Current understanding of ceria surfaces for CO2 reduction in SOECs and future prospects – A review

Sala, Elena Marzia; Mazzanti, Nicola; Mogensen, Mogens Bjerg; Chatzichristodoulou, Christodoulos

Published in:
Solid State Ionics

Link to article, DOI:
10.1016/j.ssi.2021.115833

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Current understanding of ceria surfaces for CO₂ reduction in SOECs and future prospects – A review

Elena Marzia Sala *, Nicola Mazzanti, Mogens Bjerg Mogensen, Christodoulos Chatzichristodoulou

Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, DK-2800, Kgs. Lyngby, Denmark

A R T I C L E I N F O

Keywords:
Electrochemical CO₂ reduction
Ceria surfaces
Doping
Lattice strain
Surface orientation
Carbon deposition

A B S T R A C T

Ceria-based materials form a very promising class of electrocatalysts for CO₂ reduction in solid oxide electrolysis cells (SOECs). On the pathway towards the implementation of ceria into technological electrodes on a large scale, an in-depth atomistic understanding of the reaction mechanism over ceria surfaces is crucial in order to optimize its intrinsic electrocatalytic activity. In this review article, we offer a critical discussion of the phenomena governing the electrochemical reduction of CO₂ over ceria surfaces. We focus on the steps that limit the reaction rate and on how these can be accelerated by appropriate tuning of ceria properties and defect chemistry, via the introduction of tensile or compressive isotropic strain in the lattice, the promotion of a specific surface orientation and the control of the amount of acceptor or donor dopants incorporated in the fluorite structure. Our review aims to gather and examine the evidence of the role that these levers play in altering the energy landscape of the reaction, along with their influence on the capability of ceria to suppress carbon deposition during cell operation. Ultimately, we identify the areas that need further investigation and propose new lines of work towards the performance optimization of ceria as highly efficient catalyst for CO₂ reduction in SOECs.

1. Introduction

The utilization of fossil fuels for electricity and heat production, and for transport account today for the two biggest shares of anthropogenic CO₂ emissions, with 13.94 and 8.26 Gt of CO₂ emitted in the atmosphere in 2018, respectively [1]. Likewise responsible for a substantial fraction of CO₂ emissions is the chemical industry (1.5 Gt CO₂ in 2018 [2]), which is nowadays the largest industrial energy consumer and relies on fossil fuels as the major feedstock for the production of bulk chemicals. Of the total primary demand for oil and gas in 2017, approximately 14% of oil (13 million barrels per day [mb/d]) and 8% of gas (300 billion cubic meters [bcm]) were destined to the production of petrochemicals and their derivatives [2], through an array of very energy-intensive thermal and/or catalytic processes. More alarmingly, the demand for petrochemicals is expected to rise drastically in the next years: the chemical sector is foreseen to account for over a third of the growth in oil demand projected for 2030 and to consume an additional 56 bcm/y of natural gas by the same year [2].

In light of their catastrophic effect on climate, one of the biggest challenges of our era consists of defossilizing the energy infrastructure and the chemical industry. In this context, electrolysis and co-electrolysis of water/steam and carbon dioxide are considered a cornerstone for the future sustainable energy system, enabling the efficient conversion and long-term storage of electrical energy and the sustainable production of fuels and chemicals from renewable sources [3,4].

High temperature solid oxide electrolysis cells (SOECs) are of particular interest in this respect [3,5–13], as they have significant advantages over the more established and mature low-temperature electrolysis technologies of proton exchange membrane electrolysis cells (PEMEC) and alkaline electrolysis cells (AEC). One of the main advantages of SOECs is their capability to combine high production rates (due to thermal activation) with a high conversion efficiency (low cell voltage). Their high conversion efficiency translates into an exceptionally low electrical energy consumption, with recently demonstrated values on a stack level of ca. 3.1 kWh/Nm³ H₂ and 3.4 kWh/Nm³ CO for H₂-O and CO₂ electrolysis, respectively [14]. In turn, this low electricity consumption results in a decrease of the levelized cost of product (LCOP), being dominated by the cost of electricity [15]. For SOECs operating at 750–850 °C, electrical efficiencies exceeding 95% are

* Corresponding authors.
E-mail addresses: elmasa@dtu.dk (E.M. Sala), nicma@dtu.dk (N. Mazzanti), momo@dtu.dk (M.B. Mogensen), ccha@dtu.dk (C. Chatzichristodoulou).

https://doi.org/10.1016/j.ssi.2021.115833
Received 15 July 2021; Received in revised form 17 November 2021; Accepted 30 November 2021
Available online 16 December 2021
0167-2738/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
reported relative to the lower heating value of hydrogen (LHV) [3], 25–30% higher than the low temperature electrolysis technologies [16]. Furthermore, their high production rate capability favors a reduced capital expenditure, since it scales inversely proportionally to the size of the required electrolysis unit. Besides high efficiency and compactness, SOECs offer also the unique capability of directly producing synthesis gas, consisting of a mixture of H₂ and CO from co-electrolysis of H₂O and CO₂. Syngas is employed as feedstock for the large-scale production of a wide array of specialty and commodity chemicals, such as ethylene and ethanol, and can be further converted into a broad range of hydrocarbon-based fuels, such as methane, methanol, dimethyl ether, synthetic petrol/diesel, and even kerosene via the Fischer-Tropsch process. SOECs offer the additional advantage of adjusting the CO/H₂ ratio needed for a specific downstream catalytic process simply by varying the CO₂/H₂O feed.

It should be emphasized, though, that SOECs operate with steam and in order to realize these low energy consumption values, steam or waste heat that can be used to raise steam must be freely available. Downstream catalytic conversion of syngas to other hydrocarbons is typically exothermic, thereby offering an excellent match with SOECs. [17]. Beneficial heat integration possibilities arise also in connection with biogas [18,19] and biomass [20] utilization. In a recent demonstration, SOECs were employed for the upgrading of biogas to pipeline quality methane [21]. Biogas produced from different environments contains from 30% to 45% of CO₂ [22], which can be co-electrolyzed with steam to produce a CO-rich syngas, avoiding the cost of separating the CO₂ from biogas and converting it instead into a valuable product. Alternatively, SOECs can be coupled with biomass gasification for methane and methanol production, offering the external hydrogen source necessary to compensate the low hydrogen-to-carbon molar ratio of woody biomass [17,23]. Finally, the possibility to operate SOEC plants at variable production rate (with a large dynamic range) and with a sufficiently fast response time can help accommodate the variability of renewable electricity [24], and thus provide large scale grid balancing services [25].

Specifically for CO₂ electroreduction, SOECs have been studied since the 1960s, when the technology was first investigated for CO₂ removal from a spacecraft environment and later to produce O₂ for both manned and unmanned space missions to Mars by leveraging its CO₂-rich atmosphere [26]. These efforts continue at present with MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), a test model that is aboard the Mars 2020 rover as a prototype to test O₂ production from Martian atmospheric CO₂ [27].

Nowadays, SOECs are the most mature amongst the CO₂ electro-reduction technologies, approaching a technology readiness level (TRL) of 9 (competitive manufacturing in operational environment) [28] and being already commercially available for CO production with a capacity of 96Nm³/h CO [14]. The other two technologies for CO₂ electroreduction that are under intense research and development are low-temperature electrolysis cells, in which CO₂ reduction is carried out at temperatures lower than 100 °C using aqueous or polymer electrolytes, and molten carbonate electrolysis cells (MCECs), operating at intermediate temperatures (400–900 °C), where the electrolyte is a carbonate melt. Low-temperature electrolysis technologies have the capability to directly synthesize chemicals such as ethylene, ethanol and formic acid, which cannot be directly produced in a SOEC. However, they still require very large overpotentials at current densities relevant for commercialization [29]. In addition, Ni-YSZ anodes, exhibiting the selectivity generating a plethora of products (at varying ratios depending on catalyst and operating conditions) [30–32], raise doubts on the scalability of this technology, currently lying at a TRL of 4 [33]. MCECs, on the other hand, hold the promise of very high current densities, low overpotentials and faradic efficiencies (FE) close to 100% [34], with the additional advantage of enduring SO₂-containing CO₂ sources, such as flue gas streams from power stations [35]. However, the high corrosivity of molten carbonates is still the big challenge that MCECs have to face, limiting the stage of industrial development of this technology to a TRL of 5 [33].

Hence, SOECs are the only CO₂ electroreduction technology envisioned for industrial-scale in the next decade, with the potential to alter the landscape of the chemical industry by dissociating the production of chemicals from fossil sources. As a stepping stone towards the application of SOECs for large-scale thermo-catalytic processes (where ca. 10,000–100,000 Nm³/h of CO or 100–1000 kT CO/y are required), industrial plants for the production of fine chemical precursors (ca. 2000 Nm³/h of CO or 22 kT CO/y required) are envisioned to be developed and integrated with downstream catalytic processes in the coming 10 years [28]. Alongside, the CO production could also be directed towards decentralized plants operating on-demand, drastically reducing the flammability and toxicity hazards associated with the transportation and storage of CO that the large centralized plants face today [33].

In order to make SOECs commercially viable on a large scale as part of a sustainable energy infrastructure and chemical industry, their lifetime needs to be improved. In fact, one of the main challenges associated with the large-scale commercialization of SOECs lies in preventing cell degradation, which derives from the fuel electrode to a significant portion [36–38]. The state-of-the-art electrocatalyst employed in SOECs fuel electrodes is Ni, typically in the form of a porous cermet (ceramic-metal composite) with yttria-stabilized zirconia (YSZ). Ni-YSZ composite cathodes show excellent activity towards CO₂ reduction [39,40]. However, Ni catalyzes CO disproportionation via the Boudouard reaction (2CO(g) = C + CO₂(g)) under SOECs operating conditions, resulting in carbon formation above a threshold CO/CO₂ ratio [41]. The accumulation of carbon on the electrode surface results in Ni dusting, i.e. Ni removal from the cathode, leading to the fracture of the porous structure over time. Even if C deposition is limited to a degree that cell fracture is avoided, it causes a partial deactivation of the Ni catalyst, which in turn lowers the cell performance [42].

