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A B S T R A C T

GPI‐anchors constitute a very important post‐translational modification, linking many proteins to the outer
face of the plasma membrane in eukaryotic cells. Since experimental validation of GPI‐anchoring signals is slow
and costly, computational approaches for predicting them from amino acid sequences are needed. However,
the most recent GPI predictor is more than a decade old and considerable progress has been made in machine
learning since then. We present a new dataset and a novel method, NetGPI, for GPI signal prediction. NetGPI is
based on recurrent neural networks, incorporating an attention mechanism that simultaneously detects GPI‐
anchoring signals and points out the location of their ω‐sites. The performance of NetGPI is superior to existing
methods with regards to discrimination between GPI‐anchored proteins and other secretory proteins and
approximate (�1 position) placement of the ω‐site.
NetGPI is available at: https://services.healthtech.dtu.dk/service.php?NetGPI.
The code repository is available at: https://github.com/mhgislason/netgpi-1.1.
1. Introduction

Some of the proteins that follow the secretory pathway are bound
to the membrane of eukaryotic cells by specific mechanisms. One of
these mechanisms is a post‐translational modification where a glyco-
sylphosphatidylinositol (GPI) anchor is attached to the protein. The
identification of proteins that undergo this modification is of high
interest due to the diversity of functions that they perform. GPI‐
anchored proteins are essential in the development of fungi and ani-
mal cells (Brul et al., 1997; Kawagoe et al., 1996). They are also
involved in certain diseases such as paroxysmal nocturnal
haemoglobinuria, an acquired haematopoietic stem‐cell disorder
(Takeda et al., 1993), and in the defense mechanisms of various proto-
zoan parasites such as Leishmania and Trypanosoma (Masterson et al.,
1990). Consequently, the development of computational tools that
are able to detect proteins with this modification is of high impact
on the research of eukaryotic cell biology (Mayor and Riezman, 2004).

GPI‐anchored proteins have two signals in their primary sequence:
an N‐terminal sequence for endoplasmic reticulum targeting (signal
peptide) and a C‐terminal signal sequence directing the attachment
of the GPI‐anchor. This attachment is carried out by a GPI transami-
dase which recognizes the C‐terminal signal sequence and cleaves
the peptide bond at the GPI‐anchor attachment site, known as the ω‐
site. This cleavage creates a covalent bond between the GPI and the
C‐terminus of the cleaved protein, allowing the protein to remain teth-
ered to the membrane (Orlean and Menon, 2007). The transamidase is
a multi‐subunit complex; in mammals, it comprises the proteins PIGK,
GPAA1, PIGS, PIGT, and PIGU. Among these, PIGK is the protease that
cleaves off the propeptide, while GPAA1 seems to catalyse the forma-
tion of an amide bond between the ω amino acid and the GPI moiety
(Kinoshita, 2020). The GPI modification is not in a strict sense rever-
sible in vivo, since it involves the cleavage of the propeptide, but some
GPI‐anchored proteins are subsequently shed from the membrane by
enzymatic cleavage of the GPI and thus converted into secretory pro-
teins (Kinoshita, 2020).

C‐terminal signal sequences are generally composed of five regions,
which are determined by the amino acids before the ω site (ω‐minus)
and after (ω‐plus). The five regions are: a stretch of polar amino acids
that form a flexible linker region (ω� 10 to ω� 1); the ω site amino
acid; the ωþ 2 amino acid, a restrictive position with mostly G, A,
or S; a spacer region of moderately charged amino acids (ωþ 3 to
ωþ 9 or more), and a stretch of hydrophobic amino acids starting
approximately at ωþ 10 (Orlean and Menon, 2007).
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In order to detect proteins that carry this signal, experimental
assays are required. Such experiments are generally low throughput
and costly, which has resulted in a low amount of experimentally
annotated GPI‐anchored proteins. To overcome this limitation, fast
computational methods that can approximate the experimentally vali-
dated process are needed. For this purpose, current machine learning
methods exist for predicting GPI‐anchors (Fankhauser and Mäser,
2005; Eisenhaber et al., 1999; Pierleoni et al., 2008). However, these
methods were developed more than a decade ago and do not utilize
recent progress in machine learning methods nor access to new data
sources. Deep learning methods, such as recurrent neural networks
(RNN) (Graves, 2012), have recently proven effective at protein pre-
diction tasks (Jurtz et al., 2017). However, deep learning requires
large amounts of annotated samples to generalize well (LeCun et al.,
2015).

