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Abstract Time-of-flight (ToF) energy-dispersive neutron tomography is 

complimentary to X-ray tomographic imaging method aimed at the 

reconstruction of wavelength-dependent material response in every 

three-dimensional volume element. ToF neutron tomography has already 

demonstrated great potential for both mapping of crystallographic 

properties and elemental composition in micrometer scale. However, 

available neutron beams have inherently low fluxes and high ToF 

resolution comes at the cost of prohibitively long exposure times. In this 

paper we investigate application of advanced iterative reconstruction 

algorithms with both spatial and spectral regularisation to reduce 

exposure time. The capability of advanced reconstruction algorithms is 

demonstrated on a specifically designed multi-material sample. 

2 Introduction 

Time-of-flight (ToF) energy-dispersive neutron computed 

tomography (CT) provides a complimentary technique to 

X-ray CT. As neutrons interact with atomic nuclei rather 

than an atom’s electron cloud and can penetrate materials at 

wavelengths comparable to lattice spacings, they can be 

used to investigate the chrystallographic structure of 

materials. Governed by Bragg’s law, coherent elastic 

scattering produces characteristic jumps in the transmitted 

neutron spectrum at wavelength equal twice the spacing 

between lattice planes. As neutrons are uncharged particles 

and can penetrate much deeper into material than X-rays, 

they allow to probe atomic structures in bulk samples. In 

fig. 1, left, we show the wavelength-dependent macroscopic 

total neutron cross-section 𝛴tot (𝜆), [cm−1] for materials 

employed in the present study. The neutron cross-section 

defines probability of interactions to occur, i.e. decrease in 

transmitted intensity. Such acquisition is also commonly 

called Bragg-edge neutron CT due to characteristic shape of 

the transmitted spectrum. 

 
Fig. 1. Left: Theoretical neutron spectra for materials employed in this 

study. Right: White beam (sum of all channels) reconstruction of the 

sample cross-section with the conventional FBP method. Colour 

range was adjusted to highlight low intensity features. 

ToF imaging utilises a pulsed neutron source and 

measures arrival time of each neutron with respect to the 

pulse. Pixellated counting ToF detector discretises recorded 

information into pixel elements, each counting the 

individual incident neutrons and registers each of them in 

one of multiple ToF channels depending on arrival time. 

ToF values are subsequently converted into wavelength 

values. Data acquisition in ToF neutron CT is very time 

consuming since neutron fluxes are typically low 

(compared to synchrotron X-ray sources) and because the 

detected neutrons are shared among multiple ToF channels. 

Thus, prohibitively long exposure time (in order of several 

hours per projection) is needed to acquire sufficiently high 

counts in each ToF channel. In practice, shorter exposure is 

used and acquired multi-channel projections are binned, in 

spatial and/ or spectral dimension, to improve signal-to-

noise ratio [1, 2]. 

Regularised iterative reconstruction has already proven 

to be a viable approach to improve reconstruction quality 

from noisy and/or undersampled data in X-ray CT. Iterative 

reconstruction formulates reconstruction as an optimisation 

problem and allows to incorporate available prior 

knowledge to produce satisfactry results for otherwise 

unsolvable tomographic problems. In spectral tomography, 

priors exploiting structural similarities across energy 

channels are particularly promising. Here, we investigate 

application of two regularisation techniques: Total Nuclear 

Variation (TNV) and a dedicated tailored regularisation 

technique. The former method is a recent regulariser for 

reconstructing spectral CT images which enforces common 

edges across all channels [3-5]. The second technique is 

specifically tailored for Bragg edge neutron CT and 

combines Total Variation (TV) regularisation [6, 7] in the 

spatial dimension and Total Generalised Variation (TGV) 

regularisation [8] in the spectral dimension. TV preserves 

edges and suppresses noise by encouraging sparsity in the 

finite difference domain, while TGV regularisation 

promotes characteristic piece-wise smooth behaviour in the 

spectral dimension. Implementation of the advanced 

reconstruction methods has been made possible by the CCPi 

Core Imaging Library (CIL) reconstruction 

framework [9, 10]. The capability of advanced 
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reconstruction algorithms is demonstrated on a specifically 

designed multi-material sample consisting of aluminium 

cylinders filled with metallic powder of high purity (fig. 1, 

right). Although the case study has been performed on a 

single two-dimensional slice, the results can be generalised 

to the third dimension.  

