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Power evolution modeling and optimization of fiber
optic communication systems with EDFA repeaters

Metodi Plamenov Yankov, Member, IEEE, Uiara Celine de Moura, Francesco Da Ros Member, OSA, Senior
Member, IEEE,

Abstract—In this paper, machine learning is used to create a
differentiable model for the input-output power spectral profile
relations of C-band erbium-doped fiber amplifiers (EDFAs). The
EDFA model is demonstrated to generalize to multiple physical
devices of the same make while only trained on experimental data
from a single unit. The model is combined with a differentiable
model for simulating stimulated Raman scattering (SRS) effects
during propagation through the the optical fiber to create a
differentiable model for a multi-span system with an arbitrary
configuration of number of spans, length per span and launch
power per span. The cascade system model is used to predict and
optimize the power profile output of several such experimental
configurations of up to three spans with an arbitrary target
power profile. A flat target profile is exemplified experimentally,
achieving <3 dB of power excursions for EDFAs exhibiting >10
dB of excursion per device in the cascade. The experimental data
used to create the EDFA model is made public and available
online.

Index Terms—EDFA, Machine learning, power spectral den-
sity, power optimization, stimulated Raman scattering.

I. INTRODUCTION

The exponentially growing data rate demand in the last
decades has exerted an enormous amount of pressure on
the backbone long haul and regional fiber optic networks.
At the same time, energy efficiency and cost of the opti-
cal links is getting critical as more and more connections
are being deployed. For a long time, spectral uniformity of
the performance of wavelength division multiplexed (WDM)
optical links has been ensured or at least approached by
compensating for the non-frequency flat gain of erbium doped
fiber amplifiers (EDFA) with gain flattening filters (GFFs).
Since GFFs essentially waste power in the over-performing
channels of the WDM signal, this solution is by definition
energy-inefficient. On the other hand, ’naked’ EDFAs (ones
without GFFs) exhibit gain tilt and ripples [1], which result
in power excursions accumulating over multi-span links. The
gain tilt and ripples are nonlinear functions of the input power
spectral density (PSD) and are nontrivial to model analytically,
with typical models resulting in significant inaccuracies [2].
Recently, machine learning (ML) has been employed to pro-
duce more accurate models for the EDFA gain spectrum [1],
[2], [3], [4], [5], [6]. These models are trained and tested on
the same device [3], [4], [6] resulting in uncertainties of their
generalization capabilities, apply to gain-flattened EDFAs only
[1], lack system demonstration where a multitude of EDFAs
are employed, or still produce too poor accuracy for practical
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applications [4]. Multi-span system demonstrations have been
analyzed for only a few channels [7] or limited to the linear
region of transmission [6].

The power excursion problem is exacerbated by the stim-
ulated Raman scattering (SRS) effect, resulting in power
transfer from channels at high frequencies to channels at low
frequencies. The push for high data rates inevitably drives
optical links to operate with high power entering the nonlinear
region, where the SRS effect becomes pronounced, even for
classical C-band links limited to 5 THz of bandwidth. Some
solutions exist for countering the SRS effect by launch PSD
optimization [7], [8], [9], which do not take into account the
gain tilt of practical EDFAs without a GFF. Alternatively,
ML can be applied for the end-to-end system [3], [10], [11],
which at least in the linear region of transmission can be
employed for PSD optimization. Such solutions require a lot
of training data to be generated for each link in the network,
which is time consuming, and is furthermore susceptible to
even minor changes in the link. Fast reconfigurable software
defined networks require a component-based model for the
link, which supports changes on the fly and allows for fast
(power allocation) optimizations.

In this paper, an ML model is developed for the EDFA gain
spectrum which is experimentally demonstrated to generalize
to multiple physical devices. The model is then used in
conjunction with a model for the power evolution in a standard
single mode fiber (SSMF) supporting SRS to predict and
optimize the PSD at the output of multi-span fiber links. This
paper extends our previous contributions on EDFA modeling
[12] and system optimization [13] by 1) providing more
details and analysis on the EDFA training data and training
procedures; 2) providing more details on the experimental
procedures; 3) expanding the system characterization analysis
to include characterization w.r.t. PSD tilt; and 4) including
derivation details of the multi-span system.

