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Summary (English)

This thesis consists of three independent pieces of research that can be divided
into two subject groups. The first block of topics is invariance learning and
learned data augmentation (Paper 1 and 2 presented in Chapter 3 and 4, re-
spectively). Paper 1 is concerned with learning invariances (or equivalently, as
we will see, data augmentation) via Bayesian model selection and the marginal
likelihood. In Paper 2, we take a different approach: achieving invariance by
automatically pose-normalising inputs. The second topic block is fairness in
machine learning which we cover in Paper 3 (Chapter 6).

In addition to published research, this thesis contains the following original
material. The first two chapters introduce the topics and Chapter 5 connects
data augmentation with fairness. It investigates whether data augmentation and
upsampling can be used make datasets more balanced, and, by correcting data
bias, making models more fair. Chapter 7 concludes the work with a summary
and discussion.
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Summary (Danish)

Denne afhandling består af tre selvstændige forskningsprojekter, der kan op-
deles i to grupper. Den første blok af emner er invarianslæring og lært data-
forøgelse (artikel 1 og 2 præsenteret i henholdsvis kapitel 3 og 4). Det første
arbejde i denne blok handler om læring af invarianser (eller tilsvarende, som vi
vil se, data augmentation) via Bayesiansk modeludvælgelse og den marginale
sandsynlighed. I den anden artikel tager vi en anden tilgang: at opnå invarians
ved automatisk pose-normalisering af input. Det andet emne, der behandles, er
fairness i maskinlæring (artikel 3, kapitel 6).

Ud over publiceret forskning indeholder denne afhandling følgende originale ma-
teriale. De første to kapitler introducerer emnerne, og kapitel 5 forbinder data-
forøgelse med ML fairness. Det undersøger, om dataforøgelse og upsampling
kan bruges til at gøre datasæt mere afbalancerede og ved at korrigere databias
gøre modeller mere fair. Kapitel 7 afslutter arbejdet med en opsummering og
diskussion.
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Preface

This thesis was written at the Section for Cognitive Systems, DTU Compute,
Technical University of Denmark in fulfillment of the requirements for acquiring
a PhD degree at the Technical University of Denmark. Professor Søren Hauberg
and associate professor Kristoffer Hougaard Madsen supervised the project. The
project was funded by a DTU Compute scholarship.

The thesis work was carried out from January 2019 to June 2022 at the Tech-
nical University of Denmark, with an exception of four months external stay at
Imperial College London (remotely in part due to the COVID-19 pandemic).
The supervision at this time was conducted by Mark van der Wilk. The project
work was also paused for four months in 2021 for an internship at Amazon under
the supervision of James Hensman in Cambridge, UK.

The work of this thesis amounts to three papers, and is presented with a thor-
ough introduction and well as theoretical and experimental work connecting the
papers. All papers are appended to this thesis.

Lyngby, 07-06-2022

Pola Schwöbel
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Chapter 1

Introduction

Machine learning algorithms work by extracting patterns from large amounts of
training data, and projecting existing correlations forward. This mechanism by
which ML works becomes a problem when training data is scarce: In the low
data regime, performance usually drops dramatically. Dangerously, training
data can be lacking in systematic ways.

For example, in the medical domain, convolutional neural networks are
reported to detect melanoma (a dangerous type of skin cancer) very
successfully, at rates outperforming human dermatologists [Brinker et al.,
2019]. As Norori et al. [2021] point out performance outside a controlled lab
setting, on a more diverse population, looks very differently: Skin disease
classifiers are trained on a predominantly white population1 and, as a
consequence, their accuracy drops to about half of what was originally
reported when evaluated on a majority black population [Kamulegeya et al.,
2019]. This results in under- and misdiagnosis of Black patients who are
already suffering higher melanoma mortality rates [Norori et al., 2021].

In fact, when we talk about algorithmic bias in the context of ML, this bias
can often be traced back to such data bias. Buolamwini and Gebru [2018]

1Kamulegeya et al. [2019] estimate 5-10% Black patients among the training data used
for First Derm’s Skin Image Search software, an ML-based skin disease classifier (https:
//www.firstderm.com/ai-dermatology.
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show how commercial facial recognition software routinely fails on women of
color, because they are underrepresented in the datasets these algorithms are
trained on. A sexist hiring algorithm prefers male candidates, presumably
because it is trained on a predominantly male tech work force [Dastin, 2018].
Search engines perpetuate stereotypes about women of color by surfacing
media reflecting historic racism [Noble, 2018].

As a consequence, one might look to the data to alleviate algorithmic biases.
While (re-)collecting unbiased datasets would be the measure of choice, this
might be unfeasible for economic or practical reasons, or fundamentally
impossible (e.g. when studying rare diseases the amount of examples,
especially amongst a demographic minority, is limited by nature). Thus, this
work aims to investigate whether synthetic data might help in low and biased
data regimes.

The idea is to use data augmentation (DA), an established ML engineering
practice to generate new data by making small modifications to existing data.
For example, a new image can be generated by slightly rotating an existing one.
We investigate whether we can use DA to upsample parts of the dataset in order
to combat bias.

Chapter 2 introduces standard data augmentation. DA is usually performed ad
hoc, i.e. based on assumptions rather than using a statistical model. However, ad
hoc DA following no principled model cannot guarantee optimal augmentation,
and might be difficult to do for data that is not easily interpreted by humans.
Thus, the second chapter deals with formalising the classic ad hoc practice and
providing a principled model for data augmentation. We will close this chapter
by giving a theoretical argument for why learning data augmentation is more
difficult than one might expect.

Chapter 3 will then present a way to learn data augmentation (or, equivalently
as we will see, invariances) nonetheless: Rather than learning it using the usual
maximum-likelihood loss, we rephrase the problem as Bayesian model selection
and learn invariances by maximising the marginal likelihood. In order to be able
to compute this quantity, we utilise deep kernel GPs; hybrid models combining
elements of neural networks with Gaussian processes.

Chapter 4 investigates another way to achieve model invariance. Instead of
augmenting the data, i.e. showing data to our model in all relevant poses, we
automatically learn to pose-normalise the data. This idea is implemented via a
probabilistic extension to spatial transformer networks.

With these data augmentation and invariance learning strategies, we have
developed the necessary tools to test our hypothesis: Can data augmentation
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be used to alleviate data bias and, as a consequence, produce fairer models?
Chapter 5 contains a case study investigating this experimentally.

In the case study we aim to ‘automatically’ de-bias an ML algorithm with data
augmentation. To evaluate whether we are successful, we depend on
quantitative, i.e. formalized criteria for unbiasedness. When reviewing the
large body of literature on such fairness metrics it becomes increasingly clear
that none of them can be considered ‘the single right metric’ to optimize for.
What’s ‘fair’ depends crucially on context and, of course, on moral
commitments; an aspect that has seen relatively little analysis in the fairness
literature. Thus, Chapter 6 takes a broader view on ethics and fairness
modelling. Building on Paper 3 [Schwöbel and Remmers, 2022] we introduce a
modelling framework which is more contextualized than most existing
approaches, hereby hoping to bridge ethical and formalized debates and
embedding the work of into a larger context.

Chapter 7 concludes this thesis with a summary and discussion. Appended are
the three papers this work is built on.
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Chapter 2

Data Augmentation and
Invariance

In supervised machine learning, we aim to fit a function f to ND labelled data
points D = {(xi, yi)}ND

i=1. In the parametric case f , is fully described by its
parameters w, e.g. the weights of a neural network. Fitting the model then
corresponds to finding w such that

fw(xi) ≈ yi for all i = 1 . . . ND. (2.1)

We will discuss both such deterministic models as well as probabilistic
formulations in the following chapter, and we will switch between the two
whenever it helps to build intuitions. In a probabilistic model parameterised
by the same weights w, we aim to, equivalently, maximise the probability
assigned to the correct label,

pw(yi|xi) ≈ 1, for all i = 1 . . . ND. (2.2)

The problem in Eq. 2.1 is well-posed whenever the number of data points ND
is at least equal to the number of parameters Nw. However, this is usually not
the case for modern neural network models which often consist of millions or
billions of parameters but are routinely trained on datasets which are orders of
magnitude smaller in size. As a consequence, one can increase the dataset size
by adding synthetic data (i.e. applying data augmentation), reducing the
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expressivity and thus effective size of the model by imposing inductive biases
(e.g. in convolutional neural networks), or applying other regularisation
techniques.

When Nw ≫ ND Equation 2.1 has many solutions. Bad solutions are
characterised by overfitting, i.e. they minimise the loss on training data but
perform worse on test data.

We pause to state some assumptions about the data that we will make, and
that will turn out to be important in the context of data augmentation. We
assume all data to be i.i.d.. In particular, training and test data follow the same
distribution

D ∼ p(D) = p(Dtest) ∼ Dtest (2.3)

and datapoints are independent, i.e.

p(D) =

ND∏

i=1

p(xi, yi). (2.4)

The independence assumption (2.4) is often violated in standard data
augmentation, we will discuss this in Sec. 2.2.1.

2.1 Standard Data Augmentation

If we had access to the true data generating process p(D), we could easily
alleviate the overfitting problem, since we could draw arbitrarily many new
samples (xi, yi), hereby increasing ND. The problem would be less ill-posed
(since we could make ND be as large as Nw). In other words, we could make it
arbitrarily unlikely to sample a new test point that is far away from training
data. This approach is mimicked in standard data augmentation work, where
one aims to ‘close the gaps’ in D by making assumptions about the data
generating process.

DA is particularly common for image data, where such assumptions can be
made straight-forwardly. One often assumes that a new image can be generated
from an existing one via an affine transformation, i.e. by rotating, scaling or
translating in early work by LeCun et al. [1995] and Loosli et al. [2007]. Simard
et al. [2003] additionally consider elastic distortions. Prominently, Krizhevsky
et al. [2012] mention data augmentation in their seminal work on deep neural
networks as one of the factors allowing them to train deep models in the first
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Figure 2.1: Left: A model of p(D) (blue) after observing 50 samples (red).
Right: A model fitted on 50 samples plus data augmentation.
The data augmentation scheme is to add Gaussian noise to each
point (i.e. sample roughly within the red circles). The model of
p(D) fitted on augmented data is smoother. As we will see in
Sec. 2.2.2.1, data augmentation is equivalent to regularising the
model to be smooth.

place. Without DA, they explain, they would have been ‘forced to use much
smaller networks’. They use random translations, reflections as well as color
space augmentations (along the principal components of the 3D color space).
Today, data augmentation is a standard practice for training deep models in the
vision domain. Torchvision’s data augmentation toolbox1, for example, provides
more than 20 image augmentation strategies that can be applied out of the box.

2.2 Beyond Standard Data Augmentation

While being an extremely useful engineering trick, standard DA schemes suffer
from a range of shortcomings. We will discuss two such shortcomings here and
offer solutions from the literature as well as our own research.

1https://pytorch.org/vision/0.12/transforms.html



8 Data Augmentation and Invariance

2.2.1 A Principled Model

As discussed above, data augmentation usually creates new images from existing
ones by applying transformations. The new, augmented dataset is

D̃ = {(T j(xi), yi)}i,j , i = 1, ..., ND, j = 1, ...NT (2.5)

for transformations T j . NT is the number of augmentations and is typically
equal to the number of epochs the model is trained for, i.e. a new
transformation is sampled each time the model sees the datapoint (xi, yi).
From this formulation, it becomes obvious that the independence assumption
from Eq. 2.4 is violated for standard data augmentation: we create a new data
point from an existing one.

Taking a probabilistic viewpoint, a solution becomes available. We may think
of data augmentation as marginalising transformations

pw(y|x) =
∫

pw(y, T |x) dT =

∫
pwp

(y|T, x)pwa
(T |x) dT, (2.6)

hereby appropriately capturing the relation between transformed images. In
the above equation we divide the set of weights into weights parametrising the
predictor wp and the augmentation distribution wa, such that wp ∪ wa = w.

Early works taking this approach [Chapelle et al., 2000, Maaten et al., 2013]
use simple augmentation distributions and simple model classes (e.g. pwa

is
a Gaussian distribution over point-wise noise and pw is a linear model), such
that the integral (2.6) can be computed in closed form, or approximated easily.
Recent works such as Benton et al. [2020], van der Wilk et al. [2018], Schwöbel
et al. [2021, 2020] use the same modelling assumptions, we will discuss these
later (Sec. 2.2.2.2, Ch. 3 and Ch. 4).

This principled model correctly captures the covariance structure between
augmented images but it, of course, crucially depends on the augmentation
distribution pwa

(T |x). As we have seen in Sec. 2.1, standard approaches rely
on assumptions, for example that a reasonable augmentation distribution
might be rotations by ±15◦. While it is relatively easy to make approximately
correct assumptions for many types of natural images, one can easily imagine
cases where this is not straight forward. As a consequence, recent research
efforts aim to learn data augmentation, i.e. to infer a suitable pwa

(T |x).
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f( ) = g( ) + g( ) + g( ) + g( )
f( ) = g( ) + g( ) + g( ) + g( )

Figure 2.2: Visual representation of the invariance construction from Eq. 2.6
with a discrete transformation distribution (the four rotations as
described in Sec. 2.2.1.1). The RHS is the same for the original
input in the first row and the rotated input in the second row, i.e.
f is invariant with respect to 90◦-rotations.

2.2.1.1 Data Augmentation and Invariance

Before discussing approaches to learning the transformation distribution
pwa

(T |x), we pause to comment on terminology. Works such as Benton et al.
[2020], van der Wilk et al. [2018] and Schwöbel et al. [2021] refer to estimating
pwa(T |x) as learning invariances rather than learning data augmentation.

Definition 2.1 (Invariance) A function f is invariant w.r.t.
transformation T iff

f(x) = f(T (x)) (2.7)

for all x.

Now, consider the construction in Eq. 2.6 for some finite pwa(T |x). For example,
if x is an image and T are rotations by 90◦, we arrive at the original x after
applying T four times. The group G of 90◦ rotations has 4 elements, G = {T 1 :=
T90◦ , T

2 := T180◦ , T
3 := T270◦ , T

4 := T360◦ = T0◦ = I}. We might sample each of
the 4 rotations with equal probability. Then, if we define f similar to Eq. 2.6,
by marginalising transformations over a non-invariant function g, we have

f(x) =

∫
f(T (x))p(T |x)dT =

1

4

4∑

i=1

g(T i(x)) and (2.8)

f(T 1(x)) =
1

4

4∑

i=1

g(T i(T 1(x))) =
1

4

4∑

i=1

g(T i+1(x))) (2.9)

=
1

4

4∑

i=2

g(T i(x))) + g(T 1(x)) = f(x). (2.10)

Hence f(x) = f(T 1(x)), i.e. the construction in Eq. 2.6 yields an invariant
function with respect to 90◦-rotations. See Fig. 2.2 for an illustration.
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Another way to look at the connection between data augmentation and model
invariance is the following: Recall that when applying data augmentation, one
usually only augments inputs T (x) while leaving labels y unaltered (see
Eq. 2.5). Thus, when training a model f to perfectly fit the datapoints (xi, yi)
and (T (xi), yi) then yi = f(xi) = f(T (xi)), i.e. the function is invariant to T
according to Def. 2.1.

When talking about data augmentation we usually imagine T to refer to small
perturbations, whereas literature on invariances usually considers more drastic
transformations T . This difference in naming is purely conventional and we
will use the terms ‘learned data augmentation’ and ‘invariance learning’
interchangeably.

2.2.2 Learned Data Augmentation

Naively, one might try to learn the optimal data augmentation strategy
(equivalently, the appropriate model invariances) in the same way one learns
the model weights, i.e. by finding w such that fw(xi) ≈ yi for all i = 1, . . . ND
by minimising a loss function. We will now show that for standard loss
functions, such as the mean squared error (MSE) loss, this will result in
collapsing augmentation distributions, i.e. learning that we should not augment
at all.

2.2.2.1 The Naive Approach and Why It Fails

Consider a simple 1d regression case, i.e. fw : R → R. Assume that the
augmentation distribution is additive Gaussian pixel noise T (x) = x + ε with
pwa

(T ) = N (ε|0, w2
a Id), i.e. wa is a scalar variance parameter. We are fitting

our model by minimising the mean squared error

E =

∫∫
(fw(x)− y)2p(x, y) dx dy. (2.11)

Let Ẽ denote the MSE loss after applying data augmentation, i.e.

Ẽ =

∫∫∫
(fw(x+ ε)− y)2p(x, y)p(ε) dx dy dε. (2.12)

We start by Taylor-expanding fw in x, omitting w for brevity:

f(x+ ε) = f(x) + εf ′(x) +
1

2
ε2f ′′(x) +O(ε3). (2.13)
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Plugging this back into Eq. 2.12 and omitting the cubic error terms (these are
small given that ε corresponds to small perturbations of the input), we obtain

Ẽ ≈
∫∫∫

(f(x)− y + εf ′(x) +
1

2
ε2f ′′(x))2p(x, y)p(ε) dx dy dε (2.14)

=

∫∫∫
(f(x)− y)2 + 2(f(x)− y)(εf ′(x) +

1

2
ε2f ′′(x))

+ (εf ′(x) +
1

2
ε2f ′′(x))2p(x, y)p(ε) dx dy dε (2.15)

= E + w2
a

∫∫
f ′(x)2 + (f(x)− y)f ′′(x)p(x, y) dx dy (2.16)

=: E + w2
aΩ(f). (2.17)

From Eq. 2.15 to Eq. 2.16 we have evaluated the integral with respect to ε,∫
ε dε = 0 and

∫
ε2 dε = w2

a. We have also omitted higher order terms in ε,
these are absorbed in O(ε3).

As shown in Bishop [1995] E is minimised by fmin(x) = E[y|x]. He then argues
that Ẽ is minimised by f̃min(x) = E[y|x]+O(w2

a). Plugging f̃min(x) into Eq. 2.15
we see that, in expectation, f̃min(x)− y ≈ 0 (up to O(w2

a)), and hence

Ω(f) ≈
∫

f ′(x)2 dx. (2.18)

Thus, Ω(f) has the standard form of a Tikhonov regulariser. In particular,
the regularisation term is positive, and thus Ẽ will be minimal if wa = 0. As
a consequence, aiming to learn wa by optimising the MSE (2.12) will yield
a collapsing augmentation distribution. For an experimental illustration see
Fig. 2.3.

Bishop [1995] derives this result for higher dimensions, and for a more general
case in Bishop and Nasrabadi [2006], Ch. 5.5.5: For a general augmentation
distribution p(T ), i.e. T (x) is an arbitrary transformation, we can obtain a
similar result by applying a Taylor expansion to T (x) as well. The regulariser
term Ω(f) is then equivalent to the tangent prop regulariser [Simard et al.,
1992], encouraging fw to be constant along the tangent direction of the manifold
spanned by T (x).

2.2.2.2 Data Augmentation as Regularisation

In the previous section we have established that data augmentation can be
thought of as regularisation. Learning the magnitude of the augmentation as
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Figure 2.3: Left: Different models fitted to training data (black x’s). The
model with no augmentation (blue) overfits, while the model with
too much augmentation underfits (green). The red model is fit
with a suitable amount of data augmentation, the samples from
this optimal augmentation distribution are plotted in gray. Note
how these are horizontal lines along existing data points as we only
augment inputs x. Right: Train (blue) and test (red) MSE as a
function of the magnitude of augmentation applied. As suggested
by theory, train MSE increases with increasing wa. Test MSE,
however, decreases at first, i.e. while DA does not improve the fit
on training data it helps us generalise.

encoded by wa corresponds to learning how much to regularise. However,
regularisation does not help to improve the fit on training data. In fact, when
we regularise we trade a worse fit on training data for better generalisation.
Consequently, as we’ve seen in Sec. 2.2.2.1, wa = 0 minimises MSE (or
maximises log-likelihood), and so these standard losses cannot be used to learn
wa. How then can we learn data augmentation?

Given that DA helps generalisation, one approach is to use held-out data to
determine the optimal augmentation strategy. On the validation set one can
then optimise the augmentation parameters using different strategies. A brute
force grid or random search might be sufficient if the parameter space is low-
dimensional [Cubuk et al., 2020]. If the space is bigger but the augmentations are
differentiable, it is possible to apply (meta-)gradient descent on the validation
loss [Lorraine et al., 2020]. For non-differentiable transformation distributions,
one can resort to reinforcement learning [Cubuk et al., 2019]. Benton et al. [2020]
argue that in their application, the loss function is relatively flat w.r.t. wa, and
so they can avoid costly cross-validation to determine the optimal parameter
(since any ‘small’ wa works). We do not find this to be the case in our somewhat
similar setup in Chapter 4, where we depend on fine-tuning the magnitude of
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augmentation. Another approach is to do away with end-to-end training all
together and train an unsupervised data augmentation model in a separate
pre-training step: Hauberg et al. [2016] align images pairwise and fit a per-
class distribution p(T ) which they can sample from to obtain augmentation
transformations.

While these methods are data-driven, they do not learn data augmentation end-
to-end in the conventional sense of minimising a loss function on training data.
Indeed, this is impossible for the standard loss functions MSE and negative log-
likelihood as we have seen in Sec. 2.2.2.1. In the next chapter, we will discuss
an alternative approach.



14 Data Augmentation and Invariance



Chapter 3

Invariance Learning via
Bayesian Model Selection

In the last chapter we have phrased learning data augmentation as
determining the optimal amount of regularisation, and thus, in a sense, the
right model complexity. Under this viewpoint a new way of thinking about
learned data augmentation becomes available: We can think of picking the
right augmentation distribution as a model selection problem. From a
Bayesian perspective, we can perform model selection via type II
max-likelihood, i.e. by using the marginal likelihood — this perspective on
invariance learning is introduced by van der Wilk et al. [2018].

3.1 Marginal Likelihood for Model Selection

Fitting a model implies finding the right parameters using max-likelihood (or
related loss functions like MSE), i.e. finding the optimal wp for a given model
class fwp

. For example, in Fig. 2.3, we fit a degree 15-polynomial by estimating
its 16 coefficients. Model selection, on the other hand, refers to the problem of
finding the right model class. Instead of determining the 16 optimal coefficients,
goal here is to determine which degree of polynomial to choose in the first place.
To give another example, training a neural network corresponds to finding the
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optimal weights, whereas model selection requires finding the right architecture
(e.g. width and depth, inductive biases such as convolutions, and so on).

In Bayesian inference we perform this task by maximising the marginal
likelihood

p(Y |X, θ) =

∫
p(Y |X,wp)p(wp|θ) dwp. (3.1)

with respect to θ. Here, X = {x1, . . . , xND} is collecting all the input data,
and similarly Y = {y1, . . . , yND} contains all labels. θ corresponds to the model
hyperparameters (i.e. θ encodes the fact that we use a 16th-degree polynomial
in the first example, or the number and width of layers in the neural network
example). Note that, in the usual Bayesian framework, we are often concerned
with a third ‘layer’ of inference, the class of models (or hypotheses H). For
example, H1 might refer to the model class of all possible neural networks, H2

to the model class of polynomials, and so on. Performing marginal likelihood
optimisation w.r.t. H is often unfeasible as it would require computations such
as integrating over all possible neural network architectures. Thus, in practice,
we often decide on the hypothesis class H in advance and optimise the respective
model hyperparameters (see e.g. Williams and Rasmussen [2006], Ch. 5).

The marginal likelihood as a loss function for model selection provides an
automatic way to pick the right model complexity (what some authors refer to
as an automatic Occam’s razor [Williams and Rasmussen, 2006, Rasmussen
and Ghahramani, 2001, Lotfi et al., 2022]). To understand why this is the
case, consider the schematic illustration in Fig. 3.1, left: The marginal
likelihood p(Y |X, θ) is a probability distribution, i.e. for any given θ it
integrates to 1. Very flexible models with many parameters (θ3, green) can
explain a wide range of datasets, but assign less mass to individual datasets
because their density must integrate to 1. Conversely, simple models (θ1, blue)
concentrate their mass around fewer datasets and, as a consequence, explain
those better. For this reason, the marginal likelihood can find models with the
optimal complexity (θ2, red), not too complex to ‘spread their mass too thinly’
across many datasets, but complex enough to explain the dataset at hand Y0.

To apply this mechanism to learning data augmentation, we have to make the
the following two modifications to our setup. Firstly, we have to view the data
augmentation parameters wa as model hyperparameters, i.e. wa ∈ θ. This is a
reasonable modelling assumption given the ‘data augmentation as regularisation’
view that we have developed in Sec. 2.2.2: The chosen regulariser will determine
which model we learn, i.e. wa → fwp in a graphical model (Fig. 3.1, right).
Secondly, we have to marginalise over the model parameters wp to obtain the
marginal likelihood from Eq. 3.1.
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Using the marginal likelihood loss function instead of regular
maximum-likelihood, we can optimise for the data augmentation parameters
wa directly. However, investigating Eq. 3.1 it becomes clear that this quantity
is difficult to compute for parameter-rich models fwp

such as neural networks.
On the other hand, for models with tractable marginal likelihoods such as
Gaussian processes, it can be used to successfully learn invariances [Van der
Wilk et al., 2018]. We will shortly review their work (Sec. 3.2.4) and our
extension thereof (Sec. 3.3) in detail. Before doing so we pause here for some
background material.

Y0
All possible datasets Y

p(
Y|

X,
)

1

2

3

fwp
y

x
wa ∈ θ

ND

Figure 3.1: Left: Visualisation of model selection via the marginal likelihood,
adapted from Williams and Rasmussen [2006], Chapter 5. Right:
A graphical representation of the model structure that we assume
in order to perform invariance learning via Bayesian model
selection, i.e. by using the marginal likelihood. Grey nodes are
observables and white are latents.

3.2 Background

In the last section, we have established that the marginal likelihood is a
promising loss function for model selection and hence invariance learning.
Recall that the marginal likelihood is computed by marginalising over all
possible functions (3.1). In the case of neural networks, this would require us
to compute an integral over all possible weights of a neural network, i.e.
p(wp|θ) could be a distribution over many millions of parameters. We face
intractability issues.
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3.2.1 Bayesian Deep Learning

Bayesian deep learning (BDL) aims to estimate posteriors over neural network
weights, and approximate integrals such as Eq. 3.1. By reasoning about weight
distributions rather than point estimates, authors achieve improved
uncertainty quantification, robustness and predictive performance. For
computational reasons, the chosen approximations are often rather crude. For
example, Blundell et al. [2015] choose a mean-field approximation where all
weights are modelled to follow independent Gaussian distributions. Other
works [MacKay, 1992, Daxberger et al., 2021] also make Gaussians
assumptions, but use a Laplace approximation to the posterior instead of
variational techniques. Gal and Ghahramani [2016] propose to interpret
dropout as a Bernoulli approximation to the weight posterior (i.e. they obtain
samples from a posterior over networks by randomly switching each weight on
or off). A conceptually simple yet very successful approach for BDL is to train
an ensemble of methods and interpret the different, trained models as samples
from a weight posterior [Lakshminarayanan et al., 2017, Gustafsson et al.,
2020]. Generally, such approximate weight posteriors are useful in practice for
performance, robustness and uncertainty quantification, the marginal
likelihood estimates are typically too imprecise for hyperparameter estimation
[Blundell et al., 2015, Turner and Sahani, 2011]. Thus, instead of relying on
such approximate methods, we will use Gaussian process models.

3.2.2 Gaussian Processes

Gaussian processes are a class of models for which, unlike neural networks, the
marginal likelihood is available in closed form. We review them here.

Definition 3.1 (Gaussian Process) A Gaussian process (GP)
[Williams and Rasmussen, 2006] is a distribution over functions f : X → R
such that any vector of function evaluations (f(x1), . . . , f(xN ))

⊺ follows a
Gaussian distribution. We write

f(x) ∼ GP(µ(x), k(x, x′)) (3.2)

where µ(x) = E[f(x)] is the mean and k(x, x′) = E[(f(x)−µ(x))(f(x′)−µ(x′))]
is the covariance function of the process.

We usually assume zero prior mean functions µ(x) ≡ 0 and real valued vector
inputs, i.e. x ∈ X = Rd. For illustrative purposes we consider a
one-dimensional output domain, but the derivations extend straight-forwardly
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to multiple independent output dimensions (e.g. in the 10-class classification
examples we will see later, f : X → R10, the logits of the class probabilities).

Any covariance function that yields a positive semi-definite kernel matrix and
is differentiable with respect to its hyperparameters can be used, and, since
choosing a kernel corresponds to specifying a prior, the choice of kernel should
ideally be made based on domain knowledge about the data. In practice the
radial basis (or squared exponential) covariance function is a popular choice,

k(x, x′) = s2 exp

(
−∥x− x′∥2

2ℓ2

)
, (3.3)

where s2 is the kernel variance and ℓ the kernel lengthscale. k will refer to this
function in the remainder of this chapter.

We note that GPs are non-parametric models, i.e. they are fully described by
their mean and covariance functions and the data itself. Instead of reasoning
about model parameters wp in the neural network setting, GPs perform inference
over function objects directly. We will thus switch notation here from denoting
the target function by its parameters wp (e.g. Eq. 3.1) to the function object f
(e.g. Eq. 3.2) itself.

When f is a Gaussian process as defined in Eq. 3.1 and
p(y|f(x)) = N (y|f(x), σ2) is a Gaussian likelihood, the marginal likelihood in
Eq. 3.1 as well as the posterior predictive can, in principle, be computed in
closed form thanks to the analytical properties of Gaussian distributions. We
can make predictions at a new test point x by conditioning on the already seen
data D = {(xi, yi)}ND

i=1 collected in {X,Y } via

f(x)|D ∼ N (µ̃(x), K̃) (3.4)

with µ̃(x) = k(x,X)[k(X,X) + σ2I]−1Y (3.5)

and K̃ = k(x, x)− k(x,X)[k(X,X) + σ2I]−1k(X,x). (3.6)

Despite the existence of closed-form solutions, evaluating these expressions is
difficult as Eq. 3.4 and 3.5 involve inverting the ND×ND matrix [k(X,X)+σ2] =
[k(xi, xj)]

ND
i,j=1+σ2I. This is computationally prohibitive even for medium-sized

datasets.

