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How Well Can Driverless Vehicles Hear?
A Gentle Introduction to Auditory Perception for

Autonomous and Smart Vehicles
Letizia Marchegiani, Member, IEEE, and Xenofon Fafoutis, Senior Member, IEEE

Abstract�From sirens to lane markings, the urban envi-
ronment is full of sounds that are designed to navigate the
attention of the driver towards events that require special
care. Microphone-equipped autonomous vehicles can also use
these acoustic cues for increasing safety and performance. This
article explores auditory perception in the context of autonomous
driving and smart vehicles in general, examining the potential
of exploiting acoustic cues in driverless vehicle technology. With
a journey through the literature, we discuss various applications
of auditory perception in driverless vehicles, ranging from the
identi�cation and localisation of external acoustic objects to
leveraging ego-noise for motion estimation and engine fault
detection. In addition to solutions already proposed in the
literature, we also point out directions for further investigations,
focusing in particular on parallel studies in the areas of acoustics
and audio signal processing that demonstrate the potential for
improving the performance of driverless cars.

Index Terms�Acoustic Signal Processing, Autonomous Sys-
tems, Autonomous Vehicles, Machine Learning

I. INTRODUCTION

DRIVERLESS vehicles will be a reality soon, as the
major car manufacturers envision to reach the technology

necessary for full autonomy within the next decade [67, 68].
Autonomous driving (navigation) is largely based on infor-

mation extracted from sensory data (perception), as illustrated
in Figure 1. Indeed, reports from car manufacturers [1, 5]
suggest that the vehicle’s perception is implemented mainly
through cameras and long- and short-range sensors, such as
lasers and radars, as well as through information received
from their environment [22]. Besides a few notable exceptions,
such as Waymo (the successor of the Google Self-Driving
Car) [63], driverless cars are rarely provided with auditory
sensing. Research outputs from the academic world follow a
similar pattern. Nevertheless, it is indisputable that acoustic
stimuli play an important role in the understanding of certain
dynamics that characterise urban environments, either because
there are speci�c cases where no other sensing modality can,
indeed, replace hearing capabilities (e.g. a car honking), or
because having such additional information can greatly ease
the interpretation of environmental cues and the generation
of appropriate strategies (e.g. detecting the presence of an
emergency vehicle approaching an intersection long before it is
actually possible to see it, for instance, would increase safety).
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Although audio perception is not absent in smart vehicles,
we argue that it is not used in its full potential. Generally
speaking, traditional sensors, such as cameras and lasers,
provide, in many contexts, suf�cient information about the sur-
rounding environment. Therefore, it is important to highlight
that this article does not suggest that audio sensors should
replace traditional sensing modalities. Instead, we invite the
reader to consider auditory perception as a complementary
sensing modality. Indeed, autonomous vehicles are safety-
critical systems, and as a result, such redundancy is impor-
tant for enhancing safety. Speci�cally, incorporating auditory
sensing in a multi-modal manner (Figure 1) complements
traditional sensors in two ways, namely, it reduces uncertainty
and it provides a fall-back in case of subsystem failures. All
sensor modalities, in fact, are affected by different limitations.
Cameras are particularly sensitive to scene illumination and
structure. Lasers do not cope well with harsh weather condi-
tions, such as heavy rain, fog or snow. Similarly, audio-based
systems suffer in cases of high background noise, such as
in especially windy conditions, and are not able to capture
events that lack an audio signature. On the other hand, audio
is resilient to scene appearance, and, differently from lasers
and cameras, can perceive events which are out of the �eld of
view.

Auditory perception has been used in the literature for a
variety of applications. Straightforward examples are the de-
tection and identi�cation of anomalous sounds, such as sirens
or horns, as well as audio-based vehicle classi�cation. Besides
the opportunity of enabling or enhancing the identi�cation
of speci�c acoustic objects in the scene, audio signals could
support driverless vehicles in performing many other tasks.
For instance, previous studies have shown that the road-tyre
interaction noise changes depending on road status. Similarly,
road markings emit speci�c sounds when crossed. The ambi-
tion of realising reliable, robust and safe driverless vehicles,
however, does not concern only urban on-road driving; rather it
covers a variety of areas and application domains. The usage of
autonomous vehicles in agriculture, for instance, would greatly
facilitate the execution of several tasks, many of which often
involve risks for human operators. The realisation of off-road
autonomous vehicles presents additional challenges, such as
localisation and control challenges [42] (e.g. the terrain often
causes sliding and slipping, different kinds of terrain require
different motion pro�les, etc). Audio signals, indeed, could
be very useful in these kinds of scenarios for sound-based
terrain classi�cation and to increase the robustness of the
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Fig. 1: Full pipeline operating in an autonomous vehicle. The environment is monitored using a variety of sensing modalities,
including audio sensors. Information is extracted from the raw sensor data using machine learning and signal processing. In
turn, the extracted information is used to safely navigate the vehicle. The focus of this article is on auditory perception in the
context of this pipeline.
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Fig. 2: Linked representation of the various areas explored in
the article.

vehicle’s odometry, complementing traditional sensors, which
struggle in dif�cult lighting or weather conditions. A further
application of auditory perception for smart vehicles is engine
fault detection. It is apparent, indeed, that one of the �rst signs
of defective operation of a car is caught by human drivers
through anomalous ego-noise emitted by the vehicle.

