
A SIMULATION PLATFORM FOR LOCALIZATION
AND MAPPING

Thomas Hanefeld Sejerøe⋆, Niels Kjølstad Poulsen∗∗

Ole Ravn∗,1

∗ Ørsted•DTU, Automation,
The Technical University of Denmark,

Building 326, DK-2800 Kgs. Lyngby, Denmark
E-mail: or@oersted.dtu.dk

∗∗ Informatics and Mathematical Modelling,
The Technical University of Denmark,

Building 321, DK-2800 Kgs. Lyngby, Denmark
E-mail:nkp@imm.dtu.dk

Abstract: In this paper we present a simulation platform forevaluate methods for
simultaneous location and mapping. The platform is based onThe Kalmtool 3 toolbox
which is a set of MATLAB tools for state estimation for nonlinear systems. The toolbox
contains functions for extended Kalman filtering as well as for two new filters called the
DD1 filter and the DD2 filter. It also contains function for Uncented Kalman filters as
well as three versions of particle filters. The toolbox requires MATLAB ver. 6, but no
additional toolboxes are required.Copyrightc©IFAC 2006.

Keywords: Simulation, toolbox, State estimation, Kalman filtering, nonlinear systems,
autonomous robots

1. INTRODUCTION

The simulation platform described in this paper, is
build on Kalmtool which is a collection of Matlab
implementations for simulation and estimation in con-
nection to nonlinear dynamic systems. The develop-
ment of the toolbox has been driven by the application,
which is navigation of mobile robots. In this context
location and mapping is corner stones.

During the work it was found that the extended
Kalman filter was somewhat inconvenient to use in
some of our applications. A small modification of the
application sometimes had serious implications on the
EKF implementation. Moreover, it was often difficult
to implement. Our problem was that the EKF requires
a linearization of the system model. Sometimes this
is easy to find but sometimes it can be pretty hard. In

1 Corresponding author

any case, it makes things inflexible. If a small change
is made in the model, one has to work out a new
set of derivatives. This is particularly inconvenient in
model calibration where certain model parameters are
temporarily included in the state vector and estimated
simultaneously with the actual states.

Since it was suggested, the extended Kalman filter
(EKF) has undoubtly been the dominating technique
for nonlinear state estimation. Nevertheless, the EKF
is known to have several drawbacks. These are mainly
due to the Taylor linearization of the nonlinear trans-
formations around the current state estimate. The lin-
earization requires that Jacobians of state transition
and observation equations are derived, which is often
a quite complex task. Moreover, sometimes there are
points in which the Jacobians are not defined. In ad-
dition to the difficulties with implementation, conver-

gence problems are often encountered due to the fact
that the linearized models describe the system poorly.

There have been significant focus on this area recently
and previous work include several toolboxes and other
platforms. ReBEL (Recursive Bayesian Estimation
Library) van der Merwe (2004) is a Matlab toolkit of
functions and scripts, designed to facilitate sequential
Bayesian inference (estimation) in general state space
models. The CAS Robot Navigation Toolbox Arras
(2004) is a tool for doing off-line off-board localiza-
tion and SLAM on mobile robots. The design of the
CAS toolbox decouples robot model, sensor models,
features and algoritms used giving the user ability to
adapt the toolbox by just modifying or adding the
pieces in question. The toolbox does not in its present
form support the generation of realtime code for use
on the robot.

The present platform Kalmtool 3 has its root in Kalm-
tool (v. 2) but focus here is on comparision and trans-
parency giving the developer more control over the
process of adapting changes and keeping housekeep-
ing code minimal. The implemented methods are de-
scribed in more detail in Sejerøe et al. (2005).

The paper is organized as follows: first the overall
design philosophy behind the platform is described.
Secondly, a description of the the toolbox and the im-
plementation of the estimation algorithms are given.
This includes the extended Kalman filter, the Un-
cented Kalman filter and different types of particle-
filters. Next the driving application i.e. location and
mapping in connection to mobile robots are discussed.
Section 3 gives an extensive example study as well
as a demonastration of the platform for comparing
algortims for navigation of a mobile robot. Finally
conclusions and references are given.

