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Supercapacitive biofuel cells’ (SBFCs) most recent

advancements are herein disclosed. In conventional SBFCs the

biocomponent is employed as the pseudocapacitive

component, while in self-charging biodevices it also works as

the biocatalyst. The performance of different types of SBFCs

are summarized according to the categorization based on the

biocatalyst employed: supercapacitive microbial fuel cells (s-

MFCs), supercapacitive biophotovoltaics (SBPV) and

supercapacitive enzymatic fuel cells (s-EFCs). SBFCs could be

considered as promising ‘alternative’ energy devices (low-cost,

environmentally friendly, and technically undemanding electric

power sources etc.) being suitable for powering a new

generation of miniaturized electronic applications.
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Introduction
SBFCs (supercapacitive biofuel cells) can be categorized

as hybrid bioelectrochemical systems, where the electro-

des perform a double function, notably the conversion of

chemical energy into electrical energy (energy harvest-

ing) and the storage of the electrical energy generated

[1�,2]. The bio-conversion is usually carried out by elec-

trodes modified with biocatalysts (e.g. bacterial or yeast

cells, photoactive entities, enzymes etc.) that communi-

cate with the electrode surface according to either direct

or mediated (exploiting a diffusing/immobilised redox

mediator that shuttles electrons) electron transfer
www.sciencedirect.com 
pathways [3��,4–8]. Notably, the modified electrodes

are connected to form a biofuel cell (BFC). In addition,

the electrical energy generated in the BFC is stored in an

electrochemical capacitor, also called supercapacitor.

These days, electrochemical capacitors are designed

using nanocomposites mostly based on carbon nanoma-

terials and metal nanoparticles, along with conducting

polymers (e.g. polyaniline (PANI), polypyrrole (PPy) etc.)

[9–11]. Notably, these devices are not able to produce

electrical energy and hence need to be charged

externally.

Recently SBFCs have been proposed as an alternative

route to BFCs, which by themselves cannot produce a high

and stable power output [12]. In contrast SBFCs are able to

produce a stable and much higher power output (especially

working in the pulsed mode) [13]. In this regard, the main

advantage is the possibility to store the charge volumetri-

cally rather than on an electrode surface, at a voltage

difference specified by Nernst equation differently from

an electric field applied considering the geometric con-

strains. In addition, SBFCs are fabricated by using renew-

able biological materials. SBFCs can be classified either

based on their biological elements (e.g. bacterial cells,

photoactive biosystems, enzymes etc.) and as conventional

or self-charging/charge-storing BFCs. Based on the first

classification, we can divide SBFCs in three main groups,

namely supercapacitive microbial fuel cells (s-MFCs),

supercapacitive biophotovoltaics (SBPV), and supercapa-

citive enzymatic fuel cells (s-EFCs), as schematically dis-

played in Figure 1. On the other hand, the classification is

based on the ability of BFCs to work as conventional

(producing low power and energy density) or as self-charg-

ing/charge-storing devices, also known as

‘biosupercapacitors’ able to produce a power output both

during the charging and discharging steps. At this point, it is

important to distinguish the abovementioned biosuperca-

pacitors from the intrinsic self-charging devices, where the

power output is produced only during the charging step.

In this review, we firstly aim at summarizing the most

recent findings on SBFCs. We will discuss separately s-

MFCs, SBPV and s-EFCs. In each section, we will

highlight the advantages/drawbacks on using certain

nanomaterials (e.g. carbon or metal-based nanomaterials,

redox polymers, conductive polymers etc.) or a particular

approach to develop supercapacitive devices also consid-

ering the possibility to be used not only as a source of

renewable energy but also as self-powered biosensors as

postulated in earlier reports.
Current Opinion in Biotechnology 2022, 73:1–9
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Figure 1
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Schematic representation on the classification of SBFCs based on the

bioelements present at the bioanode, where they can work either in

direct or mediated electron transfer mode: supercapacitive microbial

fuel cells (s-MFCs), supercapacitive biophotovoltaics (SBPV), and

supercapacitive enzymatic fuel cells (s-EFCs).
Supercapacitive microbial fuel cells
Microbial fuel cells (MFCs) exploiting the capacitive