In this paper we present a new tool for detecting GPI‐anchored pro-
teins and determining the position of the ω‐site using recurrent neural
networks. To overcome the low amounts of experimentally validated
data we build a new dataset composed of both experimentally anno-
tated and predicted GPI anchored proteins. To benchmark our method
against previous methods, we only consider experimentally annotated
samples. Regardless, our method achieves state‐of‐the‐art performance
on the GPI‐anchor prediction task. Moreover, we show that the model
learns biologically meaningful characteristics.

1.1. Related works

Initial work on predicting the presence of GPI‐anchors and the ω‐
site was published by Eisenhaber et al. (1999). This work, known as
the Big‐Π Predictor, details a method that evaluates amino acid type
preferences at positions near a potential ω‐site as well as the concor-
dance with general physical properties encoded in multi‐residue corre-
lation within the motif sequence (Eisenhaber et al., 1999). Big‐Π
provides kingdom‐specific predictions as it was trained on metazoan,
protozoan, fungi (Eisenhaber et al., 2004), and plant (Eisenhaber
et al., 2003) proteins separately.

Fankhauser and Mäser (2005) presented a neural network based
prediction tool called KohGPI/GPI‐SOM. GPI‐SOM utilizes a Kohonen
Self Organizing Map structure, which takes as input the average posi-
tion of a given amino acid relative to its proximity to the C‐terminal,
the hydrophobicity of the amino acid at 22 C‐terminal positions, and
2 units representing the quality of the presumed ω‐site and its position.
Both GPI‐SOM and Big‐Π utilize an external signal peptide predictor
known as SignalP (Armenteros et al., 2019) to preselect proteins.

FragAnchor was published by Poisson et al. (2007). FragAnchor
uses a feed‐forward neural network model to detect potential GPI‐
anchoring signal sequences and a Hidden Markov Model (HMM) to
quantify the prediction confidence and to estimate the position of
the ω‐site, the spacer region and the hydrophobic tail. Like the previ-
ous two methods, FragAnchor relies on external evidence for the signal
peptide and only regards the last 50 C‐terminal amino acids. Unfortu-
nately the prediction tool is no longer available online.

In 2008 Pierleoni, Martelli & Casadio published Pred‐GPI, a GPI‐
anchor predictor using a Support Vector Machine (SVM) for the GPI‐
anchoring signal discrimination and an HMM to predict the position
of the ω‐site (Pierleoni et al., 2008). The HMM has 46 states with vary-
ing probabilities for amino acids and the potential ω‐site assigned to
the 26th state. The SVM takes as input the negative log‐likelihood
computed by the HMM as well as 82 features intended to describe
the overall composition of the sequence, the features of the N‐
terminal regions comprising the signal peptide, and the features of
the C‐terminal regions containing the cleaved GPI‐anchor signal.
Pred‐GPI supplies two different variants: one model where the poten-
tial ω‐site is restricted to be one of Cysteine, Aspartic acid, Glycine,
Asparagine, and Serine – this approach they refer to as the conserva-
tive model – and a non‐conservative variant which has no such restric-
7

tion. Unlike the other three methods, Pred‐GPI does not rely on an
external signal peptide predictor, such as SignalP.
2. Materials and methods

2.1. Dataset

All data used in this project are extracted from the UniProt data-
base, release 2019_02 (UniProt Consortium, 2014). The dataset con-
struction follows two main steps: data gathering and homology
partitioning. First, we select eukaryotic proteins with experimental
(ECO:0000269) and non‐experimental evidence of being GPI‐
anchored and eukaryotic proteins with experimental evidence of being
secreted, giving a total of 3618 proteins. All proteins are truncated to
the last 100 amino acid positions. This is because our method does not
include the prediction of the signal peptide and it is assumed that all
relevant sequence information resides in or near the C‐terminal posi-
tions. Instead, it relies on experimental evidence for the signal peptide
or signal peptide prediction tools, such as SignalP (Armenteros et al.,
2019). After truncation we remove exact duplicates, leaving 3567
unique sequences. Of the 3567, there are 981 assumed to be GPI‐
anchored. Out of the 981 there are 161 with experimental evidence
for the GPI‐anchoring signal of which 50 also have experimental evi-
dence for the ω‐site, where the GPI‐anchor would be attached. The
remaining 820 have non‐experimental evidence for the presence of a
GPI‐anchoring signal. This leaves 2586 without any evidence for the
presence of a GPI‐anchoring signal, which are assumed to be non
GPI‐anchored. The samples are also labelled by kingdom taxonomy:
animal, fungi, plant, or other. The dataset composition is fully detailed
in Table 1.

