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Abstract—This paper presents the experimental validation
of a lithium-iron phosphate cell model. The modelling of dy-
namic cell behaviour is crucial to improve the performance
of reconfigurable battery systems, in which monitoring of the
dynamics allows more resoluted leveraging of the battery cells.
However, the models of lithium-ion cells are generally inaccurate
due to nonlinearities, measurement noise and because the most
descriptive state, the state of charge is hidden. Furthermore, the
parameter identification of the model requires time and precise
measurements, while they differ among the cells, and change
as the cells age. The burden of the detailed modelling of a
battery system can be alleviated by modelling a single cell, and
using the model for each cell in the system. In this work, this
possibility is explored by validating a single-cell reference model
for a reconfigurable battery system. The terminal voltage residual
(error between model and measurement) is presented, and its
correlations with internal and external variables are investigated.
These correlations can also be used to alleviate the modelling
errors. It is concluded that the reference model can qualitatively
describe the cell behaviour. By applying small modifications, the
model could be used for online estimation.

Index Terms—Model validation, residual analysis, correlation
function, battery modelling, battery management systems, state
of charge.

I. INTRODUCTION

Decarbonization is a vital topic today, which is partially

supported by investment into renewable energy sources and

electrical vehicles. In order to compensate for the conse-

quential fluctuation of power in the electrical grid, energy

buffers are installed. One of the preferred solutions is using

battery energy storage systems (BESS) due to their efficiency

and flexibility. These systems consist of a large number of

battery cells, and their lifetime and performance is maximized

with balanced state of charge (SoC) among the cells [1]. A

prominent technique to achieve this is using reconfigurable

battery systems, which are capable of engaging or bypassing

individual or groups of cells [2].

Modelling the cells is crucial to understand their behaviour

[1]. Therefore the investigated lithium-ion cells are interpreted

with (Thevenin) equivalent circuit models (ECM), as opposed

to the more sophisticated but complicated electrochemical

models [3]. Battery packs are generally modelled with a

single-cell equivalent, stacking a single model [4], or stacking
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individual models [5]. Although [6], [7] show that the single-

cell equivalents are more accurate than the stacked versions,

reconfiguration requires knowledge about individual cells.

The SoC is an interpretation of charge level, and it is a

latent (non-measurable) variable. Knowing its value, and its

exact mapping to the other physical variables would reduce

the burden on planning battery operation. Two rudimentary

methods of estimating the SoC are integrating the cell current

(coulomb counting) or backtracking it from the open circuit

voltage (OCV) [1]. The former introduces bias and ignores

phenomena like rate capacity effect [8], while the latter is

subject to high level of uncertainty (for LiFePO4/LFP cells)

in the middle of the SoC range due to the low voltage

measurement accuracy and the inaccuracy of the parameters.

Another benefit of cell modelling and SoC estimation is

the improved estimate of the terminal voltage of each cell

without measurement noise, from the OCV and the ECM

parameters. An example application is voltage and impedance

matching for EV charging from a stationary battery system

[9]. Due to the nature of cell switching, it is challenged

by the current transients [10]. Apart from introducing power

converters (which decrease efficiency) or applying pulse width

modulation (PWM) on the cell switches [11], selecting cells

with well-known OCV and impedance can alleviate the chal-

lenge.

The adequacy of a model can be investigated with model

validation. For this, the residual (or residual signal) x̃ is

defined as the difference of the model output x̂ and the

measured value x, i. e.

x̃ = x̂− x. (1)

The basis of model validation is generally investigating the

autocorrelation function (ACF) and the cross-correlation func-

tions (CCF) with the inputs [12]. For nonlinear systems like

ours, further higher order cross-correlations may be explored

[13], [14].

Contribution

Cell modelling requires time and precise experimental set-

ups, and the found parameters depend on several variables like

current, temperature or aging [1]. In order to save time and

energy in this process, the model of one single cell could be

used to describe the behaviour of each cell in a battery system.
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The contribution of this work is the model validation of this

reference model, based on the terminal voltage residual. The

model accuracy and the dynamic response is used to find the

applicability of this reference model, which can be

• prediction of the model states, if the residual has low

autocorrelation and its mean is bounded by 5 mV,

• estimation of the model states, if the residual mean is

bounded by 20 mV, and the estimator is faster than the

system dynamics,

• qualitative investigation of a controller, using the model

as a testing environment, if the residual mean is bounded

by 50 mV.