To overcome this problem and make GPs scalable one can make use of sparse
approximations, for example the sparse variational approximation by Hensman
et al. [2015]. We consider NZ ≪ ND auxiliary datapoints that in some sense,
represent the true data well and give rise to feasible computations. For this
approximation, let Z = {zi}NZ

i=1 ∈ X be the inducing inputs, U = {ui}NZ
i=1 =
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f(Z) ∼ N (m,S) the function values at those inputs. The outputs again follow a
Gaussian distribution with m being the variational mean and S the variational
covariance matrix at the inputs Z. Z, m and S are optimised freely. This gives
rise to a variational posterior

q(f) = GP(µ(·), ν(·, ·)) (3.7)

and the corresponding ELBO

log p(Y ) ≤ L =

ND∑

i=1

Eq(f(xi))[log p(yi|f(xi))]−KL(q(U)||p(U)). (3.8)

This formulation allows for mini-batching and thus scaling to large datasets, as
well as for non-Gaussian likelihoods in which case we can evaluate the
variational expectation Eq(f(xi))[log p(yi|f(xi))] via Monte Carlo sampling. For
these reasons, we mainly work with this approximation in Paper 1 (Sec. 3.3).
We note, however, that this choice of variational approximation implies a large
amount of free parameters (in Z, m and S) and can hence be difficult to
optimise. Thus, we resort to a second approximation in Paper 1, Sec. 7: For
Gaussian likelihoods, we can compute the optimal m and S analytically rather
than optimising them using gradients [Titsias, 2009]. The resulting
approximation has fewer variational parameters (we optimise the inducing
inputs Z only) and is easier to optimise. On top of the need for Gaussian
likelihoods this approximation also does not allow for mini-batching, hence we
need to pre-exact lower dimensional features in this experiment. For details,
see Paper 1, Sec. 7 or its summary in Sec 3.3.3 (CIFAR-10 experiment).

3.2.3 Differentiable Transformation Distributions

In order to learn data augmentation we want to backpropagate through the
distribution of transformations, and thus our transformations T need to be
differentiable. A typical and simple class of transformations are affine
transformations Tϕ with ϕ = (α, sx, sy, px, py, tx, ty), where the parameters
describe rotation, scale, shearing and horizontal and vertical translation. A
transformation Tϕ is applied to image x by transforming a grid of the image
dimensions and interpolating x at the resulting coordinates (see Jaderberg
et al. [2015] for details).

In the works presented in this thesis, we do not optimise transformations
directly, but rather marginalise distributions over them and optimise those
distributions’ hyperparameters. Thus, we need to consider distributions
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x

= [3.04, 0, 0, 
 0, 0, 0, 0 ]

= [-2.78, 0, 0, 
 0, 0, 0, 0 ]

= [-0.48, 0, 0, 
 0, 0, 0, 0 ]

xa = T (x), T p(T | min, max)

= [1.78, 0, 0, 
 0, 0, 0, 0 ]

= [0.92, 0, 0, 
 0, 0, 0, 0 ]

= [-2.77, 0, 0, 
 0, 0, 0, 0 ]

= [2.35, 0, 0, 
 0, 0, 0, 0 ]

= [-2.63, 0, 0, 
 0, 0, 0, 0 ]

= [0.56, 0, 0, 
 0, 0, 0, 0 ]

= [-0.39, 0, 0, 
 0, 0, 0, 0 ]

= [-2.35, 0, 0, 
 0, 0, 0, 0 ]

= [0.37, 0, 0, 
 0, 0, 0, 0 ]

Figure 3.2: Example augmentation distribution. The learned distribution
in this example is p(Tϕ|x, ϕmin, ϕmax) = U(ϕmin, ϕmax) with
ϕmin/max ≈ (±π, 0, 0, 0, 0, 0, 0), i.e. we learn to perform rotations,
but no scale, shearing or translation. While we have chosen this
augmentation distribution manually for illustrative purposes here,
we will see in Sec. 3.3.3 that this is indeed the augmentation
distribution we learn for rotated MNIST.

p(Tϕ|x) that are themselves differentiable. Uniform augmentation distributions
as used in Sec. 3.2.4 and Sec. 3.3 are parameterised as

p(Tϕ|x) = p(Tϕ|x, ϕmin, ϕmax) = U(ϕmin, ϕmax). (3.9)

To obtain differentiability with respect to ϕmin/max ∈ R7 we sample via the
reparametrisation trick [Kingma and Welling, 2014]

ϕ = ϕmin + (ϕmax − ϕmin)ε, ε ∼ U(0, 1). (3.10)

This means that for different datasets, different augmentation distributions are
learned by estimating ϕmin, ϕmax per dataset. For example, on rotated MNIST
(see Sec. 3.3.3) we might learn ϕmin/max ≈ (±π, 0, 0, 0, 0, 0, 0) corresponding to
full rotational invariance (sampling any angle between −π and π) but no scaling,
shearing or translations. Samples xa = Tϕ(x) arising from such a transformation
distribution are visualised in Fig. 3.2. Note that in this setting, p(Tϕ|x) is
relatively simple and fully described by the 14 parameters in ϕmin and ϕmax, i.e.
wa = {ϕmin, ϕmax}.
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3.2.4 Invariant GPs

Recall that, following van der Wilk et al. [2018], we want to use GPs and their
tractable marginal likelihood approximations in order to learn data
augmentation/invariances. To construct an invariant f ∼ GP(0, kf (·, ·)) we
consider functions f of a specific form, marginalising transformations as
introduced in Eq. 2.6:

f(x) =

∫
g(xa)p(xa|x,wa)dxa, (3.11)

where g is a non-invariant function.

Note the small difference in notation between Eq. 3.11 and Eq. 2.6: The
augmentation distribution p(xa|x,wa) now plays the role of the distribution
over transformations pwa(T |x) before. An augmented xa can be constructed
from x by applying a transformation T (x) = xa, and since T is a deterministic
transformation the two distributions p(T |x) and p(xa|x,wa) are equivalent. f
is invariant to the augmentation distribution p(xa|·, wa) and, since Gaussians
are closed under addition (also in the infinite limit), it is also a GP. Its kernel
is

kf (x, x
′)=

∫∫
kg(xa, x

′
a)p(xa|x,wa)p(x

′
a|x′, wa)dxadx′

a. (3.12)

This double integral adds additional tractability issues to the ones discussed in
Sec. 3.2.2, as it is not available in closed form for any non-trivial augmentation
distribution. Van der Wilk et al. [2018] develop a sample-based estimator in the
case of Gaussian likelihoods,

L =

ND∑

i=1

Eq(f(xi))[logN (yi|f(xi), σ
2)]−KL[q(U)||p(U)] (3.13)

=

ND∑

i=1

[
−log 2πσ2− 1

2

(
(yi−µ(xi))

2 + ν(xi, xi)
)]

−KL[q(U)||p(U)]. (3.14)

In the Gaussian case, only µ(xi) and ν(xi, xi), the variational posterior mean and
variance from Eq. 3.7, depend on the intractable kernel evaluations in Eq. 3.12.
Van der Wilk et al. [2018] develop unbiased and relatively efficient estimators
using samples from p(xa|x,wa). Using those estimators they perform inference
in their model. In particular, by inferring the hyperparameters wa, they learn
invariances (data augmentation) on MNIST and rotated MNIST. They do this
successfully in the sense of recovering ground truth transformations as well as
improving predictive performance over a non-invariant model. Thus, invariance
learning via Bayesian model selection is possible in GP models.
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3.3 Scaling Bayesian Model Selection to Neural
Networks

This section summarises the contributions from Paper 1.

We start with a small recap: We have seen in Chapter 2 that data
augmentation (or, equivalently, invariance learning) is a useful, but usually
ad-hoc and hand-tuned engineering trick. When trying to learn a useful data
augmentation scheme, we have seen that using standard losses (MSE or
negative log-likelihood) is not a valid strategy (Sec. 2.2.2.1). As argued in
Sec. 3.1 a promising alternative is to use the marginal likelihood. Indeed,
van der Wilk et al. [2018] have shown that the marginal likelihood can be
employed for invariance learning. However, as we have seen in Sec. 3.1
marginal likelihood computations are intractable for neural network models, so
instead van der Wilk et al. [2018] rely on GPs. For GP models the marginal
likelihood can be approximated well but they can lack predictive performance
compared to modern, high capacity neural networks.

Thus, Paper 1 asks the following question: Given that marginal likelihood
computations for neural networks are an active but unsolved research question
(see Sec. 3.2.1 on Bayesian deep learning), can we scale the marginal likelihood
approach to neural networks by using a simple approximation? Might a
Bayesian last layer suffice for invariance learning?

3.3.1 Invariant Deep Kernel GPs

Deep kernel learning (DKL; Wilson et al. [2016a,b]) models are neural
network – GP hybrid models constructed with the aim to combine the nice
analytical properties of GPs (importantly, the tractable marginal likelihood
computations) with the expressivity of neural networks. They are constructed
by placing a neural network feature extractor hwp

: X → Rd inside a GP
covariance function. Covariance functions are closed with respect to
transformations of their input, i.e. if kg(·, ·) is a covariance function on
Rd × Rd, then kg(hwp

(·), hwp
(·)) is a covariance function on X × X . Learning

the neural network weights wp inside the kernel is done by viewing those as
kernel hyperparmeters and optimising them with respect to the marginal
likelihood. By using such a deep kernel we marginalise the function f but
optimise neural network weights wp. In other words, our model is Bayesian in
the last layer only.
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}

+

Figure 3.3: The InvDKGP architecture. For any input x, we sample from the
augmentation distribution p(xa|x,wa); each of the sample gets
passed through a neural network parametrised by wp. The last
layer is a GP, which sums across sample outputs to create an
invariant function. Figure from Paper 1.

Using a deep kernel in Eq. 3.11, we obtain an invariant GP with a deep kernel
(InvDKGP), i.e.

f(x) =

∫
g(hwp

(xa))p(xa|x,wa)dxa. (3.15)

with kernel similar to the shallow invariant kernel (3.12),

kf (x, x
′) =
∫
kg
(
hwp

(xa), hwp
(x′

a)
)
p(xa|x,wa)p(x

′
a|x′, wa)dxadx′

a. (3.16)

The resulting model architecture is visualised in Fig. 3.3.

3.3.2 Inference in Invariant Deep Kernel GPs

Performing inference in our model corresponds to estimating the GP
hyperparameters: likelihood variance σ2, kernel variance s2 and lengthscale ℓ
(see Eq. 3.3) as well as the variational parameters Z, m, S (see Eq. 3.7) and,
importantly, the invariance parameters wa. In the deep kernel setting, we
additionally learn the neural network parameters wp. Standard deep kernel
learning estimates hyper- and variational parameters jointly via marginal
likelihood maximisation. In the InvDKGP model we would naively do this by
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x
wawp

ND

Train images DKL embeddings CNN embeddings

Figure 3.4: Left: Graphical model for the InvDKGP architecture. Both
wp and wa are treated as model hyperparameters. For a full
Bayesian treatment, we would need to marginalise the wp along
with f . Right: Features extracted by a DKL model (blue) and a
standard neural net (red). Embeddings produced via DKL (i.e.
joint training) are similar within classes: little improvement can
be gained by being rotationally invariant. NN embeddings differ
depending on input orientation, producing signal to learn wa from.
Figure from Paper 1.

maximising the ELBO in Eq. 3.14, replacing f with the invariant f from
Eq. 3.11. There is two challenges we face when following the naive approach.
In the remainder of this section, we develop solutions to those.

3.3.2.1 Overfitting and Coordinate-Ascent Training

We have argued in Sec. 2.2.2.1 that one cannot learn DA via max-likelihood
and instead needs to perform type II max-likelihood estimation. I.e., one needs
a hierarchical model structure such as in Fig. 3.1 and compute the marginal
likelihood with respect to fwp

. While InvDKGPs indeed marginalise the function
f in the ‘last layer’, the neural network parameters in the deep kernel wp act as
kernel hyperparameters (see Sec. 3.3.1) and are not marginalised. Fig. 3.4, left,
shows the graphical model of a InvDGKP. Hence, the neural network weights
wp are not protected from overfitting (in the sense of Sec. 3.1, see Ober et al.
[2021] for a detailed discussion of this problem in DKL). As a consequence, joint
training of wp and wa in the InvDKGP indeed results in overfitting. Fig. 3.4,
right, shows features extracted by a deep kernel (blue) and a regular neural
network (red). DKL produces overfit features in the sense that inputs from
the same class are mapped to very similar activation functions, leaving us with
little signal to learn invariances from.1 The NN features are more diverse,

1One might argue that models which do not explicitly represent invariance but ‘absorb’
orientation into the features (DKL in Fig. 3.4, right) are not, a priori, less desirable. However,
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providing signal for invariance learning. This insight leads us to a modified
training scheme: Instead of training the GP and NN parameters jointly, we
iterate between updating wp and GP parameters in a coordinate ascent style
fashion.

3.3.2.2 Correcting Model Misspecification

The choice of likelihood exacerbates the overfitting problem. As we have seen
in Sec. 3.2.4, van der Wilk et al. [2018] use the Gaussian likelihood and
estimate unbiased estimators for the data-dependent terms in the closed from
variational expectation (3.14). However, using a Gaussian likelihood is a
model misspecification for the classification problems that are considered both
by van der Wilk et al. [2018] and our work (MNIST variations, PCAM,
CIFAR). In the InvDKGP case, this results in collapsing augmentation
distributions wa → 0 along with collapsing likelihood variance σ2. A simple
remedy is to fix σ2 to a suitable, manually determined value. Proceeding like
this and applying coordinate ascent-style training indeed enables us to
successfully learn invariances in the InvDKGP (see Schwöbel et al. [2022],
Sec. 5), but is an unprincipled approach that requires hand-tuning. Thus, we
instead fix the model misspecification by allowing for more general likelihoods.

To do so, we develop a new lower bound to the ELBO (see Schwöbel et al.
[2022], Sec. 6) that uses samples directly in a Monte Carlo estimate of Eq. 3.13
rather than relying on the closed form integral. To construct this estimator,
recall that f is defined by marginalising the transformation distribution (3.11).
We will omit hwp

from the notation for brevity in the following). The integral
is intractable but can be approximated via Monte Carlo sampling:

f(x) ≈ f̂(x) :=
1

So

So∑

i=1

g(xi
a),with xi

a ∼ p(xa|x,wa). (3.17)

We could draw multiple sets of orbit points — each containing So augmented
versions of x, {xji

a }So
i=1 for j = 1, . . . , SA — to obtain different estimators f̂ .

Doing this infinitely many times, we would recover the true f (in other words,
f̂ is an unbiased estimator of f):

f(x) = E∏So
i=1 .p(xi

a|x)

[
f̂(x)

]
=: Ẽ

[
f̂(x)

]
. (3.18)

Here,
∏So

i=1 p(x
i
a|x) is the product density over So orbit densities.

as we will see in Table 3.1, models that explicitly incorporate invariance perform a lot better in
our experiments (e.g., comparing M7 with M9). Additionally, modelling invariance explicitly
has qualitative advantages such as better interpretability and disentangled representations.



3.3 Scaling Bayesian Model Selection to Neural Networks 27

Note that f is stochastic in x but deterministic in g, which is a GP. Thus, we
can rewrite the expectation over f as an expectation over g,

Eq(f(x))[log p(y|f(x))] = Eq(g)[log p(y|f(x))] (3.19)

= Eq(g)

[
log p

(
y
∣∣Ẽ[f̂(x)]

)]
(3.20)

≥ Eq(g)

[
Ẽ
[
log p

(
y
∣∣f̂(x)

)]]
. (3.21)

Here, we have obtained the last line (3.21) using Jensen’s inequality, which we
can do whenever the likelihood is log-concave in f . This holds for many common
likelihoods, e.g. Gaussian and Softmax.

The bound (3.21) is tight when Var(f̂(x)) = 0, it becomes tighter as So increases
(similar to Burda et al. [2016]). Thus, aggressive sampling recovers accurate
variational inference. We can estimate the right-hand side of Eq. 3.21, without
bias, as

1

Sg

Sg∑

k=1

1

SA

SA∑

j=1

log p

(
y
∣∣∣ 1
So

So∑

i=1

gk(x
ji
a )

)
. (3.22)

As before, So is the number of orbit samples. SA is the number of sets of samples
(or f̂) that we draw, and Sg is the number of times we draw from the GP in
order to compute the variational expectation as per usual. Recall that we need
to sample extensively in order to keep the bound above tight, so it is important
to do so efficiently. This can be done by sampling the approximate posteriors
q(g) using Matheron’s rule [Wilson et al., 2020]. By doing so, sampling Sg GPs
is cheap compared to sampling from the orbit.In practice, we choose large So to
obtain Var(f̂(x)) ≈ 0, and so it is sufficient to choose SA = 0.

Replacing the Gaussian variational expectation in Eq. 3.13 , we obtain the
stochastic ELBO:

1

Sg

Sg∑

k=1

1

SA

SA∑

j=1

[log p(y| 1
So

So∑

i=1

gk(x
ji
a ))]− KL[q(U)||p(U)]. (3.23)

The new bound allows us to use arbitrary log-concave likelihoods, in particular
the softmax likelihood appropriate for classification. The benefits of the sample
based bound are three-fold: We broaden model specification, avoid using the
hand-tuned Gaussian likelihood variance, and double training speed (see Paper
1, Sec. 6.1).
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Figure 3.5: Left : Learned invariance parameters (rotation α in radians and x-
translation tx) for rotMNIST. The Gaussian and Softmax model
both learn to be almost fully rotationally invariant (i.e. αmin/max ≈
±π), but the Softmax model learns faster (it takes fewer iterations
and is faster per iteration, see Paper 1, Sec. 6.1). The models learn
not to be invariant w.r.t. translation (i.e. txmin/max ≈ 0). Right :
Two training images (red frames) and samples from the learned
p(xa|x,wa).

3.3.3 Experimental Results

Using these two modifications to the naive, joint-training approach (modified
training scheme and the new bound allowing for softmax likelihood) we
successfully learn invariances using the InvDKGP. We show this on variations
of the MNIST datasets as well as a medical example (PCAM, Veeling et al.
[2018]). Fig. 3.5 shows the invariances we learn on rotated MNIST. The
dataset is generated by randomly rotating MNIST images by an arbitrary
angle, so the ground truth rotational invariance corresponds to ±π radians.
The InvDKGP recovers this rotational invariance as is shown in Fig. 3.5, left.
Fig. 3.5 also contains samples from the augmentation distribution p(xa|x,wa).
As expected the InvDKGP outperforms both non-invariant models as well as
the invariant GP with a shallow kernel (see Table 5.1).

In a last experiment, we systematically explore the limitations of our method.
In the previous experiments we have considered hwp to be relatively simple
neural networks. For the reasons discussed in Sec. 3.3.2.1, we have trained NN
and GP parameters iteratively. Thus, we have essentially pre-trained feature
extractors hwp

on the unaugmented dataset, learned invariances, fine-tuned the
feature extractors according to the learned invariances, and so on. We now
try to apply this training scheme on CIFAR-10, with a ResNet-18-based [He
et al., 2016] hwp , and find that we cannot learn invariances in this setting.
We investigate why this is the case by experimenting with different levels of
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Model Likelihd. Test acc.
M1 NN Softmax 0.9433
M2 Non-inv. Shallow GP Gaussian 0.8357
M3 Non-inv. Shallow. GP Softmax 0.7918
M4 Inv. Shallow GP Gaussian 0.9516
M5 Inv. Shallow. GP Softmax 0.9316
M6 Non-inv. Deep Kernel GP Gaussian 0.9387
M7 Non-inv. Deep Kernel GP Softmax 0.9351
M8 InvDKGP Gaussian 0.9896
M9 InvDKGP Softmax 0.9867

Table 3.1: Rotated MNIST, test accuracies. Invariant models outperform their
non-invariant counterparts, deep kernels outperform shallow ones.
InvDKGP perform best, outperforming state-of-the-art of 0.989 for
learned invariance on this dataset [Benton et al., 2020]. Table from
Paper 1.

augmentations during pre-training of hwp
as well as in the GP layer (see Paper

1, Sec. 7 for details). We find that complex feature extractors cannot be pre-
trained sufficiently well without data augmentation (i.e. invariances), and adding
invariances later does not improve performance in this case. Models where hwp

is pre-trained already with the right invariances do significantly better. Thus,
the iterative training procedure that we have developed in Sec. 3.3.2.1 in order
to overcome the overfitting problem of our “partly Bayesian” model does not
work to our benefit in this case. A full Bayesian treatment, i.e. marginalising
all weights might be unavoidable in certain cases in order to learn invariances.

3.4 Summary

We have seen in Chapter 2 that data augmentation (or, equivalently, invariances)
cannot be learned using standard losses such as MSE or negative log-likelihood.
As a consequence, we have considered van der Wilk et al. [2018]’s approach of
phrasing invariance learning as a Bayesian model selection problem in Sec.3.2.4.
They do so for GP models, where the marginal likelihood — the quantity needed
to perform Bayesian model selection — is available in closed form. In Sec. 3.3.1
(Paper 1) we have investigated a way to extend this approach from GPs to
neural networks: using DKL-based invariant models which are Bayesian in the
last layer only. To train our models we needed to overcome overfitting problems
(via iterative training) and correct model misspecification (via our new bound
which allows for the use of arbitrary log-concave likelihoods). In combination,
this enabled us to successfully learn invariances on MNIST variations and a
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medical imaging dataset. On CIFAR-10, however, due to the need for a more
complex model architecture, being partly Bayesian does not suffice for invariance
learning. We conclude that phrasing invariance learning as a model selection
problem is a promising approach also in neural networks, but to develop it to
its full potential we depend on better marginal likelihood approximations.



Chapter 4
Invariance Learning via

Pose-Normalisation

In Chapters 2 and 3 we have constructed invariant models by marginalising over
augmentation (or transformation) distributions,

p(y|x) =
∫

p(y|T (x))p(T |x) dx. (4.1)

Investigating this equation we might consider another approach to arriving at
invariance, optimising instead of marginalising the transformations T . We could
model

p(y|x) = max
T

p(y|T (x)). (4.2)

In practice, this would correspond to transforming x such that it can optimally
be classified — essentially pose-normalising the input. This approach to
achieving invariance is implemented in Spatial Transformer Networks (STNs,
Jaderberg et al. [2015]).

4.1 Spatial Transformer Networks

Spatial transformer networks consist of two parts, a localisation and a
classification network. The localiser computes the optimal pose for the
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x Tϕ(x)

“6”
Localiser

ϕ

Classifier
p(y|Tϕ(x))

Figure 4.1: A spatial transformer network consists of two parts. The localiser
network estimates and applies the optimal transformation ϕ (ϕ =
[0.2π, 1.4, 1.4, 0, 0, 0, 0] in this example) and the classifier network
performs the downstream task on the transformed image.

downstream task at hand. It does so by estimating transformation parameters
ϕ and applying the corresponding transformation Tϕ (see Fig. 4.1). The
classification 1 network solves the downstream task, computing p(y|Tϕ(x)).
Classifier and localiser are parametrised by neural networks, and are trained
jointly via gradient updates. To do so, the transformations have to be
parametrised in a differentiable manner as described before (Sec. 3.2.3).
Jaderberg et al. [2015] extensively use affine transformations similar to the
ones discussed in Sec. 3.2.3 and other relatively simple classes of
transformations such as thin-plate splines. Detlefsen et al. [2018] show that
the approach also works for more expressive diffeomorphic transformations.

Spatial transformer networks can produce (approximately) invariant functions
if all input images are mapped to the same canonical orientation before passed
on to the downstream model. This allows STN models to improve predictive
performance [Jaderberg et al., 2015, Detlefsen et al., 2018]. They can also
be useful in an interpretability context: Jaderberg et al. [2015] train an STN
with multiple localisers to classify different bird species on the CUB-200-2011
dataset. They find that one of the localisers focuses on identifying the head, one
on the body, and so on. We were, however, unable to reproduce this experiment
and find that, in general, STNs can be hard to optimise. The next section is
concerned with improving this.

1In principle, this could be any downstream task, so ‘predictor network’ might be a better
term. Jaderberg et al. [2015] as well as our extension which will be discussed in Sec. 4.2
consider downstream classification tasks so we will refer to this part of the model as the
‘classifier’.
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Tϕs(x), ϕs ∼ p (ϕ|x)

“6”
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p (ϕ|x)

Classifier
1
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Figure 4.2: Probabilistic spatial transformer network. Similar to a regular
spatial transformer network, its probabilistic extension consists
of two parts. The localiser network of a P-STN, however,
estimates a distribution over transformation parameters p(ϕ|x). S
different transformations are sampled and applied. The resulting
transformed images are fed through the classifier network whose
predictions are averaged in order to approximate the variational
expectation (4.14). Note how applying the different samples from
the transformation distribution results in augmenting the data
around the mean transformation.

4.2 A Probabilistic Extension to Spatial
Transformer Networks

This section summarises the contributions from Paper 2.

In practice, STNs can be brittle and difficult to train. If the localiser predicts a
wrong transformation Tϕ (for example, by zooming in on a corner such that only
black background is visible in the image in Fig. 4.1) we might lose any signal for
downstream task and backpropagation. This problem is exacerbated for non-
invertible Tϕ [Detlefsen et al., 2018], but is also present in other cases. Secondly,
the STN modelling assumption itself can be challenged: Is there really one ‘true’
underlying pose that images should be normalised to, especially since we know
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x

ϕ =
µ(
x)

ϕs ∼ N (µ(x), λ1)

ϕ
s ∼ N (µ(x), λ

2 )

Figure 4.3: An input image x and its example transformations Tϕ(x) (bottom
row). The leftmost transformation is the mean transformation.
The middle transformations are drawn from the normal with large
precision λ1 corresponding to augmenting little around the mean
transformation µ(x). The transformations on the right are drawn
from a distribution with smaller precision λ2, corresponding to
augmenting around the mean more aggressively.

that the small variations introduced by standard data augmentation (Ch. 2)
are immensely helpful for training? Paper 2 is a reply to these two concerns.
Our probabilistic extension to the STN (P-STN) estimates an optimal mean
transformation µ while taking its uncertainty into account, i.e. also modelling
a precision λ. This transformation uncertainty we marginalise over as before
(4.1), effectively ‘getting to try out’ different transformations. We will see that
this is equivalent to applying a type of localised data augmentation.

4.2.1 Model

The difference to previously discussed models is as follows: In the InvDKGP in
Sec. 3.3.1 we consider uniform, global augmentation distributions
p(T |x) = p(T ) = U(ϕmin, ϕmax). The P-STN employs normal, per-image
augmentation distributions p(T |x) = N (T |µ(x), λ). We will infer the
augmentation distribution via amortised variational inference, i.e. the
parameters of the augmentation distribution are modelled via neural networks
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Figure 4.4: Graphical model, visualisation adapted from Paper 2. Grey nodes
are observable and white are latent.

like in the deterministic STN.

Here, λ denotes the precision of the transformation distribution. When
marginalising over the transformation distribution, a small precision λ
corresponds to trying many different transformations, or augmenting the data
aggressively (Fig. 4.3, right). A large precision λ implies little uncertainty
around the mean transformation, or not augmenting the (pose-normalised)
image much (Fig. 4.3, middle). We know from Sec. 2.2.2.1 that naively trying
to infer λ will result in a collapsing augmentation distribution. We thus
introduce a prior on λ, resulting in a model structure as visualised in Fig. 4.4.
The model thus factorises as

p(y, x, ϕ, λ) = p(y|x, ϕ)p(ϕ|λ, x)p(λ)p(x). (4.3)

The input data density p(x) does not depend on model parameters λ and θ,
thus it can be specified without affecting the model. The prior over λ is a
Gamma distribution, with the λi per observation assumed to be independent,
p(λ) =

∏ND
i=1 p(λi) with density

p(λi) = Γ(α0, β0). (4.4)

We choose the Gamma prior due to its conjugacy with the normal likelihood
p(ϕ|λ, x) = N (ϕ|µ(x), λ), this is generally considered a robust setup for
estimating variances [Stirn and Knowles, 2020, Takahashi et al., 2018,
Detlefsen et al., 2019]. We wish to perform inference over the latent variables
by maximising

log p(x, y) = log

∫∫
p(x, y, ϕ, λ) dϕ dλ. (4.5)
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4.2.2 Inference in Probabilistic Spatial Transformer
Networks

The marginal likelihood (4.5) is intractable, and so is the posterior p(ϕ, λ|x, y).
Thus, we choose a variational approximation

q(ϕ, λ) := p(ϕ|λ, x)q(λ). (4.6)

Where p(ϕ|λ, x) = N (ϕ|µ(x), λ) as before and q(λ) :=
∏N

i=1 Γ (αi, β(xi)). Here
β is a neural network, i.e. we use amortised inference in a similar way to the
VAE model [Kingma and Welling, 2014]. We choose constant αi = 1.

Using Jensen’s inequality, we obtain the following evidence lower bound

log p(y, x) = log

∫∫
p(y, x, ϕ, λ) dϕ dλ (4.7)

≥
∫∫

log

(
p(y, x, ϕ, λ)

q(ϕ, λ)

)
q(ϕ, λ) dϕ dλ (4.8)

=

∫∫
log

(
p(y|x, ϕ)p(λ)p(x)

q(λ)

)
p(ϕ|λ, x)q(λ) dϕ dλ

= Eq(ϕ,λ) log p(y|x, ϕ)︸ ︷︷ ︸
classification loss

+ log p(x)− KL(q(λ)∥p(λ)) . (4.9)

Under our modelling assumptions, we can compute the classification loss (i.e.
the variational expectation) like so

Eq(ϕ,λ) log p(y|x, ϕ) =
∫∫

log p(y|x, ϕ)q(ϕ, λ) dϕ dλ (4.10)

=

∫∫
log p(y|x, ϕ)p(ϕ|λ, x)q(λ) dϕ dλ (4.11)

=

∫
log p(y|x, ϕ)

∫
N (ϕ|µ(x), λ)Γ(λ|α, β(x)) dλ dϕ (4.12)

=

∫
log p(y|x, ϕ)t2α(ϕ|µ(x)), β(x)

α ) dϕ. (4.13)

Here t denotes a scaled and location-shifted Student’s t-distribution with mean
µ(x), scaling β, and 2α degrees of freedom. It arose from marginalising over λ
in q(ϕ, λ), and is the distribution that we draw samples from in our
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implementation. p(y|x, ϕ) = p(y|Tϕ(x)) is what the classifier will compute. In
practice, we approximate Eq. 4.13 using an unbiased estimate

Eq(ϕ,λ) log p(yi|xi, ϕi) ≈
1

S

S∑

s=1

log p(yi|xi, ϕi,s),

with ϕi,s ∼ t2αi
(·|µ(xi), αi, β(xi)) (4.14)

and backpropagate through neural networks µ(x) and β(x) with the
reparametrisation trick.