Carbon deposition can be effectively overcome by limiting operation within safe CO/CO₂ ratios, albeit with the requirement for lower CO₂ conversion and increased gas circulation. Nevertheless, other degradation mechanisms will still lower the electrochemical performance of the Ni-YSZ electrode. The two most substantial ones relate to the poisoning of the electrode surface by impurities such as sulphur [39] (present in the gas feed stream when the CO₂ comes from a biomass process) lowering electrochemical activity, and the agglomeration and depletion of Ni from the electrode/electrolyte interface region [43,44]. The latter results in loss of percolation and associated increase in ohmic losses, as well as in loss of three phase boundary (3PB) length, i.e. the line where YSZ, Ni, and gas phase meet, which is where the electrochemical reaction occurs.

All the above-mentioned challenges have been addressed in the last decade with the introduction of doped ceria (CeO₂) as a component of the fuel electrode [45–48]. Ceria plays a beneficial role in different aspects, related to enhancing both electrode performance and stability. Firstly, the mixed ionic electronic conducting (MIEC) nature of ceria, under the reducing conditions of the cathode, extends the reaction zone from a 3PB line to a two phase boundary (2PB) surface between the surface of ceria and the gas phase. Importantly, it has been already demonstrated for the water splitting reaction that the ceria-catalyzed (2PB) reaction area holds the predominant contribution on the overall electrode activity, with only minimal contribution of the metal-catalyzed reaction region (3PB), for 3PB/2PB ratios up to ~4 x 10⁵ [49]. Additionally, its improved ionic transport compared to YSZ [50] can help extend the utilization length of the cathode and thus improve performance. Indeed, metal-fluorite cathodes of Ni-Gd-doped ceria have shown superior electrochemical performance than Ni-YSZ [51,52]. Finally, the electronic conductivity of ceria can compensate at least to some extent for the Ni depletion, thus reducing/delaying this degradation and improving the electrode stability [53]. In a very recent work from Nenning et al. [54], single-phase CGO anodes exhibited some of the lowest polarization resistances ever measured for
Achieving unprecedented electrochemical performance requires that the fuel electrode in fuel cell mode.

Ceria has also attracted attention due to its remarkable carbon-deposition suppression capability \cite{55-61}. A recent near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) study showed that the onset of carbon formation occurs on ceria-containing electrodes at much higher overpotentials than for Ni-YSZ electrodes, significantly beyond the operating window of a commercial SOEC stack \cite{62}. Finally, addition of ceria to the Ni-YSZ cermet \cite{63,64} or the application of Cu-CGO electrodes \cite{65} has been shown to increase the sulphur tolerance of the fuel electrode in fuel cell mode.

Increasing the 2PB area of ceria-based cathodes is an obvious approach for well performing technological electrodes, and can be achieved by nanostructuring of the ceria electrolytacatalysts \cite{47,49,66-68}. Achieving unprecedented electrochemical performance requires that the intrinsic activity of the ceria surface is also optimized. To achieve this, fundamental studies are necessary in order to obtain an in-depth mechanistic understanding of the elementary processes behind the CO₂ reduction mechanism. Evident levers to tailor the properties of ceria surfaces are: doping, strain, and surface orientation \cite{69}. Understanding the influence of the above parameters requires the use of model-type electrodes with well-defined surface area, composition, and surface orientation. Pulsed laser deposition (PLD) has been the technique of choice in that respect for many studies on the (electro)catalytic and transport properties of doped ceria \cite{49,66,70-78}. PLD enables also fine control of the electrode thickness, ensuring electrodes thin enough as to be surface-reaction limited, rather than bulk diffusion limited \cite{79}.

Pure and doped ceria have been extensively applied for many decades now, not only as electrode and electrolyte components in SOCs, but also in a variety of industrial processes \cite{80}, ranging from automotive three-way catalysts (TWCs) to biomedical applications \cite{81,82} and organic synthesis \cite{83}. Thus, the physical, mechanical, chemical and electrochemical properties of ceria have been thoroughly studied. Ceria has also been vastly investigated both as catalyst and as non-innocent support in the context of CO₂ valorization processes such as CO₂ methanation and dry-reforming of methane, offering an extensive literature covering the interaction of the CO₂ molecule with ceria surfaces in heterogeneous catalysis. A comprehensive and in-depth description of ceria structure, defect chemistry and transport properties \cite{69,81,84-92}, as well as an overview of the knowledge gained from its application in CO₂ conversion catalysis \cite{93,94}, can be found elsewhere and are beyond the scope of this review. The aim of this review is rather to outline the accomplishments realized up to date in the understanding of the CO₂ reduction pathway over ceria surfaces, along with the challenges and the remaining questions to be answered for the development of better performing ceria-based electrocatalysts for CO₂ reduction in SOECs.

2. Role of ceria defect chemistry and surface species in the CO₂ electroreduction pathway

The electrochemical reduction of CO₂ to CO is expressed, using Kröger-Vink notation \cite{95}, as:

\[
\text{CO}_2(g) + V_{\text{c}}^{\text{a}} + 2e^- \rightleftharpoons \text{CO}(g) + \text{O}_2^-(s)
\]

where \(V_{\text{c}}^{\text{a}}\) denotes a doubly positive charged oxide ion vacancy, and \(\text{O}_2^-(s)\) a lattice oxygen. In the case of ceria, electrons are localized around Ce ions as small polarons \cite{96}, and Eq. (1) can be expressed as follows:

\[
\text{CO}_2(g) + 2V_{\text{c}}^{\text{a}} + 2\text{Ce}_{\text{c}}^{\text{a}} \rightleftharpoons \text{CO}(g) + \text{O}_2^+(s) + 2\text{Ce}_{\text{c}}^{\text{a}}
\]

where \(\text{Ce}_{\text{c}}^{\text{a}}\) represents the Ce\(^{3+}\) cations (or localized electrons) and \(\text{Ce}_{\text{c}}^{\text{a}}\) the Ce\(^{4+}\) cations.

Chueh and co-workers \cite{74} used NAP-XPS to analyze the CO₂ reduction reaction pathway on 20 at.% Sm-doped ceria (SDC) using a model electrochemical cell operating at conditions approximating technologically-relevant ones for SOECs. The authors split the overall reaction into 3 conceptual steps, consisting of the transport of charge carriers from the bulk to the surface, the adsorption/dissociation of the gaseous reactants and the charge transfer at the surface/gas interface. The reaction starts with the migration of polarons (Eq. (3)) and oxygen vacancies (Eq. (4)) from the bulk of ceria towards its surface. The subscripts “b” and “s” in the following equations refer to bulk and surface species, respectively.

\[
2\left(\text{Ce}_{\text{c}}^{\text{a}} + \text{Ce}_{\text{c}}^{\text{a}} \rightleftharpoons \text{Ce}_{\text{c}}^{\text{b}} + \text{Ce}_{\text{c}}^{\text{b}}\right)
\]

\[
V_{\text{c}}^{\text{a}} + \text{O}_2^+(s) \rightleftharpoons V_{\text{c}}^{\text{a}} + \text{O}_2^+(s)
\]

Subsequently, the surface reaction has been represented via two single-electron transfer steps for the two electrons transferred from the ceria surface to the reaction intermediate (in contrast to water splitting, where only one electron is transferred to the hydroxyl ion, OH\(^-\) \(^s\), upon incorporation of the oxygen ion in an oxygen vacancy \cite{73,97-101}). The first step consists in the activation of a physisorbed CO₂ molecule on a surface oxygen site by a localized electron (Ce\(^{3+}\)) (Eq. (5)). The C atom of the CO₂ molecule forms a chemical bond with the surface oxygen ion, generating a nonpolar \cite{102} carbonate, (CO\(_2\)\(_{\text{ads}}\))\(_{\text{c}}\), whose configuration and preferential adsorption site are discussed in Section 2.1.

\[
\text{CO}_2(g) + \text{Ce}_{\text{c}}^{\text{a}} + \text{O}_2^+(s) \rightleftharpoons (\text{CO}_2)_{\text{ads}} + \text{Ce}_{\text{c}}^{\text{b}}
\]

The second step consists of the second electron transfer and oxygen ion incorporation in an oxygen vacancy. The carbonate is decomposed and produces an adsorbed CO, which eventually desorbs from the ceria surface as gaseous product (Eq. (6)).

\[
(\text{CO}_2)_{\text{ads}} + \text{Ce}_{\text{c}}^{\text{a}} + V_{\text{c}}^{\text{a}} \rightleftharpoons \text{CO}(g) + \text{Ce}_{\text{c}}^{\text{a}} + 2\text{O}_2^+(s)
\]

A schematic representation of the reaction pathway as described above is proposed in Fig. 2a.

With respect to the rate limiting steps of the process, some considerations need to be made depending on the system geometry and configuration. In the case of thin film studies, in which the current collection is optimized (to achieve homogeneous current distribution on the entire electrode surface, e.g. by sufficiently small mesh spacing of micro-patterned metal grids \cite{103,104}), the charge transport reactions (Eqs. 3–4) do not constitute the rate-limiting steps to the overall reaction.

Fig. 1. Arrhenius plot of the polarization resistance of different anode materials combinations used in high power density SOFCs. Reproduced from ref. [54] with permission from the Royal Society of Chemistry.
This has been demonstrated experimentally for this type of model electrodes both by electrochemical impedance spectroscopy (EIS) [49] and by NAP-XPS [73] in the case of the water splitting reaction. Furthermore, by employing a counter electrode (CE) with substantially higher surface area than the working electrode (WE), it can be assumed that the overpotential at the WE-gas interface dominates the electrode response, with negligible overpotential at the CE. Thus, the surface reaction (Eq. 5–6) can be probed under polarization as the one kinetically limiting the entire process [74].

