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Preface

This Ph.D. thesis has been prepared at the Department of Computer Science at the University of
Copenhagen (DIKU), during the period November 2002 to December 2005. The work has been
supervised by Professor David Pisinger.

The thesis consists of four introductory chapters: Chapters 1, 2, 3 and 7, and five research
papers: Chapters 4, 5, 6, 8 and 9. The five research papers have been written in collaboration with
coauthors which are mentioned in the beginning of each paper. The four introductory chapter
have been written solely by the undersigned. The five research papers are relatively self-contained.
Note that each research paper contains it own bibliography and sometimes an appendix. The
bibliography for the introductory chapters are found at the end of this thesis.

The thesis contains three parts. The first part contains the introduction and is split into two
chapters. The next part deals with heuristic and contains one introductory chapter and three
research papers about heuristics. These papers are “technical report versions” that contains more
results than the papers that have been submitted to journals. These extra results are placed in
the appendix of each paper. The last part is about exact methods and contains one introductory
chapter and two research papers.

The thesis started out being solely about heuristics, but after having worked with heuristics
for four or five years, first as a graduate student, then in the industry and as a Ph.D. student I
felt it was time to learn something new and started studying exact methods more intensively in
2004. This has certainly been interesting and I hope the knowledge I have obtained will allow me
to design even better heuristics in the future.

Chapter 9 is the only one of the five papers that has not been submitted to a journal yet. In its
current state it is not ready to be submitted either - it is clearly too long and contains too much
material. We do plan to submit a condensed version. The rest of this section is going to describe
how the paper could be condensed. To understand this, one needs to have read chapter 9.

One way of condensing the paper would be to focus on the SP1 and SP2 relaxations and leave
the SP3 and SP4 relaxations out as well as the addition of valid inequalities. The contribution of
this paper would be

1. Improvements of domination criteria for ESPPTWCPD.

2. The computational comparison of SP1 and SP2.

3. The new pricing heuristics and experiments. More experiments could be carried out.

4. Introduction of standard test instances for exact solution of the PDPTW.

For this paper it would be nice if the issues with algorithms SP1* and SP2* were worked out. The
simplest way of doing this would be to use algorithms SP1*/SP2* to get a lower bound. If the
linear relaxation solution turns out to be fractional then one should switch to algorithms SP1/SP2
to perform branching.

A better approach would be to implement a branching rule that is compatible with the strongest
domination criteria. Branching on time windows as proposed in the paper would be a good
candidate. An alternative is to find a way of perturbing the (dij) matrix such that dij + djk ≥ dik
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PREFACE ii

always holds when j is a delivery node, even when general cuts have been added to the master
problem. Valid perturbations of the (dij) matrix include subtracting a constant αi from all edges
leaving pickup node i and adding αi to all edges leaving node n + i. This is valid as a path in the
ESPPTWCPD and SPPTWCPD that visits a pickup must visit the corresponding delivery and
vice versa. This would allow us to add cuts in the original variables to the master problem and
would thereby make the current branching rule work with with SP1*/SP2*.

A second paper could describe the SP3 and SP4 relaxations and incorporate the valid in-
equalities in the branch-and-price algorithm. This paper could also include the strengthened SP4
relaxation that is described in the conclusion of the paper.
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Chapter 1

Introduction

1.1 Motivation

Transportation of goods and passengers is an important task in the society of today. Astronomical
amounts of money are spent daily on fuel, equipment, maintenance of equipment and wages.

It is therefore obvious to attempt to reduce the amount of money spent on transportation as
even small improvements can lead to huge improvements in absolute terms. Several approaches
could be taken, one could improve equipment or make the infrastructure better. One could also
look at operations research (OR) techniques - given the resources available, what is the best that
can be done? Toth and Vigo [2002b] estimate that the use of computerized procedures for planning
of the distribution process often leads to savings in the area of 5% to 20% of the transportation
costs, so studying such procedures definitely seems worthwhile.

Furthermore, transportation accounts for a great part of the CO2 pollution in the world today.
According to Pedersen [2005] the transportation sector was in 1998 responsible for 28% of the CO2

emission in the Europe Union and road transportation alone accounted for 84% of the total CO2

emissions from the transportation sector. Moreover, it is exected that the CO2 emissions from the
transportation sector is going to increase by 50% by 2010 (according to Pedersen [2005]). Thus,
improvements in planning techniques could help easing the strain on the environment caused by
transportation.

Operations research has been quite successful in the transportation area. One could see opti-
mization within transportation as one of the successes of OR. Today OR techniques are applied
within for example the airline, railway, trucking and shipping industries; and OR techniques are
used to optimize the interplay between the different modes of transportation, for example in
handling port operations.

Several companies exist that solely or primarily develop software for optimization within the
transportation industry. Some examples are the Swedish based Carmen Systems1 that develop
software for airlines and railways; the Canadian Giro2 that develops software for routing and
scheduling of ground based vehicles; the Danish Transvision3 that develops software for ground
based distribution; the Danish e2e factory4 that develops software controlling ground personnel
at airports.

Consequently it is fair to say that optimization within transportation is a subject that is used
and sought-after in the real world and not just a topic studied in academia. Also, the field seems to
have reached a certain level of maturity as it has been studied for many decades. Having said that,
there remain ample room for improvement in the solution methods employed and OR methods
could be applied to a wider array of problems faced within the transportation industry. The real
world need solution methods that are:

1http://www.carmen.se
2http://www.giro.ca/
3http://www.transvision.dk
4http://www.e2efactory.dk/

2



CHAPTER 1. INTRODUCTION 3

• Fast — the quicker the operator gets an answer back from the computer the better,

• Easy to apply to a variety of problem characteristics — when developing software for real life
problems one wants to avoid reinventing the wheel every time a new client wants a software
application for a new type of transportation problem,

• Precise — the better results a solution method returns the larger is the potential for savings,

• More robust — when solving real world problems it is often better to have a solution method
that produces fairly good results for all problem instances, than one that produces very good
results for 70% of the problem instances and very poor results for the remaining 30%.