feature of the electrode materials are denoted superca-

pacitive MFCs (s-MFCs). Such capacitive microbial elec-

trodes were for the first time explored by Deeke et al.
[14�] and received considerable attention in a number of

research studies [15�,16]. The concept of a combination of

MFCs with capacitors, both internal [17,18] and external

[19,20], under charge-discharge conditions in comparison

with conventional MFCs allows simultaneous energy

harvesting and storage and enhanced current and power

densities. Despite this, the desired level of power outputs

is still a challenge in the microbe-based biosupercapaci-

tors and is often limited by the performance of the anodes.

In light of this, the capacitive anode materials have been

subjected to extensive research in the past few years.

Conductive polymers, such as PANI or PPy, are widely

used in MFCs to modify the bioanode, due to their low

cost and large capacitance as an internal capacitive com-

ponent. Such modifications allow a lower charge transfer

resistance [21,22], a higher cumulative charge [23,24], and

a power density production [21]. In recent works bioa-

nodes employing PANI-based [25,26] and PPy-based

[27,28] composites on various carbonaceous supports,

such as activated carbon (AC), carbon brush, carbon

nanotubes (CNTs), reduced graphene oxide, carbon felt,

have been shown to be biocompatible, functioning as

biocapacitors and enhancing the overall power density

production of the tested MFCs. For instance, a MFC
Current Opinion in Biotechnology 2022, 73:1–9 
constructed of a carbon felt bioanode coated with a

composite consisting of PPy-carboxymethyl cellulose-

CNTs resulted in a maximum power density of

2970 mW/m2, which is a 4.34 times increase in comparison

to a MFC based on uncoated carbon felt bioanodes [28].

AC granules consitute another promising 3D high surface

area electrode material used as capacitive bioanodes

(Figure 2a) offering the separation of charge and dis-

charge processes (Figure 2b) and improved the overall

power output [29�]. The produced total charge was shown

to be in direct correlation with the amount of biomass

colonized on the granules, which is related to the avail-

able surface area [30]. The volumetric currents were

affected and in an inverse relationship with the reactor

or granule volumes, which is attributed to a good connec-

tion (i.e. a better granule-electrode physical contact and a

longer retention time) between the granules and the final

electron acceptor upon discharge action [29�,31]. The

conduction of electrons between the granules and the

electrodes was also determined by the exoelectrogenic

bacteria having conductive c-type cytochromes in the

outer membrane [32]. In light of this, the design of a

reactor is a crucial factor in improving the capacitance

discharge rate and further scaling up of such systems.

Tejedor-Sanz et al. [30] showed that one-reactor system

ensures a higher performance compared to a system with

separated charging and discharging in the two reactors

[33]. Implementation of a moving bed reactor (Figure 2c)

allowed a longer contact time of the granules with the

anode and resulted in a higher current density with a

maximum of 23 A/m2 [34]. Further improvements in the

discharging of capacitive granules in a bed moving reactor

was accomplished through increasing the potential dif-

ference and decreasing the distance between the granules

and the current collector and increasing the bulk electro-

lyte conductivity [35]. The ratio between charging and

discharging time is also an important factor in optimizing

capacitive bioanodes [36,37]. Accordingly, applying a

relatively short discharge (23 s) and a long charging

(363 s) time, the moving bed was able to produce a

current of 43 A/m2 [37]. In parallel, efforts of scaling

up various configurations of s-MFCs have been made

by Santoro and co-workers. A self-stratified s-MFC oper-

ating in human urine with redox reactions occurring on

both electrodes allowed for self-charging of the electrodes

and a self-powering function [38]. The smaller (in carbon

weight) the s-MFC in such systems, a higher power

output can be expected, which implies thin-layered elec-

trodes are more appreciated for supercapacitors [39].