II. EDFA CHARACTERIZATION

The task of an EDFA gain model is to predict the output
PSD from the input PSD at a given total input power and
average gain, or equivalently, at a given total input power
and total output power. In this paper, the latter format is
chosen. In order not to rely on either simplified analytical
models of potentially low accuracy, nor on highly complex
and extremely specific physical models, the ML approach
applied in this paper is driven by experimentally generated
data. The experimental setup for data acquisition is given
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Fig. 1. Experimental EDFA characterization setup. A POF is used to 1) flatten
the ASE source; 2) apply the desired profile from the dataset; and 3) attenuate
to the desired total power input to the EDFA. The input profile and the EDFAs
output profiles are recorded sequentially by an OSA.

in Fig. 1. A power profile at a given total input power is
generated by shaping and attenuating an ASE source using a
programmable optical filter (POF). The resulting power profile
is launched into three different EDFAs of the same make by
using a switch, and the resulting PSD is captured by an optical
spectrum analyzer (OSA). The EDFAs model is “Keopsys,
KPS-STD-BT-C-18-SD-111-FA-FA”. The EDFAs are driven in
constant output power mode. For each desired power profile,
the specified total input and total output power are swept on
a 2D grid. The specified total output power takes values in
the set {15, 16, 17, 18} dBm. The input power is controlled
by imposing an additional frequency flat attenuation in the
POF. The attenuation values are coarsely calibrated to produce
total power input to the EDFAs in the range [−9; 9] dBm.
Histograms of the measured total input and output powers
are given in Fig. 2. The total output power is controlled
using a feedback loop inside the EDFA, resulting in an
accuracy better than 0.5 dBm and average measured values of
{15.0, 16.1, 17.3, 18.2} dBm for the specified {15, 16, 17, 18}
dBm. Due to the dependence of the total power on the desired
PSD output of the POF, the EDFA input power cannot be
controlled as accurately as the output. However, this is not
a requirement for the model, as long as the measured EDFA
total input power is used for the characterization and modeling
instead of the desired one. This is ensured by extracting the
input power reading of the EDFA instrument for each profile
and each total input/output power combination. In this study,
the EDFA power meters’ precision was ≈ 0.1 dB and their
accuracy sufficient to inform an accurate model. It is noted that
in the case when the internal EDFA power monitors cannot
be trusted, they can be replaced by external ones in order to
perform characterization and data collection.

It should also be noted that some combinations cannot be
obtained due to physical limitations of the POF. For example,
as the input power into the POF is limited by the instrument
power handling, a few PSDs with high power excursions
resulted in too high filtering loss and did not allow for probing
the EDFAs with the highest input power levels.

In summary, a single characterization data point consists of
1) EDFA Id; 2) a unique Id for the target PSD; 3) measured
total input power; 4) measured total output power; 5) measured
input PSD; and 6) measured output PSD. The measured dataset
with all ≈ 270.000 data points (≈ 90.000 per EDFA) is
available at [14].

Fig. 2. Histograms of the measured a): total input and b): total output power
for all EDFAs for the specified total input power in the range [−9; 9] dBm
and total output power in the set {15, 16, 17, 18} dBm.
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Fig. 3. Characteristics of the employed EDFAs. a): gain profile mean; and b):
gain profile variance for all output powers and all amplifiers at given average
gain.

A. Characterization dataset

The profile dataset consists of ≈ 2000 distinct profiles,
generated by parametrizing a smoothened Gaussian random
walk of the form

Pin(n) = Pin(n− 1) + wn, (1)

where Pin(n) is the power in the log domain at the n−th
frequency on the specified grid, wn is a zero-mean Gaus-
sian distributed variable with a variance σ2

W , and Pin(0) ∈
[−14; 0]. The power spectral density is defined as PSD =
{P (1), P (2), ...P (n)}. The points are generated on a uniform
frequency grid with a step of 61.6 GHz, resulting in N = 83
grid points in the C-band, limited by the bandwidth of the
POF. The profile is then smoothened by an all-ones box filter
of a variable length, which controls the level of smoothness.
Longer filter results in a smoother profile and vice versa.
Filters of lengths 11, 31 and 51 are used in this work. The
variance σ2

W implicitly controls the maximum excursion in
the profile and is chosen from the set {0, 0.1, 0.5}, resulting
in excursions between 0 (corresponding to σ2

W = 0) and 20
dB, defined as maxn Pin(n)−minn Pin(n). The desired power
profiles are then translated to attenuation profiles to be applied
by the POF, and are illustrated in the inset in Fig. 1.

