New Electroscrubbing Process for Desulfurization

Nis Bay Villadsen, Sebastian; Ahrensberg Kaab, Malene; Pleth Nielsen, Lars; Møller, Per; Loldrup Fosbøl, Philip

Published in:
Separation and Purification Technology

Link to article, DOI:
10.1016/j.seppur.2021.119552

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
New electroscrubbing process for desulfurization

Sebastian Nis Bay Villadsen a,*, Malene Ahrensberg Kaab b, Lars Pleth Nielsen c, Per Møller d, Philip Loldrup Fosbol e

a Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
b Green Hydrogen Systems, Kongens Lyngby 2800, Denmark
c Advanced Surface Plating, Lystrup 8520, Denmark
d Department of Mechanical Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark

corresponding author: snbvi@kt.dtu.dk (S. Nis Bay Villadsen).

A R T I C L E I N F O
Keywords:
H2S removal
Odor control
Electrochemical process
Electro-scrubber
Biogas cleaning

A B S T R A C T
A new process for removing sulfur from gas using electricity is presented. The process combines electrochemical production of active oxidizing species with an oxidative scrubber for desulfurization. Reactions for the electrochemical cell and the scrubbing tower are presented and a scrubbing set-up with a continuous electrolyte recirculation is validated on synthetic biogas. The test shows that a gas flow of 200 L/h with 1330 ppm H2S can be cleaned down to non-detectable levels of sulfur in a single step, at a current efficiency of 29%. This is a very high removal percentage for a high concentration of H2S. Solid sulfur can be removed from the system after the experiments. The sulfur has traces of NaClO and no other products were detected. A simple model based on estimated gas side mass transfer coefficients were used to estimate a scrubber height of only a few centimeters. The experiments supports the model. This technology allows for a robust implementation of sulfur free applications in a future green fuel and green chemistry like Power-to-X (PtX) and carbon capture and utilization (CCU). Sulfur compounds are poison for most heterogeneous catalysts, thus for carbon utilization, the carbon gas source has to be desulfurized.

1. Introduction
The renewable energy sector is booming and especially the biogas industry is growing [1]. Each year new biogas plants are constructed worldwide. In Europe alone there were 17,783 biogas plants in 2017 with ≥ 10,000 in Germany [2]. Compared to solar and wind energy, biogas does not suffer from fluctuating and unstable production rates. This makes biogas even more suitable as a main constituent in a fossil-free society.

Biogas consists roughly of 60% methane (CH4) and 40% carbon dioxide (CO2) with several impurities. The main impurity is hydrogen sulphide (H2S). Normal concentrations of H2S in biogas is above 1000 ppm. However, siloxanes and mercaptanes are also often found to a lesser extent in the biogas [3]. H2S is both flammable, toxic and corrosive [4]. Thus, independently of the downstream application, H2S has to be removed from the biogas.

Traditionally, biogas has been used in a combined heat and power engine for localized energy production. However, within the last decade, biogas upgrading has found its way to the market. Today, state-of-the-art upgrading of biogas refers to extraction of CH4 from biogas [5,6]. This type of CH4 is named biomethane [7] and is a renewable energy resource with many applications. On a commercial level, four different technologies are available for upgrading biogas: amine extraction, membrane separation, water scrubbing and pressure swing adsorption [8]. Future applications of biogas may differ significantly from the current state-of-the-art. Recently, the term “second generation biogas upgrading” has been proposed to distinguish between traditional biogas upgrading technologies and future upgrading technologies and processes [9].

Using biogas as carbon source for biofuels is currently being investigated [10–15]. Central to these applications is the reduction of CO2. Generally, there are three main methods for reducing CO2, i.e. biological, electrochemical and thermochemical. All technologies require removal of H2S from the biogas, with biological conversion tolerating more H2S as compared to thermochemical and electrochemical CO2 reduction reactions.

Thermochemical treatment of biogas remains under development. Several projects are investigating methanation of biogas [14,15]. Solid
oxide fuel cells using biogas are also being investigated as a possible application of biogas [16]. For reduction of CO$_2$ a nickel catalyst is most commonly used. It is well known that H$_2$S is poison to basically all catalysts [17,18], with concentrations as low as 10 ppm having devastating impact on the active catalytic sites. Thus, for future thermochemical upgrading of biogas, cost-efficient, deep and stable desulfurization is mandatory.

Several different desulfurization technologies are applied. Most technologies remove the H$_2$S from the biogas with the distinct exception of iron chloride desulfurization. The iron chloride salts are added to the biomass before entering the biogas reactor. The iron inactivates the H$_2$S and solidifies sulfur as iron sulfide. Biological desulfurization is widely used due to the low operating expenses (OPEX). Furthermore, the sulfur-oxidizing bacteria require nutrients and oxygen. Oxygen requires strict monitoring, as it is highly unwanted for upgrading purposes. Both iron chloride and biological desulfurization may lower the H$_2$S concentration from 2000 ppm to 100 ppm. An additional desulfurization polishing system is required in order to reach acceptable H$_2$S levels. Activated carbon can remove H$_2$S down to very low concentrations. A clear drawback of the carbon absorption technologies is a noticeable OPEX and toxic waste production due to limited regeneration possibilities. Activated carbon is too expensive to be used for bulk H$_2$S removal.