The four characteristics listed above are to a certain extent in conflict with each other, so some sort
of trade-off has to be achieved. Solution methods described in the literature are often evaluated in
terms of speed, solution quality, and to a certain extent, robustness while the second characteristic
listed above often receives less attention. In this thesis a solution method that takes all four
characteristics into account is presented.

One problem in the field of transportation related OR that has been given a lot of attention
in the scientific literature is the so called vehicle routing problem (VRP). In the vehicle routing
problem we are given a fleet of vehicles and a set of customers to be visited. The vehicles are often
assumed to have a common home base, called the depot. The cost of traveling between each pair
of customers and between the depot and each customer is given. Our task is to find a route for
each vehicle, starting and ending at the depot, such that all customers are served by exactly one
vehicle, and such that the overall cost of the routes are minimized. Typically the solution has to
obey several other restrictions, such as capacity of the vehicles or desired visit times at customers.
In this thesis the term vehicle routing problem (VRP) is used to describe a broad class of problems
and not a specific problem with a specific set of restrictions or constraints. The class of vehicle
routing problems contains all the problems that involve creating one or more routes, starting and
ending in one or more common depots or at predefined start and end terminals. In the literature
the term vehicle routing problem is occasionaly used for the specific problem that is called the
capacitated vehicle routing problem in this thesis (see Section 2.3).

A subclass of vehicle routing problems is pickup and delivery problems. In this class of problems
we are given a number of requests and a fleet of vehicles to serve the request. Each request consists
of a pickup at some location and a delivery at another location. The cost of travelling between
each pair of locations is given. The problem is to find routes for each vehicle such that all pickups
and deliveries are served and such that the pickup and delivery corresponding to one request
is served by the same vehicle and the pickup is served before the delivery. Again a number
of additional constraints are often enforced, the most typical being capacity and time window
constraints. Figure 1.1 shows how transportation problems, vehicle routing problems and pickup
and delivery problems relate to each other. Pickup and delivery problems are shown as the
innermost, most specialized problem class, but it contains many classical vehicle routing problems
like the capacitated vehicle routing problem (CVRP) and the vehicle routing problem with time
windows (VRPTW). How these and many other vehicle routing problems can be formulated using
one pickup and delivery model is discussed in Chapter 4–6. The pickup and delivery problem with
time windows (PDPTW) is the core problem studied in this thesis. In Chapter 2 the problem is
formally defined together with some of the classic problems it generalizes.

1.2 Modeling and solution methods

The research within an area like vehicle routing problems can be grouped into two major cat-
egories: modeling and solution methods. A third area of interest is the interpretation of the
results stemming from the models and solution methods. This area is typically studied together
with either modeling or solution methods. The following two sections go into further details with
modeling and solution methods.
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Figure 1.1: The figure shows that the vehicle routing problems is one of many problems studied
within operations research applied to transportation problems. Pickup and delivery problems are
a subclass of vehicle routing problems. The class of transportation related OR problems, of course
contains many other problems apart from vehicle routing problems. Some examples are train
timetabling problems [Caprara et al. [2002]] or berth allocation problems [Imai et al. [2003]].
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1.2.1 Modeling

The art and science of modeling can be roughly divided into two disciplines. The first discipline is
concerned with modeling a problem occurring in real life. The following topics must be considered:

• While the description of the real life problem given to the modeler, may be vague and
ambiguous, the opposite should be true for a good model. A good model should be expressed
such that there are no ambiguities - everyone (with the right qualifications) who reads the
model should get the same idea of what the model represents. This can be achieved by using
a mathematical notation, but a textual representation can be sufficient as well. Notice that
a mathematical model does not guarantee that the model is without ambiguities.

• The model must represent the real life problem reasonably well. The word reasonably is
vague, but how close to the real life problem the model should be is dependent on the
application. Often we do not want to model the real life situation in all its details for
different reasons, one such reason could be that precise data is missing and another is given
in the next bullet point.

• The model should not be unnecessarily complicated. As we often want to solve the problem
using a computer program the model should be manageable - it might be necessary to leave
out some details of the real life problem to make the model solvable by the methods we know
today.

How to model a real life problem is a very important but also quite challenging task. Furthermore
it may be difficult to decide if a model is good or not, or to choose between two different models
that are supposed to represent the same problem. Such a decision can be dependent on experience
and personal preferences.

The second discipline in modeling is how to transform one model into an equivalent model
that either in some way is easier to solve using existing techniques or paradigms or that makes
the model solvable using a particular tool. The word equivalent should be understood in a strict
sense. The new model should have the same solution as the original model given the same input.
An example could be the reformulation of an integer programming model to another model that
provides a tighter linear relaxation and consequently might be better in a linear programming
based branch and bound algorithm.

When transforming one model into another, the underlying modeling framework we are trans-
forming to is important - the more expressive and rich it is, the easier the modeling becomes.

This thesis contains many examples of the second modeling discipline. Chapter 5 and 6 show
how many commonly studied vehicle routing problems can be reformulated into a pickup and
delivery problem and solved using the tool (heuristic) developed in Chapter 4. Chapters 8 and
9 propose different models for the PDPTW and evaluate which model that is best suited as the
basis of an exact algorithm for the PDPTW.

This thesis does not explicitly deal with the first modeling discipline. This does not mean that
the thesis is uninteresting for practitioners, working with real world problems though. The heuristic
developed in the first three papers (Chapter 4 to 6) is able to handle a variety of constraints and
is therefore better suited for application to real life problems compared to many special purpose
heuristic proposed in the scientific literature. A variant of the heuristic is actually used in practice
by at least one company solving real life problems.

