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ANALYSIS OF PAP-SMEAR IMAGE DATA
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ABSTRACT: The pap-smear benchmark database provides data for comparing classification methods. The data con-
sists of 917 images of pap-smear cells, classified carefully by cyto-technicians and doctors. The classes are difficult to
separate, since class membership is not clearly defined. A basic data analysis provides numerical measures indicating how
well the classes are separated, based on the Mahalanobis distance norm. The paper compares the results of three advanced
classifiers against a simple minimum distance classifier. The results show that while the simple classifier provides an
error rate just over 6%, error rates down to 1-2% can be achieved with a combination of feature selection together with
an advanced classsifier such as ant colony optimization. Students and researchers can access the database via the Internet,
and use it to test and compare their own classification methods.
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INTRODUCTION

The term Pap-smear refers to samples of human cells (Fig. 1) smeared onto a glass slide and coloured by means of the Pa-
panicolau method. The colouring enables examination under a microscope for any abnormality indicating a precancerous
stage.

Figure 1: Superficial squamous cell stained in order to enhance contrast.

A database of single cells has been collected at the Herlev University Hospital, Denmark, by means of a digital
camera and a microscope. Skilled cyto-technicians and doctors manually classified each cell into one of 7 classes. Each
cell was examined by two cyto-technicians, and difficult samples also by a doctor. In case of disagreement the sample was
discarded. The database thus holds diagnoses that are as certain as possible, given the practical and economical constraints
at the hospital.

The staff used a commercial software package CHAMP (Dimac) to segment the images. The extracted features are
combined features of the segmented and non-segmented cell images.

The data have been shaped into a benchmark database for classifiers, specified in an earlier NiSIS paper (Jantzen et al.
2005). Three Master’s projects have analysed the data, or an older version of the database, and they are all available from
the World Wide Web (Norup 2005, Martin 2003, Byriel 1999). The data have been used to test an improved second order
learning algorithm for neural networks (Ampazis, Dounias and Jantzen 2004). Furthermore, the data have been used for



benchmarking various classification methods (Dounias et al. 2006, Panagi et al. 2004, Tsakonas et al. 2004, Dounias et
al. 2002, Tsakonas et al. 2001 ).

The objective of the present paper is to provide additional basic data analysis, and to compare some new classification
results.

PRELIMINARY ANALYSIS OF CLASS SEPARATION

The database consists of 917 samples distributed unevenly in 7 classes (Table 1). The set of classes {1, 2,3} contain
normal cells, while the set of classes {4, 5, 6,7} contain abnormal cells. A minimal requirement is to separate normal
from abnormal, which is a 2-class problem.

Class Category Cell type Cell count Subtotals
1 Normal Superficial squamous epithelial 74
2 Normal Intermediate squamous epithelial 70
3 Normal Columnar epithelial 98 242 normal
4 Abnormal Mild squamous non-keratinizing dysplasia 182
5 Abnormal Moderate squamous non-keratinizing dysplasia 146
6 Abnormal Severe squamous non-keratinizing dysplasia 197
7 Abnormal Squamous cell carcinoma in situ intermediate 150 675 abnormal

Table 1: The distribution of the 917 cells in the database. Classes 1-3 are normal cells, and 4-7 abnormal.

Separating each class from the rest is a 7-class problem, which is harder. Each sample is described by 20 features
(Table 2) extracted from images of single cells.

Column Feature Name
B Nucleus area Narea
C Cytoplasm area Carea
D N/C ratio N/C
E Nucleus brightness Ncol
F Cytoplasm brightness Ccol
G Nucleus shortest diameter Nshort
H Nucleus longest diameter Nlong
I Nucleus elongation Nelong
J Nucleus roundness Nround
K Cytoplasm shortest diameter Cshort
L Cytoplasm longest diameter Clong
M Cytoplasm elongation Celong
N Cytoplasm roundness Cround
O Nucleus perimeter Nperim
P Cytoplasm perimeter Cperim
Q Nucleus position Npos
R Maxima in nucleus Nmax
S Minima in nucleus Nmin
T Maxima in cytoplasm Cmax
U Minima in cytoplasm Cmin

Table 2: Summary of the 20 features in the database.