This article constitutes a gentle introduction to the use of
auditory perception in autonomous driving. In summary the
contributions of this article are summarised as follows: (i)
we begin with an illustration of the solutions proposed in
the literature, focusing in particular on the employed signal

processing technologies and machine learning frameworks; (ii)
with a journey through the state of the art, we highlight the
potential of leveraging acoustic information for autonomous
driving and introduce the technological building blocks of this
emerging trend; (iii) we discuss potential directions for further
investigations, presenting studies in the areas of acoustic and
audio signal processing that have the potential to advance the
�eld of autonomous driving.

The remaining of this article is structured as follows:
Section II analyses methods for soundscape understanding and
interpretation; Section III explores road-tyre interaction noise
for road status and driver behaviour monitoring; Sections IV
and V approach ego-noise modelling for off-road applications
and fault detection, respectively; Section VI concludes the
article. Figure 2 depicts a linked representation of the research
areas explored in this article, while Table I summarises the
datasets used in the surveyed literature. The article provides
only the necessary information on the experimental setup of
the surveyed works; we invite the interested reader to �nd all
the details in the referenced papers.

II. THE URBAN SOUNDSCAPE

This section explores the use of auditory signals for urban
environment modelling and interpretation. Speci�cally, we �rst
discuss ways for detecting and classifying alerting acoustic
events, such as sirens of emergency vehicles or horns; we
then illustrate methods for the detection and recognition of
different classes of road vehicles.

A. Alerting Sound Detection and Recognition
Sirens of emergency vehicles do not sound the same all

around the world. Different countries rely on different kinds
of sirens; some adopt a series of them, and then switch from
one to another depending on the situation. The most common
are named yelp, wail, and hi-low [23, 66]. The three sirens
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Task Source Nature Size # Classes Modality Method Evaluation Metric

Alerting Sound Detection
and Localisation

[53] Real and Simulated N/A 2 Audio MDF Detection Accuracy
[24] Simulated N/A 2 Audio APNC Absolute Error (Localisation)
[62] Real 1K 2 Audio PBMs Detection Accuracy
[55] On-line 1K 5 Audio GMMs Classi�cation Accuracy
[52] Real 330K 4 Audio k-NN Classi�cation Accuracy

[51]
Real,

Simulated & On-line 30K 3 Audio DCNNs
Classi�cation Accuracy &

Absolute Localisation Error

Vehicle Classi�cation
[13] Real 200 3 Audio & Video NBc F-meausure
[31] Real 1K 3 Audio & Video NBc F-meausure

[35, 36] Real 178 5 Audio DTW F-meausure & Speed Error

Road-Tyre Interaction
[39] Real 2K 3 Audio NN Classi�cation Accuracy
[9] Real 11K 2 Audio SVMs Classi�cation Accuracy
[6] Real 800K 2 Audio LSTM Average Recall

Terrain Classi�cation [47] Real 21K 6 Audio SVMs Classi�cation Accuracy
[64, 65] Real 15h 9 Audio DCNNs & LSTM Classi�cation Accuracy

Motion Estimation [58] Real 5K 11 Audio MLP Classi�cation Accuracy
[50] Real 100K Regression Audio DNNs Absolute Error (Velocity Estimation)

Fault Detection

[49] Real N/A 2 Audio Similarity Metrics -
[70] Real N/A 9 Audio WT-NN Classi�cation Accuracy
[18] Real 150K 4 Audio NN Classi�cation Accuracy
[8] Real N/A 8 Piezoelectric sensor NN Classi�cation Accuracy

TABLE I: Summary of datasets and employed methods. None of the datasets is publicly available.

(a) (b) (c)

Fig. 3: Example gammatonegrams of sirens: yelp (a), wail (b), hi-low (c). The colormaps represent the energy of the signal
(dBFS).

are characterised by different time-frequency patterns: the yelp
siren follows a �sinusoidal� shape, while the hi-low alternates
between two main frequencies (one lower and one higher, from
which the name), and the wail is composed of a fundamental
frequency which changes linearly over time. A time-frequency
representation of each of them is given in Figure 3.

One of the �rst approaches to automatic siren detection
has been presented in [53]. The authors focus on hi-low
sirens alternating between 392 Hz and 660 Hz, pointing out
that, even though the task might appear simple (i.e. could
be carried out relying on pure �ltering and spectral analysis,
such as a Fast Fourier Transform, FFT), the reality is more
complex. Electronic siren generators, indeed, produce a square
wave from a saturating push-pull type output stage, which
introduces additional harmonics that result to be comparable
to the ones of the intended signal. To lessen the effect of
those unwanted frequencies, the authors propose the use of a
pitch detection algorithm. The algorithm aims to isolate the
periodic components of the sirens from the rest (i.e. unwanted
harmonics present in the original signal and potential noise

in the environment). Firstly, the pitch is estimated through
peak searching, then the signal is parsed through a Module
Difference Function (MDF) to discriminate between pitched
and unpitched portions of the sound. The pitch detection
algorithm outputs a signal representing the time evolution of
the pitch. This signal is eventually classi�ed as containing/not
containing a siren, depending on the number of pitches that are
inside the bands centred around the two main frequencies. It
is also shown that the performance of the system can improve
when a high-pass �lter is applied to the original audio sample
to remove some of the traf�c noise (wind and car engine,
for instance, are characterised by low-frequency components),
easing the work of the pitch estimation algorithm.