Scaling of ceramic-based s-MFC by stacking 28 single

MFCs, demonstrated a high power production under a

supercapacitive operation mode [40]. A further improve-

ment of the power generation of the s-MFC stuck was

archived by introduction of a Fe-based catalyst for

increasing the cathode potential [41]. The paper-based

s-MFC took advantages of an easy-to-build and a low-cost

design archiving a high power production [42].
www.sciencedirect.com
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Figure 2

(a) (b) (c)
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(a) Schematized principle of functioning biofilm-carrying AC granules as capacitive bioanodes. The electroactive biofilm produces electrons via

oxidation of a substrate, acetate (Faradaic reaction). The released electrons are stored at the highly developed pores in the carbon granules, while

various cations are attracted to maintain the charge balance in the electric double layer, so the charge is stored (capacitive process). (b)

Schematic overview of a fluidized capacitive reactor based on AC granules. The separation of charge and discharge processes takes place in a

fluidized system, where granules can be charged via oxidation of a substrate and further discharged when in contact with a final current collector

(anode). (c) A scheme of a moving granular bed. Reproduced and adapted from Refs. [31,49] and [37], respectively, by permission of Elsevier.
The application of highly porous structured materials is a

common strategy in MFC technology not only for anodes,

but also for cathodes. The overall performance of s-MFCs

was reported to be improved by implementation of a

carbon nanofiber composite [43], graphene nanosheets

[44], or onion derived AC with an enriched content of

nitrogen and phosphorous [45], which combine both the

catalytic oxygen reduction activity and the electrochemi-

cal capacitive behavior of the cathodes. The use of double

cathodes in combination with anodes of capacitive feature

allowed to decrease the equivalent resistance and

enhance the power output of the s-MFC [46].

A further improvement on the s-MFCs lays not only in

the development of low-cost, high-capacitive and bio-

compatible electrode materials and development of easy-

to-scale up designs, but also in the understanding of the

mechanisms of electron storage in electroactive biofilms

[47��] and to be able to manipulate the current generation

and energy storage processes in bacteria [48��].

Supercapacitive biophotovoltaics
The initial attempts to investigate the influence of elec-

trode capacitance on the photobioelectrochemical perfor-

mance and to create a supercapacitive biophotovoltaic

device (SBPV) with separated processes of solar energy

conversion and electric power extraction were made by

the Gorton group. A 2.5-fold rise in photocurrent density

was demonstrated, when an additional inert electrode

with an optimized capacitance was connected to the

photobioanode (PBA) based on thylakoid membranes

(TMs). TMs were immobilised within in the matrix of

an Os-complex modified redox polymer (OsRP,

poly(N-vinylimidazole)10-Os(2,20-bipyridine)2Cl) acting
www.sciencedirect.com 
simultaneously as a mediator to enable efficient charge

transfer between the TMs and the conducting support

(Figure 3a) [50�]. The SBPV assembled by combining a

PBA with an enzymatic oxygen-reducing biocathode (bili-

rubin oxidase, BOx, immobilised on AuNPs) displayed a

reasonable open circuit voltage (OCV) of ca. 0.4 V when

charged under a light intensity of 400 W m�2. A maximum

power output of 2.6 mW cm�2 was registered at 0.15 V for

the SBPV, which was 5 times higher than that for a BPV

without supercapacitive electrodes. In a pulse self-charge/

discharge mode, when the accumulated power was

extracted from the fully charged device by applying con-

stant current pulses, the power output was increased up to

56 mW cm�2 with a residual stability of 60% after 6 hours of

continuous insolation. Furthermore, several SPBVs have

been realized by immobilizing TMs onto indium tin oxide

(ITO) [51] or multiwalled CNTs [52] electrodes (DET

process). Utilization of positively charged amidated CNTs

as a support for the immobilization of TMs resulted in a 1.5-

fold enhancement of the photocurrent density compared to

that for the PBAs based on negatively charged carboxylated

CNTs. The maximum power output achieved for a medi-

ator-less SBPV in continuous mode was 0.66 mW cm�2

(0.21V, 400W m�2),which couldbe increasedbymorethan

two orders of magnitude in a self-charge/discharge regime.