In order to identify the rate-determining amongst the two single-electron transfer steps, Chueh and co-workers [74] analyzed the correlation between the concentration of near surface Ce$^{3+}$, denoted hereafter as [Ce$^{3+}_{s}$], the carbonate coverage and the cathodic overpotential. By increasing the cathodic polarization, the ratio of [Ce$^{3+}_{s}$/][Ce$^{3+}_{s}$] + [Ce$^{4+}_{s}$]) grows linearly up to a value of 45% at the highest measured overpotential of −0.35 V, reflecting a strong degree of reduction at the electrode surface. On the other hand, the carbonate coverage only increases slightly with increasing cathodic polarization and approaches saturation at an overpotential of approximately 20% of a monolayer. The authors suggest that as the coverage increases, the adsorption enthalpy is expected to rise due to adsorbate–adsorbate interactions, as already suggested by DFT calculations for CO$_2$ adsorption over CeO$_2$ surfaces [105]. The fact that the same phenomenon of saturation of the hydroxyl coverage was not observed experimentally for water splitting [73] is attributed to the larger molecular dimensions of carbonates with respect to the hydroxyl ions [74].

Turning to Eq. 5, one can observe that from one hand, the increasing cathodic overpotential translates into an increase of the chemical potential of the localized electrons, driving the reaction towards the forward direction. On the other hand, as soon as the coverage increases above the critical value for which the adsorbate-adsorbate interactions become prominent, there is an increase of the adsorbate’s chemical potential, which opposes the charge transfer from the localized electron. According to this reasoning, for large carbonate coverages at sufficiently high overpotential, the first electron transfer could become rate-limiting.

The correlation between [Ce$^{3+}_{s}$] and carbonate coverage has also been derived and discussed by Zhao et al. [106] for CO$_2$ splitting on highly oxygen-deficient CeO$_{2-δ}$ and Ce$_{0.5}$Zr$_{0.5}$O$_{2-δ}$ (CZO) nanopowders, reduced by H$_2$ dosing prior to introduction of CO$_2$. The experimental design, promoting a surface-limited process, and the kinetic model employed to describe the reaction steps enable a comparison with the study of Chueh and co-workers [74], in which the ion-incorporation flux is controlled by the electrode overpotential. Zhao et al. [106] derived a “linear-flattened-decay pattern” for the concentration of carbonate with respect to [Ce$^{3+}_{s}$]. They estimated a maximum value of 10–30% for the carbonate coverage at 500 °C, in line with the 20% deduced in ref. [74] at the same temperature. According to the analysis of Zhao et al. [106]
though, the carbonate coverage decreases with increasing degree of surface reduction, instead of reaching the saturation value (plateau) proposed by Chueh and co-workers [74].

The explanation given by Zhao et al. [106] is based on the different reaction rates of the adsorption/activation of CO$_2$ and the charge transfer/desorption of CO. More specifically, they model the mechanism of CO$_2$ splitting on the ceria surface as comprised of two steps, reported hereafter in Eq. 7 and 8, and illustrated in Fig. 2b:

$$\text{CO}_2 + \text{v}_0^+ + \text{O}^{2-}_0 \rightarrow \text{CO} \text{O}_2^{\bullet\bullet} \ (9)$$

$$\text{CO}_2^{\bullet\bullet} + 2\text{Ce}^{3+}_0 + \text{vCO}_2 + 2\text{Ce}^{4+}_0 + 2\text{O}^{2-}_0 \ (10)$$

Based on their kinetic model fitting results, the CO$_2$ activation (Eq. 7) is deemed to be energetically favored and exothermic, whereas the charge transfer (Eq. 8) is endothermic and limiting the process, as shown in the energy diagram of Fig. 3. When the [Ce$_{\delta}^{3+}$] is low, the charge transfer is slow, so that the carbonate concentration is only controlled by the CO$_2$ activation, giving a linear increase of adsorbates with [Ce$_{\delta}^{3+}$] due to the associated increase in the concentration of V$_0$, **. When the surface is strongly reduced, the charge transfer reaction is sufficiently fast that the accumulation of carbonates resulting from CO$_2$ activation is slowed down. When the [Ce$_{\delta}^{3+}$] increases above ~50–60% (for CeO$_2$), the charge transfer reaction becomes faster than Eq. 7 and the carbonate concentration decreases with further increase in [Ce$_{\delta}^{3+}$].

A similar increasing-flattened-decay trend of carbonate coverage with cathodic polarization was also observed in one more study employing model electrodes to study the CO$_2$ electroreduction mechanism operando on ceramic electrodes [107]. In this case, the focus was on the perovskites La$_{0.5}$Sr$_{0.5}$FeO$_{3-\delta}$ (LSF) and La$_{0.5}$Sr$_{0.5}$CrO$_{3-\delta}$Ni$_{0.1}$O$_{2-\delta}$ (LSCrNi), materials closely related to ceria within the broader family of MIECs. Given the similarities to ceria in terms of transport properties and represented in Fig. 4.

Turning to the correlation between carbonate intensity and applied overpotential, in this study the carbonate coverage saturation or maximum is shifted to much stronger polarization than the ~0.1 V observed for ceria-based electrodes, i.e. approx. ~0.5 V and ~1.1 V for LSCrNi and LSF, respectively. However, it must be noted that in ref. [107] solely CO$_2$ is used as feed gas, rather than a mixture of CO/CO$_2$ as in the study of Chueh and co-workers [74]. Considering as a reference the chemical potential of 1 bar of oxygen, the corresponding calculated oxygen chemical potentials are approximately ~2.37 eV for SDC at ~0.1 V and 500 °C, ~3.15 eV for LSCrNi at ~1.1 V and LSF at ~0.5 V at 720 °C, respectively. The corresponding equivalent oxygen partial pressures under these values of cathodic polarization are calculated as 1.2 × 10$^{-30}$, 1.6 × 10$^{-32}$ and 2.1 × 10$^{-20}$ atm for SDC, LSCrNi and LSF, respectively.

Opitz et al. [107] observe that the polarization dependence of the carbonate coverage cannot be associated solely with the concentration of oxygen vacancies, as there is negligible carbonate coverage at small-intermediate polarizations despite the fact that the introduction of the acceptor dopants in the analyzed compositions is already compensated by oxygen vacancies to a large extent. The observed behavior suggests that oxygen vacancies are the preferred adsorption site but that electrons are also necessary for the adsorption of CO$_2$ on perovskites. Firstly, the observation of the carbonate coverage increase with increasing overpotential above a threshold value (despite the presence of surface oxygen vacancies already at zero polarization) suggests that an electron transfer is indeed necessary for the formation of the carbonate intermediate. Secondly, the presence of a saturation limit or maximum seems to indicate that the rate-limiting step is the one following the carbonate formation, i.e. the reduction of the carbonate to CO. Thirdly, the correlation of the saturation limit or maximum in carbonate coverage with acceptor doping (and associated oxygen vacancy concentration) suggests oxygen vacancies as the preferred adsorption site. Finally, the depletion of the carbonate at even stronger cathodic polarizations suggests that this rate-limiting step is also accelerated by the overpotential.

The authors point out that this overpotential dependence of the rate-limiting step is consistent with the exponential polarization dependence of the electron concentration in MIECs, resulting in the exponential current–overpotential characteristics observed for all four perovskite compositions investigated (Fig. 5a). This exponential behavior cannot be attributed to a Butler-Volmer type electron transfer over an activation barrier since the carbonate intermediate is pinned to the Fermi level of the perovskite surface, as the ~1 eV/V shift of the binding energy of the carbonate intermediate vs. polarization suggests. An exponential trend is also found for the current density as a function of the overpotential by Chueh and co-workers [74] for 20 at.% Sm-doped ceria (Fig. 5b), and for the ion incorporation flux as a function of the [Ce$_{\delta}^{3+}$] in CeO$_{0.9}$Zr$_{0.1}$O$_{2-\delta}$ by Zhao et al. [106]. The ~1 eV/V shift of the binding energy of the carbonate intermediate vs. polarization, observed by Skafte et al. [62] for 20 at.% Sm-doped ceria, suggests again that it is the abundance of [Ce$_{\delta}^{3+}$] that controls the rate of the second electron transfer step in Eq. 6 or Eq. 8.

Another interesting inference can be drawn from this study in association with the observed correlation of the carbonate intensity with the level of acceptor doping for the different compositions examined. The carbonate intensity started increasing at less reducing potential with increasing acceptor doping and reached a higher value at its maximum. This suggests that adsorbate-adsorbate interactions are not the sole factor potentially limiting carbonate coverage, at least for these perovskite compositions.

Fig. 3. Energy landscape (unit: kJ/mol) for the CO$_2$ reduction and H$_2$O splitting pathways over ceria (black lines) and CZO (red lines) surfaces proposed by Zhao et al. [106]. Reproduced from ref. [106] with permission from the Royal Society of Chemistry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Ultimately, one can conclude that some similarities exist in the behavior of the two families of oxides. Firstly, the crucial role of surface oxygen vacancies and electrons needed for the CO$_2$ chemisorption and carbonate formation emerges. Secondly, in both systems there appears to be a second electron transfer step which is accelerated with increasing polarization (and associated electron concentration), shifting the balance towards the CO$_2$ chemisorption becoming the rate limiting step at high polarizations. However, further electrochemical studies on model electrodes are necessary in order to unequivocally elucidate the nature of the correlation between [Ce$^{3+}$] and carbonates in ceria, particularly in conditions relevant for technologic applications. Firstly, an extension of the NAP-XPS direct spectroscopic determination of carbonate coverage at larger (more negative) polarizations than those covered by Chueh and co-workers [74] is needed to determine if a maximum is indeed reached in ceria, followed by a decrease with further increase of Ce$^{3+}$. Keeping in mind that higher overpotentials at low operating temperatures may coincide with the onset of carbon formation (approx. -0.3 V at 550 °C in a mixture of 50/50 CO/CO$_2$ [62], as explained more in detail in Section 2.4), higher temperatures would probably be more suitable for the purpose. An extension to higher temperatures would also be interesting to determine the trend of carbonate concentration with temperature: the kinetic model developed by Zhao et al. [106], indeed, predict that the coverage of carbonate is reversely dependent with temperature for both doped and undoped ceria, i.e. a higher carbonate concentration is found at lower temperature. At the very low surface carbonate coverage expected from the calculations (~3% at 700 °C and ~ 0.03% at 900 °C for ceria) the adsorbate-adsorbate interactions will be less prominent, and their role vs. the role of [Ce$^{3+}$] on the relative rate of the different charge transfer steps may be clarified. Finally, the spectroscopic investigation of ceria with different concentration of dopants, inducing different [V$^{4+}$]/[Ce$^{3+}$] ratios at the surface, would allow to conclude on the importance of oxygen vacancies and/or [Ce$^{3+}$] for the CO$_2$ adsorption step.