1.2.2 Solution methods

For many of the problems considered in this thesis, the set of feasible solutions is so large that
even if we had a computer that in a systematic way could construct and evaluate the cost of a
trillion (1012) solutions per second, and we had started that computer right after the big bang, 14
billion years ago, it would still not have evaluated all the feasible solutions today. Consequently
we have to turn to other methods than simple enumeration.
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Three types of solution methods are typically employed to solve these types of problems (NP-
hard problems):

• Heuristics. Heuristics are solution methods that typically relatively quickly can find a fea-
sible solution with reasonable quality. There are no guarantees about the solution quality
though, it can be arbitrarely bad. The heuristics are tested empirically and based on these
experiments comments about the quality of the heuristic can be made. Heuristics are typ-
ically used for solving real life problems because of their speed and their ability to handle
large instances.
A special class of heuristics that has received special attention in the last two decades is the
metaheuristics. Metaheuristics provides general frameworks for heuristics that can be ap-
plied to many problem classes. High solution quality is often obtained using metaheuristics.
Part II of thesis is concerning heuristics.

• Approximation algorithms. Approximation algorithms are a special class of heuristic
that provide a solution and an error guarantee. For example one method could guarantee
that the solution obtained is at most k times more costly than the best solution obtain-
able. Two classes of approximation algorithms called polynomial time approximation scheme
(PTAS) and fully polynomial time approximation scheme (FPTAS) are of special interest as
they can approximate the solution with any desired precision. That is for any instance I of
the problem considered and any ε > 0 a PTAS or FPTAS can output a solution s such that
f(s) ≤ (1 + ε)Opt (assuming that we are solving a minimization problem) where Opt is the
optimal solution and f(s) is objective of solution s. The difference between a PTAS and a
FPTAS is that the PTAS is polynomial in the size of the instance I while the FPTAS is
polynomial in the size of the instance I and 1/ε. An FPTAS is therefore in a certain sense
“stronger” than a PTAS. An example of a problem that admits an FPTAS is the Knapsack
problem (see e.g. Kellerer et al. [2004]). For some problems it is not possible to design a
FPTAS, PTAS or even an polynomial time approximation algorithm with constant error
guarantee unless P = NP and approximation can be impractical: the error guarantee can
be too poor or the running time of the algorithm can be too high.
This thesis is not going to discuss approximation algorithms in further details, we refer the
interested reader to Vazarani [2001].

• Exact methods. Exact methods guarantee that the optimal solution is found if the method
is given sufficiently time and space. As stated initially, a simple enumeration is out of the
question, so exact methods must use more clever techniques. The worst case running time
for NP-Hard problems are still going to be high though. We cannot expect to construct exact
algorithms that solve NP-hard problems in polynomial time unless NP = P. For some classes
of problems there are hope of finding algorithms that solve problem instances occuring in
practice in reasonable time though.
Part III of the thesis is concerning exact methods.

1.3 Goals

The focus of this Ph.D. thesis is solution methods for vehicle routing problems and especially
pickup and delivery problems. The problems studied in this thesis have been inspired from real
world applications but the problems are not real world problems themselves. It is my hope that
practitioners can apply some of the solution methods described in this thesis to the problems that
occur in real life. This hope has to some extent already been fulfilled.

The thesis is divided into two major parts, one concerning heuristics and one concerning exact
methods. In the heuristic part, the focus has been on developing a unified heuristic that is able
to handle many of the VRP variants that have been proposed in the literature without any need
for retuning the algorithm for a particular problem type.
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The research into a unified heuristic for vehicle routing problems led us to investigate robust
heuristics in general — is it possible to distill the components of the vehicle routing heuristic into
a general heuristic?

The research in exact methods has focused on the pickup and delivery problem with time
windows (see Section 2.5). The overall goal of this research has been to push the limits for what
sizes of PDPTW problems that can be solved to optimality. In order to do this it has been necessary
to investigate new formulations of the problem, preprocessing techniques and valid inequalities.

1.3.1 Achievements and contributions of the Ph.D. thesis

The papers presented in Chapters 4 to 6 describe a general heuristic that successfully handles 12
variants of the vehicle routing problem. The heuristic is able to solve the different problems types
without retuning the parameters of the algorithm. The heuristic is able to solve the many variants
by first transforming them to a PDPTW instance and then solving that instance using a PDPTW
heuristic. For most of the problems the transformation is simple, but the thesis nevertheless
presents these transformations for the first time. The heuristic has provided excellent results and
has improved the best known solutions to benchmark cases for many problems.

The heuristic has been distilled into a general framework that builds upon the large neigh-
borhood search (LNS) paradigm introduced by Shaw [1998]. We call this heuristic framework the
adaptive large neighborhood search (ALNS). The heuristic is first presented in Chapter 4 which pro-
vides an easy to understand description of the ALNS. The chapter also establishes the advantages
of ALNS over LNS through computational experiments and presents results on the PDPTW. These
results show that the ALNS method must be considered as the best heuristic for the PDPTW
currently.

In Chapter 5 the heuristic is applied to a large class of vehicle routing problem with backhauls.
A total of 6 variants are considered. For all problem types the heuristic must be considered to be
on par with existing specialized algorithms or even better. Some enhancements of the heuristic is
proposed and the effect of these enhancements are quantified in computational experiments.

As we believe that the ALNS framework is quite robust and easy to understand and imple-
ment, we hope that it can be used outside the vehicle routing domain as well. Consequently, in
Chapter 6 we describe the framework in general terms. Also in Chapter 6 we illustrate how a
typical search behaves in a novel, graphical way. This leads to a better understanding of how the
heuristic explores the solution space and could be used to analyse other metaheuristics as well.
The heuristic is tested on 5 new classes of VRPs in Chapter 6, including some classical vehicle
routing problems like the capacticated vehicles routing problem and the vehicle routing problem,
again with promising results.

The unified heuristic is not only well-suited for solving different types of VRPs but it can also
be used to solve problems where a variety of different constraints are in use. The heuristic could for
example easily handle a problem where some customers require deliveries from a common depot
while other customers need to have goods transported from one location to another.