For example, CNTs with a different surface carbon to

oxygen (C/O) ratio resulted in affecting the performance

of the PBA, where TMs were connected in MET through

an OsRP. In particular, CNTs with a higher C/O ratio

exhibited a higher maximum photocurrent density and

with a reduced charge transfer resistance [53], regardless

the fact that the CNTs were covered with a layer of OsRP

and the TMs were not directly connected to the CNT

surface.
Current Opinion in Biotechnology 2022, 73:1–9
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Figure 3
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Schematic representations of (a) a mediated TM-based SBPV, (b) a light-driven Nernstian biosupercapacitor, (c) a charge-storing biophotonic

power cell based on an isolated bacterial protein complex, and (d) a self-charging cyanobacterial supercapacitor. Adapted with permission from

Refs. [50�,54,57��,58].
Zhao et al. developed a so-called Nernstian biosuperca-

pacitor (Figure 3b) [54], where electric charges generated

due to the photocatalytic activity of isolated photosystem

2 and photosystem 1 protein complexes were accumu-

lated in the form of oxidized/reduced moieties in the

matrix of an OsRP (poly(1-vinylimidazole-co-allylamine)-

Os(2,2´-bipyridine)2Cl). The same OsRP was used in

both photosystem 2-based PBA and photosystem 1-based

PBFC using a porous ITO support. Starting from the

initial OCP of ca. 0.41 V versus SHE, corresponding to

equal activities of Os2+ and Os3+, the potentials of the

PBA and the photobiocathode changed to 0.29 V and

0.465 V, respectively, after 200 s of irradiation (red light,

6.5 mW cm�2). This corresponds to an OCV value of

0.175 V, which is 2.5-fold lower compared to those
Current Opinion in Biotechnology 2022, 73:1–9 
analogous bioelectrochemical systems, where oxygen-

reducing and glucose-oxidizing enzymes were used as

biocatalysts [55,56]. The power output extracted from the

fully charged device by applying a load of 50 kV was 1 mW

cm�2 and decreased to 0.54 mW cm�2 after 15 consecutive

charge/discharge cycles.

The approach of using the same biomaterial for light

energy conversion and charge storage was proposed by

Ravi et al. [57��]. A multilayer film of concentrated PufX-

deficient RC-light harvesting 1 complex from Rhodobacter
sphaeroides (RC-LH1) was sandwiched between a fluo-

rine-doped tin oxide electrode and an n-doped silicon

electrode enabling a light-driven net oxidation and reduc-

tion of the RC-LH1 proteins, respectively (Figure 3c).
www.sciencedirect.com
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The maximum OCV for the SBPV self-charged under

1 Sun illumination was ca. 0.4 V, which is close to the

predicted maximum for a Nernstian system consisting of

surface-confined redox species [55].

The first example of a cellular microbial SBPV was

presented by Liu and Choi (Figure 3d) [58]. The micro-

liter-scale device was comprised of an oxygen reducing

Pt-based cathode and a PBA, where the photosynthetic

reactions of a biofilm composed of Synechocystis sp. PCC

6803 cyanobacteria were used for charge generation. The

PBA was based on carbon cloth fibers covered with a layer

of poly(3,4-ethylene dioxythiophene):polystyrene sulfo-

nate (PEDOT:PSS) to improve the surface affinity of the

cells and an increased charge-storing ability of the PBA.

The OCV of the fully charged device achieved after

28 min of illumination under a non-specified light inten-

sity was in the range of 0.21�0.23 V, which was multiplied

to 1.8 V by combining eight separate SBPVs in series.

Maximum power and current density of the assembled 8-

unit device were 38 mW cm�2 and 120 mA cm�2 obtained

by applying an external load of 10 kV with ca. 10% of

OCV degradation after 18 hours of continuous operation

by 28 min of self-charging and 2 min of discharging. Apart

from the obvious novelty of utilization of whole cells in

the SBPV, the authors highlighted the influence of the

discharge current on the long-term stability of the PBA,

when both an overstated and understated resistance of

the applied load resulted in a relatively fast degradation.

Despite the advances achieved by intermittent extraction

of accumulated charges, the performance in continuous

mode displays a low maximum power output of 0.5 mW

cm�2 (at ca. 0.03 V) for a single-unit SBPV.