2 Materials and methods 

2.1. Data acquisiton 

The dataset in the present study was imaged at the Imaging 

and Materials Science & Engineering (IMAT) beamline 

operating at the ISIS spallation neutron source (Rutherford 

Appleton Laboratory, U.K.) [11, 12]. The ToF detector [13] 

has 512×512 active pixels, 0.055 mm pixel size. The 

detector was configured to measure 2843 energy channels 

between 1 Å and 5 Å with wavelength resolutions between 

0.7184⋅10
−3

 Å and 2.8737⋅10
−3

 Å. A set of spectral 

projections was acquired at 120 equally-spaced angular 

positions over 180° rotation. Each projection was acquired 

with 15 min exposure time. Additionally, 8 flat field images 

(4 before and 4 after the sample acquisition) were recorded 

with the same settings. Detector related corrections [14] and 

flat field correction were applied to all projections. Finally, 

spectral images were cropped spatially to 460 pixels and 

binned in the spectral dimension to 339 channels with a 

uniform bin width of 11.5⋅10
−3

 Å.  

In fig. 2 (upper row) we demonstrate sinograms for 

selected individual wavelength channels. Spanning the most 

valuable spectral range for the present sample, they show 

differences in noise levels and intensity of features 

depending on wavelength. The incident spectrum on IMAT 

has a crude “bell shape” with a peak around 2.6 Å [11, 12]. 

Therefore the elevated noise level is noticeable in the 4.5 Å 

wavelength channel. Only three most attenuative materials 

(Cu, Fe and Ni) are visible in sinograms; Zn and Al are 

obscured in higher levels of noise. 

For comparison purposes, the images were 

reconstructed using filtered backprojection implemented as 

FBP in CIL with a Hann filter (fig. 2, bottom row). As 

expected, FBP produces extremely noisy reconstructions. 

Only Ni is clearly visible in the reconstructed cross-section. 

Reconstruction of 4.5 Å wavelength channel is substantially 

noisier due to both lower incident flux and lower neutron 

attenuation of the selected materials. 

 
Fig 2. Top row: Sinograms for selected wavelength channels. Bottom 

row: FBP reconstruction of the selected sinograms. 

2.2. Reconstruction 

In every detector channel 𝑘, 𝑘 =  1, … , 𝐾, where 𝐾 is the 

total number of channels, the measurement model in 

neutron CT can be well approximated by the Beer-Lambert 

law. Let us consider an incident beam of neutrons of given 

intensity 𝐼0 at specific wavelength 𝜆𝑘, the intensity 𝐼 which 

reach the detector element, will be reduced according to: 

𝐼(𝜆𝑘) = 𝐼0(𝜆𝑘) exp(− ∫ 𝜇(𝑥, 𝜆𝑘)d𝑥
𝐿

), 

where 𝐿 is a linear path through the object and 𝜇 is the 

wavelength-dependent attenuation coefficient at the 

physical position 𝑥 in the object. Given an appropriate 

discretisation of Radon transform 𝐴 (projection operator), 

tomographic reconstruction in every wavelength channel 𝑘 

can be modelled as a system of linear equations: 

�̅�(𝜆𝑘) = − ln (
𝐼(𝜆𝑘)

𝐼0(𝜆𝑘)
) ≈ �̅��̅�(𝜆𝑘),            (1) 

where �̅� is the discrete measured data, �̅� is the to-be-

reconstructed attenuation map discretised onto a Cartesian 

grid. The attenuation map �̅� is typically represented as a 

column vector with 𝑁 = 𝐷2 elements (voxels), where 𝐷 is 

the number of elements in a detector row. The discrete 

measured data �̅� is vectorised as a column vector with 𝑀 =
𝑃𝐷 elements (pixels), with 𝑃 being the total number of 

projections. The projection operator �̅� contains 𝑀 × 𝑁 

elements. If 𝑖, 𝑖 = {0, 1, …  𝑀 − 1} and 𝑗, 𝑗 = {0, 1, … , 𝑁 −
1}, then �̅�𝑖,𝑗 is the length of intersection of the 𝑖.th ray with 

the 𝑗.th voxel. 