Generally, biogas plants are decentralized. This favors the need for desulfurization technologies with local regeneration and without waste generation. Regeneration could be performed in situ either by air, e.g. biological desulfurization and the Lo-Cat process [19], by heat, e.g. chemical scrubbers or by electricity.

Among the desulfurization technologies used today, only the biological desulfurization technology uses local regeneration. However, the residual oxygen found in the cleaned gas is a large issue for the process [20]. For biogas plants with first generation upgrading facilities, this is a fundamental issue, as the maximum allowed oxygen content can be as low as 100 ppm for biomethane [21]. Another drawback of the biological cleaning process is the slow response time when it comes to fluctuating H$_2$S levels.

Electro-assisted scrubbers have local regeneration and do not produce any waste. Furthermore, they have the advantage that the electrochemical nature of the scrubber allows for fast adjustment adapting to fluctuating H$_2$S concentrations in the biogas. The term electroscrubbers is used to describe the gas cleaning processes where an electrochemical cell is used to support the scrubber. The term was introduced by Govindan et al. in 2012 [22].

Electrochemically assisted scrubbers are widely used [23]. The operation is based on electrochemical regeneration of the scrubbing medium. Usually, the scrubbing medium consists of a suspended metal that may be electrochemically oxidized to a high oxidation state. The metal with the high oxidation state is then used to remove e.g. H$_2$S and methyl mercaptans [24–27]. The application of electrochemistry has received increased interest as it is considered an environmentally friendly process for chemical production.

Currently, most of the electroscrubbing processes are being developed in the laboratory. However, Govindan et al. tested an electroscrubbing process for simultaneous removal of NO an SO$_2$ at semipilot scale [22]. The semipilot tests demonstrated the potential to use the process previously developed in the laboratory [28–32]. The successful upscaling of the process developed in the laboratory indicates that this could also be possible for other electroscrubbing processes.

Applying electro-assisted scrubbers to biogas could be beneficial when included in second generation biogas upgrading technologies. However, a water-based electrolyte would have to take the rather large amount of CO$_2$ in the biogas into account. CO$_2$ will be dissolved into the electrolyte and affect the pH-value. Generally, the pH-value is expected to reach a steady state level below neutral, due to the acidic properties of CO$_2$. Therefore, an electro-assisted scrubbing process operating at moderately low pH values would be preferred for biogas applications.

Electroscrubbers investigated in the literate generally have high removal rates (\geq90 %) for low concentration pollutants [33–35]. Removal rates as high as 100% have been found when the concentration of the pollutants is low (15 ppm). This could be an issue for H$_2$S removal from biogas. H$_2$S is generally found in high concentrations (greater than1000 ppm) in biogas. The electroscrubbing process is therefore required to have high removal rates, even at high concentrations if it should be used to remove H$_2$S from biogas.

Biogas has many impurities other than H$_2$S and an electro-assisted desulfurization process may additionally remove these impurities as well [24]. Generally, the desulfurization process is placed just downstream of the biogas reactor, and thus, will be the first downstream process encountering all types of impurities. Therefore, it may be expected that the electrolyte will require periodic replacement, depending on the amount of biogas impurities, the efficiency of the electrolyte regeneration, and the bulk electrolyte filtration process. For an expensive electrolyte, the filtration process may be optimized for complete impurity removal. Clearly, this will increase the operational cost of the system. Ideally, the electrolyte is cheap, sustainably disposable and may thus be replaced periodically.

In this paper we suggest a new and novel process which can be regenerated in situ and does not generate waste. The aim is to develop a cheap, stable and robust process that selectively removes H$_2$S down to the very low ppm level, while leaving the CO$_2$ in the biogas. One of the main problems that the process should solve is removing H$_2$S at high concentrations with a high removal rate, i.e. remove H$_2$S from more than 1000 ppm down to very low concentrations. For similar processes, this has proved difficult.

The utilization of active chlorine as the oxidizing species is a novelty within the field of electroscrubbers. For the new process, suitable electrochemical and scrubbing reactions are proposed. The electrolyte system is tested on a lab-scale electroscrubber set-up interfaced with a gas mixture mimicking a real biogas.

The process is an electrochemically assisted scrubbing system. The solvent selectively oxidizes the H$_2$S content of the biogas into free sulfur. The process applies continuous solvent recirculation, which is regenerated in an undivided electrochemical cell. In Fig. 1, the mechanism is presented. The electrolyte comprises an aqueous solution and the electrochemical mechanism is (Fig. 1c):