The energy converting performance was further

improved by introducing a mixture of CNTs and

MnO2 to the PEDOT:PSS capacitive layer [59]. The

OCV value was increased up to 0.47 V, the maximum

power density in continuous mode was 25.3 mW

cm�2. However, the photocatalytic output from the

CNTs and MnO2 was not extracted from the presented

data and these values cannot be fully representative for

the cyanobacterial (photo)bioelectrocatalytic activity.

Supercapacitive enzymatic fuel cells
The first supercapacitive enzymatic fuel cell (s-EFC) was

described by Shleev’s group based on the idea of com-

bining double-function electrodes into a self-charging

biofuel cell [60��]. In particular, the electrochemical

electromotive force driving the charging process was

generated by combining double-faced electrodes modi-

fied with a glucose-oxidizing enzyme, cellobiose dehy-

drogenase (CDH, anode), and an electrode modified with

BOx as cathode [13]. In addition, the other electrode face

was configured to store the charge, based on a PANI/CNT

composite, as shown in Figure 4a. This device released a

power output of 1.2 mW cm�2 at 0.38 V, notably 170 times
www.sciencedirect.com 
higher than the result for the enzymatic fuel cell by itself

[1�]. At the same time, Cosnier’s group demonstrated the

fabrication of a double layer biosupercapacitor including

redox enzymes for continuous charging (Figure 4b) [61].

Later, a device based on the deposition of the same OsRP

on both the CDH anode and the BOx cathode has been

proposed in order to demonstrate that the self-charging

process initiates only in the presence of the biofuel

leading to an OCV of 0.45 V. After charging, the biodevice

was able to produce eight times the power output released

in steady state conditions [55].

In the past six years, several s-EFCs regarded also as

biosupercapacitors have been proposed [1�]. In

2015 Kizling et al. reported on a biodevice based on a

bioanode modified with a cellulose/polypyrrole compos-

ite and fructose dehydrogenase (FDH). This bioanode

was combined with a biocathode based on naphthylated

CNTs with adsorbed laccase (Lc), producing 1.6 mW

cm�2 at 0.33 V on transient basis [62]. Furthermore,

several s-EFCs were combined in series in order to be

able to power an oxygen sensing electrode. This configu-

ration has been recently reported with an enzymatic

cascade in order to produce a sucrose fuelled s-EFC [63].

In a similar approach, in 2016 Villarrubia et al. proposed an

integrated fuel cell/supercapacitor wherein fuel is deliv-

ered by a paper-based microfluidic system. Indeed, the

novelty here is the combination of a capacitive bioanode

based on buckypaper modified with methylene green and

NAD+-dependent glucose dehydrogenase (GDH) with

an air breathing BOx cathode. The biodevice could

provide 0.87 mW cm�2 at 0.56 V during 0.01 s pulses,

10 � higher than achievable steady-state parameters [64].

Alternatively, a glucose/O2 SEFC based on FAD-depen-

dent GDH and BOx has been realized releasing a power

output density of of 3.0 � 0.5 mW cm�2 [65]. In 2017,

Xiao et al. developed a biodevice meant to work as an

autonomous pulse generator, generating a peak power

density of 0.61 mW cm�2 at 0.4 V under pulsed operation

(notably a 470 times higher value than what was achiev-

able under steady state conditions) [56]. In a similar

configuration, the authors replaced the BOx modified

biocathode with an MnO2 modified electrode that would

be oxygen insensitive [66�]. This device could be consid-

ered a promising approach to develop implanted s-EFCs,

where the limited concentration of O2 could affect the

performance of a s-EFC. In 2018, Bobrowski et al. realized

a flexible s-EFC based on an ITO transparent support

modified with a spray of ITO nanoparticles to provide a

porous surface (increasing the enzyme load) as displayed

in Figure 4c and d [67]. The s-EFC generated a power

output of 0.030 mW cm�2 at 50 mM glucose (approxi-

mately the glucose concentration in human tears) in a

discontinuous charge/discharge mode, which is 350 times
Current Opinion in Biotechnology 2022, 73:1–9
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Figure 4
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(a) Schematic representation of the first SEFCs based on a CDH-AuNPs modified bioanode combined with a CNTs-PANI composite and a

biocathode modified with BOx-AuNPs/CNTs-PANI; (b) Scheme of the electrochemical double layer supercapacitor/biofuel cell hybrid system;

