
SECTION FOR DIGITAL SIGNAL PROCESSING

DEPARTMENT OF MATHEMATICAL MODELLING

TECHNICAL UNIVERSITY OF DENMARK

Introduction to Arti�cial Neural Networks

Jan Larsen

1st Edition

c November 1999 by Jan Larsen

i

Contents

Preface iv

1 Introduction 1

1.1 De�nitions of Neural Networks . 2

1.1.1 Information Processing in Large Networks of Simple Computers . . 2

1.1.2 Learning/Adaptation by Examples 2

1.1.3 Generic Nonlinear Dynamical Systems 4

1.2 Research and Applications . 4

1.3 Historical Outline . 5

2 Feed-forward Neural Network 7

2.1 Geometrical Interpretation . 9

2.2 Universal Function Approximation . 10

2.3 Regression . 12

2.4 Signal Processing Applications . 13

2.4.1 Nonlinear System Identi�cation . 13

2.4.2 Nonlinear Prediction . 13

2.5 Classi�cation . 13

3 Neural Network Training 14

3.1 Gradient Descend . 17

3.1.1 Choosing a Fixed Step-Size, � . 18

3.1.2 Choosing Step-Size by Line Search 18

3.2 Backpropagation . 19

3.2.1 Summary of Gradient Descend Algorithm 21

4 Generalization 21

4.1 Overtraining . 23

4.2 Local Minima . 23

5 Neural Network Architecture Optimization 24

5.1 Regularization Using Weight Decay . 24

5.2 Architecture Optimization . 24

5.2.1 Optimal Brain Damage . 25

A Neural Network Regression Software 27

A.1 MATLAB Functions in the Neural Regression Package 28

A.1.1 Function Overview . 28

A.1.2 Main Function nr_netprun.m . 29

A.1.3 Subroutine nr_calcul.m . 29

A.1.4 Subroutine nr_cost_c.m . 29

A.1.5 Subroutine nr_cost_e.m . 30

A.1.6 Subroutine nr_dimen.m . 30

A.1.7 Subroutine nr_extract.m . 31

A.1.8 Subroutine nr_forward.m . 31

A.1.9 Subroutine nr_getdata.m . 31

A.1.10 Subroutine nr_gradient.m . 32

ii

A.1.11 Subroutine nr_linesear.m . 32
A.1.12 Subroutine nr_linesearch.m . 33
A.1.13 Subroutine nr_plotnet.m . 33
A.1.14 Subroutine nr_plotsal.m . 34
A.1.15 Subroutine nr_prune.m . 34
A.1.16 Subroutine nr_pseuhess.m . 35
A.1.17 Subroutine nr_tanhf.m . 35
A.1.18 Subroutine nr_train.m . 36
A.1.19 Subroutine nr_trainx.m . 37
A.1.20 Subroutine nr_two_norm.m . 38
A.1.21 Subroutine nr_winit.m . 38

B Neural Network Classi�cation Software 38
B.1 Network Classi�er Architecture . 38
B.2 Training and Regularization . 39
B.3 MATLAB Functions in the Neural Classi�cation Package 41

B.3.1 Function Overview . 41
B.3.2 Main Function nc_netprun.m . 42
B.3.3 Subroutine nc_cl_error.m . 42
B.3.4 Subroutine nc_cl_probs.m . 43
B.3.5 Subroutine nc_cost_c.m . 43
B.3.6 Subroutine nc_cost_e.m . 44
B.3.7 Subroutine nc_dimen.m . 44
B.3.8 Subroutine nc_err_frac.m . 44
B.3.9 Subroutine nc_eucnorm.m . 45
B.3.10 Subroutine nc_forward.m . 45
B.3.11 Subroutine nc_getdata.m . 45
B.3.12 Subroutine nc_gradient.m . 46
B.3.13 Subroutine nc_linesear.m . 46
B.3.14 Subroutine nc_plotnet.m . 47
B.3.15 Subroutine nc_plotsal.m . 47
B.3.16 Subroutine nc_prune.m . 47
B.3.17 Subroutine nc_pseuhess.m . 48
B.3.18 Subroutine nc_softmax.m . 49
B.3.19 Subroutine nc_tanhf.m . 49
B.3.20 Subroutine nc_train.m . 49
B.3.21 Subroutine nc_winit.m . 50

Bibliography 51

iii

Preface

The present note is a supplement to the textbook Digital Signal Processing [13] used in
the DTU course 04361 Digital Signal Processing (Digital Signalbehandling).

The note addresses introduction to signal analysis and classi�cation based on arti�cial
feed-forward neural networks.

Parts of the note are based on former 04364 course note: Introduktion til Neurale
Netv�rk, IMM, DTU, Oct. 1996 (in Danish) by Lars Kai Hansen and Morten With
Pedersen.

Jan Larsen
Lyngby, November 1999

The manuscript was typeset in 11 points Times Roman and Pandora using LATEX2".

iv

1 Introduction

In recent years much research has directed towards adaptive models for design of exible
signal processing systems. Adaptive models display the following advantageous properties:

� The ability to learn a signal processing task from acquired examples of how the task
should be resolved. A general task is to model a relation between two signals. In
this case the learning examples simply are related samples of these signals. The
learning (also referred to as supervised learning) is often done by adjusting some
parameters (weights) such that some cost function is minimized. This property may
be valuable in situations where it is di�cult or impossible to exactly explain the
physical mechanisms involved in the task.

� The possibility of continuously tracking changes in the environments, i.e., handling
of non-stationary signals.

� The ability of generalizing to cases which were not explicitly speci�ed by the learning
examples. For instance, the ability to estimate the relation between two signals which
were not used for training the �lter.

Bernard Widrow pioneered the development of linear adaptive systems and early arti�-
cial neural network models in the sixties, and they have proved to be very successful in
numerous applications areas: system identi�cation, control, speech and image processing,
time-series analysis, pattern recognition/classi�action and datamining. This is mainly due
to the model's ability to adapt to changing environmental conditions and development of
simple and easy implementable algorithms like the Least Mean Squares algorithm. While
the bulk of theoretical results and algorithms exist for linear systems, non-linearity is
notoriously inherent in many applications. An illustrative example is that many physical
systems display very complex behavior such as chaos and limit cycles, and are consequently
intrinsically nonlinear. The obvious drawbacks of dealing with nonlinear models are:

� The class of nonlinear models contains, in principle, all models which are not linear.
Thus it is necessary to delimit subclasses of nonlinear models which are applicable
in a wide range of signal processing tasks. Moreover optimal performance requires
adaptation of the model structure to the speci�c application.

� The computational complexity of nonlinear models often is signi�cantly larger than
linear models.

� Theoretical analysis often is very involved and intractable.

The �eld of adaptive signal processing based on arti�cial neural networks is an extremely
active research �eld and has matured considerably during the past decade. The �eld is
highly interdisciplinary and combines many approaches to signal processing in solving real
world problems.

Neural networks is a very fascinating topic as more conventional algorithms does not
solve signi�cant problems within e.g., signal processing, control and pattern recognition
- challenges which is handled easily by the human brain, e.g., focusing the attention on
a speci�c speaker in a room with many speakers or recognizing/designating and under-
standing the nature of a sound signal. In other words: Obviously there exist solutions to
many complicated problems but it is often not possible to state in details. This note is

1

devoted to arti�cial neural networks which is an attempt to approach the marvelous world
of a real neural network: the human brain.

For elaborate material on neural network the reader is referred to the textbooks:

� Christopher Bishop: Neural Networks for Pattern Recognition [1].

� Simon Haykin: Neural Networks: A Comprehensive Foundation [4].

� John Hertz, Anders Krogh and Richard G. Palmer: Introduction to the Theory of

Neural Computation [5].

� Brian Ripley: Pattern Recognition and Neural Networks [14].

1.1 De�nitions of Neural Networks

1.1.1 Information Processing in Large Networks of Simple Computers

The human brain - also covered by this de�nition - is characterized by:

� Human brain has 1011 = 100 billion neurons. The thickness of a bank note is approx.
0:1 mm, i.e., the stack of 100 billion bank notes has the length of 100 km.

� Each neuron has 104 connections, i.e., the network is relatively sparsely connected.

� Neurons �re every few milliseconds.

� Massive parallel processing.

A neuron (nervous cell) is a little computer which receive information through it dendrite
tree, see Fig. 1. The cell calculates continuously it state. When the collective input to the
neuron exceeds a certain threshold, the neuron switches from an inactive to an active state
- the neuron is �ring. The activation of the neuron is transmitted along the axon to other
neurons in the network. The transition of the axon signal to another neuron occur via the
synapse. The synapse itself it also a computer as it weigh, i.e., transform the axon signal.
Synapses can be either excitatory or inhibitory. In the excitatory case the �ring neuron
contributes to also activating the receiving neuron, whereas for inhibitory synapses, the
�ring neuron contributes to keep the receiving neuron inactive.

Arti�cial neural networks using state-of-the-art technology do however not provide this
capacity of the human brain. Whether a arti�cial system with comparable computational
capacity will display human like intelligent behavior has been questioned widely in the
literature, see e.g., [18]. In Fig. 2 a general arti�cial neural network is sketched.

1.1.2 Learning/Adaptation by Examples

This is most likely the major reason for the attraction of neural networks in recent years.
It has been realized that programming of large systems is notoriously complex: \when
the system is implemented it is already outdated". It is possible to bypass this barrier
through learning.

The learning-by-example paradigm as opposed to e.g., physical modeling is most easily
explained by an example. Consider automatic recognition of hand-written digits where
the digit is presented to the neural network and task is to decide which digit was written.
Using the learning paradigm one would collect a large set of example of hand-written

2

Synapse

Cel l

Dendrite

Axon

Figure 1: The biological nervous cell { the neuron.

Output
Neuron

Output
NeuronHidden

Neuron

Hidden
Neuron

Hidden
Neuron

x1

x2

x3

y2

y1^

^

Figure 2: The general structure of an arti�cial neural network. x1; x2; x3 are 3 inputs andby1; by2 2 outputs. Each line indicates a signal path.

digits and learn the nature of the task by adjusting the network synaptic connection so
that the number of errors is as small as possible. Using physical modeling, one would
try to characterize unique features/properties of each digit and make a logical decision

3

Approach Method Knowledge acquisition Implementation

System & infor-
mation theory

Model data,
noise, physical
constraints

Analyze models to �nd
optimal algorithm

Hardware imple-
mentation of algo-
rithm

AI expert system Emulate human
expert problem
solving

Observe human experts Computer pro-
gram

Trainable neural
nets

Design architec-
ture with adap-
tive elements

Train system with exam-
ples

Computer simula-
tion or NN hard-
ware

Table 1: Comparison of information processing approaches [2].

based on the presensense/absense of certain properties as illustrated in Fig. 3. In Table 1

Digit to be
classified

Algorithm

Decide
digit

If prop. 1,2,...
then digit=1

elseif prop. 1,2,...
then digit=2

etc.