One outcome of the model validation is the decision about

this applicability. Moreover, it is found if the reference model

can be used as it is, it needs to be modelled again with new

considerations, or it needs augmentation with online or offline

estimation for each cell.

The paper is structured as follows. Section II-A describes

the BESS used for the model validation. Section II-B presents

the modelling done for the single cell reference model. Sec-

tion III describes the methodology and Section IV the results

of the model validation. Section V discusses the results and

Section VI concludes the paper.

II. INVESTIGATED BATTERY SYSTEM

A. System description

The investigated BESS is a reconfigurable battery string

designed as a stationary buffer for EV charging, with the cells

connected in series. As the BESS is connected to the AC

grid via a power converter, which has maximum efficiency

at 800 V, this value is kept by the BESS. The string consists

of 11 modules, and one battery module has 27 cells [15].

Since the results found for individual modules align well, one

single module is depicted here. Assuming that the accuracy

deterioration due to the voltage divider is negligible, the cell

voltage measurement accuracy of the PIC microcontroller is

0.08 % of the nominal cell voltage of 3.2 V, which is ≈ 3mV.

The Murata temperature sensor has the self-heating of 1◦C,

and its time constant is below 2 minutes. The deployed SET

transducer measures the string current with 1% accuracy,

which is maximum 0.43A for the tests following. The mea-

surements are logged every 0.5 seconds.

B. Cell model description

The LFP cells used in the experimental setup have a nominal

capacity of 100 Ah [15], and this value is considered for all of

the cells. One reference cell was characterized and modelled

with a second order Thévenin equivalent (see Fig. 2b), which

finds the terminal voltage in the Laplace domain as

V̂ = V̂OC − I

(

R̂0 +
R̂1

τ̂1s + 1
+

R̂2

τ̂2s + 1

)

, (2)

where I is the cell current, the ECM parameters are the

resistances Ri and capacitances Ci, giving the time constants

τi = RiCi. Note that this assumes a locally linear model.
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Fig. 1. Open-circuit voltage (OCV), resistances and time constants as a
function of cell state-of-charge (SoC) for the reference cell model

The progression of the open-circuit voltage (OCV or VOC)

was determined by measuring the voltage at currents of 3.5 A

(discharging) and -3.5 A (charging), and averaging the two

curves. As seen in Fig. 1, the OCV has a relatively constant

trend including a plateau with nearly zero gradient around

50 % SoC. Furthermore, pulse charging experiments were

conducted to estimate the values of the ECM parameters at

different SoC. The current was controlled to form pulses of

100 A (1C) for 6 minutes followed by a relaxation time of

90 minutes [16]. Note that due to the nature of the tests, the

OCV and the ECM parameter estimates are interdependent and

hence introduce error. To consider the influence of cell temper-

ature, all experiments were performed in a climate chamber at

25 ◦C and 45 ◦C and the estimated parameters were modelled

with linear interpolation in between. It is assumed that the

hysteresis [1] is negligible and the ECM parameters have

no current dependency. To avoid adding further nonlinearities

to the model, the ECM parameters were averaged for the

values from the charging and discharging experiments. For the

experiments and the model validation, the SoC was estimated

with coulomb counting, i. e. ∆SoC =
∫

Idt, and it was reset

to 0% and 100% at 2.8 V and 3.4 V (as here better accuracy

is expected).

III. METHODOLOGY

In order to explore individual aspects of the model, different

scenarios were designed. A full charge and a full discharge

were made at a typical EV charging power level of ±25 kW.

Apart from the limitations due to the voltage granularity,

the constant power leads to nearly constant current, ranging

between 31.5 A and 32.0 A. Fig. 3 and Fig. 4 (bottom) present

the cell voltage measurement for such a test. Ideally, this is

an even swipe through the average SoC range of the whole

BESS. The average SoC is denoted by SoC from now on, and



it is understood for the whole battery system. Apart from the

mentioned tests, there were 12 Parker tests made [17]. These

tests are to find the quality of setpoint following of a system.