In order to measure a fair and unbiased estimate of the perfor-
mance of a sequence‐based prediction tool, it is essential to avoid
homology between training and test sequences. This can be done by
homology reduction or homology partitioning. In homology reduction,
sequences are removed until no pair of sequences are more closely
related than a specified threshold (Hobohm et al., 1992), while homol-
ogy partitioning is the separation of a set of sequences into subsets,
such that all sequences within each subset are less closely related than
the threshold to sequences in other subsets. Commonly used clustering
tools, such as CD‐HIT (Li and Godzik, 2006), MMseqs 2 (Steinegger
and Söding, 2017) and BLASTCLUST (Dondoshansky and Wolf,
2019), provide fast homology separation, where all sequences within
each cluster are homologous to one another. However, these tools only
ensure that a certain representative sequence in each cluster is less clo-
sely related than the threshold to sequences in other clusters; they do
not guarantee that other members of the cluster follow the same crite-
rion. They can therefore not be used for homology partitioning.

To homology partition the dataset, we therefore follow a four phase
procedure, where we define percent identity of 30% as the threshold.
First, we obtain global alignments using the program ggsearch36,
which is a part of the FASTA package (Pearson and Lipman, 1988).
The program implements the Needleman‐Wunsch algorithm for global
alignments (Needleman and Wunsch, 1970). We set the program’s E

parameter, which is the expectation value threshold, to be larger than
the dataset size, in order to include all pairwise comparisons in the
output. We use the default output format, which calculates percent
identity with the length of the alignment as the denominator. In the
second phase, we cluster the pairwise percent identities, using
restricted single‐linkage clustering. As the end‐goal is to partition the
dataset into five comparable subsets, the clustering procedure is
restricted such that no single cluster is allowed to have more than
981
5 samples labelled GPI‐anchored or 2586

5 samples labelled non GPI‐
anchored. In the third phase, the clusters are grouped together into
five partitions, such that the number of GPI‐anchored and non GPI‐
anchored samples is comparable across all partitions. In the final



Table 1
The dataset composition. There are 161 samples in total with experimental evidence for a GPI-anchoring signal. The samples with experimental evidence for the ω-site
also have experimental evidence for a GPI-anchoring signal, here however, they are presented separately

Kingdom Exp. ev.
ω-site

Exp. ev.
GPI-anchor

Non-exp. ev.
GPI-anchor

No ev.
for GPI-anchor

Total

Animal 25 72 417 2074 2588
Fungi 7 27 220 336 590
Other 5 2 77 19 103
Plant 13 10 106 157 286

All 50 111 820 2586 3567

Abbreviation: Exp. ev. = Experimental evidence.
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phase, samples are removed until no percent identity above 30% is
found between samples in different partitions. During the removal
phase, samples can be moved between partitions, as an attempt to
reduce the number of samples removed. The composition of the final
partitions can be seen in Table 2 and in the supplementary files. The
final dataset contains 966 proteins labelled GPI‐anchored and 2573
labelled non GPI‐anchored, for a total of 3539. Out of the 28 removed,
one has experimental evidence for a GPI‐anchoring signal sequence.
All 50 samples with an experimentally verified ω‐site are retained.

2.2. Objective

The objective of GPI prediction is to decide whether a GPI signal is
present and, if present, to determine the position of the ω‐site in a pro-
tein sequence. We combine these two tasks by reducing them to the
single task of maximizing the probability of a position in a sequence.
To achieve this, we add a placeholder to the end of the protein
sequence which serves as an indicator for the absence of a GPI‐
anchoring signal. Thus, we formally define the objective as maximiz-

ing the probability of a position in bD, which is known as pointing
(Vinyals et al., 2015).

max
θ

Pθ CijbD� �
ð1Þ

bD ¼ D; z½ � ð2Þ

Where D∈ΣT�1 is an amino acid sequence and Σ is a dictionary of the
twenty common amino acids as well as the token X, which represents
any other encountered amino acid symbol. We only consider the last
100 amino acids in the protein sequence, such that the length
T � 1 ⩽ 100. If the sequence does not contain an ω‐site we maximize
the probability of the protein being non GPI‐anchored. Inspired by
work in natural language processing (Merity et al., 2016; McCann
et al., 2018), we represent the lack of an ω‐site by maximizing the
placeholder position known as the sentinel, z, at the end of the amino

acid sequence. This results in bD ∈ Σ̂T where Σ̂ ¼ Σ∪ zf g. Ci then corre-

sponds to a position in bD.
To parameterize the conditional probability distribution Pθ we use

a neural network architecture known as the Long‐Short Term Memory
(LSTM) Cell (Hochreiter and Schmidhuber, 1997) and distributed rep-
resentations of the amino acids (Mikolov et al., 2013) as shown in Eq.
3,
Table 2
The dataset, partitioned using Needleman-Wunch, global alignment, to 30% pairwis
program, provided with the FASTA package.