2. THE PLATFORM AND TOOLBOX

The overall design philosophy has been to put focus on
making a simple, transparent, yet powerfull platform
that and makes life easy to use both for application
and algorithm developer.

Transperancy overcomes the barrier effect that is often
expirenced when using tools that at first sight seem
very user friendly but when used on real problems
becomes difficult to handle due to the inherent com-
plexity.

The approach taken uses MATLAB as a numerical
and graphical basis for developing the platform. The
platform is driven from Simulink as this provides
a shorter path to implementation using for instance
Realtime Workshop and makes is simple to use real
data for comparison.

The philosophy of the update to the Kalmtool toolbox
is to provide a more open structure (see figure 1,
which is easier to use and which enables the user

to investigate the inner workings of the estimation
algorithms. With this in mind, the structure of the
Kalmtool 3 functions have been opened up an a larger
selection of functions made available. The functions
are made to work in an online setting, one timestep
- one update, though this does not prohibit its use
in offline environments. The main changes are the
breakup of the estimation loop and the introduction
of an a evaluator function.

Fig. 1.The structure of Kalmtool 3.

Changing the loop means that the functions can now
be used directly in an online setting providing that
there are sufficient resources available.

Fig. 2.The evaluator function.

Zero−Order
Hold

White Noise
States

White Noise
Measurement

MATLAB
Function

System
Equations

x

States

yu

Samples

y

Measurements

MATLAB
Function

Measurement
Equations

1
s

Integrator

u

Inputs

MATLAB
Function

Estimation
Algorithm

xvar

Estimates

ipvec

Control Signals

x’

u

u

u
u

v

y

y

x

x

x

x

w

Fig. 3.The Simulink layout of a continous system.

As seen in the above figures the user can easily
add new algorithm into the platform by modifying
the MATLAB function in the Estimation block and
change the system by modifying the system and mea-
surement MATLAB blocks.

Zero−Order
Hold − w

Zero−Order
Hold − v

Zero−Order
Hold − u

Zero−Order
Hold

White Noise
States

White Noise
Measurement

z

1

Unit Delay

MATLAB
Function

System
Equations

x

States

yu

Samples

y

Measurements

MATLAB
Function

Measurement
Equations

u

Inputs

MATLAB
Function

Estimation
Algorithm

xvar

Estimates

ipvec

Control Signals

3

3

x(k+1)

u

v

y

y

2

2

2
2 [1x2]

w

x(k)

x(k)

x(k)

x(k)

u

u

u

u

w

v

Fig. 4.The Simulink layout of a discrete time systems

Procedure functionality

divdiff1 the Divided difference first order
divdiff2 the Divided difference second order
ekfcntns the Extented Kalman filter with cont. eval.
ekfdscrt the Extented Kalman filter with disc. eval.
pfexpuns a raw version of the Particle Filter
pfgenerc a generic Particle Filter using SIR
pfgnrcmh a generic Particle Filter using SIR and MHR
ukfsimple the Unscented Kalman filter
ukfscaled the scaled Unscented Kalman filter

Table 1. Table of estimation functions
available in Kalmtool 3.

3. EXAMPLE STUDY

The versatility of the simulation framework is most
evident when implementing a number of examples.
For the purpose of this demonstration, a discrete time
difference equation system and a continuous time dif-
ferential equation system are selected. The example
studies concludes with a simultanous location and
mapping problem.

3.1 Nonlinear state estimation

The first example i a discrete time system and is an
academic example of a nonlinear system (though in a
simplified form), which has been used previously as
a benchmark for testing filter algorithms (Netto et al.
(1978)).

In the example the process is a nonlinear equation with
a linear and noisy measurements. First, the process
equation,xk+1 is listed, next the measurement equa-
tion, yk.

xk+1 =
1
2

xk +
25xk

1+x2
k

+8cos(1.2k)+vn

(1)

yk = xk +wk;

Note that, both the noise sources,vk andwk, are zero
mean Gaussian white noise with variances of 10.0 and
1.0 respectively. As was the case with the small robot
model, a Monte Carlo series of simulations was made
with a variety of estimation algorithms. Two examples

50 100 150 200 250
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Particles

RM
SE

50 100 150 200 250
10

15

20

25

30

35

40

Particles

Me
an

 Va
r. E

st.