Fazenda et al. in [24] explore potential following stages
of a siren detection pipeline, targeting signal extraction and
sound source localisation. The goal of this work is to equip
common cars with a system that alerts the driver of the
proximity of incoming emergency vehicles. Speci�cally, they
relay the emergency signal to the passenger’s cabin, recreating
the direction of arrival of the sound through a multi-channel
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loudspeaker system. The authors do not specify which kind of
siren they aim to localise, and do not employ data collected
in traf�c scenarios, but generate ad-hoc experiments where
the siren is overlapped with some background noise. The
relative SNR level of the resulting mixture is not provided.
These kinds of experiments, although not carried out in a fully
realistic setting, allow for a more accurate estimation of the
localisation performance of the system, which would be hard
to obtain in the wild. The signal extraction algorithm employs
an adaptive predictor noise canceller (APNC) scheme based
on Least Mean Squared (LMS) optimisation, as proposed
in [12]. The framework makes use of a microphone array
consisting of four microphones disposed at 90� from each
other. Signal extraction is applied to all four channels of the
incoming audio signal, and two different localisation methods
are applied and evaluated. Both methods are utilised to obtain
horizontal localisation (i.e. direction of arrival of the sound on
the horizon plane). Better results are obtained when employing
a classic time delay estimation approach, based on generalised
cross-correlation techniques [38].

One of the �rst attempts to siren detection using machine
learning has been presented in [62]. The authors focused on
German sirens, as de�ned in [2], which are hi-low sirens with
characteristics similar to the ones analysed by [53]. The au-
thors, however, move away from more traditional frameworks
employed in audio classi�cation tasks, such as Hidden Markov
Models (HMMs) and Mel-Frequency Cepstrum Coef�cients
(MFCCs), as being �rigid in the spectral dimension�. In
contrast, they propose a modi�cation of Part-Based Models
(PBMs), originally introduced for computer vision applications
[25]. PBMs are �exible because they model the appearance
and the con�guration of the different sections of an image
with Gaussian distributions. In [62], PBMs are applied to the
Mel-spectrum of the signal. Experimental evaluation is carried
out at different SNR levels (from clean to � 20 dB), and
the performance is compared to the one of a HMM-MFCC
framework. Results, indeed, prove that the higher degree of
modelling �exibility offered by PBMs helps the detection,
compared to HMMs, especially when noise is present. The
performance of the system, however, drops quite abruptly
when the SNR is less than � 5 dB.

A wider perspective on acoustic traf�c events detection has
been later offered by [51, 52, 55]. In [55], the authors analyse
�ve classes of audio events: several types of ambulance siren,
railroad crossing bell, tyre screech, car honk, and glass break.
Gaussian Mixture Models (GMMs), operating on MFFCs and
their respective delta and delta-delta coef�cients, are used
to discriminate among the acoustic events. Speci�cally, the
behaviour of a GMM-based Universal Background Model
(GMM-UBM) framework, �rstly introduced for speaker veri-
�cation purposes [59], is combined with the one of a GMM-
supervector system. The system produces a feature represen-
tation of the audio signals in the form of a super-vector,
obtained by concatenating the GMM mean vectors extracted
from different audio segments, and adapted to the UBM,
following a Maximum A Posteriori (MAP) approach [16]. A
Probabilistic Principal Component Analysis (PPCA) model, as
well as a linear discriminant analysis (LDA) projection, are,

then, applied to the super-vectors for dimensionality reduction.
The �nal classi�cation is based on the cosine distance. The
framework yields a notable classi�cation accuracy, but nothing
can be said about the level of SNR at which the modelling
and evaluation take place, and, consequently, on how well the
system will work in different noise conditions.

The work of [52] provides a different view, directly ap-
proaching noise removal prior to classi�cation to improve
accuracy. The authors propose a two-step method. Firstly,
anomaly detection, based on One-Class Gaussian Processes
[37], is applied to spot the presence of any potential alerting
acoustic events. In case an acoustic event is detected, the
classi�cation of the event is carried out using a k-NN (k-
Nearest Neighbour) framework. Classi�cation is performed
to discriminate among sirens (several types are considered),
car horns and pedestrian traf�c lights (i.e. accessible traf�c
signals). The k-NN framework is also augmented by an
original method for the detection of samples, at testing time,
which do not fall into any of the considered classes (i.e.
sires, horn, pedestrian lights) to increase the general robustness
and accuracy of the system. Before classi�cation is applied,
the authors introduce the concept of Empirical Binary Masks
(EBMs), which, similarly to Ideal Binary Masks [69], aims
to remove unwanted masking signals from the noisy mixture.
The EBMs are generated by applying k-means segmentation
to the Gammatonegram [48] of the noisy signal. The impact
of the noise removal step on the classi�cation is demonstrated
by comparing the performance of the k-NN framework when
operating on the EBMs, the original noisy Gammatonegrams,
and MFFCs. An example of segmentation is shown in Figure 4.