Examples

Digit to be
classified

Decide
digit

Figure 3: Upper panel: Physical modeling or programming. Lower panel: Learning by
example.

a comparison of di�erent information processing approaches is shown.

1.1.3 Generic Nonlinear Dynamical Systems

Such systems are common in daily life though di�cult to handle and understand. The
weather, economy, nervous system, immune system are examples of nonlinear systems
which displays complex often chaotic behavior. Modern research in chaotic systems in-
vestigate fundamental properties of chaotic systems while arti�cial neural networks is an
example but also a general framework for modeling highly nonlinear dynamical systems.

1.2 Research and Applications

Many researchers currently show interest in theoretical issues as well as application re-
lated to neural networks. The most important conferences and journals related to signal

4

processing are listed below:

Conferences

� IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP.
Web: http://www.ieee.org/conferences/tag/sct1sp.html

� Advances Neural Information Processing Systems, NIPS.
Web: http://www.cs.cmu.edu/Groups/NIPS/

� IEEE Workshop on Neural Networks for Signal Processing, NNSP.
Web: http://eivind.imm.dtu.dk/nnsp2000

Journals

� Neural Computation.

� IEEE Transactions on Signal Processing.

� IEEE Transactions on Neural Networks.

� Neural Networks.

Real world industrial/commercial applications of neural networks is e.g., found in IEEE
Transaction on Neural Networks; Special Issue on Everyday Applications of Neural Net-
works, July 1997 and at International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). A selection of these applications are: check reading, intelligent control
of steel plants, credit card fraud detection, electric load forecasting, economic forecasting,
software quality modeling, and cork quality classi�cation.

Since late eighties many companies has shown increasingly interest in soft and hard-
ware for neural networks applications. In Denmark a small number of companies has
specialized in neural networks and many more routinely use neural networks in their R&D
departments. A large number of commercial software packages like Brainmaker or Neural
Networks Toolbox for MATLABTM are currently available. Also neural network hardware
products for fast processing has been developed. Hecht-Nielsen Neurocomputers Inc. was
one of the �rst companies which marketed a PC plug-in acceleration card and INTEL
manufactured a chip (ETANN) based on advanced analog VLSI design. Current trend
is, however, to use standard general computers or programmable chips like digital signal
processors.

1.3 Historical Outline

The research was initiated by McCulloch & Pitts [12] in 1943 who proposed a simple
parametric nonlinear computational model of a real neuron. Rosenblatt [15], [16] pro-
posed around 1960 a layered neural network consisting of perceptrons and an algorithm
for adjusting the parameters of single layer perceptron network so that the network was
able to implement a desired task. At the same time Widrow and Ho� [20] proposed the
MADALINE neural network which resembles the perceptron network. Widrow pioneered
the use of neural networks within signal processing and in [19] a review of this work can be
found. However, the work in 1969 by Minsky and Papert was crucial to the development
as they showed that the one-layer perceptron network was not capable of implementing

5

simple tasks (as e.g., the XOR problem) and algorithms for adjusting the weights of multi
layered perceptron networks were not invented.

Until the eighties the interest on nonlinear systems and neural networks became sparse.
However, the extensively increased power of the computers in the eighties enabled to study
more complex phenomena and a lot of progress was made within the study of chaos. Fur-
thermore, around 1985 [11] an algorithm for adjusting the parameters (learning) of a
multi-layered neural network { known as the back-propagation algorithm { was rediscov-
ered. This turned on an enormous interest for neural networks.

In the DARPA study (1988) [2] a number of prominent neural network scientists de-
vised the directions of the future neural network studies. They concluded that neural
networks may provide a very useful tool within a broad range of applications.

Brief History1

1943 McCulloch and Pitts: Modeling bio-systems using nets of simple logical opera-
tions.

1949 Hebb: Invented a biologically inspired learning algorithm. Connections which are
used gain higher synaptic strength. On the other hand, if a connection is not used
it synaptic strength tends to zero.

1958 Rosenblatt: The Perceptron { a biologically inspired learning algorithm. The
hardware implementation was a large \adaptive" switchboard.

1950's: Other types of simple nonlinear models, e.g., the Wiener and Hammerstein model.

1960 Widrow and Ho�: Learning rules for simple nets. Hardware implementation and
signal processing applications.

1969 Minsky & Papert: negative analysis of the simple perceptron.

1982 Hop�eld: Analogy between magnetism and associative memory { The Hop�eld

model.

1984 Hinton et al.: Supervised learning for general Boltzmann machines with hidden
units signi�cantly change the premises for Minsky and Papert's analysis.

1969{1986: The neural network blackout period.

1986 Rumelhart et al.: Rediscovery of the \Backpropagation of errors" algorithm for
feed-forward neural networks.

1987: First commercial neuro computers: The Hecht-Nielsen ANZA PC add-on boards.
The Science Application International Corp. DELTA PC add-on board.

1988 DARPA Study: The DARPA study headed by Widrow demonstrated the poten-
tial of neural networks in many application areas { especially signal processing { and
had a great impact on research.

2000: Many commercial products and focused research.

1A more elaborate survey is found in [3].

6

Since 1988 the �eld has matured signi�cantly and thousands of researchers work in �eld of
neural networks or related areas. In Denmark the Danish Research Councils (SNF, STVF)
supported the establishment of The Computational Neural Network Center (CONNECT)
in 1991 with partners from The Niels Bohr Institute, DTU and Ris� National Laboratory.
CONNECT studied the theory, implementation and application of neural computation.
An up-to-date idea of the current research can be found at

http://eivind.imm.dtu.dk/thor

2 Feed-forward Neural Network

The structure of the 2-layer feed-forward neural network is show in Fig. 4. The 2-layer

x1

xnI

3

w

7

s

bynO

h1

by1

6

hnH

?

+1

-1
w

?
+1

-q

6

7

wO
ijwI

j`

+1

+1

...
...

...

wI
nH ;0

wI
10

wO
10

wO
nO;0

Figure 4: Two-layer (nI ; nH ; nO) feed-forward neural network architecture.

feed-forward network has nI inputs, nH hidden neurons, and nO output neurons; for short
hand the nomenclature (nI ; nH ; nO) is used. The network is a graphical representation of a
layered computation: the hidden unit activation h1; � � � ; hnI in the �rst layer is calculated
from the inputs x1; � � � ; xnI . Next the output cy1; � � � ; bynO are calculated from the hidden
unit activations. The processing in networks is given

hj(x) =

nIX
`=1

wI
j`x` + wI

j0

!
(1)

byi(x) =

0@nHX
j=1

wO
ijhj(x) + wO

i0

1A (2)

where

� x = [1; x1; � � � ; xnI] is the input vector.

7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

u

sgn(u) tanh(u)

Figure 5: Two examples of typical activation functions: The sign function sgn(u) (solid
line) and the hyperbolic tangent tanh(u) (dotted line).

� (u) is a non-linear activation function which usually is has a sigmoidal shape, e.g.,
 (u) = tanh(u), see Fig. 5.

� wI
j` is the weight from input ` to hidden neuron j.

� wO
ij is the weight from hidden neuron j to output i.

� wI
j0, w

O
i0 are bias weights or thresholds.

A simple matrix formulation of the processing is possible by de�ning

� W I the (nH ; nI +1) input-hidden weight matrix andWO the (nO; nH +1) hidden-
output weight matrix:

W I = fwI
j`g =

266666664

(wI
1)
>

...
(wI

j)
>

...
(wI

nH
)>

377777775
WO = fwO

ijg =

26666664

(wO
1)

>

...
(wO

i)
>

...
(wO

nO
)>

37777775 (3)

where (wI
j)
> is the j'th row of the input-hidden weight matrix and (wH

i)
> is the

i'th row of the hidden-output weight matrix.

� x = fx`g the (nI + 1; 1) input vector with x0 � 1.

� h = fhjg the (nH + 1; 1) hidden vector with h0 � 1.

� by = fbyig the (nO; 1) output vector.
� (u) = [(u1); � � � ; (un)] the element-by-element vector activation function.

The processing is then given by:

h = (W I � x) (4)by = (WO � h) = f(x;w) (5)

8

For short hand, we notice the networks can viewed as a nonlinear function of the input
vector x parameterized by the column weight vector w = fvec(W I); vec(WH)g which is
the collection of all network weights. The total number of weights m equals (nI +1)nH +
(nH + 1)nO.

The processing in the individual neuron is thus a sum of its inputs followed by the
non-linear activation function, as show in Fig. 6 for hidden neuron j.

+ (�) hj

x1

xnI

s
3

?
-

wI
j1

wI
jnI

+1

wI
j0

-...

Figure 6: Processing in a neuron.

2.1 Geometrical Interpretation

A geometrical interpretation of the processing in a neuron is possible. Consider choosing
the sign function as activation function, i.e., (u) = sgn(u), then the processing of hidden
unit j is hj = sgn(wI

jx) where (w
I
j)
> is the j'th row ofW I . De�ne the nI�1 dimensional

hyperplane HI
j

x>wI
j = 0, wI

j0 + ex> ewI
j = 0 (6)

where ewI
j and ex are truncated versions of the weight and input vector, respectively, omit-

ting the �rst component. The hyperplane thus separates the regions in input space for
which the output of the neuron is +1 and �1, respectively, as shown in Fig. 7. That
is a single neuron are able to linearly separate input patterns into two classes. When
 (u) = tanh(u) a smooth transition from �1 to +1 will occur perpendicular to the hyper-
plane, and the output will be a continuous function of the input. A two-layer network can
perform more complex separation/discrimation of input patterns. Consider (2; 2; 1) net-
work in which all neurons have sign activation functions. An example is shown in Fig. 8.

Example 2.1 The famous XOR problem in Fig. 9 which Minsky and Papert showed
could not be solved by a single perceptron [5, Ch. 1.2] can be solved by a (2; 2; 1) network
as shown in Fig. 10. which Minsky and Papert showed could not be solved by a single
perceptron [5, Ch. 1.2] can be solved by a (2; 2; 1) network as shown in Fig. 10.

�

9

-

6

x1

x2

ewI
jK

HI
j

hj = +1

hj = �1

Figure 7: Separating hyperplane. ewI
j is the normal vector of the hyperplane.

-

6

x1

x2

ewI
1K

HI
1

�ewI
2

HI
2

(h1; h2) =

(+1;+1)

(h1; h2) = (+1;�1)

(h1; h2) = (�1;�1)

(h1; h2) = (�1;+1)

-

6

h1

h2

(+1;+1)

(+1;�1)

(�1;+1)

(�1;�1)

HO
1]

ewO
1by = +1

by = �1

Figure 8: Example of separation in a (2; 2; 1) feed-forward neural network. The area below
HI

1 and HI
2 in input space is thus assigned output by = +1; the remaining input space is

assigned by = �1.
2.2 Universal Function Approximation

A 2-layer feed-forward neural network with nI continuous inputs, hyperbolic tangent hid-
den unit activation functions and a single linear output neuron, i.e., (u) = u, has the

x1 x2 by
-1 -1 -1

-1 +1 +1

+1 -1 +1

+1 +1 -1

Figure 9: The XOR problem.

