Pore-scale visualization of hydrate phase transitions during CO2 Injection into CH4 hydrate saturated porous media

Pandey, Jyoti Shanker; Strand, Ørjan; von Solms, Nicolas; Ersland, Geir; Almenningen, Stian

Publication date: 2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
ABSTRACT SYMPOSIUM NAME: Materials for Energy & Environmental Sustainability
ABSTRACT SYMPOSIUM PROGRAM AREA NAME: ENFL
CONTROL ID: 3591997
PRESENTATION TYPE: Oral Preferred : Consider for Sci-Mix
TITLE: Pore-scale visualization of hydrate phase transitions during CO\textsubscript{2} injection into CH\textsubscript{4} hydrate saturated porous media
AUTHORS (FIRST NAME, LAST NAME): JYOTI PANDEY1, Ørjan Strand2, Nicolas von Solms1, Geir Ersland2, Stian Almenningen2
INSTITUTIONS (ALL): 1. CHEMICAL ENGINEERING, Danmarks Tekniske Universitet, Lyngby, Denmark.
2. Physics Department, University of Bergen, Bergen, Norway.
3. Department of Chemical Engineering, Danmarks Tekniske Universitet, Lyngby, Denmark.
ABSTRACT BODY:
Abstract: In this work, we visualize pore-scale hydrate phase transitions during CO\textsubscript{2} injection into CH\textsubscript{4} hydrate-saturated porous media. A total of six visualization experiments were performed using a water-wet, high-pressure silicon wafer-based micromodel with a pore network resembling a cross-section of sandstone. Liquid CO\textsubscript{2} was injected at a constant volumetric rate of 0.2-0.5 mL/hour into the pores already saturated by CH\textsubscript{4} hydrates at P = 59-69 bar and T = 3.3-4.5°C. The initial saturation of CH\textsubscript{4} hydrates was high (S\textsubscript{H} = 0.81-0.99), while the rest of the pore space was saturated by liquid water and CH\textsubscript{4} gas. The results showed that the hydrate phase changes were influenced by the initial liquid distribution and the amount of CO\textsubscript{2} injected. A low CO\textsubscript{2} injection rate formed massive hydrates surrounded by CO\textsubscript{2}-rich fluid, while high CO\textsubscript{2} injection rates and ultimate injection volumes led to the formation of massive hydrates without residual fluid saturation. Later, stepwise depressurization was performed to visualize the dissociation and reformation patterns of the resulting hydrates. Multiple hydrate dissociations and reformations were observed between the stability pressure of pure CH\textsubscript{4} hydrates and pure CO\textsubscript{2} hydrates. Migration of pore water and mixing of fluids caused localized hydrate reforming at lower pressures. This is the first pore-scale visualization of CO\textsubscript{2} injection into CH\textsubscript{4} hydrate-saturated porous media and demonstrates the feasibility of combining CH\textsubscript{4}/CO\textsubscript{2} exchange with pressure reduction to produce CH\textsubscript{4} gas.

(No Image Selected)