Plugging Eq. 4.14 into Eq. 4.13 we obtain the final ELBO

Lp,q(x, y) ≈
N∑

i=1

1

S

S∑

s=1

log p(yi|xi, ϕi,s)− KL (q(λ)||p(λ)) + const, (4.15)

where the constant term corresponds to the log-prior over inputs log p(x). Since
this term does not depend on any of the model parameters, we can disregard
it during inference, where we maximise ELBO (4.15) using any gradient-based
method. The KL-divergence between two Gamma distributions is analytically
tractable and differentiable.

In our experiments we follow Higgins et al. [2016] and introduce a weight
parameter w to the KL-term. This way, we need to tune w but in turn our
model becomes robust to the choice of prior — otherwise we would need to
tune the prior directly via β0. We perform a grid-search on a validation set to
find the optimal w and choose α0 = β0 = 1 for all experiments. Our model is
similar to the model in Sec. 3.3.1 in that it implies marginalisation, and thus
data augmentation, at test-time as well as the usual training time. At test
time, we draw S = 10 transformation samples. At training time, we find that
sometimes S = 1 sample suffices as suggested by Kingma and Welling [2014],
other times we obtain better results with S = 10 also at training time. We will
state the number of samples drawn in the individual experiments.

4.2.3 Experimental Results

We investigate the P-STN along three dimensions: the localisation task, the
classification task and model calibration. The following section contains a high-
level summary of the experiments, see Paper 2 for experimental detail.
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4.2.3.1 Marginalising transformations improves localisation
accuracy

STN models are trained end-to-end, i.e. the transformation is learned based on
the labels for the downstream task alone. We do not have label information
available for the transformations. This property is useful since we can do with
sparsely labelled data, but it makes STNs hard to fit. The experiments in this
section investigate whether the probabilistic formulation improves localisation.
We study whether estimating a posterior over transformations and
marginalising, i.e. ‘getting to try multiple transformations’, makes the task
easier.

Rotated MNIST is revisited in the first experiment of this section. We
generate the dataset by randomly rotating the original MNIST digits by r
radians. We store the applied rotations in order to have ground truth
transformations available, ϕtrue = [rtrue, 0, 0, ..]. We set up our experiment as
follows: Firstly, we train a CNN on regular MNIST, i.e. an already
pose-normalise dataset. We copy its weights into the classifier model of a STN
and P-STN model. With those classifier weights frozen, we then train STN
and P-STN localisers, effectively learning to recover and ‘undo’ the applied
transformations ϕtrue. Training localiser and classifier separately in this
manner has two advantages. Firstly, it allows us to evaluate localiser
performance disentangled from the downstream task (see Fig. 4.5). Secondly,
the training procedure avoids a typical failure mode of STNs that we will
investigate later (Sec. 4.2.3.4).

The pretrained CNN obtains 99.4% test accuracy on MNIST. On rotated
MNIST accuracy drops to 41.2% with frozen weights (i.e. no retraining). Both
the STN and P-STN (S = 10 training samples, w = 3 · 10−5) both
pose-normalise successfully — they recover the ground truth transformations
to a satisfactory degree. When training the localisers with classifier weights
frozen as described above, the STN test acc. is 76.13% and the P-STN test
acc. 82.98%. We compute the expected average transformation error on the
N = 10k rotated MNIST test images as

ε =
1

N

N∑

i=1

∥ϕtrue(xi)− µ(xi)∥ mod π. (4.16)

The resulting values are ε = 0.76 for the STN and ε = 0.59 for the P-STN. The
P-STN outperfoms the STN, i.e. marginalising transformation and accounting
for transformation uncertainty helps with the localisation task.
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Figure 4.5: Rotated MNIST experiment, figure adapted from Paper 2. Left:
True transformation (rotation angles in radians) against learned
transformations (mean). The P-STN generally recovers the
ground truth transformations well. Middle: Variance network
outputs. When the transformation recovery is poor (the error ε is
above the median, in orange) the variances are slightly higher than
when the localisation works well (blue). Right: Images from the
dataset (top row) and samples from the P-STN localiser (bottom
three rows), those appear pose-normalised.

Random Placement Fashion MNIST and Mapillary Street Signs
experiments yield similar results: As in the rotated MNIST example,
marginalising transformations helps with the localisation task on a modified
version of fashion MNIST (images are randomly placed on a black background,
ϕtrue = [0, · · · , 0, txtrue, t

y
true]) and the more challenging Mapillary Street Sign

dataset. Notably, on this complex real-world dataset we demonstrate that the
P-STN is compatible with more complex model architectures (ResNet18) and
that it significantly improves performance: it achieves 92.2% test accuracy,
compared to 76.0% for a standard ResNet18 and 90.6% for a deterministic
STN. See Paper 2 for details.

4.2.3.2 Marginalising Transformations Improves Classification
Accuracy

Recall that the variational expectation for the P-STN (4.13) is an integral over
transformations p(ϕ|x). As such, it reminds us of the principled model for
data augmentation as formulated in Eq. 2.6 and Eq. 4.1. Indeed, while the
mean transformation µ(x) computes the pose-normalisation, the uncertainty
in p(ϕ|x) = t2α(ϕ|µ(x)), β(x)

α ) and the slightly different samples we draw when
computing the MC approximation (4.14) correspond to localised, per-image data
augmentation (see Fig. 4.2). We hypothesise that this data augmentation should



40 Invariance Learning via Pose-Normalisation

MNIST
30

MNIST
10

0

MNIST
10

00

MNIST
30

00

MNIST
10

00
0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST subsets

P-STN
STN
CNN

Figure 4.6: Left: Performances of P-STN, STN and CNN on MNIST subsets
(mean ± one STD across five folds). Right: The P-STN learns to
localise traffic signs in the challenging MTSD dataset. 10 sampled
transformations are shown with their corresponding bounding
boxes overlaid, here on test data. The learned variations improve
performance on the downstream classification task. Figure from
Paper 2.

help with the downstream classification task.

Small subsets of MNIST provide a useful test bed for this hypothesis for
two reasons: Firstly, data augmentation is usually particularly important for
small datasets (ND ≪ Nwp

in Eq. 2.1), so using small datasets should be an ideal
setup to evaluate a data augmentation strategy. Secondly, since MNIST data is
already pose-normalised the mean transformation should have little impact, and
so any possible benefits should stem from the uncertainty in the transformation
distribution and the resulting data augmentation we apply. Indeed, we find
that the P-STN outperforms CNN and STN on small MNIST subsets by large
margins (Fig. 4.6, left). On larger datasets the advantage of data augmentation
diminishes as expected.

UCR Time Series are investigated in the next experiment of this section.
The experiment illustrates that the class of affine transformations for T can
easily be replaced with any other differentiable class of transformations. For
this time series dataset we use the diffeomorphic transformations from Detlefsen
[2018]. We note that for this family of transformations the parameters are much
less interpretable than in the affine case, so learning over hand-crafting a data
augmentation scheme is particularly useful. See Fig. 4.7, left for such a learned
time series augmentation. As before, P-STN outperforms or is on par with the
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Figure 4.7: Left: Examples augmentations for a time-series from the FaceAll
dataset. The top plot shows the original time-series and the
bottom plot shows augmented samples. Right: The different
models’ calibrations on MNIST100. Figure from Paper 2.

other models on four out of five of the dataset we use. It performs less well than
a standard CNN on one of the datasets (here, the vanilla CNN already achieves
near-perfect test accuracy at 99.63%).

4.2.3.3 Marginalising Transformations Improves Model Calibration

We have seen that the uncertainties in the per-image transformation
distributions were somewhat meaningful (Sec. 4.2.3.1) — images that are
harder for our model to localise are associated with larger transformation
uncertainties. We will now investigate whether those meaningful localisation
uncertainties translate into meaningful uncertainties in the downstream task,
i.e. we will study classifier calibration.

At test-time, we evaluate the ‘actual’ probabilities rather than their logarithm,

p(y|x) =
∫

p(y|x, ϕ)q(ϕ) dϕ ≈ 1

S

S∑

s=1

p(y|Tϕs
(x)), (4.17)

and we investigate whether the uncertainty in p(y|x) corresponds to the quality
of predictions. This is visualised in the calibration plot in Fig. 4.7 (right panel)
for the MNIST100 subset classification task.We plot calibration for the CNN,
STN and for P-STNs with two different w-parameters; w = 0.0003 yields optimal
performance and w = 0.0001 yields optimal calibration. Following Guo et al.
[2017], Küppers et al. [2020] and Küppers et al. [2021] we compute the expected
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Figure 4.8: Left: Test accuracies for standard NN and (P-)STNs of different
depths trained on rotated MNIST, as well as NN baseline on
original MNIST (black). The STN (green) model does not recover
the original images very well and thus behaves more like a standard
NN (blue). P-STN (blue) un-transforms at least some of the
rotations and is closer in accuracy to the NN on original data.
Right: The variance of the learned transformations as a function
of model depth. The STN tends to learn transformations closer
to the identity (this is consistent with the test accuracies we see
on the left). P-STN learns to un-transform better, at least when
the classifier is simple. For bigger classifiers it falls back onto the
identity transform, but performs relatively well nonetheless (see
left panel). Figure from Paper 2, plotted are medians over 5 folds
± median absolute deviation.

calibration errors, those are CNN: 0.0743±0.0094, STN: 0.1160±0.0205, P-STN,
w = 0.0003 (optimal performance model): 0.0567± 0.0065, P-STN, w = 0.0001
(optimal calibration model): 0.0271± 0.0088. The reported numbers are mean
± one STD over 5 folds. The downstream predictions are better calibrated for
the P-STN than the CNN and STN models.

4.2.3.4 A Typical Failure Mode in STNs

STN are trained end-to-end, and with only label information available. Thus,
one aims to learn the transformation which is optimal for solving the
downstream task. Depending on the complexity of the downstream task and
the classification model, it might not be necessary to transform the input at
all, i.e. the downstream task might be solvable on the original input image.
Indeed, this is a failure mode we observe in practice — often, the localiser
simply learns the identity transform while the classifier learns to classify the
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non-transformed image. As observed by other authors [Finnveden et al., 2021]
using more complex classifier architectures makes the STN more prone to this
failure mode. We investigate the problem in more detail in the experiment in
Fig. 4.8. We start by training a neural network of different sizes on standard
MNIST (black, one layer on the x-axis is [Linear, ReLU, Dropout]). We
compare the performance of this model to (P-)STN models trained on rotated
MNIST, test accuracies are plotted in the left panel of the figure. If the
localisation task is performed perfectly, the (P-)STN models should be able to
recover the same accuracy as the model trained on the original, non-rotated
dataset. In the right panel, we plot the variance of (mean) transformations
learn by the (P-)STN models. We report medians over 5 runs, with error bars
corresponding to one median absolute deviation. Values close to 0 indicate
that the localiser does not transform the image, i.e. it learns the identity
transform. Larger values indicate that the localiser learns transformations. As
hypothesised, for larger classifiers the localisers do not transform the images.
Due to the increased capacity of the model, we nonetheless achieve decent
classification accuracies (left panel). The P-STN learns to localise the rotated
images successfully (large variance in the right panel, and high accuracy on the
left), at least for smaller classifier sizes. The STN does not localise the images
as well, and performs similar to a standard neural net in most runs. We
conclude that thanks to it ‘trying out multiple transformations’, the P-STN
avoids this failure mode to an extend. We also note that this property, while
useful, is somewhat orthogonal to our interest in this work, and we have
avoided the failure mode in the previous experiments of this section by
considering models with fixed, pretrained classifiers.

4.3 Summary

Compared to the invariant deep kernel GP models (Sec. 3.3) spatial
transformer networks (Sec. 4.1) take, in a sense, the opposite approach to
invariance learning. They optimise instead of marginalising transformations,
hereby pose-normalising inputs before solving downstream tasks. In this
chapter, we have introduced the P-STN, a probabilistic extension to spatial
transformer networks. Compared to their deterministic counterparts, the
benefits are three-fold. Firstly, the P-STN improves localisation accuracy as
we have demonstrated on (Fashion) MNIST variations and the Mapillary
street sign dataset (Sec. 4.2.3.1). Secondly, it improves accuracy in
downstream classification tasks as we have demonstrated on MNIST subsets
and the UCR time series datasets (Sec. 4.2.3.2). The mechanism behind these
improvements is the per-image, localised data augmentation scheme that is
implied by the P-STN (see Fig. 4.2). Lastly, the P-STN achieves improved
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calibration in the downstream task (Sec. 4.2.3.3) compared to its deterministic
counterpart as well as a standard CNN classifier without localisation. Having
discussed data augmentation and invariance learning in the previous chapters,
we will now turn to the fairness question. Can the developed methods help us
de-bias algorithms as hypothesised in Chapter 1?



Chapter 5

Data Augmentation for
Bias-Correction

Much of the work in this chapter is inspired and informed by discussions with
students in the DTU course on Deep Learning in 2019 and 2020. Big thanks
in particular to Zineb Fadili, Victor Célérier, Riccardo Ricci, Paul Romieu,
Ida Villumsen , Line Vognsen, Nanna Markers, Aleksander Oliver Pratt-Dam,
Charlotte Friis Theisen, and Martin Johnsen. This chapter contains original
work, i.e. work that is not included in Papers 1 - 3.

In Chapter 1 we have presented the idea that algorithmic bias often stems from
data bias. If this is so, might data augmentation and the techniques developed
in Chapter 2-4 help to reduce such biases by increasing the data set quality?
This is the question we will explore in this chapter.

We will study the CelebA dataset [Liu et al., 2015] containing roughly 200k
images of celebrity faces. The images are annotated with demographic and
other attributes, which makes them useful for our investigation of demographic
bias. In particular, we will analyse whether and how the celebrities’ age is
associated with whether or not they are considered attractive by human and
machine annotators, i.e. whether there is an age bias present in the data and,
consequently, in our modelling thereof. We will then investigate whether data
augmentation might alleviate such bias.
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To make it explicit: We will build a machine learning model to predict whether
or not someone can be considered ‘attractive’. This seems like a task both
trite and eerie — like many other fairness-related examples, one might feel
that it is one that should not be automated in the first place. However, it is
already a reality. The popular dating app Tinder has used algorithms to score
people’s attractiveness [Arch, 2020]. The controversial ELO score has since been
deprecated [Carman, 2019], but Tinder and other dating apps continue to rely
on algorithms to suggest relevant matches to their users hereby reflecting and
reproducing societal norms.

Whether your society considers you attractive has huge impacts on your live
including, but not limited to, the personal domain: We tend to associate
positive traits such as being happier, more successful or making better friends
or partners with attractiveness [Dion et al., 1972]. In the professional domain,
this stereotype seems to translate into a bias towards hiring more attractive
candidates [Shahani-Denning, 2003], as well as attractive employees earning
higher wages [Pfeifer, 2012].

What is beautiful is a cultural norm that is ever-changing. One important player
in this process of defining beauty standards is the fashion industry, which has
lately been seeing efforts towards more diversity. Campaigns feature more plus-
size models, people of color, non-binary and older individuals than in the past
[nyt, 2021, the, 2020].

Exposing people to such different beauty standards has the potential to create
cultural change. Thus, a celebrity dataset collected in the future, might reflect
a more diverse view on what is attractive than CelebA collected in 2015. Norms
change, the world changes, and, as a consequence, datasets change. Thinking
about such dynamics it becomes apparent that a fairness model might need to be
able to map the downstream effects of fairness interventions rather than simply
evaluating a single decision in isolation. We will investigate what such a long-
term modelling strategy might look like in Chapter 6. For now, let us return
to the standard, static setting: We have pre-collected, academic benchmark
dataset, train an algorithm and then aim to investigate the algorithm’s fairness.
To do so, we will evaluate algorithmic bias according to the following two metrics
which are influential in the fairness literature. 1

Definition 5.1 (Fairness metrics) Let A be a protected demographic
attribute, Ŷ some true underlying label and Y our estimation of Ŷ (i.e. the
model prediction). Then

1We note that those two are by no means the only possible metrics, and point to Chapter
6 for an extensive discussion of this.
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1. Demographic Parity is satisfied iff.

P (Y = 1|A = 1) = P (Y = 1|A = 0)

2. Equality of Opportunity is satisfied iff.

P (Y = 1|A = 1, Ŷ = 1) = P (Y = 1|A = 0, Ŷ = 1)

In the following, A corresponds to age, i.e. A = 1 means an individual is labeled
as ‘young’. Ŷ corresponds to the ‘attractive’ label. According to the data set
curators, these labels were assigned by ‘a professional labeling company’ [Liu
et al., 2015]. Y corresponds to our model’s prediction of Ŷ , i.e. we train a
model to predict the attractiveness label. For brevity, we will often refer to
the individuals with Y = 0 as the ‘old’ (rather than ‘non-young’) population.
Whether there is a concrete cut-off age defined for assigning this label is not
disclosed in the original paper Liu et al. [2015].

5.1 Data Bias

Before doing any predictive modelling, we can investigate whether our training
data exhibits any bias. Any such bias we expect to propagate into our model.
The dataset consists of a majority of people labelled as young, P (young =
1) = 0.7736, P (young = 0) = 0.2264. Being young is correlated with being
considered attractive, the Pearson correlation coefficient between the ’Young’
and ’Attractive’ attribute is 0.3877. We can evaluate the demographic parity
metric with respect to our underlying data (i.e. replacing model predictions Y

with true labels Ŷ ). We then find that

P (attractive = 1|young = 1) = 0.6173

and

P (attractive = 1|young = 0) = 0.1542.

Similarly, these values are 0.6031 and 0.1613 on test data. Thus, we are training
out model on heavily biased data. Likely, a model trained on such data will
exhibit similar biases, i.e. it likely will not satisfy demographic parity either
without us intervening.
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Figure 5.1: Some example images from the CelebA dataset and their labels.
Columns correspond to the target label Ŷ and rows correspond
to the protected attribute A. Investigating this random sample
visually suggests that there likely are more biases in the data than
the age bias we study. Not too surprisingly give cultural norms,
more women than men are labelled attractive in this sample. The
young woman of color in the top left (‘unattractive’) also seems to
indicate a potential racial bias.

5.2 Model Bias

We train a model and make predictions on the test set, achieving 79.02% test
accuracy. We then evaluate whether our model satisfies the fairness metrics
Demographic Parity and Equalised Odds from Def. 5.1.

Demographic parity is, as expected, not satisfied. On test data, we find
that

P (predicted attractive = 1|young = 1) = 0.6687

and
P (predicted attractive = 1|young = 0) = 0.2627.
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We note that our model already makes ‘friendly’ predictions (somewhat over-
predicting old people to be attractive), this is due to the fact that the dataset
contains more young people who are more often labelled attractive. Nonetheless,
demographic parity is far from satisfied.

Equality of Opportunity also is violated by our model,

P (predicted attractive = 1|young = 1, attractive = 1) = 0.8711

and

P (predicted attractive = 1|young = 0, attractive = 1) = 0.7690

Violating equality of opportunity means that our model amplifies the bias that
is already in the data (it more often wrongly classifies the already less attractive
part of the population as unattractive).

5.3 Debiasing the Model

We will now attempt to debias our model using our data augmentation scheme.
To benchmark our approach, we will compare it to two standard techniques,
namely naive upsampling and adjusting thresholds which we will detail below.
These two baselines are by no means the only approaches in the vast body of fair
ML and debiasing literature. Other approaches include constraint optimisation
(i.e. formulating fairness requirements as part of the objective function, e.g.
Dwork et al. [2012], Zafar et al. [2019]).

In order to evaluate our debiasing strategies quantitatively, we will report
‘fairness ratios’, i.e. the Demographic Parity ratio

DP ratio =
P (predicted attractive = 1|young = 0)

P (predicted attractive = 1|young = 1)
(5.1)

and Equality of Opportunity Ratio

EO ratio =
P (predicted attractive = 1|young = 0, attractive = 1)

P (predicted attractive = 1|young = 1, attractive = 1)
. (5.2)

For the original model (i.e. without debiasing), we have DPR= 0.2627
0.6687 = 0.3929

and EOR= 0.7690
0.8711 = 0.8828. For a perfectly fair model, both ratios would be

equal to 1. A value larger than 1 indicates that the model is biased ‘in the other
direction’, i.e. old individuals are classified as attractive more often.
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We then choose a DP and EO rate as a minimum for our algorithm to be
considered fair, say DP and EO rates > 95%. For each debiasing technique, we
evaluate three things: Firstly, whether this degree of fairness can be achieved
using this method and secondly, how much do we lose in accuracy in order to
do so. Thirdly, we will investigate how drastic an intervention was necessary to
achieve the fairness goal under the chosen method. I.e., how much did we need
to move the threshold away from the standard t = 0.5 (see Sec. 5.3.1) or how
much did we need to upsample, respectively.

5.3.1 Adjusting Thresholds

Our chosen fairness metrics depend on the proportion of people that are
(correctly) predicted attractive. A simple way to manipulate such proportions,
hoping to improve their ratio, is to adjust the per-group threshold at which a
person is predicted attractive [Hardt et al., 2016, Barocas et al., 2017]. In a
binary classification problem, the natural hence usually unstated threshold if
0.5, i.e. we consider an individual to be predicted attractive if
P (attractive) ≥ t with t = 0.5. By setting t to lower values we can make it
‘easier’ to be classified attractive. In particular, we can set two different
thresholds tA∈{0,1} for the minority and majority groups, respectively. This
way, we manipulate EO and DP ratios in a straightforward manner.

Note that this approach is a post-hoc recalibration technique, i.e. it does not
require retraining the model. It does, however, require access to the protected
attribute at test-time in order to determine which prediction threshold tA=0 or
tA=1 to apply. Figure 5.2 shows the accuracy, the total proportion of people
predicted attractive as well as DP and EO ratios, all as a function of different
thresholds for the minority group A = 0. For consistency with Fig. 5.3 and 5.4
we plot 1− tA=0 on the x−axis, such that larger values indicate more extreme
fairness interventions. As expected, decreasing the threshold tA=0

(equivalently, increasing 1 − tA=0) increases the proportion of people classified
as attractive (grey curve), resulting in arbitrarily good EO (green) and EO
(orange) ratios, but causing a decline in accuracy (blue). As defined in Sec.
5.3, we will assume that we are interested in EO and DP ratios of at least 0.95.
To estimate the corresponding accuracies, we assume linearity between the
threshold values we tested for and interpolate accordingly. For EO, we would
thus have to pick tA=0 ≈ 0.43 (1 − tA=0 ≈ 0.57) to get an EO ratio of 0.95,
resulting in an approximate accuracy of 0.782. Changing the threshold from
0.5 to 0.43 is a relatively small fairness intervention. Consequently, the
accuracy of the EO-corrected model is close to the original accuracy (0.790 at
tA=0 = 0.5). For DP, the more drastic measure, we need a drastic fairness
intervention, lowering the threshold for being classified attractive to
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Figure 5.2: Left: Accuracy, DP and EO ratio and the total percentage of
individuals predicted attractive as a function of the minority
group’s threshold tA=0. We plot 1− tA=0 on the x-axis, such that
larger values correspond to more drastic fairness interventions.
Right: Samples and their predictions. The number below each
image refers to P (attractive) according to our model. The
top row contains images that are never predicted attractive (i.e.
P (attractive) < 0.104) and the middle row contains images that
were predicted attractive after the DP fairness intervention (i.e.
0.104 < P (attractive) < 0.5, 0.104 is the threshold that produces
a DP ratio of 0.95, see main text for discussion). The bottom row
is always considered attractive (i.e. 0.104 > P (attractive) > 0.5).

tA=0 = 0.103, resulting in an approximate accuracy of 0.7163. These values are
compared to the other techniques in Table 5.1.

5.3.2 Naive Upsampling

In Sec. 5.1 we have identified two types of data bias. Firstly, old people are
under-represented in the CelebA dataset (22.64%).2 Secondly, amongst the
old demographic group, there are less people labelled attractive (15.42%). From

2This is assuming that the label simply refers to whether someone is younger or older than
the median age. As noted at the beginning of the chapter, the dataset curators Liu et al.
[2015] do not specify the criteria by which the age label was assigned.



52 Data Augmentation for Bias-Correction

0.0 0.23 0.5 0.75 1.0
Young = 0

All  ratio

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy
DP ratio
EO ratio
Attractive pred. ratio

0.0 0.15 0.5 0.75 1.0
Young = 0 & Attractive = 1

Young = 0  ratio

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy
DP ratio
EO ratio
Attractive pred. ratio

Figure 5.3: Left: Upsampling old individuals (Y oung = 0) such that the
ratio of old individuals corresponds to the values on the x-axis
(we abbreviate these ratios with r in the text). On the y-axis
are accuracy, DP and EO ratio as well as the total percentage
of individuals predicted attractive. Right: Corresponding plot
for upsampling of individuals which are labelled both old and
attractive. The number on the x-axis is now the ratio of attractive
old people to old people. The dashed line indicates the original
ratios in the unmanipulated dataset.

this, we can derive two re-weighting or upsampling strategies: We can artificially
increase the number of old people in general, or of the old people that were
labelled attractive.

Figure 5.3 illustrates the effect of those two upsampling strategies. Upsampling
old individuals (left panel) and upsampling those labeled both old and
attractive (right panel). We might hope that upsampling old individuals would
improve EO rates: The model is presented with more old individuals than
before, and might thus be making more accurate predictions, including more
true positives as measured by EO, on this population. However, this is hardly
the case. The EO rate drops with increased oversampling of A = 0 individuals
(probably because the overall proportion of attractive samples in the training
data decreases). Similarly, the best results are achieved when we only sample
young individuals (r = Y oung=0

All ratio = 0), and, as a consequence, increase the
overall proportion of attractive individuals in the training data. As expected,
no improvements in DP are achieved with this upsampling strategy.

The second upsampling strategy, i.e. upsampling old, attractive individuals
(Fig. 5.3, right panel) is more successful. As expected, increasing the
proportion of attractive individuals amongst the old population improves both
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EO and DP ratios. For EO, we would have to pick an upsampling factor of
approx. r = 0.553 to get an EO ratio of 0.95, resulting in an approximate
accuracy of 0.760, a moderate drop from the original accuracy of 0.790.
Notably, a DP ratio of 0.95 is not achievable using this technique, the best
possible DP ratio is 0.701 at an upsampling factor of 1. See Table 5.1 for
direct comparison to other methods.

5.3.3 Data Augmentation for Bias-Correction

We will now investigate whether (learned) data augmentation is a better
debiasing tool than naive upsampling. In both cases we present the model
with the minority group samples more often than with the majority group
ones. In the naive case, samples are simply repeated and the model is thus
presented with identical copies. Under the upsampling scheme with data
augmentation, the sample is slightly perturbed each time it is fed to the
model. In order not to introduce spurious correlations between the
demographic group and augmentation, we also augment the majority example
whenever those are sampled.

We design the data augmentation scheme by using the Probabilistic Spatial
Transformer (P-STN) model from Sec. 2.2.2 and predict 4-parameter affine
transformations. Thus, our augmentation transformations are Tϕ with
ϕ = [r, s, tx, ty], i.e. we learn rotations, scale as well as translations in x− and
y−direction. We fix the localiser mean to the identity transform and only
learn transformation variance β, closely mimicking a standard neural network
with data augmentation in the usual sense — however, we marginalise the
augmentations as per usual in the P-STN model, see Eq. 4.1. We compare two
upsampling schemes as before: 1) upsampling all individuals with A = 0 and
2) upsampling those individuals with A = 0 and Y = 1.

As in the naive upsampling case in Sec. 5.3.2, upsampling all old individuals is
not a useful strategy (Fig. 5.4, left panel). Also consistent with the previous
experiment, upsampling attractive old individuals improves fairness under both
EO and DP. We achieve our target EO ratio of 0.95 at an upsampling rate of
r ≈ 0.610. This is, unexpectedly, a more drastic intervention than was necessary
in the naive case (where we found r ≈ 0.553). The accuracy at this upsampling
rate is 0.764, higher than in the naive case. The original accuracy for the P-STN
model is 0.801, about one percent point higher than the naive model. See Table
5.1 for a complete comparison. As in the naive case, a DP ratio of 0.95 cannot
be achieved using this debiasing method.
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Figure 5.4: Same plot as in Fig. 5.3, but for the DA-upsampling strategy.
As before, left: upsampling old individuals (Y oung = 0) such
that the ratio of old individuals corresponds to the values on the
x-axis. On the y-axis are accuracy, DP and EO ratio as well
as the total percentage of individuals predicted attractive. Right:
Upsampling individuals which are labelled both old and attractive.
The number on the x-axis is now the ratio of attractive old people
to old people. The dashed line indicates the original ratios in the
unmanipulated dataset.

5.4 Summary

We have evaluated three debiasing techniques: adjusting thresholds, naive
upsampling and upsampling using our P-STN model. We have quantified their
success by evaluating their fairness-accuracy tradeoff. Specifically, for a given
fairness level, i.e. EO and DP ratios of 0.95, we estimate how accurate the
methods are. We summarise the results in Table 5.1 below. Recall that
upsampling all old individuals did not prove to be a useful strategy. Hence,
the results in Table 5.1 for the upsampling methods are all using ‘strategy 2’,
i.e. upsampling attractive old individuals.

