ahead
expected dispatch cost of $1,580,000.

D. Ex-Ante Violation Probabilities

Next, we analyse the violation probabilities (18) for each
of the following chance-constraints: I. generator bounds (13b)
and (13c), II. line flow limits (2d) and (2e), III. non-depletion
of linepack in pipelines requirement (13m), IV. natural gas
flow direction constraints (13j)-(13l), V. nodal gas pressure
bounds (13f) and (13g), and VI. gas supplier bounds (13d)
and (13e). Fig. 4 shows the probability of violation of these
individual constraints for different choices of ε(·).

Power generation limits (13b) and (13c) are most susceptible
to violation at all values of ε(·). Power transmission lines
are not prone to reaching their operational limits. We do not
observe any violation probability of power flow limits until
decreasing the confidence level to 0.75. On the gas side, the
constraints of gas flow directions (13j)-(13l) are susceptible
to violations, causing the dependent nodal pressure limits
(13f) and (13g) to be violated as well. On the one hand,
this can be explained by the relaxation gap for the gas flow
equations, which is discussed in detail in the following. On
the other hand, this motivates future work to consider bi-
directional gas flows, specially in the context of flexibility
provision by linepack, albeit at the cost of losing convexity
due to introduction of integer variables. The non-depletion of
linepack constraints are, however, satisfied even at ε(·) = 0.25.
This indicates that there is enough short-term gas storage
available in the gas pipelines such that they are not depleted
at the end of the day while providing flexibility to the power
system. Notably, these outcomes and resulting inferences are
system-specific.
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(c) McCormick Relaxation of (11c)
Fig. 5. Normalized relaxation gap for the convex relaxations adopted for
Weymouth equation in (11) for ε(·) = 0.05.

E. Tightness of Convex Relaxations

We examine the tightness of the relaxation for the non-
convex Weymouth equation (11) by comparing the left-hand
and right-hand sides of each of these equality constraints. We
define the normalized root mean square relaxation gap Ξ for
the original equality constraint Xm,u,t = Ym,u,t,∀(m,u) ∈
Z, ∀t relaxed to Xm,u,t ≤ Ym,u,t,∀(m,u) ∈ Z, ∀t as

Ξ =

[
1

|Z||T |
∑

t∈T

∑

z∈Z

(
Y ∗m,u,t −X∗m,u,t

Y ∗m,u,t

)2
] 1

2

, (19)

where superscript ∗ indicates values obtained at optimality.
For ε(·) = 0.05, we observe a Ξ-value of 0.78, 1.67 and 2.87
for (11a), (11b) and (11c), respectively.

Fig. 5 presents heatmaps of the normalized root mean square
relaxation gap Ξ for each gas pipeline in each hour of the sim-
ulation horizon for ε(·) = 0.05. The occurrence of relaxation
gap is lower for constraint (11a) than for (11b). While the
relaxation of constraint (11a) seems to be sufficiently tight in
Fig. 5(a), the relaxation of (11b) is not always exact, see Fig.
5(b). The relaxation gap is particularly extant in hours 1-6. The
structure of the gas network, which is non-radial and cyclical,
and the inter-temporal dynamics of linepack contribute to the

lack of tightness of the relaxations. Conditions for exactness
of the relaxation of the Weymouth equation can be found
in [20] and [24], while approaches for tightening these SOC
relaxations are proposed in [1] and [25]. For the McCormick
relaxation of constraint (11c) the relaxation gap occurs very
frequently and with high severity, see Fig. 5(c). Adversely
negative values of γ and/or ρ in the bilinear terms lead to
normalized relaxation gaps even larger than 1. Improvements
on this approach, such as iterative tightening of the bounds or
by convex quadratic enhancement of McCormick relaxation as
proposed in [26], will be considered in future works. However,
in the context of the proposed coordinated day-ahead dispatch,
the tightness of the relaxation is of limited importance, since
an additional gas flow feasibility problem [24] is expected to
be solved closer to real-time by the gas network operator.

V. CONCLUSION AND FUTURE PERSPECTIVES

A. Conclusion

We proposed a distributionally robust chance-constrained
coordination of power and natural gas systems to study the
propagation of uncertainty from the power to the gas side.
Our tractable reformulation of the stochastic program, using
recourse actions from the flexible agents in the coupled system
and adopting a simplified model for real-time gas flows and
nodal pressures, results in a convex SOCP. Ex-ante out-of-
sample evaluations are used to demonstrate the quality of
the solution while highlighting a trade-off between dispatch
cost and violation probability, which influences the choice of
allowable violation probabilities. The proposed coordination
model enables efficient harnessing of short-term flexibility
from the assets in natural gas networks for power systems
facing uncertainty. Analysis of the optimal affine policies
highlights that our proposed approach enables cost-efficient
dispatch and allocation of flexibility across energy sectors
facing spatio-temporal effects of uncertainty.

B. Future Perspectives

For future works, detailed out-of-sample simulation studies
should be undertaken to better understand the quality of
optimal affine responses. Studying the impact of the response
policies on the feasibility of the physical constraints of power
and natural gas networks in real-time operation and testing
the severity of allowed constraint violations are of interest.
Convexity-preserving algorithms that tighten the relaxation of
gas flow equations can be employed in future works. Further,
power-to-gas units that provide additional inter-sectoral flexi-
bility could be included in the model.

Analyzing the proposed coordination in a market context
wherein payments for the provision of flexibility-as-a-service
are considered, is an interesting topic to investigate in future.
Moreover, the impact of limited information sharing among
sectors as opposed to the central dispatch considered in this
work would be highly insightful. Finally, a market clearing
mechanism involving auctions that elicit flexibility from the
natural gas sector is a viable pathway towards real-world
implementation that is opened up by this paper.



APPENDIX A
The final tractable form of the proposed distributionally

robust chance-constrained coordination of power and natural
gas systems is the SOCP presented below:

min
Θ2∪{λm,u,t, νm,t}

∑

t∈T

(∑

i∈C
CE
i pi,t +

∑

k∈K
CG
k gk,t

)
(20a)

subject to

ξi

∥∥∥−αi,te>(ΣΠ
t )1/2

∥∥∥
2
≤ pi,t − P i, ∀i, ∀t, (20b)

ξi

∥∥∥αi,te>(ΣΠ
t )1/2

∥∥∥
2
≤ −pi,t + P i, ∀i, ∀t, (20c)

ξnr

∥∥∥{Ψ(ΨIαte
> −ΨJ)}(n,r)(ΣΠ

t )1/2
∥∥∥

2
≤ {F

+Ψ(ΨDDE
t −ΨIpt −ΨJW

PF
t )}(n,r), ∀(n, r) ∈ L, ∀t, (20d)

ξnr

∥∥∥−{Ψ(ΨIαte
> −ΨJ)}(n,r)(ΣΠ

t )1/2
∥∥∥

2
≤ {F

−Ψ(ΨDDE
t −ΨIpt −ΨJW

PF
t )}(n,r), ∀(n, r) ∈ L, ∀t, (20e)

ξk

∥∥∥−βk,te>(ΣΠ
t )1/2

∥∥∥
2
≤ gk,t −Gi, ∀k, ∀t, (20f)

ξk

∥∥∥βk,te>(ΣΠ
t )1/2

∥∥∥
2
≤ −gk,t +Gi, ∀k, ∀t, (20g)

ξm

∥∥∥−ρm,te>(ΣΠ
t )1/2

∥∥∥
2
≤ prm,t − PRm, ∀m, ∀t, (20h)

ξm

∥∥∥ρm,te>(ΣΠ
t )1/2

∥∥∥
2
≤ −prm,t + PRm, ∀m, ∀t, (20i)

ξmu

∥∥∥(ρu,t − Γm,uρm,t)e
>(ΣΠ

t )1/2
∥∥∥

2

≤ Γm,uprm,t − pru,t, ∀(m,u) ∈ Zc, ∀t, (20j)

ξmu

∥∥∥−γm,u,te>(ΣΠ
t )1/2

∥∥∥
2
≤ qm,u,t,∀(m,u) ∈ Z,∀t, (20k)

ξmu

∥∥∥−γin
m,u,te

>(ΣΠ
t )1/2

∥∥∥
2
≤ qin

m,u,t,∀(m,u) ∈ Z,∀t, (20l)

ξmu

∥∥∥−γout
m,u,te

>(ΣΠ
t )1/2

∥∥∥
2
≤ qout

m,u,t,∀(m,u) ∈ Z,∀t, (20m)

γ2
m,u,t ≤ K2

m,u(ρ2
m,t − ρ2

u,t), ∀(m,u) ∈ Z, ∀t, (20n)

ξmu

∥∥∥∥−(ρm,t + ρu,t)(
Sm,u

2
)

1
2 e>(ΣΠ

t )1/2

∥∥∥∥
2

≤ hm,u,t −H0
m,u, ∀(m,u) ∈ Z, t = |T |, (20o)

McCormick envelopes of (16b) and (16d), (20p)
(12), (7), (5), (15a), (16a), (17), (20q)

where ξi =
√

1−εi
εi
, ξnr =

√
1−εnr

εnr
, ξk =

√
1−εk
εk

, ξm =√
1−εm
εm

, ξmu =
√

1−εmu

εmu
are parameters.
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Abstract Current electricity and natural gas markets operate in a temporally
and sectorally decoupled way. However, increasing integration of stochastic re-
newable energy sources challenges the current energy market designs in two
ways. First, the need for exchanging operational flexibility between energy
sectors is increasing, which requires improving sectoral coordination between
electricity and gas markets. Second, the dispatch of flexible units needs to be
made in a more informed manner, requiring to strengthen temporal coordina-
tion between day-ahead and real-time energy markets. This paper presents
two-stage stochastic equilibrium and optimization models to explore financial
instruments in the form of virtual bidding as a market-based solution to en-
hance both sectoral and temporal coordination in energy markets. Explicit
virtual bidding by purely financial players enhances temporal coordination,
while the implicit one by physical players improves sectoral coordination, too.
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2 Anna Schwele et al.

By exploiting a fully stochastic co-optimization model as an ideal benchmark,
we numerically illustrate the benefits of virtual bidding for increasing market
efficiency in terms of reduced expected operational cost of the energy system.
We show that flexible resources in electricity and gas markets are dispatched
more efficiently in the day-ahead stage when virtual bidding exists.

Keywords OR in energy · electricity and natural gas markets · general-
ized Nash equilibrium (GNE) · scenario-based stochastic programming ·
operational flexibility · sectoral and temporal coordination · virtual bidding

1 Introduction

The growing share of power production from stochastic renewable energy
sources, e.g., wind and solar power units, increases the need for operational
flexibility1 to deal with their variability and uncertainty (NERC, 2010). Natu-
ral gas-fired power plants are usually flexible units and are able to compensate
for the production variability and uncertainty caused by stochastic renew-
able sources (Gil et al., 2014). These gas-fired power plants operate at the
interface of the electricity and the natural gas systems, yielding both physi-
cal and economic interactions (Fleten and Nasakkala, 2010). The natural gas
system is crucial for ensuring fuel availability and technical feasibility, while
it is also able to provide flexibility for power systems through stored gas in
the pipelines (Ordoudis et al., 2019; Correa-Posada and Sánchez-Mart́ın, 2015;
Yang et al., 2018). An increasingly volatile dispatch of gas-fired power plants
to offset wind intermittency introduces demand fluctuations and uncertainty
into the gas market (Heinen et al., 2017; Dall’Anese et al., 2017; Nicholson and
Quinn, 2019). The subsequent trend towards increasing volumes in gas trading
in short-term spot markets like Gaspoint Nordic (Hibbard and Schatzki, 2012;
Pinson et al., 2017) will become more important as natural gas demand profiles
become more uncertain. Electricity and natural gas markets in many countries
are cleared sequentially and separately (Hibbard and Schatzki, 2012; Tabors
et al., 2012). However, the increasing operation of natural gas-fired power
plants as one of the main sources of flexibility in power systems as well as the
need for exchanging operational flexibility among the sectors lead to the grow-
ing interaction of power and natural gas systems. Therefore, sectoral coordina-
tion between electricity and natural gas markets is crucial for renewable-based
energy systems (Meibom et al., 2013). Furthermore, the majority of current
electricity markets throughout the world clear several sequential markets in
short run, e.g., in day-ahead (DA) and real-time (RT) stages, with a deter-
ministic description of uncertain supply (Daraeepour et al., 2019). There is a
similar sequential deterministic market design for natural gas systems. Despite
the recent advances in forecasting tools, the deterministic forecast of stochas-
tic renewable energy sources used at the DA stage can be erroneous, which

1 By operational flexibility, we refer to the capability of a power system to modify its
output or state in response to a change in renewable power production (Zhao et al., 2016).
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may cause wrong unit commitment and dispatch decisions (Jonsson et al.,
2010). This eventually results in market inefficiency, i.e., a comparatively high
operational cost for the system. To resolve such an inefficiency, temporal coor-
dination between DA and RT markets in both power and natural gas systems
is required (Morales and Pineda, 2017).

The market-based mechanisms for improving both sectoral and temporal
coordination of power and natural gas systems range from an extremely dis-
ruptive choice of designing a fully stochastic integrated energy market (Correa-
Posada and Sánchez-Mart́ın, 2015; Zlotnik et al., 2016) to less-disruptive solu-
tions that preserve the current regulatory framework with separate and sequen-
tial clearing of markets. The latter, i.e., less disruptive market mechanisms, is
the focus of this paper, while the former, i.e., the fully stochastic integrated
energy market, is used as an ideal benchmark to assess the performance of the
proposed mechanisms. Among others, the less-disruptive (or “soft”) market-
based mechanisms for power and natural gas coordination can be achieved by
information exchange among the markets (Byeon and Van Hentenryck, 2020),
defining new market products (Chen et al., 2017; Warrington et al., 2013;
Wang and Hobbs, 2016; Godoy-Gonzalez et al., 2020), prescribing new bid-
ding formats (Liu et al., 2015; O’Connell et al., 2016; Savelli et al., 2018), and
introducing new market players which act as coordinators at the interface of
different sectors.

In this paper, we propose financial instruments to enhance the coordina-
tion of power and natural gas markets. Specifically, we explore the effect of
virtual bidding (Hogan, 2016), also called “convergence bidding” (Li et al.,
2015) in the literature, as a soft market-based mechanism for improving both
temporal and sectoral coordination of power and natural gas systems under
uncertainty. Virtual bidding (VB) exists today in U.S. markets, such as PJM
(Birge et al., 2018), and refers to the financial arbitrage between two trading
floors in an energy market, e.g., between DA and RT electricity markets. The
virtual bidder may earn profit due to price difference in DA and RT markets
by performing arbitrage. This virtual bidder can be a purely financial player
who has no physical asset, the so-called explicit VB, or she can be one of
the existing physical market players, the so-called implicit VB. An example
of an implicit virtual bidder is a generator, who does arbitrage between DA
and RT markets by selling electricity in DA more than her installed capacity
(Isemonger, 2006; Mather et al., 2017). It is known in the literature that VB
has potential to improve the market efficiency of electricity markets by en-
hancing the temporal coordination between deterministic DA and RT markets
(Kazempour and Hobbs, 2018; Morales and Pineda, 2017). The reason for such
an improvement is that VB increases market liquidity and brings additional
information to the DA market. It is worth noting that such an improved mar-
ket efficiency may not be fully realized under some circumstances (Parsons
et al., 2015) or may have some limits (Birge et al., 2018; Ito and Reguant,
2016). An example of such conditions is markets where virtual bidders behave
strategically (Lo Prete et al., 2019a,b).
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In this paper, we aim at quantifying the maximum potential of VB for im-
proving both sectoral and temporal coordination of electricity and natural gas
markets under supply uncertainty. For this purpose, we model renewable gen-
eration uncertainty via a finite set of scenarios, and develop three stochastic
generalized Nash equilibrium (GNE) problems (Facchinei and Kanzow, 2007),
whose solution existence can be mathematically ensured under some assump-
tions. These stochastic equilibrium models serve as simulation tools for deriv-
ing policy implications to explore how much VB can improve the sectoral and
temporal coordination in renewable-based electricity and natural gas markets.
We also provide analytical insights by comparing the GNE problems and the
ideal benchmark, i.e., the two-stage stochastic co-optimization problem (Za-
keri et al., 2019; Zavala et al., 2017; Pritchard et al., 2010). It is important
to highlight that these stochastic equilibrium models should be seen as policy
tools, since they are not intended to be used for market clearing in practice.