An implementation of the ALNS heuristic is currently being used to solve real life problems at
several large companies in Denmark, so the heuristic has had an impact on real life transportation
problems.

In the study of exact methods for the PDPTW two new formulations of the problem have
been proposed in Chapter 8. The formulations contain a polynomial number of variables and an
exponential number of constraints (in n, the number of requests). These formulations are used in
a branch and cut approach to solve the problem to optimality. The computational experiments
show that the new formulations enable us to solve much larger instances to optimality compared
to an earlier branch and cut algorithm by Cordeau [2006]. Furthermore two new classes of valid
inequalities are presented, the so called strengthened capacity inequalities and fork inequalities.
Heuristic separation procedures for the two classes of inequalities are also presented. The last
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class of inequalities proves to be especially helpful in increasing the lower bound of the LP relax-
ation. The last contribution in Chapter 8 is the adaptation of the so called reachability inequality,
introduced for the VRPTW by Lysgaard [2005], to the PDPTW.

Chapter 9 compares several lower bounds obtained by solving the set-partitioning formulation
of the PDPTW by column generation using different pricing problems. Two pricing problems
from the literature are investigated and two pricing problems that has not been used for the
PDPTW before are proposed . This provides the first computational comparison of the lower
bounds obtained by using the pricing problem proposed by Dumas et al. [1991] to the lower bound
obtained by Sol [1994].

The lower bound obtained by solving the set partitioning relaxation is strengthened by adding
valid inequalities, thus the implemented algorithm is of the branch-cut-and-price type. The chapter
also introduces a new valid inequality for the PDPTW, the strengthened precedence inequality. This
inequality is obtained by combining the ideas of the reachability inequality mentioned above with
the precedence inequality proposed by Ruland and Rodin [1997].

The computational results show that the branch-and-cut-and-price algorithm is able to out-
perform the branch and cut algorithm from Chapter 8 on most instances considered in the test.

1.4 Overview of Ph.D. thesis

The thesis is divided into two parts, a part about heuristics and a part about exact methods.
Each part begins with a short introduction to the field and the papers contained in that part. The
heuristic part contains three papers:

• Chapter 4: An Adaptive Large Neighborhood Search Heuristic for the Pickup
and Delivery Problem with Time Windows. This paper presents the adaptive large
neighborhood search (ALNS) heuristic and applies it to the PDPTW. The paper is concluded
with a computational experiment that shows the superiority of ALNS to a simpler larger
neighborhood search (LNS). The results on standard benchmark problems for the PDPTW
show that the heuristic overall obtain the best results compared to competing heuristics.
The paper has been accepted for publication in Transportation Science and it is co-authored
with David Pisinger.

• Chapter 5: A unified heuristic for a large class of vehicle routing problems
with backhauls. This paper uses the heuristic from the preceding chapter to solve a large
class of vehicle routing problems with backhauls. The paper gives a short survey of vehicle
routing problems with backhauls and describes how the problems can be transformed to
the PDPTW. On the algorithmic side the paper suggests some improvements to the ALNS.
The computational tests show that the improvements suggested in the paper do have a
positive impact on the algorithm and they show that the heuristics must be considered to
be at least on par with existing, specialized heuristic for the considered problems when it
comes to solution quality. The paper has been accepted for publication in a special issue
of European Journal of Operational Research and it is co-authored with David Pisinger.
This paper was submitted before the paper in Chapter 4, and consequently uses a slightly
different vocabulary. Most notable is it, that the term ALNS is not used in this paper.

• Chapter 6: A general heuristic for vehicle routing problems. This paper gives a
general description of the ALNS framework as we believe it can be applied to optimization
problems outside the vehicle routing domain. The paper extends the unified vehicle rout-
ing heuristic to handle five additional problem classes, including the CVRP, VRPTW and
MDVRP (multi depot VRP). The paper is concluded with computational experiments that
among other things show that the unified heuristic is the best method currently, when it
comes to minimizing the number of vehicles in large VRPTW instances. The paper has
been accepted for publication in Computers and Operations Research and is co-authored
with David Pisinger.



CHAPTER 1. INTRODUCTION 9

The part about exact methods contains two papers

• Chapter 8: Models and a Branch-and-Cut Algorithm for Pickup and Delivery
Problems with Time Windows. This paper proposes two new models for the PDPTW,
both models contains an exponential number of constraints. These constraints are added
dynamically to the model along with other valid inequalities. The paper proposes two
new classes of valid inequalities, the so called fork inequalities and strengthened capacity
inequalities. An inequality recently proposed for the VRPTW, the so called reachability
inequality is also adapted to the PDPTW. Computational experiments show that the new
formulations are superior to a formulation proposed recently by Cordeau [2006], for some
instances a speedup of more than a factor 1000 is observed. The paper has been submitted
to a special issue of Networks and has been conditionally accepted. It is co-authored with
Jean-François Cordeau and Gilbert Laporte.

• Chapter 9: Branch-and-Cut-and-Price for the Pickup and Delivery Problem with
Time Windows. This paper examines the set-partitioning formulation (see for example
Dumas et al. [1991]) for the PDPTW. Four different relaxations of the problem are proposed
by varying the pricing problem in a column generation algorithm for the problem. Two of
these pricing problems have previously been considered as pricing problems for the PDPTW.
This paper gives the first computational comparison of the two lower bounds obtained by
using these two pricing problems and it improves upon the exact algorithms for one of the
problems by improving the dominance criterion. Valid inequalities proposed in Chapter 8
are added to the model dynamically and a new class of valid inequalities is proposed, which
is denoted the strengthened precedence inequality. Extensive computational results show that
the branch-cut-and-price algorithm usually is superior to the branch-and-cut algorithm, but
that this is not always is the case. The paper is co-authored with Jean-François Cordeau
and has not yet been submitted. Plans for publication were discussed in the preface.