The polarization affects the absolute and relative rates through influencing the surface vacancy and polaron concentration. This can also be adjusted to some extent through surface termination, doping, and strain, such as to accelerate both steps and in particular step 3) which is rate limiting at low overpotentials (of ca. -0.1 V where technological SOECs typically operate).

2.1. Influence of low-index surface orientations on the electrochemical activity of ceria towards CO$_2$ reduction

The three low-index orientations of CeO$_2$, i.e. (100), (110), and (111), differ by the number of coordination vacancies around the
KEY POINTS on the pathway of CO₂ reduction on ceria surfaces in SOECs:

- The overall reaction can be divided into 3 conceptual steps, consisting of the 1) transport of charge carriers from the bulk to the surface, 2) the adsorption/chemisorption of CO₂ and 3) the oxygen ion incorporation resulting in CO formation and desorption.
- Steps 2) and 3) constitute the surface reaction, in which two electrons are transferred from the ceria surface to a physisorbed CO₂ molecule.
- Under SOEC conditions, the reaction intermediate is a carbonate, CO₂\(^{2-}\), in which the C atom forms a chemical bond with 1–3 surface oxygen atoms (further discussed in Section 2.1). A saturation of the carbonate coverage has been observed with increasing cathodic polarization, attributed to adsorbate-adsorbate interactions or increase in the relative rate of step 3)/step 2). The carbonate coverage should pass through a maximum with overpotential according to the later explanation, offering a clear distinction from the adsorbate-adsorbate interaction hypothesis that future spectroscopic investigations could address.
- There is consensus that the rate limiting step gradually shifts from step 3) to step 2) with increasing cathodic polarization.

exposed Ce cations and O anions, their surface site density and interionic distance [87]. Tasker first classified ionic crystal surfaces into three types [108], i.e. “type 1, neutral surfaces with stoichiometric proportions of anions and cations in each plane; type 2, charged surfaces, with no dipole moment in the repeat unit perpendicular to the surface; and type 3, charged surfaces that have a dipole moment in the repeat unit perpendicular to the surface”\(^*\). CeO\(_2\) (110) is a type 1 surface, with each layer having zero charge. CeO\(_2\) (111) is a type 2 surface, having every plane charged but a repeating unit consisting of three planes in a symmetrical sequence (exposed oxygen plane above a plane of cerium ions, in turn above an oxygen plane), so that there is no net dipole moment perpendicular to the surface. CeO\(_2\) (100) is a type 3 surface, with alternatingly charged planes and a repeating unit of two planes, which results in a dipole moment perpendicular to the surface. This last type of surfaces have nearly infinite surface energy, with an electric field due to the charged surface, so that they can only exist upon reconstruction of the bulk truncation [87,109–112]. There is broad consensus that the stability of these three surfaces is ranked as (111) > (110) > (100) [113–116], i.e. the (100) being the least stable. However, the stability of the surfaces does not reflect the trend of their oxygen vacancy formation energy (reducibility). It is well established through DFT calculations, that less energy is required to form an oxygen vacancy on the (110) surface, compared to the (100) and lastly the (111) [117–121]. It is worthwhile mentioning though that a recent X-ray absorption near-edge structure (XANES) spectroscopy study employing ceria thin films with (100), (110), and (111) terminations showed that the surface concentration of Ce\(^{3+}\) (and inferred oxygen vacancy concentration) is equivalent on the three facets under the high temperature and low oxygen partial pressure conditions typical of SOEC [122]. A schematic representation of the three low-index surface terminations of ceria is depicted in Fig. 6. Characteristic properties of each termination and interionic distances are reported in Table 1 and 2, respectively.

The surface orientation, alongside with other parameters such as the active site, the dopant concentration, the degree of coverage and, ultimately, the reaction conditions, is well known for playing a role in the configuration of the adsorbates and reaction intermediates. For ceria surface, the configuration of the carbonate on its three low-index surface orientations is not well established, and sometimes contradicting findings are reported. Various experimental studies employing Fourier transform infrared spectroscopy (FTIR) on ceria and doped-ceria as catalyst [128–132] have shown that the carbonate can have different configurations, i.e. mono-, bi- and poly-dentate or bridged, whose structures can be visualized in Fig. 7. Albrecht et al. [133] revealed both experimentally and computationally that CO₂ adsorbs as a flat-lying tridentate carbonate both on the oxidized and reduced CeO₂ (100) surfaces. DFT calculations from Cheng et al. [134] showed that on the reduced CeO\(_{2-x}\) (110) surface the carbonate adsorbs either as mono/bidentate carbonate or bridged, depending on whether the oxygen vacancy site is an in-plane vacancy or a split vacancy (i.e. an oxygen vacancy where one of the nearest oxygen anions moves towards the vacancy, occupying a bridge site equidistant to the two adjacent cerium cations), respectively. Finally, on the fully oxidized CeO\(_2\) (111) surface the carbonate adsorbs as a monodentate up to a coverage of 1/3 monolayer (ML), whereas for higher coverages mixed configurations (monodentate + linear in two different partial layers) are present [105,135]. DFT calculations from Skafte et al. [62] confirm the above

![Fig. 6. Representation of the low-index ceria surfaces from top view and side view. Red spheres are O atoms and purple spheres are Ce atoms. In the top view, the left side of each figure represents the top outmost layer only, whereas full projections including subsurface ions are shown in the right side of each figure. The software VESTA [123] was used for creating this image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image-url)
reducing conditions (observed experimentally for ceria nanoparticles at elevated temperatures and low partial pressures typical of SOECs, Vegge et al. [124], indicated that the tridentate configuration is the most stable on all ceria surfaces. However, for the conditions of simulations under SOEC operating conditions up to cathodic overpotentials of ~0.3 V [62,74], i.e. well beyond the typical polarization in technological SOECs. However, the presence of carbonate species is observed at very high overpotentials (0.3 to 0.6 V) in relation to carbon formation [62], as discussed in more detail in Section 2.3.

In the light of the above, it is evident that surface orientations have been extensively studied to understand the type of adsorbate that can form on ceria following CO₂ adsorption, both computationally and experimentally. On the other hand, systematic studies on model systems, clearly correlating the effect of the surface orientation with the electrocatalytic activity of ceria, are lacking. The closest approximation to a model system available in the literature is shape-controlled nanoparticles, such as nanorods, nanocubes and nanoctahedra, which expose different orientations in their facets, as reported in Table 3 and shown for nanocubes in Fig. 8.

Nanoshapes have been vastly employed in the context of heterogeneous catalysis to explore the structure-activity dependence of ceria.

Fig. 7. Schematic representation of the structure of surface carbonates and carboxylates as proposed by earlier studies.
towards different reactions, in both computational [144] and experimental studies [145,146]. The knowledge gained from those studies suggest that indeed the effect of the orientation is significant, and that the different formation energy, concentration and structure of defects resulting from different surface terminations translates into a marked difference in activity of the different nanoshapes. For a number of reactions, including oxidation of CO [147,148] and the synthesis of dimethyl carbonate (DMC) from CO2 and methanol [149], nanorods were more catalytically active than nanocubes and nanoctahedra [150–155]. This was initially explained with the ranking of orientations with respect to reducibility mentioned earlier: nanocubes expose the (100) facets, nanoctahedra the (111), whereas nanorods were believed to be dominated by the (110) and (100) facets [156]. Thus, the higher activity of nanorods was related to the higher reducibility and lattice oxygen mobility of the (110) surface followed by the (100) and (111) surfaces [157–159]. At a later time, it has been unambiguously demonstrated that nanorods also expose a big portion of (111) surfaces [160], mainly in the form of nanofacets formed upon reconstruction of the reduced (110) surface [161,162]. Crozier et al. [163] showed that at temperatures as high as 730 °C in H2, such reconstructed (111) nanofacets transition back to a smooth bulk-terminated (110) facet: this allow the reduced surface to accommodate the high amount of oxygen vacancies formed upon reduction, without incurring in the formation of a strong perpendicular dipole moment. The presence of this stable and highly-reduced reconstructed (110) surface has been suggested as a possible reason for the observed combination of stability and reactivity observed in nanorods [164]. Other explanations of the superior catalytic activity of rods, instead, point towards a plethora of different special sites that this type of complex nanostructure possesses, such as edges and corners [161] or vacancy clusters [165]. For other catalytic reactions such as hydrogen [166] and ethanol oxidation [167] and reverse water gas shift (RWGS) [168], however, ceria nanocubes showed a higher activity with respect to nanorods. The superior performance of nanocubes is ascribed to the higher inherent reactivity (resulting from their lowest inherent stability) of the (100) surfaces present in cubes compared to the (111) exposed by rods.

Recently, Symington et al. [124] performed DFT calculations on ceria nanoparticles to study the interaction of the low index surface terminations with CO2 in the context of catalytic applications. Their results, reported in Fig. 9, show that for the entire coverage range investigated, the magnitude of the CO2 adsorption energy ranks as (100) > (110) > (111), i.e. being (100) the most favorable surface for CO2 adsorption.