Partition: 0 1 2 3

188 189 225 169
488 484 484 629

8

zi ¼ embedding Di

^
� �

h ¼ LSTM zð Þ
gi ¼ tanh hiWð Þ

P CijD
^

� �
θ

¼ softmax gVð Þi ¼ exp giVð Þ

∑
T

j¼0
exp gjVð Þ

ð3Þ

where embedding : Σ̂ ! Rd transforms each amino acid into a dis-
tributed representation of real numbers using a linear trainable weight
of size d and i; j∈N ⩽ T are indexes of the protein sequence including
the sentinel position. The LSTM is a non‐linear transformation of a
sequence of real values. It uses trainable recurrent units to distribute
sequential information across the protein sequence,

LSTM : RT�d ! RT�d0 , where d0 is the output size of the LSTM. As we
use a bidirectional LSTM (Schuster and Paliwal, 1997) we end up with
two hidden representations of size d0. To get the probability over the
sequence we project the output of every position to a logit, giV ∈R, fol-
lowed by a softmax : RT ! 0; 1½ �T that normalizes the logits into a
probability distribution over the sequence. To create the logits we use
a two layer feed forward neural network on top of the LSTM hidden

states, h∈RT�2d0 , with a tanh activation function, W ∈R2d0�d00 , and

V ∈Rd00 . This usage of softmax over a sequence is a modification of
attention where the interaction size d00 of gV is the attention hidden rep-
resentation size. This modification of attention is known as a pointer
network (Vinyals et al., 2015).

The embedding;LSTM;W , and V are all trainable with stochastic
gradient descent using back‐propagation through time (Werbos,
1990). We have visualized our model in Fig. 1.

2.3. Model details

In order to measure the performance of our method on the entire
dataset in an unbiased way, we use fivefold nested cross‐validation.
For each partition, the four other partitions are cross‐validated where
three partitions are used to train a model and one to validate the per-
formance, i.e. to select the optimal hyperparameters and the point at
which to stop the training. In all, 20 models are trained. The perfor-
mances of different combinations of hyperparameters are compared
using the average performance of the four models in the inner loop
of the nested cross‐validation. The SIGOPT platform is used for model
e percent identity. The global alignments are obtained using the ggsearch36

4 Label Mean Samples

195 Anchored 193.2 966
488 Not anchored 514.6 2573



Fig. 1. Diagram of the model, illustrating how the model points to a position in a sequence, in this case, the entry with UniProt accession number P15693. The
sequence is truncated to the last 100 amino acids and the sentinel, z, is appended (marked with grey background). The predicted ω-site is an Asparagine (N). If the
position with highest likelihood had been the sentinel position, then the protein would have been predicted as non GPI-anchored.
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selection (Clark and Hayes, 2019). The SIGOPT optimization engine
provides suggestions for hyperparameters based on inference from
the performance of other hyperparameter combinations, measured
with any real valued metric. The user supplies the values and specifies
whether the value should be minimized or maximized. Each of the five
sets of four models is trained with at least 200 hyperparameter combi-
nations. The hyperparameters to tune are: The size of the distributed
representation (d), the LSTM cell hidden representation (d0), the num-
ber of LSTM layers, the LSTM dropout, the attention hidden represen-
tation (d00), the batch size, and the optimizer’s learning rate, learning
rate decay and weight decay. Each epoch, after the first, the learning
rate is updated by multiplying it with the learning rate decay. A model
is then trained for each cross‐validation split, on a shortlist of hyperpa-
rameter combinations, shown in Table 3. Each combination is exe-
cuted 30 times and the model with the highest validation
performance is used as the final model. Each set of four models is used
as an ensemble predictor for the respective test partition. The loga-
rithm of the probability distribution of each of the four models is aver-
aged and used as an ensemble prediction. The web service predictions
are generated with a 20‐model ensemble. The neural network is
trained with stochastic gradient descent using the Adam optimizer
(Kingma and Ba, 2014). The models are implemented with the
PyTorch deep learning framework (Paszke et al., 2017).
2.3.1. Quantitative evaluation criteria
To evaluate the discrimination between GPI‐anchored and non GPI‐

anchored proteins we use the Matthews Correlation Coefficient (MCC)
and for ω‐site prediction evaluation we use the F1 score (Baldi et al.,
2000). The F1 score is the harmonic mean of sensitivity (how many
of the true cleavage sites are predicted correctly) and precision (how
many of the predicted cleavage sites are true). Due to the dual nature
of the problem, and the lack of experimental ω‐site evidence in the
training set, a simple heuristic is devised. The heuristic is a composi-
tion of the two evaluation methods. The F1 score is calculated with
Table 3
Four combinations of hyperparameters with the best validation performance, every

e.d. (d) LSTM h.u. (d0) LSTM dropout a.d. (d00)