As the core contribution of this paper, we first integrate explicit VB to
electricity and natural gas markets, which achieves temporal coordination be-
tween DA and RT markets in each energy sector. Then, we investigate the
possibility of natural gas-fired power plants, who are at the interface of power
and natural gas, to behave as implicit virtual bidders. We illustrate that such
implicit virtual bidders have potential to achieve both temporal and sectoral
coordination in electricity and natural gas markets.

The manuscript is organized as follows. In Section 2 we provide more details
about temporal and sectoral market coordination, the concept of VB and our
modeling assumptions. Sections 3 and 4 contain the mathematical formulations
of GNE models with explicit and implicit VB, respectively. The formulation of
the ideal benchmark model is included in Section 5. In Section 6, we show the
numerical results for a case study, and finally Section 7 concludes the paper.
For clarity purposes, we maintain the generic representation of optimization
problems throughout the paper, and include their detailed representations in
the online appendix (Schwele et al., 2020).

2 Preliminaries

This section first highlights the temporal and sectoral coordination of power
and natural gas markets under uncertainty. Then, it further describes both
types of VB (explicit and implicit). Finally, it summarizes the modeling as-
sumptions made in this paper.

2.1 Two-dimensional Coordination: Temporal and Sectoral

The independent market operators clear each trading stage (DA and RT) sep-
arately and sequentially for electricity and natural gas markets. The current
market-clearing framework for electricity and natural gas systems is illustrated
in Fig. 1, including four market-clearing sequences. First, the electricity mar-
ket is cleared in a DA auction 12-36 hours before actual energy delivery using
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Day-ahead Real-time

I Electricity day-ahead
market clearing

Electricity
x

Natural gas

III Electricity real-time
market clearing
under scenario ω

II Natural gas day-ahead
market clearing

IV Natural gas real-time
market clearing
under scenario ω

L9
9

Natural gas demand

99K Day-ahead schedule

Fig. 1 Sequential setup of electricity and natural gas markets, including four market-
clearing sequences I to IV.

a deterministic forecast of uncertain parameters, e.g., renewable power gen-
eration and natural gas prices. Note that future natural gas prices directly
impact the marginal production cost of natural gas-fired power plants and
consequently the merit order2 in the electricity market. Second, the natural
gas DA market is cleared for given natural gas demand of gas-fired power
plants determined by their dispatch in the electricity market. Third, once the
uncertainty is realized (e.g., scenario ω occurs), the RT electricity market is
cleared to adjust imbalances under fixed DA unit commitment and dispatch
decisions. Fourth, the natural gas market is cleared in RT, while the dispatch
of gas suppliers in DA and the demand of natural gas-fired power plants in
RT are given.

The sequential setup in Fig. 1, even though aligned with current practice,
is totally uncoordinated in both temporal and sectoral dimensions. This setup
is temporally uncoordinated since both electricity and gas markets in DA are
cleared based on the available deterministic forecast in that stage, without
foresight into the potential deviations that may realize in RT. It is also sec-
torally uncoordinated because the electricity market is cleared based on an
estimation of natural gas price, and the gas market is cleared afterwards. As
it is common in practice, the integration of operating reserve as an extra mar-
ket product is able to potentially enhance the temporal coordination between
DA and RT markets. However it may bring extra inefficiencies if the value
assigned for the minimum reserve requirement in the DA market is not prop-
erly selected (Doherty and O’Malley, 2005; Zugno and Conejo, 2015). This
can be an even more challenging issue in European markets, where energy and

2 The merit order refers to placing the power plants with an ascending order of marginal
production costs.
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Day-ahead Real-time

Day-ahead
market clearing

Real-time
market clearing
under scenario ω

Explicit
Virtual Bidder
max. expected profit

99K Day-ahead schedule

−→ Virtual trade

Fig. 2 Explicit virtual bidding by arbitraging electricity between the DA and RT electricity
markets (or by arbitraging gas between DA and RT natural gas markets). This type of virtual
bidding has potential to enhance temporal coordination between DA and RT markets.

reserve markets are cleared sequentially (Dominguez et al., 2019). Note that
we exclude the reserve market as it is not the focus of this study.

While the share of stochastic renewable energy sources is growing, the lack
of temporal and sectoral coordination in electricity and natural gas markets
may cause market inefficiency. In other words, the overall operational cost of
electricity and natural gas systems in DA and RT might be comparatively
higher than that cost in the ideal co-optimization benchmark. The reason
for such an inefficiency is non-optimal DA dispatch decisions made due to
uncoordinated DA market clearing. If flexible sources are dispatched in the DA
stage inefficiently, they will not be available in RT to cope with imbalances.
As a consequence, more expensive actions, e.g., load curtailment, might be
required. Therefore, it is desirable to dispatch the flexible sources in DA in
an efficient manner while preserving the current sequential market-clearing
framework. This requires soft market-based mechanisms for enhancing the
temporal and sectoral coordination of power and natural gas markets, which
is the focus of this paper.

2.2 Virtual Bidding

Virtual bidding is a purely financial instrument, existing in the U.S. electricity
markets, e.g., CAISO, PJM, and MISO (Hogan, 2016; Li et al., 2015; Birge
et al., 2018). It allows market players to profit from anticipated price differ-
ences between the DA and RT markets by performing arbitrage Kovacevic
(2016). We explain below both explicit and implicit VB (Isemonger, 2006;
Mather et al., 2017).

An explicit virtual bidder is a purely financial player who does not own
any physical assets. Therefore, her positions in DA and RT need to even out
to zero. For example, an explicit virtual bidder may buy 10 MWh in the DA
electricity market in a specific hour at the DA market price in that hour,
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and then sells the same 10 MWh back in the RT electricity market at the
same hour but at the price of the RT market. Therefore, her payoff is equal
to the difference between the DA and RT prices times the amount of virtually
traded power. Assuming that this virtual bidder is a price-taker with perfect
foresight into the distribution of DA and RT prices, she is supposed to en-
hance informational and productive efficiency of the two-settlement market
by bringing more competitiveness, liquidity and transparency to wholesale en-
ergy markets. Fig. 2 illustrates how such an explicit VB is integrated into the
two-settlement market-clearing setup. While DA and RT energy markets are
cleared deterministically and sequentially, the explicit virtual bidder solves a
stochastic program maximizing her own expected profit. The outcomes of the
stochastic program of virtual bidders, i.e., virtual trades, are exogenous in DA
and RT markets. In other words, these virtual bidders act as self-scheduling
market players.3 On the other hand, the DA and RT market-clearing prices
are exogenous in the stochastic program of virtual bidder. It is obvious from
Fig. 2 that a set of interrelated optimization problems (one for DA market
clearing, one for RT market clearing per scenario, and one for explicit virtual
bidder) is required to explore the performance of explicit VB. This clarifies
the need for developing a stochastic equilibrium model. It is demonstrated in
(Kazempour and Hobbs, 2018) that this setup can bring temporal coordina-
tion between DA and RT electricity markets. This is an interesting insight for
market operators since they can keep the market clearing deterministic, while
leaving the correction of market inefficiency to virtual bidders. However, VB
may not always work in such a desirable way, as discussed in (Parsons et al.,
2015) and (Birge et al., 2018).

Unlike the explicit VB, the implicit virtual bidder is a physical market
player. An example of such a player is a natural gas-fired power plant who is
at the interface of power and natural gas systems, as illustrated in Fig. 3. This
power plant has potential to enhance both temporal and sectoral coordina-
tion in electricity and natural gas markets. Although the presence of explicit
VB may eliminate the motivation for physical players to perform arbitrage,
physical players may still find self-scheduling profitable to forgo the market
and dispatch their production/consumption themselves outside the market.
For example, assume a natural gas-fired power plant that has perfect fore-
sight into future DA and RT power and gas prices, and realizes that her profit
is not maximized when she participates in deterministic electricity and nat-
ural gas markets. In other words, she has the opportunity to gain a higher
profit in expectation by self-scheduling outside the market (Guo et al., 2016;
Sioshansi et al., 2010). Note that the power production and gas consumption
of this power plant are exogenous in the market-clearing problems, while she
still pays/is paid based on the market-clearing prices (Jha and Wolak, 2015;
Papavasiliou et al., 2015). An implicit virtual bidder may benefit from self-
scheduling by solving her own stochastic program with better representation

3 By self-scheduling market players, we refer to those players who make their DA dispatch
decisions internally, rather than submitting price-quantity bids to the DA market.
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Day-ahead Real-time

Electricity day-ahead
market clearing

Electricity
x

Natural gas

Electricity real-time
market clearing
under scenario ω

Natural gas day-ahead
market clearing

Natural gas real-time
market clearing
under scenario ω

Self-scheduling
gas-fired unit

max. expected profit

L9
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Natural gas demand
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−→ Dispatch decision

Fig. 3 Implicit virtual bidding by a natural gas-fired power plant, who is on the interface of
electricity and natural gas systems. This power plant self-schedules her power productions
and gas consumptions in DA and RT electricity and natural gas markets. This type of virtual
bidding has potential to enhance temporal and sectoral coordination between DA and RT
electricity and natural gas markets.

of uncertainty and technical constraints for a longer time horizon. However,
these self-schedulers take on the full risk of RT price uncertainty. The influ-
ence of risk aversion and price volatility on the decision of generators to do
self-scheduling is discussed in (Papavasiliou et al., 2015) and (Conejo et al.,
2004).

2.3 Modeling Framework and Assumptions

Wind power production is assumed as the only source of uncertainty. Note
that the wind power forecast in DA is a single point (deterministic), while
different scenarios may occur in RT, i.e., we are not sure about the actual
outcome of the uncertain parameter. Wind power uncertainty is represented
using a finite set of scenarios. We consider two trading floors (DA and RT)
only, and other potential floors, e.g., intra-day adjustment markets, are ex-
cluded. We also consider simple price-quantity bids only, discarding any other
types of bids, e.g., bid curves, block bids, etc. The wind power production
cost is zero, and can be spilled at zero cost. Both electricity and natural gas
demands are inelastic to price. All demand and supply in both energy sec-
tors are assumed to be located at a single node, neglecting the transmission
systems. Trading of natural gas takes place according to the entry-exit model
(Vazquez and Hallack, 2015). On the power side, a multi-period unit commit-
ment scheduling model is used. We relax the binary nature of commitment
status of conventional generators to lie within zero and one, but in a tight
manner (Hua and Baldick, 2017). This relaxation ensures convexity, which is
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required to solve the stochastic equilibrium model as a mixed complementar-
ity problem, while providing more accurate cost estimates than pure dispatch
models. The production cost of generators is assumed to be a linear function.
We assume all market players including virtual bidders (either explicit or im-
plicit) to act competitively, non-strategically, and in a risk-neutral manner
when participating in the markets, so they offer at prices identical to their
marginal costs. We assume a “perfect” virtual bidder, assuming that she can
always zero out her position in RT. These assumptions enable us to quantify
the full potential of VB in enhancing temporal and sectoral coordination in
the proposed simulation tool.

Notation: We denote by R and R+ free and non-negative real numbers,
respectively. We use upper case letters for matrices and lower case letters for
vectors. Bold lower case letters denote vectors of variables. Note that e is
the vector of ones and (.)> is the transpose operator. We use functions h(.)
and g(.) to show equality and inequality constraints in every optimization
problem, but note that these constraints for different optimization problems
are not necessarily identical.

3 Temporal Coordination

In this section, we first explore temporal coordination between electricity DA
and RT markets via explicit VB. We then argue such a coordination in DA
and RT natural gas markets. The sectoral coordination will be discussed later
in Section 4.

3.1 Temporal Coordination Between DA and RT Electricity Markets

We present below optimization problems for explicit electricity virtual bidder
as well as DA and RT electricity markets. These optimization problems are
interrelated and construct a stochastic equilibrium problem.

3.1.1 Explicit Electricity Virtual Bidder:

The expected profit-maximization problem of each explicit electricity virtual
bidder r ∈ R over the time horizon T writes as

{
max

vE
r ,∆vE

r

λDA,E> vE
r +

(∑

ω

πω λ
RT,E
ω

)>
∆vE

r (1a)

subject to vE
r + ∆vE

r = 0

}
∀r. (1b)

Note that (1) is a two-stage stochastic linear program. The virtual bidder
decides her DA position vE

r ∈ RT given the DA electricity prices λDA,E ∈ RT
as well as the distribution of RT electricity prices λRT,E

ω ∈ RT ∀ω weighted
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by probability πω over the set of scenarios ω ∈ Ω. This virtual bidder is a
purely financial player without physical assets, and therefore is obliged to offset
her DA position by her RT position ∆vE

r ∈ RT in each scenario. Objective
function (1a) maximizes the expected profit of explicit virtual bidder who
arbitrages between the DA and RT electricity markets. Constraint (1b) ensures
that the virtual bidder sells (buys) the same amount back in the RT market
that was bought (sold) in the DA market. One important observation about
this explicit virtual bidder is that she enforces the convergence of DA and
expected RT electricity prices (Kazempour and Hobbs, 2018). Derived from
Karush–Kuhn–Tucker (KKT) optimality conditions associated with (1), the
virtual bidder enforces the DA and the expected RT electricity prices to be
equal, i.e., λDA,E =

∑
ω πωλ

RT,E
ω . See online appendix (Schwele et al., 2020)

for further details. Note that market operators treat the dispatch decision of
virtual bidders as fixed input into the market-clearing problem presented in
the following section.

3.1.2 DA Electricity Market:

Consider G number of gas-fired generators and C number of non gas-fired gen-
erators, such that G ∪ C = I. Besides, consider J number of wind power units.
For given production cost of non gas-fired generators CE ∈ RC+, estimation of

natural gas prices λ̃G ∈ RT to compute the production cost C(λ̃G) ∈ RG×T
for gas-fired generators, and fixed dispatch of virtual bidders vE

r obtained from
(1), the electricity market operator clears the market in DA to minimize the
total operational cost of the power system as

min
p,u,s,w

e>pC CE + e>pG C(λ̃G) e+ e>s e (2a)

subject to h(p,w,vE
r ) = 0 : λDA,E, (2b)

g(p,w,u, s) ≤ 0. (2c)

Note that (2) is a deterministic linear program. Variables p,u, s ∈ RT ×I+ are
the dispatch, commitment status, and start-up cost of conventional generators
in DA, respectively. In particular, pC ∈ RT ×C+ and pG ∈ RT ×G+ are the DA
dispatch of non gas- and gas-fired generators, respectively. The commitment
status u is relaxed to lie within zero and one. Besides, w ∈ RT ×J+ refers to
the DA dispatch of wind power units, limited by their deterministic forecast
in DA.