The average gain profiles of the EDFAs are given in Fig. 3a).
The profiles are obtained by first calibrating the input PSD
PSDin and the output PSD PSDout to the total P totin and P totout

recorded by the amplifier instruments, and then averaging the
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Fig. 4. Neural network topology for the EDFA gain model. The inputs
consist of the normalized input PSD together with the total input and output
powers. The output consists of the normalized output PSD. Two-layer model is
adopted with 256 and 128 nodes per layer, respectively, and a ReLU activation
function.

gain profile PSDout − PSDin for all power profiles and all
amplifiers at a given average gain, obtained as Gav = P totout −
P totin (with a precision of ±1dB). For higher average gain, the
gain profile is flatter, with excursions of ≈ 5 dB at Gav = 22
dB. The excursions becomes more severe with reduced average
gain and approach 15 dB at Gav = 12 dB.

The spread of the gain profiles is given in terms of the
variance in Fig. 3b). The variance is calculated over the
profiles collected as for Fig. 3a), and clearly demonstrates the
output profile dependency on the input profile and the average
gain. The amplifier gain profile appears more constant for
low frequencies and at high gain, and becomes highly input-
dependent for low Gav and at high frequencies.

B. Machine learning based EDFA model

A general purpose neural network (NN) is adopted in this
work to create the ML model. An illustration is provided
in Fig. 4. The NN input is 85 dimensional and consists of
{P totin , P

tot
out, Pin(1), Pin(2), ...Pin(83)}. The NN output is 83

dimensional and consists of {Pout(1), Pout(2), ...Pout(83)}.
Both the input and output PSDs are normalized such that
maxn Pin(n) = 0 and maxn Pout(n) = 0. The network is
trained using gradient descent with the Adam optimizer in the
PyTorch automatic differentiation environment using the mean
squared error (MSE) as cost function [15]. The network topol-
ogy is coarsely optimized to two fully-connected layers with
256 and 128 nodes in the first and second layer, respectively.
No improvement was visible with larger network topologies,
either in depth or size per layer. The ReLU activation function
was applied in the hidden layers.

The dataset is split into 75% training (of which 10% valida-
tion) and 25% testing. Modeling performance is estimated in
terms of intra-MSE (training and testing data from the same
EDFA) and inter-MSE (training on a single EDFA and testing
on the other two). A summary of the results is provided in
Fig. 5. An intra-EDFA MSE of ≈ 0.02dB2 was achieved
for any of the EDFAs. Similar error was achieved when data
from all EDFAs were used for training and testing (indicated
as A1+A2+A3 in the legend of Fig. 5). For comparison, an
intra-EDFA root MSE of ≈ 0.16dB was achieved in [3],
and intra-EDFA root MSE of ≈ 0.5dB was achieved in [4].
The MSE is increased to up to ≈ 0.045dB2 of inter-MSE,

with performance relatively flat across average gains and total
output power, worst for EDFA A2 operated at high gain or low
output power. The inter-MSE is mainly attributed to the error
at high frequencies, as demonstrated in Fig. 5c). This error can
in turn be attributed to fabrication variations between different
units, possibly related to the erbium doped fiber length or
doping fluctuations.

The MSE is finally studied as a function of the input profile
tilt. In order to capture both the direction of the tilt (on the
frequency axis) and its severity, the tilt measure adopted in
this work is

T = 10 · log10
n=41∑
n=1

P linin (n)− 10 · log10
n=83∑
n=43

P linin (n), (2)

where P linin (n) is the power at the n−th frequency in watts.
Note that the tilt is not equivalent to the excursion, which
was defined in Section II-A. A typical example of an input-
output relation for a given input profile of tilt T ≈ −8.84
dB (excursion of ≈ 12 dB) is given in Fig. 6, for which
the prediction results in MSE < 0.032 dB2 for all training
configurations.

