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Abstract: Detection of aircrafts in satellite images is a challenging problem when the background
is strongly reflective clouds with varying transparency. We develop a fast and effective detection
algorithm that can find almost all aircrafts above and between clouds in Sentinel-2 multispectral
images. It exploits the time delay of a few seconds between the recorded multispectral images such
that a moving aircraft is observed at different positions due to parallax effects. The aircraft speed,
heading and altitude are also calculated accurately. Analysing images over the English Channel
during fall 2020, we obtain a detection accuracy of 80%, where the most of the remaining were
covered by clouds. We also analyse images in the 1.38 µm water absorption band, where only 61% of
the aircrafts are detected.

Keywords: remote sensing; Sentinel-2; multispectral imaging; aircrafts; velocities; clouds; paral-
lax; planebow

1. Introduction

Surveillance for air space situational awareness is essential for monitoring and con-
trolling air traffic and its climate impact. Dark aircrafts are non-cooperative vessels with
non-functioning transponder systems, such as the automatic dependent surveillance broad-
cast (ADS-B) [1] or similar devices. Their transmission may have temporal gaps or be
jammed, spoofed, sometimes experience erroneous returns, or simply be turned off deliber-
ately or by accident. Furthermore, ADS-B is mostly land-based and satellite coverage at
open sea and at high latitudes is sparse, which means that other surveillance systems such
as satellite systems are required. Numerous satellites in low-Earth orbits provide Earth
observation images with good resolution, such as the Sentinels [2]. Most are in polar orbits,
where the swaths from different satellite orbits overlap at higher latitudes, and the resulting
frequent transits over the polar regions make these satellites particularly useful for Arctic
surveillance. Aircrafts and ships cannot hide from satellites unless they are stealth in radio
and multispectral spectral bands.

The literature on aircraft detection in satellite images concentrates on aircrafts on
the ground in airports, where elaborate detection algorithms have been developed (see,
e.g., [3,4] and refs. herein). Detection of flying aircrafts from satellites has only been
studied for Landsat data in the 1.38 µm band [5] and for Sentinel-2 (S2) mostly cloud-free
images [3,6,7].

Cloud cover inhibits optical detection from satellites and, therefore, cloud-penetrating
synthetic aperture radars (SAR) are most commonly used for ship detection, although
their resolution generally is worse than optical sensors and the number of bands is fewer.
However, the SAR recording technique displaces sailing ships proportionally to their speed
by hundreds of meters [8] and this would make the detection of fast-flying aircrafts even
more difficult.

Since aircrafts fly above clouds most of the time, they can be detected by optical
sensors. However, the underlying cloud background can be highly reflective with spatially
varying albedo, which makes detection a challenging problem. The purpose of this work is
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to find robust, effective, and optimal methods for detecting and classifying aircrafts in S2
images with clouds, and to determine their velocities and altitudes.

2. Satellite Images and Method of Analysis

To demonstrate our flying aircraft detection method, we shall use data from the
Sentinel-2 (S2) satellites under the Copernicus program [2] as Figure 1. They provide excel-
lent and freely available imagery with pixel resolutions down to 10 m in 13 multispectral
bands. The orbital periods are 5 days between the S2 satellites A + B, but revisit up to daily
in polar regions due to overlapping swaths.
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Figure 1. RGB image of the S2 tile T31UEU over the English Channel, 28 October 2019, 10:56:30 UTC.
Red numbers indicate the positions of the 12 detected aircraft. Axes are pixel numbers.

2.1. Sentinel-2 Multispectral Images

We analyse S2 Level-1C top-of-atmosphere images, which are not corrected for aerosol
reflections, atmospheric moisture absorption, or clouds, and contain the water absorption
band around 1.38 µm. We choose scenes over the English Channel (see Figure 1), where
the air traffic is dense and cloud cover frequent. All scenes covering this tile are analysed
over a period between 16 August and 20 October in 2020 as well as the scene of Figure 1
from before the COVID-19 pandemic, when the air traffic was more than double. The
recording time of the image is 15 s and we match with ADS-B in this time interval so that
the positions match for the fast-flying aircrafts. The time T105049 in the Sentinel filenaming
convention shown above Figure 1 is the data’s start sensing time. The actual tile image
scene is recorded almost six minutes later at 10:56:30 UTC. Because the aircrafts fly so fast,
we can determine this time by comparing to ADS-B, with accuracy down to a few seconds.
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We can even observe the 15 s recording time difference from top to bottom. The correct
timing is done once and for all for Sentinel 2A and 2B separately as they differ.