We might conclude from Table 5.1 that adjusting thresholds is the most
promising upsampling strategy: It is the only method that can achieve the
desired DP ratio of 0.95, and achieving the this desired ratio for EO comes at
less of a loss in terms of accuracy than for the other methods. While this can
certainly be considered successful debiasing, recall that this method requires
access to the protected attribute A at test time, which we might not always be
given. The upsampling-based methods do not require test-time access to A.
Amongst those, DA upsampling achieves better accuracy at the desired EO
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Target Metric Method Orig. Acc. tA / rA ↓ Acc. at rA/tA ↑
EO ratio > 0.95 Thresholding 0.790 tA = 0.430 0.782

Naive Upsamp. 0.790 rA = 0.553 0.760
DA Upsamp. 0.801 rA = 0.610 0.764

DP ratio > 0.95 Thresholding 0.790 tA = 0.104 0.716
Naive Upsamp. 0.790 – –
DA Upsamp. 0.801 – –

Table 5.1: Comparison of the different debiasing techniques presented in this
chapter for both target metrics (EO in the top half, DP in the
bottom half). For each of the three methods, we report the original
accuracy, the magnitude of the neccessary fairness intervention (i.e.
the adjusted thresholds tA and sampling rates rA, respectively), and
the accuracy after the fairness intervention. Note that the values
in tA/rA are not directly comparable between the first and the two
last methods, since they can either refer to thresholds or sampling
rates.

ratio. On the other hand, DA upsampling requires a more drastic intervention,
i.e. the rate at which we need to upsample the attractive old population is
higher (0.610 as compared to 0.553 for naive upsampling). Consequently, the
relative drop in accuracy is lower for the naive model. In other words, the fact
that DA upsampling retains higher accuracy at the desired fairness level might
be better explained by the higher original accuracy of the P-STN-like DA
model, rather than by improved debiasing behavior.

Which debiasing strategy one should pick depends on the context of the exact
problem at hand. Will demographic information be available at test-time, and
do we care how drastic the intervention is? Does accuracy retention matter
much, or are we building a fair model at any cost? The question at how to
arrive at a useful measurement or modelling strategy for algorithmic fairness is
the topic of Paper 3, which we will discuss in the next chapter.
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Chapter 6
A Closer Look at Fairness

Modelling

This chapter summarises the contributions from Paper 3 and applies
them to the fairness problem discussed in the last chapter. Thus, the
theory is a reproduction while the application is original work of this
thesis.

In the previous chapter, we have brushed over the choice of fairness metric,
and have without much consideration chosen the well-known fairness metrics
demographic parity and equality of opportunity (Def. 5.1) to evaluate our
upsampling strategy against. In any real world application, however, the
choice of fairness metric is of crucial importance: it encapsulates our
understanding of fairness and its operationalisation.

Much efforts by the fairness community have gone into proposing a multitude of
fairness metrics. Paper 3 is a critical review of this body of work. We identify
two main shortcomings of conventional fairness metrics, give examples for how
and why these approaches fail, and then arrive at an alternative modelling
strategy which we call dynamical fairness modelling. In this chapter, we will
summarise the argument from Schwöbel and Remmers [2022] and will then
investigate how the proposed dynamical fairness modelling approach can be
applied in the context of the CelebA debiasing experiment from Chapter 5.
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6.1 Two Shortcomings of the Fair ML Literature

Paper 3 identifies two shortcomings of the established fairness literature. We
summarise the argument from Sec. 1 and 2 of the paper below.

Firstly, the ethical and formal debate are often conflated by the fair
ML literature, which we are not the first authors to note [Jacobs and Wallach,
2021, Binns, 2020]. As a consequence, the usual fairness analysis is focused too
narrowly on mathematical aspects of the metrics alone. For example, consider
the tension between the fairness metrics demographic parity and individual
fairness: It can be shown that demographic parity and individual fairness
contradict each other. We have defined Demographic Parity in Def. 5.1 and
will define individual fairness here:

Definition 6.1 (Individual Fairness) Let x1, x2 ∈ X be two inputs
to our model, usually thought to represent feature vectors describing two
individuals. Let f : X → Y be the model mapping inputs to outputs. D is a
metric in the input space and d a metric in the output space. Then f satisfies
individual fairness iff

d(f(x1), f(x2)) ≤ D(x1, x2). (6.1)

Intuitively, if individuals have similar features, they should be assigned similar
outcomes. For example, in a hiring scenario, people with similar qualifications
should be accepted at the same rates. Importantly in the fairness context, this
should hold when both stem from different demographic groups. This notion
of fairness is sometimes traced back to Aristotle’s principle of ‘treating like
cases alike’ [Schwöbel and Remmers, 2022, Binns, 2020]. Recall that
demographic parity poses the requirement to assign the positive outcome (i.e.
getting the job in the hiring example) at the same rate to all demographic
groups. Comparing the two fairness metrics it is easy to see that they might
not be satisfiable at the same time. When the underlying feature distribution
is different between demographic groups (say, men are on average more
qualified for the job in question) we will hire more men than women if we want
to satisfy individual fairness. On the contrary, if we ensure demographic parity
and thus hire the same amount of men and women, there will be some men
that do not get hired despite being better qualified than their female
counterparts which did get the job — breaching individual fairness. This
conflict between individual and group fairness (demographic parity
specifically) is often discussed on a formal level alone, and is treated as a
technical flaw of the metric themselves. However, as Binns [2020] argues
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convincingly, the apparent conflict between those two metrics can be easily
resolved by taking into account the shared moral principle of egalitarianism,
i.e. the idea that ‘[p]eople should get the same, or be treated the same, or be
treated as equals, in some respect.’1. As shown in Binns [2020], this ethical
stance underlies both group and individual fairness metrics. Grounding the
formalised debate in an ethical perspective is helpful — and crucial given the
nature of the questions fair ML research seeks to answer.

Secondly, fairness modelling often fails to account for context,
specifically the effects of interventions. The second problem we identify
with existing fairness metrics is that they often do not sufficiently
contextualise the problem at hand. To illustrate this, we briefly summarise the
argument from Paper 3, Sec. 2. Procedural fairness criteria assume that a fair
process is sufficient to ensure a fair state of the world. This notion of fairness
is what Rawls [2009] calls pure procedural justice, as opposed to (im-)perfect
procedural justice. The latter considers outcomes rather than processes when
evaluating fairness. For example, demographic parity and equality of
opportunity from Def. 5.1 fall into this category: we evaluate the statistical
distribution of outcomes in order to arrive at conclusions about our
algorithm’s fairness. On the procedural side, one of the simplest metrics is
Fairness through Unawareness [Gajane and Pechenizkiy, 2017].

Definition 6.2 (Fairness Through Unawareness) A predictor f
satisfies fairness through unawareness iff it does not use the protected
attribute, i.e.

f(X,A) = f(X). (6.2)

It is easy to see the limitations of this fairness concept. Many processes in
society already satisfy formal equality of opportunity as required here, i.e.
demographic information is not usually actively used in decision processes. In
fact, in many countries it is illegal to use features like gender, religious
affiliation of age to make decisions about individuals — that is why those
features are referred to as protected attributes in the literature. In the US, for
example, this is implemented via laws such as the US Civil Rights Act Title
VII in the context of hiring, or in the US Fair Housing Act. Despite not using
protected attributes actively many decision processes produce unfair structures
nonetheless. In the infamous COMPAS case [Angwin et al., 2016], an
algorithm supposed to help judges by predicting offenders’ recidivism risks, the
race attribute is not actively used. Yet, the outcomes are massively different
for Black and white offenders. In particular, the algorithm errs differently for

1From https://plato.stanford.edu/entries/egalitarianism.
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both demographic groups, producing more false negatives for whites, but false
positives for Blacks (i.e. assigning high risk scores despite the person not
actually re-offending, the ‘undesirable’ type of error for the individual). Due to
the biased training data, the algorithm learns to correlate race with crime via
other factors such as geography or socioeconomics. Similarly in hiring: Not
explicitly stating one’s gender on a CV is not usually enough to remove any
gender information, since such information is encoded in the name, but also in
less obvious features such as volunteering or extracurriculars like certain sports
which tend to correlate with gender. Thus, the formal exclusion of protected
attributes does not stop the protected attribute from (indirectly) impacting
decision processes. Algorithms that are learned from historic data are likely to
re-enforce existing inequalities. Outcome based metrics such as demographic
parity can potentially lead to more in-depth interventions, but this group of
metrics usually fails to capture ethically relevant structural differences between
groups. They might mark an imbalanced distribution of outcomes as unfair,
but they do not help investigate how differences in outcome distributions arose
historically, or how intervening on them it will change the situation for the
underrepresented group in the long term. For example, well-meant affirmative
action can sometimes have negative consequences for the disadvantaged group
it is supposed to benefit (see Paper 3, Sec. 2.2).

In summary, we have identified two shortcomings of much of the existing fairness
literature. Firstly, it often fails to state ethical goals explicitly before starting
to develop formalisations. Secondly, it usually fails to evaluate the possible
consequences of an intervention by phrasing fairness as a static problem rather
than considering societal dynamics over time.

6.2 Dynamical Fairness Modelling

As a consequence, Paper 3 arrives at the following three step approach to fairness
modelling (Schwöbel and Remmers [2022], Sec. 3.1).

(1) Explicating ethical goals is the first step in the dynamical fairness
modelling pipeline. Importantly, this is done independently of formalisations,
i.e. not in mathematical language. Ethical goals can be developed in reference
to philosophical stances on fairness or justice, but importantly they should also
be developed practically, applied to the context, and ideally in collaboration
with different stakeholders in the problem at hand.



6.3 Case Study 61

(2) Formalisation is the second step: we try to operationalise the ethical
goals developed in the first step. This might be as simple as picking a suitable
one from the large body of existing fairness metrics, but ethical goals should not
be expected to always correlate with existing metrics one-to-one. In particular,
as illustrated in detail in Sec. 3.3 and 3.4 of Paper 3, formalisations that can
capture the long term effects of fairness interventions might be more appropriate
than static, statistical metrics. For example, as proposed in Liu et al. [2019],
we might want to explicitly optimise for an improvement of the disadvantaged
group’s living conditions over time.

(3) Modelling down-stream effects of any potential fairness intervention
is the third step. The purpose of algorithmic fairness as we see it is to help
make positive change in society. In Paper 3, we refer to this as the interventional
perspective on fairness modelling. Under this perspective, we consider a decision
fair if it has the desired, fair outcomes, i.e. if it produces improved conditions
for the previously disadvantaged. If a robust estimate of downstream effects is
available — we acknowledge that this might be extremely difficult in practice
— considering those is a good way to choose one intervention over the other. In
the context of gender imbalance in the workplace, for example, we might be able
to determine whether women’s quotas or more early career initiatives (i.e. fixing
the ‘pipeline problem’) might be the better fairness intervention (see Paper 3,
Sec. 3.2).

6.3 Case Study

In Paper 3, we illustrate our dynamical fairness modelling framework using the
example of women on company boards. Women are underrepresented in this
category of high-impact jobs, and the EU countries have since 2006 taken
measures to close this gender gap. Most prominently, they have considered
women’s quotas as a somewhat controversial measure. Observing a primarily
US-centric debate in the fairness space, we apply our dynamical fairness
modelling framework to this problem in Sec. 3.2 as a European case study.
Here, we will instead use another case-study for illustration, one that matches
closely the upsampling experiments from Chapter 5.3.3.

Recall the literature we reviewed at the beginning of Chapter 5.3.3. Authors
such as Dion et al. [1972], Shahani-Denning [2003] and Pfeifer [2012] have
demonstrated how being perceived attractive has effects on personal outcomes
of extreme importance in the personal as well as professional domain: People
who are considered attractive are assumed by their peers to make better
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friends, partners or employees. Given these positive associated outcomes, a
government might decide to try and push forward a more diverse and inclusive
beauty standard. In Chapter 5.3.3 we have considered beauty standards with
respect to age, but this is equally relevant regarding factors like body image,
race or gender expressions. In the following, we will see how the dynamical
fairness modelling framework can be applied in this scenario in order to arrive
at a more grounded conception of fairness than we have provided previously.

(1) Ethical goals of such an intervention might be diversity, inclusivity and
representation in society. From the positive outcomes associated with being
considered attractive, we could derive goals such as equal opportunity and social
mobility (since people who are considered attractive by their peers have better
social and professional outcomes). Lastly, there is a damage control aspect
to certain beauty standards: Along the dimension of weight and body image,
eating disorder have been on the rise throughout the last 20 years [Galmiche
et al., 2019, Morris and Katzman, 2003]. Individuals who suffer from eating
disorders face complication ranging from decreased quality of life to physical
and psychiatric symptoms, and significantly higher mortality rates [Galmiche
et al., 2019]. Researchers have long hypothesised that the media play a strong
role in people’s body dissatisfaction and may thus be responsible for the increase
in eating disorders, especially among young people [Morris and Katzman, 2003].
Thus, there is likely a very direct link between beauty standards as portrayed
by the media and public health.

Figure 6.1: Left: The prevalence of eating disorders (ED) over time from
2000 to 2018 on a global level. Point prevalence refers to the
occurrence at any given point in time. Figure from Galmiche et al.
[2019]. Right: Age-inclusive advertisement by Céline featuring US
American author Joan Didion.
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(2) A formalisation of these ethical goals is some version of demographic
parity which we have introduced in Def. 5.1. The government might propose a
law to require fashion companies to run campaigns which are representative of
the underlying demographics (say, on a yearly aggregate level). Our imaginary
fashion company from Chapter 5 would have to modify their automatic
screening/hiring algorithm such that it achieves this target. In the example in
Chapter 3, adjusting thresholds was the most successful strategy for achieving
demographic parity. Recall that it required to actively use the protected
attribute at test-time in order to be able to determine the correct threshold.
This is unacceptable under the fairness through unawareness criteria from
Def. 6.2. Given the context of our problem, however, it becomes clear that
fairness through unawareness is not the appropriate metric to consider here.
Our imaginary government tries to actively use the protected attribute to
counter existing problems.

(3) Downstream effects should be considered in the following sense:
Demographic parity as a static fairness metric does not quite seem to suffice to
express the ethical goals formulated in (1). Our declared moral goal was to
change prevailing beauty standards towards being more inclusive and diverse,
along with achieving the implied secondary goals with respect to health and
economic factors. An ideal formalisation would measure this ‘change in beauty
standard’. This is of course a non-trivial thing to measure, but one could
imagine potential proxies. For example, our fashion house from Ch. 5 could be
asked to report the diversity of their pool of applicants for the campaign. The
mental model would be that most people will apply only if they feel like they
have a real chance of being hired, i.e. if they feel their bodies conform with the
prevalent beauty standards. The proxy might be even more reliable if there is
a third party acting in the middle, i.e. a modelling agency pre-picking relevant
candidates. In either case, if the pool of applicants becomes more diverse over
time, this indicates that beauty standards might indeed have changed. Jacobs
and Wallach [2021] give an in-depth introduction on how me might apply
measurement theory from the social sciences to fair ML in order to make
‘unobservable theoretical constructs, such as socioeconomic status, teacher
effectiveness, and risk of recidivism’ measurable.

6.4 Summary

Picking the right fairness metric is non-trivial, and we have seen that the
traditional fair ML literature is not always helpful in this (Sec. 6.1). As a
remedy, Paper 3 introduces dynamical fairness modelling. By applying
dynamical fairness modelling to the case study from Ch. 5, we have illustrated
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how one could pick a useful fairness metric. To do so, we have 1) developed a
set of ethical goals, 2) defined a formalisation and 3) derived a strategy for
intervention under consideration of its downstream effects.

By re-phrasing the problem in this sense we were able to rule out some candidate
metrics: Fairness through unawareness will not produce a change at all (since
our model in Ch. 5 is using image features alone, i.e. it is not using demographic
attributes explicitly). Applying equality of opportunity will also not result in
societal change, since it only measures how well the model re-produces the status
quo (how well predictions match ground truth). Lastly, demographic parity
turned out to be the most promising candidate, but the dynamical modelling
perspective suggests a modification: we might measure the downstream effects
of our intervention by measuring whether and how our applicant pool changes
over time. If our intervention is successful, the applicant pool will look more
diverse (since more candidates consider themselves qualified). Lastly, if societal
standards indeed have changed sufficiently, the fairness intervention potentially
becomes obsolete all together. As we argue in Paper 3: ‘The goal of a good
fairness intervention is that it webwill become redundant over time.’



Chapter 7

Final Remarks

The fairness of ML algorithms has, rightfully, been under heavy scrutiny in
recent years with cases like COMPAS [Angwin et al., 2016] surfacing. Given
the mechanisms by which machine learning works, model bias can very often be
traced back to data bias (“Garbage in — garbage out.”1). Re-collecting better,
representative and unbiased datasets would be the ideal solution, or maybe not
automating decisions with high moral stakes in the first place. In this work,
however, we investigate whether synthetic data can be used to alleviate such
data biases and produce fairer models where other options are not available. In
particular, we study data augmentation and invariance learning.

Learning data augmentation has turned out to be non-trivial, and have seen
that naive likelihood maximisation approaches are insufficient (Ch. 2). We
have then re-phrased the problem into a Bayesian model selection problem
which we tackled using GP-based methods for approximating and maximising
the marginal likelihood. As an alternative approach to achieving model
invariance, we have studied pose-normalising models like the spatial
transformer network and our probabilistic extension in Ch. 4.

Data augmentation and model invariances have relevance much beyond the
fairness application and have been a pursuit of artificial intelligence research
since the early days of the field [Pitts and McCulloch, 1947, Minsky, 1961]. As

1See https://en.wikipedia.org/wiki/Garbage_in,_garbage_out.
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we have seen in Chapters 2 to 4, they represent useful inductive biases with
remarkable benefits such as improved predictive accuracy, robustness and
calibration. While we have not considered such applications in this work, they
also play a role for interpretability and when aiming to learn disentangled
representations.

Returning to the fairness application, we have conducted a case study on the
CelebA [Liu et al., 2015] dataset in Chapter 5. We compare upsampling using
data augmentation with other de-biasing strategies such as adjusting
group-based thresholds. Thresholding-based methods were in general more
easily applicable, but have the big disadvantage that we need to know which
threshold to apply at test-time. In non-technical terms, we need to actively
use the group membership (e.g. race, age, or gender) in our decision-making
process. This is illegal according to anti-discrimination law in many contexts.

Which de-biasing algorithm to apply depends, in the end, on one’s measure of
fairness. A large body of fairness metric exists, and picking the right one can
be tricky. Chapter 6 aims to simplify such choices by grounding the formalised
fairness debate in ethical considerations. In the end, questions around fairness
and justice are not mathematical in nature, and we believe that the technical
community can benefit from looking to fields such as ethics or political
philosophy for guidance.



Bibliography

Report: Racial diversity ticks up slightly, size, age and gender representation all drop
for fashion month spring 2021, Oct 2020. URL https://www.thefashionspot.com
/runway-news/858789-diversity-report-fashion-month-spring-2021/.

The fashion world promised more diversity. here’s what we found., Mar 2021. URL
https://www.nytimes.com/2021/03/04/style/Black-representation-fashion.
html.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. ProPublica, May, 23
(2016):139–159, 2016. URL https://www.propublica.org/article/machine-bia
s-risk-assessments-in-criminal-sentencing.

Arch. How to calculate and increase your tinder elo score, July 2020. URL https:
//social.techjunkie.com/calculate-increase-tinder-elo-score/.

S. Barocas, M. Hardt, and A. Narayanan. Fairness in machine learning. NIPS tutorial,
1:2, 2017.

G. Benton, M. Finzi, P. Izmailov, and A. G. Wilson. Learning invariances in neural
networks. In Advances in Neural Information Processing Systems, 2020.

R. Binns. On the apparent conflict between individual and group fairness. In
Proceedings of the ACM Conference on Fairness, Accountability, and Transparency,
page 514–524. ACM, Jan. 2020. doi: 10.1145/3351095.3372864. URL https:
//doi.org/10.1145/3351095.3372864.

C. M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural
computation, 7(1):108–116, 1995.

C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.



68 BIBLIOGRAPHY

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424, 2015.

T. J. Brinker, A. Hekler, A. H. Enk, C. Berking, S. Haferkamp, A. Hauschild,
M. Weichenthal, J. Klode, D. Schadendorf, T. Holland-Letz, et al. Deep neural
networks are superior to dermatologists in melanoma image classification. European
Journal of Cancer, 119:11–17, 2019.

J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities
in commercial gender classification. In Proceedings of the ACM Conference on
Fairness, Accountability and Transparency, pages 77–91. PMLR, 2018.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. 2016.

A. Carman. Tinder says it no longer uses a ’desirability’ score to rank people, Mar
2019. URL https://www.theverge.com/2019/3/15/18267772/tinder-elo-score
-desirability-algorithm-how-works.

O. Chapelle, J. Weston, L. Bottou, and V. Vapnik. Vicinal risk minimization. Advances
in neural information processing systems, 13, 2000.

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning
augmentation strategies from data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2020.

J. Dastin. Amazon scraps secret ai recruiting tool that showed bias against women.
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/
amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-wom
en-idUSKCN1MK08G, 2018. Accessed: 21.03.2022.

E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig.
Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34, 2021.

N. S. Detlefsen. libcpab. https://github.com/SkafteNicki/libcpab, 2018.

N. S. Detlefsen, O. Freifeld, and S. Hauberg. Deep diffeomorphic transformer networks.
In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4403–4412, June 2018.

N. S. Detlefsen, M. Jørgensen, and S. Hauberg. Reliable training and estimation of
variance networks. In 33rd Conference on Neural Information Processing Systems,
2019.

K. Dion, E. Berscheid, and E. Walster. What is beautiful is good. Journal of personality
and social psychology, 24(3):285, 1972.



BIBLIOGRAPHY 69

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through
awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference on - ITCS ’12, page 214–226. ACM Press, 2012. doi: 10.1145/2090236.
2090255. URL https://doi.org/10.1145/2090236.2090255.

L. Finnveden, Y. Jansson, and T. Lindeberg. Understanding when spatial transformer
networks do not support invariance, and what to do about it. In 2020 25th
International Conference on Pattern Recognition (ICPR), pages 3427–3434. IEEE,
2021.

P. Gajane and M. Pechenizkiy. On formalizing fairness in prediction with machine
learning. arXiv preprint arXiv:1710.03184, 2017.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages
1050–1059. PMLR, 2016.

M. Galmiche, P. Déchelotte, G. Lambert, and M. P. Tavolacci. Prevalence of eating
disorders over the 2000–2018 period: a systematic literature review. The American
journal of clinical nutrition, 109(5):1402–1413, 2019.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1321–1330. JMLR. org, 2017.

F. K. Gustafsson, M. Danelljan, and T. B. Schon. Evaluating scalable bayesian deep
learning methods for robust computer vision. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 318–319,
2020.

M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning.
Advances in Neural Information Processing Systems, 29:3315–3323, 2016.

S. Hauberg, O. Freifeld, A. B. L. Larsen, J. W. Fisher, and L. K. Hansen. Dreaming
more data: Class-dependent distributions over diffeomorphisms for learned data
augmentation. In Artificial Intelligence and Statistics, pages 342–350, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

J. Hensman, A. G. d. G. Matthews, and Z. Ghahramani. Scalable variational Gaussian
process classification. In Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS), 2015.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. 2016.



70 BIBLIOGRAPHY

A. Z. Jacobs and H. Wallach. Measurement and fairness. In Proceedings of the ACM
Conference on Fairness, Accountability, and Transparency, page 375–385. ACM,
Mar. 2021. doi: 10.1145/3442188.3445901. URL https://doi.org/10.1145/3442
188.3445901.

M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer
networks. In Advances in Neural Information Processing Systems, pages 2017–2025,
2015.

L. H. Kamulegeya, M. Okello, J. M. Bwanika, D. Musinguzi, W. Lubega, D. Rusoke,
F. Nassiwa, and A. Börve. Using artificial intelligence on dermatology conditions
in uganda: A case for diversity in training data sets for machine learning. BioRxiv,
page 826057, 2019.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/13
12.6114.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, editors, NIPS, pages 1097–1105. Curran Associates, Inc., 2012.

F. Küppers, J. Kronenberger, A. Shantia, and A. Haselhoff. Multivariate confidence
calibration for object detection. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2020.

F. Küppers, J. Kronenberger, J. Schneider, and A. Haselhoff. Bayesian confidence
calibration for epistemic uncertainty modelling. In Proceedings of the IEEE
Intelligent Vehicles Symposium (IV), July 2021.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, pages 6402–6413, 2017.

Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker,
I. Guyon, U. Muller, E. Sackinger, et al. Comparison of learning algorithms
for handwritten digit recognition. In International conference on artificial neural
networks, volume 60, pages 53–60. Perth, Australia, 1995.

L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, and M. Hardt. Delayed impact of
fair machine learning. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, page 3150–3158. PMLR, International Joint
Conferences on Artificial Intelligence Organization, Aug. 2019. doi: 10.24963/ijcai
.2019/862. URL https://doi.org/10.24963/ijcai.2019/862.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December
2015.



BIBLIOGRAPHY 71

G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines using
selective sampling. Large scale kernel machines, pages 301–320, 2007.

J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In Proceedings of the 23rd Conference on International
Conference on Artificial Intelligence and Statistics (AISTATS), 2020.

S. Lotfi, P. Izmailov, G. Benton, M. Goldblum, and A. G. Wilson. Bayesian
model selection, the marginal likelihood, and generalization. arXiv preprint
arXiv:2202.11678, 2022.

L. Maaten, M. Chen, S. Tyree, and K. Weinberger. Learning with marginalized
corrupted features. In International Conference on Machine Learning, pages 410–
418. PMLR, 2013.

D. J. MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.

M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30,
1961.

A. M. Morris and D. K. Katzman. The impact of the media on eating disorders in
children and adolescents. Paediatrics & child health, 8(5):287–289, 2003.

S. U. Noble. Algorithms of Oppression. NYU Press, Feb. 2018. ISBN 9781479833641,
1479833649, 9781479849949. doi: 10.2307/j.ctt1pwt9w5. URL https://doi.org/
10.2307/j.ctt1pwt9w5.

N. Norori, Q. Hu, F. M. Aellen, F. D. Faraci, and A. Tzovara. Addressing bias in big
data and ai for health care: A call for open science. Patterns, 2(10):100347, 2021.

S. W. Ober, C. E. Rasmussen, and M. van der Wilk. The promises and pitfalls of deep
kernel learning. In Proceedings of the 37th Conference on Uncertainty in Artifical
Intelligence (UAI), 2021.

C. Pfeifer. Physical attractiveness, employment and earnings. Applied Economics
Letters, 19(6):505–510, 2012.

W. Pitts and W. S. McCulloch. How we know universals the perception of auditory
and visual forms. The Bulletin of mathematical biophysics, 9(3):127–147, 1947.

C. E. Rasmussen and Z. Ghahramani. Occam’s razor. Advances in Neural Information
Processing Systems, 2001.

J. Rawls. A Theory of Justice. Harvard University Press, July 2009. ISBN
9780674042582, 9780674000773. doi: 10.2307/j.ctvkjb25m. URL https:
//doi.org/10.2307/j.ctvkjb25m.

P. Schwöbel and P. Remmers. The long arc of fairness: Formalisations and ethical
discourse. arXiv preprint arXiv:2203.06038, 2022.

P. Schwöbel, F. Warburg, M. Jørgensen, K. H. Madsen, and S. Hauberg.
Probabilistic spatial transformers for Bayesian data augmentation. arXiv preprint
arXiv:2004.03637, 2020.



72 BIBLIOGRAPHY

P. Schwöbel, M. Jørgensen, S. W. Ober, and M. van der Wilk. Last layer marginal
likelihood for invariance learning. arXiv preprint arXiv:2106.07512, 2021.

P. Schwöbel, M. Jørgensen, S. W. Ober, and M. Van Der Wilk. Last layer
marginal likelihood for invariance learning. In International Conference on Artificial
Intelligence and Statistics, pages 3542–3555. PMLR, 2022.

C. Shahani-Denning. Physical attractiveness bias in hiring: What is beautiful is good.
Hofstra Horizon, pages 14–17, 2003.

P. Simard, B. Victorri, Y. LeCun, and J. S. Denker. Tangent prop – a formalism for
specifying selected invariances in an adaptive network. In NIPS, pages 895–903,
1992.

P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. In 2013 12th International Conference
on Document Analysis and Recognition, volume 2, pages 958–958. IEEE Computer
Society, 2003.

A. Stirn and D. A. Knowles. Variational variance: Simple and reliable predictive
variance parameterization. arXiv e-prints, pages arXiv–2006, 2020.

H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi. Student-t variational
autoencoder for robust density estimation. In IJCAI, pages 2696–2702, 2018.

M. Titsias. Variational learning of inducing variables in sparse gaussian processes.
In Proceedings of the 12th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2009.

R. E. Turner and M. Sahani. Two problems with variational expectation maximisation
for time-series models. In D. Barber, T. Cemgil, and S. Chiappa, editors, Bayesian
Time Series Models, chapter 5, pages 109–130. Cambridge University Press, 2011.

M. van der Wilk, M. Bauer, S. T. John, and J. Hensman. Learning invariances using
the marginal likelihood. In Advances in Neural Information Processing Systems,
2018.

B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling. Rotation
equivariant CNNs for digital pathology. In International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 2018.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for machine learning.
MIT Press Cambridge, MA, 2006.

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning.
In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2016a.

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Stochastic variational deep
kernel learning. Advances in Neural Information Processing Systems, 2016b.



BIBLIOGRAPHY 73

J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth.
Efficiently sampling functions from Gaussian process posteriors. In Proceedings of
the 37th International Conference on Machine Learning (ICML), 2020.

M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints:
A flexible approach for fair classification. The Journal of Machine Learning
Research, 20(1):2737–2778, 2019.



74 BIBLIOGRAPHY



Paper A

Last Layer Marginal
Likelihood for Invariance

Learning



Last Layer Marginal Likelihood for Invariance Learning

Pola Schwöbel Martin Jørgensen
Technical University of Denmark University of Oxford

Sebastian W. Ober Mark van der Wilk
University of Cambridge Imperial College London

Abstract

Data augmentation is often used to incor-
porate inductive biases into models. Tradi-
tionally, these are hand-crafted and tuned
with cross validation. The Bayesian paradigm
for model selection provides a path towards
end-to-end learning of invariances using only
the training data, by optimising the marginal
likelihood. Computing the marginal likeli-
hood is hard for neural networks, but suc-
cess with tractable approaches that compute
the marginal likelihood for the last layer only
raises the question of whether this convenient
approach might be employed for learning in-
variances. We show partial success on stan-
dard benchmarks, in the low-data regime and
on a medical imaging dataset by designing a
custom optimisation routine. Introducing a
new lower bound to the marginal likelihood al-
lows us to perform inference for a larger class
of likelihood functions than before. On the
other hand, we demonstrate failure modes on
the CIFAR10 dataset, where the last layer
approximation is not sufficient due to the
increased complexity of our neural network.
Our results indicate that once more sophis-
ticated approximations become available the
marginal likelihood is a promising approach
for invariance learning in neural networks.