Exp. Unsc. PF.
Generic PF.
Generic PF. (MH)

Fig. 5. Two graphs depicting the effect of varying
the particle count per update on the benchmark
system. The mean RMSE and mean variance esti-
mates are seen to converge rather quickly to rel-
atively stationary values at around 100 particles
per time update.

of the appearance of a simulation can be found in
figure 7.

The result of the Monte Carlo simulation can be seen
in table 2. The Kalman filter type algorithms were
simulated 1000 times and the means of the root mean
square errors (RMSE) were found as well as the means
of the variance estimates. The Particle Filter types
were simulated 100 times with 200 particles per time
update in all filters.

Algorithm Mean RMSE Mean Var. Est. Time

C.D. EKF 0.9573 0.9206 1.000
Std. UKF 0.9472 0.9238 0.126
Scl. UKF 0.9503 0.9247 0.151
DD1 0.9417 0.9221 0.133
DD2 0.9260 0.9238 0.137

Exp. PF 0.9513 0.9165 2.067
Gen. PF 4.2326 31.595 5.917
PF (MH) 4.0238 28.165 8.543

Table 2.Table of results for a Monte Carlo
series of simulations on the discrete nonlin-

ear and noisy system.

−4 −2 0 2
0

1

2

3

4

5

6

7

8

9

10

Divided Difference KF (2nd) − T
s
 = 1.000

x [m]

y
[m

]

0 10 20 30
−3

−2

−1

0

1

2

3

Time [s]

Ra
di

an
s

True value
Estimate

Fig. 6.A path traced by the small unicycle robot. The
estimation routine employed is the 2nd order Di-
vided Difference filter with a sampling frequency
of 1 Hz. At every other estimated state, the 95%
confidence intervals are drawn as ellipses or bars
respectively. The estimate is at no point outside
the confidence intervals.

Finally, in order to compare the precision of the three
particle filters as a function of the number of particles
per time update, a Monte Carlo series of simulations
was made using the benchmark system. The results
can be seen in figure 5. The series consisted of 100
runs per particle count, from 2 to 256 particles in in-
creasing steps. The algorithms converge rather quickly
as the particle count increases.

3.2 Location and Mapping

When maneuvering an autonomous guide vehicle
(AGV) it is important to know the position and ori-
entation of the vehicle. This is often done by using the
odonometry of the vehicle. This is basically just to use
the measured traveling distance and measured change
of orientation. This is also denoted as dead-reckoning.

It is however well known that this method has an in-
herit nature of accumulating errors. The determination
of the position and orientation is therefore supplied
with measurement of the robot position and orienta-
tion in relation to some guide marks with known (or
relative well known) positions. This, dead-reckoning
and eventually the use of some guide marks is denoted
as location or navigation.

The model of the mobile robot (unicycle type) is given
by the set of equations which are slightly nonlinear.
The equations yield a position as well as a heading.
The input signals (i.e. control signals) are the velocity,
γ, and turnrate,ω.

d
dt

xt

yt

θt

 =

γt cos(θt)
γt sin(θt)

ωt

+vt (2)

The process noise is in the (later) example studies
simulated asN(0,0.01 I3). The estimation procedure
in the location part and the mapping part is based
on a sampled version of the above process equation.
The sampling can be done analytically (for this simple
example) or by means of a numerical ODE solver.