Anode [36]:

$$2Cl^- = Cl_2(aq) + 2e^-$$

Cathode:

$$2H^+ + 2e^- = H_2(g)$$

Following the formation, chlorine reacts with water to form hypochlorite (Fig. 1d) [37]:

$$Cl_2(aq) + H_2O = H^+ + Cl^- + HClO(aq)$$

Within the scrubber, the biogas interacts with the liquid. CH$_4$ has been assumed to be inert and is in the experiments considered interchangeable with other similar inert low-soluble gases such as N$_2$ or higher hydrocarbons. The CO$_2$ is expected to saturate the liquid over time due to CO$_2$ dissolution:

$$CO_2(g) = CO_2(aq)$$

$$CO_2(aq) + H_2O = HCO_3^- + H^+$$

The hydrogen sulfide is expected to dissolve and dissociate (Fig. 1a) [38]:

$$H_2S(g) = H_2S(aq)$$

$$H_2S(aq) = HS^- + H^+$$

And subsequently being oxidized by hypochlorite (Fig. 1b):
When the mass transfer from the gas to the scrubbing liquid is low, the molar gas flow \((G_m)\), the molar liquid flow \((L_m)\) and the overall gas phase mass transfer coefficient \((K_g)\) can be assumed to be constant. For these conditions, both the equilibrium line and operating line, see Fig. 2 (a), are straight [39]. The \(NTU\) and \(HTU\) can be calculated under these assumptions as [39]:

\[
NTU = \frac{y_{i} - y_{e}}{\Delta y_{m}}
\]

\[
HTU = \frac{G_{m}}{A_{a}K_{g}}
\]

where \(y_{i}\) is the mole fraction of the pollutant in the gas at the inlet of the bottom of the scrubber (see Fig. 2(a)), \(y_{e}\) is the mole fraction of the pollutant in the gas at the outlet of the top of the scrubber, \(A\) is the cross sectional area of the scrubber, \(a\) the specific surface area of the packing material and the log mean concentration difference \((\Delta y_{m})\) is given by [39]:

\[
\Delta y_{m} = \frac{(y_{i} - y_{e}^{*}) - (y_{u} - y_{e}^{*})}{\ln(y_{i} - y_{e}^{*}) - \ln(y_{u} - y_{e}^{*})}
\]

where \(y_{e}^{*}\) is the mole fraction of the pollutant that is in equilibrium with the liquid at the bottom (i) or the top of the scrubber (u). Thus, the difference, \(y_{i} - y_{e}^{*}\), corresponds to the driving force of the mass transfer at the bottom of the scrubber and vice versa for \(y_{u} - y_{e}^{*}\). The values \(A, a, G_{m}, y_{i}\) and \(y_{e}\) are either given (see Fig. 2(b)), e.g. \(G_{m}, y_{i}\) and \(y_{e}\) or part of the design of the scrubber, e.g. \(A\) and \(a\). \(K_{g}\) is calculated as [40]:

\[
K_{g} = \frac{1}{\frac{1}{k_{1}} + \frac{1}{k_{2}}}
\]

where \(k_{1/g}\) is the mole fraction mass transfer coefficient in the liquid (l) or the gas phase (g), \(E\) is the enhancement factor and \(m\) is the equilibrium constant, given by \(y = nx\) where \(x\) is the mole fraction of the pollutant in the solution, see Fig. 2(a). The enhancement factor, \(E\), indicates the improved performance of a reactive solvent when compared with a non-reactive solvent. A reactive solvent has \(E \gg 1\), and this is expected to be the case for electrowscrubbers. The enhancement factor is a well developed concept that has been a subject in several text books, including Danckwerts [40] and Asterita [41].

2.2. Estimation of the mole fraction gas side mass transfer coefficient

An approximation of \(k_{g}\) is obtained by using the method derived in Absorption Towers by Morris and Jackson [42], as presented in Kemiske enhedsoperationer by Kjærboe et al. [39]. Several different methods for calculations of \(k_{g}\) exist. This includes models far more complicated that what have been used here. Initial calculations and assumptions indicated that the more advanced models were not required to give a fair estimation of the height. The implementation of more complicated models was therefore not applied. According to Morris and Jackson, \(k_{g}\) can be calculated [39,42]:

\[
k_{g} = k_{e}\frac{\rho_{e}}{M_g}
\]

where \(M_{g}\) is the molar mass of the gas, \(\rho_{e}\) is the density of the gas and \(k_{e}\) is the mole fraction mass transfer in the gas phase. \(k_{g}\) can be calculated as:

\[
k_{g} = 0.04C_{r}R_{e}^{-0.21}S_{e}^{0.75}x_{Bm}V
\]

where \(C_{r}\) is the gas film factor, \(x_{Bm}\) is the logarithm of the average fraction of the solvent (B) in the liquid film, \(v\) is the superficial gas.
velocity, Re is Reynold’s number and Sc is Schmidt’s number. The superficial gas velocity is given by:

$$v = \frac{G_v}{A}$$ \hspace{1cm} (17)

where G_v is the gas volume flow. Sc is given by:

$$Sc = \frac{\eta_g}{D_{cg} \rho_g}$$ \hspace{1cm} (18)

where η_g is the viscosity of the gas and D_{cg} is the diffusion coefficient of the gas phase. Reynold’s number is given by:

$$Re = \frac{d_h \nu_g}{\eta_g}$$ \hspace{1cm} (19)

where, d_h is the hydraulic diameters of the packing material given by:

$$d_h = \frac{4a}{\epsilon}$$ \hspace{1cm} (20)

where ϵ is the porosity of the packing material.