Electrocatalytic reactions in SOECs are carried out at higher operating temperatures, which influences the oxygen vacancy and polaron formation, the gas molecules’ adsorption/desorption on/from the surface and the stability of the reaction intermediates. DFT calculations by Wu et al. [169] for water splitting in SOECs showed that both the turnover frequency (TOF) and the reaction pathway are highly facet-dependent on ceria. The following trend of TOF on the different surface orientations is found for the temperature range between 650 and 900 K: (111) > (110) > (100). For higher temperatures (up to 1200 K), the activity of the (110) and (111) surfaces becomes very similar, but still higher than the (100). The explanation given by the authors is that the formation of the hydroxyl reaction intermediate is more stable on the (100) facet, thus inhibiting the decomposition of the hydroxyl to H2. With respect to the reaction pathway, for the (100) and (111) faces the reaction always proceeds through an “excessively hydroxylated” surface (i.e. when the surface is fully covered in hydroxyls and the reaction thus proceeds through an alternative Ce-H intermediate), whereas for the (110) surface the reaction pathway varies from a fully hydroxylated surface up to 800 K to a partially hydroxylated one at higher temperature.

Experimentally, the shape-dependent electro-catalytic activity of ceria nanoparticles has been investigated for hydrogen oxidation by Tong et al. [170]. The authors impregnated ceria nanocubes, nanorods and nanoctahedra into porous La0.8Sr0.2O3-δ-Ga0.8Mg0.2O2-δ (LSGM) scaffolds and tested them as anode catalysts for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their results showed the activity trend nanorods > nanocubes > nanoctahedra at temperatures below 450 °C.

<table>
<thead>
<tr>
<th>Nanoshape</th>
<th>Orientation primarily exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octahedron</td>
<td>(111)</td>
</tr>
<tr>
<td>Cube</td>
<td>(100)</td>
</tr>
<tr>
<td>Rod</td>
<td>100, 110, 111 (upon reconstruction of (110))</td>
</tr>
</tbody>
</table>

![Fig. 8. CeO2 nanocubes in an environmental transmission electron microscope (ETEM) in ultra-high vacuum. The two images at the bottom are high-resolution transmission electron microscope (HRTEM) bright-field images in [110] and [001] zone axes. Reprinted with permission from Nano Lett. 2017, 17, 12, 7652-7658 [143]. Copyright © 2017 American Chemical Society.](image)

![Fig. 9. Adsorption energies for CO2 adsorbing in the form of a carbonate on the low-index ceria surfaces. Reprinted with permission from J. Phys. Chem. C 2020, 124, 42, 23,210-23,220 [124]. Copyright © 2020 American Chemical Society.](image)
However, by increasing temperature to 550 °C, they observed a switch of the highest electrochemical activity towards nanooctahedra, in line with the calculation from Wu et al. [169] suggesting the (111) surface (predominantly exposed in nanooctahedra) as the most energetically favored for water splitting at temperature higher than 650 K. However, in addition to direct experimental evidence for the proposed mechanism underlying the observed electrocatalytic behavior, it would be very useful to extend the experimental work to higher temperatures, relevant for HT-SOCs, for both water splitting and CO₂ reduction in SOECs.

An alternative route to study the effect of surface orientation on the electrochemical activity is by employing dense and epitaxial thin films, e.g. deposited by PLD onto single crystals with specific orientations. In this approach, the electrode exposes a single, well-defined surface orientation, whose electrocatalytic activity can be probed unequivocally [171]. This approach also offers a means to overcome the challenge of preserving the surface orientation of surface-controlled ceria nanoparticles at high operating temperatures, which can lead to sintering of the nanoparticles and alteration of the exposed facets [137,166,172]. To the best of the authors' knowledge, this type of experimental studies addressing the role of the different ceria low-index surface orientations towards H₂O splitting or CO₂ reduction under SOEC conditions still need to be conducted.

2.2. Influence of dopants on the electrochemical activity of ceria towards CO₂ reduction

Cation substitution (doping) of ceria with oxides of metal ions with valences ranging from 2⁺ to 6⁺ has been extensively studied. Ceria is a very interesting system for doping, as it is able to maintain its fluorite structure up to ca. 2480 °C (its melting point) over a wide range of pO₂, almost irrespective of the type of cation substitution [69]. The dissolution of oxides of metal ions with lower valences (acceptor dopants) introduces oxygen vacancies in the system, while doping with oxides of metal ions with higher valences (donor dopants) annihilates existing oxygen vacancies. Importantly, doping alters the degree of reducibility of ceria, not only by modifying the oxygen vacancy and Ce³⁺ concentrations, but also the partial molar enthalpy of reduction and the non-structural entropy, associated with the vibrational frequency of the lattice ions. A comprehensive and detailed overview of the effect of different cation dopants on the defect chemistry, as well as the ionic and electronic conductivity of ceria is provided by Chatzichristodoulou et al. in ref. [69].

In ceria, the oxygen transport occurs via thermally activated hopping of an oxide ion to a neighboring oxide ion vacancy site. The energy barrier for this mechanism depends on the distance separating the two sites and on the strength of the bond between the oxygen ion and its neighboring cations in the two sites, where this last property is affected in turn by defect-defect and defect-host interactions. Such interactions exist between dopant ions and oxygen vacancies, dopant pairs, oxygen-vacancy pairs, and Ce⁴⁺-based defect pairs (Ce³⁺ – Ce⁵⁺, Ce³⁺ – dopant ions, or Ce⁵⁺ – oxygen vacancies) [75,96,173], and are the ultimate reason for the limit in ionic conductivity found for high concentrations of substituted cations [84,174,175]. This needs to be taken into consideration when optimizing the doping level of ceria employed as electrocatalyst, since fast ionic transport is needed to retain a constant supply of oxygen vacancies from the bulk to the surface during CO₂ electroreduction (Eq. 3 and 4). Although bulk to surface transport was shown not to be rate limiting for H₂O splitting for an acceptor doped ceria (20 at.% Sm doped ceria) [45,73], the ionic transport could become limiting when ceria is doped with a donor or isovalent dopant.

Doping with a variety of isovalent and aliovalent dopants has been shown by computational studies to reduce the oxygen vacancy formation enthalpy and alter the catalytic properties of the low-index surfaces of ceria. For isovalent dopants, non-redox-active [176] Ti, Zr and Hf have been predicted by Nolan [177] to reduce the oxygen vacancy formation energy on the (110) surface. This is ascribed to the smaller ionic radius of these dopants compared to Ce⁴⁺, which results in a distortion of the crystal lattice around the dopant site, weakening the Ce-O bond and making oxygen removal easier. The lower energy of vacancy formation for Zr doping confirms the findings of Mayernick and Janik [178], who calculated a reduced oxygen vacancy formation enthalpy and enhanced methane adsorption for all three low-index ceria surfaces upon Zr doping. The authors also predicted a change in the most favorable surface for oxygen vacancy formation: for a concentration of Zr doping of 3.1%, the trend is (100) > (111) > (110), in contrast with pure ceria where the trend has been shown to be (110) > (100) > (111). More recently, a high number of dopants with an ionic radius similar to that of cerium, at their tetravalent state, have been investigated by Vegge and coworkers [136] for CO₂ reduction under SOEC conditions. Amongst those, Rh, Ir and Pt were found to bond CO noticeably stronger than the undoped ceria surface, a strategy that could potentially enhance the activity of ceria surfaces for CO₂ electroreduction (see Fig. 3). However, Rh, Ir, and Pt doping was predicted to also lower the oxygen vacancy formation energy and thereby also the CO₂ adsorption energy. Since all the relevant free energies were lowered by these dopants, their impact on the relative energy barriers in the reaction landscape was not found to be significant, as can be seen in Fig. 10. It must be noted here that under the high temperature and reducing conditions typical for SOECs, (semi-)noble elements have the tendency to be reduced to their 2⁺ oxidation state or metallic state [179,180]. This results in reduced solubility limits in the ceria matrix in the former case [181,182], and in the surface decoration of metallic (nano)particles in the latter [183].

KEY POINTS on the role of the surface orientation of ceria in CO₂ reduction in SOECs:

- The stability of the low-index surfaces of ceria is ranked as: (111) > (110) > (100), i.e. the (100) being the least stable.
- The reducibility of the three surfaces is ranked instead as: (110) > (100) > (111), i.e. a lower energy for the formation of an oxygen vacancy is required on the (110) surface.
- A structure-dependence of the catalytic activity of ceria has been shown for a broad array of reactions in heterogeneous catalysis.
- The surface structure also affects the configuration of the reaction intermediates. For CO₂ reduction in SOECs, the exact configuration of the carbonate CO₃²⁻ (i.e. mono-, bi-, poly-dentate or bridged) has not been established experimentally yet.
- The CO₂ adsorption energy is also influenced by the surface orientation: DFT calculations suggest a ranking of (100) > (110) > (111), i.e. being (100) the most favorable surface for CO₂ adsorption.
- The influence of surface orientation on the electrochemical performance towards CO₂ reduction under SOEC conditions has not been explored yet, neither experimentally nor theoretically.
- Shape controlled nanoparticles with predominant surface orientations are often used to explore the structure-activity dependence in catalytic reactions. These are not well suited for SOEC studies though, due to possible sintering of the nanoparticles and surface reconstruction/alteration at high temperature and especially in reducing conditions.
- Single crystal thin films offer an alternative approach. The deposition of epitaxial ceria thin films by pulsed laser deposition (PLD) is well established, and offers a means to obtain a well-defined orientation and surface area.
Fig. 10. Energy landscape of CO\textsubscript{2} reduction to CO for the Ir-doped ceria and undoped ceria (110) reconstructed surface. The individual steps are schematically shown in the box above. Gray spheres represent cerium atoms, blue iridium, and red oxygen. Oxygen atoms participating in the surface reactions are represented in arbitrary colors for visual guidance. Reprinted with permission from Mater. Today Adv. 2020, 8, 1,001,113 [136]. Copyright © 2020 The Author(s). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For trivalent dopants, Gd doping was investigated for water splitting in SOECs by Wu et al. [184], showing that the energy required to form oxygen vacancies and hydroxyls on the (111) surface is lower for doped ceria with respect to pure ceria. This has also been established experimentally, albeit it should be noted that although the enthalpy for oxygen vacancy formation is reduced, the entropy is also reduced. This results in reduced free energy for oxygen vacancy formation for Gd doped ceria at low to intermediate temperatures but higher at high temperatures [69]. The authors of ref. [184] also showed that incorporation of Gd into the ceria structure makes the surface oxygen vacancy diffusion faster under the conditions of the water splitting reaction. Most importantly though, Gd doping improves the electrocatalytic activity due to the more favorable formation of a Gd-H intermediate compared to the Ce-H one.