The three papers about the heuristic have been presented in different forms at the following
occasions

• Route2003 - International Workshop on Vehicle Routing, Denmark, June 22-25, 2003 (speaker:
Stefan Ropke).

• The EURO Summer Institute - ESI XXI Stochastic and Heuristic Methods in Optimization,
July 25 - August 7 2003, Neringa, Lithuania (speaker: Stefan Ropke).

• ISMP2003 - International Symposium on Mathematical Programming, Denmark, August
18-22, 2003 (speaker: Stefan Ropke).

• CORS/INFORMS International Meeting, Banff 2004, May 16-19, 2004 (speaker: Stefan
Ropke).

• Seminar at the Center for Research on Transportation, University of Montreal, Canada,
September 30, 2004 (speaker: Stefan Ropke).

• Route2005 - International workshop on vehicle routing and intermodal transportation, Berti-
noro, Italy - June 23-26, 2005 (speaker: David Pisinger)

Chapter 8 has been presented at the following occasions

• International Colloquium for the 25th anniversary of GERAD, Montreal, Canada, May 11-
13, 2005, (preliminary version) (speaker: Jean-François Cordeau)

• Route2005 - International workshop on vehicle routing and intermodal transportation, Berti-
noro, Italy - June 23-26, 2005 (speaker: Jean-François Cordeau)
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• Seminar at Mathematics department, Brunel University, 19th December 2005 (planned)
(speaker: Gilbert Laporte)

A very early version of Chapter 9 was presented at

• Optimization days 2005, Montreal, Canada, May 9-11, 2005 (speaker: Stefan Ropke)



Chapter 2

Classes of vehicle routing problems

The objective of this section is to introduce the core problem studied in this thesis, the pickup
and delivery problem with time windows (PDPTW). In order to do so four simpler variants of
the problem are first introduced. This gives an introduction to some of the core problems in the
field of vehicle routing and surveys the relevant literature. The four preliminary problems studied
are the traveling salesman problem (Section 2.1), the m-traveling salesmen problem (Section 2.2),
the capacitated vehicle routing problem (Section 2.3) and the vehicle routing problem with time
windows (Section 2.4). The section on the pickup and delivery problem with time windows can
be found in Section 2.5. Each section first introduces the problem in words and then gives a
mathematical definition of the problem. Finally literature pointers are given and recent advances
are discussed (in Section 2.3, 2.4 and 2.5). The introduction of the problem and mathematical
models can be understood with a basic knowledge of operations research, while the literature
discussion can be technical at times and requires a deeper understanding of operations research
and in particular of solution method paradigms.

It should be mentioned that all five problem classes discussed here are NP-hard.

2.1 The traveling salesman problem

One of the simplest, but still NP-hard, routing problems is probably the traveling salesman problem
(TSP). In the TSP one is given a set of cities and a way of measuring the distance between each
city. One has to find the shortest tour that visits all cities exactly once and returns back to the
starting node. In Figure 2.1 an example of a TSP instance is shown to the left and to the right
the optimal solution is shown when Euclidean distances are used to measure the distance between
two cities.

The problem comes in different flavours depending on what properties the distances satisfy. If
the distances satisfy that the distance from city i to city j is the same as the distance from city j
to city i for all cities i and j, the the problem is said to be symmetric. If this property does not
hold then the problem is said to be asymmetric. A problem is said to be Euclidean if the cities
are located in Rd and the distance between two cities is the Euclidean distance.

The problem can be formulated as a mathematical model in the following way. Let G = (V, A)
be a complete, directed graph where V = {1, . . . , n} is the set of nodes/cities and A is the set of
arcs. To each arc (i, j) ∈ A is a assigned a distance or cost cij . We define binary decision variable
xij that is set to one if and only if arc (i, j) is used in the solution. The problem can be formulated
as

min
∑

i∈V

∑

j∈V \{i}

cijxij (2.1)

11
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Figure 2.1: TSP illustration

subject to
∑

j∈V \{i}

xij = 1 ∀i ∈ V (2.2)

∑

i∈V \{j}

xij = 1 ∀j ∈ V (2.3)

∑

i∈S

∑

j∈V \S

xij ≥ 1 ∀S ⊂ V (2.4)

xij ∈{0, 1} ∀(i, j) ∈ A (2.5)

The objective (2.1) minimizes the arc costs, equations (2.2) and (2.3) ensures that one arc leaves
each node and one arc enters each node, equation (2.4) eliminates sub-tours.

The amount of scientific literature on the TSP is staggering. Good starting points for getting to
know the problem are E. L. Lawler and Shmoys [1985] and Gutin and Punnen [2002]. The origins
of the TSP are discussed in Schrijver [2005]. Very large Euclidean instances of the TSP can be
solved to optimality, the largest instance solved to optimality so far contains 24,978 cities. It was
solved by branch-and-cut by the research team of Applegate, Bixby, Cvátal, Cook and Helsgaun1.
Heuristic methods for the TSP have been applied to an instance with more than 1.9 million cities
and the gap between the currently best know upper and lower bounds for this instance has been
shown to be 0.068%2 which is quite remarkable. It is safe to say that the TSP is one of the most
studied NP-hard problems and solution methods for this problem have reached a very high level.
More general routing problems like the capacitated vehicle routing problem or the pickup and
delivery problem with time windows turn out to be much harder to solve, both heuristically and
exactly, compared to the TSP. I think that the impressive development in solution methods for
the TSP leaves hope of significant improvements in solution methods for the more general routing
problems.

2.2 m-Traveling salesman problem

The m-traveling salesman problem (m-TSP) is a generalization of the TSP that introduces more
than one salesman. In the m-TSP we are given n cities, m salesmen and one depot or home
base. All cities should be visited exactly once on one of m tours, starting and ending at the
depot. The tours are not allowed to be empty. If distances satisfy the triangle inequality, that is

1http://www.tsp.gatech.edu/sweden/index.html
2http://www.tsp.gatech.edu/world/index.html
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if d(i, k) ≤ d(i, j) + d(j, k) for all i, j and k then it is easy to see that the distance of the shortest
TSP tour on the n cities plus the depot always is less than or equal to the distance of the shortest
m-TSP solution for any m.