Hereby it is used to trigger the dynamic response to steps,

ramps and harmonic signal, without having a notable effect

on the SoC. The 12 tests are made at 4 different SoC values

with 3 frequencies of power requests. Fig. 4 (top) depicts the

corresponding current, which is shared by all the engaged

cells, at 65% SoC. Before each scenario, the cells were entirely

charged or discharged to minimize the bias.

The inputs to the model are the current and the temperature.

Both the reference model and the model validation tests used

temperature measured at the top of the battery cell. This

temperature is different from the average temperature of the

cell. These measurements range between 25 and 32 degrees

for all data, and range maximum 3 degrees for individual cells.

Moreover, they do not correlate with the residuals. Therefore

it is assumed that the effect of temperature on the residuals

cannot be quantified.

Fig. 2a depicts that the inputs to the cell model are the

(binary) engagement signal Γi (value 0 referring to bypass-

ing, and 1 to engagement), the string current Istring and the

temperature. The cell current is I = ΓiIstring. The output

is the terminal voltage V̂i. The residual is then compared

against different variables to focus on different aspects of

the modelling errors. The summary of statistics for the test

scenarios are then compared in Table I.

IV. RESULTS

Fig. 3 shows how large the variance of the voltage mea-

surements is, hence it is impractical to deduce the SoC at the

plateau between 30 and 120 minutes. Due to the differences

in capacities, cells reach the minimum limit of 2.8 V earlier

at different times. Since the model assumes a cell capacity of

100 Ah, this means that the SoC estimate will always introduce

errors to the OCV and ECM parameters.
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Fig. 2. a) The methodology of extracting the residual. Note that the model is
the same for each cell. b) The Thévenin equivalent with the ECM parameters

The 27 residuals for the full discharge are plotted against

the SoC after taking the moving average for 100 sample points

in Fig. 5. The statistics in Table I refer to this interpretation,

where the union of the cells is taken to deduce the mean µ∪

and the standard deviation σ∪. Furthermore, the mean value

µi was calculated for each cell i, then the median Mµ, the

interquantile range IQRµ, the range Rµ, and the average of

the individual standard deviations σ is presented. Regarding

the histogram in Fig. 5, it can be seen that the residuals do

not follow a Gaussian distribution. They are more Gaussian for

the Parker tests, since those are around the OCV-SoC plateau.

The envelopes of the residuals for charging and discharging

are also depicted. Generally, the model performs poorly below

30% SoC, since in this region, the parameters of the reference

model are not representative for the BESS and are asymmetric

for charging and discharging. As a result of the heterogeneity

of the capacities and the consequential bias in the coulomb

counting, there are negative spikes at 95% SoC for charging.

The string current for the two tests is ≈ ±31.75 A, however,

the Parker tests range between ≈ ±43 A. Therefore we expect

to see larger errors for the latter. Assuming that the current, the

temperature, the ECM parameter asymmetry and the hysteresis

are negligible, and the cell SoC is not effected by the short

durations of current, the residual only depends on the current

as variable. Since I does not spread evenly along its range due

to the nature of switching, plotting the residuals against the

cell voltage is more informative. Fig. 6 depicts a heat map for

the union of cells. Since the Parker test input has zero mean,

the peak is around the average OCV value, hence the cells are

most likely to rest at this value. The average OCV is ≈ 3.31V,

overestimated by 20 mV. Experiments show that subtracting

this value from the OCV-SoC lookup table vanishes µ∪.

If the assumptions hold, it can be shown that the slope m
at any time can be described by m = ∆Ṽ /∆V̂ . In case of

steady state, m = 1− R̃0+R̃1+R̃2

R̂0+R̂1+R̂2

is the slope of the fitted line

for a cell, and it could be used to adjust the resistance to the

correct value (the idea is taken from Lissajous curves [18]).

However, when the differential of the residual is investigated, it

can be seen that the steps (jumps) of the Parker test (see Fig. 4)

dominate the spread of the points. Hence the resistance error

is negligible compared to either the time constant errors or the

error due to the hysteresis. Fig. 7 shows that the residual and

Fig. 3. Measured voltage of 27 cells, full discharge with ≈ 32A string current



Fig. 4. Parker test [17], 65% SoC, top: the corresponding residual averaged for the cells, bottom: the terminal voltage for the model and measurement
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Fig. 5. Residuals envelopes against SoC; for the discharge test: individual residuals and the statistics (histogram and boxplot) used in Table I

current input ACF peaks coincide, e. g. at 12.5 minutes. This

is the time between the ramp and the sinusoidal. Therefore the

ACF cannot be used for qualifying the model validation.