We can immediately give up the hope that the classes be linearly separable. For example, classes 4,5, and 6 denote
mild, moderate, and severe dysplasia (abnormal form), indicating that the boundaries are unclear, even to professionals.
To achieve an indication of the degree of overlap, we measure the distance between each class centre compared with the
variation. For instance, if two class centres are far from each other in the feature space, and the standard deviation within
each class is small, then the separation is good.

There is a vast difference in magnitude among the 20 features, however. The largest measurement is in the order of 105

while the smallest is in the order of 10−3, a span of 8 orders of magnitude. The Euclidian distance in the 20-dimensional
feature space will certainly be dominated by the features of largest magnitude, which may obscure gaps between classes.



The Mahalanobis distance, on the other hand, takes the local variation into account by using the standard deviation
as a yardstick (see appendix). Figure 2 shows classes 1 and 2 with respect to just two of the features (nucleus area and
the nucleus/cytoplasm ratio of areas) in order to plot them in a 2-dimensional plot. Ellipses are drawn at Mahalanobis
distance 1, 2, and 3 respectively. Even though the two features differ by roughly 4 orders of magnitude, the Mahalanobis
distance is only affected by the shape of the class. The Mahalanobis distance measure is relative to each class, because it
depends on the standard deviation within the class.

0 500 1000 1500 2000 2500 3000
-0.02

0

0.02

0.04

0.06

0.08

0.1

Nucleus area [pixels]

N
/C

 r
a

tio

Figure 2: Scatter plot of class 1 (dots) and class 2 (circles) using just two features. Ellipses show Mahalanobis distances
d = 1,2, 3; solid ellipses for class 1, and dashed ellipses for class 2. The distance seen from class 1 to the centre of class
2 is larger than 3, while the distance seen from class 2 to the centre of class 1 is less than 2.

The Mahalanobis distance is appealing, because it allows us to work directly on the raw data, avoiding scaling. Thus
the distance will be unbiased by our arbitrary selection of subsets of features, and we can in fact keep all 20 features and
measure the Mahalanobis distance between each class centre. Table 3 defines what we shall call the distance matrix, that
is, a 7-by-7 table D of distances from each class to all the other class centres. The distance is relative to the standard
deviation of the current class, therefore the table is not symmetric. The table shows that distances vary over a large range.
The distance from class 6 to class 7 is thus 1.1, while the distance from class 1 to class 7 is 412.4.

Centre Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
μ
1

0.0 6.0* 115.4 19.2 31.3 72.6 108.4
μ
2

9.0* 0.0 76.5 12.1 19.6 47.6 73.1
μ
3

222.8 76.0 0.0 5.3 3.5 2.6 4.5
μ
4

197.9 45.9 18.8 0.0 2.6 9.7 17.8
μ
5

259.6 73.9 7.8 1.7* 0.0 2.5 5.0
μ
6

328.7 107.7 4.3* 4.5 2.1* 0.0 1.4*
μ
7

412.4 140.0 5.2 6.7 3.4 1.1* 0.0

Table 3: Distance matrixD. An elementDij is the Mahalanobis distance seen from class j to the centre μi of class i. For
a given class, the shortest distance to a centre is marked by an asterisk (*).



Each class has a nearest neighbour, indicated by the shortest distance in each column. Figure 3 is a digraph showing
the neighbour relationship for all classes. Clearly, classes 1 and 2 are each other’s neighbour, and the distance to class 4 is
relatively large, indicating that classes 1 and 2 are lying separately from the other classes. Furthermore, there is a forward
path from class 4 to class 5 to classes 6 and 7, the last two being mutual neighbours.
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Figure 3: Digraph of class neighbours. The numbered nodes are classes, and the arrows point from a class to its nearest
class neighbour, identified by the shortest distance in the columns of matrixD.