16 20 0.62 340
16 16 0.55 283
16 16 0.6 283
22 22 0.6 283

Abbreviations: e.d. = embedding dimension, h.u. = hidden units, a.d. = attentio

9

a tolerance of two positions from the annotated ω‐site. We allow for
this flexibility when calculating the F1 score as the training set con-
tains mostly non‐experimentally verified ω‐site samples, which are
not as reliable as the experimentally verified. The MCC is weighed
twice as important as the F1 score. We weigh the MCC more as we
want to emphasize the GPI‐anchoring discrimination over the ω‐site
prediction performance. The model with the combination of hyperpa-
rameters that gives the best heuristics, on the validation partition, is
chosen for each fold. This heuristic also controls when the model’s
parameters are stored as an early stopping approach. The self evalua-
tion metric during training is the Cross Entropy Loss.
2.3.2. Qualitative evaluation methods
To visualize the decision making of the model, we perform a fea-

ture importance analysis using the Local Interpretable Model‐
agnostic Explanations (LIME) package (Ribeiro et al., 2016). We per-
form this analysis on each partition separately, using the correspond-
ing four model ensemble. In the LIME analysis, amino acids
contributing to a GPI‐anchored prediction will have a positive impor-
tance, while amino acids contributing to the non GPI‐anchored predic-
tion will have a negative importance. The larger the weight, the larger
the contribution to the prediction.

Furthermore, we investigate the sequence composition around the
ω‐site to uncover possible model biases.
3. Results and discussion

3.1. Quantitative results

The subset of the GPI dataset that is used for benchmarking con-
tains 160 GPI‐anchoring signal sequence samples, regarded as positive,
and 2573 samples without a GPI‐anchoring signal sequence, regarded
as negative. To benchmark the ω‐site position prediction the positive
model has 4 LSTM layers and is trained for 300 epochs.

lr. lr. decay w. decay batch size

0.002479 0.9970 0.001930 32
0.003346 0.9987 0.009095 128
0.003346 0.9987 0.010052 128
0.003346 0.9987 0.009095 128

n dimension, lr. = learning-rate, w. = weight.
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set is limited to the 50, out of the 160 positive protein samples, with an
experimentally verified ω‐site annotation.

To benchmark the performance of the existing tools the dataset was
submitted to the three tools currently available; Big‐Π, GPI‐SOM, and
PredGPI. In the case of Big‐Π we separated the benchmark set accord-
ing to kingdom and submitted to the corresponding versions of the
tool. Sequences not belonging to animals, plants, or fungi were submit-
ted to the protozoan version. Big‐Π annotates its predictions according
to likelihood. Predictions with high likelihood are labeled as P, twi-
light zone predictions are labeled as S, and non‐potentially GPI‐
anchored proteins are labeled as N. We regarded any protein predicted
as potentially GPI‐anchored (P or S) as a GPI‐anchored prediction.

PredGPI ranks and classifies predictions according to specificity.
Predictions are regarded as highly probable, probable, weakly proba-
ble, and non GPI‐anchored. We measure the performance for two set-
tings of PredGPI; designating weakly probable either as GPI‐anchored
or non GPI‐anchored. Assuming weakly probable as negative predic-
tions gives the best performance according to MCC, as shown in
Table 4.

For predicting the presence of GPI‐anchors, NetGPI achieves the
highest MCC of 0.895. It also attains the highest true positive rate
(TPR), 0.975, the second highest being GPI‐SOM. NetGPI achieves
the highest precision, 0.834, the second highest being Big‐Π with a
precision of 0.830. Big‐Π has the second highest MCC, 0.817 and the
lowest false positive rate (FPR), 0.010, whereas NetGPI has the second
lowest FPR, 0.012. For a detailed comparison see Table 4.

We find that the Big‐Π learning set has at least 58 samples which
overlap with our positive benchmark set and an unknown overlap with
our negative benchmark set, as the negative set is not reported. This
might cause the performance of Big‐Π to be overestimated. The pub-
lishing date of Eisenhaber et al. (2004) is the 19th of March 2004,
however the metazoa and protozoa predictors are reported to have
been updated on the 17th of June 2005. We filter the benchmark set
to GPI‐positive samples not found in Big‐Π’s reported training set
and non GPI‐anchored samples made available on UniProt after
2005–06‐17. In the filtered comparison the performance gap between
NetGPI and Big‐Π increases from 0.078 MCC to 0.141 MCC. All of
Big‐Π’s false negative predictions belong to the filtered dataset. If we
regard PredGPI’s weakly probable as negative, the second highest
MCC is, on the filtered dataset, achieved by PredGPI, with an MCC
of 0.813.