In Fig. 7, the inter-MSE is given as a function of the tilt
for the studied total output powers and averaged over the
amplifiers and the average gain. Small tilts result in very good
prediction with MSE < 0.02 dB2, increasing to ≈ 0.05 dB2

for negative tilts and a more severe MSE of > 0.1 dB2 for
positive tilts of T > 9 dB. The poorer performance at high
absolute tilt can be explained by the fact that fewer data
points are present in the training dataset. The MSE asymmetry
w.r.t. the tilt can be attributed to the positive gain tilt of the
amplifiers as shown in Fig. 3a), which amplifies the positive
tilt of the profiles for a severe power excursion at the EDFA
output often exceeding 20 dB. On the other hand, negative
input profile tilts are somewhat compensated by the positive
tilt of the amplifier.

III. MULTI-SPAN SYSTEM

The EDFA model from Section II-B can be used as a
component in a multi-span system model. As mentioned
above, an accurate cascade model can only be realized with
component models which generalize to all physical units of the
respective device. The two different components in this paper
are the EDFA model (trained on A1 and showing the very
good generalization properties demonstrated in Section II-B)
and a SSMF model (to be detailed below) of a given arbitrary
length.

The cascade model considered in this work is summarized
in Fig. 8. A PSD for the first span is specified together with
the desired P totout(k) for the k−th EDFA in the system, for
k ∈ {1 : K}. Without loss of generality, the total input power
to the first span is specified such that the average gain of the
first EDFA corresponds to the fiber loss of the first span

P totin (1) = P totout(1)− α · L(1), (3)

where α is the fiber loss (in dB/km) and L(k) is the length
of the k−th fiber span (in km).
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Fig. 8. The multi-span system model used in this work together with the
experimental setup. The (normalized) PSD at the input of the first span
is specified, then launched into the EDFA model. The EDFA output is
normalized to the desired total launch power and launched into the fiber model.
The output of the fiber model is normalized to maxn P (n) = 0 and used as
input to the next fiber span. After a number of spans, the normalized output is
compared to the normalized output of the experimental system, which consists
of 2- or 3-span inline EDFAd fully-loaded C-band link, loaded with the input
PSD by a POF.

As mentioned in Section II-B, the EDFA model produces a
PSD, which is normalized such that maxn Pout(n) = 0. Be-
fore launching the PSD into the fiber model (which is detailed
in Section III-A), it is normalized such that

∑
n Pout(n)

lin =

P tot,linout (k). The PSD output of the fiber is then normalized
back to maxn P

fiber
out (n) = 0, and is used as input to the

EDFA of the next span. In this work, the launch power (EDFA
output power) is assumed constant for every span. However,
the model is flexible to arbitrary launch power per span, as
long as it does not fall outside of the training set for the EDFA
(in the range [15; 18]), which will result in a poor EDFA and
thus system model accuracy.

The model is benchmarked against an experimental inline-
amplified multi-span system of either two or three spans, as
shown in Fig. 8. The desired PSD is provided to the POF in a
similar manner to the case of EDFA characterization in Fig. 1.
The POF also coarsley controls the total power input to the
first EDFA of the experiment. The inline EDFAs are controlled
in constant output power mode, as was done for training
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the EDFA model. Fiber spools of four different lengths are
studied in this work: L ∈≈ {70, 80, 90, 100} with measured
losses of αtot ∈≈ {15, 16.5, 17.6, 18.7} dB, respectively. In
order to maintain generalization of the model regardless of
the average loss in the fiber, the fiber lengths are rescaled
to effective lengths {75.0, 82.5, 88.0, 93.5}, respectively, such
that the total propagation loss is matched with an average
loss of α = 0.2 dB/km, which is uniform with distance. The
effective lengths can be higher than the true lengths due to
additional connector losses and/or true average loss above 0.2
dB/km for those fiber spools. They can also be lower (in the
cases of 90 km and 100 km spans), which can be attributed to
average loss below 0.2 dB/km. These mismatches are assumed
frequency-flat, and thus do not influence the model accuracy.
They are therefore not modeled explicitly, but are implicitly
accounted for during the normalization.

The output of the last fiber is recorded by an OSA, normal-
ized, and compared to the model output in terms of MSE.

A. Fiber models

Three models for the power evolution in the fiber are studied
in this work.