Despite the notable advantage in the classi�cation provided
by the EBM-based noise removal, and the great convenience
given by the fact that segmentation is obtained in a fully
unsupervised manner, the method makes some assumptions
which do not always hold when the SNR gets too low. In
fact, even though the clustering takes place without the need
of any labels, the creation of a binary mask is based on
understanding which clusters correspond to noise and which
one corresponds to the target signal. In [52], the authors
associate the target signal with the most powerful (greatest
energy content) cluster, which is a fair assumption in many
situations, considering that traf�c emergency/alerting signals
are designed to overcome the environmental noise and be
easily heard by drivers [20]. Yet, when the SNR becomes
particularly low, this assumption is no longer valid. The same
can be said about the possibility of assigning clusters based on
the spectral characteristics of the sounds we intend to detect,
as also shown in [55]. To address these shortcomings, the
same authors propose a different approach in [51]. Here, the
segmentation relies on the use of deep learning, and, more
speci�cally, of a U-net [60]. Rather than following a two-
step approach, in this instance, the framework consists of
a multi-task deep learning architecture which simultaneously
segments the gammatonegram and classi�es the audio signal.
The cross-correlated segmented gammatonegrams are then fed
to a Deep Convolutional Neural Network (DCNN) to estimate
the direction of arrival of the sound. The authors obtained
high performance, both in the classi�cation and in the locali-
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(a) (b) (c)

Fig. 4: Example of noise removal as proposed in [52]: The gammatonegram of a car horn in presence of traf�c noise (a) is
segmented into three clusters (which, intuitively, correspond to target signal, noise, and silence) using k-means (b), and �nally
converted into an EBM (c). The colormap on the gammatonegram represents the energy of the signal (dBFS). In the segmented
gammatonegram (b) each colour indicates a different cluster.

sation tasks, even when operating in severely noisy conditions
(� 40 dB � SNR � 10 dB). Operating in such harsh acoustic
scenarios is important for safety, as it allows the autonomous
car to operate effectively in conditions whereby a human
would not be able to discriminate among different acoustic
events and localise the respective sound source. This is of
crucial importance, especially when the vehicle is operating on
a semi-autonomy regime. Several studies, indeed, have been
carried out to investigate the possibility of estimating (and
by doing that, anticipating) when the vehicle might fail and
ask the safety driver to intervene (see [33] among others).
The sooner, indeed, we are able to predict when complicated
scenarios are approaching, the more time the safety drivers
have to get prepared and act accordingly. An approaching
emergency vehicle is a good example of those complicated
scenarios, as most of the common driving rules do not apply
(e.g. passing safely the crossroads when the traf�c light is
green), introducing unexpected behaviours from the drivers
(e.g. pull over to leave the lane to the incoming emergency
vehicle). Thus, the capability of a perception system to act
robustly and accurately in scenarios characterised by a large
presence of noise becomes crucial to guarantee safety. Never-
theless, to the authors’ knowledge, no other solutions, besides
[51], have addressed this issue.

B. Vehicle Classi�cation

Human driving takes great advantage of acoustic awareness
of the environment. We can perceive approaching vehicles that
we cannot directly see by the sound they make while getting
closer. The sound also gives us information on the direction
of arrival of those vehicles and, in most of the cases, we can
also discriminate among several kinds of vehicle, as they are
characterised by a quite distinctive auditory signature [54].
Autonomous vehicles can also take advantage of such sounds
to account for the limited �eld of view of visual sensors, and to
complement laser-based systems [17] which are more sensitive
to heavy rain, fog and snow.

The automation of vehicle classi�cation has been explored
in the literature, mainly for traf�c monitoring purposes, where
speci�c road infrastructure is in place to gather data on
particular sections of streets. In [13] and [31], the authors
present a multi-modal approach to discriminate between cars
and trucks. Speci�cally, in [31] they propose audio-visual co-
training of Naive Bayes classi�ers (NBc), which are �rstly
trained on labelled samples and then labels for new samples
are iteratively generated based on the con�dence level of
both the audio and visual models in a cooperative manner.
The system is evaluated on data collected on a bridge-over
where a camera and microphones record passing vehicles and
provides high performance. The work presented in [13] has
a similar spirit, but in this case, the audio classi�er acts as
an autonomous supervisor, which supports the visual on-line
classi�er in its continuous self-learning scheme. The process
is based on boosting techniques, both for feature selection
[32] and self-learning [41]. The reason behind this choice
is that the sound-based model does not need a large amount
of labelled training samples to start operating accurately. The
framework is evaluated on real-world datasets of multi-lane
freeway traf�c, demonstrating great accuracy and robustness
to several degrees of miss-classi�cations provided by the audio
classi�er.

Audio-only vehicle detection is provided in [36]. This work
employs a stereo audio signal collected by two microphones
on a road to generate a sound map from the tyre noise
of passing vehicles. More speci�cally, the sound map is
produced based on the time difference in the vehicle’s sound
on the two microphones. The time difference between the two
sensors is expressed via generalised cross-correlation. A sound
map example is illustrated in Figure 5. We can observe that
each vehicle passing draws an ‘S’ shape on the sound map,
whose orientation depends on the direction of motion of the
vehicle. The authors build upon their previous work that was
relying on the use of DTW (Dynamic Time Warping) [35],
which, however, did not allow for sequential or simultaneous
detections, as it was not able to handle overlaps in the sound
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map (i.e. two sequential vehicles might share some points in
the sound map making data association unfeasible). In [36],
instead, points that correspond to an identi�ed vehicle are
removed from the sound map, minimising the interference
with potential new incoming vehicles. The association between
sound maps and vehicles is obtained through the application of
the RANSAC (random sample consensus) algorithm [26]. The
framework greatly outperforms the previous system providing
high detection accuracy, also when dealing with sequential
vehicles.