It is helpful that the normal classes 1 and 2 are well separated from the rest with regard to a classification of normal
versus abnormal cells (the 2-class problem). But the normal class 3 represents a problem, since its nearest neighbour is
the abnormal class 6, and it is quite far from classes 1 and 2. Figure 4 shows the distribution of distances within each
class. For class 3 the distribution is centred more or less about 4 (mean 4.2). The distance from class 4 to class 6 is 4.3
(Table 3), thus we expect overlap between classes 3 and 6, and it will be difficult to separate them. Similarly, there is
overlap between classes 3 and 7, but it is less. Furthermore, classes 4, 5, 6, and 7 are pairwise close, and all are rather
dispersed, indicating overlap.

An outlier would show up as a point lying at a distance much greater than the rest, but it seems there are no outliers.
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Figure 4: Histograms of point distances (Mahalanobis) within each class. Few points are closer than distance 2 to their
own centre. All 20 features are used.

RESULTS

In the following we briefly compare three advanced classifiers with a simple minimum distance classifier.

MINIMUM DISTANCE CLASSIFIER

If we partition the data into a set of training data and a set of test data, we can apply a simple minimum distance classifier:
To classify a feature vector x, measure the distance d(x,μi) from each x to each of the class centres μi in the training



set, and assign x to the class of the nearest centre.
The result will depend on the arbitrary partitioning of the data into training data and test data. We therefore apply

k-fold validation (m-fold in Duda, Hart and Stork 2001): divide randomly the data into k equally large sets, and run the
classifier k times, each time using a different test set. The estimated performance is the mean of the k error measures. The
error measure is the overall percentage of misclassified cells.

We apply k = 10, since experiments by Norup (2005) indicated that 10 was sufficient. Since there are 917 objects
in total, each set contains 91 objects with 7 objects in total left out. There is still some variation in the result, and the
classifier is therefore rerun 500 times each with a different random selection of k-fold sets.

Table 4 shows the resulting confusion matrix. It shows a little confusion between classes 1 and 2, which is to be
expected, and also between classes 6 and 7. Furthermore, class 3 is confused with classes 4, 5, 6, and 7, and mostly with
class 6. This is as predicted by the class neighbour relationship (Fig. 3).

Estimate Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Ĉ1 6.6 0.6 0.0 0.0 0.0 0.0 0.0
Ĉ2 0.7 6.1 0.0 0.0 0.0 0.0 0.0
Ĉ3 0.0 0.0 6.2 0.1 0.4 1.1 0.3
Ĉ4 0.0 0.1 0.3 14.7 5.1 2.3 0.4
Ĉ5 0.0 0.1 0.9 2.4 6.7 2.8 1.9
Ĉ6 0.0 0.0 2.0 0.9 1.8 10.8 6.6
Ĉ7 0.0 0.0 0.2 0.0 0.5 2.6 5.7

Table 4: Average confusion matrix C. An element Cij is the number of objects of true class j estimated as class i. The
diagonal is the number of correctly classified samples of the test data (91 objects, 10-fold, 500 reruns).

The overall error in percent is 100 minus the ratio of correct classifications, which is the sum of the diagonal elements,
to the sum of all objects, which is 91 (it is 92 in the table because of rounding). If we partition the confusion matrix into
two classes, normal {1, 2, 3} and abnormal {4,5,6,7}, by adding the numbers in the four submatrices that appear, we can
calculate the overall error for the two-class problem in a similar manner. Table 5 summarizes the results.

We can thus deduce

• that Mahalanobis distance provides better results than Euclidian distance

• that the minimum Mahalanobis distance classifier is slightly better than least squares

• that the best is the nearest class centre (NCC) by Norup

The table also shows that error rates for the 7-class problem are much larger than for the 2-class problem.

Classifier 2-class 7-class Comment
LS (Norup 2005) 6.4± 1.9 42.9± 4.7 Least squares, Matlab ’mldivide’
NCC (Norup 2005) 5.1 21 neighbours, nearest centre (Euclidian)
Our min. dist. 6.2± 2.4 37.7± 4.8 Mahalanobis distance
Our min. dist. 15.5± 3.6 50.7± 5.0 Euclidian distance

Table 5: Performance. Comparison of percent misclassifications in the test set. The format of the numbers is: mean ś
standard deviation.