1 INTRODUCTION

Human learners generalise from example to category
with seemingly little effort. Machine learning models

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

(a) M1:
Train MSE: 0.047
Test MSE 0.572

Marg. Likelihood −13.16

(b) M2:
Train MSE 0.100
Test MSE 0.235

Marg. Likelihood −12.2

Figure 1: A non-invariant model M1 and its sign in-
variant (i.e. symmetric around x = 0) counterpart M2.
The non-invariant M1 has a better train MSE, but the
invariant M2 has a better test MSE. The log marginal
likelihood correctly identifies M2 as better.

aim to make accurate predictions on unseen data points
based on finitely many examples. This generalisation
is enabled by inductive biases. In Steps toward Artifi-
cial Intelligence Marvin Minsky (1961) highlights the
importance of invariance as an inductive bias: ‘One of
the prime requirements of a good property is that it be
invariant under the commonly encountered equivalence
transformations. Thus for visual Pattern-Recognition
we would usually want the object identification to be
independent of uniform changes in size and position.’
In modern machine learning pipelines invariances are
achieved through data augmentation. If we, for exam-
ple, would like our neural network to be invariant with
respect to rotation, we simply present it with rotated
versions of the input data. Data augmentation schemes
are almost always hand-crafted, based on assumptions
and expert knowledge about the data, or found by
cross-validation. We aim to learn invariances with
backpropagation, to reduce the human intervention in
the design of ML algorithms.

Learning invariances through gradients requires a suit-
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able loss function. Standard losses like negative log-
likelihood or mean squared error solely measure how
tightly we fit the training data. Good inductive bi-
ases (e.g. convolutions) constrain the expressiveness
of a model, and therefore do not improve the fit on
the training data. Thus, they can not be learned by
minimising the training loss alone.

In Bayesian inference, this problem is known as model
selection, and is commonly solved by using a differ-
ent training objective: the marginal likelihood. For
a model of data y, parametrised by weights w and
hyperparameters θ it is given by

p(y|θ) =
∫
p(y|w)p(w|θ)dw . (1)

As opposed to standard training losses, it correlates
with generalisation, and thus provides a general way to
select an inductive bias, independent of parameterisa-
tion (Williams and Rasmussen, 2006; Rasmussen and
Ghahramani, 2001; MacKay, 2003). Van der Wilk et al.
(2018) demonstrated that invariances can be learned
by straightforward backpropagation using the marginal
likelihood in Gaussian process (GP) models, where the
marginal likelihood can be accurately approximated.
Fig. 1 shows an invariant and a non-invariant GP; the
invariant model has higher marginal likelihood as well
as lower test mean squared error. Thus, the marginal
likelihood correctly identifies invariance as a useful
inductive bias.

Current GP models often lack predictive performance
compared to their highly expressive neural network
counterparts, hence applying this elegant principle to
neural networks is attractive. The challenge is, how-
ever, that finding accurate and differentiable marginal
likelihood approximations for neural networks is still an
open problem. In this work we investigate a convenient
short-cut: computing Bayesian quantities only in the
last layer. This avoids difficulties of the marginal likeli-
hood in the full network, and has already been shown
helpful (Wilson et al., 2016a,b). Given the possible im-
pact of invariance learning with the convenience of the
last-layer approximation, it is important to investigate
its potential. Our results provide a nuanced picture of
this approach: there are situations where the last-layer
approximation is sufficient, but others where it is not.

To provide these results, we

1. construct a deep neural network with a Bayesian
last layer that incorporates invariance, based on
invariant GPs (van der Wilk et al., 2018) and deep
kernel learning (Wilson et al., 2016b),

2. overcome problems with the training implied by
a straightforward combination of Van der Wilk

et al. (2018) and Wilson et al. (2016b) via a new
optimisation scheme, and a new variational bound
that allows for non-Gaussian likelihoods,

3. investigate failure modes on more complex model
architectures to show limitations of using the last-
layer approximation for invariance learning.

2 RELATED WORK

Bayesian Deep Learning aims to provide principled
uncertainty quantification for deep models. Exact com-
putation for Bayesian deep models is intractable, so
different approximations have been suggested. Varia-
tional strategies (e.g. Blundell et al., 2015) maximise
the evidence lower bound (ELBO) to the marginal likeli-
hood, thereby minimising the gap between approximate
and true posteriors. To remain computationally feasi-
ble, approximations for Bayesian neural networks are
often crude, and while weight posteriors are useful in
practice, the marginal likelihood estimates are typically
too imprecise for hyperparameter estimation (Blundell
et al., 2015; Turner and Sahani, 2011). Hyperparame-
ter estimation in deep GPs has achieved more success
(Damianou and Lawrence, 2013; Dutordoir et al., 2020),
but training deep GPs can be challenging. Some very
recent works have shown initial promise in using the
marginal likelihood for hyperparameter selection in
Bayesian neural networks (Ober and Aitchison, 2020;
Immer et al., 2021; Dutordoir et al., 2021). Instead of a
Bayesian treatment of all weights using rough approx-
imations, we follow a deep kernel learning approach,
i.e. computing the marginal likelihood for the last layer
only.

Deep Kernel Learning (DKL; Hinton and Salakhut-
dinov, 2007; Calandra et al., 2016; Bradshaw et al.,
2017) replaces the last layer of a neural network with
a GP, where marginal likelihood estimation is accurate
(Burt et al., 2020). Wilson et al. (2016a,b) had signifi-
cant success achieving improved uncertainty estimates.
Their results indicate that such a neural network-GP
hybrid is promising for invariance learning. Ober et al.
(2021) identify difficulties with overfitting in DKL mod-
els, but also show mechanisms by which such overfit-
ting is mitigated. We find similar issues and adapt the
standard DKL training procedure to avoid them when
learning invariance hyperparameters. We will discuss
these issues in more depth as we describe our training
procedure in Sec. 5.

Data Augmentation is used to incorporate invari-
ances into deep learning models. Where good invari-
ance assumptions are available a priori (e.g. for natural
images) this improves generalisation performance and is
ubiquitous in deep learning pipelines. Instead of relying
on assumptions and hand-crafting, recent approaches
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learn data augmentation schemes. Cubuk et al. (2019,
2020) and Ho et al. (2019) train on the validation data,
and use reinforcement learning and evolutionary search
respectively to find parameters. Zhou et al. (2021);
Lorraine et al. (2020) compute losses on validation
sets for learning invariance parameters, and estimate
gradients w.r.t. them in outer loops. Similar to our
work, Benton et al. (2020) learn data augmentations
on training data end-to-end, by adding a regularisation
term to the negative log-likelihood loss that encourages
invariance. They argue that tuning this regularisation
term via cross-validation can be avoided, since the loss
function is relatively flat. Yet, the method relies on
explicit regularisation, and thus on an understanding
of the parameters in question. Our method is based on
a Bayesian view of data augmentation as incorporating
an invariance on the functions in the prior distribution
(van der Wilk et al., 2018; Nabarro et al., 2021). This al-
lows the marginal likelihood to be used as an objective
for learning invariances. This has many advantages,
such as allowing backpropagation from training data,
automatic and principled regularisation, and parame-
terisation independence (see Sec. 5). This makes the
marginal likelihood objective a promising avenue for
future work, which may want to incorporate invariances
whose parameterisations are non-interpretable.

3 BACKGROUND

3.1 Variational Gaussian processes

A Gaussian process (GP) (Williams and Rasmussen,
2006) is a distribution on functions with the prop-
erty that any vector of function values f =
(f(x1), . . . , f(xN )) is Gaussian distributed. We assume
zero mean functions and real valued vector inputs.

Inference in GP models with general likelihoods and
big datasets can be done with variational approxima-
tions (Titsias, 2009; Hensman et al., 2015). The ap-
proximate posterior is constructed by conditioning the
prior on M inducing variables u ∈ RM , and specifying
their marginal distribution with q(u) = N (m,S) (for
overviews see Bui et al. 2017; van der Wilk et al. 2020).
This results in a variational predictive distribution:

q(f(x∗)) = N
(
α(x∗)>m, (2)

k(x∗, x∗)−α(x∗)> (Kzz − S)α(x∗)
)
,

where z∈RM×d are inducing inputs,Kzz is the matrix
with entries k(zi, zj), α(x∗) =K−1zz k(z, x

∗), and k is
the chosen covariance function.

Variational inference (VI) selects an approximation by
minimising the KL divergence of the approximation
to the true posterior with respect to the variational
parameters z,m,S. This is done by maximising a

lower bound to the marginal likelihood (the “evidence”),
which has the KL divergence as its gap (Matthews et al.,
2016). The resulting evidence lower bound (ELBO) is

log p(y) ≥ L =
N∑

n=1

Eq(f(xn)) [log p(yn|f(xn))]

−KL[q(u)||p(u)]. (3)

In exact GPs, (kernel) hyperparameters are found
by maximising the log marginal likelihood log p(y)
(Williams and Rasmussen, 2006). For our models of
interest, the exact marginal likelihood is intractable.
We use the ELBO as a surrogate. This results in an
approximate inference procedure that maximises the
ELBO with respect to both the variational parameters
and the hyperparameters. Optimising the variational
parameters improves the quality of the posterior ap-
proximation, and tightens the bound to the marginal
likelihood. Optimising the hyperparameters hopefully
improves the model, but the slack in the ELBO can
lead to worse hyperparameter selection (Turner and
Sahani, 2011).

3.2 Invariant Gaussian Processes

A function f : X →Y is invariant to a transformation
t : X →X if f(x)=f(t(x)), ∀x ∈ X , and ∀t ∈ T . I.e.,
an invariant function will have the same output for a
certain range of transformed inputs known as the orbit.
A straightforward way to construct invariant functions
is to simply average a function over the orbit (Kondor,
2008; Ginsbourger et al., 2012, 2013). We consider a
similar construction where we average a function over
a data augmentation distribution, which results in an
approximately invariant function where f(x)≈f(t(x))
(van der Wilk et al., 2018; Dao et al., 2019). Augmented
data samples xa are obtained by applying random
transformations t to an input, xa = t(x), leading to
the distribution p(xa|x). That is, an approximately
invariant function f can be constructed from any non-
invariant g as

f(x)=
∑

t∈T
g(t(x)), or f(x)=

∫
g(xa)p(xa|x)dxa. (4)

Van der Wilk et al. (2018) exploit this construction to
build a GP with continuously adjustable invariances.
They place a GP prior on g ∼ GP (0, kg(·, ·)), and since
Gaussians are closed under summations, f is a GP too.
By construction f is invariant to the augmentation
distribution p(xa|·) and its kernel is given by

kf (x, x
′)=

∫∫
kg(xa, x

′
a)p(xa|x)p(x′a|x′)dxadx′a. (5)

Non-trivial p(xa|x) densities present a problem for
standard VI, as the kernel evaluations in eq. 2 become
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intractable. This is solved by making the inducing vari-
ables observations of g rather than the usual f . This
ensures that Kzz is tractable, as it only requires evalu-
ations of kg, which makes the KL divergence tractable.
When the likelihood is Gaussian, it additionally
provides a way to tackle the expected log likelihood:

Eq(f(x)) logN (y; f(x), σ2) = const− (yn−µ)2+τ
2σ2

(6)

where µ, τ are the mean and variance in (2). Only unbi-
ased estimates of µ, µ2 and τ are needed for an unbiased
estimate of the ELBO. These can be obtained from
simple Monte Carlo estimates of kf (5), and k(z, x).1

3.3 Parameterising learnable invariances

The invariance of the GP in (5) is learned by adjust-
ing the augmentation distribution. We parameterise
the distribution and treat its parameters as kernel
hyperparameters. We learn these by maximising the
ELBO. As done in similar work (Benton et al., 2020;
van der Wilk et al., 2018), we consider affine transfor-
mations. Our affine transformations are controlled by
φ = (α, sx, sy, px, py, tx, ty), which describes rotation,
scale, shearing and horizontal and vertical translation.
We parameterise a family of augmentation distributions
by specifying uniform ranges with φmin, φmax ∈ R7

that are to be applied to the input image. Different
ranges that are learned on φmin, φmax correspond to
different invariances in f(·). For example, learning
φmin/max = (±π, 0, 0, 0, 0, 0, 0) corresponds to full rota-
tional invariance (sampling any angle between −π and
π) but no scaling, shearing or translations.

We sample from the resulting p(xa|x, φmax, φmin) (we
will write p(xa|x, φ) for brevity) by 1) sampling the
parameters for a transformation from a uniform distri-
bution, 2) generating a transformed coordinate grid,
and 3) interpolating2 the image x:

xa = tν(x) , ν ∼ U(−φmin, φmax) . (7)

Since transforming tν(x) is differentiable, this proce-
dure is reparameterisable w.r.t. φmax, φmin via ν =
φmin + (φmax − φmin)ε, ε ∼ U(0, 1). Straightforward
automatic differentiation of the unbiased ELBO esti-
mator described in the previous section provides the
required gradients.

In summary, we learn φmin/max by maximising the
ELBO, so the transformations and their magnitudes
are learned based on the specific training set. Differ-
ent invariances will be learned for different training

1We obtain k(z, x)=
∫
kg(z, xa)p(xa|x)dxa from the in-

terdomain trick, which can be estimated with Monte Carlo.
See Van der Wilk et al. (2018) for details.

2Image transformation code from github.com/
kevinzakka/spatial-transformer-network

data. The next sections show how these principles have
potential even in neural network models, beyond the
single layer GPs of Van der Wilk et al. (2018).

Algorithm 1: InvDKGP forward pass

1. Draw S samples from the augmentation
distribution xia ∼ p(xa|x, φ), i = 1...S.

2. Pass the xia through the neural net hw.

3. Map extracted features using the non-inv. g.

4. Aggregate samples to obtain inv. f(x) by

(i) using the unbiased estimators from Sec. 3.2 in
the Gaussian case, or,

(ii) averaging predictions g(hw(xia)), i = 1, ..., S
directly in the Softmax case, see (16).

4 MODEL

As discussed in Sec. 1, we aim to learn neural network
(NN) invariances through backpropagation, in the same
way as is possible for single-layer GPs. Since finding
high-quality approximations to the marginal likelihood
of a NN is an ongoing research problem, we investigate
whether a simpler deep kernel approach is sufficient.
This uses a GP as the last layer of a NN, and takes
advantage of accurate marginal likelihood approxima-
tions for the GP last layer. Success with such a simple
method would significantly help automatic adaptation
of data augmentation in neural network models. We hy-
pothesise that the last layer approximation is sufficient,
since data augmentation influences predictions only in
the last layer (in the sense that one can construct an
invariant function f from an arbitrary non-invariant g
by summing in the last layer, eq. 4). See Fig. 2 for a
graphical representation and Algorithm 1 for forward
pass computations.

Deep Kernels take advantage of covariance functions
being closed under transformations of their input. That
is, if kg(·, ·) is a covariance function on RD ×RD, then
kg(hw(·), hw(·)) is a covariance function on Rd × Rd
for mappings hw : Rd → RD. In our case, hw is a NN
parametrised by weights w, and hence w are viewed as
hyperparameters of the kernel. The GP prior becomes

p(g) = GP (0, kg(hw(·), hw(·))) . (8)

The idea is to learn w along with the kernel hyperpa-
rameters. Importantly, this model remains a GP and
so the inference described in Sec. 3 applies.

Our invariant model combines the flexibility of a
NN hw(·) with a GP g in the last layer, while ensuring
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}

+

Figure 2: A visualisation of the model pipeline. For any input x, we can sample from the orbit distribution
p(xa|x, φ); each of these sample gets passed through a neural network parametrised by w. The last layer is a of
the net is a GP, on which we can sum across sample outputs to create an invariant function.

overall invariance using the construction from (4):

f(x) =

∫
g(hw(xa))p(xa|x, φ)dxa. (9)

Thus, combining (5) and (9), f is an invariant GP
with a deep kernel given as

kf (x, x
′) =
∫
kg
(
hw(xa), hw(x

′
a)
)

p(xa|x, φ)p(x′a|x′, φ)dxadx′a. (10)

The model is trained to fit observations y through
the likelihood function p (y|f(x)), where we assume
observations yi are independent conditioned on the
marginals f(xi).

Initially, we investigate training a model by simply com-
bining the invariant GP training objective for Gaussian
likelihoods (van der Wilk et al., 2018) with standard
deep kernel learning (Wilson et al., 2016a,b). How-
ever, as we will discuss, several issues prevent these
training procedures from working. In following sec-
tions we investigate why, provide solutions, and in-
troduce a new ELBO that is suitable for more gen-
eral likelihoods which improves training behaviour.
We refer to our model as the Invariant Deep Kernel
GP (InvDKGP). An implementation can be found at
https://github.com/polaschwoebel/InvDKGP.

5 DESIGNING A TRAINING
SCHEME

The promise of deep kernel learning as presented by
Wilson et al. (2016a,b) lies in training the NN and GP
hyperparameters jointly, using the marginal likelihood
as for standard GPs.3 However, prior works have noted

3Given that this quantity is difficult to approximate, we
verify experimentally that we indeed need it and cannot

Train images DKL embeddings CNN embeddings

Figure 3: Training images with different orientations
and their embeddings. Embeddings produced by joint
Deep Kernel Learning (DKL, middle column) are sim-
ilar for all inputs from one class. Little improvement
can be gained on the training data by being rotationally
invariant. NN embeddings on the right differ depending
on input orientation – signal to learn p(xa|x, φ) from.

shortcomings of this approach (Ober et al., 2021; Brad-
shaw et al., 2017; van Amersfoort et al., 2021): the
DKL marginal likelihood correctly penalises complexity
for the last layer only, while the NN hyperparameters
can still overfit. In our setting, i.e. when trying to
combine deep kernel learning with invariance learning,
joint training produces overfit weights which results in
simplistic features with little intra-class variation4. In
particular, all training points from the same class are
mapped to very similar activations, independent of ori-
entation. This causes a loss of signal for the invariance
parameters (see Fig. 3).

use a simple NN with max-likelihood (see Appendix).
4This behavior makes sense: The DKL marginal likeli-

hood only penalises complexity in the last layer, (i.e. the
GP). The simplistic features from Fig. 3 can be classified
by a simple function in the last layer, thus the complexity
penalty is small, and the solution has high marg. likelihood.
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Figure 4: Learned rot. angles parametrised by α and
1
α . The α-parametrisation, in blue, learns rotational
invariance w.r.t. ±2.8 radians. The 1

α -parametrisation
(red) learns invariance w.r.t. ± 1

0.37 = ±2.7 radians.

Coordinate ascent training fixes this problem.
We pre-train the NN using negative log-likelihood loss.
Then, we replace the fully connected last layer with
an invariant GP. The marginal likelihood is a good
objective given fixed weights (we obtain a GP on trans-
formed inputs), so we fix the NN weights. However,
some adaptation of the NN to the transformed inputs
is beneficial. We thus continue training by alternat-
ing between updating the NN, and the GP variational
parameters and orbit parameters, hereby successfully
learning invariances. (See Fig. 7 and 8: flat parts of the
training curves indicate NN training where all kernel
hyperparameters, including invariances, remain fixed.
When to toggle between the GP and NN training phase
is determined using validation data.)

Choosing an invariance parameterisation is
simple with our method. Other invariance learning ap-
proaches, e.g. Benton et al. (2020) and Schwöbel et al.
(2020) rely on explicitly regularising augmentation pa-
rameters to be large, and thus require interpretability
of their parameters. The marginal likelihood objective
is independent of parameterisation. To illustrate this
we compare parameterising the range of angles by the
angle in radians α and by its reciprocal ξ = 1

α . In
the rotMNIST example (see Fig 4) large invariances
are needed. This corresponds to large α or small ξ –
our method obtains this in both parameterisations. In

Training iterations
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Figure 5: Runs with fixed (red) and non-fixed (blue)
kernel and likelihood variance on rotMNIST. The aug-
mentation distribution collapses for non-fixed variances.
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Figure 6: Test accuracies against the training set size on
MNIST. We see the invariant model (in red) generalises
significantly better, especially for small training sets.

contrast, explicitly regularising invariance parameters
to be large would fail for ξ. We wish to stress that
generating the orbit distributions is not restricted to
affine image transformation and parameterisation inde-
pendence will be more important as more complicated,
non-interpretable invariances are considered.

The Gaussian likelihood is chosen by Van der
Wilk et al. (2018) due to its closed-form ELBO. For
classification problems, this is a model misspecification.
The penalty for not fitting the correct label value be-
comes large and we can therefore overfit the training
data. To alleviate this problem, we fix likelihood and
kernel variance (see Fig. 5). The fixed values were
determined by trying out a handful candidates – this
was sufficient to make invariance learning work. To
remove this manual tuning, we will derive an ELBO
that works with likelihoods like Softmax in Sec 6.

5.1 MNIST subsets – the low data regime

Having developed a successful training scheme we eval-
uate it on MNIST subsets. The generalisation problem
is particularly difficult when training data is scarce.
Inductive biases are especially important and usually
parameter-rich neural networks rely on heavy data aug-
mentation when applied to smaller datasets. We train
on different subsets of MNIST (LeCun et al.). InvD-
KGPs outperform both NNs and non-invariant deep
kernel GPs. The margin is larger the smaller the train-
ing set — with only 1250 training examples we can
nearly match the performance of a NN trained on full
MNIST (Fig. 6). We conclude it is possible to learn
useful invariances even from small data (see Fig. 7).
This data efficiency is desirable since models trained
on small datasets benefit crucially from augmentation.
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Figure 7: Top: Learned invariance parameters (rotation
α in radians and x-translation tx) for a small, medium
and large training set. We learn larger α for the smaller
subsets. Here, data augmentation is more beneficial.
Bottom: Two training images x (red frames) and sam-
ples from p(xa|x, φ) (following columns) learned by the
InvDKGP on MNIST using only 312 images.

6 CORRECTING MODEL
MISSPECIFICATION

The key observation for inference under the Gaussian
likelihood was the unbiasedness of the estimators. In
this section, we introduce a controlled bias to allow
for easy inference in a wide class of likelihoods. In
the limit of infinite sampling, the bias disappears and
the invariance does not add additional approximation
error.

Recall that f(x) constructed in (4) is intractable but
can be estimated by Monte Carlo sampling

f̂(x) :=
1

So

So∑

i=1

g(xia), (11)

where xia ∼ p(xa|x, φ). Notice,

f(x) = E∏So
i=1 p(x

i
a|x,φ)

[
f̂(x)

]
=: Ẽ

[
f̂(x)

]
, (12)

where
∏So

i=1 p(x
i
a|x, φ) is the product density over So

orbit densities. We remark that f is deterministic in x
but stochastic in g, which is a GP. Thus, we can write

Eq(f(x))[log p(y|f(x))] = Eq(g)[log p(y|f(x))] (13)

= Eq(g)
[
log p

(
y
∣∣Ẽ[f̂(x)]

)]
(14)

≥ Eq(g)
[
Ẽ
[
log p

(
y
∣∣f̂(x)

)]]
. (15)

The inequality is due to Jensen’s inequality if the likeli-
hood is log-concave in f .5 This holds for many common
likelihoods, e.g. Gaussian and Softmax.

5Nabarro et al. (2021) use this same construction in
the weight-space of neural networks to find valid posteriors
in the presence of data augmentation, although without
invariance learning.
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Figure 8: Left : Learned invariance parameters (ro-
tation α in radians and x-translation tx) for rotM-
NIST. Both the Gaussian and the Softmax model
learn to be almost fully rotationally invariant (i.e.
αmin/max ≈ ±π), and not to be invariant w.r.t. trans-
lation (i.e. txmin/max ≈ 0). Note the different scaling of
the y-axis to Fig. 7. Right : Two training images (red
frames) and samples from orbits.

Equality holds above when Var(f̂(x)) = 0, i.e. the
bound becomes tighter as So increases (see also Burda
et al., 2016). Hence aggressive sampling recovers accu-
rate VI. The right-hand side of (15) can now, without
additional bias, be estimated by

1

Sg

Sg∑

k=1

1

SA

SA∑

j=1

log p

(
y
∣∣∣ 1
So

So∑

i=1

gk(x
ji
a )

)
. (16)

Since extensive sampling is required to keep the bound
above tight, it is important to do this efficiently. From
a GP perspective this is handled with little effort by
sampling the approximate posteriors q(g) using Math-
eron’s rule (Wilson et al., 2020). Thus, sampling Sg
GPs is cheap compared to sampling from the orbit. SA
denotes the number of f̂ samples, this can be fixed to
1 as long as So is large.

Summarising, we have shown how we can infer through
the marginal likelihood, for the wide class of log-concave
likelihoods, by maximising the stochastic ELBO:

L =
1

Sg

Sg∑

k=1

1

SA

SA∑

j=1

[log p(y| 1
So

So∑

i=1

gk(hw(x
ji
a )))]

−KL[q(u)||p(u)] , (17)

with xija ∼ p(xa|x, φ) . (18)

The benefits of our new sample based bound are three-
fold: It broadens model specification, avoids hand-
picking and fixing the artificial Gaussian likelihood
variance, and doubles training speed.
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Model Likelihd. Test acc.
M1 NN Softmax 0.9433
M2 Non-inv. Shallow GP Gaussian 0.8357
M3 Non-inv. Shallow. GP Softmax 0.7918
M4 Inv. Shallow GP Gaussian 0.9516
M5 Inv. Shallow. GP Softmax 0.9316
M6 Non-inv. Deep Kernel GP Gaussian 0.9387
M7 Non-inv. Deep Kernel GP Softmax 0.9351
M8 Inv. Deep Kernel GP Gaussian 0.9896
M9 Inv. Deep Kernel GP Softmax 0.9867

Table 1: Test accuracies on rotated MNIST. Invariant
models outperform non-invariant counterpart. So do
deep kernels contra shallow ones. The invariant deep
kernel GPs perform best, outperforming state-of-the-
art of 0.989 for learned invariance (Benton et al., 2020).

6.1 Rotated MNIST

The rotated MNIST dataset6 was generated from the
original MNIST dataset by randomly rotating the im-
ages of hand-written digits between 0 and 2π radians.
It consists of a training set of 12.000 images along
with 50.000 images for testing. We pretrain the neural
network from Sec. 5.1 on rotated MNIST (Table 1,
M1) and proceed as outlined in Sec. 5. As discussed
in Sec. 5, we do not have guarantees that the ELBO
acts as a good model selector for the neural network
hyperparameters. We thus use a validation set (3000 of
the 12000 training points) to find hyperparameters for
the NN updates. Once a good training setting is found
we re-train on the entire training set (see Appendix for
settings). Fig. 8 shows the learned invariances (we use
the full φ parameterisation but only plot rotation and
x-translation for brevity). Both Gaussian and Softmax
models learn to be rotation-invariant close the full 2π
rotations present in the data. Table 1 contains test
accuracies. Deep kernel GPs outperform their shal-
low counterparts by large margins (differences in test
accuracy of ≥ 10 percent points). The same is true
for invariant compared to non-invariant models (≥ 3
percent points). While both likelihoods achieve similar
test accuracies, we observe a 2.3× speedup per itera-
tion in training for the sample-based Softmax over the
Gaussian model. (Gaussian model: 2.64 seconds per
iteration, Gaussian + sample bound: 1.32 sec./iter.,
Softmax + sample bound: 1.13 sec./iter. All runs are
executed on 12 GB Nvidia Titan X/Xp GPUs.)

6.2 PatchCamelyon

The PatchCamelyon (PCam, CC0 License, Veeling
et al. (2018)) dataset consists of histopathology scans

6https://sites.google.com/a/lisa.
iro.umontreal.ca/public_static_twiki/
variations-on-the-mnist-digits
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Figure 9: Left: Learned rotation on PCam. Right:
PCam orbit samples. Augmented images look smoother
due to interpolation, thus we preprocess the dataset
with small rotations when learning invariances.

Model Test acc.
NN 0.7905
Deep Kernel GP + no inv. 0.8018
NN + small inv. 0.7420
Deep Kernel GP + small inv. 0.8115
Deep Kernel GP + learned inv. 0.8171

Table 2: PCam results. InvDKGP performs best.

of lymph nodes measuring 96×96×3 pixels. Labels in-
dicate whether the centre patch contains tumor pixels.
Veeling et al. (2018) improve test performance from
0.876 to 0.898 by using a NN which is invariant to
(hard-coded) 90° rotations of the input. Such discrete,
non-differentiable augmentations are not compatible
with our backprop-based method, so we instead use
continuously sampled rotations (a special case of the
transformations described in Sec. 3.3 with φ = α and
αmin = -αmax). This, contrary to Veeling et al. (2018)’s
approach, introduces the need for padding and interpo-
lation (see Fig. 9, left), effectively changing the data
distribution. We thus apply small rotations as a pre-
processing step (π/10 radians, ‘small inv.’ in Table 2).
This lowers performance for a NN alone, i.e. when
pre-training. The invariant models counterbalance this
performance drop, and the learned invariances produce
the best results in our experiments; however, they re-
main subpar to Veeling et al. (2018). This is due to the
limitation to differentiable transformations, as well as
our simpler NN (see Appendix). We highlight that our
task is fundamentally different: instead of hard-coding
invariances we learn those during optimisation.

7 EXPLORING LIMITATIONS

Rotated MNIST and PCAM are relatively simple
datasets that can be modelled using small NNs. To
investigate whether our approach can be used on more
complex datasets, we turn to CIFAR-10 (Krizhevsky,
2009), which is usually trained with larger models and
data augmentation. Unfortunately, we found that we
were unable to learn invariances for CIFAR-10.
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To understand why, we designed a simple experiment.
We first pretrain ResNet-18-based (He et al., 2016)
networks with different levels ν of invariance trans-
formations (see the Appendix for a definition of ν).
We then train sparse GP regression (SGPR; Titsias,
2009) models on an augmented training set created by
propagating ten points sampled from the augmenta-
tion distribution through these neural networks. The
samples are generated at different levels of invariance
ν, not necessarily matching the levels of the pretrained
NNs. We plot the results in Fig. 10: when the network
is trained at a small invariance level ε, the performance
of the SGPR model is highest at an invariance level of
0.01, and rapidly drops off for larger invariances (note
the logarithmic x scale). We see a similar result for
the network trained at a level of 0.1. Finally, when
the network is trained at the same level that the orbit
points for the SGPR model are sampled at (‘adapted’),
we see that added invariance helps the accuracy, with
no steep drop off in accuracy for larger invariances.
Therefore, adding invariance does help, but only when
the network has already been adapted to that invari-
ance. Currently, in our method this coadaptation is
prevented by the current need for coordinate ascent
training (Sec. 5).