III. ROAD-TYRE INTERACTION

One of the �rst studies of road-tyre interaction noise has
been reported in 1975 [40]. This work discusses, together
with other parameters (e.g. load of the vehicle, speed), the
impact of different kinds of road textures as well as surface
wetness on the produced noise, expressed as the maximum A-
weighted sound level[3]. Some years later, [61] carries out
a more detailed analysis of the factors which might help
the characterisation of road surfaces with respect to road-tyre
noise interaction. Speci�cally, the author considers the texture
pro�le spectrum, the sound absorption coef�cient of sound
propagation, and the mechanical stiffness or impedance. More
recent works in this direction have been described in [21]
and [30]. The former discovers the presence of a different
phenomenon responsible for a decrease of the noise level in the
low and medium frequencies, which operates in conjunction
with an increase of the noise level in the medium and high
frequencies. This phenomenon does not seem to be correlated
with the speed of the vehicles, but rather with the tyre and
surface characteristics. The latter reinforces the �nding that
the noise level is affected by the type of surface, degree
of wetness, type and velocity of the vehicle. Gardziejczyk
observes that a good portion of the increase in the vehicle
noise can be attributed to the presence of water on the road,
but that only a signi�cant amount of water can actually set
off the noise increase. The author also reports that not much
difference can be observed in this context, between the noise
generated by passenger cars and heavy trucks. A similar study
was later performed by Freitas et al. in [27], who analysed
the noise generated by a set of light and heavy vehicles on
porous asphalt and dense asphalt surfaces of a motorway. Most
of these studies rely on the use of the Controlled Pass-By
(CPB) and the Statistical Pass-By (SPB) methods for noise
measurements, as speci�ed in the ISO 11819-1 [4]. SPB has
the advantage of being applicable to normal vehicles passing
by, and it does not require the employment of expensive
equipment. CPB, instead, needs speci�ed test vehicles with
speci�ed sets of market tyres. Yet, both techniques require
road sensing infrastructures, and are meant to measure the
amount of noise around the monitored roads.

Gail et al. in [28, 29] carried out an extensive study
on the in�uence of surface textures of road markings on
tyre-road interaction noise. They analysed seven different
agglomerate road markings: irregular scattered dots, irregular
dense structure, irregular lengthwise structure, regular broad
drops, regular dense dots, regular narrow drops, and irregular

perforate plate structure; stone mastic asphalt was utilised as
a reference. Their results clearly demonstrate that, in most of
the cases, road markings generate a substantial increase of
the sound pressure level in the lower part of the frequency
spectrum (i.e. 800 � 1000 Hz). The authors argue that, despite
the concern that such increased level of noise might cause
annoyance to the residents living close to those streets, road
markings play a crucial role in all those situations where out-
of-lane behaviour can be considered particularly dangerous,
such as tunnels, bridges etc. Human drivers rely on this noise
increase, in certain cases even accompanied by vibrations, to
augment their environmental awareness. It is apparent, then,
that autonomous vehicles could also bene�t from detecting
and interpreting road markings.

One of the �rst attempts to the automatic classi�cation
of road status has been reported in [39]. Speci�cally, the
authors employ a multi-modal framework which relies on the
use of audio-visual information and neural networks (NN) to
discriminate between wet, dry and snow-compacted surfaces.
Also in this instance, the microphones were positioned on the
roads’ sides. On-board automatic road wetness detection has
been �rstly proposed in [9] and later addressed, in a deep
learning perspective, in [6]. Both approaches aim to develop
a warning system to improve driving safety. Nevertheless,
[6] also mentions the possibility of using the output of the
predictions by the machine learning frameworks in driverless
vehicles to allow them to adjust the driving style and the speed
pro�le accordingly. In [9], the microphones are placed at the
front and rear of the wheels farthest from the motor engine.
The authors claim that this con�guration is able to minimise
the impact of engine noise as well as of other forms of noise.
The data collected is then parsed and fed to a Support Vector
Machine (SVM) classi�er for the road status detection. While
most of the previously mentioned studies rely on A-weighted
sound level for noise measurement, the authors here give up
the A frequency weighting to better characterise the road-tyre
noise level at low frequencies. Indeed, while A-weighting is
effective for analysing the impact of noise on human ears,
removing certain spectral components might end up being
detrimental when operating with machine learning techniques.
In [6], a shotgun microphone was located behind the rear
tyre, and data was gathered with the car travelling at different
speeds, in different traf�c conditions, and pavement roughness,
expanding the set of scenarios considered by [9]. The authors
employ Recurrent Neural Networks (RNNs) in the form of
Long-Short Term Memory (LSTM) and bi-directional LSTM
(BLSTM) [34], and manage to obtain impressive accuracy,
overcoming the results obtained by [9].

IV. OFF-ROAD APPLICATIONS

While the main concerns in urban autonomous driving are
concentrated in the detection and safe interaction with all
the other objects in the scene, such as pedestrians and other
vehicles, as well as the correct interpretation and application
of traf�c laws, off-road scenarios present a full set of different
challenges, where robust and accurate perception capabilities
could be of extreme help to guarantee the correct execution of
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(a) (b)

Fig. 5: Examples of sound maps, as proposed by [36]. Each vehicle yields an ‘S’ shape on the map. The orientation of the
‘S’ shape depends on the direction of motion of the vehicle: in (a) all vehicles are going in the same direction (left to right),
in (b) one vehicle is going from right to left, three are going from left to right. Figures are courtesy of the authors of [36].
Figure (b) has been reproduced from a �gure in [36].