2.3. Calculation of the electroscrubber height

K_e for the laboratory electroscrubber is calculated under several assumption. It is assumed that L_{inv}, G_m and K_g are constant. The oxidation of HS$^-$ is reported as fast and has a high k-value. Therefore, the concentration of the pollutant, i.e. HS$^-$, in the liquid may be assumed to be ≈ 0 [43]. The high reactivity may be assumed to result in a high enhancement factor E. The equilibrium between H$_2$S in the gas phase and in the liquid phase for the given oxidative system is expected to result in very low m-values. The partial pressure of the H$_2$S is very small for any concentration in the liquid phase. This is equivalent to a very small m-value. For a large E and a small m, $K_g = k_g$ according to Eq. (14). This is in accordance with Ramm’s rule [39]. K_g is then calculated as k_g using Eq. (15). The physical parameters used for the calculation of k_g are presented in Table 1.

3. Materials and methods for the developed electrochemically scrubber system

In Fig. 3, the set-up used during the experiments is presented. Details regarding the scrubbing system, electrochemical cell and the gas flow & analysis is found in the sections below. Overall, a gas-mixture of nitrogen (N$_2$) and H$_2$S is mixed with CO$_2$. N$_2$ is used instead of CH$_4$ to avoid flammable and explosive mixtures exiting the scrubbing system in the laboratory. Within the electroscrubber, the CH$_4$ is not an explosive risk as no O$_2$ is present. Both N$_2$ and CH$_4$ are expected to be inert gasses in the process. The mixed gas then enters a home-made scrubbing set-up where it interacts with the electrolyte. Here, oxidative species from the liquid is used to oxidize H$_2$S. The oxidative species is regenerated in the electrochemical cell that is positioned in the bottom of the scrubber. When the liquid is regenerated, it is pumped back into the scrubber. The liquid goes through this cycle in less than 50 s, ensuring a fast response to changes in operating parameters, such as the applied potential.

3.1. Scrubbing system

A scrubbing system was constructed using standardized tubing devices and equipment based on an internal diameter of 110 mm. The tower and liquid container were made from PMMA (Plexiglas) allowing for visual inspection of the liquid flow and electrochemical cell under operation. A water circulation pump with a brushless motor capable of 5.5 m lift was used together with a showerhead which resulted in a liquid flow of 1.26 L/min. evenly distributed within the scrubbing tower. Simple uncoated Lightweight Expanded Clay Aggregate (LECA) balls with a density between 210 and 280 kg/m3 were used as packing material with suitable gas-to-liquid wetting abilities.

3.2. Electrochemical cell

The undivided electrochemical cell was positioned in the bottom of the scrubber unit and consisted of two graphite electrodes from Fredriksen Scientific A/S, with a diameter of 6 mm and a total length of 250 mm. 150 mm of the electrodes were inside the reactor and 100 mm outside for connection purposes. No degradation of the carbon electrodes were observed during the experiments. The voltage and current were applied by a Voltcraft LSP-1403 80 W switching DC power supply. An electrolyte consisting of 1 L of demineralized water mixed with 200 g NaCl was used within the system. The concentration of solvent was chosen as a high amount of NaCl to ensure a high conductivity of the solvent. However, over-saturation of the solvent is also unwanted and the NaCl concentration was therefore kept below the maximum value (360 g NaCl per liter of water).
Table 1
Table 1: Parameters used for calculation of scrubber height.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molar gas flow</td>
<td>(G_m)</td>
<td>mol/s</td>
<td>Varies, see Table 2</td>
<td>Measured</td>
</tr>
<tr>
<td>Molar liquid flow</td>
<td>(L_m)</td>
<td>mol/s</td>
<td>0.8 ± 0.1</td>
<td>Measured and calculated from 20 wt% NaCl and 80 wt% H₂O as liquid, Supplier information</td>
</tr>
<tr>
<td>Radius of scrubber</td>
<td>(r)</td>
<td>m</td>
<td>55 × 10⁻³</td>
<td>Calculated as 90% CO₂ and 10% N₂ based on numbers from [44]</td>
</tr>
<tr>
<td>Gas density</td>
<td>(\rho_g)</td>
<td>kg/m³</td>
<td>1.71</td>
<td>Calculated as 90% CO₂ and 10% N₂ based on numbers from [44]</td>
</tr>
<tr>
<td>Gas viscosity</td>
<td>(\eta_g)</td>
<td>Pa s</td>
<td>15.3 × 10⁻⁶</td>
<td>Calculated as 90% CO₂ and 10% N₂ based on numbers from [44]</td>
</tr>
<tr>
<td>Porosity</td>
<td>(\epsilon)</td>
<td>Fraction</td>
<td>0.38</td>
<td>Based on data from [45]</td>
</tr>
<tr>
<td>Diameter of packing material</td>
<td>(D_p)</td>
<td>m</td>
<td>0.025 ± 0.001</td>
<td>Measured</td>
</tr>
<tr>
<td>Specific surface area</td>
<td>(a)</td>
<td>m²/m³</td>
<td>149</td>
<td>Calculated as (a = \frac{6(1 - \epsilon)}{D_p}) [45]</td>
</tr>
<tr>
<td>Initial concentration of pollutant</td>
<td>(y_i)</td>
<td>Mole fraction</td>
<td>(1330 ± 70) × 10⁻⁶</td>
<td>Measured</td>
</tr>
<tr>
<td>Final concentration of pollutant</td>
<td>(y_o)</td>
<td>Mole fraction</td>
<td>50 × 10⁻⁶</td>
<td>Detection limit of the gas analysis equipment</td>
</tr>
<tr>
<td>Equilibrium end concentration</td>
<td>(y^e_i)</td>
<td>Mole fraction</td>
<td>5 × 10⁻⁹</td>
<td>Detection limit of the gas analysis equipment</td>
</tr>
<tr>
<td>Equilibrium start concentration</td>
<td>(y^s_i)</td>
<td>Mole fraction</td>
<td>1.33 × 10⁻⁷</td>
<td>Detection limit of the gas analysis equipment</td>
</tr>
<tr>
<td>Logarithm of the average fraction of B in the liquid film</td>
<td>(x_{Bn})</td>
<td>Unit less</td>
<td>1</td>
<td>Assumed value due to low concentrations of the pollutant</td>
</tr>
<tr>
<td>Gas film factor</td>
<td>(C_g)</td>
<td>Unit less</td>
<td>2.5</td>
<td>Assumed, based on values from [39]</td>
</tr>
<tr>
<td>Diffusion coefficient of the gas phase</td>
<td>(D_{ij})</td>
<td>m²/s</td>
<td>5.4 × 10⁻⁴</td>
<td>Based on models from [46,47]</td>
</tr>
<tr>
<td>Molar mass of gas</td>
<td>(M_j)</td>
<td>g/mol</td>
<td>42.2</td>
<td>Calculated from density, assuming ideal gas behavior</td>
</tr>
</tbody>
</table>