Location in relation autonomuous guided vehicle is
based on a fusion of results from several sensors.
Normally one of the sensors set is the odometry, i.e.
noisy measurements of the speed of the wheels:

ωr =
2γt +bωt

2rr

ωl =
2γt −bωt

2r l

Another set of measurements is the relative position
between a guide marks and the robot. Assume a guide
mark has a position which is known with some preci-
sion embedded in

[

xg

yg

]

∈ N(0,Pg)

The position of the robot is also known with some
precision reflected by

xt

yt

θt

 ∈ N

x̂t

ŷt

θ̂t

 ,Pt

The actual measurement is the distance and the direc-
tion to the guide mark which can be transformed into
a set of Cartesian measurement:

yt =

1 0 0 −1 0
0 1 0 0 −1
0 0 1 0 0

xt

yt

θt

xg

yg

+et (3)

The mesurement noise is assumend to beN(0,R2)
whereR2 reflects the transformation of the uncertainty
in the mesurements of the distanse and the direction
from the robot to the guide mark.

Both location and mapping is based on the same
principle. In connection to mapping a newly observed

guide mark is assumed to have a position given by the
a’priori distribution

[

xg

yg

]

∈ N(p,P0) (4)

reflecting the lack of knowledge. As a limit it can be
assumed to be totally flat.

0 20 40 60 80 100

−25

−20

−15

−10

−5

0

5

10

15

20

25

Divided Difference KF (2nd)

k

0 20 40 60 80 100

−20

−15

−10

−5

0

5

10

15

20

Generic PF − No. of Particles = 100

k

True value
Estimate

Fig. 7. Two examples of the highly nonlinear and
noisy system given in equation 1. The topmost is
the 2nd order Divided Difference filter, while the
bottommost is a generic Particle Filter.

3.3 Dead-reckoning

The next example is a continuous time system and is a
very simple model of a dead-reckoning guidance for a
small mobile robot (see equation (2)). In Figure 6 the
results of a simulation using the Divided Difference
(2nd order) as estimator can be seen. The integral of
the control signal,ω, is seen in the lower panel below
the path traced by the robot (upper panel).

In order to compare a range of techniques imple-
mented in the framework, accuracy results are given
in table 3. Attempting to find a fair estimate of the
accuracy, 100 runs were made with each algorithm and
the average values were found. The particle filters all
used 200 particles per time update. The table contains
the ”worst case” values for the three states.

Also listed in the table is the computational burden of
each algorithm. The latter is given as a relative num-
ber compared to the runtime of a continuous-discrete
extended Kalman filter (C.D. EKF). The times are
relative, as other processor speeds and types will yield
different absolute results. Furthermore, the algorithms
and their runtimes may well benefit from numerical

Algorithm Max. RMSE Max. Var. Est. Time

C.D. EKF 0.06799 0.005717 1.000
Std. UKF 0.07399 0.006779 2.678
Scl. UKF 0.07331 0.006693 3.673
DD1 0.07251 0.006779 2.640
DD2 0.07177 0.006781 2.658

Exp. PF 0.07591 0.006479 16.86
Gen. PF 0.09698 0.039829 17.82
PF (MH) 0.08960 0.058690 18.53

Table 3.Small mobile robot, worst value of
mean estimate (x,y,θ) and maximum mean
variance estimate of 100 Monte Carlo sim-
ulations. The table is split into Kalman fil-
ter variants (top) and particle filters (bot-
tom). The particle filters all used 200 parti-

cles.

optimizations in application specific implementations.
The algorithms used a fixed step integration (Matlab,
Dormand-Prince, order 5) to solve equation 2. The
standard Unscented Kalman filter (Std. UKF) per-
forms very well, while it’s scaled version gives a lower
mean RMSE and a slightly lower mean variance esti-
mates. The DD1 and DD2 both give low mean RMSE
and consistent variance estimates - in this case, the
second order parts of the DD2 does not yield much.

3.4 Simultanuous location and mapping I

The next two examples are related to location while
a map of the guide marks is build. The dynamics
involved is the AGV given in (2) with a sensor fusing
between the odometry (dead-reckoning) and the rela-
tiove postioning of the guide marks. Both the location
and mapping is based on the oberservation equation,
(3), where the guide mark is the actual guide mark
under observation. The robot is assumed to have an
active view sector in front which is 90 degree wide
and has a range of 4 m. The active guide marks are the
guide marks visible within the robot view sector.