10

-

6

x1

x2

(1; 1)

(1;�1)

(�1; 1)

(�1;�1)

-

6

h1

h2

(1; 1)

(1;�1)

(�1; 1)

(�1;�1)

HI
1

HI
2

+

�

+
�

(h1; h2) = (1; 1)

(h1; h2) = (�1; 1)

(h1; h2) = (�1;�1)

by = 1

by = �1 HO
1

+
�

doesn't occur

Figure 10: Solving the XOR problem by a (2,2,1) feed-forward perceptron neural network.
Note that the locations of the hyperplanes are not unique.

property of universal approximation of any continuous function, by = g(x) to any desired
accuracy provides the number of hidden units are large, see e.g., [7]. That is, as nH !1
the approximation error jjg(x)� f(x;w)jj tends to zero2.

The universal approximation theorems are existence theorems, hence, they do not
provide any guideline for selecting the network weights or (limited) number of hidden
unit to reach a prescribed accuracy. Training of neural networks and selection of proper
network architecture/structure are important issues dealt with in what follows.

Example 2.2 This examples shows how the a feed-forward neural network with hyper-
bolic tangent activation function in the hidden layer and linear output neuron are able to
approximate the (one-dimensional) nonlinear function

g(x) =
h
exp

�
�20(x� 0:5)2

�
� exp

�
�10(x+ 0:6)2

�i
�

�
1

1 + exp(4x� 2)

�
��

1�
1

1 + exp(4x+ 2)

�
: (7)

In Fig. 11 the graph of g(x) is shown. A (1; 8; 1) network with weight matrices

W I =

"
3:65 4:06 1:87 1:19 �1:84 �2:88 �4:25 �5:82
4:94 6:65 5:39 6:19 7:26 8:05 7:41 8:37

#>
(8)

WO = [0:0027;�0:218;�0:0793; 0:226; 0:0668; 0:159; 0:177;�0:259;�0:0758] (9)

produces the approximation shown in Fig. 12.

�

2jj � jj denotes a norm.

11

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

g(x)

Figure 11: Graph of g(x) given by Eq. (7).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

1 2 3 4 5 6 7 8

(a)

1

3

4

5

6

7

8

2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

0

(b)

Figure 12: Panel (a): g(x) (dash-dotted line) and the piece-wise constant approximation
(solid line) produced by the neural network using sign function hidden layer activation.
The vertical dashed lines are the hyperplane locations of the eight hidden neurons. Panel
(b): The contributions from the individual hidden neurons multiplied by corresponding
output weights. Thus adding all contributions will produce a curve close to the original
g(x). The neurons are indicated by numbers in circles, thus neuron no. 0 refers to the bias
input, cf. Fig. 6.

2.3 Regression

Modeling the statistical relation between the stochastic continuous output (response) y
and input (regressor) x is referred to as regression. A typical regression model is the
additive noise model:

y = by + " = g(x) + " (10)

where " is an random error in y which can not be explained by the input. Exploiting
the universal function approximation capability of the feed-forward neural network, the

12

neural network regression model is given by

y = by + e = f(x;w) + e (11)

where e is random error3.

2.4 Signal Processing Applications

Consider digital signals x(k) and y(k). Signal processing applications can be cast into a
regression framework:

y(k) = f(x(k);w) + e(k) = by(k) + e(k) (12)

where f(�) represents the neural network with hyperbolic tangent hidden units and linear
output unit, w is the network weight vector, x(k) = [x(k); x(k � 1); � � � ; x(k � nI + 1)] is
the input signal vector, and e(k) is the error signal which expresses the deviation of the
estimated output by(k) from the output signal y(k).

Example 2.3 If the network consist of a single linear neuron, then

y(k) = w>x(k) + e(k) (13)

In that case the neural network reduces to a linear adaptive FIR �lter [17] with y(k) as
the target signal.

�

2.4.1 Nonlinear System Identi�cation

The identi�cation of an unknown nonlinear system is shown in Fig. 13.

2.4.2 Nonlinear Prediction

Nonlinear prediction is shown in Fig. 14.

2.5 Classi�cation

Consider a classi�cation problem for which each (continuous) input pattern x belongs to
one, and only one4, speci�c class Ci, i = 1; 2; � � � ; c out of c possible classes. An example
is depicted in Fig. 15. E.g., x could represent a set of features describing a hand-written
digit, and C1; � � � ; C10 would represent the 10 digits. Another example is that the input is
a signal vector x(k) and the objective is to decide the membership of c possible groups.
Consider e.g., a music signal, then the groups could represent semantic annotations of the
signal like: jazz music, rock music, classical music, other music.

Even though every pattern uniquely belongs to a speci�c class, there may overlap
among classes, as illustrated in Fig. 15. Thus a statistical framework is deployed in which
the aim is to model the conditional probabilities p(Cijx), i = 1; 2; � � � ; c. That is, the prob-
ability that a speci�c input pattern x belongs to class Ci. Knowing these probabilities

3In general, " and e are di�erent, due to the fact that the neural network can not implement the
underlying target function g(x) exactly.

4This is referred to as mutually exclusive classes.

13

z
�1

z
�1

?

?

-

-

x(k) -

-

x(k � 1)

x(k � nI + 1)

f(x(k);w) -by(k)
+

�

x1(k)

?y(k)+

�

e(k)

...

Neural
Network

x2(k)

xnI (k)

Unknown
Nonlinear
System

Figure 13: Identi�cation of an unknown nonlinear system. The error signal e(k) is used
to adapt the parameters of the neural network. by(k) is the neural network's prediction of
nonlinear system output.

allows for an optimal class assignment. By assigning class i = argmaxj p(Cj jx) to input
pattern x, the probability of misclassi�cation (misclassi�cation percentage) is minimized
according to Bayes rule [1]. Following [6], the outputs, by1; � � � ; byc of the neural network
represent estimates of the true conditional probabilities p(Cijx), then the number of mis-
classi�cations is minimized by assigning class Ci to the input pattern x for which byi is
maximum. The network is then a (nI ; nH ; c) network. See Appendix B for a detailed
description of the neural network classi�er.

3 Neural Network Training

Training or adaptation of the neural network for a speci�c task (regression/classi�cation)
is done by adjusting the weights of the network so as to minimize the discrepancy between
the network output and the desired output on a set of collected training data:

T = fx(k); y(k)gNtrain

k=1 (14)

where k index the k'th training example (e.g., time index k) and Ntrain is the number
of available training examples. y(k) is the target (desired) output associated with input
x(k). The output is for simplicity assumed to be a scalar, although the results are easily
modi�ed to allow for vector outputs.

14

z
�1

z
�1

?

?

-

-

x(k) -
z
�d

x(k � d� 1)

x(k � d� nI + 1)

f(x(k � d);w) -by(k)
+

�

- x(k � d) = x1(k)

?y(k)+

�

e(k)

...

Neural
Network

x2(k)

xnI (k)

C
op
y
W
ei
gh
ts

z
�1

z
�1

?

?

-

-

-

x(k � 1)

x(k � nI + 1)

f(x(k);w) - by(k) = bx(k + d)

x(k) = x1(k)

...

Neural
Network

x2(k)

xnI (k)

Figure 14: Nonlinear d step ahead prediction. In the adaptation phase, the objective of the
neural network is to predict x(k) from the delayed signal vector x(k�d). Once the network
is adapted, the d step ahead prediction is obtained by feeding a neural network with x(k)
using the adapted weights w. Thus this copy of the network produces an prediction of
x(k + d).

The rest of the note will focus on regression/time-series processing problems although
the techniques easily are adopted for classi�cation problems, see Appendix B.

15

−8 −6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

 x1

 x
2

C
1

C
2

C
3

Figure 15: 3 classes in a 2D input space. The objective of classi�cation is to separate
classes by learning optimal decision boundaries from a set of training patterns. Once
decision boundaries are learned new patterns can be automatically classi�ed. Each pattern
uniquely belongs to a class; however, the classes may be overlapping input space, thus the
best classi�er still will misclassify a certain percentage of the patterns.

As a measure of performance for speci�c weights using the available training data we
often use the mean square error (MSE) cost function5

ST (w) =
1

2Ntrain

NtrainX
k=1

(y(k)� by(k))2
=

1

2Ntrain

NtrainX
k=1

(y(k)� f(x(k);w))2

=
1

2Ntrain

NtrainX
k=1

e2(k) (15)

The value of the cost function is for each example k obtained by applying the input x(k)
to the network using weights w and comparing the output of the network by(k) with the
desired output y(k). The cost function is positive expect when choosing weights for which
e(k) � 0 for all examples. The smaller cost, the smaller is the network error on average
over training examples.

The cost function ST (w) is a continuous di�erentiable function of the weights and the
training is done by adjusting the m = nI � nH + 2 � nH + 1 weights contained in w so as
to minimize the cost function. Multivariate function minimization is a well-known topic
in numerical analysis and numerous techniques exist.

5The factor of 2 in the denominator is included by convenience only.

16

The cost function is generally not a convex function of the weights which means that
there exist many local optima and further the global optimum is not unique. There are no
practical methods which are guaranteed to yield the global optimum in reasonable time so
one normally resort to searching for a local optimum. The necessary condition for a local
optimum bw (maximum,minimum,saddle point) is that the gradient of the cost function
with respect to the weights are zero, as shown by

rST (bw) = @ST (w)

@w

����
w=bw =

�
@ST (w)

@w1

����
w=bw ; � � � ; @ST (w)@wm

����
w=bw

�>
= 0 (16)

This set of m equations are signi�ed the normal equations. It should be stressed that
determining one minimum bw from all training data is an o�-line method as opposed to
on-line methods like the LMS algorithm for linear adaptive �lters [17] which (in principle)
continuously determines the optimal solution for each sample.

Example 3.1 Considering a single linear unit neural network, the model is y(k) =
w>x(k) + e(k). The cost function is quadratic in the weights, the optimal solution is
unique and corresponds to the Wiener �lter [13, Ch. 11].

�

3.1 Gradient Descend

Gradient descend is an iterative technique for solving the normal equations in Eq. (16).
From an arbitrary initial guess w(0) a change �w(0) which ensures a descend in the cost
function. Thus if the weights iteratively are updated according to

w(j+1) = w(j) + ��w(j) (17)

where w(j) denotes the solution in iteration j, and � > 0 is a suitable step-size, then the
cost is assured to decrease.

In gradient descend, �w(j) = �rST (w
(j)). The the update is thus chosen as the

direction where the cost has the steepest descend, i.e., in the direction of the negative
gradient.

In order to perform gradient descend the partial derivatives of the cost function for the
neural network is required. This is the topic of Section 3.2. Moreover a suitable step-size
needs to be selected which is discussed below.