1) Bulk loss model: The first model assumes a frequency
flat bulk loss (BL), governed by the fiber length

P (n, z) = P (n, 0)− α · z, (4)

where P (n, z) is the power at the n−th carrier at distance z.
2) SRS model: The second model takes into account the

SRS effect, which results in a transfer of power from carriers
at high frequencies to carriers at low frequencies. Following
the notation from [8], the power evolution across distance Ls
can be described by

P (n, z) = P (n, z − Ls)− αLs+ (5)
83∑
m=1

gR(ωm − ωn)
Aeff

Leff (Ls)e
P (m,z−Ls),

where gR is the tabulated Raman gain coefficient for a given
frequency offset, ωn is the angular frequency of the n−th
carrier, Aeff is the fiber effective area, and Leff (L) =
1−exp(−2·α·L)

2·α is the effective power interaction length [8].
Equation (5) is an approximation to the differential equation
governing the power evolution in the fiber, and is accurate pro-
vided the step size Ls is small enough1. In this work, Ls was
reduced until no improvements in the modeling accuracy were
found. In particular, Ls = 100 m. We have assumed standard
single mode fiber parameters such that Aeff = 82.3µm2, and
gR was taken from [9, Fig. 3] corresponding to the Raman
efficiency with pump centered at 1550 nm.

The mismatches in the fiber lengths of the model and the
experiment described above are minor, and since they are
effected at the end of the span where the power is relatively
low, their contribution to the Raman gain is negligible.

1The contributions of Kerr nonlinearities to the power evolution (e.g. due
to spectral broadening) are disregarded in the model as insignificant.

Fig. 9. MSEs for the considered multi-span systems. a): MSE as a function
of the launch power for the 3 different fiber models studied in this work; b):
the MSE per channel frequency averaged over launch power for the different
systems using the SRS-included model.

3) End-to-end ML model: Finally, an ML end to end (E2E)
model is also studied, which is based on the input-output
PSD for the entire system. In this case, a NN with identical
configuration as in Fig. 4 is trained to predict the PSD output
of the total system, similar to e.g. [10], [11]. This model
is expected to provide an improved accuracy. It is however
inflexible w.r.t. 1) number of spans; 2) span length; and 3)
launch power (especially cases where the launch power is
different in every span). In this case, similar to the EDFA
training procedure, 75% of the profiles are used for training
and 25% for testing.

B. System prediction error

Several random configuration of the available EDFAs and
fiber spans are studied. The configurations are specified by
the order of the element in the cascade, e.g. ”A2-90km-
A3-70km” corresponding to a link composed of (in order)
amplifier A2, 90 km SSMF, amplifier A3, 70 km SSMF (true
fiber lengths given above). For each configuration, the ≈ 2000
profiles already used for EDFA characterization are transmit-
ted through the experimental system and their corresponding
output PSDs recorded. In order to improve the accuracy of
the cascade model, each EDFA component is supplied with
the total input power readings obtained from the power meters
of each corresponding physical EDFA instead of the expected
input power, obtained as

P totin (k) = P totout(k − 1)− α · L(k − 1). (6)

The expected input power does not account for the potential
connector losses and fiber length mismatches as described
above and degrades the accuracy of the EDFA model when
used as a component in a system. These power readings are
available for the system measurements data together with the
EDFA measurements data in [14].

The MSE for the test profiles is reported in Fig. 9 for the
configurations, given in the legend. In Fig. 9a), the MSE is
given as a function of the launch power (equivalently, the
P totout of every EDFA) for the three studied models. We note
that system output samples with a measurement of < −60
dBm fall below the noise floor of the adopted OSA. These
are mostly relevant for input profiles of strong positive tilt
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Fig. 10. MSE for the different systems as a function of the input profile tilt. For strong positive tilts and for lower launch power, the SRS is negligible and
the bulk loss model becomes more accurate.

due to the accumulation of the EDFA gain tilt. In order to
take advantage of as much of the data as possible, individual
carrier measurements below −60 dBm (as opposed to entire
profiles with individual points in the output PSD < −60 dBm)
are excluded from the MSE estimation.

The E2E model provides an accurate modeling performance
of MSE ≈ 0.02dB2, which is similar to the intra-MSE of
the EDFA model. The SRS model provides an MSE ≈
0.5dB2, which is relatively constant across the studied systems
and launch powers. As mentioned above, this penalty in
performance comes at the benefit of robustness, on-the-fly
reconfigurability and generalization. The BL model results
in significant performance penalty, especially at high powers
(where the SRS is more significant) and more spans (where
the SRS accumulates).