NEAREST NEIGHBOUR WITH GA FEATURE SELECTION

Marinakis and Dounias (2006a) initially use a genetic algorithm for feature subset selection. They then use a number of
variants of the nearest neighbour classification method (1-Nearest Neighbor, k-Nearest Neighbor, wk-Nearest Neighbor)
in the classification phase of the proposed approach. Various experiments took place, for different feature sets selected.
Features 3,4,5 and 7 were the ones most often selected for the two class problem. The overall classification error in the
2-class problem is usually smaller than 2% (some cases even smaller than 1%) in the 10- and 20-fold cross validation
experiments. Features 3,4,5,7 and 14 were the ones most often selected for the 7-class problem, with the overall error
found to be in the area of 3%.



NEAREST NEIGHBOUR WITH TABU SEARCH FEATURE SELECTION

In another paper, Marinakis and Dounias (2006b) propose a tabu search algorithm for the solution of the feature selection
problem. The algorithm is then combined with a number of nearest neighbor based classifiers. Various experiments took
place, for different feature sets selected. Features 1, 3, 4, 5 and 7 were the ones most often selected for the two class
problem. The overall classification error in the 2-class problem similarly as above, is found to be usually smaller than
3-4% in the 10- and 20-fold cross validation experiments. Features 3, 4, 5, 7, 13, and 16 were the ones most often selected
for the 7-class problem, with the overall error found to be in the area of 3-4%.

ANT COLONY OPTIMIZATION

In a third paper, Marinakis and Dounias (2006c) use an ant colony optimization (ACO) methodology, an approach derived
from the foraging behaviour of real ants in nature. The method in fact models the problem as the search for a minimum
cost path in a graph. Artificial ants walk through this graph searching for good paths. Single ants have relatively poor
performance in finding good paths, but better paths are found as the emergent result of the global cooperation among
ants in the colony. The ACO algorithm is then combined with a number of nearest neighbour based classifiers. Features
1,3,4,5,7 are again the ones most often selected for both, the 2-class and the 7-class problem. The overall error for the
2-class problem is around 1-2% in the 10- and 20-fold cross validation experiments (in one case is smaller than 1%). For
the 7-class problem the overall error ranges between 2-4%.

SUMMARY AND CONCLUSION

The seven pap-smear classes are inherently unsharp, and even the cyto-technicians and doctors that perform a manual
classification agree that there is an unavoidable overlap between classes, especially mild, moderate, and severe dysplasia.

Our main thoughts and conclusions arising from observing and comparing results, are:

• The number of examples belonging to each class in the given data set, is a matter for further discussion. What
if the images were selected in a better balanced way among the 7 classes? In addition, would it be better to
use a leave-one-out method in order to test the accuracy of each method against unknown data? In a real world
setting, the normal cells (classes 1,2,3) are much more numerous than the cancerous ones (classes 4, 5, 6, and 7).
Furthermore, there are many cells in one image, some of them overlapping, which obscures the measurements,
making an automatic classification less reliable.

• It is interesting to observe that, apart from comparing the accuracy performance itself, there are approaches which
use a very small subset of the initial feature set, thus reducing cosiderably the problem complexity.

• Feature selection indicates that features 3, 4, and 5 (N/C ratio, Nucleus Brightness, Cytoplasm Brightness) are gen-
erally the most capable for discriminating classes in both the 2-class and the 7-class problems for most of the hybrid
intelligent schemes used for classifying the cells. Features 7 and 1 are the next two most important features (nucleus
longest diameter, nucleus area). It is surprising that the nucleus area is not among the top 2 features. In practice,
the dependency on the colouring method (nucleus brightness, cytoplasm brightness) is somewhat unfortunate, since
the colouring method, or the dye, is not standardized; the colours may turn out differently in different hospitals.

• The nature inspired methods reached an excellent performance, fully competitive to other well-known intelligent
approaches, when combined with other algorithmic data analysis approaches, in hybrid intelligent schemes.