As stopping criterion for training more possibilities exist. An obvious choice is to
terminate training when the change in cost function from one iteration to another is
small, i.e.,

ST (w
j)� ST (w

(j+1)) < �cost (18)

where �cost is a small constant. Using this stopping criterion does, however, not ensure
that the weights are in the vicinity of a minimum which is determined by the condition
rST (w) = 0. Another stopping criterion is thus

krSV(w
(j))k2 < �grad (19)

where �grad is a suitable small constant. kuk2 =
P

i u
2
i denotes the 2-norm or Euclidean

length.
Generally the neural network training is time consuming, many iteration in Eq. (17)

is normally required. Thus usually also a limit on the maximum number of iterations is
desirable.

17

3.1.1 Choosing a Fixed Step-Size, �

The most simple choice is to keep the step-size { also denoted the learning rate { �xed
and constant in every iteration. The convergence, however, is very sensitive to the choice.
If � is very small, the change in weights are small, and often the assured decrease in
the cost is also very small. This consequently leads to a large number of iterations to
reach the (local) minimum. On the other hand, if the � is rather large, the cost function
may increase and divergence is possible. Fig. 16 illustrates these situations for a simple
quadratic cost function with two weights and minimum in w = [1; 1]>. The optimal

−5 −4 −3 −2 −1 0 1 2 3 4

−15

−10

−5

0

5

10

15

(a)

−40 −30 −20 −10 0 10 20 30 40

−15

−10

−5

0

5

10

15

(b)

Figure 16: The �gures show contours of the cost function as well as the trace of iteration
when performing gradient descent for quadratic cost function with two weights. The
iterations starts in (2;�15) indicated by an asterisk. Panel (a): 500 iterations using small
step-size � = 0:01. The iterations are very close and after some time the trace shift it
direction toward the valley of the minimum. The gradient in this valley is low, and since �
also is small, the total number of iterations become pretty large. Panel (b): Large step-size
� = 0:15. In each iteration the cost function increases and divergence is inevitable.

choice of the step-size is in-between the extreme values in Fig. 16. The choice of � is very
problem dependent, so the straight forward strategy is trial and error. In panel (a) of
Fig. 17 the training is done with � = 0:1 and the stopping criterion is krST k2 < 0:01 is
obtained in 207 iterations.

3.1.2 Choosing Step-Size by Line Search

Using line search, the step-size is adapted in each iteration. Exact line search is done by
choosing � so as to minimize ST (w

(j) + � � �w(j)). Exact line search is time consuming
which leads to various inexact line search techniques which consist in choosing � so that
the cost function is decrease

ST (w
(j) + � ��w(j)) < ST (w

(j)) (20)

A simple heuristic method is bisection which is summarized in the following algorithm:

1. Initialize: � = 1, �w(j) = �rST (w
(j)).

18

−5 −4 −3 −2 −1 0 1 2 3 4

−15

−10

−5

0

5

10

15

(a)

−5 −4 −3 −2 −1 0 1 2 3 4

−15

−10

−5

0

5

10

15

(b)

Figure 17: Panel (a): Training using an appropriate step-size. Panel (b): Training using
simple line search.

2. while ST (w
(j) + ��w(j)) > ST (w

(j))

3. � 0:5 � �.

4. end

In panel (b) of Fig. 17 training is shown when using bisection line search. An additional
bene�t of automatic step-size selection is improved convergence as compared with the
appropriate �xed � in panel (a) of Fig. 17. The stopping criterion krST k2 < 0:01 is now
obtained in only 72 iterations. Experience indicates that convergence using bisection line
search is as good or better than a �xed appropriate step-size.

3.2 Backpropagation

Gradient descent training techniques require the computation of the gradient rST (bw) in
each iteration. This section provides a detailed derivation of the gradient computation
which reveals a computationally e�cient structure: backpropagation of errors [11].

The gradient vector @ST (w)=@w is according to Eq. (15)

@ST (w)

@wi

=
1

Ntrain

NtrainX
k=1

@e2(k)

@w

=
1

Ntrain

NtrainX
k=1

e(k)
@e(k)

@wi

= �
1

Ntrain

NtrainX
k=1

e(k)
@byi(k)
@wi

(21)

as e(k) = y(k)� byi(k) = y(k)� f(x(k);w).

19

According to Eq. (2)

byi(k) = (uOi (k)) =

0@nHX
j=1

wO
ijhj(k) + wO

i0

1A (22)

where uOi (k) = h>wO
i is the linear input to output neuron i. Recall that only single

output networks (nO = 1, i.e., i = 1) are studied in this section. The derivative w.r.t.
hidden-output weights is accordingly

@byi(k)
@wO

ij

= 0(uOi (k))hj(k) (23)

where 0(u) is the derivative. If (u) = tanh(u) then 0(u)) = 1� tanh2(u) = 1� 2(u).
Using Eq. (21)

@ST (w)

@wO
ij

= �
1

Ntrain

NtrainX
k=1

�Oi (k)hj(k) (24)

with �Oi (k) = e(k) 0(uOi (k)).
The derivatives w.r.t. input-hidden weights are found using the chain rule:

@byi(k)
@wI

j`

=
@byi(k)
@hj(k)

�
@hj(k)

@wI
j`

= 0(uOi (k))w
O
ij �

0(uIj)x`(k) (25)

as Eq. (1) reads

hj(k) = (uIj (k)) =

nIX
l=1

wI
j`x` + wI

j0

!
(26)

Combining Eq. (21) and (25) yields:

@ST (w)

@wI
j`

= �
1

Ntrain

NtrainX
k=1

�Oi (k)w
O
ij �

0(uIj)x`(k)

= �
1

Ntrain

NtrainX
k=1

�Ij (k)x`(k)

(27)

with �Ij (k) = �Oi (k)w
O
ij �

0(uIj). Notice that Eq. (24) and (27) has the same structure albeit
di�erent de�nition of the error �.

For a layered neural network with an arbitrary number of layers it can be shown that
the derivative of the cost function will have the general structure

@ST (w)

@w
= �

1

Ntrain

NtrainX
k=1

�toxfrom (28)

where �to is the error for the unit to which the weight is connected, and xfrom is the linear
activation from the unit to which the weight is connected. Due to the propagation of the
error signal e(k) backwards in the network as via the � signals, the algorithm was named
backpropagation [11], see also Fig. 18.

20

+

+

by1x1

xnI

3

w

7

s e1

 (uH1)

 (uHnH)

-

 0(uH1)

?

 0(uHnH)

?

^
�

+ (uO1)
- - +

y1

-

6

 0(uO1)

wI
jl

+1

+1

...

wO
11

wI
nH ;0

wI
10

?

?

�

+

�

�

�O1

?

?

?

�
?

�H1

�HnH

�

wO
1nH

?
+1
wO
10

�

�

�

�

Figure 18: Backpropagation of errors: �rst signals are fed forward through the solid
connections, then the error is formed at the output and propagated backwards through
the dashed lines to compute �'s, i.e., is the error of the individual neuron.

3.2.1 Summary of Gradient Descend Algorithm

1. Pick a network structure, i.e., nI , nH and nO = 1.

2. Initialize the weights of network w(o) randomly so that the neurons are not saturated
(close to �1) nor operating in the linear region.

3. For all training examples pass the input through the network to produce hidden
activations hj(k) and outputs by(k).

4. Compute error signal e(k) = y(k)� by(k).
5. Compute gradients of the cost function using backpropagation, i.e., �rst �O(k) and

gradients of the hidden-output weights; then �Ij (k) and gradients of the input-hidden
weights.

6. Perform line search via bisection.

7. Update weight estimate.

8. Is stopping criterion ful�lled. If yes stop; otherwise go to 3.

4 Generalization

When the network is trained on Ntrain examples to yield minimal cost the aim is to apply
the trained network on future data, see e.g., the time-series prediction case in Fig. 14. In

21

general, there is no theory supporting that the network also performs well on future data,
consequently a validation procedure is required. Suppose that bw is the trained weights
then the generalization error is de�ned as the expected square error on an arbitrary test
sample (x; y) which is independent on training samples, given by

G(bw) = Ex;y
h
(y � f(x; bw))2 i (29)

where Ex;y[�] denotes statistical expectation w.r.t. both y and x. Note that the generaliza-
tion error depends on the training data and the number of examples through the estimated
weights bw. The generalization error as a function of number of examples is referred to as
the learning curve [5]. Obviously the learning curve in general is a decreasing function of
the number of training examples. However, in some cases a so-called learning transition
is noticed: for a critical number of examples the generalization error drops dramatically.
That is, the number of examples needs to be greater than the critical number in order to
learn the underlying problem.

The joint probability function of x and y is generally unknown so the generalization
error needs to be estimated from data. Ultimately, if one have a large set of indepen-
dent test examples the ensemble average can be substituted by a example (time) average
provided the signals are ergodic [8], i.e., the generalization estimate (test error) becomes

bG(bw) = 1

Ntest

NtestX
k=1

(y(k)� f(x; bw)2 (30)

where k index the test samples. Often lack of data preclude estimating generalization error
this way. Other methods for generalization error estimation are viable [9] but beyond the
scope of this note.

Example 4.1 Consider a simple linear system identi�cation where the true relation be-
tween input and output signals is given by

y(k) = w�x(k) + "(k) (31)

where w� is the true weight and "(k) is a white random signal with variance �2" which
is independent on the input x(k). Further the input signal is assumed to be white with
variance �2x.

The linear adaptive �lter model is deployed,

y(k) = wx(k) + e(k) (32)

where e(k) is the error signal. Minimizing the mean square error cost Eq. (15) on Ntrain

examples lead cf. [13, Ch. 11] to the estimate

bw =
rxy(0)

rxx(0)
(33)

where rxy(0) = N�1
train

PNtrain

k=1 x(k)y(k) is the estimated crosscorrelation function at lag zero

and rxx(0) = N�1
train

PNtrain

k=1 x2(k) is the estimated autocorrelation function at lag zero.
The generalization error is then by using Eq. (31)

G(bw) = Ex;y[(y � bwx)2] = Ex;"[((w
� � bw)x+ ")2] = (w� � bw)2�2x + �2" (34)

G(bw) � �2" and the minimum is obtained when the estimate equal the true weight, w� = bw.
As Ntrain !1, bw in Eq. (33) tends to the Wiener solution w�.

�

22

4.1 Overtraining

If the network is to complex, i.e., has to many weights and the input-output relation is
noisy the network often learns the noise. That is, the network performs very well on the
training data but will possess large generalization error. In Fig. 19 overtraining is illus-
trated. There is always the hidden agenda in modeling: the ultimate goal is to minimize

Training Error

Generalization Error

Optimal Complexity

Figure 19: Overtraining: when the network complexity (number of weights) is large the
network learns the noise in the training data and the resulting generalization error is
high. On the other hand, when the complexity is low, the approximation capability of the
network is limited cf. the universal approximation theorem Section 2.2. Thus the network
commits many systematic errors and both the training and generalization errors are large.
As a consequence, there exists an optimal complexity trade o�.

generalization error rather than training error; however, only the training data are avail-
able. Are we facing a dilemma? Fortunately it possible to estimate generalization error,
e.g., by reserving some data for testing and compute the estimate via Eq. (30). Then
overtraining can be prevented by choosing a network with low estimated generalization
error. The drawback is that many test examples are necessary in oder to estimate the
generalization reliably. Another possibility for preventing over�tting is do reduce the net-
work complexity by removing some of the weights. The Optimal Brain Damage (OBD)
method [10] is a systematic method for pruning weights in the network. OBD is fur-
ther discussed in Section 5. Finally, regularization can be used to prevent overtraining.
Section 5 discusses the use of weight decay regularization.