3.3. Gas flow and analysis

The gas flow rate was controlled by a combination of two mass flow controllers (MFC). The H₂S containing gas was controlled by a Brooks SLAS581 MFC, and the CO₂ was controlled by an MRS GE50A025S03BN010 MFC. All gasses were supplied by Strandmøllen. The gas composition entering and exiting the system was measured with a MRU SWG 100 stationary biogas analyzer, where the CO₂ is measured between 0% and 100% with an uncertainty of ± 0.3% using NDIR. H₂S is measured electrochemically between 0 and 10,000 ppm with an uncertainty of ± 50 ppm and O₂ is also measured electrochemically, between 0 and 21% with an uncertainty of 0.2%. The gas analysis equipment performed one measurement every 10 min. The measurements alternated between the inlet and the outlet gas. For each setting, at least 2 measurements were made. The standard deviation was used as uncertainty in case it was larger than the uncertainty of the analysis equipment. The pH-value was determined using standard pH-strips with four zones. The same liquid was used throughout the experiments, which were performed over a period of 14 days. When the setup was not in operation, it was sealed off to minimize degassing from the electrolyte.

3.4. Scanning electron microscopy (SEM) analysis

The SEM used for analyzing the sulfur content was a Hitachi tabletop SEM TM3000 equipped with energy dispersive x-ray spectroscopy (EDS). The imaging was performed using backscattered electrons at 15 kV. The image was acquired at a working distance of 9500 μm and with a magnification of 1000. The EDS analysis was performed at 15 kV with a mapping time of 500 s.

4. Results and discussion

Overall, the process proved capable of removing H₂S from a synthetic biogas. The effect of current, gas flow and the current efficiency was investigated in the sections below to give a better understanding of the process. The sulfur produced in the process is also analyzed in the sections below.

In Table 2, an overview of the results are presented. The scrubber is compared with the theoretical height calculated in section 2. Under the assumption presented, the height of the laboratory electroscrubber is modelled to be between 2.4 and 5 cm. This is a very low scrubber height. In the laboratory, scrubbers of similar height were tested by removing the packing elements to create an active scrubber height of only a few centimeters. The results are observed to support the model as high removal percentages are found at very low scrubber heights.

4.1. Effect of current

In theory, the current required for the oxidation of sulfide to sulfur (\(i_{\text{theory}} \)) can be calculated applying Faraday’s law [48]:

\[
i_{\text{theory}} = \frac{n_{\text{Sulfur}}}{t} z F = \frac{y_{\text{Sulfur}}}{t} \frac{pV}{RT} z F
\]

where \(n_{\text{Sulfur}} \) is the amount of sulfur, \(t \) is time, \(y_{\text{Sulfur}} \) is the concentration of sulfur in the gas, \(p \) is the pressure, \(V \) the volume, \(R \) the gas constant, \(T \) the temperature, \(F \) is the Faraday’s constant and \(z \) is the number of electrons required for the reaction and is equal to 2, according to Eq. (1). It is assumed that H₂S may be considered an ideal gas at room temperature and atmospheric pressure. A 100% Faraday efficiency is assumed in combination with 100% scrubber efficiency in order to calculate the theoretical current. In reality, lower efficiencies may be expected. Typically, chloralkali plants are known to have efficiencies in the range of 50–75% [36] (3400–2100 kWh/ton Cl₂).