One idea for comparing the effectiveness of the methods in the really hard classification tasks, should be to focus on the
classification performance obtained in 4, 5, and 6 class separation. Furthermore, we suggest a hierarchical classification,
that filters out classes 1 and 2 first, since the preliminary data analysis shows they are easy to identify.
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APPENDIX Mahalanobis Distance

If x is a random observation based on the components x1, x2, . . . , xp, and the components have vastly different magni-
tudes, then the Euclidian distance from the origin of the coordinate system, or the length of x, will be dominated by the
larger components. Similarly, a change of unit from, say, kilometres to metres increases a component by the factor 103,
which may dominate the distance measure.

Thus the Mahalanobis distance between an observation of a random variable x and its arithmetic mean value μ is
measured in units of standard deviation σ (Duda, Hart, and Stork 2001),

d =
|x− μ|

σ
(1)



For a normal distribution, the probability is 0.68 that d will be less than 1, the probability is 0.95 that d will be less than
2, and the probability is 0.997 that d will be less than 3. Our objective is to understand how Equation (1) generalizes to p
dimensions.

Figure 5 shows a cluster of 2-dimensional observations. We shall approximate the distribution by a bivariate normal
distribution, the shape of which is an ellipse (Duda, Hart and Stork 2001). The ellipse is not parallel to either axis, indi-
cating that the two variables x1 and x2 are correlated. The covariance matrix is one measure of the degree of correlation.
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Figure 5: A cluster of observation points (dots). Each ellipsis corresponds to Mahalanobis distance d. The projection of
an ellipse on an axis is a measure of the standard deviation on that axis, a property of the multivariate normal distribution.

The covariance of two random variables x and y is

σxy = ε
[
(x− μx)

(
y − μy

)]
where ε is the expectation operator (the arithmetic mean) and μx, μy are the arithmetic mean values of x and y respectively.
When y = x the result is the variance σ2

x of x, the mean of the squared deviations from the mean. For a 2-dimensional
observation vector x, with the mean vector μ = ε [x], the covariance matrix is the outer product,

Σ = ε
[
(x− μ) (x−μ)

t
]

The diagonal holds the variances of the components σ2
1
, σ2

2
(with σii = σ2i ). The elements outside the diagonal are

a measure of the degree of dependence between components xi and xj (i �= j). The matrix is symmetrical, that is
σij = σji. If σij = 0 the components are uncorrelated. If α is a constant and xj = αxi then σij = ασ2i . Thus the
covariance is positive if xi and xj both increase or decrease together, and is negative if xj decreases when xi increases.

Figure 5 defines two orthogonal coordinate systems. One with its basis along the two axes ξ
1
, ξ

2
of the ellipse; this we

shall refer to as the local coordinate system. The coordinate axes coincide with the principal axes, such that the first axis
is along the direction with the greatest variation and the second axis, perpendicular to the first, in the direction of the least
variation. The other coordinate system is defined by a basis along the two axes x1, x2; this we shall refer to as the global
coordinate system. The derivations in the following are in two dimensions, but all vector-matrix equations generalise to
vectors in the p-dimensional space Rp.

In the local coordinate system the cluster centre is in the origin, and we can ignore μ in Equation (1). If we scale
the axes by their corresponding standard deviations, the ellipse becomes a circle, and the Euclidian distance will depend
equally on the components. A point xξ = (ξ

1
, ξ

2
)
t in local coordinates is then scaled to

(
xξ
)′

=

(
ξ′
1

ξ′
2

)
=

⎛⎝ ξ
1

σ
ξ

1

ξ2

σ
ξ
2

⎞⎠



where σξ
1

is the standard deviation in the direction of the first principal axis, and σξ
2

is the standard deviation in the
direction of the second principal axis. The scaling operation is in matrix notation,

(
xξ
)′

=

(
1

σ
ξ
1

0

0 1

σ
ξ

2

)(
ξ
1

ξ
2

)
=Axξ

The scaling matrix A defines a linear mapping of the vector xξ to the image
(
xξ
)
′

. The components of the scaled
observations have zero mean and standard deviation 1. The Euclidian length of the scaled vector is

∥∥xξ∥∥ =

√√√√( ξ
1

σξ
1

)2

+

(
ξ
2

σξ
2

)2

=

√
(xξ)

t
A2xξ (2)