Objective function (2a) minimizes the total system cost in DA, including
the operational and start-up costs of conventional generators. Equality con-
straint (2b) enforces the balance between power production and consumption
in DA with inelastic demand. The virtual DA positions vE

r are treated as given
inputs. The dual variable associated with power balance (2b), i.e., λDA,E ∈ RT ,
provides the DA electricity price. Recall that this vector of dual variables was
treated as exogenous values in the problem of virtual bidders (1). Inequal-
ity constraints (2c) enforce lower and upper bounds on the DA dispatch of
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wind and conventional generation, impose ramping limits of conventional gen-
erators, represent the tight relaxation of unit commitment, and compute the
start-up cost of each conventional generator. The detailed representation of all
equality and inequality constraints is given in the online appendix (Schwele
et al., 2020).

3.1.3 RT Electricity Market:

The actual wind power production is realized in RT, which might not be nec-
essarily identical to the deterministic wind power forecast in DA. Therefore,
the electricity market operator clears the RT market to make the necessary
adjustments in order to keep the system balanced. The balancing actions are
the power adjustment of generators and the two extreme actions, i.e., wind
spillage and load shedding. The (relaxed) commitment status of fast-starting
conventional generators F ⊂ I and therefore their start-up cost can be up-
dated in RT, while that is not the case for the slow-starting generators S ⊂ I.
Note that F ∪ S = I. For given production costs of non gas-fired and gas-fired
generators CE ∈ RC+ and C(λ̃G) ∈ RG×T , load shedding cost Csh,E ∈ RT+, fixed

dispatch of explicit virtual bidders ∆vE
r achieved from (1) and fixed DA elec-

tricity market-clearing outcomes p and u obtained from (2), the RT electricity
market clearing under scenario ω ∈ Ω writes as

{
min

∆pω,∆uω,∆sω,

∆wω,∆dE
ω

e>∆pC
ω CE + e>∆pG

ω C(λ̃G) e+ e>∆sω e+ Csh,E> ∆dE
ω

(3a)

subject to h(∆pω,∆wω,∆dE
ω ,∆vE

r ) = 0 : λRT,E
ω , (3b)

g(∆pω,∆wω,∆dE
ω ,∆uω,∆sω,p,u) ≤ 0,

}
∀ω. (3c)

Note that (3), one per scenario, is a deterministic linear program. We denote by
∆pω ∈ RT ×I the power adjustment of conventional generators. In addition,
∆uω ∈ RT ×F and ∆sω ∈ RT ×F refer to the adjusted relaxed commitment
decision and the adjusted start-up cost of fast-starting units, respectively.
Wind spillage and load shedding actions are denoted by ∆wω ∈ RT ×J+ and
∆dE

ω ∈ RT+, respectively.

Objective function (3a) minimizes the total balancing cost for underlying
scenario ω. Equality constraint (3b) balances the wind power deviations in RT
from the DA schedule with the position of virtual bidders ∆vE

r as fixed input.
The dual variable vector λRT,E

ω ∈ RT represents the RT electricity prices
under scenario ω. Recall that this vector was exogenous in the problem of
virtual bidders (1). Inequality constraints (3c) enforce lower and upper bounds
on the load shedding and power adjustment of wind power units, conventional
slow- and fast-starting generators, restrict the ramp-rate limits of conventional
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generators, enforce the adjusted unit commitment, and calculate the start-
up cost for fast-starting units. The detailed representation of constraints is
provided in the online appendix (Schwele et al., 2020).

3.2 Temporal Coordination within DA and RT Natural Gas Markets

Similar to Section 3.1, we present here the optimization problems for explicit
natural gas virtual bidder, and DA and RT natural gas markets, which define
a stochastic equilibrium problem together.

3.2.1 Explicit Natural Gas Virtual Bidder:

Similarly to the electricity VB, the profit-maximization problem of each ex-
plicit natural gas virtual bidder q ∈ Q participating in the natural gas DA and
RT markets is given by the following two-stage stochastic linear program:

{
max

vG
q ,∆vG

q

λDA,G> vG
q +

(∑

ω

πω λ
RT,G
ω

)>
∆vG

q (4a)

subject to vG
q + ∆vG

q = 0

}
∀q. (4b)

For given DA and RT natural gas market prices λDA,G ∈ RT and λRT,G
ω ∈

RT ∀ω, the virtual bidder solves (4) to maximize her expected profit stemming
from the price differences in DA and RT natural gas markets. Her decision
variables are DA positions, i.e., vG

q ∈ RT and RT positions, i.e., ∆vG
q ∈ RT .

Recall that we assume that the virtual bidder has a perfect foresight into
future DA and distribution of RT prices over scenarios. Equality constraint
(4b) zeros out the DA and RT trades of the explicit virtual bidder. As an
important observation, this explicit virtual bidder enforces the DA and the
expected RT natural gas prices to be equal, i.e., λDA,G =

∑
ω λ

RT,G
ω . This

observation can be derived by the KKT optimality conditions associated with
(4).

3.2.2 DA Natural Gas Market:

For given scheduled natural gas consumption of gas-fired generators as a func-
tion of pG obtained from the DA electricity market (2) and the DA trade of
virtual bidders vG

q determined in (4), the natural gas market operator clears
the DA market with K number of gas suppliers as

min
g

e>CGg e (5a)

subject to h(g,pG,vG
q ) = 0 : λDA,G (5b)

g(g) ≤ 0, (5c)
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where (5) is a deterministic linear program. Parameters in the vector CG ∈
RK+ represent the supply cost of gas suppliers, and variables in the matrix

g ∈ RT ×K+ are the DA schedule of those suppliers. Objective function (5a)
minimizes the total gas supply cost. Equality constraint (5b) represents the DA
natural gas supply balance with inelastic demand including given gas demand
for power production and virtual trade vG

q . The “actual” natural gas prices

are derived through dual variables λDA,G ∈ RT , which are not necessarily
identical to the estimated prices λ̃G used in the electricity market-clearing
problems (2) and (3). Constraint (5c) enforces the lower and upper bounds on
the gas supply. The detailed representation of constraints is provided in the
online appendix (Schwele et al., 2020).

3.2.3 RT Natural Gas Market:

The natural gas operator clears the RT natural gas market to offset the change
in fuel consumption of gas-fired generators ∆pG

ω occurred under scenario ω.
This deterministic linear problem writes as

{
min

∆gω,∆dG
ω

e>CG∆gω e+ Csh,G> ∆dG
ω (6a)

subject to h(∆gω,∆pG
ω ,∆dG

ω ,∆vG
q ) = 0 : λRT,G

ω (6b)

g(∆gω,∆dG
ω ,g) ≤ 0

}
∀ω, (6c)

where objective function (6a) minimizes the total balancing cost. The first
balancing action is gas supply adjustment ∆gω ∈ RT ×K whose cost is CG ∈
RK×T+ . The second but extreme balancing action is the natural gas load shed-
ding ∆dG

ω ∈ RT+ at the comparatively high cost of Csh,G ∈ RT+. Equality
constraint (6b) balances the gas supply adjustments in RT. The actual natu-
ral gas RT prices under scenario ω are the vector of dual variables λRT,G

ω ∈ RT .
Constraints (6c) enforce the lower and upper bounds on gas supply, gas ad-
justments and gas load shedding. The detailed representation of constraints is
given in the online appendix (Schwele et al., 2020).

3.3 Analysis of Stochastic Equilibrium Problems

In order to achieve temporal coordination, the profit-maximization problem of
explicit virtual bidders as well as the DA and RT market-clearing optimization
problems need to be solved simultaneously. Note that the explicit virtual bid-
ders do not link the electricity and natural gas markets, but they will be linked
later in Section 4 with implicit VB. For now, we can identify two stochastic
equilibrium problems, one per energy sector. The first stochastic equilibrium
problem related to the electricity sector includes optimization problems (1)
∀r, (2) and (3) ∀ω. The second stochastic equilibrium problem corresponding
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to the natural gas sector consists of (4) ∀q, (5) and (6) ∀ω. Note that these
two stochastic equilibrium problems should be solved sequentially, i.e., one
should first solve (1)-(3), and then for given natural gas demands, (4)-(6) can
be solved.

Remark 1 Each linear optimization problem (2), (3), (5) and (6) related to
DA and RT market-clearing problems can be equivalently reformulated as a
pure Nash equilibrium problem, wherein price-taking agents maximize their
profit in a perfectly competitive market.

The KKT optimality conditions of each optimization problem (2), (3), (5)
and (6) and its corresponding pure Nash equilibrium problem are identical –
See Appendix A for more details.4

Remark 2 Both stochastic equilibrium problems (1)-(3) and (4)-(6) are GNE
problems.

In both stochastic equilibrium problems, the feasible set of players depends
on the decision of other players. For example, decisions of virtual bidders in
(1), i.e., vE

r and ∆vE
r , appear within the power balance constraints in (2) and

(3). Replacing (2) and (3) with their equivalent Nash equilibrium problems
(as mentioned in Remark 1) will not change the GNE nature of the overall
problem, as the DA power schedule of generators affects the feasible set of those
generators in their RT problem. This is a challenging issue, because a GNE
problem is formulated as a quasi-variational inequality Pang and Fukushima
(2005), which is generally hard to solve and admits multiple or even infinite
solutions (Facchinei and Kanzow, 2007). (Facchinei and Kanzow, 2007; Harker
and Pang, 1990; Harker, 1991; Schiro et al., 2013; Krawczyk, 2007; Fukushima,
2011) and (Kulkarni and Shanbhag, 2012) explore a specific class of GNE
problems with shared constraints. However, the coupling constraints in our
proposed stochastic equilibrium problems, i.e., (1)-(3), and (4)-(6), are not
shared constraints.

Remark 3 Existence of a solution to the proposed stochastic GNE problems
can be mathematically proven under some circumstances.

The basis of this proof relies upon (Harker, 1991, Theorem 1) and (Harker,
1991, Theorem 2), provided that the feasible set of every agent in the GNE
problems is non-empty, convex and compact. In our case, this condition will
be fulfilled only if we assume bounds on market prices, i.e., by imposing price
floors and caps, and bounds on virtual trades, e.g., by imposing a budget
constraint for each virtual bidder. The investigation of solution uniqueness for
these GNE problems is not straightforward (Harker, 1991; Fukushima, 2011).

4 As explained in Remark 1 and illustrated in Appendix A, each optimization problem
(2), (3), (5) and (6) can be replaced by a set of optimization problems that constitute the
corresponding Nash equilibrium problem. However, solving these problems simultaneously
as the equilibrium problems (1)-(3) and (4)-(6) leads to coupled strategy sets and jeopardizes
integrability of the equilibrium (Facchinei and Pang, 2007).
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4 Sectoral and Temporal Coordination

In order to enhance the sectoral coordination between electricity and natural
gas markets, this section extends the model in Section 3 and allows natural
gas-fired generators to act as implicit virtual bidders. In other words, they
are allowed to self-schedule outside the markets to optimally allocate their
operational flexibility in the electricity market and their fuel consumption
in the natural gas market. Each self-scheduler, i.e., implicit virtual bidder5,
maximizes her own expected profit. Similar to the explicit virtual bidders, we
assume that each self-scheduler has a perfect foresight into DA and distribution
of RT prices over scenarios in both electricity and natural gas markets. Note
that including these self-schedulers in the model links the power and natural
gas markets, so that a single stochastic equilibrium problem is achieved.

We consider both slow- and fast-starting types of gas-fired generators as
potential self-schedulers. The difference between these two types of generators
is that the slow-starting gas-fired units fix their unit commitment status in DA
and cannot change it in the RT, while the fast-start units can. The expected
profit maximization problem of each self-scheduling slow-starting gas-fired unit
G ∩ S participating in both electricity and natural gas markets is

max
p,u,s,∆pω

(
λDA,E − C(λDA,G)

)>
p− e>s

+
∑

ω

πω

[ (
λRT,E
ω − C(λRT,G

ω )
) ]>

∆pω (7a)

subject to g(p,u, s) ≤ 0 : µ, (7b)

g(∆pω,p,u) ≤ 0 : νω, ∀ω, (7c)

where (7) is a two-stage stochastic linear program, whose objective function
(7a) maximizes the expected profit of the underlying self-scheduling gas-fired
generator. Note that this objective function includes the actual DA and RT
gas prices λDA,G and λRT,G

ω from models (5) and (6), and not the estimated

gas price λ̃G. This problem is subject to the DA (7b) and RT operational
constraints (7c), so that the final production of gas-fired units in RT have to
lie within their feasible operational limits.

Similarly, each fast-start self-scheduling gas-fired unit G ∩ F solves a two-
stage stochastic linear program to maximize her expected profit as

max
p,u,s,∆pω,
∆uω,∆sω

(
λDA,E − C(λDA,G)

)>
p− e>s

+
∑

ω

πω

[ (
λRT,E
ω − C(λRT,G

ω )
)>

∆pω + e>∆sω

]
(8a)

subject to g(p,u, s) ≤ 0 : µ, (8b)

g(∆pω,∆uω,∆sω,p,u) ≤ 0 : νω, ∀ω. (8c)

5 In the rest of the manuscript we use the terms implicit virtual bidder and self-scheduler
interchangeably.
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The resulting stochastic GNE problem includes optimization problems (2),
(3) ∀ω, (5), (6) ∀ω, (7) and (8). Note that in this stochastic equilibrium prob-
lem, the decisions of self-schedulers p, and ∆pω in (7) and (8) are exogenous
values within the market-clearing problems (2), (3), (5) and (6).

Remark 4 In a case including both implicit and explicit VB, if the dispatch of
self-schedulers in DA is restricted by constraint (7b) or (8b), then the stochas-
tic equilibrium problem will be feasible if and only if such DA constraints are
inactive. Any non-zero dual variable corresponding to the DA constraints of
self-schedulers will make the stochastic equilibrium problem infeasible.

Proposition 1 Self-scheduling in (7) and (8) respecting both DA and RT
operational constraints and explicit VB according to (1) and (4) are mutually
exclusive, i.e. cannot coincide or exist together.

Proof. The KKT optimality conditions of the problem of each virtual bidder
(1) and (4) enforce DA and expected RT prices to be equal, i.e., λDA,E =∑

ω πω λ
RT,E
ω and λDA,G =

∑
ω πω λ

RT,G
ω . The KKT optimality conditions of

each self-scheduler if her DA dispatch is restricted enforce C(λDA,G)−λDA,E +
µ+

∑
ω νω = 0 and C(λRT,G

ω )−λRT,E
ω +νω = 0,∀ω. Consequently, these KKTs

enforce that λDA,E + µ =
∑

ω λ
RT,E
ω , so that if both explicit virtual bidders

and self-schedulers are included at the same time, the problem is feasible only
if µ = 0. This implies that DA constraints of self-schedulers are inactive. See
online appendix (Schwele et al., 2020) for more details.

Including explicit and implicit VB requires solving (1)-(8) as a GNE prob-
lem by neglecting the operational bounds of self-schedulers in DA, i.e., (7b)
and (8b). Self-schedulers can submit physical and virtual bids as long as their
positions in RT adhere to their feasible operational limits, thus acting as im-
plicit virtual bidders.