The S2 Multispectral Sensor Imager (MSI) [2] records images in 13 multispectral bands
(see Table 1) with different resolutions and time delays due to their push-broom recording
technique. There are 4 bands with 10 m, 6 bands with 20 m, and 3 bands with 60 m pixel
resolution. These are giga-pixel scenes with 12-bit grey levels. The spatial coordinates
→
r = (x, y) are the pixel coordinates (i, j) multiplied by the pixel resolution l = 10 m, 20 m, or
60 m for the S2 multispectral images Im(i, j), in the 13 bands. The bands are time-ordered
according to temporal offset tm, m = 1, . . . , 13, with respect to the blue band, as shown in
Table 1.

Table 1. The 13 spectral bands for S2-B MSI ordered according to wavelength and temporal delay tm,
m = 1, . . . , 13.

S2 Band Time Order
m

Temporal Delay
tm (s)

Central Wavelength
(nm)

Bandwidth
(nm)

Spatial Resolution
(m)

1 12 2.314 442.2 21 60
2 1 0 492.1 66 10
3 3 0.527 559.0 36 10
4 5 1.005 664.9 31 10
5 6 1.269 703.8 16 20
6 8 1.525 739.1 15 20
7 9 1.790 779.7 20 20
8 2 0.263 832.9 106 10

8a 10 2.055 864.0 22 20
9 13 2.586 943.2 21 60

10 4 0.851 1376.9 30 60
11 7 1.468 1610.4 94 20
12 11 2.085 2185.7 185 20

The images will later be grouped according to cloud cover as given in Sentinel Scientific Data Hub [2].

2.2. Background Subtraction

Aircraft detection was analysed in [6] over sea for clear sky. The dark sea background
made it easy to detect aircrafts (and ships) and accurately determine their velocities and
altitudes. In a highly reflective cloud background with varying albedo, the simple threshold
detection method of [6] fails because the clouds’ reflection exceeds the threshold.

In order to construct an effective aircraft detection algorithm, one must first under-
stand the reflection spectra for the backgrounds. As shown in Figure 2, the sea reflection
decreases with wavelength, whereas the reflection from clouds is stronger at larger wave-
lengths. As the cloud altitudes and thicknesses vary, we observe mixed spectra from low
to high reflective and cirrus clouds.
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To determine how the aircrafts change the spectrum relative to a background, we

define the background spectrum vectors
→
B i, where the index i = 1, . . . , N, refers to sea,

various types of clouds, snow, or land. Examples are shown in Figure 2. As the background
can be a mixture of these spectra, we multiply them by weights wi, i = 1, . . . , N, and subtract

→
I B =

→
I −

N

∑
i=1

wi
→
B i (1)

The weights wi are determined for each pixel by minimising the mean square of
Equation (1), which corresponds to an N-parameter linear regression fit or a spectral

mixture analysis. The resulting weights are: wi = ∑j B−1
ij

→
B j·
→
I , where B−1 is the inverse

of the N × N matrix with elements Bij =
→
B i·
→
B j, where the i = 1, . . . , N and j = 1, . . . ,

N indices both refer to sea, clouds, or other background spectra, and the dot is a vector
product of up to M = 13 multispectral band vectors. The background-subtracted spectrum
→
I B displays the change due to the aircraft, as shown in Figures 3 and 4.

2.3. Multispectral Temporal Offsets, Positions, and Velocities

From the background-subtracted spectra, the positions
→
r m = (x, y) in each band

m = 1, . . . , 13, are determined as the central object coordinate and we also determine its
orientation angles θm.