Lower current efficiency may be caused by undesired side reactions. This could include anodic O₂ generation [49]:

\[
2H₂O = O_2(g) + 4H^+ + 4e^-
\]

(22)

Or the oxidation of sulfur:

\[
S + 4 H₂O = H₂SO₄ + 6H^+ + 6e^-
\]

(23)

Or cathodic chlorine reduction:

\[
Cl₂ + 2e^- = 2Cl^-
\]

(24)

\[
ClO^- + 2e^- + 2H^+ = Cl^- + H₂O
\]

(25)

All of which will decrease the current efficiency. A decrease in chloride concentration could also decrease the current efficiency. If there are not enough chloride ions present at the anode surface, side reactions will take place instead. Throughout the experiments, the same solvent was used without adding chloride. No changes to the current efficiency was observed over the course of the experiments.
In Fig. 4, the gas composition is presented for different applied currents relative to the theoretical minimum current (i/i_{theory}) for a constant gas flow of 200 L/h. The data was collected through a 4 h experiment where three different applied currents were tested. The background color indicates the applied current, which is either 2.26 (red), 2.82 (blue) or 3.46 (orange) times the theoretical current. The black squares in Fig. 4 show the H$_2$S concentration exiting the system. It is observed, that after an initialization of approximately 6 h, the CO$_2$ content exiting the system. It is observed, that after an initialization of approximately 6 h, the CO$_2$ content remains the same within the uncertainties of the measurements. This indicates, that CO$_2$ is not removed from the synthetic biogas. In other words, there is no correlation between the applied current and the removal of CO$_2$. Once the system is saturated with CO$_2$, it will no longer interact with the CO$_2$ content of the biogas. From Fig. 4 it is evident that this seems to be the case.

The blue triangles in Fig. 4 show the CO$_2$ content in the synthetic biogas entering the system, while the green triangles show the CO$_2$ content exiting the system. It is observed, that throughout the experiment of almost 4 h, the CO$_2$ content in and out of the system remains the same within the uncertainties of the measurements. This indicates, that CO$_2$ is not removed from the synthetic biogas. In other words, there is no correlation between the applied current and the removal of CO$_2$. Once the system is saturated with CO$_2$, it will no longer interact with the CO$_2$ content of the biogas. From Fig. 4 it is evident that this seems to be the case.

The black squares in Fig. 4 show the H$_2$S concentration that enters the scrubber, while the red circles show the H$_2$S concentration exiting the system. It is observed, that after an initialization of approximately 30 min. the initially applied current of 3.46 times the theoretical current is sufficient to remove all the H$_2$S from the synthetic biogas. This result was confirmed by a non-detectable H$_2$S concentration in 5 subsequent analyses. Following this, the current was decreased to a value 2.26 times the theoretical current. The system responded quickly, as the next two

<table>
<thead>
<tr>
<th>Gas flow [10$^{-4}$ mol/s]</th>
<th>Inlet H$_2$S value modelled [ppm]</th>
<th>Inlet H$_2$S value measured [ppm]</th>
<th>Standard deviation</th>
<th>Outlet H$_2$S value measured [ppm]</th>
<th>Standard deviation</th>
<th>Scrubber height theory [cm]</th>
<th>Scrubber height test [cm]</th>
<th>Removal rate [%]</th>
<th>Current [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>500</td>
<td>468</td>
<td>14</td>
<td>33</td>
<td>11</td>
<td>2.37</td>
<td>2.1 ± 0.2</td>
<td>93 ± 15</td>
<td>0.183</td>
</tr>
<tr>
<td>0.78</td>
<td>500</td>
<td>495</td>
<td>2.5</td>
<td>135</td>
<td>9.6</td>
<td>2.46</td>
<td>2.1 ± 0.2</td>
<td>73 ± 14</td>
<td>0.215</td>
</tr>
<tr>
<td>1.12</td>
<td>500</td>
<td>461</td>
<td>3.7</td>
<td>190</td>
<td>0.82</td>
<td>2.69</td>
<td>2.1 ± 0.2</td>
<td>59 ± 15</td>
<td>0.308</td>
</tr>
<tr>
<td>2.24</td>
<td>1330</td>
<td>1262</td>
<td>21</td>
<td>346</td>
<td>19</td>
<td>4.56</td>
<td>3.2 ± 0.2</td>
<td>73 ± 14</td>
<td>1.24</td>
</tr>
<tr>
<td>2.24</td>
<td>1330</td>
<td>1327</td>
<td>84</td>
<td>156</td>
<td>11</td>
<td>4.56</td>
<td>3.2 ± 0.2</td>
<td>73 ± 14</td>
<td>1.24</td>
</tr>
<tr>
<td>2.24</td>
<td>1330</td>
<td>1331</td>
<td>31</td>
<td>Not detected*</td>
<td>0*</td>
<td>4.56</td>
<td>3.2 ± 0.2</td>
<td>88 ± 7</td>
<td>1.62</td>
</tr>
<tr>
<td>2.80</td>
<td>1330</td>
<td>1908</td>
<td>10</td>
<td>626</td>
<td>31</td>
<td>4.82</td>
<td>3.2 ± 0.2</td>
<td>100 ± 5</td>
<td>2</td>
</tr>
<tr>
<td>2.80</td>
<td>1330</td>
<td>1912</td>
<td>18</td>
<td>74</td>
<td>22</td>
<td>4.82</td>
<td>3.2 ± 0.2</td>
<td>67 ± 4</td>
<td>2.4</td>
</tr>
<tr>
<td>3.26</td>
<td>1330</td>
<td>2035</td>
<td>14</td>
<td>840.5</td>
<td>25</td>
<td>5.05</td>
<td>3.2 ± 0.2</td>
<td>96 ± 4</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Fig. 3. The experimental set-up for testing of the electrochemical removal of H$_2$S.
4.2. Removal percentage

The removal percentage is observed to increase with current. In order to analyze the correlation between current and removal percentage, data is compared across different gas flow rates, gas concentration and applied currents. For this comparison, the mass of the removed sulfur (S) is calculated as:

$$S = \frac{y_{\text{sulfur}}(\text{in}) - y_{\text{sulfur}}(\text{out}) \cdot pV}{RTM_{\text{sulfur}}} \quad (26)$$

where M_{sulfur} is the molar mass of sulfur (32.1 g/mole) and H_2S is assumed to be an ideal gas. For comparison across parameters, S is used to determine the removal percentage of the system.