5 Ideal Benchmark

We compare the proposed “soft” market-based mechanism for power and nat-
ural gas coordination to the ideal benchmark of a fully stochastic integrated
energy market clearing. This ideal benchmark is indeed a disruptive solution
to achieve a full temporal and sectoral coordination, which ignores the current
market sequences. Assuming that the given set of scenarios is a good repre-
sentation of the probability distribution of uncertainty, the stochastic market
clearing efficiently makes informed DA decisions by anticipating the potential
recourse actions in RT (Pritchard et al., 2010; Morales et al., 2012; Zakeri
et al., 2019; Zavala et al., 2017). In this benchmark, the fully integrated power
and natural gas system is co-optimized under complete exchange of opera-
tional information. The resulting two-stage stochastic linear program aims at
minimizing the total expected operational cost of both sectors in DA and RT,
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and writes as

min
p,u,s,w,g,∆pω,
∆uω,∆sω,∆wω,

∆dE
ω,∆gω,∆dG

ω

e>pCCE + e>s e+ e>CGg e+
∑

ω

πω

(
e>∆pωCE + e>∆sω e

+ Csh,E> ∆dE
ω + e>CG∆gω e+ Csh,G> ∆dG

ω

)]
(9a)

subject to (2b), (2c), (5b), (5c), (9b)

(3b), (3c), (6b), (6c), ∀ω. (9c)

Objective function (9a) minimizes the total DA system cost for power pro-
duction and gas supply as well as the expected RT balancing costs in both
sectors, while respecting the operational constraints in DA (9b) and in RT (9c)
for each scenario. The stochastic optimization problem (9) can be equivalently
reformulated as a pure Nash equilibrium problem, wherein each market player
is a stochastic decision-maker, who maximizes her expected profit with respect
to DA and RT operational constraints with perfect information regarding un-
certainty and prices in both sectors.

Remark 5 The GNE problem (1)-(8) defined in Section 4 including explicit
and implicit VB is not necessarily equal to the ideal benchmark (9), since
their KKTs are different.

Recall that the GNE problem enforces convergence of DA and expected
RT prices in both power and natural gas sectors through the optimality con-
ditions of explicit virtual bidders. On the contrary, in the stochastic market
clearing problem (9), the DA and RT prices converge in expectation only if all
DA operational inequalities are non-binding, i.e., every market player acts as
an unrestrained arbitrager between DA and RT markets. This can be easily
explored by checking the KKT optimality conditions associated with (9).

The co-optimization of power and natural gas system correctly accounts
for the impact of natural gas prices on the merit order of the electricity supply
curve. Allowing all gas-fired units to self-schedule in the sequential setup with
perfect knowledge over both natural gas and electricity prices approximates
system integration. This is further explored in the following proposition.

Proposition 2 If DA operational bounds on p,u,w,g in the stochastic opti-
mization problem (9) are non-binding, the DA and the RT prices converge in
expectation (i.e., λE,DA =

∑
ω πωλ

E,RT
ω and λG,DA =

∑
ω πωλ

G,RT
ω ) and the

outcomes of (9) are equal to the GNE problem (1)-(8) when all gas-fired units
are implicit virtual bidders.

Proof. This is proven by demonstrating that the KKT optimality conditions
of the two problems above under the conditions mentioned are identical – See
online appendix (Schwele et al., 2020) for more details.

Table 1 summarizes all models introduced. While sequential and ideal
benchmark can be solved as linear programs (LP), all other models are re-
cast as mixed complementarity problems (MCP) by concatenating all KKT
conditions from the respective optimization models.
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Table 1 Summary of market setup models.

Market setup Name Model Optimization Equilibrium Model type

Sequential Seq

(2)
(5)
(3) ∀ω
(6) ∀ω

X
X
X
X

−∗
−∗
−∗
−∗

LP
LP
LPs
LPs

Sequential with
explicit virtual bidding

Seq+eVB
(1) ∀r, (2), (3) ∀ω
(4) ∀q, (5), (6) ∀ω

−
−

GNE
GNE

MCP
MCP

Sequential with
implicit virtual bidding

Seq+iVB
(2), (3) ∀ω,
(5), (6) ∀ω, (7), (8)

− GNE MCP

Sequential with both
explicit and implicit
virtual bidding

Seq+VB
(1) ∀r, (2), (3) ∀ω,
(4) ∀q, (5), (6) ∀ω,
(7a), (7c) , (8a), (8c)

− GNE MCP

Ideal benchmark Ideal (9) X −∗ LP

∗There exists a pure Nash equilibrium (NE) which is equivalent to the optimization problem, see Appendix.

6 Numerical Results

This section provides a case study to analyze and compare the proposed market
setups presented in Sections 3, 4 and 5, which are summarized in Table 1.
We solve all models using an Intel CoreTM i7-7820HQ with four processors
clocking at 2.70 GHz and 16 GB of RAM in GAMS using PATH and CPLEX
solver for MCP and LP models, respectively. The CPU time for LP models is
below 1 second, while that time for different MCPs varies between 1 and 800
seconds. See online appendix (Schwele et al., 2020) for further details.

6.1 Input Data

This case study contains a power system with 6 non gas-fired generators
(namely, C1 to C6) and 4 gas-fired generators (namely, G1 to G4). These gas-
fired generators connect the power system to a natural gas system with four
gas suppliers, namely K1 to K4. We consider a 24-hour time horizon. All tech-
nical details of generators and natural gas suppliers as well as the total hourly
demand in both power and natural gas sectors are provided in the online ap-
pendix (Schwele et al., 2020). Note that the demand in both sectors is certain,
and the only source of uncertainty is assumed to be the wind power. Wind
forecast and scenarios are also given in the online appendix. The natural gas
supply curve is shown in Fig. 4, which is the same throughout all 24 hours.
Fig. 5 illustrates the shifting of the electricity merit order curve due to a po-
tential change in the natural gas price. The reason for this shift is that the gas
price affects the marginal production cost of the gas-fired generators. Since in
both DA and RT stages, the electricity market is cleared before the natural gas
market, the electricity market operator needs an estimation of the gas price. In
the following, we assume that the electricity market operator uses the average
gas supply cost, i.e., $2.5/kcf, as a deterministic and static estimation of the
natural gas prices in both DA and RT. The value of lost load in the electricity
and natural gas sectors are set to $600/MWh and $300/kcf, respectively. The
wind power penetration, i.e., total wind power capacity installed divided by
the total electricity demand, is 34%. The next subsections provide the market
outcomes obtained from different setups.
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Fig. 4 Natural gas supply function.
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Fig. 5 Electricity merit order depending on natural gas price. The plots on the left-hand,
middle, and right-hand sides show the merit order corresponding to the low, average and
high prices for natural gas (as illustrated in Fig. 4), respectively.
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Fig. 6 Total expected cost of the electricity and natural gas systems calculated by (9a)
under different market setups. The percentages show the reduction in the total expected
system cost compared to that cost in the fully uncoordinated sequential setup (first bar).

6.2 Main Results: Total Expected System Cost

The total expected cost of electricity and natural gas systems achieved under
different market setups is shown in Fig. 6. As expected, the highest system
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Fig. 7 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected
RT market-clearing prices obtained from fully uncoordinated sequential market setup Seq.
The left- and right-hand side plots correspond to the electricity and natural gas market
outcomes, respectively.

cost corresponds to the sequential setup Seq (first bar in Fig. 6), which is
a fully uncoordinated model. On the other hand, the fully coordinated ideal
model (i.e., last bar in Fig. 6) yields the lowest cost. In this case study, the
full temporal and sectoral coordination results in a 7.06% cost reduction. The
three proposed setups Seq+eVB, Seq+iVB and Seq+VB provide partial coor-
dination, and therefore, the system cost achieved in those setups is between
the upper and lower bounds. Among these three market setups, Seq+VB with
both implicit and explicit VB yields the highest cost saving, which is 6.94%
(fourth bar in Fig. 6). Out-of-sample simulation relaxes our assumptions of per-
fect knowledge of virtual bidders. An analysis of out-of-sample performance
can be found in the online appendix (Schwele et al., 2020). In the following
three subsections, we discuss in details how each market setup impacts the
DA schedules. For clarity, we focus on DA dispatch of one of the slow-start
gas-fired generators, i.e., G4, and analyze how each market setup affects her
dispatch, and therefore her individual expected profit.

6.3 Upper Bound: Sequential Market Setup (Seq)

The corresponding market-clearing outcomes of the fully uncoordinated se-
quential market setup Seq are given in Fig. 7. The DA schedules in this setup
have no foresight into uncertainty in the RT operation and sectoral interactions
between the two systems. Thus, the DA and expected RT prices can signif-
icantly differ. An example of such case is the electricity market price during
hours 14 to 22 in the left-hand side plot and the natural gas market price during
hours 9 to 13 and 18 to 20 in the right-hand side plot of Fig. 7. The slow-start
gas-fired generator G4 is dispatched in the DA electricity market myopically,
without considering the volatility of the actual hourly natural gas price and
the need for flexibility provided by G4 in RT. This generator is scheduled in
hours 10 to 13 relying on the comparatively low estimated gas price, while her
real production cost is higher due to comparatively high natural gas market
prices. When power system flexibility is required, which is evident from the
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Fig. 8 Hourly profit in DA and in expectation in RT of slow-start gas-fired generator G4

obtained from fully uncoordinated sequential market setup Seq. The left-hand plot shows
the estimated profits using natural gas price estimations while the actual profits for realized
natural gas prices are depicted on the right-hand side.

Seq Seq+eVB
Seq+iVB
(self-scheduling by G4)

Seq+VB
(implicit VB by G4)

Ideal

C1 14,078 13,693 13,499 13,411 12,410
C2 18,713 18,180 22,330 17,623 16,362
C3 26,029 8,673 36,920 11,099 8,673
C4 711 254 693 494 0
C5 134,062 126,703 127,079 123,956 115,180
C6 90,417 85,375 81,230 84,315 76,314
G1 -198,988 6,608 10,661 8,003 8,960
G2 1,267 0 -809 0 0
G3 11,127 6,332 5,564 5,535 4,177
G4 -529,059 4,878 11,415 8,319 8,833

Table 2 Expected profit of each generator under different market setups

high expected RT electricity prices in hours 14 and 20, generator G4 is unable
to provide upward adjustment since she is already dispatched at full capacity
in DA. Apart from the high expected system cost, this inefficient DA dispatch
results in a negative expected profit (-$529,059) for G4, as given in Table 2.
The faulty estimation of natural gas prices when clearing the electricity mar-
ket leads to underestimating power generation costs and overestimating the
profits of G4 in RT, such that G4 actually operates at negative profits in RT,
see Fig. 8. This illustrates the need for market coordination, and specifically
the potential of scheduling power generators in DA more efficiently.

6.4 Lower Bound: Ideal Benchmark (Ideal)

In this ideal stochastic co-optimization model, the DA decisions are made while
perfectly foreseeing uncertainty in RT as well as the sectoral interdependencies.
As given in Fig. 9, the DA and expected RT prices converge in both power
and natural gas sectors. The fully efficient DA dispatch in this ideal market
setup ends up to a non-negative expected profit for all generators (see Table
2), including G4 whose expected profit is $8,833.
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Fig. 9 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected
RT market-clearing prices obtained from fully coordinated market setup Ideal. The left-
and right-hand side plots correspond to the electricity and natural gas market outcomes,
respectively.
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Fig. 10 Hourly DA schedule of explicit virtual bidder (i.e., the purely financial player)
and slow-start gas-fired generator G4 as well as DA and expected RT market-clearing prices
obtained from market setup Seq+eVB. The left- and right-hand side plots correspond to the
electricity and natural gas market outcomes, respectively.

6.5 Temporal Coordination: Seq+eVB

Recall that the market setup Seq+eVB provides the DA-RT temporal (but not
sectoral) coordination by allowing explicit VB in both electricity and natural
gas markets. Note that it is sufficient to consider a single explicit virtual bidder
only in each sector since the transmission network is not considered. The hourly
amount of DA virtual bids in both sectors is shown in Fig. 10. The virtual
bidders act as either buyers or sellers over the 24 hours in the DA market. For
example, the virtual bidder in DA electricity market acts as a seller in hours
3-6, 10, 11, 20, and 24, while as a buyer in the rest of hours as illustrated in
the left-hand plot of Fig. 10. The DA positions of this player are going to be
zeroed out by her RT actions. Practically, this means that every MWh the
virtual bidder sells in DA in hours 3-6, 10, 11, 20, and 24 will be bought back
in the same hours in RT. The right-hand plot of Fig. 10 shows that in the DA
natural gas market, the virtual bidder acts as a supplier in most hours. She
behaves as a natural gas consumer only in hours 5, 10, 11 and 24. Note that
allowing explicit VB achieves full convergence of DA and expected RT prices
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Fig. 11 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected
RT market-clearing prices obtained from market setup Seq+iVB. Generator G4 does self-
scheduling. The left- and right-hand side plots correspond to the electricity and natural gas
market outcomes, respectively.

in both power and gas markets. Explicit VB also impacts the DA dispatch
of generators. For example, the slow-start gas-fired generator G4 is no longer
dispatched between hours 2 and 11, while she is fully dispatched in hours 13
to 22. Explicit VB alone decreases the total expected system cost, but to the
disadvantage of several individual generators. For example, the expected profit
most generators decreases compared to the fully coordinated sequential model
and only gas-fired generators G1 and G4 are better off.

6.6 Temporal and Sectoral Coordination: Seq+iVB and Seq+VB

The efficient dispatch of market players operating on the interface of electricity
and natural gas sectors can enhance the sectoral coordination. A foresighted
schedule of gas-fired generators in the DA electricity market may improve not
only the temporal coordination with the RT electricity market, but also the
sectoral coordination with the DA natural gas market. We analyze below the
two market setups Seq+iVB and Seq+VB separately.

6.6.1 Self-scheduling Gas-fired Generators: Seq+iVB

As realized in the previous subsections, the DA dispatch of gas-fired gener-
ator G4 in setup Seq is inefficient, such that she ends up to a negative ex-
pected profit. This shows the significant potential for this generator to do
self-schedule, rather than participating in the markets relied upon a determin-
istic sequential clearing procedure. Fig. 11 shows the DA dispatch and market
outcomes when generator G4 acts as an implicit virtual bidder. Note that
in this setup, the implicit virtual bidder has to still respect her operational
constraints in both DA and RT stages. This restriction will be relaxed later
in setup Seq+VB. According to Fig. 11, generator G4 increases her produc-
tion during hours 1 to 13 when the actual natural gas price is comparatively
low, whereas she reduces her power production and consequently natural gas
consumption when the gas price is comparatively high in hours 14 to 24. As
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Fig. 12 Hourly profit in DA and in expectation in RT of slow-start gas-fired generator G4

self-scheduling in the sequential market setup Seq+iVB.

presented in Fig. 12, allowing this gas-fired generator to self-schedule alone
increases her expected profit to $11,415. Moreover, the total social welfare
is improved in terms of reducing the non-negative expected profits for other
generators and reducing the total expected system cost by 6.37% (third bar
in Fig. 6). Another important observation is that the self-scheduling by G4

causes shrinking the price spread between DA and expected RT prices in both
power and gas sectors.

6.6.2 Explicit and Implicit Virtual Bidding: Seq+VB

This setup allows explicit VB by purely financial players and implicit VB by
gas-fired generator G4. Fig. 13 shows that the explicit and implicit VBs to-
gether achieve full price convergence in expectation in both power and natural
gas markets. When generator G4 is allowed to submit virtual bids in the elec-
tricity and natural gas markets, the amount of explicit virtual trade decreases
significantly in the electricity market and almost disappears in the natural gas
market compared to Fig. 10. Note that G4 extends her bidding behaviour in
the DA electricity and natural gas markets beyond her operational constraints
acting as an implicit virtual bidder. For example, virtual bids are submitted
to act as an electricity consumer and natural gas producer in the DA markets,
e.g., in hours 3, 4 and 9. More specifically, she bids in DA below her opera-
tional capacity in hours 3, 4 and 9 and above her capacity in hours 12, 13, and
19-21. The convergence of DA and expected RT prices indicates full temporal
coordination. Moreover, the additional system cost reduction compared to the
case with explicit VB only (see second and fourth bars in Fig. 6) suggests
improved sectoral coordination. All generators can expect a non-negative ex-
pected profit in this market setup with both implicit and explicit VB. The
implicit virtual bidder G4 expects to earn $8,319. Although this generator can
extend her bidding activity beyond her operational constraints in DA, her ex-
pected profit is lower than that in a case when G4 is the only self-scheduler in
the market setup without explicit VB (Seq+iVB). However, when explicit VB
is allowed (Seq+iVB and Seq+VB), generator G4 is better off by submitting
virtual bids, see Table 2.
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Fig. 13 Hourly DA schedule of explicit (i.e., purely financial player) and implicit virtual
bidder (i.e., generator G4) as well as DA and expected RT market-clearing prices obtained
from market setup Seq+VB. The left- and right-hand side plots correspond to the electricity
and natural gas market outcomes, respectively.