Table I compares the statistics of the 6 test scenarios.

The union mean µ∪ ranges between -21 and 42 mV. Its

asymmetry for charge and discharge indicates asymmetry of

the parameters. It is larger for the Parker tests due to the larger

currents. It increases away from the OCV-SoC plateau because

of the OCV-SoC curvature at these points. The union standard

deviation σ∪ is notably lower for the Parker tests at larger

SoC, which indicates that the lookup parameters are more

uniform for the cells at this region. The median Mµ changes

sign around the OCV-SoC plateau, due to the individuality

of the reference model. For the same reason, IQRµ and Rµ

have the 35% SoC Parker test results outstandingly wrong.

Regarding σ, the precision is bounded by 10 mV for most of

the SoC range and a bit larger for the full charge and discharge

tests, since these explore the edges of the OCV-SoC curve.

Test µ∪ σ∪ Mµ IQRµ Rµ σ

full charge 14 31 19 29 55 18
full discharge -21 46 -21 26 56 20

Parker test, 30% SoC 43 43 -47 15 223 11

Parker test, 35% SoC 30 27 -36 33 99 10

Parker test, 65% SoC 18 12 18 12 41 7

Parker test, 80% SoC 42 13 41 12 44 8
TABLE I

STATISTICS OF THE 6 SCENARIOS. ALL ARE UNDERSTOOD IN [MV]

V. DISCUSSION

From the plots, the quality of the OCV-SoC curve can be

found and improved. The effect of the missing time constants

or the hysteresis on the residual cannot be quantified, as the

residual and residual and the current input signals correlate,

having peaks at the same locations. Ideally white noise with

adequate bandwidth could be imposed as current input, without

bypassing cells, to find the ACF and CCF. Alternatively PRBS

input signal [19] could be used, alleviating the requirements

on the actuator. Currently these inputs are not possible with

the investigated BESS. If the nonlinearities are negligible, and

the SoC is constant, tools of correlation could quantify the

effect of the missing dynamics. Then the parameters could be

tailored to decrease the ACF values.

The strategy of using one single cell to determine the

reference model is time and energy efficient, but simplistic,

given the values of IQRµ and Rµ. Alternatively a group of

cells could be selected randomly from the BESS. Fig. 5 shows

that 27 cells create a smooth distribution. Furthermore, the on-

line estimation of the individual capacities could significantly

reduce the bias from coulomb counting.

More sophisticated tests would improve the interdependence

of the identification of the OCV-SoC and ECM parameters.

However, this is impractical due to the necessary time, when

further decreasing the current or introducing resting times.

The residual mean is bounded by 50 mV. Therefore regard-

ing the applicability of the reference model, it can be used for



Fig. 6. Residual heat map against model voltage for a Parker test, 65% SoC

Fig. 7. ACF for a Parker test at 65% SoC, for every cell and the string current

a qualitative analysis of a controller, by adequately changing

model parameters to emulate the heterogeneity of the cells. In

case it is augmented with an online data driven method for

each cell, it is possible to use it for online estimation. For

example, the individual cell residuals could be whitened from

correlations with an ARMAX model [20], and the found filters

could be added to the reference model as a dual estimator

of states and parameters. Alternatively, nonlinear estimators

could be applied from the field of machine learning. However,

using a data driven approach is for the cost of losing some

understanding of the model.

VI. CONCLUSION

In this work, model validation was used to find the ap-

plicability of a single cell reference model. This model was

used to estimate the behaviour of each cell in a reconfigurable

battery system. First, the modelling strategy for the reference

(Thévenin equivalent circuit) model was presented. Then the

test scenarios were described, which were designed to inves-

tigate individual aspects of the model. The residuals were de-

fined as the error between the model and the measurements, for

the terminal voltage. Their dependencies on the average SoC

range, the internal and the external variables were investigated.

Using the findings, the model bias could be alleviated. Finally,

the statistics of the different scenarios were discussed.

To summarize, the single cell reference model is an adequate

model to test a controller. Model augmentation could help to

improve its accuracy and to use it as an online estimator, for

example with online linear parameter estimation, or with a

nonlinear estimator.
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