The divalent dopants Mg, Ca and Sr have been investigated by DFT calculations by Carey and Nolan [185] on the (111) surface, showing that all dopants promote the formation of additional oxygen vacancies. Amongst these three dopants the oxygen vacancy formation is more facile for Mg, due to its smaller ionic radius introducing a stronger distortion in the lattice. The authors of ref. [185] also found an effect of ionic radius on the activation of methane, where smaller dopants have a beneficial effect, whereas Sr (which has a larger radius over the host cation) worsens the kinetics of the reaction. Other divalent dopants, like Pd and Ni, in their partially reduced state, [178,186] were also shown by DFT calculations to lower the energy of formation of additional oxygen vacancies on ceria surfaces, along with reducing the energy barrier for methane adsorption in the case of Pd [178]. A reduced oxygen vacancy formation energy was also calculated for noble metals like Au on all three low-index surfaces [187,188] and Pt on the (111) surface [189]. Recent DFT calculations from Wang et al. [190] addressing doping of the (111) surface with V, Cr and Mn also proved lower oxygen vacancy formation energy and lower energy barriers for CO oxidation for all the dopants with respect to undoped ceria. Here again, the low solubility limits of cations with significantly smaller ionic radius than Ce like V, Cr and Mn into the host matrix [182,191] must be taken into consideration.

Besides surface oxygen vacancies, surface Ce3+ also play a crucial role in the electrochemical reduction of CO\textsubscript{2} according to the reaction pathway reported in Eq. 3-6. Pentavalent dopants such as Ta and Nb have been proposed as a means to promote Ce3+ on the (110) surface [192]. However, the introduction of pentavalent cations in the ceria lattice will also tend to annihilate existing oxygen vacancies, having a detrimental effect to the ion incorporation step associated with or following the carbonate activation. In principle, one could consider co-doping as a potential strategy to couple the effect of different dopants in the electrocatalytic activity of ceria surfaces. In the case of a donor-acceptor-substituted ceria, it was shown experimentally that the two dopants annihilate each other to a large extent, thereby suppressing the formation of charge compensating polarons and oxygen vacancies [193,194]. However, a study combining DFT calculations with thermogravimetric analysis [195] recently introduced a similar dopant strategy for thermochemical H\textsubscript{2}O and CO\textsubscript{2} splitting (where a compromise between reducing and oxidizing ability is needed), based on paired charge compensating doped (PCCD) ceria, e.g. co-doped with trivalent and pentavalent elements. The effect of the two dopants was demonstrated to be synergistic rather than counteractive for a number of trivalent and pentavalent combinations from the IIIA and VA groups. On the other hand, carefully designed acceptor-acceptor co-doping could offer a marked increase of the oxygen vacancy population, along with local lattice distortions that can promote the reducibility of ceria [69,196]. As an example from the very recent literature, Alkhooiri et al. [197] found a strong enhancement of the catalytic activity of ceria towards CO oxidation by co-doping with divalent Cu and trivalent Sm.

Experimental studies have been conducted to assess the role of doping in the catalytic activity of ceria towards CO\textsubscript{2} reduction in the context of heterogeneous catalysis. Doping with Mg has been investigated over the (111) ceria surface, where the presence of Mg has been demonstrated to enhance the formation of surface carbonates at room temperature [142]. The reactivity of H\textsubscript{2} pre-reduced 10 at.% Gd and 15 at.% Sm doped-ceria has been tested for chemically driven CO\textsubscript{2} reduction [130], showing that both materials are able to reduce CO\textsubscript{2} to CO, with a similar behavior in terms of both their surface chemistry and redox reactivity. The study of Zhao et al. [106], employing CeO\textsubscript{2} and Ce\textsubscript{0.02}Zr\textsubscript{0.98}O\textsubscript{2.5} (CZO) nanopowders in a button-cell fixed-bed reactor and H\textsubscript{2} as a reducing agent, showed higher peak rates for CO\textsubscript{2} splitting for CZO at temperatures between 600 and 900 °C, and specifically two-fold higher at 700 °C (61.2 μmol⋅g-1⋅s-1 for CZO vs. 28.9 μmol⋅g-1⋅s-1 for ceria). This was ascribed to the much lower oxygen vacancy formation enthalpy for the bulk of CZO (40% lower upon doping with 50 mol% Zr [198]) and the 4-fold higher surface area of CZO, resulting from its enhanced thermal stability. However, at temperatures close to 900 °C, the splitting kinetics are much closer despite the difference in surface...
area, and this is ascribed to the higher concentration of surface polarons and oxygen vacancies observed at high temperature for pure ceria compared to CZO (observation later substantiated by another study showing that under H₂ at 800 °C the reducibility of the ceria surface is uninfluenced by increasing the Zr content, in marked contrast with the enhanced reducibility of the bulk [199]). The energy landscape resulting from the kinetic model developed by the authors shows a nearly two-fold higher CO₂ adsorption activation barrier for CeO₂ relative to CZO (starting from the oxidized surface), in line with the different oxygen vacancy formation thermodynamics for the doped and undoped materials. The activation barrier for the charge transfer process (individualized as the rate determining step, Eq. 8) is also somewhat lower for CZO compared to CeO₂ (175 and 216 kJ·mol⁻¹, respectively). This reflects in the carbonate coverage being more sensitive with the temperature on the ceria surface, in line with the higher concentration of carbonates found on ceria rather than on CZO at temperatures higher than 700 °C.

Turning to electrochemical studies, Gd-doped ceria was preliminary investigated as a promising electrocatalyst for CO₂ electrolysis in SOECs over a decade ago [49], and its excellent activity towards CO₂ reduction, being even higher than towards H₂O splitting in certain instances [200], was more recently confirmed. Amongst Gd, Y, La- and Sm-doped ceria in different dopant concentrations, Sm₀.₂Ce₀.₈O₁.₉ was shown by electrical conductivity relaxation (ECR) to have the highest chemical surface exchange kinetics under reducing conditions (in H₂/Ar mixture) [201]. The effect of the dopant ionic radius on the reducibility of ceria was thoroughly investigated for La, Sm, Gd, and Yb by Yang et al. [202], showing an increase of the concentration of surface Ce³⁺ and an enhanced surface reactivity with the decrease of the ionic radius of the dopant cation. Trivalent Eu was also recently proposed as a promising dopant for ceria-based anodes in IT-SOFCs [203].

A number of studies on technological electrodes with different type and amount of dopants in ceria [48,204–209] have also revealed promising activity for CO₂ electroreduction. However, the lack of well-controlled model systems makes it difficult to discern the role of the dopant from other effects, e.g. related to the increase of the electrochemically active surface area resulting from nanoparticles loading or to the variability of the electrode microstructure influencing utilization length and gas diffusion contributions. Fundamental studies employing model electrodes with well-defined geometry and surface area, preferably combined with spectroscopy and micro-kinetic modeling, are challenging and thus scarce. However, those type of studies, rather than the ones aiming at maximizing the current density in porous electrodes, are crucial to arrive at a deep atomistic understanding of the role of dopants in the electrocatalytic activity of ceria towards CO₂ reduction.

2.3. Influence of strain on the electrochemical activity of ceria towards CO₂ reduction

The role of lattice strain in doped ceria has been extensively investigated in the last decade as a means to overcome the limit in the ionic conductivity imposed by defect-defect interactions for high concentrations of substituted cations [210,211,212], both computationally [213–215] and experimentally by employing thin films and multilayer heterostructures [210,216]. The results of such studies have been summarized in a number of reviews [211,212,217].

Strain can also alter the energy landscape of electrochemical reactions [218,219], according to what is called Mechano-Electro-Chemical (MEC) Coupling [212,220]. In relation to SOCs, extensive experimental work has been carried out on two members of the perovskite family of oxides, namely La₀.₈Sr₀.₂MnO₃ (LSM) and La₀.₈Sr₀.₃CoO₃ (LSC), on the basis of a forerunner DFT study on LaCoO₃ (LCO). This last work showed how the energy of vacancy formation on both the bulk and the surface of LCO decreases with increasing tensile strain [221]. Subsequently, both LSM [222] and LSC [223] tensile strained thin films were shown to present a higher oxygen vacancy concentration and faster electron transfer for the oxygen reduction reaction (ORR) on their surfaces, resulting in faster oxygen surface exchange and diffusion in the case of LSC [224]. Later on, reduced energy of oxygen vacancy formation under tensile strain was predicted computationally for both uniaxially [215], biaxially and isotropically [225] strained bulk ceria and isotropically strained bulk CGO [226]. The same trend was also found by DFT calculations for the biaxially strained CeO₂ (100) surface [225] and isotropically strained (111) surface [227]. Very recently, the near-surface of reduced CeO₂ (111) was also investigated by DFT + U calculations to unravel the effect of in-plane strain on the relative stability of surface and subsurface oxygen vacancies [228]. The authors found that while under dilative strain isolated surface vacancies are energetically favored, compressive strain favors isolated subsurface vacancies. For both isolated surface and subsurface oxygen vacancies of CeO₂ (111), Ce³⁺-polarons are next-nearest neighbors (NNN) rather than nearest-neighbors (NN) in line with earlier Scanning-tunneling microscopy (STM) studies and DFT calculations [229], following a lattice relaxation effect to counterbalance the strain introduced by the higher ionic radius of Ce³⁺ compared to Ce⁴⁺. The authors of ref. [228] also found that under compressive strain the formation of both surface and subsurface vacancy dimers is favored with respect to the isolated counterparts. The possibility of tuning the presence of vacancy clusters through compressive strain is intriguing, considering that it has been explained as one possible reason for the high catalytic activity of nanorods [165], as reported in section 2.1. Furthermore, the beneficial effect of divacancies has also been predicted for the reduced (110) surface [199], where a lower activation barrier for CO₂ dissociation to CO is found on a divacancy site, with respect to the isolated one. Thus,