Any m-TSP with n cities can be formulated as a TSP with m + n cities. One first creates m
copies of the depot node. The distances between depot nodes is then set to a sufficiently large
number while the distances between the depot nodes and ordinary nodes are copied from the m-
TSP. The large distance between depot nodes ensures that no salesmen tours are empty. Notice
that the resulting TSP does not obey the triangle inequality.

In Figure 2.2 an example of a solution to an m − TSP with m = 3 and n = 38 is shown. The
actual solution is shown in the top right part of the figure. Observe that one salesman serves one
city, the next salesman serves 4 cities and the last salesman serves the rest of the cities. Thus the
workload is by no means split fairly between the salesmen.

The m-TSP is not studied widely in the literature, probably because it is so closely related
to the TSP. The literature about heuristics and exact methods has recently been surveyed by
Bektas [2006]. An interesting variant of the problem is the min-max m-TSP where the length of
the longest salesman tour has to be minimized. This problem has been studied by França et al.
[1995] who proposed heuristic and exact methods for the problem. More recently Applegate et al.
[2002] solved a challenging min-max m-TSP instance to optimality for the first time. The instance
originated from a competition from 1996 and had been unsolved since then. The problem was
solved on a network of 188 processors and required 10 days of computing, which corresponds to
roughly 79 × 106 CPU seconds scaled to a 500 MHz Alpha EV6 processor.

2.3 Capacitated vehicle routing problem

In the capacitated vehicle routing problem (CVRP) a vocabulary different from the one used in the
TSP community is used. The objects called cities in the TSP world are called customers in the
CVRP world and the salesmen are called vehicles. The common starting point is still denoted the
depot. In the CVRP we are given a depot, a set of n customers, a set of m vehicles and a distance
measure as in the m-TSP, but in the CVRP every vehicle has a capacity Q and every customer
i ∈ {1, . . . , n} has a demand qi. The task in the CVRP is to construct vehicle routes such that all
customers are served exactly once and such that the capacities of the vehicles are obeyed. This
should be done while minimizing the total distance traveled.

We now introduce a mathematical model for the problem. We use a set partitioning approach
(or path-based modeling) as this makes it easier to model the more complicated problems that
are described below. A model similar to the one presented for the TSP (Section 2.1) is certainly
possible; such a model can be found in Toth and Vigo [2002b]. Let G = (V, A) be a directed
graph as before, let V = {0, 1, . . . , n, n + 1} be the set of nodes in the graph where node 0 and
n + 1 corresponds to the depot and node {1, . . . , n} corresponds to customers. The depot has
been split into two nodes to make modeling easier, node 0 corresponds to the start of the routes
and n + 1 corresponds to the end of the routes. We assume that distances are given as a matrix
(cij) , i, j ∈ {0, . . . , n + 1}. From now on we will call the distances for costs.

A legal route r̄ must be a simple (that is, no node is visited twice) path from node 0 to node
n + 1. We can write such a path

r̄ = (v0, v1 . . . , vh, vh+1) (2.6)

where vi, i ∈ {0, . . . , h + 1} are the nodes visited on the route. We always have that v0 = 0 and
vh+1 = n + 1. h is the number of customers visited on the route. The route should satisfy the
capacity requirement. We can write this as

h
∑

i=1

qvi
≤ Q (2.7)
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Figure 2.2: m-TSP figure. Top left: the depot and cities in the instance. The depot is indicated
as a black square. Top right: the optimal m-TSP solution for m = 3. Bottom right: The optimal
TSP solution when the TSP was solved on the same set of cities plus the depot. The length of
the m-TSP solution is 5699 units while the length of the TSP solution is 5026 units.
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the cost cr̄ of a route r̄ is

cr̄ =

h
∑

i=0

cvi,vi+1 (2.8)

Let R be the set of all feasible routes and let (air̄) be a boolean matrix with n rows and |R|
columns. Let air̄ = 1 if and only if route r̄ serves customer i. The CVRP can be formulated as

min
∑

r̄∈R

cr̄xr̄ (2.9)

subject to
∑

r̄∈R

air̄xr̄ = 1 ∀i ∈ {1, . . . , n} (2.10)

∑

r̄∈R

xr̄ = m (2.11)

xr̄ ∈{0, 1} r̄ ∈ R (2.12)

The objective function (2.9) selects a set of the feasible of routes that minimizes the sum of the
route costs while equation (2.10) ensures that all customers are served exactly once and equation
(2.11) ensures that exactly m vehicles are used. In some variants of the CVRP equation (2.11) is
relaxed such that at most m vehicles are used or such that there are no restrictions on the number
of vehicles used.

A variant of the CVRP that is often studied in the heuristic literature is the distance constrained
CVRP, where a distance measure dij (possibly different from cij) is assigned to each arc. An upper
bound on distance D is also given and no routes must be longer than D. This constraint is easily
added to our model, we simply require that the visits v0, . . . , vh+1 in our feasible path r̄ should
satisfy

h
∑

i=0

dvi,vi+1 ≤ D. (2.13)

The constraint (2.13) can also be seen as a limit of time spent on the route and service times at
customers can be incorporated in (dij).

Figure 2.3 shows an optimal solution to a small CVRP instance. Note that routes can cross each
other in an optimal solution with euclidean distances. This is caused by the capacity constraint.