Similar to low-dose medical CT, the problem (1) is ill-

posed in mathematical sense. Therefore, we seek for a way 

to compensate for the ill-posedeness of the problem by 

incorporating some prior knowledge about the solution. 

Unlike channel-by-channel methods which reconstruct each 

channel individually, we explore methods to jointly 

reconstruct all channels and exploit interchannel 

correlations. Then, the spectral CT data is modeled as 

𝑏 = 𝐴𝑢, 

where 𝑏 and 𝑢 are obtained by stacking 𝐾 column vectors 

�̅�(𝜆𝑘) and �̅�(𝜆𝑘), respectively, and 𝐴 = 𝐼𝐾×𝐾⨂�̅�, ⨂ is the 

Kronecker product, and 𝐼𝐾×𝐾 is the identity matrix of order 

𝐾. The reconstruction problem is formulated as  

arg min{𝐹(𝑢) = 𝑓(𝑏, 𝐴𝑢) + 𝛼𝑔(𝑢)}, 

where 𝑓(𝑏, 𝐴𝑢) is a data fidelity metric which measures the 

discrepancy between the projection of solution 𝑢 and the 

acquired data 𝑏. The regularisation term 𝑔(𝑢) penalises 

undesired solutions and “guides” the optimization 

algorithm towards a solution with expected properties, 

which are commonly formulated in terms of image 

smoothness and sharp boundaries. The parameter 𝛼 

balances two terms and has to be tuned for each specific 

regulariser and dataset. 

TNV is a recent extension of TV for multichannnel 

images [3-5]. TNV encourages the rank-sparsity by 

penalising the singular values of the Jacobian matrix. TNV 

has similar properties to TV regularisation, i.e. it also 
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promotes a sparse image gradient in the spatial dimension, 

but also favours reconstructions with common edges across 

all channels. Consequently, TNV correlates channels and 

improves reconstruction quality by promoting common 

structures in multichannel images. The reconstruction 

problem is then formulated as, 

𝐹(𝑢) = ‖𝐴𝑢 − 𝑏‖2
2 + 𝛼TNV(𝑢).           (2) 

Similar to TV, TNV suffers from a loss of contrast. 

Secondly, TNV does not allow the decoupling of 

regularisation parameters for the spatial and spectral 

dimensions which makes impossible to balance the level of 

regularisation between dimensions. 

Here, we propose a novel tailored regulariser which 

combines TV [6,7] in the spatial dimension with TGV [8] 

the spectral (channel) dimension to jointly reconstruct low-

count multi-channel neutron CT data. The proposed 

approach allows enforcing different image properties in 

respective dimensions. As the TV model captures piece-

wise constant image properties in the spatial dimension, we 

rely on another regulariser to support reconstruction in the 

spectral dimension. Here, we rely on TGV to recover piece-

wise smooth features in the spectral dimension because 

TGV allows balancing the first and the higher-order 

derivatives of images and consequently alleviates the 

staircasing effect inherent to TV. In this case the 

reconstruction problem is formulated as, 

   𝐹(𝑢) = ‖𝐴𝑢 − 𝑏‖2
2 + 𝛽TV𝑥,𝑦,𝑧(𝑢) + 𝛾TGV𝑐(𝑢).    (3) 

Here we use TV𝑥,𝑦,𝑧 to designate a TV operator over three 

spatial dimensions 𝑥, 𝑦 and 𝑧, whereas TGV𝑐 operates over 

the spectral (channel) dimension.  

Both methods (2) and (3) were implemented based on 

the CCPi Core Imaging Library (CIL) [9, 10]. CIL wraps 

the ASTRA toolbox [15] to perform forward- and back-

projection operations and provides a set of various 

regularisers through the CCPi Regularisation Toolkit [16]. 

FISTA [17] and PDHG [18] were used to solve (2) and (3), 

respectively. Regularisation parameters were chosen 

manually to achieve both noise suppression and feature 

preservation in both spatial and spectral dimensions 

(𝛼=0.01, 𝛽=0.0075 and 𝛾=0.3). 