In Fig. 5, the black squares show the sulfur removed (S) as a function of the current density. The same electrochemical cell was used for all experiments, and an increase in current is therefore directly connected an increase in current density. For each data-point, the light red bars indicate the total amount of sulfur in the gas during the experiment. It is therefore possible to see both the absolute amount of sulfur removed in g/h and the removal percentage. For instance, during the experiment performed with a current density of 2.0 A, 0.37 g/h of sulfur was removed. This corresponded to a complete removal of H_2S from the gas. Similarly, the experiment performed with a current density of 2.8 A resulted in the removal of 0.50 g/h. However, this only corresponded to sulfur removal rate of 59 %.

A linear dependency is observed between the absolute sulfur removal (S) and the applied current (i). This linear dependency indicates that other parameters such as concentration of H_2S and flow rate of H_2S do not affect the overall efficiency of the system. The corresponding linear fit has an R^2-value of 0.993 a slope of $0.169 \pm 2 \times 10^{-3}$ g/(hA), and an interception at 6×10^{-4}. Thus, no matter the other parameters of the experiments performed, 0.17 g/h sulfur were removed per ampere applied. This value is 3.54 times lower than the theoretical value, which results in an overall current efficiency of 28.3% of the cleaning process. This efficiency is the combined efficiency of the electrochemical cell and the scrubber and may be improved upon optimizing the system. For the scrubber, better suited random packing material may increase the surface area for gas/liquid interaction, and it may also be possible to choose a more optimal packing material. The electrochemical cell may be further optimized by changing the electrode materials and surface area of the electrodes.

The linear dependency between the applied current and the measured efficiency indicates that the unwanted reactions consuming energy also increase with applied current. The reaction efficiency inside the scrubbing tower is not expected to depend on the current in the electrochemical cell, and it may therefore be assumed that the unwanted side reactions at the electrodes are the main reason for the loss of efficiency. Carbon electrodes were used for these experiments, and optimized surface treated electrodes could hinder the side reactions. This could help increase the current efficiency of the system.

4.3. Effect of gas flow and removal percentage

The removal percentage (ΔS) is calculated using simple mass balance principles, based on gas-side H_2S concentrations, entering and exiting the system:

$$\Delta S = \frac{y_{\text{sulfur}}(\text{in}) - y_{\text{sulfur}}(\text{out})}{y_{\text{sulfur}}(\text{in})} \quad (27)$$

where, y_{sulfur} is the H_2S mole fraction in the biogas.
Fig. 6 show ΔS as a function of gas flow and applied current. The red circles show ΔS from experiments performed with $i/i_{\text{theory}} = 3.5 \pm 0.2$ times the theoretical current, while the black squares show ΔS from experiments with $i/i_{\text{theory}} = 2.2 \pm 0.2$. It is observed at the 200 L/h and 250 L/h gas flows that an increase in i/i_{theory} results in an increase in the ΔS. It is also observed that increasing the gas flow decreases the removal percentage. This is showed for different flows and for different i/i_{theory}-values. It is observed, that for a gas flow of 200 L/h, an i/i_{theory}-value of 3.5 ± 0.2 is sufficient to achieve $\Delta S = 100\%$. From the two arrows in Fig. 6, it is showed how ΔS can be decreased:

- Increased gas flow (arrow 1 in Fig. 6)

If the gas flow is increased from 200 L/h to 250 L/h, the ΔS decreases. This indicates that the reaction becomes limited by kinetics or mass transfer inside the scrubbing tower. This will be discussed below.

- Decreased the applied current (arrow 2 in Fig. 6)

If the i/i_{theory}-value is decreased to 2.2 ± 0.2, ΔS decreases. This indicates that there is not enough oxidizing agent in the electrolyte.

The electroscrubber is observed to be limited by the two different mechanisms above; the amount of oxidizing species (applied current) and the contact time (gas flow) inside the scrubber. The amount of the electrolyte is represented as the i/i_{theory}-value. In theory, an i/i_{theory}-value of 1 should be sufficient for complete removal of H$_2$S. At an i/i_{theory}-value of 1, the oxidizing species is produced in a 1:1 ratio with H$_2$S. If the current efficiency is 100%, then $i/i_{\text{theory}} = 1$ is enough for a complete removal. Due to unwanted side reactions and reverse discharge reactions, the expected efficiency is lower than 100%. In Fig. 6, a low i/i_{theory}-value results in a low capacity of the electrolyte and therefore lower ΔS. The gas flow shows the limitations in mass transfer and reaction kinetics. As expected, if the gas flow is too high, the electroscrubber does not have the time to remove all the H$_2$S. From these experiments, it was determined that 0.30 L packing material was required for a gas flow of 200 L/h. This corresponds to a space velocity of:

$$\frac{200 \text{ L/h}}{0.30 \text{ L}} = 667 \text{ h}^{-1}$$

(28)

It may be assumed, that this value was dependent on the removal reaction and independent on the scrubber design. In other words, the space velocity can be used for scaling up the electroscrubber.