6.7 Main Observations

Based on the above results, allowing market players to arbitrage seems to en-
hance the coordination of sectors and trading floors. The inclusion of explicit
VB results in generating better price signals that reflect the uncertainties in-
herent in the RT stages. These price signals improve DA schedules so that
the existing flexibility is allocated and utilized more efficiently. The VB im-
proves the temporal coordination of the sequential DA and RT markets in
the electricity and natural gas sectors. The self-scheduling gas-fired generator
strengthens the temporal coordination of DA and RT markets by decreasing
the price spread and improves the sectoral coordination by making use of her
superior information of natural gas prices. In the same manner, the implicit
VB by gas-fired generators helps sectoral coordination between the electricity
and natural gas markets and improves the temporal coordination between DA
and RT markets. Such a gas-fired generator is able to arbitrage both between
the trading floors and between the sectors by submitting virtual bids in the
electricity and natural gas markets. That way the coordination between the
sectors flourishes via better information exchange. More specifically, better
price signals and improved DA schedules help allocate and utilize the existing
flexibility more efficiently. The DA schedules are improved through bidding
activities that better reflect the uncertainties and that take into account the
interactions of power and gas sectors.

7 Conclusion

This work explores the capability of financial instruments via VB either by
purely financial players (explicit VB) or by physical players like gas-fired gen-
erators (implicit VB) in improving the temporal and sectoral coordination
in two-stage (DA and RT) electricity and natural gas markets under uncer-
tainty. We use two models as benchmarks: a fully uncoordinated sequential
model which achieves an upper bound for the total expected system cost, and
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a stochastic ideal co-optimization which provides full temporal and sectoral
coordination and yields a lower bound for the total expected system cost. The
resulting models with VB are equilibrium problems, including the determin-
istic market-clearing problems in DA and RT in both power and gas sectors,
and the two-stage stochastic optimization problems of virtual bidders, who
maximize their expected profit.

Our results reveal that competitive virtual bidders who have prefect insight
into the probability distribution of RT prices in power and natural gas mar-
kets increase the efficiency of deterministic sequential markets, such that the
resulting total expected system cost is between the lower and upper bounds. In
our case study, it is illustrated that the inclusion of virtual bidding can result
in an expected system cost that is very close to the lower bound. In particular,
the explicit VB provides a temporal coordination of the DA and RT stages in
power and natural gas markets. Moreover, implicit VB by gas-fired generators
brings both temporal and sectoral coordination. This implies that the sequen-
tial market with VB may approximate the stochastic ideal integrated energy
system, and help reveal and exploit the existing flexibility in the systems more
efficiently.

The main policy implication is that a disruptive market re-design to a
stochastic and integrated energy market might not be necessarily crucial for
unlocking the existing flexibility. Instead, this can be done to some extent via
financial instruments by allowing VB, while preserving the current sequential
market-clearing setup.

As potential future works, it is of high interest to relax the assumption that
explicit and implicit virtual bidders have perfect knowledge of the probability
distribution of real-time prices. This requires modeling the potential informa-
tion asymmetry in the equilibrium model (Lo Prete et al., 2019b; Dvorkin Jr
et al., 2019). It is also important to analyze the cases where virtual bidders
behave as strategic and/or risk-averse players. The proposed equilibrium may
become computationally hard to solve if more players and scenarios are con-
sidered, and thus more efficient solution techniques might be required. One
potential solution can be distributed optimization by solving the problem as
an iterative Walrasian auction, e.g., similar to the methods used in (Mays
et al., 2019; Höschle et al., 2018), but the GNE nature of the model may bring
some computational challenges. The other potential extension is to include
network constraints, especially in the natural gas sector as it allows modeling
linepack (stored gas in the pipelines). However, it will need either approxi-
mation (Ordoudis et al., 2019; Correa-Posada and Sánchez-Mart́ın, 2015) or
relaxation (Schwele et al., 2019) methods to convexify the linepack model.

Appendix

The linear optimization problem (2) can be equivalently reformulated as a
pure Nash equilibrium problem of profit maximizing agents, namely (10). For
given market prices λDA,E, each non gas-fired generator C maximizes her DA
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profit with respect to her operational constraints as

max
pC,uC,sC

(
λDA,E −CE

)>
pC − e>sC (10a)

subject to g(pC,uC, sC) ≤ 0. (10b)

Similarly, each gas-fired generator G maximizes her DA profit as:

max
pG,uG,sG

(
λDA,E − C(λ̃G)

)>
pG − e>sG (10c)

subject to g(pG,uG, sG) ≤ 0. (10d)

Likewise, each wind farm J maximizes her DA profit limited by her determin-
istic wind forecast in DA as

max
w

λDA,E> w (10e)

subject to g(w) ≤ 0, (10f)

and eventually, for given production decisions of conventional and wind gen-
erators and dispatch of virtual bidders, a price-setting agent determines the
DA electricity price λDA,E as

min
λDA,E

λDA,E> h(p,w,vE
r ). (10g)

The Karush-Kuhn-Tucker (KKT) optimality conditions of optimization
problem (2) and pure Nash equilibrium problem (10) are identical – See online
appendix (Schwele et al., 2020) for more details.

In the same manner, the RT market-clearing optimization problem (3)
under scenario ω can be equivalently reformulated as a pure Nash equilibrium
problem. Note that in such an equilibrium problem, each agent’s DA schedule is
fixed. For example, the slow-starting non gas-fired generators C ∩ S maximize
their profit in RT with respect to their DA commitment decisions as

{
max
∆pC

ω

(
λRT,E
ω −CE

)>
∆pC

ω (11a)

subject to g(∆pC
ω ,p

C,uC) ≤ 0,

}
∀ω. (11b)

Optimization problems (5) and (6) can also be equivalently reformulated
as pure Nash equilibrium problems, in which every agent maximizes her own
profit and a price-setter agent determines the price, similar to Proposition 1 –
see online appendix (Schwele et al., 2020) for more details.
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Coordination of Power and Natural Gas Markets via
Financial Instruments

Anna Schwele, Christos Ordoudis, Pierre Pinson, Jalal Kazempour

This document serves as an electronic companion for the paper “Coordination of Power and Natural Gas

Markets via Financial Instruments”. It contains seven sections: The input data for the case study is shown in

Section 1. Section 2 analyses the impact of our assumption of perfect knowledge of virtual bidders. Section

3 presents the detailed formulation of all optimization problems from the original manuscript including

the equivalent equilibrium problems following Remark 1. The Karush Kuhn Tucker (KKT) conditions of

all optimization and equilibrium problems are provided in Section 4. Sections 5 and 6 show the proofs of

Propositions 1 and 2, respectively. Section 7 contains an overview over computational performance.

Nomenclature

Sets

I Set of dispatchable power production units i.

C Subset of non-gas power plants (C ⊂ I).

G Subset of natural gas-fired power plants (G ⊂ I).

S Subset of slow-start power plants (S ⊂ I).

F Subset of fast-start power plants (F ⊂ I).

SS Subset of self-scheduling power plants (SS ⊂ I).

J Set of wind power units j.

K Set of natural gas supply units k.

R Set of electricity virtual bidders r.

Q Set of natural gas virtual bidders q.

Ω Set of wind power scenarios ω.

T Set of time periods t.

Note that C ∪G = I, F ∩S = ∅, F ∩SS = ∅ and S ∩SS = ∅.
Variables

pDA
i,t ,w

DA
j,t Day-ahead dispatch of units i and j in period t, respectively [MW].

pRT
i,t,ω Power production adjustment of unit i in scenario ω, period t [MW].

wRT
j,t,ω Wind power production adjustment of unit j in scenario ω, period t [MW].

lsh,Et,ω , lsh,Gt,ω Electricity and natural gas load shedding under scenario ω, period t [MW, kcf/h].

gDA
k,t Day-ahead dispatch of unit k in period t [kcf/h].

1
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gRT
k,t,ω Natural gas adjustment by unit k in scenario ω, period t [kcf/h].

λ̂E
t Day-ahead electricity price in period t [$/MWh].

λ̃E
t,ω Probability-weighted real-time electricity price in period t, scenario ω [$/MWh].

λ̂G
t Day-ahead natural gas price in period t [$/kcf].

λ̃G
t,ω Probability-weighted real-time natural gas price in period t, scenario ω [$/kcf].

µ,ν Set of dual variables in day-ahead and real-time markets, respectively.

cDA
i,t Start-up cost of dispatchable unit i in period t [$].

cRT
i,t,ω Start-up cost adjustment of dispatchable fast-start unit i in period t under scenario s [$].

uDA
i,t Relaxed unit commitment status of dispatchable unit i in period t.

uRT
i,t,ω Relaxed unit commitment adjustment of fast-start unit i in period t, scenario ω.

vDA,E
r,t Day-ahead trade of electricity virtual bidder r in period t [MW].

vRT,E
r,t Real-time trade of electricity virtual bidder r in period t [MW].

vDA,G
q,t Day-ahead trade of natural gas virtual bidder q in period t [kcf/h].

vRT,G
q,t Real-time trade of natural gas virtual bidder q in period t [kcf/h].

Parameters

DE
t Electricity demand in period t [MWh].

DG
t Natural gas demand in period t [kcf/h].

CE
i Production cost of unit i [$/MWh].

Csh,E Value of electricity lost load [$/MWh].

CG
k Day-ahead offer price of unit k [$/kcf].

Csh,G Value of natural gas lost load [$/kcf].

Pmax
i Capacity of dispatchable unit i [MW].

Pmin
i Minimum production level of dispatchable unit i [MW].

φi Power conversion factor of natural gas unit i∈G [kcf/MWh].

Wj,t,ω Wind power realization of unit j in period t, scenario ω [MW].

WDA
j,t Day-ahead wind power forecast for unit j in period t [MW].

W j Capacity of wind power unit j [MW].

Gmax
k Capacity of natural gas unit k [kcf].

Gadj
k Adjustment limit of natural gas unit k [kcf/h].

πω Probability of scenario ω.

CSU
i Start-up cost of dispatchable unit i [$].

U ini
i Initial commitment status of dispatchable unit i [0/1].

P ini
i Initial dispatch of unit i [MW].

Ri Up/down ramping limit of dispatchable unit i [MW/h].

1. Input Data

Table 3 gives the technical characteristics of power generators, whose columns one to ten show

the unit name, minimum power production (Pmin
i ), capacity (Pmax

i ), ramp rate (Ri), start-up cost
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Unit
Pmin
i

[MW]
Pmax
i

[MW]
Ri

[MW/h]
CSU

i

[$]
U ini

[0/1]
P ini
i

[MWh]
Type

CE
i

[$/MWh]
φi

[kcf/MWh]

C1 0 40 20 17,462 1 40 non gas-fired 22.18 -
C2 0 152 50 13,207 1 100 non gas-fired 33.2 -
C3 0 300 195 22,313 0 0 non gas-fired 37.14 -
C4 100 591 230 28,272 0 0 non gas-fired 38.2 -
C5 400 400 400 50,000 1 400 non gas-fired 22.34 -
C6 0 350 80 33,921 0 0 non gas-fired 20.92 -
G1 0 155 100 21,450 1 100 gas-fired - 15.23
G2 0 60 60 10,721 0 0 gas-fired - 16.98
G3 0 310 200 42,900 0 0 gas-fired - 12.65
G4 0 300 150 10,000 0 0 gas-fired - 14.88

Table 1 Technical characteristics of power generators

Supplier
Gmin

k

[kcf]
Gmax

k

[kcf]
Gadj

k

[kcf/h]
CG

k

[$/kcf]

K1 0 9,000 1,000 2
K2 0 6,000 1,000 2.2
K3 0 15,000 1,000 2.5
K4 0 15,000 1,000 3.3

Table 2 Technical characteristics of gas suppliers
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Figure 1 Electricity and natural gas demand. The plots on the left- and right-hand sides show the total hourly

demand for power and natural gas, respectively.

(CSU
i ), initial commitment status at the beginning of time horizon (U ini), initial dispatch (P ini),

type, production cost for non gas-fired generators (CE
i ), and gas-to-power conversion ratio for gas-

fired generators (φi), respectively. In addition, Table 4 provides the technical characteristics of four

gas suppliers, including minimum and maximum gas capacity (Gmin
k and Gmax

k ), ramp rate (Gadj
k ),

and supply cost (CG
k ). The total hourly demand in both power and natural gas sectors is shown

in Fig. 1. The profile of deterministic wind power forecast (in per-unit) in day-ahead is illustrated

by a solid curve in the left-hand side plot of Fig. 2, while the right-hand side plot provides the

five equiprobable wind scenarios that may realize in real-time. Due to potential forecast error in

day-ahead, observe that the day-ahead deterministic forecast (solid curve in the left-hand side plot)

is not necessarily identical to the expected wind power realization in real-time (dashed curve in

the same plot). In this case, the day-ahead wind forecast underestimates the available wind power

production during hours 1 to 6 and 19 to 23, while overestimates it from hour 7 to 18.
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Figure 2 Wind power forecast in day-ahead (DA) and potential scenarios in real-time (RT): The upper plot

shows the deterministic wind power forecast in DA and the expected value of five wind power scenarios in RT.

These five equiprobable scenarios in RT are depicted in the lower plot.

Seq Seq+eVB Seq+iVB Seq+VB Ideal

In-sample $1,464,320 -6.83% -6.37% -6.94% -7.06%

Out-of-sample
Same distribution $1,360,886 -4.49% -3.36% -4.29% -5.33%
Higher first moments $1.344.285 -3.91% -3.06% -3.73% -4.76%
Lower first moments $1,410,223 -5.24% -3.45% -4.85% -6.12%
Different distribution $1,252.643 -3.30% -3.99% -3.79% -4.60%

Table 3 Total expected cost of the electricity and natural gas systems under different market setups for

in-sample and out-of-sample scenarios. The percentages show the differences in the total expected system cost

compared to that cost in the fully uncoordinated sequential setup Seq.