several tasks. Many of the tasks, indeed, preclude any sort of
human intervention, making the concept of semi-autonomy not
feasible. Furthermore, dealing with a variety of terrains with
diverse characteristics sheds a different light on localisation
and navigation issues. Off-road vehicles might need to travel
on arduous surfaces and forced to continuously adjust control
mechanisms and motion pro�les, for instance, to better cope
with different kinds and levels of hazards [42]. Lastly, speci�c
environments might particularly reduce the effectiveness of
more traditional sensing modalities in a variety of contexts.
Relying on acoustic sensing to automatically discriminate
between different surfaces would be extremely helpful for the
development of more informative and safe motion planning
and control strategies, for example. This is especially true
in all those instances, whereby sensors typically used for
the same purpose might struggle to operate robustly. It is
apparent, indeed, that vision-based systems do not cope well
with scarce illumination, the same way lasers do not perform
correctly in harsh weather conditions (e.g. heavy rain, fog)
or in degenerated scenes, characterised by the prevalence of
planar areas.

A. Terrain Classi�cation
The idea of using proprioceptive sensors for terrain classi-

�cation is not new. In 2005, vibration-based terrain analysis
has been presented in [14]. This work uses an accelerometer
to measure the vibration induced on a rover while approaching
different terrains. Building on these results, the same authors
later provide in [15] a semi-supervised approach, where propri-
oceptive sensors are used to train a vision-based classi�er. On
the side of a vibration-based framework, they also investigate
the possibility of generating labels for the travelled terrains
using measurements of wheel torque and sinkage to estimate
the minimum traction available at the wheel�terrain interface.

One of the �rst works that introduces the idea of relying
solely on wheel-surface interaction noise to classify the terrain
the vehicle is traversing has been offered by Odedra et al. [57].
However, the �rst system able to perform automatic sound-
based terrain classi�cation has to be attributed to Libby and
Stentz [47]. In this study, the authors build SVM classi�ers
to discriminate between several kinds of wheel-surface inter-
actions. Speci�cally, they focus on both benign interactions,
such as driving over grass, pavement and gravel roads, and
hazardous terrain interactions, like splashing in the water,
hitting hard objects and wheel losing traction where the terrain
gets slippery. The system is tested considering a wide range
of feature representations, whose impact is also analysed,
obtaining a good level of recognition accuracy for most of
those classes.

A similar investigation has been extended in a deep learning
context in [64, 65]. In those, the authors analyse both indoor
and outdoor surfaces, for a total of nine different classes of
terrain: asphalt, mowed grass, medium-high grass, paving,
cobblestone, off-road, wood, linoleum, and carpet. For the
experimental phase, a total of 15 hours of wheel-terrain inter-
action noise, organised in two datasets: one dataset is gathered
through a shotgun microphone mounted in the proximity of
the wheels of a Pioneer P3-DX platform, and the other one
through a mobile phone microphone. In [65], the classi�cation
relies on a DCNN, which yields high recognition accuracy.
The DCNN is trained directly on the spectrograms of the
recorded acoustic samples, and the evaluation shows that such
architecture clearly outperforms methods which, instead, em-
ploy hand-crafted features. In [64], also the temporal evolution
of audio signals is considered, through the introduction of an
LSTM framework. All those results are particularly important,
as the classes of terrain targeted and correctly recognised are
characterised by a really similar visual appearance, which
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would make the job of a visual-based classi�er operating
in the same conditions very hard, and probably lead to low
performance. The capability of distinguishing among different
surfaces also offers implicitly the opportunity to implement
navigation systems able to detect out-of-path behaviours.

B. Motion Estimation
As mentioned earlier, harsh off-road environments might

limit the performance of more classic sensors (e.g. cam-
eras, lasers) when executing a variety of tasks; vehicle self-
localisation represents one of the most notable examples.
Self-localisation heavily relies on odometry systems, both
proprioceptive (i.e. wheel encoders) and exteroceptive (e.g.
cameras, lasers). A motion estimation framework able to
operate despite changes in illumination, scarcity of texture,
grim weather conditions (e.g. tick fog) or slippery terrains,
would indubitably contribute to the accuracy of the whole
localisation, and consequent navigation, processes. Audio-
based motion estimation �ts those requirements very well.
An early attempt in this direction has been presented in [58],
where the sound emitted by the motors (i.e. ego-noise) of
a wheeled mobile robot is used to discriminate among the
different speed pro�les the platform is actually following. By
relying on a Multi-Layer Perceptron (MLP) framework, the
authors are able to recognise eleven different pro�les, and
detect modi�cations on the environmental conditions, such
as changes in the inclination of the surface the platform is
moving on. Sound-based metric motion estimation has been
proposed in [50], yielding to the realisation of an Auditory
Odometry (AO) systems. In this work, the authors use a Deep
Neural Network (DNN) in a multi-task learning scheme to
simultaneously regress the linear and the angular velocity
at which the robot is travelling, by relying solely on the
vehicle’s ego-noise. They obtain great prediction accuracy, and
the experimental evaluation also demonstrates signi�cant re-
silience to environmental noise. It is apparent that an auditory
odometry system could not alone represent a solution to robot
navigation, as the robot would, basically, move �blindly�.
Nevertheless, multi-modal paradigms which would employ
AO as one of the components for motion estimations would
be able to operate more robustly, by overcoming some of
the constraints of other odometry systems. A trivial example,
which could very well be applied also in urban scenarios, is the
way sound could assist when dealing with distractions, which
often cause dramatic inaccuracies in other frameworks (e.g.
visual odometry systems). Even a basic consensus mechanism,
indeed, could, in this scenario, help the vehicle realise whether
the drastic change in appearance between consecutive frames
is indeed to be attributed to the motion of the vehicle or to a
large modi�cation of the environment (i.e. the distraction).