For the prediction of the position of the ω‐site we only consider the
50 proteins with an experimentally verified ω‐site. The aforemen-
tioned dataset overlap is overly prevalent for these proteins, out of
the 50 ω‐sites, 33 are used for training the Big‐Π model.
Table 4
Comparison of the GPI-anchor presence prediction performance of NetGPI and bench
FPR where it is outperformed by Big-Π.

All (2733) TP FP FN TN

NetGPI 156 31 4 254
PredGPI* 147 50 13 252
PredGPI** 150 119 10 245
GPI-SOM 152 259 8 231
BigPI 132 27 28 254

Filtered*** (1080) TP FP FN TN
NetGPI 98 11 4 96
PredGPI* 92 28 10 95
BigPI 74 10 28 96

Abbreviation: TP = True positive, FP = False Positive, FN = False Negative, TN
Positive Rate, MCC = Matthews Correlation Coefficient.
* No difference in the conservative or non-conservative options for PredGPI was o
negative.
** This is the result for PredGPI when weakly probable predictions are regarded a
*** Here the samples are limited to positive samples not in Big-Π’s reported traini
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NetGPI correctly predicts 32 out of the 50 experimentally verified
ω‐sites, with an F1 score of 0.496. NetGPI correctly predicts 8 out of
the 17 not found in the reported Big‐Π training set, with an F1 score
of 0.372. Big‐Π correctly predicts 38/50, with an F1 score of 0.628
and 8/17, with an F1 score of 0.457. GPI‐SOM correctly predicts
9/17, however the F1 score is only 0.151 because of GPI‐SOM’s higher
false positive rate. If we allow for a one‐off error window around the
true ω‐site, then NetGPI outperforms Big‐Π, correctly predicting
44/50, with an F1 score of 0.682 and 13/17, with an F1 score of
0.605. Big‐Π correctly predicts 41/50, with an F1 score of 0.677 and
10/17, with an F1 score of 0.555. The ω‐site position prediction results
are detailed in Table 5.

3.2. Qualitative results

In the qualitative analysis we investigate the importance of biolog-
ical features when NetGPI predicts GPI‐anchor presence and the ω‐site.
In addition, we analyze the ω‐site composition to understand the
neighborhood of true and predicted ω‐site positions. Furthermore,
we investigate model likelihood of the predictions, and how it relates
to model correctness. Lastly, we use NetGPI to predict GPI‐anchored
proteins in six complete proteomes.

3.2.1. Feature Importance analysis
Fig. 2 illustrates the results of the LIME analysis for both positive

(see Fig. 2a) and negative (see Fig. 2b) samples. We observe that the
presence of a hydrophobic tail contributes the most towards a positive
prediction. This is consistent with the literature (Orlean and Menon,
2007), which defines the presence of a hydrophobic region from the
position ωþ 10. From that position the feature importance is much
higher than for the rest of the sequence, which means that the main
feature driving the positive prediction of NetGPI is the presence of
the hydrophobic region. Regarding the negative predictions, we
observe that the amino acids contributing the most towards a negative
prediction are charged and polar amino acids. This indicates that the
model is attributing higher importance to non‐hydrophobic amino
acids, indicating a lack of hydrophobic tail, when making a negative
prediction.

3.2.2. ω‐site composition
Out of the 50 proteins with an experimentally verified ω‐site anno-

tation there are 25 metazoa (animal) proteins, 13 plant proteins, 7
fungi proteins and 5 protozoa (other) proteins. Of the 25 animal pro-
teins there are 14 which belong to Homo sapiens. All of the 13 plant
proteins belong to the same species, Arabidopsis thaliana. Of the 50
marked methods. NetGPI achieves superior performance on all accounts except

TPR Prec. FPR MCC

2 0.975 0.834 0.012 0.895
3 0.919 0.746 0.019 0.816
4 0.938 0.558 0.046 0.702
4 0.950 0.370 0.101 0.558
6 0.825 0.830 0.010 0.817

TPR Prec. FPR MCC
7 0.961 0.899 0.011 0.922
0 0.902 0.767 0.029 0.813
8 0.725 0.881 0.010 0.781

= True Negative, TPR = True Positive Rate, Prec. = Precision, FPR = False

bserved, this is the results when weakly probable predictions are regarded as

s positive.
ng set and negative samples made available on UniProt after 2005-06-17



Table 5
Comparison of the ω-site position prediction performance of NetGPI and the benchmarked methods.