4.2 Local Minima

Often many almost equally good solution exist. Due to symmetry properties of the network
many solution are equal, e.g., the hidden neurons can be interchanged without altering
the output. In other local minima, the error on a large number of training examples will

23

be low but the error large on the remaining examples. Depicting the cost function as a
mountain scenery, these local minima will be high altitude valleys. In such valleys the
gradient descent algorithm can be get stuck for many iterations.

Both over�tting and local minima leads to the recommendation that the overall training
procedure is replicated a number of times using di�erent initial conditions. In addition to
more good networks also it is possible to evaluate the statistical nature of the training.

5 Neural Network Architecture Optimization

Selection of neural network architecture/structure for a speci�c problem is very involved.
Once the structure is selected, e.g, a feed-forward neural network, it needs to be optimized
in order to ensure low generalization error and consequently avoiding over�tting.

5.1 Regularization Using Weight Decay

A simple regularization method is weight decay which in practice is accomplished by
augmenting the cost function by a penalty term which penalizing high magnitude weights,
as shown by

CT (w) = ST (w) +
�

2

X
i

w2
i (35)

where � = �=Ntrain is a positive normalized weight decay constants and � the weight
decay. The regularization term forces the weight magnitudes against zero, as the cost is
large for large magnitude weights. That is, (local) minima far from origo are blurred. In

gradient descend, the weight decay gives a decay proportional to the weight, w
(j+1)
i =

(1��=Ntrain)w
(j)
i . If a weight is superuous it will slowly decay to zero, whereas essential

weights only will be slightly inuenced by the decay, see also [5].

5.2 Architecture Optimization

Weight decay regularization limits the dynamical range for the weights but they are not
necessarily set to zero. The optimal architecture can be obtained by two di�erent strate-
gies. The �rst is a growing architecture in which starts from a minimal network, e.g., a
single neuron. Then additional neurons are added during training when required. The sec-
ond strategy consists in training a relatively large network which subsequently is pruned
be removing weights (or neurons) until an optimal architecture is achieved, where minimal
generalization error normally is used as criterion.

The pruning algorithm is summarized in

1. Train a su�ciently large network.

2. Rank weights according to importance.

3. Eliminate the least signi�cant weight(s).

4. Retrain the pruned network. If generalization error is minimal stop; otherwise go to
step 2.

24

5.2.1 Optimal Brain Damage

Optimal Brain Damage [10] is a method to determine the importance of a weight which
is referred to as saliency. Saliency is de�ned as the change in mean square error cost
function due to eliminating a speci�c weight.

Suppose that bw minimizes the augmented cost function CT (w) in Eq. (35). A second
order Taylor series expansion of the mean square error cost ST (w) is

ST (bw + �w) = ST (bw) + �w>
rST (bw) + 1

2
�w>H(bw)�w (36)

where �w is the weight change and H(bw) is the Hessian matrix of the cost function inbw, i.e., the second order derivative w.r.t. the weights. As bw is assumed to be a local
minimum, then rCT (bw) = rST (bw) + �w = 0 which means rST (bw) = ��w. Using
this expression in Eq. (36) gives

�ST = ST (bw) + �w)� ST (bw)
= ��w>� bw +

1

2
�w>H(bw)�w (37)

If the perturbation �w corresponds to eliminating the j'th weight then

�w = [0; � � � ; 0;� bwj ; 0; � � � ; 0]
> (38)

The change in MSE cost is cf. Eq. (37)

�ST j =

�+

1

2

@2ST (bw)
@w2

j

! bw2
j (39)

In OBD it is assumed that the change in MSE cost when eliminating more weights simul-
taneously can be approximated by the sum of the individual changes. This corresponds
to assuming o�-diagonal terms in the Hessian are zero ,i.e.,

@2ST (bw)
@wi@wj

= 0; i 6= j (40)

For networks trained using the MSE cost function the following approximation of the
second derivative can be applied:

@2ST (w)

@w2
i

�
1

2Ntrain

NtrainX
k=1

�
@y(k)

@wi

�2
(41)

Note that @y(k)=@wi is easily computed using backpropagation.
OBD algorithm:

1. Select a fully connect network with su�cient number of hidden neurons.

2. For the current network architecture compute the weight estimate bw by minimizing
the augmented cost function C(w).

3. Compute saliencies �ST j for all weights.

4. Rank weights according to saliency.

25

5. Eliminate a number of weights with small saliencies6.

6. Compute an estimate of the generalization error and check if has reached its mini-
mum. If not go to step 2; otherwise stop.

In Fig. 20 the elapse of training and test errors during OBD pruning is shown. The
example is produced with the software presented in Section A. Both training and test sets
comprised 100 examples generated by a \random" true network with 4 inputs, 2 hidden
neurons and one output. In total the true network has 13 weights. The model network
has initially 4 inputs, 5 hidden neurons and one output, i.e., 31 weights. Weight decay
A weight decay of � = 0:01 was deployed. As expected, the training error increases

TRAINING ERROR
TEST ERROR

5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

NO. OF WEIGHTS

Q
U

A
D

R
A

T
IC

 C
O

S
T

Figure 20: Elapse of training and test errors during OBD pruning. Notice that the pruning
is from left to right, as the number of weights decreases during the pruning session.

as the number of weights decreases since the approximation capability is reduced. In
principle, the training error should always increase with decreasing complexity; however,
due to local minima this not always in the case. The test error increases somewhat in the
beginning of the pruning session, but decreases signi�cantly when the number of weights
gets closer the true number, 13. This is due to the fact that the networks ability to adapt
to specialities in the training set becomes less pronounced as the complexity decreases.
When the number of weights are smaller than 13 the test error increases again since it
becomes unable to reproduce the underlying rule. The trade o� consist in having enough
weights to implement the underlying rule but to few to model noise in the training set.

Fig. 21 shows the network architecture in di�erent phases of the pruning.

6Normally one weight or a certain percentage of the remaining weights are pruned in each iteration

26

+1

x(k−4)

x(k−3)

x(k−2)

x(k−1)

+1

(a)

+1

x(k−4)

x(k−3)

x(k−2)

x(k−1)

+1

(b)

+1

x(k−4)

x(k−3)

x(k−2)

x(k−1)

+1

(c)

+1

x(k−4)

x(k−3)

x(k−2)

x(k−1)

+1

(d)

Figure 21: Network architecture during pruning. Panel (a): 31 weight fully connected
network. Panel (b): Network with 21 weights and all hidden units. Panel (c): network
with 16 weights one hidden unit is removed. Panel (d): 13 weight network with lowest
test error. Compared to the 16 weight network, this network only uses 3 hidden neurons
and the lower hidden unit receives input from the bias input only, i.e., the 3 lower weights
can in principle be replaced by one common bias input for the output layer. That is, the
resulting network e�ectively, like the true network, only uses 2 hidden neurons.

A Neural Network Regression Software

Suppose the number of training and test examples are Ntrain, Ntest, respectively. Further,
that the number of inputs, hidden and output neurons are nI , nH and nO. The training
data are required to be stored in the following matrices:

train_inp: a Ntrain � nI matrix of training input data. Row k is the k'th training
example of the input vector x>(k).

train_tar: a Ntrain � nO matrix of training output/target data.

Similarly the test data are stored in test_inp and test_tar.

27

The weights of the network are assembled in the input-to-hidden matrix Wi and the
hidden-to-output matrix Wo which are de�ned by

Wi =

264 Wi11 Wi12 � � � Wi1;nI Wi1;bias
. . .

WinH ;1 WinH ;2 � � � WinH ;nI WinH ;bias

375 (42)

where Wij;` is the weight from input ` to hidden neuron j. Further,

Wo =

264 Wo11 Wo12 � � � Wo1;nH Wo1;bias
. . .

WonO;1 WonO;2 � � � WonO;nH WinO;bias

375 (43)

where Woi;j is the weight from hidden unit j to output neuron i.

A.1 MATLAB Functions in the Neural Regression Package

A.1.1 Function Overview

nr_netprun.m Main function.

nr_calcul.m Calculates the cost function and the gradient.

nr_cost_c.m Calculates the cost function augmented by weight decay.

nr_cost_e.m Calculates the cost function.

nr_dimen.m Calculates the number of non-zero weights.

nr_extract.m Extraction of weight matrices from the reshaped vector.

nr_forward.m Propagate examples forward through network calculating all hidden-
and output unit outputs.

nr_getdata.m Create input and output data from a teacher network.

nr_gradient.m Calculate the partial derivatives of the cost function.

nr_linesear.m Performs a simple line search.

nr_linesearch.m Line search with Wolfe-Powell conditions.

nr_plotnet.m Neural regression plot network.

nr_plotsal.m Neural regression plot saliency.

nr_prune.m Prunes a number of weights away using OBD.

nr_pseuhess.m Calculates the pseudo Hessian (diagonal) elements and gradient
of the cost function.

nr_tanhf.m Fast hyperbolic tangent.

nr_train.m Train the network with gradient descent followed by pseudo Gauss-
Newton.

28

nr_trainx.m Train network (conjugate gradient version).

nr_two_norm.m Euclidean length of the total weight vector.

nr_winit.m Uniform weight initialization.

A.1.2 Main Function nr_netprun.m

Pseudo Code

function nr_netprun

1. Initialize algorithm parameters

2. Initialize weights using nr_winit

3. Train the network using nr_train

4. Evaluate training and test performance using nr_cost_e and nr_err_frac

5. while dim(w) > mindim repeat

1. Prune the network using prune

2. Calculate dimension dim(w)

3. Retrain the network using train

4. Evaluate training and test performance using nr_cost_e and nr_err_frac

end

end

A.1.3 Subroutine nr_calcul.m

Call

function [f,df] = nr_calcul(W,Dim,alpha_i, alpha_o,Inputs,Targets);

%NR_CALCUL Calculates the cost function and the gradient

% [f,df] = nr_calcul(X, Dim, alpha_i, alpha_o, Inputs, Targets);

% Calculates the cost function value f and the gradient df for

% neural network the function is operating on the vector W created

% by reshaping matrices Wi and Wo in Dim vector the dimensions of

% those matrices are stored.