2. Out-of-sample Analysis

This section presents an ex-post out-of-sample analysis to evaluate the performance of the pro-

posed market setups against our assumption of perfect knowledge of virtual bidders and against

estimations of natural gas prices. For this purpose, we test the impact of unseen scenarios on the

market setups. To assess the impact of the assumption of perfect knowledge of virtual bidders on

market outcomes, we generate a set of 100 new scenarios from the same distribution and 100 sce-

narios from a distribution with different first and second moments. Fixing the day-ahead schedules

to those obtained with the original in-sample simulations, we solve a real-time electricity market

and then a real-time gas market for each out-of-sample scenario. The expected total system costs

achieved with the sequential setup Seq decrease compared to those in the in-sample simulation,

due to the updated expected electricity and gas adjustment costs under the previously unseen sce-

narios, as exhibited in Table 3. The fully coordinated ideal model Ideal still provides a lower bound

for the expected total system cost. The setups including soft coordination via financial instruments

consistently achieve lower expected system costs compared to the fully sequential setup Seq. The

effectiveness of virtual bidders to improve sectoral and temporal coordination and make day-ahead

schedules more efficient is not overly sensitive to the quality of information of these agents.
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3. Optimization Problems
3.1. Explicit Electricity Virtual Bidder

The profit maximization problem of each virtual bidder r participating in the electricity market

given the day-ahead and expectation of real-time prices λ̂E
t and λ̃E

t,ω, respectively, is given below:

{
max

v
DA,E
r,t ,v

RT,E
r,t

∑

t∈T

(
λ̂E
t v

DA,E
r,t +

∑

ω∈Ω

λ̃E
t,ω

)
vRT,E
r,t (1a)

subject to vDA,E
r,t + vRT,E

r,t = 0 : ρr,t, ∀t,
}
, ∀r ∈R, (1b)

where ΘVBE = {vDA,E
r,t , vRT,E

r,t , ∀r, t} is the set of primal optimization variables. Objective function

(1a) maximizes the expected profit of arbitraging in the day-ahead and real-time electricity markets.

Equation (1b) ensures that each virtual bidder sells (buys) the same amount back in the real-time

market that was bought (sold) in the day-ahead market. The market operators treat the virtual

bidders’ dispatch decision as fixed input into the market clearing in the following.

3.2. Day-Ahead Electricity Market

The day-ahead electricity market clears with given day-ahead positions of virtual trade as:

min
ΘEDA

∑

t∈T

(∑

i∈C
CE
i pDA

i,t +
∑

i∈G
λ̂G
t φi p

DA
i,t +

∑

i∈I
cDA
i,t

)
(2a)

subject to
∑

i∈I
pDA
i,t +

∑

j∈J
wDA
j,t −DE

t +
∑

r∈R
vDA,E
r,t = 0 : λ̂E

t , ∀t, (2b)

0≤wDA
j,t ≤WDA

j,t : µW

j,t
, µW

j,t, ∀j, t, (2c)

uDA
i,t Pmin

i ≤pDA
i,t ≤uDA

i,t Pmax
i :µP

i,t
, µP

i,t, ∀i∈ I, t, (2d)

−uDA
i,(t−1) Ri ≤

(
pDA
i,t − pDA

i,(t−1)

)
≤ uDA

i,t Ri :µ
R

i,t
, µR

i,t, ∀i∈ I, t > 1, (2e)

−U ini
i Ri ≤

(
pDA
i,t −P ini

i

)
≤ uDA

i,t Ri :µ
R

i,t
, µR

i,t, ∀i∈ I, t= 1, (2f)

0≤ uDA
i,t ≤ 1 : µB

i,t
, µB

i,t, ∀i∈ I, t, (2g)

CSU
i

(
uDA
i,t −uDA

i,(t−1)

)
≤ cDA

i,t :µSU
i,t , ∀i∈ I, t > 1, (2h)

CSU
i

(
uDA
i,t −U ini

i

)
≤ cDA

i,t : µSU
i,t , ∀i∈ I, t= 1, (2i)

0≤ cDA
i,t : µSU

i,t
, ∀i∈ I, t, (2j)

where ΘEDA = {pDA
i,t , c

DA
i,t , u

DA
i,t , ∀i ∈ I, t;wDA

j,t , ∀j, t} is the set of primal optimization variables. The

objective (2a) of the deterministic day-ahead market-clearing problem is to minimize the day-ahead

generation cost. The total cost stems from the cost of non-gas and gas-fired power plants. These

units are assumed to bid in the market truthfully, i.e., offer at prices equal to their marginal cost

of production. For the case of gas-fired units, we assume that the marginal cost of production is

described by a linear function of the estimated natural gas price, i.e., Ci = λ̂G
t φi, ∀i∈ G. Constraint
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(2b) is the day-ahead power balance with inelastic demand treating the virtual day-ahead positions
∑

r∈R v
DA,E
r,t as given inputs. Constraints (2c) and (2d) enforce lower and upper bounds on the

day-ahead dispatch of wind and conventional generation. Constraints (2e), (2f) ensure the ramping

limits of conventional generators and represent in combination with (2g) the tight relaxation of

unit commitment. Constraints (2h), (2i), and (2j) enforce the start-up cost of each generator.

The optimization problem for day-ahead electricity market clearing can be equivalently formu-

lated as the following equilibrium model with each unit maximizing her profit and a price-setting

agent according to Remark 1. Each non gas-fired generator C maximizes her day-ahead profit with

respect to her operational constraints according to

{
max

pDA
i,t ,c

DA
i,t ,u

DA
i,t

∑

t∈T

[(
λ̂E
t −CE

i

)
pDA
i,t − cDA

i,t

]
(3a)

subject to (2d)− (2j)

}
∀(i∈ C). (3b)

Similarly, gas-fired generator G decides her day-ahead dispatch based on estimated marginal cost

via natural gas price forecast λ̂G
t :

{
max

pDA
i,t ,c

DA
i,t ,u

DA
i,t

∑

t∈T

[(
λ̂E
t − λ̂G

t φi

)
pDA
i,t − cDA

i,t

]
(4a)

subject to (2d)− (2j)

}
∀(i∈ G). (4b)

Wind farm J maximizes her profit according to the day-ahead wind forecast WDA
j,t as

{
max
wDA
j,t

∑

t∈T
λ̂E
t w

DA
j,t (5a)

subject to (2c)

}
∀j ∈J . (5b)

A price setting agent decides the day-ahead electricity price λ̂E
t according to

min
λ̂Et

∑

t∈T
λ̂E
t

(∑

i∈I
pDA
i,t +

∑

j∈J
wDA
j,t −DE

t +
∑

r∈R
vDA,E
r,t .

)
(6a)

The equilibrium problem (3)-(6) is equivalent to the day-ahead market optimization problem (2),

since the Karush-Kuhn-Tucker (KKT) conditions are identical, see Section 4.
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3.3. Real-Time Electricity Market

In real-time operation, wind power production Wj,t,ω is realized and the real-time markets are

cleared to adjust for imbalances. The day-ahead schedule is treated as fixed parameters in the fol-

lowing formulation. The RT market-clearing problem for wind generation scenario ω is formulated

as
{

min
ΘERT

πω
∑

t∈T

(∑

i∈C
CE
i pRT

i,t,ω+
∑

i∈G
λ̃G
t,ω φi p

RT
i,t,ω+Csh,E lsh,E

t,ω +
∑

i∈F
cRT
i,t,ω

)
(7a)

subject to
∑

i∈I
pRT
i,t,ω + lsh,E

t,ω +
∑

r∈R
vRT,E
r,t +

∑

j∈J
wRT
j,t,ω = 0:λ̃E

t,ω, ∀t, (7b)

0≤ lsh,E
t,ω ≤DE

t : νDE
t,ω , ν

DE
t,ω , ∀t, (7c)

0≤
(
wDA
j,t +wRT

j,t,ω

)
≤Wj,t,ω : νW

j,t,ω, ν
W
j,t,ω, ∀j, t, (7d)

uDA
i,t Pmin

i ≤
(
pDA
i,t + pRT

i,t,ω

)
≤ uDA

i,t Pmax
i :νP

i,t,ω, ν
P
i,t,ω, ∀i∈ S, t, (7e)

−uDA
i,(t−1) Ri ≤

(
pDA
i,t + pRT

i,t,ω − pDA
i,(t−1)− pRT

i,(t−1),ω

)
≤ uDA

i,t Ri : νR
i,t,ω, ν

R
i,t,ω, ∀i∈ S, t > 1,

(7f)

−U ini
i Ri ≤

(
pDA
i,t + pRT

i,t,ω −P ini
i

)
≤ uDA

i,t Ri :ν
R
i,t,ω, ν

R
i,t,ω, ∀i∈ S, t=1, (7g)

(
uDA
i,t +uRT

i,t,ω

)
Pmin
i ≤

(
pDA
i,t + pRT

i,t,ω

)
≤
(
uDA
i,t +uRT

i,t,ω

)
Pmax
i : νP

i,t,ω, ν
P
i,t,ω, ∀i∈F , t, (7h)

−
(
uDA
i,(t−1) +uRT

i,(t−1),ω

)
Ri ≤

(
pDA
i,t + pRT

i,t,ω − pDA
i,(t−1)− pRT

i,(t−1),ω

)
≤
(
uDA
i,t +uRT

i,t,ω

)
Ri

:νR
i,t,ω, ν

R
i,t,ω, ∀i∈F , t > 1, (7i)

−U ini
i Ri ≤

(
pDA
i,t + pRT

i,t,ω −P ini
i

)
≤
(
uDA
i,t +uRT

i,t,ω

)
Ri : νR

i,t,ω, ν
R
i,t,ω, ∀i∈F , t=1, (7j)

0≤
(
uDA
i,t +uRT

i,t,ω

)
≤ 1:νB

i,t,ω, ν
B
i,t,ω, ∀i∈F , t, (7k)

CSU
i

(
uDA
i,t +uRT

i,t,ω −uDA
i,(t−1)−uRT

i,(t−1),ω

)
≤
(
cDA
i,t + cRT

i,t,ω

)
:νSU
i,t,ω, ∀i∈F , t, (7l)

CSU
i

(
uDA
i,t +uRT

i,t,ω −U ini
i

)
≤
(
cDA
i,t + cRT

i,t,ω

)
:νSU
i,t,ω, ∀i∈F , t= 1, (7m)

0≤
(
cDA
i,t + cRT

i,t,ω

)
: νSU

i,t,ω, ∀i∈F , t
}
∀ω, (7n)

where ΘERT = {pRT
i,t,ω, ∀i ∈ I, t,ω;wRT

j,t,ω, ∀j, t,ω; lsh,E
t,ω , ∀t,ω; uRT

i,t,ω, c
RT
i,t,ω ∀i ∈ F , t,ω} is the set of

primal optimization variables. The objective of (7) is to minimize the probability-weighted system

cost in the real-time market under scenarios ω. Objective function (7a) describes the real-time

cost of power adjustments to cover excess or deficit of wind power production. Electricity load

shedding cost is also taken into account. Constraint (7b) balances the deviations in real-time from

the day-ahead schedule with the position of virtual bidders
∑

r∈R v
RT,E
r,t as fixed input. Constraints

(7c),(7d), (7e), and (7h) enforce lower and upper bounds on the real-time adjustment of load levels,

wind generation, and conventional slow- and fast-starting generators, respectively. Constraints

(7f),(7g),(7i), and (7j) ensure the ramp-rate limits of conventional slow- and fast-starting generators
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and represent in combination with (7k) the tight relaxation of unit commitment for fast-starting

units. Constraints (7l), (7m), and (7n) enforce the start-up cost of fast-starting generators.

Following Remark 1, optimization problem (7) can be equivalently formulated as the following

equilibrium problem. Slow-starting non gas-fired generator C ∩S maximizes her profit in real-time

with respect to her day-ahead commitment decision as
{

max
pRT
i,t,ω

∑

t∈T

(
λ̃E
t,ω −πω CE

i

)
pRT
i,t,ω (8a)

subject to (7e)− (7g)

}
∀(i∈ C ∩S), ω, (8b)

while each fast-starting generator C∩F can update her commitment decision in real-time according

to
{

max
pRT
i,t,ω ,c

RT
i,t,ω ,u

RT
i,t,ω

∑

t∈T

[(
λ̃E
t,ω −πω CE

i

)
pRT
i,t,ω−πω cRT

i,t,ω

]
(9a)

subject to (7h)− (7n)

}
∀(i∈ C ∩F), ω. (9b)

Similarly, gas-fired generators optimize their dispatch decisions in real-time based on real-time

natural gas price estimation λ̃G
t,ω as slow-starters G ∩S according to

{
max
pRT
i,t,ω

∑

t∈T

(
λ̃E
t,ω −πω λ̃G

t,ω φi

)
pRT
i,t,ω (10a)

subject to (7e)− (7g)

}
∀(i∈ G ∩S), ω (10b)

and as fast-starters G ∩F , as
{

max
pRT
i,t,ω ,c

RT
i,t,ω ,u

RT
i,t,ω

∑

t∈T

[(
λ̃E
t,ω −πω λ̃G

t,ω φi

)
pRT
i,t,ω−πω cRT

i,t,ω

]
(11a)

subject to (7h)− (7n)

}
∀(i∈ G ∩F), ω. (11b)

Wind farm J adjusts her dispatch in real-time according to the actual wind power realization

Wj,t,ω:

{
max
wRT
j,t,ω

∑

t∈T
λ̃E
t,ω w

RT
j,t,ω (12a)

subject to (7d)

}
∀j,ω. (12b)

Power demand is able to shed load in real-time incurring cost as
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{
min
l
sh,E
t,ω

∑

t∈T

(
πω C

sh,E − λ̃E
t,ω

)
lsh,E
t,ω

)
(13a)

subject to (7c)

}
∀ω. (13b)

For each scenario, the real-time electricity price λ̃E
t,ω is set according to

{
min
λ̃Et,ω

∑

t∈T
λ̃E
t,ω

(∑

i∈I
pRT
i,t,ω + lsh,E

t,ω +
∑

j∈J
wRT
j,t,ω +

∑

r∈R
vRT,E
r,t

)}
∀ω. (14a)

The equilibrium problem (8)-(14) is equivalent to the real-time market optimization problem (7)

for each scenario ω.

3.4. Explicit Natural Gas Virtual Bidder

We also introduce virtual bidding in natural gas markets. Similarly to electricity virtual bidding,

the profit maximization problem of each virtual bidder q participating in the natural gas market

is given below for day-ahead and real-time distribution of natural gas spot price λ̂G
t and λ̃G

t,ω,

respectively:

{
max
ΘVBG

∑

t∈T

(
λ̂G
t vDA,G

q,t +
∑

ω∈Ω

λ̃G
t,ω v

RT,G
q,t

)
(15a)

subject to vDA,G
q,t + vRT,G

q,t = 0 :ψq,t, ∀t,
}
, ∀q ∈Q, (15b)

where ΘVBG = {vDA,G
q,t , vRT,G

q,t , ∀q, t} is the set of primal optimization variables. Objective function

(15a) maximizes the expected profit of virtual bidder participating in the day-ahead and real-time

natural gas markets and equation (15b) balances the virtual bidders day-ahead and real-time trade.

3.5. Day-Ahead Natural Gas Market

Both the day-ahead dispatch of virtual bidders and gas-fired units are inputs into the natural

gas day-ahead market clearing problem. The power dispatch of gas-fired units is translated into a

time-varying demand for natural gas by
∑

i∈G φi p
DA
i,t , ∀t. Operating cost of the natural gas system

in day-ahead is minimized according to

min
ΘGD

∑

t∈T

(∑

k∈K
CG
k gDA

k,t

)
(16a)

subject to
∑

k∈K
gDA
k,t −

∑

i∈G
φi p

DA
i,t −DG

t +
∑

q∈Q
vDA,G
q,t = 0 : λ̂G

t , ∀t, (16b)

0≤ gDA
k,t ≤Gmax

k : µG

k,t
, µG

k,t, ∀k, t, (16c)
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where ΘGD = {gDA
k,t , ∀k, t} is the set of primal optimization variables. Objective function (16a) gives

the cost of natural gas supply. Equation (16b) represents the day-ahead gas supply balance with

inelastic demand including fixed gas demand for power production
∑

i∈G φi p
DA
i,t and amount of

virtual trade
∑

q∈Q v
DA,G
q,t . Constraint (16c) enforces lower and upper bounds on the gas supply.