Known*** (50) �0 F1 Sens. Prec. �1 F1 Sens. Prec. �2 F1 Sens. Prec.

NetGPI 32 0.496 0.640 0.405 44 0.682 0.880 0.557 44 0.682 0.880 0.557
PredGPI* 29 0.403 0.580 0.309 35 0.486 0.700 0.372 36 0.500 0.720 0.383
PredGPI 28 0.389 0.560 0.298 36 0.500 0.720 0.383 37 0.514 0.740 0.394
PredGPI*,** 29 0.272 0.580 0.178 35 0.329 0.700 0.215 36 0.338 0.720 0.221
PredGPI** 28 0.263 0.560 0.172 36 0.338 0.720 0.221 37 0.347 0.740 0.227
GPI-SOM 30 0.182 0.600 0.107 33 0.200 0.660 0.118 33 0.200 0.660 0.118
BigPI 38 0.628 0.760 0.535 41 0.677 0.820 0.577 41 0.677 0.820 0.577

Known**** (17) �0 F1 Sens. Prec. �1 F1 Sens. Prec. �2 F1 Sens. Prec.

NetGPI 8 0.372 0.471 0.308 13 0.605 0.765 0.500 13 0.605 0.765 0.500
PredGPI* 5 0.172 0.294 0.122 9 0.311 0.529 0.220 10 0.345 0.588 0.244
PredGPI 4 0.138 0.235 0.098 9 0.311 0.529 0.220 10 0.345 0.588 0.244
PredGPI*,** 5 0.121 0.294 0.076 9 0.216 0.529 0.136 10 0.242 0.588 0.152
PredGPI** 4 0.097 0.235 0.061 9 0.216 0.529 0.136 10 0.242 0.588 0.152
GPI-SOM 9 0.152 0.529 0.089 10 0.169 0.588 0.099 10 0.169 0.588 0.099
BigPI 8 0.457 0.421 0.500 10 0.555 0.588 0.526 10 0.555 0.588 0.526

Abbreviations: �0 = The number of correctly predicted ω-sites, �1 = The number of ω-site predictions within one position away from the correct position, �2 =
The number of ω-site predictions within two positions away from the correct position, F1 = F1-score, Sens. = Sensitivity, Prec. = Precision.
* PredGPI provides two options, this is their conservative option.
** This is the result for PredGPI when weakly probable predictions are regarded as positive.
*** For the position prediction we use the experimentally tested sequences with known ω-sites. The precision is calculated w.r.t. the experimentally tested
sequences with known ω-sites as well as all negative samples.

Fig. 2. The logo plots of the LIME analysis for both positive (a) and negative (b) samples. The logo plots are colored according to amino acid properties, where
blue means positively charged, green means polar, red means negatively charged and gray means hydrophobic amino acids. The positive set (a) is aligned to the
predicted ω-site, while the negative set (b) is aligned to the C-terminus. Positive feature importance contributes to a positive prediction whereas a negative feature
importance contributes to a negative one. We see that the presence of a hydrophobic tail contributes the most towards a positive prediction, whereas charged and
polar amino acids contribute the most towards a negative prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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experimentally verified ω‐sites, 27 are Serine, while the other amino
acids observed are Asparagine, Glycine, Aspartic acid, Cysteine and
Alanine, in decreasing order of frequency. The ω‐site of five of the Ara-
bidopsis thaliana proteins are correctly positioned by NetGPI. The other
eight are all one‐off errors and constitute 2

3 of one‐off errors made by
NetGPI. Out of those, there are seven where the ω‐site amino‐acid is
Serine (S) where the predicted amino‐acid is the Aspartic Acid (D) in
the ω+1 position. All seven have in common the 4‐mer
ω� 2;ωþ 1½ � motif PTSD, followed either by Glycine (G) or Alanine
(A) in position ω+2. Both Big‐Π and NetGPI are unable to position
3 out of 4 Aspartic acid ω‐sites. This may be related to the ωþ 2 posi-
tion, as these 3 samples have a non‐standard amino acid (i.e. some-
thing other than G, A, or S). See Table 6.
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3.2.3. Likelihood and correctness
In addition to the classification of the sequence and the most likely

position of the ω‐site, NetGPI reports the likelihood of the chosen posi-
tion. For positive predictions this is the predicted ω‐site, while for neg-
ative predictions it is the sentinel.

As our model is trained with cross entropy, it is penalized with a
logarithm of the correct prediction. If we predict incorrectly, with a
very low likelihood for the correct position, the loss can be immense.
We should thus expect that answers with a high likelihood are more
credible.