An object moving with apparent velocity
→
V = V(cosθV , sinθV) will ideally be recorded

at position
→
r m ∼

→
r V +

→
V·tm (2)

Here,
→
r V is the vessel position at zero temporal offset—ideally, the blue band for

which t1 = 0 (see Table 1). The object positions
→
r m that are calculated for each multispectral

image will generally scatter around the linear prediction of Equation (2). We define the
variance as the mean square average of the deviations

σ2 =
1
M ∑M

m=1

(
→
r m −

→
r V −

→
V·tm

)2
(3)
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Ideally, M = 13, when all bands are included, but in cloudy backgrounds, the low-
resolution bands often fail, and we therefore sum the four high-resolution bands only as
they are more precise. By minimising this variance, which is equivalent to a two-parameter
linear regression, we obtain the best fit values for aircraft position

→
r V and apparent velocity

vector
→
V = V(cosθV , sinθV).
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The apparent velocity vector is
→
V =

→
V AC−

→
VS2(

H
HS2

), and contains two parallax effects
due to the aircraft and satellite motion, as described in [6]. The S2 satellites fly in a sun-
synchronous orbit at mean altitude of HS2 = 786 km with speed VS2 = 7.44 km/s, descending
with inclination angle θS2 = −104◦ at the latitude of the English Channel [6]. During the
multispectral delay, the aircraft and its contrails are moved with respect to the ground by

the parallaxes depending on the aircraft velocity
→
V AC = VAC(cosθAC, sinθAC), and altitude

HAC. The aircraft and its condensation stripes are separated for each multispectral band
and appear as a “planebow”, when all bands are stacked in a false colour image, as shown

in Figure 4, and the aircraft shows up as 13 pearls on a string along
→
V.
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As result, we find the aircraft velocity [6]

VAC =
sin(θV − θS2)

sin(θAC − θS2)
·V (4)

and altitude

HAC =
sin(θV − θAC)

sin(θAC − θS2)
· V
VS2
·HS2 (5)

The aircraft heading angle θAC may be determined from the aircraft orientation angles
θm discussed above, and/or by the condensation trails, which are visible at altitudes
7.5–11 km (see Figure 3). See [6] for the more complicated case including jet streams.

Flying aircrafts are special because of the temporal delay between recordings. For
example, a pixel covering the aircraft when the green band is recorded will have a peak at
the green wavelength but be lower in all other bands (see Figure 2), and likewise for the
other bands. The difference between bands in pixel reflection is therefore a good measure
of the change due to parallax effects and can be exploited for aircraft detection. However,
numerous false alarms occur from clouds with relatively sharp boundaries due to the
satellite parallax. We find that these false alarms are minimal for the difference between
the green and blue bands I3 − I1 as they are recorded with a 0.527 s time difference only so
that the cloud parallax change is smallest. As seen in Figure 2, the aircraft increases its DL
by ca. 20% in the green band, and we find an optimal threshold of T = 0.05 DL in order to
detect most aircraft without too many false alarms (see Figure 1).

Adjacent detected pixels are connected to objects. For each object, a small 96 × 96 pixel
clip is selected around the central object coordinate, which covers the aircraft extent, includ-
ing movement and part of its condensation trail (see [6] for details). The same 960 × 960 m
region is now extracted for all 13 bands, and we construct the spectral reflection vector
→
I = (I1, . . . , I13) for each pixel; see Figure 4.

2.4. The Parallax Method

For optimising the aircraft detection and classification in S2 images, we employ the
following parallax method or algorithm:

1. For a given scene, the multispectral S2 images are collected from [2].
2. Change detection of objects by the green–blue difference above threshold I3 − I1 > T.
3. For each object, a clip is extracted in the four high-resolution bands with background

subtraction; see Equation (1).
4. For each clip, V, σ, θAC, VAC, and HAC are calculated from Equations (2)–(5).
5. False alarms are removed by requiring high velocity V > 100 m/s and low scatter

σ < V/5.
6. Positions θAC, VAC, and HAC are compared to ADS-B numbers for aircrafts at the

same place and time.

To speed up the algorithm, only two images are used in step 2, and only the clips
for the four high-resolution images (M = 4) are analysed in steps 3 and 4. Over sea, we
only subtract sea and the dominant cloud background in the clip, i.e., N = 2. For better but
slower analysis in a less cloudy background, the algorithm can run with more multispectra
(M) and background subtractions (N) up to 13.