4.4. Sulfur

Throughout the experiments, elemental sulfur was formed as described in Eq. (8). Apart from sulfur, no other product was found. Due to the low flow rates and concentrations, however, less than 5 g of sulfur were formed throughout the experiments. As expected, the sulfur was observed to float on top of the electrolyte [50]. While operating the system, the liquid was not filtered, allowing for the sulfur to be collected on the electrolyte surface. Upon finishing the experiments, sulfur was collected from the electrolyte and analyzed EDS and SEM, as seen in Fig. 7. In Table 3, the elemental configuration is presented, as NaCl is part of the dried sulfur. The oxygen content could indicate that some of the sulfur has been oxidized to sulfate. This reaction could both take place inside the reactor as an unwanted side reaction or when the sulfur was exposed to air upon dissembling the scrubbing unit. However, no rapid reaction between elemental sulfur and atmospheric oxygen was observed. Another explanation for the oxygen content could be that hypochlorite (NaClO) is present in the sulfur instead of NaCl.

For continuous operation with batch recirculation, a filtration system for removal of elemental sulfur is required. A system operating with a mixture of NaCl and water can have periodical change of liquid without large expenses and thus, the filtration system should not increase the operational cost (OPEX) significantly. The elemental sulfur may be used as fertilizer either by mixing it with the degassed manure returning to the farms or by a separate sulfur handling system. If the quality of the sulfur is high enough, other applications within the chemical industry may even create a revenue from the scrubbing system.

Table 3

The composition of the sulfur extracted from the system. The analysis is performed by EDS. Some of the sulfur appears to be oxidized, while most of it remains as elemental sulfur. Trace elements of NaCl from the electrolyte is detected as well.

<table>
<thead>
<tr>
<th>Element</th>
<th>S</th>
<th>O</th>
<th>Na</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic%</td>
<td>72 ± 3</td>
<td>11 ± 1</td>
<td>8.9 ± 0.3</td>
<td>8.1 ± 0.4</td>
</tr>
</tbody>
</table>

5. Conclusions

Overall, the electroscrubbing desulfurization process based on a low pH electrolyte proved capable of removing H$_2$S from a synthetic biogas containing CO$_2$ and N$_2$ as replacement for CH$_4$. For a 200 L/h gas flow with 1330 ppm H$_2$S, a complete removal to below detection limit was achieved using a current of 4.5 A, corresponding to 3.5 times the theoretical current value.
By adjusting the applied potential, the resulting current could be regulated to ensure a complete removal of H2S. This results indicates that the process is flexible and can be adjusted to fluctuations in the H2S concentrations. The electroscrubber was found to have a quick response time, allowing for real-time adjustments.

A linear correlation was found between applied current and removal percentage. A constant value of 0.17 g sulfur was removed per amper for per hour independent on other parameters, i.e. the gas flow rate, H2S concentration, and applied current. This value corresponds to an overall current efficiency of 28.3%. It is expected that the efficiency can be further improved by optimizing the electrode materials and surface area of the electrodes.

The electroscrubber was determined to have a space velocity of 667 h⁻¹, which can be used for scaling up the process. This is a high space velocity when compared with biological processes that usually has a space velocity of around 100 h⁻¹. A higher space velocity results in a smaller scrubber and therefore lower capital investments when construction the scrubber. This is a benefit for commercialization of the process.

The sulfur removed from the gas was found floating on the electrolyte and confirmed by EDS analysis to be elemental with smaller amount of oxygen and NaCl present as well.

A reaction mechanism was suggested for the process. Unwanted side-reactions were also described, and these may decrease the current efficiency. One of these unwanted side reactions is oxygen development. Other reactions were also described, and these may decrease the current efficiency. One of these unwanted side-reactions is oxygen development.

A reaction mechanism was suggested for the process. Unwanted side-reactions were also described, and these may decrease the current efficiency. One of these unwanted side reactions is oxygen development. Other reactions were also described, and these may decrease the current efficiency. One of these unwanted side-reactions is oxygen development.

The new electroscrubbing process can be used for cleaning of carbon sources for e.g. CCU or catalytic processes such as the Sabatier reaction. One of these unwanted side-reactions is oxygen development. Other reactions were also described, and these may decrease the current efficiency. One of these unwanted side-reactions is oxygen development.

A reaction mechanism was suggested for the process. Unwanted side-reactions were also described, and these may decrease the current efficiency. One of these unwanted side reactions is oxygen development. Other reactions were also described, and these may decrease the current efficiency. One of these unwanted side-reactions is oxygen development.

The high activity of the oxidizing agent. However, the observations from the transfer theory. The height was found to be extraordinarily small due to the presence of oxygen and NaCl present as well.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank the ForskEl program for the financial support through the MegA-StoRE project (journal number 12393).

References

[34] S. Perumal, I.-S. Moon, Sustainable NO removal and its sensitive monitoring at room temperature by electrogenerated Ni (I) electron mediator, Chemosphere 265 (Feb. 2021).