In Fig. 3 we display the likelihood distribution of the predictions.
We observe differences in the likelihood of correct and incorrect pre-
dictions implying a correlation between likelihood and correctness.



Table 6
NetGPI’s and Big-Π’s ω-site position prediction performance for the 50 true ω-site amino acid in the test set. We see that both models only predict one out of four
Aspartic acid ω-sites correctly. NetGPI has twelve one-off errors, seven of which are actually Serine ω-sites. The seven are homologous Arabidopsis thaliana proteins,
which have in common the tetramer ω� 2;ωþ 1½ � motif PTSD, followed either by Glycine (G) or Alanine (A) in position ω+2.

NetGPI S (27) N (9) G (6) D (4) C (2) A (2)

�0 20 7 4 1 0 0
�1 27 8 5 1 2 1
�2 27 8 5 1 2 1

BigPI S (27) N (9) G (6) D (4) C (2) A (2)

�0 21 9 4 1 2 1
�1 23 9 5 1 2 1
�2 23 9 5 1 2 1

Abbreviation: �0 = The number of correctly predicted ω-sites, �1 = The number of ω-site predictions within one position away from the correct position, �2 =
The number of ω-site predictions within two positions away from the correct position.

Fig. 3. The likelihood distribution for true positive, false positive, false
negative and true negative predictions. True positive are split into correctly
positioned ω-sites and incorrectly positioned. The number of samples behind
each are displayed in brackets.
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Furthermore, we observe higher likelihood in negative predictions
than positive. This is expected as the probability distribution covers
the last 100 amino acids as well as the added sentinel. Only the sen-
tinel position denotes a negative prediction, while a positive predic-
tion is spread across the 100 amino acid positions. This means that
positive prediction likelihood has to cover all potential ω‐site posi-
tions, while the negative prediction likelihood is limited to one posi-
tion. Therefore, using the likelihood as ranking should be done
separately for negative and positive results.
3.2.4. Proteome analysis
To further confirm the validity of NetGPI predictions, we predicted

GPI‐anchored proteins in six model organism proteomes: Arabidopsis
thaliana, Drosophila melanogaster, Homo sapiens, Mus musculus, Try-
Table 7
The number of GPI-anchored found by NetGPI in various proteomes.

Proteome #Proteins #Proteins with signa

A. thaliana 27500
D. melanogaster 13811
H. sapiens 20600
M. musculus 21989
T. brucei 8561
S. cerevisiae 6049

Total 98510

12
panosoma brucei, and Saccharomyces cerevisiae. These proteomes are
extracted from the UniProt database, release 2020_04 (UniProt
Consortium, 2014). We ran the proteomes first through SignalP 5.0
(Armenteros et al., 2019) to detect proteins with a signal peptide.
These proteins were then run through NetGPI to predict the presence
of a GPI signal. Table 7 shows the results from the proteome analysis.
We can observe that for most proteomes the percentage of predicted
GPI‐anchored proteins is close to 1%. Trypanosoma brucei is the only
organism with an elevated percentage of GPI‐anchored proteins
(2.17%). This corresponds well with the known prevalence of GPI‐
anchored variant surface glycoproteins in the trypanosomal genome
(Ferguson, 1999).
4. Conclusion

We have shown that GPI‐anchor prediction can be improved using
recurrent neural networks and up‐to‐date datasets. Comparison with
previous methods is challenging as there exists no standard dataset
for training and testing predictive methods. Given progress in protein
annotation, we publish a new homology partitioned dataset, using
both experimentally verified proteins and manually annotated pre-
dicted proteins for training and validation. Due to the new dataset def-
inition, the performance of current methods could be overestimated as
their training sets contain sequences which are identical or homolo-
gous to sequences in our benchmark set.

Our results indicate that proteins manually annotated by prediction
methods or sequence similarity are useful for training a GPI‐anchor
predictor to perform well when evaluated on experimentally verified
GPI‐anchoring signals. However, using these data may have increased
the number of ω‐site predictions that are off by one position. We
believe that this limitation is necessary in order to obtain a larger
training set. If we were to use only the experimentally verified GPI‐
anchors to train and test the predictor, we would not have enough
training samples to teach a deep neural network classifier.

A web server implementing NetGPI is available at https://services.
healthtech.dtu.dk/service.php?NetGPI. Our dataset can be down-
loaded from the same site or accessed in the supplementary materials.
l peptide #Proteins with GPI % with GPI

3675 278 1.01%
3178 179 1.30%
3516 193 0.94%
3940 210 0.96%
652 186 2.17%
314 69 1.14%

15275 1115 1.13%

https://services.healthtech.dtu.dk/service.php?NetGPI
https://services.healthtech.dtu.dk/service.php?NetGPI
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