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Abstract—We demonstrate a data-driven model for optical matrix multipliers utilizing Mach-Zehnder interferometer meshes. For a 

fabricated chip, a transposed convolutional neural network model learns from experimental measurements offline and predicts the 

weights across 100 frequency channels in the C-band with high precision (RMSE<0.8 dB). 
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I. INTRODUCTION 

Photonic integrated circuits (PICs) are well suited as hardware for implementing machine learning algorithms with low power 
consumption and high speed. This has resulted in an increased interest in neuromorphic photonics over the last decade [1]. In 
particular, photonic hardware for accelerating artificial neural networks (ANNs) is of great interest. Photonic ANNs necessitate the 
implementation of nonlinear activation functions and both linear transformations [2]. Impressive results have been reported in the 
literature for the latter using various optical implementations of matrix-vector multiplication, including, but not limited to, [3] and 
[4], where microring resonators and Mach-Zehnder interferometers (MZIs) have been used for weighting, respectively. 

For the case of MZI meshes, accurate models for fabricated PICs are required to tune the implemented linear weights. This is 
commonly achieved by optimizing a set of voltages for phase tuning the interferometers. While carefully calibrated analytical models 
have been used for this task, they only perform well for input light within a narrow spectral band around the frequency used for 
training and training a new model for each desired input frequency is a very time-consuming approach. As a result, such models are 
not suitable for applications involving frequency multiplexing, or where frequency drifts may impact the system. Recently, it was 
shown that ANNs can also be used to model such PICs and even outperform simple analytical models in the presence of fabrication 
errors and effects such as crosstalk [5]. The analysis of [5], however, did not consider multiple frequency channels but frequency-
averaged performance.  

In this work, we demonstrate a machine learning model based on a transposed convolutional neural network (TCNN) [6] for a 
fabricated PIC that can predict the implemented matrix weights for 100 different frequency bands simultaneously. Experimental 
measurements obtained from the PIC were reshaped into a 2D form well-suited for convolutional operations given the spatial/spectral 
correlations, resulting in low-error modeling of the chip across the spectrum despite fabrication tolerances. 

II. EXPERIMENTAL SETUP FOR OPTICAL MATRIX MULTIPLICATION USING MACH-ZEHNDER INTERFEROMETER MESHES 

The experimental measurement setup for the silicon PIC implementing optical multiplication by a 3x3 matrix is shown on Fig. 
1(a). The optical switches at the input and the output together with the optical spectrum analyzer (OSA) are used to measure the 
spectral responses of the 9 weights consecutively. The captured responses are then downsampled to the 100 frequency channels 
corresponding to the central frequencies of the ITU DWDM grid for the C-band with 50 GHz spacing. Further details on the 
experimental setup and the PIC can be found in [5] and [7], respectively. A sample measurement of the 9 matrix weights for the 100 

 

Fig. 1. (a) Experimental setup (MCF: multi-core fiber). (b) Sample spectral measurement results, each of the 9 curve represents a different matrix entry. 



frequency channels and a fixed set of input voltages is shown in Fig. 1(b). In order to obtain a measurement dataset for modeling the 
PIC, more than 5100 random voltage sets were applied, each sampled from a uniform distribution [0, 2V], corresponding to one half-
period of the MZI responses.  

III. TRANSPOSED CONVOLUTIONAL NEURAL NETWORK MODEL 

In order to better utilize the fact that the matrix weights for neighboring frequency channels are correlated, the flattened matrix 
weights W were reorganized in the shape of a 2D matrix Wij = Wi(fj), where each row i corresponds to a different matrix weight and 
each column j corresponds to a different frequency. Under this formulation, the TCNN can make use of the spatial structure of the 
data. Fig. 2a shows the architecture for the TCNN which was used to model the mapping between the input voltages V and the 
implemented matrix weights W for the 100 frequency bands. The input layer consists of the 9 heater voltages along with their squares, 
as physically the phase shifts are directly proportional to squared voltages for MZIs with thermos-optic phase shifters. The output of 
the TCNN is the 9x100 spectral weight matrix Wij in decibels and both the inputs and the outputs are normalized between -1 and +1. 

A splitting ratio of 70:15:15 was chosen for dividing the measured data into training, validation, and testing sets. TCNN 
hyperparameters for both the fully-connected hidden layers and the transposed convolutional layers are shown on Fig. 2(a) and are 
optimized such that the root-mean squared error (RMSE) between the experimentally measured and the predicted outputs is 
minimized for the validation set. The TCNN was trained on PyTorch using the L-BFGS optimizer with the default parameters. 

After training the model, the RMSE between the measured and the predicted matrix weights in the testing set (averaging over all 
9×100 2D weight profiles) was found to be 0.79 dB, which is comparable to the results in [5] obtained for a frequency-averaged 
model. All weights across all frequencies within the testing set are shown using a scatter plot in Fig. 2(b). The model performs 
especially well for matrix weights closer to 0 dB, but the error is higher for smaller matrix weights. This is most likely due to the 
higher relative measurement noise. In practice, errors when implementing matrix weights that are close to 0 (e.g. ≤ -30 dB) may not 
be as impactful on task performance [5]. The probability distribution function (PDF) of the difference between predicted and measured 
matrix weights over the testing set is plotted in Fig. 2(c). While the absolute prediction error can be as high as 16 dB when 
implementing particularly lower matrix weight values, more than 92% of the predicted weights are within 1 dB of the experimental 
measurements.  

IV. CONCLUSION 

We present and experimentally evaluate a TCNN-based modelling approach for optical matrix multipliers with the MZI mesh 
architecture. Given a set of input voltages, our model accurately predicts the implemented matrix weights across 100 frequencies in 
the C-band for a fabricated PIC. Such models can especially be useful in future applications where multiple spectral bands are utilized 
to accelerate multiple independent tasks by using the same PIC as a matrix multiplier. 
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Fig. 2. (a) Architecture of the TCNN model. (b) Scatter plot of the predicted and measured matrix weights for all 100 frequencies. (c) Probability density function 
(PDF) obtained by normalizing the error histogram, where the error is defined to be the difference between the predicted and measured matrix weights. 