A.1.4 Subroutine nr_cost_c.m

Call

function [cost] = nr_cost_c(Wi,Wo,alpha_i,alpha_o,Inputs,Targets)

%NR_COST_C Quadratic cost function with quadratic weight decay term

% [cost] = NR_COST_C(Wi,Wo,alpha_i,alpha_o,Inputs,Targets)

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

29

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

% Cost : Value of augmented quadratic cost function

%

% See also NR_COST_E

%

% Neural Regression toolbox, DSP IMM DTU

A.1.5 Subroutine nr_cost_e.m

Call

function [error] = nr_cost_e(Wi,Wo,Inputs,Targets)

%NR_COST_E Calculate the quadratic cost function

% [error] = NR_COST_E(Wi,Wo,Inputs,Targets) calculates the value of

% the quadratic cost function, i.e., 0.5*(sum of squared errors)

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

% error : Value of quadratic cost function

%

% See also NR_COST_C

%

% Neural Regression toolbox, DSP IMM DTU

A.1.6 Subroutine nr_dimen.m

Call

function [dim] = nr_dimen(Wi,Wo)

%NR_DIMEN Number of non-zero-weights

% [dim] = NR_DIMEN(Wi,Wo) calculates the number of non-zero weights

% in the network, i.e. the dimension of the total weight vector

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% Output:

% dim : Number of non-zero weights

%

% Neural Regression toolbox, DSP IMM DTU

30

A.1.7 Subroutine nr_extract.m

Call

function [Wi,Wo] = nr_extract(WW,D)

%NR_EXTRACT Extraction weight matrices from the reshaped vector

% [Wi,Wo] = extract(WW,D)

%

% Input:

% WW : the vector of the dimensions D(1)+D(2)+D(3)+D(4)

% D : the vector with stored dimensions of weight matrices

% Output:

% Wi : the matrix with input-to-hidden weights

% Wo : the matrix with hidden-to-output weights

A.1.8 Subroutine nr_forward.m

Call

function [Vj,yj] = nr_forward(Wi,Wo,Inputs)

%NR_FORWARD Propagate example forward through the network

% [Vj,yj] = NR_FORWARD(Wi,Wo,Inputs) propagates examples forward

% through network calculating all hidden- and output unit outputs

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% inputs : Matrix with example inputs as rows

%

% Output:

% Vj : Matrix with hidden unit outputs as rows

% yj : Vector with output unit outputs as rows

%

% Neural Regression toolbox, DSP IMM DTU

A.1.9 Subroutine nr_getdata.m

Call

function [tr_i,tr_t,te_i,te_t] = getdata(Ni,t_Nh,No,ptrain,ptest,noise)

%NR_GETDATA Create input and output data from a teacher network

% [tr_i,tr_t,te_i,te_t] = getdata(Ni,t_Nh,No,ptrain,ptest,noise)

% creates input and output data from a 'teacher' network. The

% outputs are contaminated with additive white noise.

%

% Inputs:

% Ni : Number of external inputs to net

% t_Nh : Number of hidden units for the 'teacher' net

31

% No : Number of output units

% ptrain : Number of training examples

% ptest : Number of test examples

% noise : Relative amplitude of additive noise

% Outputs:

% tr_i, te_i : Inputs for training & test set

% tr_t, te_t : Target values

%

% See also NR_NETPRUN

%

% Neural Regression toolbox

A.1.10 Subroutine nr_gradient.m

Call

function [dWi,dWo] = nr_gradient(Wi,Wo,alpha_i,alpha_o,Inputs,Targets)

%NR_GRADIENT Calculate the partial derivatives of the quadratic cost

% [dWi,dWo] = nr_gradient(Wi,Wo,alpha_i,alpha_o,Inputs,Targets)

% calculate the partial derivatives of the quadratic cost wrt. the

% weights. Derivatives of quadratic weight decay are included.

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

% dWi : Matrix with gradient for input weights

% dWo : Matrix with gradient for output weights

%

% See also NR_PSEUHESS, NR_TRAIN

%

% Neural Regression toolbox, DSP IMM DTU

A.1.11 Subroutine nr_linesear.m

Call

function [eta] = nr_linesear(Wi, Wo, Di, Do, alpha_i, alpha_o, Inputs, ...

Targets, pat)

%NR_LINESEAR Simple linesearch

% [eta] = linesear(Wi,Wo,Di,Do,alpha_i,alpha_o,Inputs,Targets,pat)

% performs a simple linesearch in a direction in parameter space,

% determining the 'optimal' steplength by iterative decrease.

%

% Input:

% Wi : Matrix with input-to-hidden weights

32

% Wo : Matrix with hidden-to-outputs weights

% Di : Matrix with input search direction

% Do : Matrix with output search direction

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% pat : Patience; max number of decreases

% Output:

% eta : 'Optimal' step length

%

% See also NR_TRAIN, NR_COST_C

%

% Neural Regression toolbox, DSP IMM DTU

A.1.12 Subroutine nr_linesearch.m

Call

function [f2,df2,WW,eta] = nr_linesearch(WW, D, alpha_i, alpha_o, ...

Inputs, Targets, h0, slopeX, eta, fX, GX, WWmask)

%NR_LINESEARCH Line search with Wolfe-Powell conditions

% [f2,df2,WW,eta] = nr_linesearch(WW, D, alpha_i, alpha_o, Inputs,

% Targets, h0, slopeX, eta, fX, GX, WWmask)

%

% Input:

% WW : weight vector (the matrices reshaped into one vector)

% D : the vector with stored dimensions of the weight matrices

% h0 : direction vector

% slopeX :

% eta : guessed step size

% fX : function value for the starting point

% GX : gradient at the starting point

% WWmask : weights mask

%

% Output :

% f2 : function value for the minimizer

% df2 : gradient for the minimizer

% WW : output weights

% eta : output step size

A.1.13 Subroutine nr_plotnet.m

Call

function nr_plotnet(Wi, Wo, plottype)

%NR_PLOTNET Plot network

% NR_PLOTNET(Wi, Wo, plottype)

33

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% plottype : type of plot

%

% See also NR_TRAIN

%

% Neural Regression toolbox, DSP IMM DTU

A.1.14 Subroutine nr_plotsal.m

Call

function nr_plotsal(Wi, Wo, alpha_i, alpha_o, Inputs, Targets, ...

plottype)

%NR_PLOTSAL Neural regression plot saliency

% NR_PLOTSAL(Wi, Wo, alpha_i, alpha_o, Inputs, Targets, plottype)

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay for input-to-hidden weights

% alpha_o : Weight decay for hidden-to-output weights

% Inputs : Input to the neural network

% Targets : Targets

% plottype : Type of plot

%

% See also NR_TRAIN, NR_PLOTNET

%

% Neural Regression toolbox, DSP IMM DTU

A.1.15 Subroutine nr_prune.m

Pseudo Code

function nr_prune

1. Calculate diagonal elements of the un-regularized cost ST (w) using nr_pseuhess

2. Calculate saliencies

3. Prune a �xed number of the weight with smallest saliencies

end

Call

function [Wi_new,Wo_new] = nr_prune(Wi,Wo,alpha_i,alpha_o,Inputs,Targets,

kills)

%NR_PRUNE Prune weights with Optimal Brain Damage

% [Wi_new,Wo_new] = nr_prune(Wi,Wo,alpha_i,alpha_o,Inputs,Targets,kills)

34

% prunes a number of weights away using Optimal Brain Damage

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% kills : Number of weights to eliminate

% Output:

% Wi_new : Matrix with reduced input-to-hidden weights

% Wo_new : Matrix with reduced hidden-to-outputs weights

%

% See also NR_TRAIN, NR_PSEUHESS

%

% Neural Regression toolbox, DSP IMM DTU

A.1.16 Subroutine nr_pseuhess.m

Call

function [dWi,dWo,ddWi,ddWo] = nr_pseuhess(Wi, Wo, alpha_i, alpha_o,...

Inputs, Targets)

%NR_PSEUHESS Pseudo Hessian elements and the partial derivatives.

% [dWi,dWo,ddWi,ddWo] = NR_PSEUHESS(Wi,Wo,alpha_i,alpha_o,Inputs,Targets)

% calculates the pseudo Hessian elements AND the partial derivatives

% of the quadratic cost function wrt. the weights. Derivatives of

% quadratic weight decay are included.

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

% dWi : Matrix with gradient for input weights

% dWo : Matrix with gradient for output weights

% ddWi : Matrix with pseudo Hessian for input w.

% ddWo : Matrix with pseudo Hessian for output w.

%

% Neural Regression toolbox, DSP IMM DTU

A.1.17 Subroutine nr_tanhf.m

Call

function y=tanhf(x)

35

%NR_TANHF Fast hyperbolic tangent

% y=tanhf(x) calculates the fast hyperbolic tangent:

% y=1 - 2./(exp(2*x)+1);

%

% Neural Regression toolbox, DSP IMM DTU

A.1.18 Subroutine nr_train.m

Pseudo Code

function nr_train

1. Do gradient descent training

1. Calculate gradient, r, using gradient

2. while norm(r) > prescribed value and no. of iteration < maxitr repeat

1. Determine step-size using nr_linesear

2. Update weights

3. Recalculate the gradient using nr_gradient

end

end

2. Do pseudo Gauss-Newton training

1. Calculate pseudo Gauss-Newton direction using nr_pseuhess

2. while norm(r) > prescribed value and no. of iteration < maxitr repeat

1. Determine step-size using nr_linesear

2. Update weights

3. Recalculate the pseudo Gauss-Newton direction using nr_pseuhess

end

end

end

Call

function [Wi_tr,Wo_tr] = nr_train(Wi, Wo, alpha_i, alpha_o, Inputs, ...

Targets, gr, psgn, neps)

%NR_TRAIN Train network

% [Wi_tr,Wo_tr] = nr_train(Wi, Wo, alpha_i, alpha_o, Inputs, ...

% Targets, gr, psgn, neps) trains a network with gradient descent

% followed by pseudo Gauss-Newton

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

36

% gr : Max. number of gradient descent steps

% psgn : Max. number of pseudo Gauss-Newton steps

% neps : Gradient norm stopping criteria

% Output:

% Wi_tr : Matrix with trained input-to-hidden weights

% Wo_tr : Matrix with trained hidden-to-outputs weights

%

% Neural Regression toolbox, DSP IMM DTU

A.1.19 Subroutine nr_trainx.m

Call

function [Wi_tr,Wo_tr, Etrain] = nr_trainx(Wi, Wo, alpha_i, alpha_o, ...

Inputs, Targets, gr, psgn, neps, figh, method)

%NR_TRAINX Train network (conjugate gradient version)

% [Wi_tr,Wo_tr] = nr_trainx(Wi, Wo, alpha_i, alpha_o, Inputs,

% Targets, gr, psgn, neps, figh)

% Train the network with gradient descent followed by pseudo

% Gauss-Newton

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% psgn : Max. number of steps in pseudo Gauss-Newton

% or N dimensional passes Conjugate Gradient

% gr : Max. number of gradient descent steps

% not used for CG

% neps : Gradient norm stopping criteria not used for CG

% figh : figure handle. If no plotting is desired use

% figh=0;

% method : defined only when Conjugate Gradient method used

% FR - Fletcher-Reeves

% HS - Hestenes-Stiefel

% PR - Polak-Ribiere (default)

%

% Output:

% Wi_tr : Matrix with trained input-to-hidden weights

% Wo_tr : Matrix with trained hidden-to-outputs weights

%

% Neural Regression toolbox, DSP IMM DTU

% JL97, MWP97, Anna 1999

37

A.1.20 Subroutine nr_two_norm.m

Call

function [n] = nr_two_norm(dWi,dWo)

%NR_TWO_NORM Euclidean length of the total weight vector.