V. FAULT DETECTION

The work on Auditory Odometry presented in [50] demon-
strates that engine noise carries information which can be used
to accurately estimate the motion of the vehicle. This suggests
that motor noise is, indeed, quite distinctive, and could be
used, in more general contexts, to analyse the behaviour

of the engine itself. In 1997, a technical report from SAE
International [46] proposes the idea of an audio-based engine
failure diagnosis system, exploring the impact of different
acoustic features for the detection of motor anomalies. The
report vouches for the use of Wavelet transforms, Fast Fourier
Transform (FFT) and cepstrum analysis for the identi�cation
of tappet clicks fault, engine mis�ring, and abnormal combus-
tion sound, respectively. In this spirit, an autonomous vehicle
could incorporate engine fault detection to enhance the safety
of autonomous driving. For example, an autonomous vehicle
could monitor the noise of its engine and, if a fault is detected,
drive to the emergency lane and gracefully stop. Moreover, in
semi-autonomous vehicles, engine fault detection system could
be used to enable safety driver intervention.

Since [46], several other studies have been carried out in
the last twenty years towards the realisation of accurate sound-
based fault detection frameworks. In 2009, Madain et al. [49]
built a database of sounds associated to a variety of abnormal
engine behaviours, and used a series of similarity metrics (i.e.
the correlation coef�cient, the normalised root mean square
error, and the formant frequencies) to establish whether noise,
newly generated by the motors, has to be considered as a
fault or not. One year later, [70] presents a machine learning
approach to the same problem, employing Wavelet transforms
and neural networks (WT-NN) to discriminate among eight
common engine faults. A comparative analysis of the perfor-
mance of multiple neural network architectures and SVMs
in the classi�cation of air �lter, spark plug, and insuf�cient
lubricants faults is provided in [18]. By relying solely on one
microphone, all the frameworks are able to operate robustly
on separate faults; yet, accuracy decreases when faults appear
simultaneously. An experimental evaluation of the acoustic
characteristics of both normal and anomalous motor noise,
at different engine speeds, is offered in [7]. More recently,
Ahmed et al. [8] investigate and compare the performance of
several techniques for the training of a neural network-based
fault detection framework. In particular, this work focuses
on backpropagation (BP), the Levenberg-Marquardt (LM) and
the quasiNewton (QN) methods, the extended Kalman �lter
(EKF), and the smooth variable structure �lter (SVSF), which
provides the highest classi�cation accuracy. A somehow com-
plementary approach is presented in [19]. The authors target
diesel engines and propose a mechanism for the extraction
of fault components from abnormal sound, which can then
be used for fault classi�cation. This mechanism, which they
name Dislocation Superimposed Method (DSM), is based on
a combination of the improved random decrement technique
[10], and correlation analysis.

VI. CONCLUSION

We began this article with a question: �How well can
driverless vehicles hear?�; it appears, indeed, that auditory
perception is often being overlooked by the automotive in-
dustry and the autonomous driving research community. Yet,
evidence suggests that the soundscape of an autonomous
car is rich with information that can complement traditional
sensing modalities, increasing the accuracy and safety of
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Task Bene�ts Traditional Sensors Current Limitations Audio’s Contribution

Emergency Vehicle Detection
and Localisation

Emergency Navigation
(e.g. stop at green light

if ambulance is approaching)
Alerting Safety Driver

Cameras Limited Field of View
Sensitivity to Scene Illumination

360� Field of View
Resilience to Scene Illumination

Lasers
Limited Field of View

Sensitivity to Weather Conditions
Ambiguous Vehicle Signature

360� Field of View
Resilience to Scene Appearance
Distinctive Acoustic Signature

Radar Ambiguous Vehicle Signature Distinctive Acoustic Signature
Horn Detection

and Localisation
Safe Vehicle Interaction
Alerting Safety Driver - Not Perceivable Distinctive Acoustic Signature

Vehicle Detection, Classi�cation
and Localisation Safe Vehicle Interaction

Cameras Limited Field of View
Sensitivity to Scene Illumination

360� Field of View
Resilience to Scene Illumination

Lasers
Limited Field of View

Sensitivity to Weather Conditions
Ambiguous Vehicle Signature

360� Field of View
Resilience to Scene Appearance
Distinctive Acoustic Signature

Radars Ambiguous Vehicle Signature Distinctive Acoustic Signature

Road-Tyre Interaction/
Terrain Classi�cation Adaptive Speed and Motion Pro�le

Cameras
Ambiguous Visual Signature

Sensitivity to Scene Illumination
Distinctive Acoustic Signature

Resilience to Scene Illumination

Lasers
Sensitivity to Weather Conditions

Ambiguous Terrain Signature
Resilience to Scene Appearance
Distinctive Acoustic Signature