The optimization problem for day-ahead gas market clearing can be equivalently formulated

as the following equilibrium model with each supplier maximizing their profit and a price-setting

agent. Each natural gas supplier or producer maximizes her day-ahead profit with respect to her

operational constraints according to

{
max
ΘGD

∑

t∈T

(
λ̂G
t −CG

k

)
gDA
k,t (17a)

subject to (16c)

}
∀k, (17b)

with the day-ahead price for natural gas λ̂G
t set by

min
λ̂Gt

∑

t∈T
λ̂G
t

(∑

k∈K
gDA
k,t −

∑

i∈G
φi p

DA
i,t −DG

t +
∑

q∈Q
vDA,G
q,t

)
(18a)

The KKT conditions of optimization problem (16) are equivalent to those of equilibrium problem

(17)-(18).

3.6. Real-Time Natural Gas Market

The real-time natural gas market is cleared for adjusted fuel consumption by gas-fired units con-

verted to a time-varying demand deviation via
∑

i∈G φi p
RT
i,t,ω,∀t,ω. The day-ahead schedule of

the natural gas system as well as real-time electricity adjustments of gas-fired units and dispatch

decisions by virtual bidders are treated as fixed parameters in the following formulation:

{
min
ΘGR

πω
∑

t∈T

(∑

k∈K
CG
k gRT

k,t,ω +Csh,G lsh,G
t,ω

)
(19a)

subject to
∑

k∈K
gRT
k,t,ω −

∑

i∈G
φi p

RT
i,t,ω + lsh,G

t,ω +
∑

q∈Q
vRT,G
q,t = 0 : λ̃G

t,ω, ∀t, (19b)

0≤
(
gDA
k,t + gRT

k,t,ω

)
≤Gmax

k : νG
k,t,ω, ν

G
k,t,ω, ∀k, t, (19c)

gRT
k,t,ω ≤Gadj

k : νGR
t,ω , ν

GR
t,ω , ∀k, t, (19d)

0≤ lsh,G
t,ω ≤DG

t : νDG
t,ω , ν

DG
t,ω , ∀t,

}
∀ω (19e)

where ΘGR = {gRT
k,t,ω, ∀k, t,ω; lsh,G

t,ω , ∀t,ω} is the set of primal optimization variables. The real-time

cost of the natural gas system is given in objective function (19a). The probability-weighted cost of

natural gas adjustments along with natural gas load shedding is minimized in (19a)under scenarios
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ω. Constraint (19b) represents the balance of gas supply adjustments in real-time including fixed

amount of virtual trade
∑

q∈Q v
RT,G
q,t . Constraints (19c), (19d), and (19e) enforce lower and upper

bounds on gas supply, gas adjustments and gas load shedding, respectively.

Market-clearing problem (19) is equivalent to the following equilibrium problem (20)-(22). Each

gas supplier updates her supply in real-time as
{

max
ΘGR

∑

t∈T

(
λ̃G
t,ω −πω CG

k

)
gRT
k,t,ω (20a)

subject to (19c), (19d)

}
∀k,ω, (20b)

and cost incurred by gas demand curtailment is minimized according to
{

min
ΘGR

∑

t∈T

(
πω C

sh,G− λ̃G
t,ω

)
lsh,G
t,ω (21a)

subject to (19e)

}
∀ω. (21b)

The real-time natural gas price is determined for each scenario ω as
{

min
λ̃Gt,ω

∑

t∈T
λ̃G
t,ω

(∑

k∈K
gRT
k,t,ω −

∑

i∈G
φi p

RT
i,t,ω + lsh,G

t,ω +
∑

q∈Q
vRT,G
q,t

)}
∀ω. (22a)

3.7. Self-Scheduling Gas-Fired Generators

For improving the sectoral coordination, we allow natural gas-fired units to self-schedule outside

the markets for optimally allocating their flexibility in the power and natural gas markets. Each

gas-fired unit maximizes its expected profit given a perfect anticipation of the distribution of both

electricity and natural gas real-time market prices.

3.7.1. Self-scheduling slow-starting gas-fired unit The profit maximization problem of

each self-scheduling gas-fired unit G ∩S participating in the electricity and natural gas market is

given below:

{
max
ΘSSS

∑

t∈T

[
pDA
i,t

(
λ̂E
t −φi λ̂G

t

)
− cDA

i,t +
∑

ω∈Ω

pRT
i,t,ω

(
λ̃E
t,ω −φi λ̃G

t,ω

)]
(23a)

subject to(2d)− (2j) (23b)

(7e)− (7g)∀ω
}
∀i∈ (G ∩S), (23c)

where ΘSSS = {pDA
i,t , u

DA
i,t , c

DA
i,t ,∀i∈ (G ∩S), t;pRT

i,t,ω,∀i∈ (G ∩S), t,ω} is the set of primal optimization

variables. Objective function (23a) maximizes the expected profit of self-scheduling gas-fired gen-

erators and simultaneously considering the day-ahead (2d)-(2j) and real-time (7e)-(7g) constraints
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for all scenarios ω ∈ Ω. Note that the self-scheduler’s dispatch decisions pDA
i,t , u

DA
i,t , pRT

i,t,ω are fixed

input in the market-clearing problems (2), (7), (16), and (19).

3.7.2. Self-scheduling fast-starting gas-fired unit The profit maximization problem of

each fast-start self-scheduling gas-fired unit G ∩F participating in the electricity and natural gas

market is given below:
{

max
ΘSSF

∑

t∈T

[
pDA
i,t

(
λ̂E
t −φi λ̂G

t

)
− cDA

i,t +
∑

ω∈Ω

pRT
i,t,ω

(
λ̃E
t,ω −φi λ̃G

t,ω

)
−πω cRT

i,t,ω

]
(24a)

subject to (2d)− (2j) (24b)

(7h)− (7n)∀ω
}
∀i∈ (G ∩F), (24c)

where ΘSSF = {pDA
i,t , u

DA
i,t , c

DA
i,t ,∀i ∈ (G ∩F), t;pRT

i,t,ω, u
RT
i,t,ω, c

RT
i,t,ω,∀i ∈ (G ∩F), t,ω} is the set of primal

optimization variables. Objective function (24a) maximizes the expected profit of self-scheduling

gas-fired generators and simultaneously considering the day-ahead (2d)-(2j) and real-time (7h)-(7n)

constraints for all scenarios ω ∈Ω.

3.8. Ideal Benchmark: Stochastic Integrated Electricity and Natural Gas Market

The stochastic and fully-coupled dispatch model simulates the integrated power and natural system

by jointly modeling the day-ahead and real-time stages. The problem is formulated as a two-stage

stochastic program aiming to minimize the total expected cost and writes as follows,

min
ΘSC

∑

t∈T

[∑

i∈C

(
CE
i pDA

i,t

)
+
∑

i∈I
cDA
i,t +

∑

k∈K
CG
k gDA

k,t +
∑

ω∈Ω

πω

(∑

i∈C
CE
i pRT

i,t,ω +
∑

i∈F
cRT
i,t +

∑

k∈K
CG
k gRT

k,t,ω +Csh,E lsh,E
t,ω +Csh,G lsh,G

t,ω

)]
(25a)

subject to

(2d)− (2g), ∀i, (16c), (16b), (25b)

(7e)− (7k), ∀i,ω, (19c)− (19b), ∀ω, (25c)

where ΘSC = {ΘED,ΘGD,ΘER,ΘGR} is the set of primal optimization variables. In this model, the

temporal coordination of the two trading floors is taken into account by anticipating the real-time

constraints (25c) for all scenarios ω ∈Ω.

4. Karush-Kuhn-Tucker Conditions
4.1. Explicit Electricity Virtual Bidder

∂L

∂vDA,E
r,t

= λ̂E
t − ρr,t = 0, ∀r, t, (26a)

∂L

∂vRT,E
r,t

=
∑

ω∈Ω

λ̃E
t,ω − ρr,t = 0, ∀r, t, (26b)

vDA,E
r,t + vRT,E

r,t = 0 : ρr,t, ∀r, t. (26c)
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4.2. Day-Ahead Electricity Market

∂L

∂pDA
i,t

=CE
i − λ̂E

t +µP
i,t−µP

i,t
+µR

i,t−µR
i,(t+1)−µR

i,t
+µR

i,(t+1)
= 0, ∀i∈ C \SS, t < |T |, (27a)

∂L

∂pDA
i,t

=CE
i − λ̂E

t +µP
i,t−µP

i,t
+µR

i,t−µR

i,t
= 0, ∀i∈ C \SS, t= |T |, (27b)

∂L

∂pDA
i,t

= λ̂G
t φi− λ̂E

t +µP
i,t−µP

i,t
+µR

i,t−µR
i,(t+1)−µR

i,t
+µR

i,(t+1)
= 0, ∀i∈ G \SS, t < |T |, (27c)

∂L

∂pDA
i,t

= λ̂G
t φi− λ̂E

t +µP
i,t−µP

i,t
+µR

i,t−µR

i,t
= 0, ∀i∈ G \SS, t= |T |, (27d)

∂L

∂uDA
i,t

=−Pmax
i µP

i,t +Pmin
i µP

i,t
−RiµR

i,t−RiµR

i,(t+1)
+CSU

i (µSU
i,t −µSU

i,(t+1)) +µB
i,t−µB

i,t
= 0,

∀i∈ I \SS, t < |T |, (27e)

∂L

∂uDA
i,t

=−Pmax
i µP

i,t +Pmin
i µP

i,t
−RiµR

i,t +CSU
i µSU

i,t +µB
i,t−µB

i,t
= 0, ∀i∈ I \SS, t= |T |, (27f)

∂L

∂wDA
j,t

=−λ̂E
t µ

W
j,t−µW

j,t
= 0, ∀j, t (27g)

∂L

∂cDA
i,t

= 1−µSU
i,t −µSU

i,t
= 0, ∀i∈ I \SS, t (27h)

0≤ (pDA
i,t −uDA

i,t P
min
i )⊥ µP

i,t
≥ 0 ∀i∈ I \SS, t, (27i)

0≤ (uDA
i,t P

max
i − pDA

i,t )⊥ µP
i,t ≥ 0 ∀i∈ I \SS, t, (27j)

0≤wDA
j,t ⊥ µW

j,t
≥ 0, ∀j, t (27k)

0≤ (WDA
j,t −wDA

j,t )⊥ µW
j,t ≥ 0, ∀j, t, (27l)

0≤
[
(pDA
i,t − pDA

i,(t−1)) +uDA
i,(t−1)Ri

]
⊥ µR

i,t
≥ 0, ∀i∈ I \SS, t > 1, (27m)

0≤
[
uDA
i,t Ri− (pDA

i,t − pDA
i,(t−1))

]
⊥ µR

i,t ≥ 0, ∀i∈ I \SS, t > 1, (27n)

0≤
[
(pDA
i,t −P ini

i ) +U ini
i Ri

]
⊥ µR

i,t
≥ 0, ∀i∈ I \SS, t= 1, (27o)

0≤
[
uDA
i,t Ri− (pDA

i,t −P ini
i )
]
⊥ µR

i,t ≥ 0, ∀i∈ I \SS, t= 1, (27p)

0≤
[
cDA
i,t −CSU

i (uDA
i,t −uDA

i,(t−1))
]
⊥ µSU

i,t ≥ 0, ∀i∈ I \SS, t > 1, (27q)

0≤
[
cDA
i,t −CSU

i (uDA
i,t −U ini

i )
]
⊥ µSU

i,t ≥ 0, ∀i∈ I \SS, t= 1, (27r)

0≤ cDA
i,t ⊥ µSU

i,t
≥ 0, ∀i∈ I \SS, t, (27s)

0≤ uDA
i,t ⊥ µB

i,t
≥ 0, ∀i∈ I \SS, t, (27t)

0≤ (1−uDA
i,t )⊥ µB

i,t ≥ 0, ∀i∈ I \SS, t, (27u)
∑

i∈I
pDA
i,t +

∑

j∈J
wDA
j,t −DE

t +
∑

r∈R
vDA,E
r,t = 0 : λ̂E

t , ∀t. (27v)

(27w)

4.3. Real-Time Electricity Market

∂L

∂pRT
i,t,ω

= πωC
E
i − λ̃E

t,ω + νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,(t+1),ω − νR
i,t,ω + νR

i,(t+1),ω = 0,
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∀i∈ C \SS, t < |T |, ω, (28a)

∂L

∂pRT
i,t,ω

= πωC
E
i − λ̃E

t,ω + νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,t,ω = 0, ∀i∈ C \SS, t= |T |, ω, (28b)

∂L

∂pRT
i,t,ω

= λ̃G
t φi− λ̃E

t,ω + νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,(t+1),ω − νR
i,t,ω + νR

i,(t+1),ω = 0,

∀i∈ G \SS, t < |T |, ω, (28c)

∂L

∂pRT
i,t,ω

= λ̃G
t φi− λ̃E

t,ω + νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,t,ω = 0, ∀i∈ G \SS, t= |T |, ω, (28d)

∂L

∂wRT
j,t,ω

=−λ̃E
t,ων

W
j,t,ω − νW

j,t,ω = 0, ∀j, t,ω, (28e)

∂L

∂lsh,E
t,ω

= πω C
sh,E− λ̃E

t,ω + νDE
t,ω − νDE

t,ω = 0, ∀t,ω, (28f)

∂L

∂uRT
i,t,ω

=−Pmax
i νP

i,t,ω +Pmin
i νP

i,t,ω −RiνR
i,t,ω −RiνR

i,(t+1),ω +CSU
i (νSU

i,t,ω − νSU
i,(t+1),ω)

+ νB
i,t,ω − νB

i,t,ω = 0, ∀i∈F , t < T , ω, (28g)

∂L

∂uRT
i,t,ω

=−Pmax
i νP

i,t,ω +Pmin
i νP

i,t,ω −RiνR
i,t,ω +CSU

i νSU
i,t,ω + νB

i,t,ω − νB
i,t,ω = 0, ∀i∈F , t= |T |, ω,

(28h)

∂L

∂cRT
i,t,ω

= πω − νSU
i,t,ω − νSU

i,t,ω = 0, ∀i∈F , t,ω, (28i)

0≤
[
(pDA
i,t + pRT

i,t,ω)−uDA
i,t P

min
i

]
⊥ νP

i,t,ω ≥ 0, ∀i∈ S, t,ω, (28j)

0≤
[
uDA
i,t P

max
i − (pDA

i,t + pRT
i,t,ω)

]
⊥ νP

i,t,ω ≥ 0, ∀i∈ S, t,ω, (28k)

0≤
[
(pDA
i,t + pRT

i,t,ω)− (uDA
i,t +uRT

i,t,ω)Pmin
i

]
⊥ νP

i,t,ω ≥ 0,∀i∈F , t,ω, (28l)

0≤
[
(uDA
i,t +uRT

i,t,ω)Pmax
i − (pDA

i,t + pRT
i,t,ω)

]
⊥ νP

i,t,ω ≥ 0,∀i∈F , t, ω, (28m)

0≤ (wDA
j,t +wRT

j,t,ω)⊥ νW
j,t,ω ≥ 0, ∀j, t,ω, (28n)

0≤
[
Wj,t,ω − (wDA

j,t +wRT
j,t,ω)

]
⊥ νW

j,t,ω ≥ 0, ∀j, t,ω, (28o)

0≤ lsh,E
t,ω ⊥ νDE

t,ω ≥ 0, ∀t,ω, (28p)

0≤DE
t − lsh,E

t,ω ⊥ νDE
t,ω ≥ 0, ∀t,ω, (28q)