KEY POINTS on the role of dopants in ceria for CO₂ reduction in SOECs:

- The oxygen vacancy formation energy on ceria surfaces is lowered by the introduction of smaller sized tetravalent dopants. Tri- and divalent dopants may also lower the enthalpy of formation of oxygen vacancies (beyond those introduced for charge compensation). The reducibility increases as the ionic radius of the dopant decreases.
- In particular for CO₂ electroreduction under SOEC conditions, the introduction of tetravalent Pt, Rh and Ir has been predicted to lower the oxygen vacancy formation energy and to increase the CO adsorption energy at the same time. However, the CO₂ adsorption energy increases as well, limiting the effect on the activation barrier associated with the final charge transfer step.
- Non-redox active tetravalent Zr has been shown to boost the kinetics of chemically driven CO₂ reduction with respect to pure ceria at temperatures lower than 600–700 °C, whereas their behavior is reversed at higher temperatures. The energy barrier for the charge transfer step is lowered for CZO compared to undoped ceria.
- For CO₂ reduction in SOECs, many dopants have shown promising enhancement of the electrochemical activity in technological electrodes. However, many micro-structural parameters can influence the observed performance in porous electrodes with complex morphology. Model electrodes with well-defined surface area and geometry, alleviating the influence of other parameters, are needed to arrive at an atomistic understanding of the role of dopants in the mechanisms governing CO₂ reduction on ceria surfaces.
one could speculate that tensile strain, favoring the reducibility of ceria can enhance the electrocatalytic activity on the (111) surface of pure ceria towards reactions like CO₂ reduction or water splitting. On the other hand, vacancy dimers favored under compressive strain on the (111) surface are possibly responsible for the high catalytic activity of nanorods, and could represent an intriguing method to modulate the electrocatalytic activity of ceria. Turning to the direct effect of strain on activity observed for specific reactions, atomistic simulations on the catalytic activity of ceria nanomaterials towards CO oxidation to CO₂ showed that ceria nanorods oriented along the [110] direction are chemically more reactive under tension than under compression, emphasizing the concrete possibility of tuning the oxide activity via lattice strain [230]. More recently, a DFT + U study of the electrocatalytic water splitting assessed that the lattice strain is responsible for the shift of the Ce 4f band center, affecting the energy of formation of oxygen vacancies and hydroxyl intermediates [231]. The authors showed how compressive strain (in excess of ~3.0%) on the CeO₂(111) surface reduces the total energy barrier, accelerating the reaction rate towards H₂ evolution at 1200 K. On the same ceria surface, further work from the same group on the CO₂ reduction reaction [138] has shown that the shift of the Ce 4f band center caused by the lattice strain is proportional to the shift in the oxygen vacancy formation energy, which increases under compressive strain and is reduced under dilative strain for all the configurations of Ce³⁺ and oxygen vacancies investigated. Under SOECs conditions, the authors predict that a compressive strain of ~4.0% enhances the TOF by 4 orders of magnitude at 800 K, due to the destabilization of the strained CeO₂(111) surface with respect to the relaxed surface.

Chueh and coworkers [225] recently employed AP-XPS to investigate a set of three CeO₂-x thin films, one compressively strained on a (100) YSZ substrate (−5.6%), one tensile strained on a (100) SrTiO₃ (STO) (2.1%) and one relaxed on a YSZ substrate in H₂/H₂O atmosphere under conditions relevant for SOCs. The authors observed a fourfold increase of the Ce³⁺ concentration on the surface of the strained films compared to the relaxed ones, irrespective of the type of biaxial strain applied. The enthalpy of surface oxygen vacancy formation per O for both compressive and dilative strain was reduced by ~0.4 eV, i.e. 15% less that the previously determined 2.9 eV for the surface of a relaxed Sm-doped CeO₂-x thin film [75]. The authors performed ab initio calculations on the ceria bulk to investigate this non-monotonic behavior, and explained it as the combination of two aspects. At 550 °C, on the one hand the authors found that the energy of vacancy formation is lower for tensile strain, due to the larger lattice volume and lowered crystal symmetry, in line with previous computational studies. On the other hand, they found a lower vibrational free energy (i.e. higher vibrational entropy) under compressive strain, which along with the better capability of Ce³⁺ to counterbalance the tetragonal distortion introduced by the strain, also favors the formation of oxygen vacancies.

According to this picture, one could assume that the same non-monotonic behavior of strain in enhancing the Ce³⁺ and oxygen vacancy concentrations on ceria surfaces will also apply upon CO₂ reduction under SOECs conditions. Nevertheless, an experimental proof to this assumption and its impact on the reaction rate are still lacking. Here, again, model electrodes produced with PLD offer a way to modulate the strain in the deposited film by choosing substrates of materials with different lattice parameter than ceria. However, it is worthwhile mentioning that ultrathin films of a few nanometers are required to maintain large strain levels [232] and the metal grids typically used as current collector in ceria thin film studies are likely insufficient to guarantee homogeneous polarization in such ultrathin layers [104]. Therefore, for this type of studies efforts must be directed towards new current collector approaches that can help realize homogeneous and well controlled polarization in ceria ultrathin electrodes.

Aside from the case of the ultrathin layers used in fundamental studies, the question arises on the feasibility of sustaining such high levels of strain in real devices. For ceria in particular, critical strain levels of 0.1–0.3% have been predicted for membranes of thicknesses above 10 μm before mechanical failure [90,233,234]. As a reference from recent literature, tensile strain levels approaching 0.5% have been successfully realized in perovskite La₀.₇Sr₀.₃Ni₀.₇Ti₀.₃O₃·₅ (LSNT) thin films with a thickness of 1.3 μm [235]. As an alternative to strain engineering via epitaxial growth, vertically aligned nanostructures (VANS) hold promise to stabilize high levels of strain in technological applications [236,237]. Core-shell particles have also been extensively employed to introduce and control strain in bimetallic catalysts [238–240] and, more recently, in oxides [241] and may represent a route to implement strain in SOCs e.g. by introduction of strained nanoparticles in the electrode scaffold.

2.4. Surface orientations and dopants as levers to tune the carbon deposition suppression capability of ceria

In the state-of-the-art Ni-YSZ cathodes operating under SOEC conditions, Ni is well known to catalyze the disproportionation of CO into CO₂ and graphite via the Boudouard reaction (2CO(g) = C + CO₂(g)). Graphitic carbon deposits on the electrode active sites reducing the cell performance, and resulting in Ni dusting, which, eventually, can cause the structural failure of the electrode. The effectiveness of ceria in suppressing carbon deposition has been demonstrated by various studies where ceria was introduced as component of the fuel electrode [242]. Amongst others, Duboviks et al. [56] showed the beneficial effect of a CGO interlayer on reducing carbon formation in porous Ni/CGO electrodes during CO₂ electrolysis. The same group also proved the carbon deposition suppression capability of Cu-CGO electrodes in electrolysis mode in the context of biogas upgrading [57]. Ceria-coating on Ni structures has been revealed to inhibit carbon deposition in low temperature direct-methane fuel cells [60,243]. Graves and coworkers [61] showed that, for a variety of different compositions of CGO-Sr₀.₉₅Pr₀.₇₅MoO₂O₄·₆ (SMF) electrodes infiltrated with CGO or Ni-CGO nanoparticles, coking was observable only on Ni-containing cells. By using operando vibrational Raman, Welander et al. [244] proved that the addition of CGO to a Ni-infiltrated Sr₀.₉₅Ti₀.₉₅O₂ (STN) electrode scaffold decreases the amount of deposited carbon under various CO₂/CH₄ mixtures.

However, recent model electrode studies have shown that only for strongly catalytically underpotentials at critical CO₂/CO ratios, can carbon deposit on ceria surfaces [62,141,245]. Based on these studies, the mechanism governing the onset of carbon formation on ceria, along with possible strategies to mitigate it, have to a large extent been unraveled. By combination of NAP-XPS and Monte Carlo simulations, Yildiz and coworkers [141] revealed how the introduction of dopants in the ceria structure plays a role in its carbon deposition suppression ability at temperatures relevant for LT-SOEC (450 °C) [141]. Carbon deposition was further suppressed on Gd₀.₁Ce₀.₉O₁.₇5 and Zr₀.₃Ce₀.₇O₂ relative to pure or more mildly doped ceria (Gd₀.₁Ce₀.₉O₁.₉₅), with most of the carbon being deposited onto Ce sites rather than on the dopants. The authors individuate the neighboring Ce³⁺–Ce⁵⁺ pairs as the catalytic site for carbon deposition from CO (with oxygen sites, filled or vacant, only playing a minor role). Thus, they show that a threshold of [Ce⁵⁺] is required at the ceria surface for the onset of carbon formation; since Ce⁵⁺ and Ce⁴⁺ arrange alternately, Ce³⁺–Ce³⁺ pairs only become significant above 50% of [Ce⁵⁺]/([Ce⁵⁺] + [Ce³⁺] + [dopant]), at which point both pure ceria and Gd₀.₁Ce₀.₉O₁.₇5 showed the onset of carbon formation. Gd₀.₃Ce₀.₇O₁.₇₅ showed a much lower carbon deposition intensity than the less doped counterpart even when reduced to higher [Ce⁴⁺³], whereas Zr-doped ceria showed negligible amount of deposited carbon irrespective of the degree of reduction. The carbon suppression capability of the dopants is thus attributed to the fact that the non-redox-active dopant cations impede the formation of Ce³⁺–Ce⁵⁺ pairs by “isolating” the Ce³⁺ ions. Importantly, carbon growth saturation was also observed in this work (in agreement with a previous study showing a self-limiting behavior of graphene growth on Cu foils [246]),
KEY POINTS on the role of strain in ceria for CO$_2$ electroreduction:

- Strain can alter the transport properties of metal oxides like ceria, as well as the energy landscape of electrochemical reactions.
- DFT calculations predict a lower energy of formation of oxygen vacancies for tensile strained ceria, both in the bulk and on the surface.
- Strain is also predicted to modify the relative stability of surface and subsurface vacancies and to influence their aggregation in dimers and clusters.
- For CO$_2$ reduction in SOECs, compressive strain in excess of -4.0% is predicted to enhance the turnover frequency (TOF) by 4 orders of magnitude at 800 K.
- Experimentally, under a H$_2$O/H$_2$ atmosphere relevant for SOECs, both dilative and compressive strain were found to enhance substantially the surface concentration of localized electrons, as well as to lower the surface oxygen vacancy formation energy, compared to the surface of a relaxed sample.
- Experimental studies investigating the effect of strain (and associated enhancement of charge carriers) on the electrochemical activity towards H$_2$O splitting or CO$_2$ reduction are still lacking.

with a carbon saturation thickness calculated at 4.2 Å, corresponding to 1–2 monolayers of graphite. The authors also observed a decrease in the peak of the carbonate adsorbate when carbon has deposited. This is in line with what was seen by Skafte et al. [62] in their NAP-XPS study, when they pushed the cathodic overpotential beyond the onset of carbon deposition at 500 °C (between -0.3 and -0.6 V). The depletion of surface carbonates is attributed in both studies to the coverage of the surface by carbon, thus limiting the amount of adsorption sites available for carbonate formation. However, the authors of ref. [62] detected an increase of the peaks corresponding to other oxygenated carbon species (C=O, C−O and/or carboxylate) concomitant to the carbonate peak decrease. Their suggested explanation is that the carbonate coverage facilitates the removal of deposited carbonaceous species, as the carbonates can react to produce carboxylate via a reverse Boudouard reaction (Eq. 12).

$$2(CO_2)_{ads} + C = C + 2O_2^{−} – 4CO^{2−} \quad (12)$$

where O$_2$$^{−}$ refers to an adsorbate-free surface oxygen site. If the reaction of Eq. 12 proceeds with sufficiently high rate, it could explain the simultaneous increase of both surface carboxylate species and carbon deposited on the surface of ceria, along with the depletion of carbonate species.

The carbon deposition suppression capability of doped ceria is thus attributed to two different mechanisms according to the two groups of ref. [141] and [62], resulting in different predictions of the effect of surface orientation on carbon deposition. On the one hand, the NAP-XPS-supported DFT calculations by Skafte et al. [62] point out that low-index surface orientation play a role in the activity towards carbon deposition. Two main effects connected to surface orientation are suggested to play a role in kinetically preventing C deposition. Firstly, a low-index surface orientation play a role in the activity towards carbon formation. However, the authors of ref. [62] and this may be playing a role.

3. Concluding remarks and future perspective

Electrolysis and co-electrolysis of CO$_2$ and H$_2$O in SOECs is envisioned to be the next generation technology for the conversion and storage of electrical energy coming from renewable sources and the production of sustainable fuels and chemicals. One of the main challenges of incorporating SOECs in the energy infrastructure and chemical industry relies in scaling up to the size required by chemical synthesis plants. Alongside, the cell lifetime needs to be improved, especially at high production rates/current densities. Particularly in relation to the fuel electrode, ceria-based materials are considered very promising candidates to address some of the challenges related to the state-of-the-art Ni-YSZ cathode. In order to optimize ceria-based materials for implementation in well-performing and durable electrodes in real devices, the mechanism governing the CO$_2$ reduction reaction on ceria surfaces needs to be fully understood from a mechanistic point of view.

The current status of our understanding of the intrinsic catalytic activity of ceria towards CO$_2$ reduction has been presented here on the basis of a thorough investigation of related literature, highlighting some important findings that have emerged.

The fundamental role of surface localized electrons and oxygen vacancies for CO$_2$ reduction has been recognized in a variety of studies, showing that both these species are essential for the charge transfer of the two electrons involved in the reaction [74]. Localized electrons activate the CO$_2$ molecule during or after adsorption on the ceria surface, with the first electron transfer resulting in the formation of a carbonate as reaction intermediate. Oxygen vacancies play a key role in incorporating one oxygen ion along with the second electron transfer, decomposing the carbonate that subsequently desorbs in the form of gaseous CO. These charge transfer reactions are kinetically limiting the process, each with a relative importance depending on the window of cathodic bias applied. At cathodic overpotentials of -0.1 V, the concentration of adsorbed carbonate intermediates approaches saturation on Sm-doped ceria at 500 °C, a behavior deriving either from strong adsorbate-adsorbate interactions or from the increase of the relative rate of the electron transfer process relative to the formation of the carbonate intermediate. In either case, the final electron transfer process and associated CO desorption appears to be rate limiting for cathodic overpotentials relevant to technological SOEC electrodes.

With respect to carbon deposition, major advancements have been made in understanding the mechanism behind the carbon-tolerance of ceria surfaces. Recent findings have shown that for a ceria-based
It is well established that ceria offers exceptional carbon suppression capabilities under conditions relevant for SOECs application. However, at sufficiently high overpotentials, carbon does deposit on ceria surface.

Non-redox active dopants, like Zr and Gd, enhance the carbon suppression capability of ceria, attributed to the fact that their presence isolates the Ce³⁺ ions and impedes the formation of Ce⁴⁺−Ce³⁺ pairs, which are deemed as the catalytic sites for carbon deposition.

Once carbon deposition initiates, the carbonate coverage is suggested to facilitate the removal of deposited carbonaceous species, as the carbonates react with the deposited carbon and surface oxygen ions to produce carbonate via a reverse Boudouard reaction.

The role of ceria low index surface orientation with respect to carbon deposition prevention remains unexplored; if the mechanism for carbon deposition relies on Ce⁴⁺−Ce³⁺ pairs as catalytic sites, the orientation of the surface should not have a substantial effect, since the distance between the nearest Ce−Ce pairs is the same. On the other hand, if the mechanism of carbon deposition is more strongly related to the carbonate formation and coverage, both the different configuration of the adsorbate and oxygen vacancy concentration expected from different orientations would result in a different behavior for the three low index surface terminations, with the 100 and 110 being the best in preventing C-deposition.

Electrochemical kinetic studies making use of model nanostructured electrodes in the form of thin films, combined with operando spectroscopic techniques [250], are well-suited for the above discussed purposes. Physical vapor deposition (PVD) techniques such as pulsed laser deposition (PLD) offer a means to vary the parameters in a controlled and systematic manner. Amongst the spectroscopic techniques, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is one of the most valuable, since it combines the advantage of surface sensitivity (with tunable information depth) with information about type and configuration of adsorbates, surface composition, and electronic states, which are all very critical for these studies [251–255]. In the context of fundamental studies employing thin films, efforts must also be directed towards new current collector approaches that can help realize homogeneous and well controlled polarization in the case of ultrathin strained films or less conductive doped ceria, without the disadvantages of the metal grids typically used.

There is no doubt that ceria has great potential as a component in SOEC fuel electrodes, both for H₂O and CO₂ electroreduction. Existing literature has showcased its exceptional electrochemical activity and ability to suppress carbon-deposition. Besides these critical surface functionalities, ceria is also one of the best known MIECs under SOEC fuel electrode conditions, very important in terms of achieving a large utilization thickness in technological electrodes and extending the electrochemically active surface area to the entire two dimensional ceria-gas interface. Furthermore, ceria offers a very flexible platform for tuning its bulk and surface functional properties by means of doping, strain, and nanoshaping. Navigating this immense phase space of possibilities requires a rational approach based on a solid understanding of the mechanistic aspects of the electrochemical reaction of interest and of the role of these tunable parameters. We hope that this review, extracting established understanding gained after decades of research efforts, will provide a useful springboard for further progress in this direction.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by a research grant (9455) from VILLUM FONDEN. E.M.S. gratefully acknowledges Prof. Heine Anton Hansen for helpful insights on the carbonate adsorption geometry and Dr. Francesco Chiabrera for fruitful discussions and feedback on the manuscript.
References

[14] Z. Chehade, C. Mansilla, P. Lucchese, S. Hilliard, J. Proost, Review and analysis of

[16] J.B. Hansen, F. Fock, H.H. Lindboe, Biogas upgrading: by steam electrolysis or co-

[19] W.C. Chueh, S.M. Haile, Ceria as a thermochemical reaction medium for

[21] W.C. Chueh, S.M. Haile, Ceria as a thermochemical reaction medium for

[23] M.B. Mogensen, et al., Ni migration in solid oxide cell electrodes: review and

[25] M.B. Mogensen, et al., Ni migration in solid oxide cell electrodes: review and

[26] W.C. Chueh, S.M. Haile, Ceria as a thermochemical reaction medium for

[28] W.C. Chueh, S.M. Haile, Ceria as a thermochemical reaction medium for

[30] W.C. Chueh, S.M. Haile, Ceria as a thermochemical reaction medium for

[84] W.C. Chueh, et al., Highly enhanced concentration and stability of reactive Ce$^{3+}$ and Ce$^{4+}$ in CeO$_2$–YSZ solid oxide electrolysers investigated by Operando photoelectron spectroscopy, J. Power Sources 245 (2013) 176–182.