% [n] = two_norm(dWi,dWo) calculates the Euclidean length of the

% total weight vector, i.e. the 2-norm.

%

% Input:

% dWi : Matrix with input-to-hidden gradient

% dWo : Matrix with hidden-to-outputs gradient

% Output:

% n : 2-norm of total gradient

%

% Neural Regression toolbox, DSP IMM DTU

A.1.21 Subroutine nr_winit.m

Call

function [Wi,Wo]=nr_winit(Ni,Nh,No,range,seed)

%NR_WINIT Initial weight in neural network

% [Wi,Wo] = NR_WINIT(Ni,Nh,No,range,seed) initialize the

% weight in a neural network with a uniform distribution

%

% Input:

% Ni : no. of input neurons

% Nh : no. of hidden neurons

% No : no. of output neurons

% range : weight initialization uniformly over

% [-range;range]/Ni and [-range;range]/Nh, respectively.

% seed : a integer seed number, e.g., sum(clock*100)

% Output:

% Wi: Input-to-hidden weights

% Wo: Hidden-to-output initial weights

%

% Neural Regression toolbox, DSP IMM DTU

B Neural Network Classi�cation Software

B.1 Network Classi�er Architecture

Suppose that the input (feature) vector is denoted by x with dim(x) = nI . The aim is
to model the posterior probabilities p(Cijx), i = 1; 2; � � � ; c where Ci denotes the i'th class.
Then the Bayes optimal7 classi�er assigns class label Ci to x if i = argmaxj p(Cj jx).

7That is, minimal probability of misclassi�cation.

38

Following [6], the outputs, byi, of the neural network represent estimates of the posterior
probabilities, i.e., byi = bp(Cijx); hence, Pc

i=1 p(Cijx) = 1. That is, we need merely to
estimate c � 1 posterior probabilities, say p(Cijx), i = 1; 2; � � � ; c � 1, then the last is
calculated as p(Ccjx) = 1�

Pc�1
i=1 p(Cijx).

De�ne a 2-layer feed-forward network with nI inputs, nH hidden neurons and c � 1
outputs by:

hj(x) = tanh

nIX
`=1

wI
j`x` + wI

j0

!
(44)

�i(x) =
nHX
j=1

wO
ijhj(x) + wO

i0 (45)

where wI
j`, w

O
ij are the input-to-hidden and hidden- to-output weights, respectively. All

weights are assembled in the weight vector w = fwI
j`; w

O
ijg.

In order to interpret the network outputs as probabilities a modi�ed normalized expo-
nential transformation similar to SoftMax is used,

byi = exp(�i)Pc�1
j=1 exp(�j) + 1

; i = 1; 2; � � � ; c� 1; byc = 1�
c�1X
i=1

byi: (46)

The network architecture is shown in Fig. 22.

tanh

tanh

+

x1

xnI

3

w

7

s

+
�c�1

h1

exp

6
hnH

?

+1

-1

�1

w

exp

+

?
+1

-

^

q

6

7

wH
ij

wI
j`

+1

+1

7
6

+1

1=x-

�

�

6

-

-
?

-

-

-

by1

byc�1
byc

...
...

...
...

wI
nH ;0

wI
10

wH
10

wH
c�1;0

Figure 22: Neural network classi�er architecture.

B.2 Training and Regularization

Assume that we have a training set T of Ntrain related input-output pairs
T = f(x(k);y(k))gNtrain

k=1 where

yi(k) =

(
1 if x(k) 2 Ci
0 otherwise

(47)

39

The likelihood of the network parameters is given by (see e.g., [6]),

p(T jw) =
NtrainY
k=1

p(y(k)jx(k);w) =
NtrainY
k=1

cY
i=1

(byi(k))yi(k) (48)

where by(k) = by(x(k);w) is a function of the input and weight vectors. The training error
is the normalized negative log-likelihood

ST (w) = �
1

Ntrain
log p(T jw) �

1

Ntrain

NtrainX
k=1

` (y(k); by(k);w) (49)

with `(�) denoting the loss given by

` (y(k); by(k);w) = log

0@1 + c�1X
j=1

exp(�j(x(k)))

1A� c�1X
i=1

yi(k)�i(x(k)): (50)

The objective of training is minimization of the regularized cost function8 which is de�ned
as the negative log-likelihood augmented by separate weight decay regularization for input-
to-hidden and hidden-to output layers, as shown by,

C(w) = ST (w) + �I � jw
I j2 + �O � jw

Oj2 (51)

where w = [wI ;wO] with wI , wO denoting the input-to-hidden weights and hidden-to-
output weights, respectively. �I � �I=(2Ntrain) and �O � �O=(2Ntrain) are the weight
decay parameters.

Training provides the estimated weight vector bw = arg minw C(w) and is done using
a gradient or a pseudo Gauss-Newton scheme. The gradient scheme reads,

wnew = wold � � �r(wold) (52)

where � is the step-size (line search parameter). � is found using simple bisection line
search, i.e., � is successively divided by a factor of 2 until a decrease in the cost is observed.
For that purpose we require the gradient, r(w) = @C=@w, of the cost function given by,

@C

@w
(w) = �

1

Ntrain

NtrainX
k=1

c�1X
i=1

[yi(k)� byi(k)] @�i(x(k))
@w

+
�I

Ntrain
�wI +

�O
Ntrain

�wO (53)

The pseudo Gauss-Newton scheme is given by

wnew = wold � � � eJ�1(wold)r(wold) (54)

eJ(w) is the pseudo Hessian of the cost function de�ned as the diagonal of the full Hessian,eJ(w) = fJmng = @2C=ww> where

Jmm(w) =
1

Ntrain

NtrainX
k=1

c�1X
i=1

c�1X
j=1

byi(k) [�ij � byj(k)] @�i(x(k))
@wm

@�j(x(k))

@wm
+

�m
Ntrain

(55)

where �m equals �I or �O depending on whether the m'th weight is an input-to-hidden
or an hidden-to-output weight. Above �ij denotes the Kronecker delta and we have used
the Gauss-Newton approximation to the Hessian.

8This might be viewed as a maximum a posteriori (MAP) method.

40

B.3 MATLAB Functions in the Neural Classi�cation Package

Suppose the number of training and test examples are Ntrain, Ntest, respectively. Further,
that the number of inputs, hidden and output neurons are nI , nH and nO = c� 1, where
c is the number of classes. The training data are required to be stored in the following
matrices:

train_inp: a Ntrain � nI matrix of training input data. Row k is the k'th training
example of the input vector x>(k).

train_tar: a Ntrain � 1 vector of training output/target data. The k'th element is
i 2 [1; c] if example k is classi�ed as class Ci.

Similarly the test data are stored in test_inp and test_tar.
The weights of the network are assembled in the input-to-hidden matrix Wi and the

hidden-to-output matrix Wo which are de�ned by

Wi =

264 Wi11 Wi12 � � � Wi1;nI Wi1;bias
. . .

WinH ;1 WinH ;2 � � � WinH ;nI WinH ;bias

375 (56)

where Wij;` is the weight from input ` to hidden neuron j. Further,

Wo =

264 Wo11 Wo12 � � � Wo1;nH Wo1;bias
. . .

WonO;1 WonO;2 � � � WonO;nH WinO;bias

375 (57)

where Woi;j is the weight from hidden unit j to output neuron i.

B.3.1 Function Overview

nc_netprun.m Main function.

nc_cl_error.m Calculates number of erroneous classi�ed examples.

nc_cl_probs.m Calculates posterior probabilities.

nc_cost_c.m Calculates the cost function augmented by weight decay.

nc_cost_e.m Calculates the cost function.

nc_dimen.m Calculates the number of non-zero weights.

nc_err_frac.m Calculate the fraction of erroneous classi�ed examples.

nc_eucnorm.m Calculates the Euclidean length of the weight vector.

nc_forward.m Propagate examples forward through network calculating all hidden-
and output unit outputs.

nc_getdata.m Neural classi�er get forensic glass data set.

nc_gradient.m Calculate the partial derivatives of the cost function.

nc_linesear.m Performs a simple line search.

41

nc_plotnet.m Neural classi�er plot network.

nc_plotsal.m Neural classi�er plot saliency.

nc_prune.m Prunes a number of weights away using OBD.

nc_pseuhess.m Calculates the pseudo Hessian (diagonal) elements and gradient
of the cost function.

nc_softmax.m Performs the softmax operation.

nc_tanhf.m Fast hyperbolic tangent.

nc_train.m Train the network with gradient descent followed by pseudo Gauss-
Newton.

nc_winit.m Uniform weight initialization.

B.3.2 Main Function nc_netprun.m

Pseudo Code

function nc_netprun

1. Initialize algorithm parameters

2. Initialize weights using nc_winit

3. Train the network using nc_train

4. Evaluate training and test performance using nc_cost_e and nc_err_frac

5. while dim(w) > mindim repeat

1. Prune the network using prune

2. Calculate dimension dim(w)

3. Retrain the network using train

4. Evaluate training and test performance using nc_cost_e and nc_err_frac

end

end

B.3.3 Subroutine nc_cl_error.m

Call

function [errors,probs,class] = nc_cl_error(Wi,Wo,Inputs,Targets)

% Calculates number of erroneous classified examples, estimated classes

% and posterior probabilities

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

42

% errors: the no. erroneous classified examples

% class: vector of estimated classes (No. of examples,1)

% probs: matrix of posterior probabilities

% (No. of examples,no. of classes)

%

%

JL97,MWP97

B.3.4 Subroutine nc_cl_probs.m

Call

function [probs] = nc_cl_probs(Wi,Wo,Inputs)

% Calculates posterior probabilities for each example

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% Inputs : Matrix with examples as rows

% Output:

% probs: matrix of posterior probabilities

% (No. of examples,no. of classes)

%

%

JL97,MWP97

B.3.5 Subroutine nc_cost_c.m

Call

function [cost] = nc_cost_c(Wi,Wo,alpha_i,alpha_o,Inputs,Targets)

%

% Calculates the value of the negative log-likelihood cost function,

% augmented by quadratic weight decay term

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

% Cost : Value of augmented negative log-likelihood cost

% function

%

MWP97

43

B.3.6 Subroutine nc_cost_e.m

Call

function [error] = nc_cost_e(Wi,Wo,Inputs,Targets)

%

% Calculate the value of the negative log likelihood cost

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% Inputs : Matrix with input features as rows

% Targets : Column vector with target class as elements

% Output:

% error : Value of negative log likelihood

%

MWP97

B.3.7 Subroutine nc_dimen.m

Call

function [dim] = nc_dimen(Wi,Wo)

%

% Calculates the number of non-zero weights in the

% network, i.e. the dimension of the total weight vector

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% Output:

% dim : Number of non-zero weights

%

MWP97

B.3.8 Subroutine nc_err_frac.m

Call

function [rate,probs,class] = nc_err_frac(Wi,Wo,Inputs,Targets)

% Calculate the fraction of erroneous classified examples, estimated

% classes and posterior probabilities

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

% rate: the fraction of erroneous classified examples

44

% class: vector of estimated classes (No. of examples,1)

% probs: matrix of posterior probabilities

% (No. of examples,no. of classes)

%

%

JL97,MWP97

B.3.9 Subroutine nc_eucnorm.m

Call

function [n] = nc_eucnorm(dWi,dWo)

%

% Calculates the Euclidean length of the total weight vector,

%

% Input:

% dWi : Matrix with input-to-hidden gradient

% dWo : Matrix with hidden-to-outputs gradient

% Output:

% n : Euclidean norm sqrt(|w|.^2)

%

MWP97

B.3.10 Subroutine nc_forward.m

Call

function [Vj,phi] = nc_forward(Wi,Wo,Inputs)

%

% Propagate examples forward through network calculating all hidden-

% and output unit outputs. Note: There is no softmax included.