In Fig. 9b), the MSE is given as a function of the frequency
for the SRS model and averaged over the launched power.
Similar to the single EDFA case, the system MSE is dominated
by the poor modeling performance at high frequencies, which
is now worsened by the presence of multiple EDFAs in the
system.

In Fig. 10, the MSE is given as a function of the input profile
tilt (as defined in (2)) for the studied systems and models.
For positive tilts, the BL model generally has an improved
accuracy due to the fact that high-frequency channels are
transmitted with low power, and the Raman gain is therefore
negligible. For negative tilts, and especially with high total
power and longer systems, the BL model suffers significant
penalty. The SRS model exhibits relatively constant perfor-
mance across tilts and total powers, slightly worse for long
systems and negative tilts. As discussed in Section II-B, the
EDFA model treats the EDFA as a black box with its bound-
aries extending from its input- to its output-power monitor.
Therefore, connector and splice losses following the output-
power monitor are not accounted for by the model and may
result in slight variations in the expected launch power into the
following fiber span. These variations, together with potential
inaccuracies in estimating the fiber parameters, have an impact

in the accuracy of the Raman gain for the SRS model. Further
characterization of localized losses and improved estimation of
the fiber parameters could potentially improve the performance
at the cost of additional measurements. This is left for future
work to confirm.

C. System optimization

The models described above are all fully differentiable,
which means that gradient descent can be applied in order
to optimize the system w.r.t. e.g. the output PSD, as long as a
differentiable cost function is applied. One example of such a
cost function is the MSE between a target PSD and an output
PSD. In this work, we optimize the system with a target of a
flat PSD output. When the PSD is normalized as above, this
translates to optimization with a cost function

Cost = −min
n
P systemout (n). (7)

Such an optimization is applied offline for the SRS and the
BL models, in order to obtain system input PSDs that flattens
the system output PSD. Details on the differentiation process
are given in the Appendix. The learning rate for the gradient
descent algorithm was optimized to 0.01. It is infeasible to
measure to total input and output power of each EDFA at every
iteration of the gradient descent algorithm. It is therefore not
possible to supply these measurements to the model as done
when estimating the model accuracy in Section III-B. For the
system optimization, then, the model reverts to the expected
total input and output power of each EDFA, as calculated
through the fiber loss in Eq. (6)

These optimizations are compared to a naı̈ve optimization
strategy which assumes that the system is linear and indepen-
dent of the input. Examples of optimized profiles are given in
Fig. 11 for two different systems, together with their respective
system output PSDs, at a launch power of 18 dBm. In Fig. 11a)
and Fig. 11c), the optimized profiles (which are specified to
the POF and desired at its output) are given, together with
the true PSDs that are measured with an OSA at the input
of the system. A non-insignificant discrepancy can be seen
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Fig. 11. Example input and outputs for two different systems. a): input of A2-90km-A3-70km; b): output of A2-90km-A3-70km; c): input of A2-100km-
A3-80km-A1-70km; d): output of A2-100km-A3-80km-A1-70km; Due to finite precision in the POF, there is a mismatch between the true PSD launched
into the fiber and the desired, specified PSD, obtained through the optimization. This mismatch is the main reason for the resulting non-flatness at the system
output.

already at what is assumed a ’flat’ input PSD, which in
reality corresponds to a PSD with ≈ 2 dB of excursion. The
sub-optimal flattening within the POF is due to limitation in
the accuracy of the attenuation profile, as well as possible
frequency calibration mismatches between the POF and the
OSA. Iterative optimization may lead to improved flatness but
that is beyond the scope of this work.

We found that a system optimization converges to < 0.1
dB of excursion for both the SRS and the BL models when
evaluated in simulation, regardless of the non-convexity of
the cost function in the input PSD, described in [8], [9]. The
experimental system output PSDs are given in Fig. 11b) and
Fig. 11d) for the systems A2-90km-A3-70km and A2-100km-
A3-80km-A1-70km, respectively. Experimentally, ≈ 2 dB and
≈ 3 dB of excursion is achieved for a 2-span and a 3-span
system, respectively when the system is optimized with the
SRS model. This penalty is attributed to the above-mentioned
non-flat reference. The excursion is increased by ≈ 0.9 dB and
≈ 0.6 dB for the two systems, respectively, if the BL model is
applied. The additional excursion is due to the overestimated
output power at high frequencies in the model, leading to lower
power in the experiment at those frequencies for the same
profile.