This is the distance measure, but it is in local coordinates, and we wish to express it in global coordinates.
Let (e1, e2) be an orthonormal basis of the local coordinate system, then any vector x can be defined as a linear

combination in the local coordinate system,
x = ξ

1
e1 + ξ

2
e2

The coordinates of ei (i = 1, 2) in the global coordinate system are (e1i, e2i) such that

x1 − μ
1

= e11ξ1 + e12ξ2
x2 − μ

2
= e21ξ1 + e22ξ2

where μ = (μ
1
, μ

2
) are the coordinates of the centre. In matrix notation

x −μ = Exξ

where E is the matrix of column vectors [e1, e2] . The matrix E is invertible since the column vectors are linearly inde-
pendent, thus

xξ = E−1 (x −μ) (3)

Insertion into Equation (2) yields ∥∥xξ∥∥ =

√
(E−1 (x −μ))tA2E−1 (x−μ)

=

√
(x −μ)

t
(E−1)

t
A2E−1 (x −μ)

Since E is an orthonormal basis, its inverse equals its transpose, and we can write∥∥xξ∥∥ =

√
(x −μ)

t
EA2E

−1
(x− μ) (4)

The transformation EA2E−1 is a similarity transformation,

C = EA2E
−1

or conversely
E−1CE =A2 (5)

Eigenvalues are invariant under a similarity transformation, thus C and A2 have the same eigenvalues. A solution is to
chooseC as the inverse of the covariance matrixΣ in the global coordinate system,

C = Σ−1

and E the matrix of its column eigenvectors. By that choice Equation (5) results in a diagonal matrix A2 with the
eigenvalues ofΣ−1 in the diagonal. Insertion into Equation (4) yields the Mahalanobis norm∥∥xξ∥∥ =

√
(x −μ)

t
Σ−1 (x −μ) (6)



In general, the Mahalanobis distance between two points x and y is

d(x,y) =
√

(x− y)tΣ−1(x − y)

By Equation (6), the set of points lying in the same Mahalanobis distance r from the centre μ satisfies the equation

r2 = (x− μ)
t
Σ−1 (x− μ) (7)

which is a quadratic form with Σ−1 symmetric; in other words, the equation for an ellipse (hyperellipsoid in general)
with principal axes along the eigenvectors of Σ−1. By definition, an eigenvector e of the covariance matrix Σ satisfies
the equation

Σe =λe

where λ is its corresponding eigenvalue. Premultiplying byΣ−1,

e = Σ
−1λe

or
1

λ
e =Σ−1

e

which shows that 1/λ is an eigenvalue of the inverse covariance matrix, and Σ and Σ−1 share the same eigenvectors.
Thus the axes of the ellipse in Equation (7) are defined by the eigenvectors of the covariance matrix Σ, with the extent√
λ1 corresponding to the local standard deviation σξ

1
, and

√
λ2 corresponding to the local standard deviation σξ

2
.

In order to draw an ellipse in two dimensions, given a fixed Mahalanobis distance r, we can start from a unit circle
defined by the parametric form (

x0
1

x0
2

)
=

(
cos θ(k)
sin θ(k)

)
where we let the angle θ(k) traverse a period of length 2π at suitable sampling points k, for example

θ(k) = {0, 5, 10, . . . , 360} (2π/360)

The scaling matrix

rA =

(
r
√
λ1 0
0 r

√
λ2

)
scales the axes of the circle to the extent of the principal axes of the ellipse. The rotation matrix

E =

(
e11 e12
e21 e22

)
performs a change of basis. The first column is the unit length eigenvector e1 corresponding to λ1 and the second column
is the unit length eigenvector e2 corresponding to λ2. Finally a translation from the origin to μ will place the ellipse at
the centre of the cluster. Thus, in global coordinates(

x1
x2

)
=

(
μ
1

μ
2

)
+ rEA

(
x0
1

x0
2

)
This is an ellipse with centre μ and axes determined by the eigenvectors in E. The length of the axes are determined by
the diagonal matrix A, holding the square roots of the eigenvalues of the covariance matrix. The axes are multiplied by
the desired distance r.