0≤
[
(pDA
i,t + pRT

i,t,ω − pDA
i,(t−1)− pRT

i,(t−1),ω) +uDA
i,(t−1)Ri

]
⊥ νR

i,t,ω ≥ 0, ∀i∈ S, t > 1, ω, (28r)

0≤
[
uDA
i,t Ri− (pDA

i,t + pRT
i,t,ω − pDA

i,(t−1)− pRT
i,(t−1),ω)

]
⊥ νR

i,t,ω ≥ 0,∀i∈ S, t > 1, ω, (28s)

0≤
[
(pDA
i,t + pRT

i,t,ω −P ini
i ) +U ini

i Ri
]
⊥ νR

i,t,ω ≥ 0,∀i∈ S, t=1, ω, (28t)

0≤
[
uDA
i,t Ri− (pDA

i,t + pRT
i,t,ω −P ini

i )
]
⊥ νR

i,t,ω ≥ 0,∀i∈ S, t=1, ω, (28u)

0≤
[
(pDA
i,t + pRT

i,t,ω − pDA
i,(t−1)− pRT

i,(t−1),ω) +(uDA
i,(t−1) +uRT

i,(t−1))Ri
]
⊥ νR

i,t,ω ≥ 0, ∀i∈F , t > 1, ω, (28v)

0≤
[
(uDA
i,t +uRT

i,t )Ri− (pDA
i,t + pRT

i,t,ω − pDA
i,(t−1)− pRT

i,(t−1),ω)
]
⊥ νR

i,t,ω ≥ 0, ∀i∈F , t > 1, ω, (28w)

0≤
[
pDA
i,t + pRT

i,t,ω −P ini
i +U ini

i Ri
]
⊥ νR

i,t,ω ≥ 0,∀i∈F , t=1, ω, (28x)

0≤
[
(uDA
i,t +uRT

i,t )Ri− (pDA
i,t + pRT

i,t,ω −P ini
i )
]
⊥ νR

i,t,ω ≥ 0,∀i∈F , t=1, ω, (28y)
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0≤
[
(cDA
i,t + cRT

i,t,ω)−CSU
i (uDA

i,t +uRT
i,t,ω −uDA

i,(t−1)−uRT
i,(t−1),ω)

]
⊥ νSU

i,t,ω ≥ 0, ∀i∈F , t > 1, ω, (28z)

0≤
[
(cDA
i,t + cRT

i,t,ω)−CSU
i (uDA

i,t +uRT
i,t,ω −U ini

i )
]
⊥ νSU

i,t,ω ≥ 0, ∀i∈F , t=1, ω, (28aa)

0≤
(
cDA
i,t + cRT

i,t,ω

)
⊥ νSU

i,t,ω ≥ 0, ∀i∈F , t,ω, (28ab)

0≤
(
uDA
i,t +uRT

i,t,ω

)
⊥ νB

i,t,ω ≥ 0, ∀i∈F , t,ω, (28ac)

0≤
[
1− (uDA

i,t +uRT
i,t,ω)

]
⊥ νB

i,t,ω ≥ 0, ∀i∈F , t,ω, (28ad)
∑

i∈I
pRT
i,t,ω + lsh,E

t,ω +
∑

r∈R
vRT,E
r,t +

∑

j∈J
wRT
j,t,ω = 0:λ̃E

t,ω, ∀t. (28ae)

4.4. Explicit Natural Gas Virtual Bidder

∂L

∂vDA,G
q,t

= λ̂G
t −ψq,t = 0, ∀q, t, (29a)

∂L

∂vRT,G
q,t

=
∑

ω∈Ω

λ̃G
t,ω −ψq,t = 0, ∀q, t, (29b)

vDA,G
q,t + vRT,G

q,t = 0 :ψq,t, ∀q, t. (29c)

4.5. Day-Ahead Natural Gas Market

∂L

∂gDA
k,t

=CG
k − λ̂G

t +µG
k,t−µG

k,t
= 0 ∀k, t, (30a)

0≤ gDA
k,t ⊥ µG

k,t
≥ 0 ∀k, t, (30b)

0≤ (Gmax
k − gDA

k,t )⊥ µG
k,t ≥ 0 ∀k, t, (30c)

∑

k∈K
gDA
k,t −

∑

i∈G
φi p

DA
i,t −DG

t +
∑

q∈Q
vDA,G
q,t = 0 : λ̂G

t , ∀t. (30d)

4.6. Real-Time Natural Gas Market

∂L

∂gRT
k,t,ω

= πωC
G
k − λ̃G

t,ω + νG
k,t,ω − νG

k,t,ω + νGR
k,t,ω = 0, ∀k, t,ω, (31a)

∂L

∂lsh,G
t,ω

= πωC
sh,G− λ̃G

t,ω + νDG
t,ω − νDG

t,ω = 0, ∀t,ω, (31b)

0≤ (gDA
k,t + gRT

k,t,ω)⊥ νG
k,t,ω ≥ 0, ∀k, t,ω, (31c)

0≤
[
Gmax
k − (gDA

k,t + gRT
k,t,ω)

]
⊥ νG

k,t,ω ≥ 0, ∀k, t,ω, (31d)

0≤ (Gadj
k − gRT

k,t,ω)⊥ νGR
t,ω ≥ 0, ∀k, t,ω, (31e)

0≤ lsh,G
t,ω ⊥ νDG

t,ω ≥ 0, ∀t,ω, (31f)

0≤ (DG
t − lsh,G

t,ω )⊥ νDG
t,ω ≥ 0, ∀t,ω, (31g)

∑

k∈K
gRT
k,t,ω −

∑

i∈G
φi p

RT
i,t,ω + lsh,G

t,ω +
∑

q∈Q
vRT,G
q,t = 0 : λ̃G

t,ω, ∀t,ω. (31h)
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4.7. Self-Scheduling Slow-Starting Gas-Fired Generator
{

∂L

∂pDA
i,t

=−λ̂E
t + λ̂G

t φi +µP
i,t−µP

i,t
+µR

i,t−µR
i,(t+1)−µR

i,t
+µR

i,(t+1)

+
∑

ω∈Ω

[
νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,(t+1),ω − νR
i,t,ω + νR

i,(t+1),ω

]
= 0, ∀t < |T |, (32a)

∂L

∂pDA
i,t

=−λ̂E
t + λ̂G

t φi +µP
i,t−µP

i,t
+µR

i,t−µR

i,t
+
∑

ω∈Ω

[
νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,t,ω

]
= 0, t= |T |,

(32b)

∂L

∂uDA
i,t

=−Pmax
i µP

i,t +Pmin
i µP

i,t
−RiµR

i,t−RiµR

i,(t+1)
+CSU

i (µSU
i,t −µSU

i,(t+1)) +µB
i,t−µB

i,t

+
∑

ω∈Ω

(
−Pmax

i νP
i,t,ω +Pmin

i νP
i,t,ω −RiνR

i,t,ω −RiνR
i,(t+1),ω

)
= 0, ∀t < |T |, (32c)

∂L

∂uDA
i,t

=−Pmax
i µP

i,t +Pmin
i µP

i,t
−RiµR

i,t +CSU
i µSU

i,t +µB
i,t−µB

i,t

+
∑

ω∈Ω

(
−Pmax

i νP
i,t,ω +Pmin

i νP
i,t,ω −RiνR

i,t,ω

)
= 0, t= |T |, (32d)

∂L

∂cDA
i,t

= 1−µSU
i,t −µSU

i,t
= 0, ∀t, (32e)

∂L

∂pRT
i,t,ω

=−λ̃E
t,ω +φiλ̃

G
t,ω + νP

i,t,ω − νP
i,t,ω + νR

i,t,ω − νR
i,(t+1),ω − νR

i,t,ω + νR
i,(t+1),ω = 0,

∀t < |T |, ω, (32f)

∂L

∂pRT
i,t,ω

=−λ̃E
t,ω +φiλ̃

G
t,ω + νP

i,t,ω − νP
i,t,ω + νR

i,t,ω − νR
i,t,ω = 0, t= |T |, ω, (32g)

0≤ (pDA
i,t −uDA

i,t P
min
i )⊥ µP

i,t
≥ 0 ∀t, (32h)

0≤ (uDA
i,t P

max
i − pDA

i,t )⊥ µP
i,t ≥ 0 ∀t, (32i)

0≤
[
(pDA
i,t − pDA

i,(t−1)) +uDA
i,(t−1)Ri

]
⊥ µR

i,t
≥ 0, ∀t > 1, (32j)

0≤
[
uDA
i,t Ri− (pDA

i,t − pDA
i,(t−1))

]
⊥ µR

i,t ≥ 0, ∀t > 1, (32k)

0≤
[
(pDA
i,t −P ini

i ) +U ini
i Ri

]
⊥ µR

i,t
≥ 0, ∀t= 1, (32l)

0≤
[
uDA
i,t Ri− (pDA

i,t −P ini
i )
]
⊥ µR

i,t ≥ 0, ∀t= 1, (32m)

0≤
[
cDA
i,t −CSU

i (uDA
i,t −uDA

i,(t−1))
]
⊥ µSU

i,t ≥ 0, ∀t > 1, (32n)

0≤
[
cDA
i,t −CSU

i (uDA
i,t −U ini

i )
]
⊥ µSU

i,t ≥ 0, ∀t= 1, (32o)

0≤ cDA
i,t ⊥ µSU

i,t
≥ 0, ∀t, (32p)

0≤ uDA
i,t ⊥ µB

i,t
≥ 0, ∀t, (32q)

0≤ (1−uDA
i,t )⊥ µB

i,t ≥ 0, ∀t, (32r)

0≤
[
(pDA
i,t + pRT

i,t,ω)−uDA
i,t P

min
i

]
⊥ νP

i,t,ω ≥ 0, ∀t,ω, (32s)

0≤
[
uDA
i,t P

max
i − (pDA

i,t + pRT
i,t,ω)

]
⊥ νP

i,t,ω ≥ 0, ∀t,ω, (32t)

0≤
[
(pDA
i,t + pRT

i,t,ω − pDA
i,(t−1)− pRT

i,(t−1),ω) +uDA
i,(t−1)Ri

]
⊥ νR

i,t,ω ≥ 0, ∀t > 1, ω, (32u)
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0≤
[
uDA
i,t Ri− (pDA

i,t + pRT
i,t,ω − pDA

i,(t−1)− pRT
i,(t−1),ω)

]
⊥ νR

i,t,ω ≥ 0,∀t > 1, ω, (32v)

0≤
[
(pDA
i,t + pRT

i,t,ω −P ini
i ) +U ini

i Ri
]
⊥ νR

i,t,ω ≥ 0,∀t=1, ω, (32w)

0≤
[
uDA
i,t Ri− (pDA

i,t + pRT
i,t,ω −P ini

i )
]
⊥ νR

i,t,ω ≥ 0,∀t=1, ω

}
∀i∈ (G ∩SS) (32x)

5. Proof of Proposition 1

The KKT optimality conditions of each self-scheduling gas-fired generator, whose day-ahead dis-

patch is restricted by operational bounds, enforce
{

∂L

∂pDA
i,t

=−λ̂E
t + λ̂G

t φi +µP
i,t−µP

i,t
+µR

i,t−µR
i,(t+1)−µR

i,t
+µR

i,(t+1)

+
∑

ω∈Ω

[
νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,(t+1),ω − νR
i,t,ω + νR

i,(t+1),ω

]
= 0, ∀t < T, (33a)

and

∂L

∂pRT
i,t,ω

=−πω
( λ̃E

t,ω

πω
−φi

λ̃G
t,ω

πω

)
+ νP

i,t,ω − νP
i,t,ω + νR

i,t,ω − νR
i,(t+1),ω − νR

i,t,ω + νR
i,(t+1),ω = 0,

∀t < T,ω,
}
∀i∈ (G ∩SS). (33b)

The summation of condition (33b) over all scenarios, i.e.,
∑

ω(33b), shows that when virtual bidders

in electricity and natural gas markets enforce price convergence in expectation, i.e., λ̂E
t =

∑
ω λ̃

E
t,ω

and λ̂G
t =

∑
ω λ̃

G
t,ω, the problem is feasible if only if µP

i,t−µP

i,t
+µR

i,t−µR
i,(t+1)−µR

i,t
+µR

i,(t+1)
= 0, ∀i, t,

e.g., for the case when day-ahead operational bounds are non-binding.

6. Proof of Proposition 2

The KKT optimality conditions of the stochastic two-stage optimization problem (25) and those

of the equilibrium problem (1), (2), (7), (15), (16), (19), (23), (24) with all gas-fired units as

implicit virtual bidders are identical under the conditions that day-ahead operational bounds on

pDA
i,t , wDA

j,t , cDA
i,t , uDA

i,t , and gDA
k,t are non-binding (e.g., µP

i,t−µP

i,t
+µR

i,t−µR
i,(t+1)−µR

i,t
+µR

i,(t+1)
= 0, ∀i, t

and µG
k,t − µG

k,t
= 0, ∀k, t) so that day-ahead and real-time prices converge in expectation (i.e.,

λ̂E
t =

∑
ω λ̃

E
t,ω and λ̂G

t =
∑

ω λ̃
G
t,ω), see (26)-(32) .

Generator i∈ I in sequential setup:

∂L

∂pDA
i,t

=CE
i − λ̂E

t +µP
i,t−µP

i,t
+µR

i,t−µR
i,(t+1)−µR

i,t
+µR

i,(t+1)
= 0, ∀t, (34a)

∂L

∂pRT
i,t,ω

= πωC
E
i − λ̃E

t,ω + νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,(t+1),ω − νR
i,t,ω + νR

i,(t+1),ω = 0, ∀t. (34b)

Generator i∈ I in two-stage stochastic setup:
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∂L

∂pDA
i,t

=CE
i − λ̂E

t +µP
i,t−µP

i,t
+µR

i,t−µR
i,(t+1)−µR

i,t
+µR

i,(t+1)

+
∑

ω∈Ω

[
νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,(t+1),ω − νR
i,t,ω + νR

i,(t+1),ω

]
= 0, ∀t, (34c)

∂L

∂pRT
i,t,ω

= πω C
E
i − λ̃E

t,ω + νP
i,t,ω − νP

i,t,ω + νR
i,t,ω − νR

i,(t+1),ω − νR
i,t,ω + νR

i,(t+1),ω = 0, ∀t,ω. (34d)

Gas supplier k ∈K in sequential setup:

∂L

∂gDA
k,t

=CG
k − λ̂G

t +µG
k,t−µG

k,t
= 0 ∀t, (34e)

∂L

∂gRT
k,t,ω

= πωC
G
k − λ̃G

t,ω + νG
k,t,ω − νG

k,t,ω + νGR
k,t,ω = 0, ∀t,ω. (34f)

Gas supplier k ∈K in two-stage stochastic setup:

∂L

∂gDA
k,t

=CG
k − λ̂G

t +µG
k,t−µG

k,t
+
∑

ω∈Ω

[
νG
k,t,ω − νG

k,t,ω + νGR
k,t,ω

]
= 0 ∀t, (34g)

∂L

∂gRT
k,t,ω

= πωC
G
k − λ̃G

t,ω + νG
k,t,ω − νG

k,t,ω + νGR
k,t,ω = 0, ∀t,ω. (34h)

(34i)

7. Computational Performance

Model Postsolved residual Computational time [s]

Seq - 0.142
Seq+eVB 2.46E-09 & 5.03E-8 13.99 + 0.20
Seq+iVB 0.64 863.97
Seq+VB 3.80E-09 251.7
Ideal - 0.19

Table 4 Computational performance
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