Finally, the naı̈ve strategy overcompensates for the system
tilt, and results in a tilt of the opposite direction due to the
fact that the nonlinearities in the fiber and the EDFA are not
correctly captured by this optimization.

IV. DISCUSSION

In this work, the POF was used to control both the profile
and the total power input to the first EDFA in the cascade,
which is challenging due to the limited attenuation range of
the POF and potentially affects the accuracy of the applied
profile, especially the ones of high excursion values. Adopting
an explicit optical attenuator with a flat frequency response for
the second task might alleviate some of the stress on the POF
and improve the accuracy.

The models developed in this work require total input and
output power readings from the EDFA devices, which might
not be as accurate for commercially deployed EDFAs. We note

that in such cases, the transmission conditions are static and
furthermore, the total fiber+connector losses of every span
are characterized much more thoroughly and do not vary
significantly over time. The expected total input and output
power of each EDFA in the link is then close to reality and
can be used to inform the cascade model without relying on
readings from the devices themselves.

In this work, system lengths of up to three spans were
considered due to the availability of three EDFAs of the
same make. Increasing the system length is of obvious interest
for exploring the generalization of the EDFA model and the
overall accuracy of the cascade system model.

Optimizations for C+L band transmission are of even greater
interest due to the more pronounced SRS effect, especially for
hybrid EDFA+Raman amplifiers and their design thereof [16].
These applications are well within the capabilities of the
cascade models presented in this paper, and are obvious
directions for future research.

V. CONCLUSION

A neural network was proposed for modeling the power
spectral density (PSD) response of an EDFA operating in C-
band. The model was trained using experimental input-output
PSD relations for varying total input power and total output
power (equivalently, varying average gain). The model was
demonstrated to generalize to several devices of the same
make, enabling component-based modeling of multi-span sys-
tems. Cascade models are the key to the optimization of recon-
figurable optical networks. System experiments demonstrated
that such cascade system models can accurately predict the
power evolution in fiber links provided that the stimulated
Raman scattering (SRS) effect is captured by the model. A
differentiable, SRS-included fiber model was combined with
the differentiable EDFA model in order to optimize the power
profile at the output of the experimental system e.g. for
flatness. Maximum excursions of up to 2 dB and 3 dB for a
2-span and a 3-span gain-flattening-free system, respectively
were demonstrated by the optimization, which overwhelm-
ingly outperforms naı̈ve optimization strategies which assume
the system is linear and independent of the input.
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APPENDIX A
DERIVATIVE OF THE CASCADE SYSTEM MODEL

With the advent of graph-based numerical models for op-
timization, complicated functions can be differentiated and
optimized efficiently by expressing them as a factor graph
[15]. In brief, the derivative of the cost function is calculated
at each node w.r.t its input and back-propagated to the input of
the graph, which represents the optimization variable. The only
restriction is that each node is differentiable w.r.t. its inputs.
This is exemplified in Fig. 12, for which the derivative of the
cost function w.r.t. e.g. x1 may be calculated as

∂Cost

∂x1
=
∂Cost

∂f4
×
∂f4(

∂f1
∂x1

, ∂f3∂f2
× ∂f2

∂x1
)

∂(f1, f2)
. (8)

The cascade model proposed in this paper contains 4 types
of nodes: 1) linear; 2) ReLU; 3) normalization; and 4) SRS
application. The linear and ReLU layers are trivial to differ-
entiate. The normalization node is defined as Norm(yk) =
xk −maxl(xl), where xk is the k−th input to the node and
yk is its output. The derivative is calculated as

∂Norm(yj)

∂xk
= 1 · (k == j)− 1 · (xk == max

l
(xl)), (9)

where ’==’ is the conditional equality operator. The derivative
of the SRS layer defined in (5) can be calculated as

∂P (n, z)

∂P (m, z − Ls)
= 1 · (m == n) (10)

+
gR
Aeff

Leff(Ls)e
P (m,z−Ls).

Finally, the derivative of the cost function defined in (7) w.r.t.
its input layer is similar to above calculated as

∂Cost

∂xk
= −1 · (xk == min

j
(xj)). (11)

Once all derivatives of the cost function w.r.t. the power of ev-
ery input carrier has been computed, standard gradient descent-
type update rules can be applied. The process continues until
convergence or until some pre-defined maximum number of
iterations.
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