The CVRP was introduced by Dantzig and Ramser [1959] and has been subject to intense
research since then. Many heuristic methods have been proposed in the last 45 years and it is
out of the scope of this section to give an overview of these. Instead we would recommend four
surveys. Heuristics proposed up until around 1980 are surveyed in Christofides et al. [1979], while
the most successful heuristics until the new millennium are surveyed in Laporte and Semet [2002]
and Gendreau et al. [2002]. The most recent advances in metaheuristics have been surveyed in
Cordeau et al. [2004]. The best heuristic for the problem at the moment is the metaheuristic
proposed by Mester and Bräysy [2005]. The general heuristic, presented in this thesis, is tested on
benchmark CVRP instances in Chapter 6. The results show that the heuristic is on par with most
of the heuristics proposed for the problem recently, but the heuristic by Mester and Bräysy [2005]
produces better results than the heuristic proposed in this thesis for the particular problem.

Quite a lot of attention has been given to exact methods for the CVRP in the recent years and
substantial advances in the size of problems that can be solved to optimality has been achieved.
Most research has gone into developing branch and cut methods and valid inequalities for the
problem. The two most successful branch and cut algorithms are the one proposed by Lysgaard
et al. [2004] and Blasum and Hochstättler [2000]. Recently it has been shown that the combination
of column generation and cutting planes is a powerful approach for the CVRP and the branch-
and-cut-and-price algorithm proposed by Fukasawa et al. [2005] must be considered as the best
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Figure 2.3: CVRP illustration. The figure on the left shows the nodes in a CVRP instance with
32 customers, the figure on the left shows the optimal CVRP solution for this instance.

algorithm currently. This algorithm was able to solve all instances with up to 134 customers that
it was tested with. This does not mean that all instances with 130 customers or less can be solved
routinely though, as only two instances with more than 100 customers were attempted.

Many more exact methods have been proposed through the years for the CVRP. Most of these
are surveyed by Toth and Vigo [2002a], Naddef and Rinaldi [2002], Bramel and Simchi-Levi [2002]
and Cordeau et al. [2005b].

2.4 The vehicle routing problem with time windows

The vehicle routing problem with time windows (VRPTW) generalizes the CVRP by associating
travel times tij with arcs (i, j) and service times si and time windows [ai, bi] with customers i
and depot i = 0. The vehicle should arrive before or within the time window of a customer. If
it arrives before the start of the time window, it has to wait until the time window opens before
service at the customer can start. The problem can be modelled using the framework introduced
in Section 2.3. To ease the notation, we again consider the depot as split into two nodes. The route
r̄ = (v0, v1 . . . , vh, vh+1) should satisfy the following criteria in order to be valid. The capacity
requirement is identical to the one from equation (2.7):

h
∑

i=1

qvi
≤ Q (2.14)

We introduce a variable Si to indicate when service starts at node i. A route must obey the
following constraints to be time feasible

avi
≤ Svi

≤ bvi
∀i ∈ {0, . . . , h + 1} (2.15)

Svi+1 ≥Svi
+ svi

+ tvi,vi+1 ∀i ∈ {0, . . . , h} (2.16)

Equation (2.15) ensures that the service start time is within the time window of the node and
equation (2.16) updates the start time along the route. The cost of a route is defined as in equation
(2.8). Given the set R of feasible VRPTW routes, the VRPTW can now be formulated as

min f(x) (2.17)

subject to
∑

r̄∈R

air̄xr̄ = 1 ∀i ∈ {1, . . . , n} (2.18)

xr̄ ∈{0, 1} r̄ ∈ R (2.19)
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Two different objectives are studied in the literature. The first objective is to minimize the sum
of the route costs as in the CVRP, that is f(x) =

∑

r̄∈R cr̄xr̄. The alternative objective is to
minimize the number of vehicles used as first priority and the route costs as second priority. This
can be written as f(x) = M

∑

r̄∈R xr̄ +
∑

r̄∈R cr̄xr̄, where M is a sufficiently large integer. The
first objective function is usually considered in the literature about exact methods for the VRPTW
while the second objective is used with heuristics.

Figure 2.4 shows an example of an optimal VRPTW solution. The figure only shows the
geometrical aspects, not the time windows. The time windows cause routes to cross themselves,
even in optimal solutions.

The amount of heuristics proposed for the VRPTW is exceptional. Especially in the nineties
and in the new millennium many metaheuristics have been proposed. A short overview of meta-
heuristics is given by Cordeau et al. [2002] while a more recent and comprehensive survey is given
by Bräysy and Gendreau [2005b]. Another recent survey is presented by Cordeau et al. [2005b].
It is hard to say which metaheuristic that is the best for the VRPTW currently as a heuristic can
be judged on many different parameters like speed, robustness and precision. Two good candi-
dates would be the hybrid evolutionary algorithm proposed by Mester and Bräysy [2005] and the
general heuristic presented in this thesis. The heuristic proposed in this thesis is particularly well
suited for minimizing the number of vehicles necessary to serve all customers, as the computational
experiments in Chapter 6 show.

Exact methods for the VRPTW have been surveyed by Cordeau et al. [2002] and Cordeau
et al. [2005b]. Exact methods for the VRPTW have been developing rapidly in the recent years.
This can be illustrated by the fact that 5 years ago, several instances from the Solomon test set
(Solomon [1987]) with 25 customers were still unsolved while today all instances with 25 and 50
customers from the test set have been solved. The last unsolved instances with 50 customers were
reported solved this year by Jepsen et al. [2005] and Kallehauge and Boland [2005]. Although
neither of the two papers could solve all of the 50 customer problems, the union of the solved
instances covers all instances.

It is interesting to note that one of the new inequalities proposed in Kallehauge and Boland
[2005], which is one of the reasons for the success of the approach presented in that paper is almost
identical to the fork inequality proposed in Chapter 8 of this thesis. The two inequalities were
developed independently of each other.