Flexible s-EFC in OFF state (c) and ON state (d); (e) Schematic representation of an FDH-Lc based EFC; (f) Power output profiles recorded for the

FDH-Lc EFC in 50 mM NaAc buffer at pH 5 containing different concentrations of D-fructose from 0 mM up to 25 mM and in equilibrium with air

(source of O2). The plot was obtained from linear sweep voltammetry at 1 mV s�1; (g) Schematic representation of an FDH-Lc s-EFC; (h) Power

output profiles recorded for this s-EFC in 50 mM NaAc buffer, pH 5 containing different concentrations of D-fructose. (a) reproduced from Ref.

[60��] with permission of Wiley. (b) adapted from Ref. [61] with permission of RSC. (c) and (d) reproduced from Ref. [67] with permission of

Elsevier. (e)–(h) adapted from Ref. [74��] with permission of Elsevier.
higher than the power density released from EFC oper-

ating in continuous mode. In 2018, Pankratov et al. pre-

sented a fuel-independent self-charging s-EFC, by

exploiting the supercapacitive properties of myoglobin

possibly replacing a fuel-dependant bioanode [68]. Suc-

cessively, the same authors realized the very first example

of an s-EFC, where the charge-storing function was
Current Opinion in Biotechnology 2022, 73:1–9 
performed by cytochrome c on both electrodes. The

biodevice could provide 4.5 mW cm�2 of power output

in pulsed mode (notably 15 times higher than that under

steady-state conditions) [69]. In the same year, Alsaoub

et al. reported on the development of an intrinsic s-EFC

based on a high-potential bioanode and a low-potential

biocathode [70��]. This EFC conformation in a discharge
www.sciencedirect.com
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mode would not produce any OCV or power output. After

charging, a Nernstian shift (phenomenon previously

reported for pseudocapacitive electrodes) [71] occurred

at both elements lifting the OCV to approximately 0.4 V.

The presented concept demonstrates that, for the design

of new s-EFCs, the conventional design criteria of BFCs

do not necessarily hold and that despite an apparent

potential mismatch between the redox polymer and

the enzyme, intrinsic s-EFC provides a sufficient voltage

output [72].

Recently, s-EFCs have been proposed as self-powered

biosensors [73]. In this regard, Bollella et al. reported on a

combination of an FDH-anode and a Lc-cathode, and

charge-storing electrodes based on PANI/multiwalled

carbon nanotube nanocomposites (Figure 4e–h) [74��].
The device was working according to a two-step process,

notably the charging and sensing steps. This idea has

been previously proposed considering pulses constant

application. The proposed s-EFC showed excellent bio-

sensing features in terms of sensitivity (3.82 � 0.01 mW

cm�2 mM�1) and operational stability (retaining up to

90% of its initial power density after 8 hours of continuous

operation). This approach has been alternatively

exploited to develop an s-EFC for the detection of

glucose as a potential implanted device [75].

Conclusion and outlook
Till now all possible types of SBFCs have been already

realized by exploiting different biosystems like microbial

cells, photoactive biosystems and enzymes. In the last six

years, pseudo, double-layer and hybrid biodevices were

designed and tested. The devices herein reported can be

considered as early scientific prototypes rather than prac-

tically useful energy sources, mainly due to their opera-

tion in low-voltage and low-current regimes. However,

because of the limitations of the biological material used

and the electrode sizes SBFCs will not be able to compete

with devices based on inorganic and organic materials.

Nevertheless, these devices are important from the fun-

damental point of view allowing for the investigation of

electron transfer processes between different biocatalysts

and electrode surfaces [1�,73]. For example, certain self-

charging biodevices like SBPVs can be practically used,

especially considering that solar energy is intermittent in

Nature, hence allowing to store the electricity generated.

However, we believe that an increased understanding of

the fundamentals of biological electron transfer mecha-

nisms in bacteria and in photosynthetic systems and

between such systems and electrodes in combination

with the rapid development in conducting nanomaterials

[3��,6,76–80] will pave the way for a further rapid devel-

opment in this area.
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