In this context the map consists of a database con-
taining the estimated locations of the guide marks and
their respective uncertainty. Besides the database the
location and mapping consists of a routine for han-
dling the information related to the active guide marks.

In the first example related to simultaneous location
and mapping the task is to navigate the robot along a
wall and drive through the door opening and return.
The door opening is defined in terms of two set of
guide marks. The navigation is performed by means
of way points located in in front and behind the door
opening. The positions of the way points are assumed
to be known. The control implementation is described
in Bak (2000), but is beyond the scope of this paper.

The results are illustrated in Figure 8 where the
applied estimation technique is based on the DD2
method described in Sejerøe et al. (2005).

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

DD2 − T
s
 = 1.000

Fig. 8. Navigation of a mobile robot through a door
opening. The map is build simultanuouly while
controlling the robot. The control is based on the
location i.e. the estimation of the position and
orientation of the robot. The positions and their
incertainty are anotated by 99% confidence areas
(ellipsoids).

3.5 Simultanuous location and mapping II

This example is quite similar to the previous example,
except that in this case it is a bit more complex and
the robot has to follow a coridor equipped with guide
marks. The results can be seen in Figure 9. The true
robot path (which is known due to the simulation) and
the estimated are indicated by solid lines. The location
of the 4 way points are also indicated.

As the map is build the position of the guide marks are
introduced. The estimated positions and their uncer-
tainties are indicated with a dot and a 99% confidence
area (ellipsoids). Notice, that in some case the correct
position of a guide mark is outside the confidence area.

In this work we have applied an earth fixed coordiante
system in which both position (and orientation) of
the robot and the guide marks are related. The result
is positions of robot and guide marks in an absolute
scale. However, the dynamic is related to the robot
only. Another approach is to apply a robot fixed co-
ordinate system. Then the position of the robot and
guide marks are relative. In a robot fixed coordinate
system the process equation for the guide marks are
no longer the identity but a result of the movement of
the robot (and the coordinate system).

4. CONCLUSION

In this paper we have presented a simulation platform
for simultaneous location and mapping. The platform
is based on the toolbox Kalmtool which a set of MAT-
LAB tools for state estimation for nonlinear systems.
It contains functions for extended Kalman filtering as
well as for the two new filters, the DD1 filter and the
DD2 filter. It also contains functions for Unscented

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

Divided Difference (2nd Order) − T
s
 = 1.000

Fig. 9.Navigation of a mobile robot along a corridor
with guide marks located on the walls. The map is
build simultanuouly while controlling the robot.

(standard and scaled) Kalman filter as well as three
versions of particle filters.

The paper contain some examples to illustrate the
methods and the results maninly based on divided
difference approach (DD2) to estimation in nonlinear
dynamic systems. The dynamics is mainly related to
(small) mobile robots and simultanuous location and
mapping.

The toolbox is available at

server.oersted.dtu.dk/personal/or/kalmtool3

ACKNOWLEDGMENT

The support from the Danish Center for Scientific
Computing (DCSC) (under grant CPU-1101-30) is
gratefully acknowledged.

REFERENCES

Kai O. Arras. The cas robot navigation toolbox, quick
guide. Technical report, CAS, KTH, January 2004.

M. Bak. Control of Systems with Constraints. PhD
thesis, IAU, DTU, 2000.

A.M.L. Netto, L. Gimeno, and M.J. Mendes. A new
spline algorithm for non-linear filtering of discrete
time systems.Proceedings of the 4th IFAC Sympo-
sium on Identification and System Parameter Esti-
mation, Tbilisi, U.S.S.R., pages 2123–2130, 1978.

Thomas Hanefeld Sejerøe, Niels Kjølstad Poulsen,
and Ole Ravn. A new evaluation platform for
navigation systems. In16’th IFAC World Congress,
Prague, Czech Republic, pages Tu–A18–TO/2, ID:
03891, 2005.

Rudolph van der Merwe. Quick-start guide for rebel
toolkit. Technical report, Oregon Health and Sci-
ence University, February 2004.