Motion Estimation Self-Localisation
& Navigation

Cameras
Sensitivity to Scene Structure

Sensitivity to Scene Illumination
Sensitivity to Distractions

Resilience to Scene Structure
Resilience to Scene Illumination

Resilience to Distractions

Lasers
Sensitivity to Scene Structure

Sensitivity to Weather Conditions
Sensitivity to Distractions

Resilience to Scene Structure
Resilience to Scene Appearance

Resilience to Distractions

Radars
Sensitivity to Scene Structure

Sensitivity to Distractions
Resilience to Scene Structure

Resilience to Distractions
GPS GPS-denied Environments Independent of External Infrastructure

Fault Detection
Safety Navigation Procedure

Alerting Safety Driver -
Not Perceivable by

Exteroceptive Sensors Distinctive Acoustic Signature

TABLE II: Auditory perception complements traditional sensing modalities in various tasks

autonomous driving. Indeed, multiple alerting events in urban
environments, such as sirens and horns, are acoustic by nature.
Moreover, the engine and the interaction of the tyres on the
road generate noise that can be leveraged for odometry, out-
of-lane detection, and fault detection, among others. Table II
summarises how auditory perception complements traditional
sensors with respect to these tasks.

A. Future Directions
In this article, we explored a number of research areas

whereby auditory perception has been applied to enhance au-
tonomous and semi-autonomous vehicles. Let us now explore
directions for future research.

The detection and classi�cation of acoustic objects are fairly
mature areas; yet, several of the proposed frameworks could
be extended to more �ne classi�cations. For example, vehicle
classi�cation is currently quite coarse (i.e. classi�cation among
cars, trucks and heavy trucks); such frameworks could be
extended to identify more types of vehicles (e.g. motorcycles,
buses) but also engine types (e.g. combustion vs electric
engines). Furthermore, to the extent of our knowledge, there
is no literature for the detection of pedestrians that is based
on audio (i.e. speaker detection and localisation in urban
scenarios). In terms of urban acoustic object localisation,
on the other hand, we believe that there is room for more
research: the literature is fairly limited and it is based primarily
on simulated sound scenes that do not always capture the
properties of the real world. We believe that this is due to
the lack of suitable dataset of annotated acoustic events from
multiple microphones deployed on a car.

In the area of road-tyre interaction, we can �nd several
studies in acoustics that analyse the properties of the wheels
and conclude that road-tyre interaction generates distinctive

sounds. In an autonomous driving context, such sounds could
have a series of applications. Firstly, they can be used for
the identi�cation of road markers. Acoustic reports provide,
indeed, encouraging results regarding the feasibility of this
task; yet, the automation of road marker detection and its
incorporation to the vehicle navigation system has not be done.
Another interesting application is road status classi�cation. In
this space, there are works that detect the weather effect on
the road (e.g. wetness, ice). Yet, road status classi�cation can
be extended to other types of road conditions, such as, for
example, identi�cation of damaged asphalt and potholes. A
�nal use of road-tyre interaction sounds is terrain classi�ca-
tion. This area is primarily explored in an off-road context
and could be extended to urban scenarios (e.g. car parks and
cobblestone streets).

Literature suggests that monitoring the ego-noise of the
vehicle can be used for the timely detection of engine faults
and misbehaviour. This, in turn, can be used to increase safety
and reduce maintenance costs. In this space, future work could
focus on the incorporation of engine fault detection in an
integrated system that could make use of these anomalous
sounds in real-time for navigation and planning.

In all those application areas, the case of auditory perception
can be strengthened by systems that are robust to harsh noisy
conditions. This is something that is rarely addressed in the
current literature, limiting the applicability of auditory percep-
tion in real-world environments. Future work could focus on
leveraging the advances of machine learning to develop more
intelligent noise removal algorithms.

A general observation is that, besides a few notable ex-
ceptions, audio sensing is currently underrepresented in au-
tonomous vehicles. This is largely because of the comple-
mentary nature of auditory perception. To this end, the audio
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signal processing research community could investigate multi-
modal frameworks that combine audio sensing with traditional
sensing modalities, such as cameras and laser, to quantify
the added value of auditory perception. Inspiration could be
derived from the work on vehicle classi�cation conducted in
[31], which demonstrates that the audio-visual classi�er sig-
ni�cantly outperforms the visual-only classi�er. For instance,
future work could combine auditory odometry with traditional
odometry to demonstrate the bene�ts of a multi-modal frame-
work. As shown in other research areas, deep learning has
great potential in this direction, as it provides architectures able
to represent and learn features over multiple modalities (e.g.
[56]). Furthermore, it offers novel effective weak supervision
learning paradigms to fuse multi-modal information (e.g. [11]),
reducing the labelling effort. An example in the autonomous
driving context is given in [71], where a system for the
identi�cation of permissible driving routes from raw radar
scans is weakly trained through an audio-based one that is
able to predict the terrain type underneath the vehicle.

For this vision to be realised, the perception and navigation
systems of the vehicle need also to adhere to strict timing
constraints and, thus address the challenge of latency between
sensing and prediction, due to transmission, processing and
waiting delays. To this end, future systems will need to build
upon theoretical foundations in the literature [43, 44, 45].

Finally, future research could focus on futuristic human-
centric applications, addressing challenges in human-vehicle
interaction. For example, pedestrians could hail autonomous
taxis using voice communication and semi-autonomous ve-
hicles could take control of the wheel if the driver sounds
intoxicated.

Auditory perception arms autonomous vehicles with sensory
capability that complements traditional sensing modalities,
operating effectively in harsh light and weather conditions.
In parallel, it enables new applications that enhance the safety
of autonomous and semi-autonomous driving.
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