This experiment indicates that for datasets requiring
larger neural networks, we are in a difficult position.
We need to adapt the feature extractor jointly with the
invariances. However, this approach leads to patholo-
gies as the neural network parameters are not protected
from overfitting (Ober et al. (2021), see Sec. 5), which
we previously mitigated with coordinate ascent. There-
fore, relying on the marginal likelihood to learn invari-
ances with a large feature extractor can easily lead to
unwanted behavior – this behavior prevents us from
learning these invariances as easily as the marginal
likelihood promises. We believe that ongoing research
in Bayesian deep learning will alleviate this problem.
Bayesian neural networks with methods for marginalis-
ing over lower layers too, thus protecting them against
overfitting, will render our approach more easily appli-
cable. Such advances will allow us to learn invariances
more easily and on more complex tasks than we did
for the MNIST and PCAM datasets.

8 CONCLUSION

Neural networks depend on good inductive biases in
order to generalise well. Practitioners usually – suc-
cessfully – handcraft inductive biases, but the idea
of learning them from data is appealing. Might we
automate the modelling pipeline, moving from hand-
crafted models to data driven models; much like we
replaced hand-crafted features with learned features in
deep neural networks? This work proposes one step
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Figure 10: Test accuracies on CIFAR-10 for different
transformation levels ν with pretraining at negligible
“ε”, 0.1, and adapted levels. The maxima for each curve
are marked with a star, and occur at test accuracies
of 77.4% for “ε”, 82.1% for 0.1, and 81.1% for adapted
levels.

in this direction. Inspired by Bayesian model selec-
tion we employ the marginal likelihood for learning
inductive biases. We avoid the intractability of the
marginal likelihood for neural networks by using Deep
Kernel Learning. This enables us to leverage previ-
ous work on invariance learning in GPs for learning
data augmentation in neural networks. We learn useful
invariances and improve performance, but encounter
challenges when optimising our models. We introduce
a new sampling-based bound to the ELBO allowing for
inference for the Softmax likelihood, the natural choice
for classification tasks, hereby alleviating some of the
optimisation difficulties. Others we identify as funda-
mental limitations of the Bayesian last layer approach.

Societal Impact: This work is situated within basic
research in probabilistic ML and, as such, bears all
the risks of automation itself: harmful redistribution
of wealth to those with access to compute resources
and data, loss of jobs, and the environmental impact
of such technologies. In fact, our model is more com-
putationally heavy than a standard neural network
with hand-tuned data augmentation. However, in the
long term, automatic model selection has the potential
to reduce the need for hyperparameter tuning, which
usually dramatically exceeds the resources needed for
training the final model.
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Supplementary Material:
Last Layer Marginal Likelihood for Invariance Learning

A IS THE MARGINAL LIKELIHOOD NECESSARY?

Sec. 1 motivated the marginal likelihood for invariance learning. Given that this loss function is notoriously
difficult to evaluate, we verify experimentally that using it is indeed necessary, i.e. that the standard maximum
likelihood loss is insufficient. Fig. 11 shows invariances learned on rotated MNIST (rotMNIST, see Sec. 6.1 for
a description of the dataset) by using a neural network with maximum likelihood loss for two initialisations
(blue, green). They collapse as suggested by the theory. The marginal likelihood solution (red) instead identifies
appropriate invariances.
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Figure 11: Max. likelihood (green, blue, collapsing) and marg. likelihood (red, useful) invariances.

B EXPERIMENTAL DETAILS

Exploiting the ideas from Sec. 5, we start by training convolutional neural networks (CNNs, see below for
architecture details). After pre-training the CNN, we replace the last fully connected layer with a GP and continue
training. In the non-invariant case we train all parameters jointly from here. When learning invariances, we
iterate between updating the GP variational- and hyperparameters, and the neural network weights.

B.1 MNIST variations

We here summarise the training setups for the experiments on MNIST variations, i.e. MNIST subsets (Sec. 5.1)
and rotated MNIST (Sec. 6.1). We start by outlining the shared neural network architecture and will then list
the hyperparameter settings for MNIST and rotMNIST, respectively.

The CNN architecture used in the (rot)MNIST experiments is depicted in Table 3. For rotated MNIST, we
train the model for 200 epochs with the Adam optimiser (default parameters). For the MNIST subsets, we train
for 60k iterations which corresponds to 200 epochs for the full dataset and respectively more epochs for smaller
subsets. The remaining parameters are the same in all experiments: batch size 200, learning rate 0.001, no weight
decay, other regularisation or data augmentation. In the pre-training phase we minimise negative log-likelihood,
for updates during coordinate ascent we use the ELBO as a loss-function.

Hyperparameter initialisation for the MNIST subset experiments are lengthscale 10, likelihood vari-
ance 0.05, kernel variance 1 (fixed likelihood and kernel variance for the invariant model, see Sec. 5.1), posterior
variance 0.01. We use 1200 inducing points which we initialise by first passing the images through the neural
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Layer Specifications
Convolution filters=20, kernel size=(5, 5), padding=same, activation=ReLU
Max pooling pool size=(2, 2), stride=2
Convolution filters=50, kernel size=(5, 5), padding=same, activation=ReLU
Max pooling pool size=(2, 2), stride=2
Fully connected neurons=500, activation=ReLU
Fully connected neurons=50, activation=ReLU
Fully connected neurons=10, activation=Softmax

Table 3: Neural network architecture for MNIST variations. After pre-training, the last fully connected layer
(below dashed line) is replaced with a GP layer for the deep kernel models.

network, then using the ‘greedy variance’ method (Burt et al., 2020) on the extracted features. For the smallest
dataset MNIST312 we use 312 inducing points only. The batch size is 200 and we choose learning rate 0.001
for the Adam optimiser. For the invariant models, the orbit size is 120 and affine parameters are initialised
at φmin = φmax = 0.02, i.e. we initialise with a small invariance. Without this initialisation we encountered
occasional numerical instabilities (Cholesky errors) on the small dataset runs. During coordinate ascent (InvDKGP
models) we toggle between training GP and CNN after 25k steps.

Hyperparameter initialisation for the rotMNIST experiment as follows: For all models, we initialise
kernel variance 1 (fixed at 1 for M9, see Sec. 5.1) and posterior variance 0.01. We use 1200 inducing points.
For the invariant models, the orbit size is 120 and affine parameters are initialised at φmin = φmax = 0, i.e.
invariances are learned from scratch. When using coordinate ascent (InvDKGP models, M8 & M9) we toggle
between training GP and CNN after 30k steps. We train different models for a different number of iterations, all
until the ELBO has roughly converged. Batch size 200 is used for all models. The remaining initialisations differ
between models and are summarised in Table 4.

Model Lengthsc. Lik. var. LR (decay)
M2 Non-inv. Shallow GP + Gaussian 10 0.02 0.001
M3 Non-inv. Shallow. GP + Softmax 10 - 0.001
M4 Inv. Shallow GP + Gaussian 10 0.05 0.001
M5 Inv. Shallow. GP + Softmax 10 - 0.001
M6 Non-inv. Deep Kernel GP + Gaussian 10 0.05 0.001
M7 Non-inv. Deep Kernel GP + Softmax 20 - 0.001
M8 Inv. Deep Kernel GP + Gaussian 50 0.05 (F) 0.003 (steps / cyclic)
M9 Inv. Deep Kernel GP + Softmax 9 - 0.003 / 0.0003 (s / c)

Table 4: Training settings for rotMNIST models: Kernel lengthscale and likelihood variance initialisations (’F’
indicates a fixed likelihood variance, see Sec. 5.1). The learning rate column (’LR’) also indicates whether the
learning rate was decayed in the GP/CNN update phases of coordinate ascent. For the ‘steps’(s) decay, we divide
by 10 after 50% and again 75% of iterations, for the ‘cyclic’(c) decay, learning rates are: [LR/100, LR/10, LR,
LR/10, LR/100]. These training hyperparameters are determined using a validation set (see Sec. 6.1).

B.2 PCam

The CNN architecture is a VGG-like convolutional neural network7 described in Table 5. The model is
trained for 5 epochs using the Adam optimiser with batch size 64. We use learning rate 0.001 which we divide
by 10 after 50% and again 75% of training iterations. In the fully connected block we use dropout with 50%
probability when pre-training. Dropout is disabled when training the deep kernel models.

Hyperparameters for the deep kernel GP experiments on PCam are: lengthscale 10 (1 for the learned
invariance model), kernel variance 1, posterior variance 0.01. We use 750 inducing points which we initialise
as in the previous experiments. The batch size is 32. For PCAm we use coordinate ascent for all models since

7We closely follow https://geertlitjens.nl/post/getting-started-with-camelyon/.
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Layer Specifications
Convolution filters=16, kernel size=(3, 3), padding=valid, activation=ReLU
Convolution filters=16, kernel size=(3, 3), padding=valid, activation=ReLU
Max Pooling pool size=(2, 2), strides=2
Convolution filters=32, kernel size=(3, 3), padding=valid, activation=ReLU
Convolution filters=32, kernel size=(3, 3), padding=valid, activation=ReLU
Max Pooling pool size=(2, 2), stride=2
Convolution filters=64, kernel size=(3, 3), padding=valid, activation=ReLU
Convolution filters=64, kernel size=(3, 3), padding=valid, activation=ReLU
Max Pooling pool size=(2, 2), stride=2
Fully Connected neurons=256, activation=ReLU
Dropout probability=0.5
Fully Connected neurons=50, activation=None
Dropout probability=0.5
Fully connected neurons=2, activation=Softmax

Table 5: Neural network architecture for PCAM. After pre-training, the last fully connected layer (below dashed
line) is replaced with a GP layer for the deep kernel models and dropout is disabled.

this improves training stability. Learning rates are 0.001 for the GP update steps and 0.0001 for the CNN
updates, no LR decay. We toggle between the two coordinate ascent phases after 50k and 75k iterations in the
non-invariant and invariant case, respectively. For the invariant models the orbit size is 20 and we initialise the
rotation invariance with φmin/max = αmin/max = ±π/10.

B.3 CIFAR-10

Throughout our experiments, we train on a subset of 45,000 points from the full CIFAR-10 (Krizhevsky, 2009)
training set and report results on the remaining 5,000 points, as a validation set.

The model we use is a sparse GP regression (SGPR; Titsias (2009)) model with a sum kernel corresponding
to a Monte Carlo estimate of the kernel of Eq. 5, using an automatic relevance determination (ARD) squared
exponential kernel as a base kernel. We achieve this by sampling 10 points from the full orbit for each data point,
and propagating the points through the pretrained feature extractor. For the feature extractor, we choose a ReLU
ResNet-18 architecture (He et al., 2016) with an output dimension of 50, using the post-ReLU features. Therefore,
for our training set, we end up with a set of 45, 000× 10× 50 datapoints, where we sum over the 10 orbit samples.

Hyperparameters were chosen as follows. We pretrain the ResNet-18 by adding an additional fully-connected
layer with softmax activations. We train for 160 epochs with a batch size of 100 and the Adam optimizer (Kingma
and Ba, 2015), starting with a learning rate of 0.001, which we step down by a factor of 10 at epochs 80 and 120.
We train the network without weight decay. The SGPR model was subsequently trained for a maximum of 1000
steps, using the Scipy optimizer provided in GPflow (Matthews et al., 2017). During training, we initially set the
jitter to 1e-6, which we increased by a factor of ten if the Cholesky decomposition failed. For the SGPR model,
we use 1000 inducing points, initialised as above. We found empirically that the likelihood variance did not have
a significant impact on the results; we therefore fixed it to 0.01. Recalling that φ = (α, sx, sy, px, py, tx, ty), we
parameterize the transformation by considering the “transformation level” ν such that

φmax = (0, 1, 1, 0, 0, 0, 0) + ν × (π, 1, 1, 1, 1, 1, 1), (19)
φmin = (0, 1, 1, 0, 0, 0, 0)− ν × (π, 1, 1, 1, 1, 1, 1). (20)

For the “ε” setting of the transformation level, we assign ν = 0.01. We chose a non-zero value to ensure that any
reduction in performance would be due to a different value of ν, and not because of the lack of presence of the
image interpolator in the pretraining (see Sec. 6.2).
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Abstract

Spatial Transformer Networks (STNs) estimate im-
age transformations that can improve downstream
tasks by ‘zooming in’ on relevant regions in an im-
age. However, STNs are hard to train and sensitive
to mis-predictions of transformations. To circum-
vent these limitations, we propose a probabilistic
extension that estimates a stochastic transforma-
tion rather than a deterministic one. Marginalizing
transformations allows us to consider each image
at multiple poses, which makes the localization
task easier and the training more robust. As an ad-
ditional benefit, the stochastic transformations act
as a localized, learned data augmentation which
improves the downstream tasks. We show across
standard imaging benchmarks and on a challenging
real world dataset that these two properties lead
to improved classification performance, robustness
and model calibration. We further demonstrate that
the approach generalizes to non-visual domains by
improving model performance on time-series data.

1 INTRODUCTION

The Spatial Transformer Network (STN) [Jaderberg et al.,
2015] predicts a transformation on input data in order to
simplify a downstream task. For example, a neural network
might benefit from e.g. ‘zooming in’ on relevant parts of an
image, remove unwarranted image rotations, or time normal-
ize sequence data before making predictions. In principle,
this can improve robustness, interpretability and efficiency
of the model. In practice, the situation is, however, not as
ideal. Both at training and test time, the STN is sensitive to
small mis-predictions of transformations. For example, if
the STN zooms in on the wrong part of an image, then the
signal is lost for the downstream task, e.g. see crop A and C
in Fig. 1. The empirical impact is that STNs are difficult to
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Figure 1: The Probabilistic Spatial Transformer Network
(P-STN) marginalizes over a distribution of possible input
transformations. By ‘looking in multiple places’ we hope to
stabilize the brittle nature of the regular spatial transformer:
The P-STN loss landscape is significantly more smooth and
with fewer local minima compared to the STN.

train and often do not live up to their promise.

From a probabilistic perspective, this sensitivity has an ob-
vious solution: we should estimate the posterior over the
applied transformation and marginalise accordingly. This
amounts to ‘trying many different transformations’, and
should improve robustness. It is exactly this approach we
investigate.

STNs consist of two parts. A localization network performs
the transformation task, i.e. it estimates the transformation
parameters θ for a given image I and applies the corre-
sponding transformation Tθ(I). A standard neural network
performs the downstream task on the transformed image,
i.e. computing p(y|Tθ(I)). Since we are concerned with
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classification tasks we will refer to the latter as the classifier,
but note that the approach generalizes to other tasks.

In our probabilistic STN (P-STN), we estimate a distribu-
tion over transformations that we marginalize: p(y|I) =∫
p(y|Tθ(I))dθ. We approximate this intractable integral

via Monte Carlo, i.e. we sample transformations. Those
transformation samples produce different transformed ver-
sions of the input image, {T sθ (I)}s=1...S . The classifier
makes predictions on all samples, and we aggregate the
predictions. Figure 2 shows the model architecture.

We hypothesize that marginalizing image transformation
has benefits for both parts of the model. For the localization
network, our model gets to ‘try many different transfor-
mations’ through random sampling. This should improve
the localization. Secondly, the classifier now gets presented
with different transformed versions of the input image
through Monte Carlo samples {T sθ (I)}s=1...S . Interestingly,
this corresponds to a type of data augmentation, which
should improve classification.

We verify the hypothesis by making the following contribu-
tions:

1. We develop the Probabilistic Spatial Transformer; a hi-
erarchical Bayesian model over image transformations.

2. Perform variational inference to fit the transformation
model as well as downstream model end-to-end, using
only label information.

3. Experimentally demonstrate that our model achieves
better localization, increased classification accuracy
(resulting from learned per-image data augmentation)
and improved calibration.

2 RELATED WORK

Spatial transformer networks apply a spatial transforma-
tion to the input data as part of an end-to-end trained model
[Jaderberg et al., 2015]. The transformation parameters
are estimated from each input separately through a neural
network. Most commonly, STNs implement simple affine
transformations, such that the network can learn to zoom
in on relevant parts of an image before solving the task
at hand. STNs have shown themselves to be useful for
both generative and discriminative tasks, and have seen
applications to different data modalities [Jaderberg et al.,
2015, Detlefsen and Hauberg, 2019, Detlefsen et al., 2018,
Shapira Weber et al., 2019, Sønderby et al., 2015, Lin and
Lucey, 2016, Kanazawa et al., 2016]. We propose a proba-
bilistic extension of this idea, replacing the usual likelihood
maximization with marginalization over transformations.

Bayesian deep learning aims to solve probabilistic compu-
tations in deep neural networks. Priors are put on weights
and marginalized at training and test time, often yielding

useful uncertainties in the posterior predictive. The required
computations are in general intractable, and approaches
differ mainly in the type of approximation to the weight pos-
terior. Gal and Ghahramani [2016] propose to view dropout
as a Bernoulli approximation to the weight posterior (i.e.
randomly switching each weight on or off). The Laplace ap-
proximation [MacKay, 1992, Daxberger et al., 2021] places
a Gaussian posterior over a trained neural network’s weights.
Another generally successful way to obtaining predictive
uncertainties is to simply train an ensemble of models. Orig-
inally proposed as an alternative to Bayesian DL [Laksh-
minarayanan et al., 2017], the approach can be interpreted
in the Bayesian framework by interpreting the weights of
the trained ensemble members as samples from a weight
posterior [Gustafsson et al., 2020]. Similar to our method,
Blundell et al. [2015] choose a variational approach with
a simple Gaussian mean field posterior over weights. Our
approach differs from standard Bayesian DL in that we
are not reasoning about distributions over neural network
weights p(w), but instead a subnetwork’s (i.e. the local-
izer’s) outputs p(θ). Drawing from the posterior over image
transformations, we effectively recover data augmentation.

Data augmentation (DA) is an useful way to increase the
amount of available data [LeCun et al., 1995, Krizhevsky
et al., 2012]. DA requires prior knowledge about the struc-
ture of the data: the target y is assumed to be invariant to
certain transformations of the observation I . Invariance as-
sumptions are usually straight forward for natural images.
Thus, DA is common for image data, where the transfor-
mation family is often chosen to be rotations, scalings, and
similar [Goodfellow et al., 2009, Baird, 1992, Simard et al.,
2003, Krizhevsky et al., 2012, Loosli et al., 2007]. The gen-
eral trend is that, beyond ‘intuitive’ data such as images,
gathering an invariance prior is difficult, and DA is often
hard to realize through manual tuning.

Learned data augmentation provides a more principled
approach to artificially extending datasets. Hauberg et al.
[2016] estimate an augmentation scheme from the training
data via pre-aligning images in an unsupervised manner.
The approach allows for significantly more complex trans-
formations than the usual affine family, but the unsupervised
nature and the implied two step training process render the
approach suboptimal. Similarly, Cubuk et al. [2019, 2020]
use reinforcement learning and grid search to learn data
augmentation schemes, but rely on on validation data rather
than an end-to-end formulation.

Learning data augmentation end-to-end requires a loss func-
tion suitable for model selection as we are effectively trying
to learn an inductive bias. Based on this realization, Van der
Wilk et al. [2018] learn DA end-to-end in Gaussian pro-
cesses (GPs) via the marginal likelihood, a suitable loss
for model selection and thus invariance learning [MacKay,
2003]. The marginal likelihood is hard to compute for NNs,
so Schwöbel et al. [2022] extend this idea to NNs by consid-



Figure 2: The P-STN pipeline. From the observed image I , a distribution of transformations is estimated. Samples from this
distribution are applied to the observed image to produce augmented samples, which are fed to a classifer that averages
across samples. In the deterministic STN case, the localiser only computes one transformation θ(I), which can be thought of
as the maximum likelihood solution. Instead of the multiple transformation samples, we obtain a single Tθ(I) in this case.

ering a deep kernel model, i.e. a neural network with a GP in
the last layer. Benton et al. [2020] instead use the standard,
maximum likelihood loss and explicitly regularize towards
non-zero augmentations. Our model differs from existing
data augmentation approaches — learned and non-learned
— in that we estimate local, i.e. per-image transformations
instead of a global augmentation scheme.

3 BACKGROUND

The STN localiser module estimates a transformation θ(x)
that transforms a coordinate grid and interpolates an image
accordingly. The classifier module takes the transformed im-
age and computes p(y|Tθ(x)). Both the localiser and classi-
fier are neural networks. The STN can be trained end-to-end
with only label information as long as the image transfor-
mations are parameterized in a differentiable manner.

Affine transformations are a simple class of transforma-
tions that can be differentiably parameterized. We limit
ourselves to the subset of affine transformations contain-
ing rotation, isotropic scaling and translation in x and y. In
two dimensions (and the corresponding three-dimensional
homogeneous coordinates), we thus learn θ = (r, s, tx, ty)
which parameterizes the affine matrix

Aθ =



s · cos r −s · sin r tx
s · sin r s · cos r ty

0 0 1


 ∈ R3×3, s > 0. (1)

Since det(Aθ) = s2, the constraint s > 0 ensures invertibil-
ity and can be implemented as seen in Detlefsen et al. [2018].
In practice, the STN estimates well-behaved, non-collapsing
transformations without implementing the constraint explic-
itly. Tθ(I) is applied by transforming a grid of the target
image size by Aθ and interpolating the source image at the
resulting coordinates (see Jaderberg et al. [2015] for details).

Diffeomorphic transformations (i.e. transformations that
are differentiable, invertible and possess a differentiable in-
verse) are more general than affine transformations, and are
not limited to the spatial domain. Freifeld et al. [2017] con-
struct diffeomorphisms from continuous piecewise-affine
velocity fields as follows. The transformation domain Ω is

divided into subsets and an affine matrix is defined on each
cell c of such a tessellation. Each affine matrix Aθc induces
a vector field mapping each point x ∈ c to a new position
vθc : x 7→ Aθcx. These velocity fields are then integrated
to form a trajectory for each image point x

φθ(x; 1) = x+

∫ 1

0

vθ(φ(x; τ))dτ.

Given boundary and invertibility constraints [Freifeld et al.,
2017], such a collection of affine matrices {Aθc}c⊂Ω defines
a diffeomorphic transformation T θ : x 7→ φθ(x, 1).

The libcpab library [Detlefsen, 2018] provides an efficient
implementation for this approach, specifically optimized
for use in a deep learning context where fast gradient
evaluations are crucial. The author successfully employs
CPAB-transformations within a Spatial Transformer Net-
work [Detlefsen et al., 2018].

4 PROBABILISTIC SPATIAL
TRANSFORMER

The P-STN is a probabilistic extension of the STN, where
we replace the deterministic transformation θ(I) with a pos-
terior over transformations p(θ|I). Figure 2 illustrates the
proposed pipeline. We assume observed data of the form
D = {yi, Ii}Ni=1, where y is the target variable (e.g. class
label), and I are observations of the covariates. For presen-
tation purposes, we will consider the latter to be images, but
the approach applies to any spatio-temporal data.

4.1 THE MODEL

Recall that STNs are trained end-to-end for the downstream
task using only label information. Thus, while we observe y,
θ is a latent variable. We model it to be governed by a second
latent variable λ. λ is a precision parameter, effectively stop-
ping the localization distribution (i.e. the amount of ‘data
augmentation’ we introduce) from collapsing. The neces-
sity for non-collapsing augmentation is discussed in Benton
et al. [2020], Van der Wilk et al. [2018] and Schwöbel et al.
[2022].
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Figure 3: A graphical representation of the model structure.
Grey nodes are observables and white are latents.

We wish to infer the latent variables in a Bayesian manner.
This entails computing the (log-)marginal likelihood of the
observed

log p(I, y) = log

∫∫
p(I, y, θ, λ) dθ dλ. (2)

We let the joint distribution factorise as (see Fig. 3)

p(y, I, θ, λ) = p(y|I, θ, λ)p(I, θ, λ) (3)
= p(y|I, θ)p(θ|λ, I)p(λ)p(I). (4)

Notice p(I) is unaffected by model parameters λ and θ, and
in this sense can be specified without affecting the model.
We define the prior over (θ, λ) semi-empirical as the prior
over θ depends on observed covariates in the following way

p(θ|λ, I) = N (θ|µ(I), 1/λ), (5)

where µ(I) is a function parametrised by a neural network,
i.e. µ(I) := µΦ(I) for model parameters Φ. The prior over
λ is a Gamma distribtion, i.e.

p(λi) = Γ(α0, β0). (6)

We remark here that there is one λi associated to
each observation, and they are assumed to factorise:
p(λ) =

∏N
i=1 p(λi). This choice of conjugate priors

for variance estimation is similar to [Stirn and Knowles,
2020, Takahashi et al., 2018, Detlefsen et al., 2019]. Finally,
we assume that, conditional on I and θ, we have marginal
independence in y, i.e. p(y|I, θ) =

∏N
i=1 p(yi|Ii, θi).

4.2 VARIATIONAL APPROXIMATION

The integral equation (2) for the marginal likelihood is in-
tractable and, thus, the posterior p(λ, θ|I, y) is too. We de-
rive a lower bound on the log marginal likelihood to utilise
variational inference [Blei et al., 2017]. We choose the vari-
ational approximation q of the posterior p(θ, λ|I, y) as

q(θ, λ) := p(θ|λ, I)q(λ). (7)

Here p(θ|λ, I) is given as before and q(λ) :=∏N
i=1 Γ (αi, β(Ii)). In our approximation, β is a neural net-

work: hence, we use amortized inference in a similar way to
the VAE model [Kingma and Welling, 2014].

We derive our lower bound using Jensen’s inequality

log p(y, I) = log

∫∫
p(y, I, θ, λ)dθdλ (8)

≥
∫∫

log

(
p(y, I, θ, λ)

q(θ, λ)

)
q(θ, λ)dθdλ (9)

=

∫∫
log

(
p(y|I, θ)p(λ)p(I)

q(λ)

)
p(θ|λ, I)q(λ)dθdλ

= Eq(θ,λ) log p(y|I, θ)
︸ ︷︷ ︸

classification loss

+ log p(I)− KL(q(λ)‖p(λ)) .

(10)

Thus, our evidence lower bound (ELBO) objective func-
tion (10), consists of two terms: a classification loss and a
KL-term controlling the distance of the approximate poste-
rior to the prior. During inference we can disregard log p(I)
as it does not depend on parameters of interest.

4.3 INFERENCE

The choice of variational posterior implies the following for
the classification loss

Eq(θ,λ) log p(y|I, θ) (11)

=

∫∫
log p(y|I, θ)q(θ, λ)dθdλ (12)

=

∫∫
log p(y|I, θ)p(θ|λ, I)q(λ)dθdλ (13)

=

∫
log p(y|I, θ)

∫
N (θ|µ(I), λ)Γ(λ|α, β(I))dλ dθ

=

∫
log p(y|I, θ)t2α(θ|µ(I)), β(I)

α )dθ. (14)

Here t denotes a scaled and location-shifted Student’s t-
distribution with mean µ(I), scaling β, and α degrees of
freedom. For clarity, the marginalized q(θ) is t-distributed.
Here p(y|I, θ) is what previously was referred to as
p(y|Tθ(I)), i.e. the classifier conditioned the transformed I .

We approximate Eq. 14 using an unbiased estimate

Eq(θ,λ) log p(yi|Ii, θi) ≈
1

S

S∑

s=1

log p(yi|Ii, θi,s), (15)

with θi,s ∼ t2αi
(·|µ(Ii), αi, β(Ii)) (16)

and backpropagate through neural networks µ(I) and β(I)
with the reparametrization trick. In all experiments αi=1.

Combining terms, the final ELBO we maximize becomes

Lp,q(I, y) ≈
N∑

i=1

1

S

S∑

s=1

log p(yi|Ii, θi,s)

− KL (q(λ)||p(λ)) + const,

(17)



which is readily optimized using any gradient-based method.
The KL-term is analytically tractable and differentiable be-
tween two gamma distributions.

In practice, following Higgins et al. [2016] we introduce
a weight parameter w to the KL-term. This requires us to
tune w but in turn makes the model robust to the choice of
prior. We perform a grid-search on a validation set to find
the optimal w. Alternative to this, we could have done a
grid search over β0; instead we choose α0 = β0 = 1 for
all experiments. Similar to Kingma and Welling [2014], we
find it often sufficient to draw only S = 1 samples during
training. Note that our model naturally implies marginaliza-
tion, and correspondingly data augmentation, at test-time
as well as the usual training time. At test time, we draw
S = 10 transformation samples.

5 EXPERIMENTS & RESULTS

Our model consists of two parts, the classifier p(y|Tθ(I))
and the probabilistic localiser estimating the distribution
over transformations. In the following experiments, we
aim to disentangle our model’s benefits for localization
(Sec. 5.1), classification (Sec. 5.2) and calibration (Sec. 5.3).

The probabilistic localiser estimates q(θ) =
t2(θ|µ(I), β(I)), i.e. in practice we implement a mean and
a variance network, µ(I) and β(I), respectively (see Fig. 2
for the architecture). We employ a small convolutional
network (Conv2d, Maxpool2d, ReLU, Conv2d,
Maxpool2d, ReLU) followed by two fully connected
layers for both the localiser and classifier unless stated
otherwise. The P-STN localiser has two heads, one for the
mean and one for the variance. The number of parameters
is stated in each experimental subsection. Unless stated
otherwise, we keep the amount of parameters constant, i.e.
when adding a localization network we remove the extra
parameters from the classifier for fair comparison.

Our model is implemented in PyTorch and experi-
ments are run on 12 GB Nvidia Titan X GPUs.
The code is available at https://github.com/
FrederikWarburg/pSTN-baselines.

5.1 MARGINALIZING TRANSFORMATIONS
IMPROVES LOCALIZATION ACCURACY

The appeal of STN models is that they are trained end-
to-end, i.e. based only on labels for the downstream task,
and not the transformations themselves. This same property,
however, is what makes the STN hard to fit. The only signal
we obtain is through the supervised downstream task (i.e.
the classification labels) and thus gradient information is
sparse. We will now investigate whether estimating a poste-
rior over transformations and marginalizing, i.e. ‘getting to
try multiple transformations’, make the task easier.