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% inputs : Matrix with example inputs as rows

%

% Output:

% Vj : Matrix with hidden unit outputs as rows

% phi : Matrix with output unit outputs as rows

%

MWP97

B.3.11 Subroutine nc_getdata.m

Call

function [tr_i,tr_t,te_i,te_t] = nc_getdata

%NC_GETDATA Neural classifier get forensic glass data

45

% [tr_i,tr_t,te_i,te_t] = nc_getdata

% Use an example data set: the forensic glass data from the Proben

% collection as data

%

% Neural classifier, DSP IMM DTU, MWP97

B.3.12 Subroutine nc_gradient.m

Call

function [dWi,dWo] = nc_gradient(Wi,Wo,alpha_i,alpha_o,Inputs,Targets)

%

% Calculate the partial derivatives of the negative log-likelihood

cost.

% wrt. the weights. Derivatives of quadratic weight decay are included.

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

% dWi : Matrix with gradient for input weights

% dWo : Matrix with gradient for output weights

%

MWP97

B.3.13 Subroutine nc_linesear.m

Call

function [eta] =

nc_linesear(Wi,Wo,Di,Do,alpha_i,alpha_o,Inputs,Targets,pat)

%

% This function performs a simple line search in a direction

% in parameter space, determining the 'optimal' step length

% by iterative bisection.

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% Di : Matrix with input search direction

% Do : Matrix with output search direction

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% pat : Patience; max number of bisections

46

% Output:

% eta : 'Optimal' step length

%

MWP97

B.3.14 Subroutine nc_plotnet.m

Call

function nc_plotnet(Wi,Wo,plottype)

%NC_PLOTNET Neural classifier plot network

% NC_PLOTNET(Wi, Wo, plottype)

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% plottype : type of plot

%

%

% Neural classifier, DSP IMM DTU

B.3.15 Subroutine nc_plotsal.m

Call

function nc_plotsal(Wi, Wo, alpha_i, alpha_o, Inputs, Targets, ...

plottype)

%NC_PLOTSAL Neural classifier plot saliency

% NC_PLOTSAL(Wi, Wo, alpha_i, alpha_o, Inputs, Targets, plottype)

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay for input-to-hidden weights

% alpha_o : Weight decay for hidden-to-output weights

% Inputs : Input to the neural network

% Targets : Targets

% plottype : Type of plot

%

%

% Neural Classifier toolbox, DSP IMM DTU

B.3.16 Subroutine nc_prune.m

Pseudo Code

function nc_prune

1. Calculate diagonal elements of the un-regularized cost ST (w) using nc_pseuhess

47

2. Calculate saliencies

3. Prune a �xed number of the weight with smallest saliencies

end

Call

function [Wi_new,Wo_new] = nc_prune(Wi,Wo,alpha_i,alpha_o,Inputs,Targets,

kills)

% This function prunes a number of weights away using Optimal Brain

Damage.

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% kills : Number of weights to eliminate

% Output:

% Wi_new : Matrix with reduced input-to-hidden weights

% Wo_new : Matrix with reduced hidden-to-outputs weights

% JL97,

MWP97

B.3.17 Subroutine nc_pseuhess.m

Call

function [dWi,dWo,ddWi,ddWo] = nc_pseuhess(Wi,Wo,alpha_i,alpha_o,Inputs,

Targets)

%

% Calculates the pseudo Hessian (diagonal) elements AND the partial

% derivatives of % the negative log-likelihood cost function wrt.

% the weights. Derivatives of quadratic weight decay are included.

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% Output:

% dWi : Matrix with gradient for input weights

% dWo : Matrix with gradient for output weights

% ddWi : Matrix with pseudo Hessian for input weights

% ddWo : Matrix with pseudo Hessian for output weights

%

MWP97

48

B.3.18 Subroutine nc_softmax.m

Call

function probs=nc_softmax(phi)

% Carry out the softmax operation

% Input: phi the matrix of outputs of the network from forward.m.

% rows are the individual output neurons.

% Output: the matrix of posterior probabilities. Each row is the

% are individual class prob for a specific example.

%

JL97

B.3.19 Subroutine nc_tanhf.m

Call

function y=nc_tanhf(x)

% Fast tanh y=tanhf(x)

%y=1 - 2./(exp(2*x)+1);

B.3.20 Subroutine nc_train.m

Pseudo Code

function nc_train

1. Do gradient descent training

1. Calculate gradient, r, using gradient

2. while norm(r) > prescribed value and no. of iteration < maxitr repeat

1. Determine step-size using nc_linesear

2. Update weights

3. Recalculate the gradient using nc_gradient

end

end

2. Do pseudo Gauss-Newton training

1. Calculate pseudo Gauss-Newton direction using nc_pseuhess

2. while norm(r) > prescribed value and no. of iteration < maxitr repeat

1. Determine step-size using nc_linesear

2. Update weights

3. Recalculate the pseudo Gauss-Newton direction using nc_pseuhess

end

end

end

49

Call

function [Wi_tr,Wo_tr] = nc_train(Wi,Wo,alpha_i,alpha_o,Inputs,Targets,gr,

psgn,neps,figh)

%

% Train the network with gradient descent followed by pseudo Gauss-

Newton

%

% Input:

% Wi : Matrix with input-to-hidden weights

% Wo : Matrix with hidden-to-outputs weights

% alpha_i : Weight decay parameter for input weights

% alpha_o : Weight decay parameter for output weights

% Inputs : Matrix with examples as rows

% Targets : Matrix with target values as rows

% gr : Max. number of gradient descent steps

% psgn : Max. number of pseudo Gauss-Newton steps

% neps : Gradient norm stopping criteria

% figh : figure handle. If no plotting is desired use

% figh=0;

% Output:

% Wi_tr : Matrix with trained input-to-hidden weights

% Wo_tr : Matrix with trained hidden-to-outputs weights

%

MWP97

B.3.21 Subroutine nc_winit.m

Call

function [Wi,Wo]=nc_winit(Ni,Nh,No,range,seed)

% Uniform weight initialization

% Input:

% Ni: no. of input neurons

% Nh: no. of hidden neurons

% No: no. of output neurons

% range: weight initialization uniformly over [-range;range]/Ni

% and [-range;range]/Nh, respectively.

% seed: a integer seed number, e.g., sum(clock*100)

% Output:

% Wi: Input-to-hidden weights

% Wo: Hidden-to-output initial weights

% JL97

50

References

[1] C.M. Bishop: Neural Networks for Pattern Recognition, Oxford, UK: Oxford Uni-
versity Press, 1995.

[2] Defense Advanced Research Projects Agency: DARPA Neural Network
Study, AFCEA International Press, 1988.

[3] R.C. Eberhart and R.W. Dobbins: Early Neural Network Development History: The

Age of Camelot IEEE Engineering in Medicine and Biology, September 1990, 15-
18, (1990).

[4] S. Haykin: Neural Networks: A Comprehensive Foundation, New York, New York:
Macmillan College Publishing Company, 1994.

[5] J. Hertz, A. Krogh & R.G. Palmer: Introduction to the Theory of Neural Com-

putation, Redwood City, California: Addison-Wesley Publishing Company, 1991.

[6] M. Hintz-Madsen, L.K. Hansen, J. Larsen, M.W. Pedersen & M. Larsen:
\Neural Classi�er Construction using Regularization, Pruning and Test Error Es-
timation," Neural Networks, vol. 11, no. 9, pp. 1659{1670, Dec. 1998.

[7] K. Hornik: \Approximation Capabilities of Multilayer Feedforward Networks," Neu-
ral Networks, vol. 4, pp. 251{257, 1991.

[8] J. Larsen: Jan Larsen: Correlation Functions and Power Spectra, 04361 Digital
Signal Processing course note, 4th Edition, IMM, DTU, 1999

[9] J. Larsen: Design of Neural Network Filters, Ph.D. Thesis, Electronics Institute,
Technical University of Denmark, March 1993.

[10] Y. Le Cun, J.S. Denker, S.A. Solla: \Optimal Brain Damage," in D.S. Touret-
zsky (ed.) Advances in Neural Information Processing Systems II San Mateo: Mor-
gan Kaufman, pp. 598{605, 1990.

[11] J.L. McClelland & D.E. Rumelhart (eds.): Parallel Distributed Processing,

Explorations in the Microstructure of Cognition. Vol. 1: Foundations, Cambridge,
Massachusetts: MIT Press, 1986.

[12] W.S. McCulloch & W. Pitts: \A Logical Calculus of Ideas Immanent in Nervous
Activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115{133, 1943.

[13] J.G. Proakis & D.G. Manolakis: Digital Signal Processing: Principles, Algo-

rithms and Applications, 3rd edition, Upper Saddle River, New Jersey: Prentice-
Hall, Inc., 1996.

[14] B.D. Ripley: Pattern Recognition and Neural Networks, Cambridge, UK: Cambridge
University Press, 1996.

[15] F. Rosenblatt: \The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain," Psychological Review, vol. 65, pp. 336{408, 1958.

[16] F. Rosenblatt: Principles of Neurodynamics, New York, New York: Spartan, 1962.

[17] J.Aa. S�rensen: Adaptive FIR Filters, 04361 Digital Signal Processing course note,
IMM, DTU, 1999.

[18] D.G. Stork (ed.): HAL's Legacy: 2001's Computer as Dream and Reality, Cam-
bridge, Massachusetts: MIT Press, 1997.

51

[19] B. Widrow & M.A. Lehr: \30 Years of Adaptive Neural Networks: Perceptron,
Madaline, and Backpropagation," Proceedings of the IEEE, vol. 78, no. 9, pp.
1415{1441, Sept. 1990.

[20] B. Widrow & M.E. Hoff, Jr.: \Adaptive Switching Circuits," IRE WESCON

Convention Record, part 4, pp. 96{104, 1960.

52