Step 5 is essential because step 2 results in a large number of false alarms, especially
in images with cauliflower clouds as their edges are prone to the parallax effect. However,
their positions

→
r m are much more irregular, whereas aircrafts appear as pearls on a string.

This is exploited by the high velocity and low scatter conditions, which effectively removes
most false alarms. The false alarm threshold σ < V/5 is chosen by experience in order
to reduce false alarms maximally while retaining most aircrafts. This results in high
recall values.
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2.5. The Water Absorption Band at 1.38 µm

As described in [5], the 1.38 µm band is also useful for detecting high-altitude aircrafts.
Water in the atmosphere absorbs strongly at this wavelength and suppresses the back-
ground from the surface of the Earth as well as low-lying clouds, whereas high-altitude
aircrafts are unaffected and thus contrast enhanced. The aircraft spectrum in Figure 2 is
for a pixel at the green aircraft position of Figures 3 and 4 and therefore the spectrum has
enhanced for band 3. For a pixel at the aircraft position in the 1.38 µm band, the spectrum
would not be zero for band 10 (m = 4) as it would be for all low-altitude objects due to
water absorption.

However, whereas the Landsat data in [5] have 30 m pixel resolution, the S2 data have
only 60 m resolution in the 1.38 µm band I10, and aircrafts are therefore detected in very
few pixels. When high-altitude clouds are present, they lead to numerous false alarms.
We find that subtracting a background smeared over a few pixels suppresses clouds and
reduces the number of false alarms considerably.

3. Results

The resulting aircraft detections from manual inspection in the four high-resolution
bands, the 1.38 µm band, and the parallax algorithm are now compared to ground truth
values from ADS-B.

3.1. Detections and False Alarms

We analysed 27 scenes of the English Channel over a continuous period of two months
with varying cloud cover. According to ADS-B, there were 112 aircrafts present in total.
We only found one aircraft without an ADS-B signal. The number of detected aircrafts is
given in Table 2 vs. cloud cover in five bins. Almost all were found by manual inspection
when the cloud cover was low, whereas around half were invisible for strong cloud cover.
On average, 80% were observed by manual inspection in the four high-resolution bands.
An estimated 10% could not be detected visually as they flew below or in clouds. The
remaining 10% of undetected aircrafts may have been covered by high-altitude cirrus
clouds or had reflections too close to background clouds. Only one (dark) aircraft without
an ADS-B signal was found in all.

Table 2. The number of detected aircrafts vs. cloud cover by ADS-B, manual inspection, the parallax
method, and by manual inspection in the 1.38 µm band.

Cloud Cover in % 0–20 20–40 40–60 60–80 80–100 Total

ADS-B 51 19 17 10 15 112
Manual detection 51 18 9 5 7 90
Parallax method 49 17 7 4 6 82

False alarms 2 1 1 1 2 7
Manual 1.38 µm 38 8 8 4 8 68

The green–blue parallax algorithm was able to detect most of the aircrafts found by
manual inspection, as shown in Figure 5 by the recall, which is the number of detected
aircrafts relative to ADS-B for a given cloud cover. The average recall is 73%. There were
only seven false alarms by the parallax method, which gives an average precision of 92%.
Two aircrafts were less reflective than the cloud background as in Figure 6, requiring
inverted detection. Three aircrafts (not included) were only visible by their contrails.
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The number of false alarms from cloud edges was low, except for dense cloud cover.
The precision curve in Figure 5 is the detected aircrafts relative to the total number of
detections including false alarms. Lowering the threshold T and relaxing the velocity and
scatter conditions led to numerous false alarms and lower precision but the recall did not
improve by much.

In the 1.38 µm band, only 61% of the aircrafts could be found by manual inspection
due to the lower resolution and the fact that some of the low-flying aircrafts became
undetectable due to water absorption in the atmosphere even with clear sky. Only two
aircrafts seen in the 1.38 µm band were not detected by the parallax method.
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3.2. Aircraft Velocity and Altitude

The aircraft velocity and altitude are calculated from Equations (3) and (4). Typically,
the aircraft position is determined within a pixel in each multispectral image. The two-
dimensional linear regression fit of

→
r m vs. tm therefore has a standard deviation less than

σ ~ 10 m over the temporal delay interval of 2.586 s, which results in an uncertainty for the
apparent velocity of ~4 m/s. This is relatively accurate when compared to typical aircraft
velocities of 100–300 m/s.