Figure 4: Rotated MNIST experiment. Left panel: Ground
truth transformation (rotation angles in radians) against re-
covered transformations (mean). Top right: Example images
from the data set and samples from the P-STN localiser. The
localiser learns to pose-normalize. Bottom right: Outputs of
the variance network. When the transformation recovery is
poor (the error ε is above the median, in orange) the vari-
ances are slightly higher than when the localization works
well (blue).

In order to disentangle the localization from the classifica-
tion task we construct the following experiments. We first
train a CNN on a pose-normalized dataset (regular MNIST
and Fashion MNIST). We then generate a new dataset by
randomly sampling transformations θtrue and applying them
to the MNIST images. Saving those transformations we
have ground truth available. We freeze the CNN weights and
train STN and P-STN with this fixed classifier, effectively
learning to recover and ‘undo’ the true transformations.

5.1.1 Rotated MNIST

From this data generating process we obtain a rotated ver-
sion of the MNIST dataset (i.e. regular MNIST with ground
truth transformations given by rotation angles, θtrue(I) =
rtrue(I)). See Fig. 4, top right panel for example data.

Our CNN classifier (28k weights) obtains 99.4% test ac-
curacy on MNIST and 41.2% on rotated MNIST (frozen
weights, no re-training). The STN and P-STN (S=10 train-
ing samples, w= 3 · 10−5, same CNN classifier as before
+72k params in the localizer) both learn to pose-normalize,
i.e. to recover these transformations to a satisfactory degree.
When training the localizers only (classifier weights remain
frozen as described above), the STN test acc. is 76.13%, and
82.98% for the P-STN. We compute the expected average
transformation error on the N = 10k rotated MNIST test
images as

ε =
1

N

N∑

i=1

‖θtrue(Ii)− µ(Ii)‖ mod π. (18)



Figure 6: The P-STN learns to localize traffic signs in the challenging MTSD
dataset. At test time, we sample 10 transformations as shown with the various
bounding boxes overlaid the images. These learned variations improves the final
classification.

Acc. ↑ NLL ↓
CNN 76.0 0.49
STN 90.6 0.31
P-STN 92.2 0.29

Table 1: Accuracy
(Acc.) and negative
log-likelihood (NLL) for
CNN, STN and P-STN.

We get ε = 0.76 for the STN and ε = 0.59 for the P-STN.
The P-STN outperforms the STN, i.e. modeling uncertainty
in the transformations helps in the localization task.

Uncertainty. The bottom right panel of Fig. 4 shows a
histogram of β(I), i.e. the localiser variance (or, correspond-
ingly, the magnitude of augmentation) per image. In orange,
we plot variances for images where pose-normalization is
difficult (the transformation error ε is larger than the me-
dian). In blue, we plot variances for images that are correctly
pose-normalized (transformation error ε smaller than the
median). The poorly localized images are, on average, as-
signed 17% larger variances β(I). The localiser uncertainty
and thus the amount of data augmentation applied is some-
what meaningful, corresponding to the difficulty of the task.

5.1.2 Random placement FashionMNIST

We repeat a similar experiment on the slightly more chal-
lenging FashionMNIST dataset [Xiao et al., 2017] . The
CNN baseline accuracy is 90.63% (same model as above
with 28k parameters). We then randomly sample an x and y
coordinate and place the FashionMNIST accordingly on a
black background, after downscaling it by 50%. No rotation
is applied, i.e. θtrue = [0, 0.5, txtrue, t

y
true].

Figure 7: Random Placement Fashion MNIST. Input images
(left) and transformed samples Tθs(I) as learned by the P-
STN. The P-STN learns to correctly pose-normalize and
zoom in to the relevant part of the image. The samples look
like plausible candidates for a data augmentation scheme,
this we will explore in Sec. 5.2.

Like in the previous experiment, both localizers success-
fully recover θtrue, with the P-STN (S = 10 training samples,
w = 3e−05, same classifier as before +193k weights in the
localizer) doing slightly better than its deterministic counter-
part: test accuracies are 84.99% and 84.41%, respectively.
Inspecting the transformation posterior and the resulting
samples Tθs(Ii) we find that those look visually pleasing,
and, as hypothesized, might be promising candidates for a
data augmentation scheme. We will explore this in Sec. 5.2.

5.1.3 Mapillary street signs

Detection and classification of objects in images have many
applications, e.g. for autonomous vehicles traffic signs de-
tection is crucial. We compare a top performing classifier, a
STN and our P-STN on the challenging Mapillary Traffic
Sign Dataset (MTSD) [Ertler et al., 2019].

To focus this comparison, we select images that contain
only one traffic sign. We obtain this subset by selecting all
bounding boxes that do not intersect with other bounding
boxes plus a margin of 150 px to each side. We further select
the ten most common classes from this subset. This gives
us a training set of 4698 images and test set of 500 images.
Figure 6 shows examples images from the chosen subset.

Our classifier is a ResNet18 pre-trained on ImageNet, where
we replace the last fully connected layer. We use the same
ResNet for the localizers in the STN and P-STN, where we
similarly replace the last layer. As before, we wish to study
the behavior of the localizers. Therefore, we again start by
training a classifier on the ground-truth bounding boxes. We
then initialize the classifier module of the STN and P-STN
with this pre-trained classifier and freeze the weights of the
classifier. We train the localizers of the STN and P-STN for
60 epochs with learning rate 10−4 and kl weight w = 10−7.
Figure 6 shows that the P-STN learns to localize the traffic
signs. At test time, we sample 10 transformations illustrated
by the multiple overlaying bounding boxes.

Table 1 shows that both the STN and P-STN clearly outper-
form the baseline classifier when trained on the full images.
Even though, the STN and P-STN have exactly the same
classifier, the P-STN achieves better performance because
of the ensemble of classified transformations.



MNIST30 MNIST100 MNIST1000 MNIST3000 MNIST10000

CNN 70.12± 2.46 87.29± 0.58 95.80± 0.33 97.48± 0.21 97.82± 0.34 -
affine STN 69.26± 4.53 82.16± 2.30 92.05± 0.58 94.71± 0.22 96.96± 0.20
affine P-STN 81.00± 3.92 92.70± 0.74 96.62± 0.58 97.33± 0.17 97.63± 0.23

optimal w 0.001 0.0003 0.0001 0.00003 0.00001

Table 2: The performance of a CNN, STN and P-STN on differently sized MNIST datasets. Bold numbers indicate that a
model is significantly better than the runner up under a two sample t-test at p = 0.05.
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Figure 8: Performances of P-STN, STN and CNN on
MNIST subsets (mean ± one STD across five folds).

5.2 MARGINALIZING TRANSFORMATIONS
IMPROVES CLASSIFICATION ACCURACY

We have argued that marginalizing transformations via sam-
ples corresponds to learned, localized data augmentations
(the samples Tθs(I)). We will now investigate whether these
augmentations are indeed helpful in the downstream task,
i.e. whether they improve classification performance.

5.2.1 MNIST and subsets

We compare the performance of our P-STN against a stan-
dard convolutional neural network (CNN) and a regular STN
on MNIST. The standard MNIST images are centered and
pose-normalized, so the localization task is easy. Improved
classifier performance can thus be viewed as an indicator
for having learned a useful data augmentation scheme.

Data augmentation is particularly important when training
data is scarce, so we evaluate the models on small subsets
of MNIST: MNIST30 contains 30 images (i.e. 3 per class),
MNIST100, MNIST1000, MNIST3000 and MNIST10000.
STN and P-STN parameterize affine transformations, i.e.
the learned θ is interpreted as the full affine matrix as de-
scribed in Sec. 3. All models have roughly 28k parameters,

architecture as described at the top of Sec. 5. We use the
Adam optimizer with weight decay 0.01 and the default
parameters of its PyTorch implementation. The images are
color normalized. We repeat the experiment 5 times, each
time with a different k-image subset of the MNIST dataset,
and we report ± one standard deviation in tables and error
bars. From Table 2 and Fig. 8, we see that the P-STN out-
performs both the STN and CNN on the small dataset sizes.
For the larger datasets the differences vanish. This supports
our hypothesis: data augmentation is especially useful when
data is a limited resource. This intuition is also supported
by the optimal KL-weights (Table 2, bottom row) that we
determine via grid search on validation data. For smaller
datasets, larger w and thus more regularization towards the
variance prior (away from 0) are beneficial.

The fact that the STN performs less well than the standard
CNN on this data set might be explained by the fact that the
images are already nearly perfectly pose-normalized, and
wrong transformations can be detrimental.

5.2.2 UCR time-series dataset

For some data modalities, such as time-series, it is not triv-
ial to craft an useful data augmentation scheme. In this
experiment, we show that the P-STN can learn an useful,
non-trivial data augmentation scheme that increases perfor-
mance compared to a standard STN on time-series data. The
UCR dataset [Dau et al., 2018] is composed of 108 smaller
datasets, where each dataset contains univariate time-series.
The FordA dataset, for example, contains measurements of
engine noise over time and the goal is to classify whether or
not the car is faulty. We select 5 of those subsets, each large
enough to divide into training and validation set (75/25%),
which we use to find the optimal w via grid-search; those
are [0.0001, 1e− 05, 0.001, 0.0, 0.0001]. We draw S = 10
training samples. The test-set is pre-defined by the dataset
curators. Learning rate and optimizer are the same as in
Sec. 5.2.1, but we do not perform normalization. All models
have approximately one million parameters. Table 3 shows
that the P-STN achieves higher mean accuracy than both
the STN and the CNN, indicating that we can automatically
learn an useful data augmentation scheme for time-series.

We verify this qualitatively in Fig. 10 which shows an exam-



Figure 10: Examples of augmentations for a time-
series from the FaceAll dataset. The top plot
shows the original time-series and the bottom
plot shows three augmented versions of the time-
series.

CNN STN P-STN

FaceAll 80.83± 0.62 82.28± 0.42 84.31± 0.75
TwoPatterns 97.92± 0.53 99.79± 0.04 99.96± 0.04
wafer 99.63± 0.05 99.18± 0.17 - 98.86± 0.20
uWaveGestureLib.* 74.15± 1.27 79.77± 0.42 - 81.13± 0.46
PhalangesOutlC.** 79.88± 1.32 82.26± 0.98 81.66± 0.59

Mean 86.48 88.65 89.18

Table 3: Accuracies on a subset of the UCR timeseries dataset (full
dataset names are *uWaveGestureLibrary and **PhalangesOutli-
nesCorrect). ±1 STD is reported after 5 repetitions. Bold numbers
indicate that a model is significantly better than the runner up under
a two sample t-test at p = 0.05.
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Figure 11: Calibration plots for CNN, STN and two P-STN
models. One with KL-weight yielding optimal performance
(w = 0.0003) and one with KL-weight yielding optimal
calibration (w = 0.0001). Both P-STN models are better
calibrated than CNN and STN.

ple of the learned data augmentation. We see that the model
does not simply apply a global transformation, but learns to
augment the time-series more in some intervals, such as in
[60; 110], and augment the time-series less in other intervals,
such as in [0; 50].

5.3 MARGINALIZING TRANSFORMATIONS
IMPROVES CALIBRATION

In Sec. 5.1 we have seen that harder images on average
have larger transformation uncertainties. We now investi-
gate whether those meaningful localization uncertainties
translate into meaningful uncertainties downstream, i.e. in
the calibration of our classifier. At test-time, we evaluate

p(y|I) =

∫
p(y|I, θ)q(θ)dθ ≈ 1

S

S∑

s=1

p(y|Tθs(I)), (19)

i.e. we will investigate how well the uncertainty in this dis-
tribution matches the quality of predictions. Fig. 11 shows a
calibration plot for the MNIST100 subset classification task
from Sec. 5.2.1 for the CNN, STN and P-STN for two differ-
ent w-parameters; w = 0.0003 yields the best performance
(reported in Table 2) and w = 0.0001 yields the best cali-
bration. The expected calibration errors [Guo et al., 2017,
Küppers et al., 2020, 2021] are CNN: 0.0743 ± 0.0094,
STN: 0.1160± 0.0205, P-STN, w = 0.0003 (optimal per-
formance model): 0.0567 ± 0.0065, P-STN, w = 0.0001
(optimal calibration model): 0.0271 ± 0.0088. We report
the mean over 5 folds, ± one STD. The P-STN significantly
improves calibration in the downstream classification task.

5.4 A TYPICAL FAILURE MODE IN STNS

STN are trained end-to-end, and with only label information
available. Thus, one aims to learn the transformation which
is optimal for solving the downstream task. Depending on
the complexity of the downstream task and the classification
model, it might not be necessary to transform the input at all,
i.e. one might solve the downstream on the original input im-
age. Indeed, this is a failure mode we observe in practice —
often, the localiser simply learns the identity transform while
the classifier learns to classify the non-transformed image.
Using more complex classifier architectures makes the STN
more prone to this failure mode. This has been observed by
other authors [Finnveden et al., 2021], and we investigate the
problem in the experiment in Fig. 12. We start by training
a differently-sized neural network on MNIST (black, one
layer on the x-axis is [Linear, ReLU, Dropout]).
We compare the performance of this model to (P-)STN mod-
els trained on rotated MNIST, test accuracies are plotted in
the left panel of the figure. If the localization task is per-
formed perfectly, the (P-)STN models should be able to
recover the accuracy on the original, non-rotated dataset. In
the right panel, we plot the variance of the (mean) trans-
formations learned by the (P-)STN models. Values close to
0 indicate that the localiser does not transform the image,
i.e. it learns the identity transform. Larger values indicate
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Figure 12: Left: Test accuracies for standard NN and (P-)STNs of different depths trained on rotated MNIST, as well as
NN baseline on original MNIST (black). The STN (green) model does not usually recover the original images and thus
behaves more like a standard NN (red) in most runs. P-STN (blue) un-transforms at least some of the rotations and is closer
in accuracy to the NN on original MNIST (black). Right: The variance of the learned transformations as a function of model
depth. The STN learns the identity for deeper downstream models (this is consistent with the test accuracies we see on the
left). P-STN learns to un-transform better, at least when the classifier is simple. For bigger classifiers it predicts the identity
transform as well, but performs relatively well nonetheless (see left panel). We report medians ±1 median absolute deviation
over 5 folds.

that the localiser learns transformations. Median results are
reported over 5 runs, error bars correspond to one mean ab-
solute deviation. As hypothesized, for larger classifiers the
localizers do not transform the images. Due to the increased
capacity of the model, we nonetheless achieve decent classi-
fication accuracies (left panel). The P-STN learns to localize
the rotated images somewhat successfully (large variance
in the right panel, and high accuracy on the left) for smaller
classifiers. The STN does not localize the images as well,
most runs behave like the standard NN on rotMNIST (red),
predicting identity transformations only. We conclude that
thanks to it ‘trying out multiple transformations’, the P-STN
avoids this failure mode to an extend. We also note that
this property, while useful, is somewhat orthogonal to our
interest in this work, and we have avoided the failure mode
in the experiments of Sec. 5.1 by considering models with
fixed, pre-trained classifiers.

6 CONCLUSION

We have introduced a probabilistic extension to the spa-
tial transformer network (STN) [Jaderberg et al., 2015]. Our
work took motivation from the empirical observation that the
STN is often brittle to train as a poorly predicted transforma-
tion may prevent the model from getting any gradient signal,
resulting in divergent optimization. Our probabilistic STN
(P-STN) instead approximates the posterior distribution of
transformations using amortized variational inference, and
marginalizes accordingly. As is common, marginalization
improves the robustness of the model.

Empirically, we, in particular, note two advantages of
the probabilistic formulation over the deterministic. First,

the performance of the localization network is improved,
since the Monte Carlo marginalization effectively amounts
to trying many different transformations. Secondly, the
probabilistic formulation improves the overall model
performance, since the sampled transformations act as data
augmentation both during training and during testing. The
resulting ensemble of predictions is more accurate and
better calibrated than common classifiers as well as the
original spatial transformer.
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ABSTRACT
In recent years, the idea of formalising and modelling fairness for
algorithmic decision making (ADM) has advanced to a point of
sophisticated specialisation. However, the relations between tech-
nical (formalised) and ethical discourse on fairness are not always
clear and productive. Arguing for an alternative perspective, we
review existing fairness metrics and discuss some common issues.
For instance, the fairness of procedures and distributions is often
formalised and discussed statically, disregarding both structural
preconditions of the status quo and downstream effects of a given
intervention. We then introduce dynamic fairness modelling, a more
comprehensive approach that realigns formal fairness metrics with
arguments from the ethical discourse. A dynamic fairness model
incorporates (1) ethical goals, (2) formal metrics to quantify de-
cision procedures and outcomes and (3) mid-term or long-term
downstream effects. By contextualising these elements of fairness-
related processes, dynamic fairness modelling explicates formerly
latent ethical aspects and thereby provides a helpful tool to navigate
trade-offs between different fairness interventions. To illustrate the
framework, we discuss an example application – the current Euro-
pean efforts to increase the number of women on company boards,
e .g. via quota solutions – and present early technical work that fits
within our framework.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Social
and professional topics→ Computing / technology policy.
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1 INTRODUCTION
At the core of fair machine learning (fair ML) research lies the
question:What is fairness? A fundamental goal of research in fair
ML is to define ethical standards for ML technologies and to help
build tools that live up to such standards. This endeavor has be-
come urgent in light of the rapid advancements within ML which
have enabled the widespread use of algorithmic decision making
(ADM). The stakes are high, both for society and for individuals,
and some of these decision making systems have failed in dramatic
and systematic ways: racially biased ADM in the criminal justice
system [1], facial recognition failing on women of color [6], sexist
hiring [11] and racist search engines [32] are only some notorious
examples.

Especially important for auditing the fairness of algorithms are
fairness metrics, i.e. formal criteria by which to score fairness, and
a multitude of metrics has been proposed. However, despite great
research efforts and a plethora of approaches, there are fundamen-
tal issues that the field has not, so far, been able to overcome. As
noted by Jacobs et al. [24] and Binns [5], some of these issues are
consequences of the tendency of fair ML research to conflate formal
analysis of fairness with the discussion of ethical principles. While
certain basic ideas of fairness are formally constructed as fairness
metrics, these formalisms are then analysed too narrowly without
entering a (non-formal) ethical debate. For example, formal contra-
dictions between two different fairness metrics have been construed
as technical flaws of the metrics, when in fact both fairness metrics
are perfectly valid formalisations of ethical principles (as is the case
for the apparent conflict between individual and group fairness [5],
see further discussion in Sec. 2).

In the line of reasoning of this contribution, we argue for a clarifi-
cation of the roles of formal contributions and ethical debate in fair
ML research. Rooted in quantitative fields, fair ML depends on for-
malisations. However, analysis of formalised criteria alone cannot
determine the grounds for a choice between different criteria (other
than their formal properties, e.g. whether they are consistent with
each other, or whether they have computational properties such
as differentiability which make them suitable as a loss function).
Fair ML thus also depends on a comprehensive discussion of ethical
principles, goals and values. We aim to develop a formalisation
strategy that incorporates such ethical considerations, and show
that such formalisations can aid the non-formal debates in turn.

By reviewing existing fairness metrics and their weaknesses in
Section 2, we identify a second issue in the current fairness debate:
Constructed fairness criteria are often not sufficiently contextu-
alised. Procedural fairness criteria assume that an unbiased decision
process alone will lead to a fair state of the world (see Sec. 2.1). Op-
erating under this assumption, they neither acknowledge nor adjust
for biased data and as a consequence are prone to reinforcing ex-
isting inequalities. Outcome based fairness modelling provides a
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more promising approach, however, the standard outcome based
metrics usually fail to capture ethically relevant structural differ-
ences between groups (see Sec. 2.2). That is, they do not investigate
how a certain outcome distribution arose, or the long-term effects
of intervening in such a distribution.

In contrast, we argue that we should optimistically demand of fair
ML exactly this: It should be thought of as a tool to intervene in the
status quo and improve conditions for the previously disadvantaged.
The transformation of established bureaucratic procedures towards
automation-based processes offers historically unique opportunities
for a reevaluation and restructuring of society. Such transformation
holds the promise of improving structural conditions for historically
disadvantaged groups and individuals via access to, for example,
better jobs, wealth and education. In this context, a fairness inter-
vention is a procedure that is specifically designed to address and
intervene into pre-existing discrimination. A well-known general
example for this strategy is the practice of positive (or ‘affirmative’)
action. In contrast to the paradigm of ‘blind’ decision-making that
intentionally excludes certain protected features from the process,
respective decisions explicitly take demographic differences into
account in order to counteract historic forces of discrimination. We
call this motive for fair ML interventional.

With this context we will introduce a framework we call dynam-
ical fairness modelling in Section 3. Dynamical fairness modelling,
we argue, helps bridging the gap between (un-)fairness in the world
(the ethical discourse) and formalisations (the formal discourse).
It does so because it requires the following steps: It forces the de-
cision maker to explicate their long term goals in ethical terms
(as opposed to the merely implicit ethical dimension of a predomi-
nantly technical choice), their formalisation as well as the expected
long-term effects of any suggested interventions. Rather than eval-
uating fairness interventions statically and in isolation, dynamic
fairness modelling prompts the decision maker to reflect on, model
and evaluate the downstream effects of any chosen decision pol-
icy – according to the interventional perspective. To illustrate this
framework, we will discuss a conceptual as well as a computa-
tional example. After reviewing some existing technical work in
the direction we propose, we will conclude by returning to a more
philosophical treatment in Section 4 where we will also discuss
limitations.

2 PROCEDURAL AND OUTCOME-BASED
FAIRNESS METRICS

In this section, we briefly present and discuss some technical ap-
proaches that are prominent in the debates on fair ML, although
we do not claim to give an exhaustive overview. The approaches
can be categorised as procedural and outcome-based criteria of fair-
ness, roughly following the distinction between pure procedural
justice and perfect procedural justice as introduced by Rawls ([35]
p. 74-75). We will demonstrate how discussions of ‘static’ formal
metrics lead to issues that can be addressed by incorporating fur-
ther context that is initially not present in the existing formalised
criteria. We will eventually arrive at a contextualised modelling
approach, dynamical fairness modelling, in Section 3.

2.1 Procedural Criteria
Procedural fairness is determined by criteria that refer to the process
of a decision (as opposed to the outcome of a decision). Procedural
fairness criteria may follow the ethical principle to treat every-
one equally in a decision process, independently of any specific
attributes.1 On the other hand, decision making procedures are
unfair if they follow principles that are themselves ethically unac-
ceptable, independently of the outcome. Specifically, considering
given histories and structures of discrimination, it may be ethi-
cally unacceptable to base a decision on certain sensitive attributes,
for example using attributes like race or gender in the context of
hiring. The so-called ‘blindness’ approach to anti-discrimination
as formalised in the ‘fairness through unawareness’ criterion con-
structs a decision procedure that is supposed to be fair by simply
not considering any such protected attributes [18].2 For example,
the principle of ‘color blindness’ refers to racial categories: ‘Gen-
erally, color blindness minimises the use and significance of racial
group membership and suggests that race should not and does not
matter.’ ([34], p. 200).

Why procedural criteria fail: They neither acknowledge nor adjust
for biased data. There are fundamental problems with this approach
to anti-discrimination. Although the procedural constraints of the
‘blindness’ approach might be effective in preventing direct (i.e.
explicit) discrimination, other variables can act as proxies for pro-
tected attributes. In this case, there is information flowing from the
protected attribute A to the outcome even if the category of A is
not explicitly used by the model. This happens because structural
discrimination is statistically effective in many ways: It correlates
protected attributes like race or gender to geographic residence, so-
cioeconomic status, education, medical records, family background,
criminal records and other attributes. Consequently, if there is dis-
crimination, its effects are very likely manifest in data. And if the
data that correlates to protected attributes is used in a decision
making procedure, the process may be as discriminating as if the
protected attributes were explicitly used in the first place.

This problem is exacerbated in ML-based ADM. Machine learn-
ing works by extracting patterns from large amounts of historical
data by statistical inference, referred to as ‘training the model’, and
then using these patterns to determine decisions. Considering this
fundamental mechanism by which ML works, it becomes clear that
ML can never be better than the data used to train it. We can at best
hope that the algorithm perfectly captures the information we have
presented it with. But if we train an algorithm on biased training
data, it will reflect such biases.

For this reason, the principle of non-discrimination as ‘exclusion
of protected attributes’ is a formal criterion that does neither ac-
knowledge nor adjust biased data. At best, a decision procedure
realises equal chances and opportunities for everyone affected. At
worst, a procedure mirrors data bias and proliferates discrimina-
tion. In this case, a ‘blind’ decision procedure reproduces a given

1According to the ethical goal of ‘equal treatment’, sufficiently random decisions
may be considered fair insofar as probabilities are equal for everyone (cf. [10] for an
interesting discussion of the (un-)fairness of random decisions.).
2Protected attributes are features such as religious affiliation, age or sexual orientation
that are ‘protected’ by law of many countries. Individuals cannot be discriminated
against based on such attributes for example in the context of hiring (e.g. US Civil
Rights Act Title VII) or housing (e.g. US Fair Housing Act).
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distribution of capabilities and opportunities that was unfair in the
first place.

Possible solutions. To deal with the issue of proxies, we might try
to somehow ‘filter’ the data used in the process in a more elaborate
way. An example for this approach works by identifying which data
(other than the data that explicitly refers to the protected attributes)
should or should not be used by a decision making algorithm. For
example, Grgić-Hlača et al. [21] propose an approach based on
surveying users about whether any feature should be used in a
fair decision making process. On the other hand, not all features
that correlate with the protected attribute might be unacceptable
for ethical decision-making: For example, a job might require the
applicant to hold an engineering degree; and holding such a degree
is positively correlated with being male in many countries. As a
consequence, less women and non-binary individuals3 might be
hired without the gender attribute being used in a discriminatory
way. In other words, only causal relations between protected at-
tributes and decision outcomes are problematic in terms of fairness,
and only those need to be corrected for. This idea is explored in
causal fairness approaches (e.g. [8, 29, 30]). While such approaches
provide elegant solutions where causal data is available (i.e. where
we know the reason why a certain situation came about), there is a
reason why modelling is usually done in the observational sense,
based on correlation rather than causation: It is in most cases diffi-
cult, if not unfeasible, to model the full causal process leading to a
certain feature distribution; e.g. the cultural and historic reasons for
women and non-binary individuals not to choose undergraduate
degrees in engineering in the first place remain unexamined.

Instead, we can acknowledge present and historic discrimination
that result in biased data and work towards ways to address them.
A fairness intervention should be thought of as a procedure that
is specifically designed to address and intervene into pre-existing
discrimination. Corresponding to this interventional perspective, we
argue for dynamical fairness modelling which we will introduce in
Sec. 3.

2.2 Outcome-based criteria
The above considerations and further examples from the literature
on bias and fairness suggest that we should eventually judge the
fairness of the procedure by its outcome. While a certain procedure
may seem completely unbiased and non-discriminating by itself, it
may appear differently when we look at its outcomes [37]. Perhaps
we find out that although a seemingly fair decision procedure care-
fully precludes sensitive data, it still leads to an apparently unfair
distribution of opportunities and goods. Consequently, decision pro-
cedures that incorporate potentially biased data should be evaluated
by looking at the outcomes. Outcomes can be measured in terms of
the distribution of goods, e.g. resources and material goods, but also
opportunities, capabilities and well-being. Fairness then correlates
to the ethical acceptability of a certain outcome. The ethical goal of
a respective fairness intervention could be an equal distribution of

3Like much of the existing fair ML literature that we build on, we acknowledge the
use of overly simplistic categories and false binaries in this work. We view efforts
towards inclusive categories and intersectionality as absolutely necessary, and as an
orthogonal research direction to static vs. dynamical fairness modelling which is the
focus here.

goods or, alternatively, a distribution that is proportional to a cer-
tain merit. In this setting, an algorithm’s fairness can be evaluated
by reference to the distribution of outcomes it produces, i.e. the
state of a world in which decisions were made according to the algo-
rithm’s predictions or recommendations. Generally, outcome-based
approaches are suited to bypass the previously mentioned blind
spot of procedural fairness, because an evaluation of outcomes is
based on criteria of fairness that are to some extent detached from
the bias of the original data. For this reason, these approaches seem
to be motivated by the idea of controlling potential unfairness by
actively neutralizing certain biases (although the interventional
stance will turn out to be a more adequate point of view).

Group fairness metrics. Early contributions to algorithmic fair-
ness propose outcome-based criteria such as demographic parity
[7] or equality of opportunity [22] (see Table 1 for formalisations of
these and other metrics). Applied to the example of hiring and gen-
der, demographic parity corresponds to hiring the same proportion
of male and female candidates. Equality of opportunity requires
hiring at the same proportions conditioned on the candidates’ qual-
ifications. In our example, qualified male and female applicants
should be hired at the same rates. The difference between demo-
graphic parity and equality of opportunity becomes apparent when
considering the case of unequal qualification rates between the gen-
ders. If indeed more qualified men apply, the latter criteria allows
for differences in hiring rates, where the first does not. Because the
protected attribute is usually thought to encode the membership
to a demographic group (gender, race, etc.), criteria based on such
attributes are summarised under the term group fairness.

Individual fairness metrics. Seemingly in contrast to group fair-
ness are so-called individual fairness metrics. According to individ-
ual fairness, a decision is fair if similar individuals are treated the
same way, or, in terms of Aristotle’s account of justice, that similar
cases are treated alike. In our example of hiring, to satisfy individual
fairness, equally qualified candidates should either both be hired
or not hired, regardless of which group they are categorised in.
Much effort in technical work on fair ML focuses on evaluating
different fairness metrics against each other, and proving various in-
compatibility statements [9, 13]. Formally, apart from very specific
cases, group fairness and individual fairness can not be satisfied
simultaneously. If the underlying distribution of features is differ-
ent between demographic groups, we cannot obtain demographic
parity while at the same time treating individuals from both groups
the same. In order to achieve demographic parity, we need to al-
low for preferential treatment of the less qualified group. Binns [5]
resolves this conflict by pointing to the shared underlying ethical
goal of both individual and group fairness; we briefly discuss his
work below.

Why outcome-based criteria fail: They do not acknowledge struc-
tural differences between groups. Individual fairness requires a mea-
sure for similarity; mathematically speaking, we need a metric to
define the distance of individuals x and y in the input space (as-
sume that x belongs to protected group X and y to Y , respectively).
In the hiring example, the metric would be defined in terms of
some qualification score, and would typically ignore protected at-
tributes when determining similarity. Proceeding in this way, one
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Fairness principle Fairness metric (name) Definition

Fa
ir
pr

oc
es
s

‘Blindness’: Protected attribute should not
be used in the decision.