3 Results 

Fig. 3 shows two-dimensional slices for selected 

(individual) wavelength channels reconstructed using the 

regularised iterative methods discussed in this paper. Both 

TNV and TV+TGV demonstrate drastic improvement in 

reconstruction quality and noise suppression. TNV 

produces “patchy” images and smearing of features is 

visible especially between the Cu and Zn cylinders (fig. 3, 

top row). Overall, features appear sharper in the TV+TGV 

reconstruction (fig. 3, bottom row).  

TNV uses a small pixel neighbourhood information to 

correlate structural information along the spectral 

dimension. This acts similarly to a low-pass filter. Thus, 

TNV suppresses ring artifacts visible in FBP reconstruction 

(fig. 2) but causes blurred and enlarged rings especially 

prominent in 4.5 Å channel, where counts are much lower. 

Al has very low neutron attenuation and is invisible in the 

TNV reconstruction due to contrast loss; a known drawback 

of both TV and TNV regularisation methods.  

The TV+TGV reconstruction does not suffer from the 

ring artefacts and the faint Al cylinder is distinguishable in 

the reconstructed slices and profile lines (fig. 4, bottom 

row). Fine features inside the Cu cylinder are also partially 

preserved in the TV+TGV reconstruction (fig. 4, top row).  

 
Figure 3: Two dimensional reconstructions of selected (individual) 

wavelength channels reconstructed with TNV regularisation (top row) 

and with TV+TGV regularisation (bottom row). White lines mark profile 

lines chosen for examination in the next figure. All slices are visualised 

with a common colour range. Colour range was adjusted to highlight low 

intensity features (maximum value of the display range was set to 30% 

of maximum intensity value in the reconstructed volume). 

 

 
Figure 4: Profiles corresponding to the vertical (top row) and horizontal 

(bottom row) white lines in figure 3 (bottom left) passing through the Cu 

and Fe cylinders and the Al and Ni cylinders, respectively. 

 

 
Figure 5: Individual spectra (solid line) reconstructed with TNV and 

TV+TGV for one representative 0.0553 mm3 voxel located within each 

material alongside the theoretical predictions (dotted black line). 
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Individual spectra reconstructed for one 0.0553 mm3 

voxel in each of the 5 materials are plotted in fig. 5 

alongside the theoretical predictions. The voxel locations 

inside the cylinders were chosen arbitrarily. The 

reconstructed spectra for Fe, Ni and Cu closely follow the 

predicted spectra for both TNV and TV+TGV 

reconstructions. The amplified noise visible in the TNV 

reconstructions between 2.5 Å and 3 Å is caused by the 

increased noise levels in input data due to the detector dead 

time [14]. While the TV+TGV produces a much smoother 

spectra the Bragg edges appear to be less prominent due to 

smearing (for instance, small edges around 2 Å in Fe). In 

the case of the TNV regularisation, the noise dominates 

over smaller Bragg edges. For the materials with lower 

neutron attenuation (Al and Zn), TV+TGV clearly 

outperforms TNV as some Bragg edges are visible in the 

reconstructed spectrum, but are completely lost in the noise 

in the case of TNV. 

Reconstruction is an intermediate step in Bragg edge 

imaging. The Bragg edge positions (in terms of d-spacing) 

allows compositional mapping, as each crystalline structure 

has a unique set of lattice spacings and hence a fingerprint 

in the neutron transmitted spectrum. The shape of the 

detected Bragg edges, i.e. deviation from abrupt predicted 

edge, supports characterisation of crystallographic 

properties. Quantitative comparison of the reconstruction 

results in terms of Bragg edge detection and 

characterisation, as well as material decomposition is a 

topic of future work.  

5 Conclusion 

We have demonstrated the capabilities of advanced 

reconstruction methods to improve reconstruction quality of 

low-count ToF neutron CT data. We investigated 

application of two regularisation techniques: the dedicated 

regulariser for multi-channel CT data and the tailored 

regularisation term encoding the prior information about 

neutron spectra. Both regularisation techniques showed 

drastic improvement of reconstruction quality compared to 

the standard FBP method. The tailored regularisation 

provided better reconstruction quality. Our study serves as 

an initial demonstration of a dedicated reconstruction 

technique that facilitates significant reduction of required 

exposure time – a major bottleneck in low flux ToF neutron 

CT studies. 
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