In Figures 3 and 4, the aircraft engines under each wing create two long condensation
trails for each band, which determine the aircraft heading angle θAC = −11◦, whereas
the apparent angle is θV = 7.1◦. It moves a distance of ~80 pixels or 800 m in the time
interval of t13 = 2.586 s, and thus flies with an apparent speed of V = 310 m/s = 1116 kph
with uncertainty σ/t13 ' 8 kph. From Equations (4) and (5), we find the aircraft speed
VAC = 1043 kph and altitude HAC = 10.2 km, in good agreement with ADS-B.

In Figures 6 and 7, an aircraft is detected by the algorithm, but as it is reflecting
less than the underlying cloud, its colours are inverted, which we take into account. The
scatter σ generally increases in a background of dense clouds, especially for the bands with
poor resolution.
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4. Discussion

A direct comparison to the results of [5,7] is difficult because the regions and periods
differ, and detection rates depend strongly on the selected scenes and their cloud cover.
For example, excluding the last week of October, with dense cloud cover, in our analysis
leads to an increase of 10% in the detection rates. As we have included all S2 images in a
given tile and two-month period, our results can be used as benchmark in the future.

Aircraft detection was performed for the Landsat 8 OLI 1.38 µm band in [5]. Its 30 m
pixel resolution is better than S2, which was exploited in a detailed spatial discrimination
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algorithm that could detect most large aircrafts above 5 km altitude. Of 566 aircrafts present
according to ADS-B, detection rates varied between continents due to varying cloud cover
and atmospheric moisture. The worst case was China, where 8% of the aircrafts were not
detected manually and 68% were missed by the algorithm. Restricted to the same altitudes
and large aircrafts, we missed, on average, 29% by manual inspection in the 1.38 µm band.
The larger miss rate reflects the lower resolution.

Liu et al. [7] detected 3724 aircrafts in S2 MSI images from the reflectance differences
between the red, green, and blue bands. According to ADS-B [1], there were 5820 aircrafts
present, i.e., 40% were not detected. These were mainly smaller and slower aircrafts
flying at low altitudes, where cloud cover could explain 72% of the failed detections.
For comparison, our method missed 29%, of which all were in a dense background of
clouds. The low miss rate is partly due to the inversion method for strong cloud reflection
backgrounds. Restricting to cloud-free images, we missed no aircrafts [6]. In the presence
of clouds, the method is limited to aircrafts above clouds and with reflections differing
from clouds more than the threshold, which cannot be set too low due to false alarms from,
e.g., cloud edges.

Note that the aircraft altitudes were not calculated in [7] and their aircraft velocities
deviated substantially from those reported by ADS-B especially at high altitudes. This
indicates that the satellite parallax effect was omitted. We find good agreement for both
altitudes, direction, and velocities, when both the aircraft and satellite parallaxes are
included.

5. Summary and Outlook

We designed a parallax method that analyses multispectral images for detecting air-
crafts above clouds. It utilises the time delays in multispectral S2 satellite images and is
better than detections in the 1.38 µm band. Both methods are fast, robust, and with high
detection and low false alarm rates, except for high-altitude clouds. Analysing 27 scenes
over the English Channel for a two-month period with 112 aircrafts and comparing to
ADS-B, we find 80% by manual inspection and 73% by the parallax method on average.
Even contrails and aircrafts above highly reflective clouds could be detected by an inver-
sion method. Aircraft velocity, heading, and altitude were also calculated accurately. In
comparison, the 1.38 µm band detected only 61% due to clouds, water absorption in the
atmosphere, and lower resolution.

The parallax algorithm can produce a database of aircraft images wherefrom directions,
velocities, and altitudes are calculated. These can then be complemented by corresponding
ADS-B numbers and form an annotated database for training neural networks. Such more
advanced algorithms may further improve the relatively simple spectral change detection
yet effective parallax method developed here. Based on this work, we expect that deep
learning can improve aircraft detection rates up to or above the manual inspection rates,
and may even exceed 90% on average, when aircrafts flying in or below clouds are excluded.
This will be investigated in future work.
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