Fairness through Unawareness Protected attributes are not explicitly
when making predictions [18],
F (X ,A) = F (X ).

Protected attribute should not cause the
decision.

Counterfactual Fairness [30] p(F |do(A = 0)) = p(F |do(A = 1)),
do(·) is the do-operator which denotes an
intervention on the protected attribute.

(Un-)Resolved Discrimination, Proxy Dis-
crimination [29]

Causal paths between ethically relevant
variables and outcome are (un-)blocked,
see [29].

Fa
ir
ou

tc
om

e

No subjective discrimination: Qualified
people should be equally likely to obtain
the job/mortgage/etc. across groups.

(Formal) Equal Opportunity [22] p(F |A = 0,Y = 1) = p(F |A = 1,Y = 1)

In addition: Unqualified people should
also be equally likely to not get the
job/mortgage/etc. across groups.

Equalised Odds [22] p(F |A = 0,Y = y) = p(F |A = 1,Y = y) for
y ∈ {0, 1}

Equal representation, diversity Demographic Parity p(F |A = 0) = p(F |A = 1)
‘Treat like cases alike’ (Aristotle) Individual Fairness D(F (x1), F (x2)) ≤ d(x1,x2) for D and d

distance functions in the output and input
space.

Table 1: Some fairness principles and their formalisations; for the relationship between fairness principles and ethical goals
see Sec. 3. In the right column the notation is as follows. F : the predictor (with slight abuse of notation, this can refer to both
a single function as well as a distribution of outcomes, i.e. we do not properly distinguish here between deterministic and
probabilistic algorithms), X : the (distribution of) features, A: a protected attribute (e.g. gender or race), Y : the (distribution of)
true labels (e.g. whether someone is qualified for the job/mortgage/etc.).

implicitly decides that belonging to group X or Y is ethically irrele-
vant for the decision at hand, following the principle of ‘blindness’
as described in Sec. 2.1. But from the interventional perspective,
this stipulation is misleading, because we are interested specifi-
cally in socio-economic, historic and structural differences between
groups. Instead of merely ignoring unwanted data that correlates
to protected attributes as in the ‘blindness’ approach, individual
fairness should rather construct relevant similarities between se-
lected attributes. A good similarity metric should reflect ethically
relevant differences.4 Interestingly, as Binns [5] shows, when using
a similarity metric that accounts for ethically relevant differences
between groups, individual and group fairness can become com-
mensurable. Designing such a more holistic similarity metric is
not trivial as any choice is necessarily rooted in ethical reasoning
and underlying values. Indeed, we need to explicate our ethical
stance: ‘conflicts are not primarily the result of selecting individual
or group fairness measures. Instead, they are likely to be the result
of unstated conflicting moral and empirical assumptions regarding
the decision-making context’ ([5], p. 519).

Metrics like equality of opportunity or equalised odds suffer
from a similar shortcoming: They do not account for the different
realities of protected groups. The two metrics define unfairness as
an unfair distribution of errors, i.e. when opportunities are wrong-
fully denied for people of certain demographic groups. However,
as Eidelson [15] argues, perfectly accurate, i.e. error-free, decisions

4For example, in a Rawlsian luck-egalitarian sense, a decision should correct for
circumstances negatively affecting an individual’s qualification score that lie outside
their control.

can be unfair as well if they occur in the context of what he terms
patterned inequality between groups. As an example, imagine a
bank giving out loans. A lending decision is considered accurate
whenever the lender can repay. Being wealthy should make it easier
to pay back the loan; if the investment does not go as planned, there
might be alternative income streams to alleviate the loss and pay
back the bank. Thus, an algorithm which only approves loans to
wealthy people will be highly accurate, as individuals from this
group will likely be qualified in the sense of being able to repay.
However, by employing such a decision criterion, people born into
less wealthy families will never be afforded the opportunity of tak-
ing out a loan to make an investment, say, in their own business, in
order to improve the economic situation for themselves. The effect
is especially dire in cases where different socio-economic factors
are linked (e.g. wealth and race) such that entire communities are
systematically excluded from opportunity. Note that this is not a
problem specific to machine learning or automation in general, but
of merit-based decision making overall. As Kasy and Abebe [28]
state: ‘under this perspective, inequality [...] is acceptable if it is
justified by merit [...], no matter where the inequality [in merit] is
coming from’.

Demographic parity seems specifically designed to break such
patterned inequalities. It may require drastic positive action, for
example approving bank loans at equal rates for men and women.
But this can have negative consequences for individuals that belong
to the very group that is supposed to benefit, because it ignores the
unfortunate reality of the gender pay gap, women’s lower wages
on average, and thus their potentially lower ability for paying back
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a loan. Receiving a bank loan that one is unable to repay, however,
leads to less financial well-being, a worse credit score and eventu-
ally being worse off than without having received the loan in the
first place. This, of course, is not to say that the consequences of
requiring demographic parity are always negative. More often than
not it will be hugely beneficial for an individual to be afforded an
opportunity. Nevertheless, the potential harms of group fairness
metrics like demographic parity or equalised odds for those groups
that are supposed to benefit should be reflected in the implementa-
tion of ADM.

To summarise this section, we identify two general approaches
to fairness: procedural and outcome-based approaches. Procedural
criteria fail to account for existing biases in data and are therefore
prone to reproducing existing inequalities. Within the category of
outcome-based approaches, we discuss different fairness metrics,
formally divided into group fairness metrics and individual fairness
metrics. Group fairness metrics entail certain risks for the groups
that are supposed to benefit from them. As purely distributive
criteria, group fairness metrics neither address nor explicitly control
the conditions that lead to a certain distribution. For example, a
distribution according to demographic parity is not in itself valuable,
but only if it helps to change the social conditions that contribute
to the development of strongly disparate distributions in the first
place. That means that we should not only discuss fairness in terms
of (static) distributions between different groups, but as a result of
processes that shape and determine these distributions.

Strategy. We conclude that a process-based, i.e. dynamical mod-
elling perspective is necessary to meaningfully reason about fair-
ness in the interventional sense – a perspective that many existing
metrics are lacking. We have also seen that existing approaches
often suffer from a lack of explicitly stated ethical goals. The neces-
sary ethical debate is sometimes conflated with and obscured by
the formal debate, such as in the discourse of the apparent conflict
between group and individual fairness metrics. As a consequence,
we formulate the following desiderata for fairness modelling:

(1) The ethical goals should be stated explicitly, and indepen-
dently of formalisation.

(2) Any intervention should be evaluated based on its impact
towards ethical goals, i.e. whether it improves the condi-
tions underlying disparate distributions of goods between
demographic groups.

The following Section 3 will develop a framework for fairness
modelling according to these considerations.

3 DYNAMICAL FAIRNESS MODELLING
We will now outline the implementation of the dynamical fair-
ness modelling framework, first in a short overview (Sec. 3.1), and
then with an example. Observing a mainly US-centric debate, we
will work with a European case study: gender quotas on company
boards as a potential measure to reduce gender inequality in the
workforce. This measure has been discussed and/or implemented
in multiple European countries such as Norway,5 Belgium, Italy,
France, Germany and the Netherlands [16]; California followed in
5Norway is not a itself a EU member state, but has re-kindled the positive action debate
across the European Union when it introduced a minimum requirement of 40% of
women on all company boards of publicly listed companies as early as 2006.

September 2018 (CA Senate Bill 826, [20]). After this conceptual
example (in Sec. 3.2), we will illustrate what a computational imple-
mentation of the framework can look like. To do so, we will review
existing technical approaches for dynamical fairness modelling, in
particular the pivotal 2019 work by Liu et al. [31] (Sec. 3.3 and 3.4).

3.1 Implementing Dynamic Fairness Modelling
(1) Explicate Ethical Goals. The first element of our proposed

modelling framework is an explication and discussion of the long-
term goals in ethical terms, i.e. independent of possible formalisa-
tions. While these explications will likely refer to existing philo-
sophical principles of fairness or justice, e.g. to positions like egali-
tarianism or equality of opportunity, what we call ‘ethical goals’ is
meant to be more concrete and contextualized, especially with re-
spect to the long term effects of any possible intervention. Instead,
the explication of a specific ethical goal should refer to a given
background of structural discrimination and inequality, ideally by
incorporating the specific histories and conditions that are rele-
vant for the context of the projected decision making system. To
complement general principles, localized knowledge about racism,
sexism, colonialism or classism etc. should play a role in the discus-
sion of ethical goals. Additionally, these reflections should be very
specific in terms of those local contexts that will be influenced and
transformed by the development of an ADM system.

We give two brief examples for ethical goals here that will be
elaborated in the rest of this section. Firstly, consider the realization
of the value of diversity in the assembly of teams. A concrete mani-
festation of ‘diversity’ will depend on which groups were previously
un- or underrepresented and why. For example, when reasoning
about women in the workplace, it is useful to consider factors such
as the traditionally higher workload for women in the home (see
case study in Sec. 3.2). Another example is an institution setting
the goal to actively advance substantive equality of opportunity
between demographic groups. A good fairness intervention might
aim to help those that are structurally disadvantaged due to the
local history and culture, not only by affording them opportunities
directly but by helping them to successfully compete for those (see
example in Sec. 3.3).

(2) Formalisation. In a second step, decision makers approximate
a formalisation of the previously explicated ethical goals. In a sim-
ple case, this formalisation might simply correspond to one of the
existing fairness metrics. For example, as Binns [5] shows convinc-
ingly, an egalitarian ethical stance could be formalised in terms
of both group or individual fairness metrics. (Formal) equality of
opportunity corresponds to the fairness metric of the same name.
Ethical goals around diversity and equal representation can math-
ematically be expressed via the demographic parity metric. The
ethical principle to ‘treat like cases alike’ which is in many contexts
required by legislation can be encoded via the individual fairness
metric [13]. Table 1 contains some fairness principles and their
formalisations; they are discussed in more detail in Sec. 2.

Applying existing fairness metrics in this sense is an easy way
to arrive at formalisations of ethical goals; however, they should
not always be expected to correlate to existing metrics as easily.
As argued in the previous paragraph (1), our ethical goals usually
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require a higher level of specificity and contextualisation. In partic-
ular, as we will show with an example in the next section, many
ethical goals are more robustly formalised under a long-term view.
This temporal perspective is important to address not only the
symptoms of structural discrimination, but also the conditions that
produce them. This dimension is not expressed in the standard fair-
ness metrics, which is why we call them ‘static’. Under the dynamic
modelling point of view, additional formalisations become avail-
able. For example, as we will see in Sec. 3.4, Liu et al. [31] suggest
optimising for equally distributed features (rather than outcomes)
as a proxy for fairness.

(3) Modelling Down-Stream Effects. Once the decision maker has
formalised their ethical goal, they can start to evaluate any potential
course of action against it. This means developing a mathematical
model of the downstream consequences of a given action, e.g. will
admitting more female students to university programs increase
the number of qualified female applicants for certain positions. Of
course, the quality of this model is essential for the success of our
approach, i.e. it should be based on empirical research and expert
knowledge of the problem at hand. Early technical work on dy-
namical modelling of algorithmic fairness usually proposes models
based purely on assumptions which is also valuable, at least to
investigate the framework.

Having broken down the dynamical modelling pipeline, we note
that a main advantage lies in its explicitness and, consequently,
transparency. Each of the steps corresponds to stating or formalis-
ing assumptions in a way that can readily be critiqued and tested.
Critiquing the first step corresponds to asking: Do we agree with
this ethical goal? Disagreeing about the notion of fairness or justice
corresponds to a philosophical debate with multiple stakeholders,
and ethicists being domain experts. The second step can be evalu-
ated by asking: Does our formalisation indeed capture the ethical
goal we have stated? As [24] points out, such measurement mod-
elling tasks are standard problems in the quantitative social sciences.
They can be accomplished by, for example, testing whether the for-
malisation is consistent in the sense of test–retest reliability: If the
same ‘fairness-test’ comes out differently for very similar scenarios,
the operationalisation at question is not robust, a sign of a poor
measurement. For the last step we ask: Does a given fairness inter-
vention indeed have the claimed effect? Again, this question can, in
principle, be answered with expert knowledge and empirical data
whenever the research is available. For example, Kalev et al. [26],
survey the effect of a variety of positive action policies on manage-
ment diversity. If such data is not available yet one might decide
to roll out the intervention and measure its effects (given budget
and ethical constraints). Of course, there might be cases where
we fundamentally cannot know the exact outcomes of a certain
intervention in advance. In such cases, we might include our epis-
temic uncertainty in the model of down-stream effects. In critical
applications we might decide on conservative interventions with
less potential upsides, but more predictable downstream effects. By
enabling us to challenge underlying assumptions and mechanisms
dynamical modelling provides an interface for interdisciplinary
collaboration between stakeholders, technologists, ethicists, social
scientists and other experts.

3.2 An Example: Women on Company Boards
The EU aswell as individual member countries have been concerned
with gender inequality in the workplace and have discussed and im-
plemented a range of interventions, most notably gender quotas for
company boards. Such quotas require the boards of publicly listed
companies in the respective countries to contain at least a certain
percentage of women, typically between 30 and 40% where such
solutions are implemented [25]. This section illustrates dynamical
fairness modelling by measures of such a fairness intervention. We
note that hiring decisions for company boards are not algorithmic
in the sense of being fully automated or processed by machines –
certainly, such high stakes personnel decisions are currently made
by humans. Rather, they are algorithmic in a broader sense that
there is ‘a step-by-step procedure for solving a problem or accom-
plishing some end’6, i.e. an underlying set of (implicit) rules that
the decision makers are following. In this sense, most ‘principled’
decisions can be considered algorithmic.

(1) Ethical Goals: Equality of Opportunity, Diversity and Repre-
sentation. The 2013 report on ‘Positive Action Measures to Ensure
Full Equality in Practice between Men and Women, including on
Company Boards’ [36] prepared for the European commission iden-
tifies three ethical goals (referred to as ‘normative goals’ in the text)
of such interventions. The first goal is to ‘improve the ability of
the disadvantaged group to compete for the available opportuni-
ties’, i.e. ensuring substantive equality of opportunity. Substantive
(or, in Rawls’ terms, fair) equality of opportunity is distinct from
formal equality of opportunity, in that it does not require equal
hiring criteria on paper, but equality in the chances to satisfy those
criteria [2]. Secondly, they aim ‘to limit the negative effects on
women’s position in the labour market of the unequal distribution
of responsibilities in the family’. The third goal is to ‘to ensure the
balanced representation of men and women in bodies with signif-
icant decision-making powers’. Instead of taking the individual’s
perspective, this last goal is formulated from society’s point of view.
It could be interpreted as the value of diversity in itself, via some
sort of democratic legitimacy (i.e. bodies of significant decision-
making powers should be demographically representative of the
people they are governing) or via the improved results achieved by
diverse teams [33].

(2) Formalisation: Demographic Parity, but in the Long Term. At
a first glance, the third ethical goal seems to translate into a for-
malisation straightforwardly: ‘balanced representation of men and
women’ corresponds to demographic parity. That is, if the base
population consists of 50% women, one would aim for the same
proportion of female board members. When comparing with the
notion of demographic parity encoded in EU legislation, we note a
subtle difference to the classic notion from the fair ML literature
where demographic parity is understood to apply to any single de-
cision in isolation. However, in this real world example it is usually
formulated as a long-term goal, i.e. quotas are to be met within a
time frame, typically a small number of years [25]. While this might
seem like a political technicality at first (we cannot force companies
to fire and hire new boards on the spot), we believe that we see

6Definition of algorithm according to https://www.merriam-webster.com/dictionary/
algorithm.
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a general property of fairness principles and their formalisations
at play: They are often best thought of as aspirational long-term
goals rather than short-term strategies. Indeed, in our example,
people generally agree that more balanced company boards are
desirable in the long-term, but disagree on the best measures to
achieve such parity: In 2010 [36], ‘77% of the Europeans are of the
opinion that we need more women in management positions [...].
At the same time, Europeans are rather sceptical about strong pos-
itive action measures. The Eurobarometer survey found that 44%
of European respondents (44% W, 44% M) consider that the most
efficient measures consist of encouraging enterprises and public
administrations to take measures to foster equality between women
and men (“code of good practice") and to fight against stereotypes’
while ‘concerning the imposition of quotas by law, it is favoured
by 19% of European respondents (20% W, 18% M)’.

(3) Modelling Down-Stream Effects: The Effectiveness of Positive
Action. Having decided on demographic parity (formalised in the
long-term sense) as the ethical goal, states can consider different
policies to achieve them. A naive way might be to immediately
require demographic parity, i.e. re-appoint company boards in a
gender-balanced manner and keep the demographic parity con-
straint for all future personnel decisions. While fulfilling the crite-
rion on paper, this approach does not seem to actually align with
many people’s moral intuitions (as seen in the Eurobarometer sur-
vey data above). They might disagree with this intervention for the
reasons that we are familiar with from the fair ML literature: As-
sume the reason for seeing few female board members is not blatant
sexism, or what economists call taste-based discrimination [4], but
rather the applicant pool containing few qualified women according
to the current hiring criteria. Then, achieving demographic parity
immediately can imply hiring ‘less qualified’ women, or, given equal
qualification, preferring women to men which might seem unfair
towards their ‘more qualified’ male counterparts. Such violation
of the equal treatment principle is discussed in the fair ML litera-
ture as a contradiction between individual and group fairness (see
Sec. 2.2). We note that contrary to this intuition, EU law explicitly
allows for preferential treatment in the context of positive action:
‘With a view to ensuring full equality in practice between men and
women in working life, the principle of equal treatment shall not
prevent any Member State from maintaining or adopting measures
providing for specific advantages in order to make it easier for the
underrepresented sex to pursue a vocational activity or to prevent
or compensate for disadvantages in professional careers’ (Article
157(4), Consolidated version of the Treaty on the Functioning of
the European Union (TFEU)).

Secondly, as we have seen in Sec. 2.2, some argue that dras-
tic preferential treatment might have negative consequences for
the women themselves: Women might be perceived as less com-
petent in their jobs when quotas are employed in their selection
regardless of their actual qualifications [12]. If they were indeed
appointed despite being less qualified, they might be less likely to
being re-appointed or recommended by their colleagues for other
opportunities. More dramatically for the underrepresented group,
under-qualified women in such jobs might lead to statistical discrim-
ination against the group of women as a whole. After observing less
qualified female individuals, decision makers might conclude that

women in general are less able to perform well in the job. We note
that this argument is based on the implicit assumption that there
are essentially no qualified females in the candidate pool (since we
would still be able to hire the most qualified ones under a quota
solution). This seems implausible given the fact that more women
than men graduate from higher education programs in the EU: In
2019, 46 % of women aged 30 − 34 had attained tertiary education
and only 35 % of men across the EU Eurostat (2021). 7 On the other
hand, the ‘negative example’ argument works in the other direction
as well: quotas and the resulting increased representation of women
produce more role models and can lead to an increased willingness
for women to compete for the jobs [3].

Thirdly, it is not clear that demographic parity is indeed desirable
if it is achieved by continuously applying quotas. Fairness interven-
tions are lawful and desirable, but they should tackle the cause of
the inequalities and should thus be temporary. According to the
UN Convention on Elimination of Discrimination against Women
(Article 4(1)), positive action measures ‘shall be discontinued when
the objectives of equality of opportunity and treatment have been
achieved’ [17]. The goal of a good fairness intervention is that it
will become redundant over time.

Interestingly, operationalising demographic parity on boards
in this sense illustrates a problem with the ethical goal and its
formalisation itself. If we achieve demographic parity by continuing
to apply quotas every time we have to make a hiring decision
but the actual distribution of qualified candidates never changes,
i.e. the parity never becomes the ‘natural’ state (or the stationary
distribution of the process), the strategy does not actually appear
to be successful in achieving equality in the workplace. Instead,
we want to improve the situation for the underrepresented group
and design interventions which actually lead to more women being
qualified for those board seats (this might not mean changing the
women but changing the qualifications). Thus, the ethical goal in its
first formulation above, to ‘improve the ability of the disadvantaged
group to compete for the available opportunities’, turns out to be
a more complete picture. Once this is achieved, we can obtain
demographic parity without any further interventions because
more women will be qualified 8. The formalised debate has, in a
way, informed the ethical one (rather than just vice versa).

Under these considerations, one might define ‘robust’, long-term
demographic parity as goal and develop other, temporary strategies
to achieve it by improving women’s conditions for competing in
the labour market. The range of such alternative strategies is wide:
A group of approaches aims to enable mothers to (re-)join the work-
force, those include flexible work hours or part-time employment,
or providing company childcare facilities. Some countries require
nomination parity, i.e. employers have to nominate two candidates,
one of each gender for every position [36]. We also might invest
more in developing female talent early on, in universities or gradu-
ate programs, or invest in diversity training or more inclusive job
ads. Amongst those interventions, we naturally prefer those which

7Gender statistics. Eurostat. Retrieved from https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Gender_statistics#Education
8This is based on the assumption that women and men have similar cognitive markups
and would, given ‘free’ choice choose similar professions in distribution. This is a
somewhat controversial assumption (what if women choose not to be on board seats?),
but it seems to be consistent with the EU law’s conception of gender equality.
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are most effective, i.e. the best under our model of down-stream
effects. In this example, the first group of measures seems to be the
least effective [36]. Wheatley [39] suggests that part- and flexi-time
arrangements often have negative effects on women’s careers since
they are likely to re-enforce the traditional dynamics of women
working more in household and families.

This example has illustrated the strengths of the dynamical mod-
elling perspective: As argued theoretically in Sec. 2, we have seen
how ethical deployment of any algorithmic decision making sys-
tem in a complex, real world required its embedding into a much
bigger context than what static fairness metrics can provide. If
we aim to implement it as a fairness intervention, i.e. under the
interventional perspective from Sec. 1, we need to consider any
decision’s consequences over time, and how those feed back into
the features relevant for decisions in the future. The dynamical fair-
ness modelling approach can be a formal language for this. Indeed,
it can be helpful for such reasoning by bridging the gap between
the ethical and the formal debate. After illustrating the approach
conceptually, we will now move on to the technical perspective
of how dynamical fairness modelling might be implemented in a
computational setting by reviewing early existing work.

3.3 A Computational Example: Liu at al.’s
Delayed Impact of Fair Machine Learning

Liu et al. [31] propose a mechanism which allows for temporal anal-
ysis of ML decision processes by introducing ‘a one-step feedback
model of decision-making that exposes how decisions change the
underlying population over time’. Under this model, the authors
study whether certain fairness criteria indeed improve the of well-
being of a disadvantaged group, or whether they might even lead
to a decline in the variable of interest. To our knowledge, this is
some of the earliest technical work that fits within the framework
of dynamical fairness modelling, and we will illustrate here how
Liu et al.’s approach is one strategy to implementing it.

Ethical goal: Their ethical goal is to ‘promote the long-term well-
being of disadvantaged groups’ ([31], p. 1).

Formalisation: Two groups A and B associated with a protected
attribute are characterised by distributions πA/B of qualification
scores X. The notion of well-being referred to in the ethical goal is
then equated with this qualification score. For example, the authors
use an individual’s credit score as a proxy for their financial well-
being in the lending example. Institutions have selection policies
τA/B (rates at which score they accept credit applications), and
those have down-stream effects on the individuals. In particular,
they assume the availability of a function ∆ : X 7→ R that pro-
vides the expected change in score for a selected individual at a
given score. The expected change for the group as a whole is de-
noted by ∆µA/B . The authors then distinguish between long-term
improvement (∆µA/B > 0), stagnation (∆µA/B = 0), and decline
(∆µA/B < 0) for the groups A and B. The suggested metric for
evaluating a decision making policy refers to the change of this
average qualification score. A desirable policy leads to an increased
average qualification score for the individuals of the disadvantaged
group.

Model of downstream effects: The authors assume access to a
function ∆ : X 7→ R that provides the expected change in score for
an individual with score x . As discussed in Sec. 3, such a function
is in practice difficult to construct. In their lending example, they
assume the following simple structure: They denote by ρ(x) the
probability of an individual with score x to be able to repay the
loan. c+ is the benefit from being granted a loan and being able to
repay, c− is the cost for the individual of defaulting on the loan (for
example, the worsened credit score). Then, ∆(x) = c+ρ(x) + c−(1 −
ρ(x)).

The authors show that static fairness metrics, especially demo-
graphic parity, can under certain conditions lead to a decline of the
qualification score, and thus to the protected group being worse
off in the long term. This finding ties in with the problems out-
lined in Sec. 2. As a corrective, the authors suggest optimising for
an improvement of the qualification score for the disadvantage
group directly rather than applying existing fairness metrics after
the fact. This suggestion perfectly aligns with our framework. In-
stead of deciding on interventions beforehand and evaluating their
consequences, we suggest to work backwards from the goal.

3.4 Related Work
Similar in spirit to Liu et al. [31], Zhang et al. [40] discuss the im-
pact of static fairness metrics and constraints on the long term
well-being of different demographic groups. Unlike Liu et al.’s work,
an individual’s qualification is here modelled as a latent, unobserv-
able variable. Observable scores like school grades are viewed as
noisy estimates for the underlying qualification – a relevant differ-
ence in the light of ongoing debates about discriminating bias of
school grades or standardised tests [14, 19]. Their findings again
highlight the complexity of the issue: Whether a given, static fair-
ness constraint is beneficial or detrimental downstream depends
on the specifics of the problem at hand and cannot be determined
without an analysis of the decision’s consequences over time.

Kannan et al. [27] analyse fairness policies for college admission
and share our view on the essence of the fair ML issue: ‘What is
often unstated (and perhaps not even explicitly considered by the
colleges) is what exactly the long term goals of these policies are,
beyond the short term goal of having a diverse freshman class’ ([27],
p. 2). The authors formalise two such long term goals by analyzing
how the college admission and grading policy influences a potential
employer’s hiring decision. Firstly, downstream equal opportunity
requires that suited college graduates are equally likely to be hired
independent of their demographic. Secondly, elimination of down-
stream bias demands that ‘rational employers selecting employees
from the college population should not make hiring decisions based
on group membership’ ([27], p. 2). This second criterion is equiva-
lent to demanding that the college grades are distributed such that
the employer can apply the ‘blindness’ criterion from see Sec. 2.2
without obtaining sub-optimal decisions, i.e. hiring candidates with
subpar qualifications. Like Zhang et al. [40], this work models a
student’s true qualification as a latent variable that can only be es-
timated noisily by standardised test scores or college grades. Their
finding consists in yet another ‘inconsistency statement’: in general,
downstream equal opportunity and elimination of downstream bias
cannot be achieved simultaneously.
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Heidari et al. [23] take a societal perspective rather than focus-
ing on the individual. The authors formalise a mathematical model
for allocating opportunities such as college admissions to people.
Motivated by an extremely strong correlation between US parents’
and their kids’ socioeconomic status (thus low intergenerational
mobility), the effects of positive action on intergenerational so-
cioeconomic status is analysed. In line with our intuition about
dynamic fairness modelling and the importance of a long-term
view, the authors find the following: An optimal allocation policy
that only takes the current generation into account will not employ
positive action. However, when future generations are taken into
account the optimal policy – in the utilitarian sense of maximising
the number of people who are given an opportunity and succeed –
will include positive action. Intuitively, this is because a child of a
well-off individual is likely to be well-off themselves, and so giving
somebody the chance to improve their socioeconomic status has
positive downstream effects for society.

4 CONCLUSION
This work has introduced a framework for dynamical fairness mod-
elling, which we believe to have two main advantages over many
of the existing fairness metrics. Firstly, it forces the decision maker
to explicate their ethical goals and commitments, hereby increasing
transparency and helping to disentangle the formal and the ethical
debates underlying fair ML. This clarification is motivated by the
observation that most problems of fairness cannot be solved in the
context of a purely technical discussion. While formalisation and
technical implementation of fairness metrics may clarify important
aspects, the results remain too limited to address ethical and po-
litical issues. Thus, we want to foster a technical debate which is
rooted in, and informed by, an ethical one. Secondly, it provides a
more contextualised approach than existing methods. In particular,
it accounts for biased data (as a consequence of inequalities in the
status quo) and it provides a better starting point for addressing
structural differences between groups, eventually improving the
conditions for the previously disadvantaged. We have identified
this motive for fair ML as the interventional perspective.

In our thinking about technology’s role in the process, we per-
ceive an opportunity. This opportunity, we believe, is not aimed at
technological ‘solutionism’: While a technological approach cannot
count as a ’solution’ by itself, it can work to suggest a certain level
of discourse – specifically, a translation of technical metrics into
terms compatible to an ethical assessment (and vice versa). We
have seen this interplay of different levels of discourse in Sec. 3.2,
where modelling efforts have aided our ethical reasoning. Thus, we
propose dynamical fairness modelling as a technically mediated
way to present issues of fairness in more appropriate terms.9

Limitations. The core of our framework is a model of the down-
stream effects of any fairness intervention. Developing such amodel
is difficult. How does a college admission, bank loan or hiring de-
cision today affect an individual’s well-being, qualifications and
socio-economic status in the future? One might argue that if we
had access to such information, we might already be much better at
designing fair policies. In the context of ML, this information could

9On the mediating role of technology, see [38].

come in the form of datasets recording populations over time. Such
datasets are not currently part of the standard machine learning
toolbox, but could easily be made available given the ‘big data’
culture and ways we collect large amounts of data on essentially
everything. Of course, the issues around privacy and the economy
of surveillance practices arising from this type of data collection
themselves pose a set of ethical questions.

We note that our modelling approach is relevant to a certain type
of decision maker. A somewhat broad scope is required for taking
the interventional perspective, both in terms of goals/motivations
and competencies. Dynamical fairness modelling is relevant to
decision processes that happen on a relatively long timeline, and
are aiming to make societal change. Decision makers in a public
institution or the government come to mind, and we deem the
framework equally relevant from a research perspective. On the
other hand, it might be less applicable for actors within companies
which structurally are often operating on shorter time horizons,
and whose primary goals might be different from changing society.
But for those striving to make real change in the ‘interventional
sense’ of improving conditions for the previously disadvantaged,
we hope this contribution is useful.
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