Exact solution methods for the VRPTW are dominated by column generation methods, with
the branch and cut method by Kallehauge and Boland [2005] as the lone exception. Much of the
improvement in exact column generation approaches is due to developments in solving the pricing
problem. Prior to Irnich and Villeneuve [2003], Feillet et al. [2004] and Chabrier [2005], the pricing
problem that was solved in column generation approaches was the shortest path problem with time
window and capacity constraints (SPPTWCC) that allowed cycles of length 3 or more in the
shortest paths. Irnich and Villeneuve [2003] proposed an algorithm for the pricing problem that
eliminated cycles of length k in the shortest paths, where k is a parameter. k = 2 corresponds
to the traditional pricing problem solved. Irnich and Villeneuve [2003] showed that using k > 2
drastically improved the lower bound obtained from the column generation approach. Feillet et al.
[2004] and Chabrier [2005] went a step further and solved the elementary shortest path problem
with time window and capacity constraints (ESPPTWCC) as pricing problem. In the ESPPTWCC
the shortest paths have to be simple, that is without any cycles. They empirically showed that
the problem is not too hard to solve and that using this pricing problem once more increased the
lower bounds to the VRPTW.

Recently Righini and Salani [2004, 2005] proposed improvements to the ESPPTWCC algorithm
that resulted in great speed ups. The improvements came from performing a bidirectional search
that simultaneously searches for shortest paths from the source and destination nodes and merges
the result “when the two searches meet”. Traditional algorithms search from the source node only.
Their other contribution is decremental state space relaxation that initially solves a SPPTWCC
where cycles are allowed and then gradually forbids repetition of the nodes that take part in
cycles. This usually improves the running time as the algorithm typically only needs to disallow
repetition of a small subset of nodes in order to get an elementary path instead of disallowing
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Figure 2.4: VRPTW illustration. The figure on the right shows the optimal solution to instance
r107 with 50 nodes from the Solomon data set. The figure on the left shows the nodes in the
problem

repetition of all nodes which is more time consuming. It should be noted that the last idea also
has been proposed by Boland et al. [2005].

Jepsen et al. [2005] proposed to use valid inequalities from the set-partitioning problem to
raise the lower bound obtained by the column generation approach. They examined the clique
inequality from the set-partitioning problem and showed how the pricing problem must be changed
to handle an inequality similar to the clique inequality (a non-robust inequality according to the
vocabulary introduced in Poggi de Aragão and Uchoa [2003]). The computational results showed
that the lower bound was improved significantly when introducing these cuts and several previously
unsolved instances in the Solomon set were solved using these inequalities.

The developments that have taken place within column generation for the VRPTW inspired
the research into set-partitioning relaxations of the PDPTW, which is presented in Chapter 9.

If the capacity constraint (2.14) is removed from the problem then one gets a multiple traveling
salesman problem with time windows (m-TSPTW), which is a problem that has received much
less attention in the literature compared to its sibling, the VRPTW. A short overview of some
papers on the m-TSPTW is given by Cordeau et al. [2002].

2.5 Pickup and delivery problem with time windows

The pickup and delivery problem with time windows (PDPTW) generalizes the VRPTW. In the
PDPTW one no longer delivers goods from a depot to the customers, instead the customers need
goods to be transported from a pickup location to a delivery location. Each pickup-delivery pair
is called a request. The problem is defined on a graph with 2n + 2 nodes, where n is the number
of requests. Each request i is associated with node i and n + i, where i is the pickup and n + i is
the delivery of the request. Node 0 and 2n + 1 represents the terminals where vehicles start (0)
and end (2n + 1) their trips. A time window [ai, bi] is associated with every node in the graph
and a load di is associated with every node 1 ≤ i ≤ 2n. It is assumed that dn+i = −di for all
i = 1, . . . , n. Just as for the VRPTW, travel times tij and costs cij are associated with arcs (i, j)
and service times si are associated with node i. It is assumed that all vehicles are identical and
have capacity Q.

The task in the PDPTW is to construct routes for the vehicles such that the pickup and
delivery corresponding to the same request is served by the same vehicle, that the pickup is served
before the corresponding delivery and such that time window and the capacity constraints are
obeyed. Just as for the VRPTW it is common to either minimize route costs (cij) or minimize
the number of vehicles necessary to serve all requests.
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Using the modeling framework from the previous sections, the requirement to a feasible route
r̄ = (v0, v1 . . . , vh, vh+1) can be stated as follows. The pairing constraint that ensures that the
pickup and delivery of a request is served on the same route can be stated as

i ∈ {v1, . . . , vh} ⇔n + i ∈ {v1, . . . , vh} ∀i ∈ {1, . . . , n} (2.20)

The precedence constraint between the pickup and delivery node of the same request can be stated
as

vj = i ⇒n + i ∈ {vj+1, . . . , vh} ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , h} (2.21)

The time windows are modeled as for the VRPTW, Si is a variable that indicates when service
starts at node i

avi
≤ Svi

≤ bvi
∀i ∈ {0, . . . , h + 1} (2.22)

Svi+1 ≥Svi
+ svi

+ tvi,vi+1 ∀i ∈ {0, . . . , h} (2.23)

Capacity checks are a little more complicated than in the preceding sections as the capacity no
longer is increasing monotonously along the route

0 ≤

j
∑

i=0

dvi
≤ Q ∀j ∈ {0, . . . , h + 1} (2.24)

As for the VRPTW the typical objectives are to minimize the sum of the arc costs cij or minimize
the number of vehicles used as first priority and then minimize arc costs as second priority.

A more complex variant of the PDPTW is studied in Chapters 4 to 6. This variant includes
multiple depots, precedences between nodes not belonging to the same request and site dependen-
cies. Mathematical models for the more complex problem are given in Chapters 4 and 6.

Figure 2.5 shows an optimal solution for a single-depot PDPTW instance. It is clear that the
capacity, time windows, pairing and precedence constraints give rise to a quite messy solution.

The literature about the PDPTW is not as extensive as the VRPTW and it is less homogeneous.
The PDPTW studied in the literature often contains extra constraints not present in the core
formulation presented in this chapter which makes comparison among different methods difficult.
In the recent years there has been some tendency in the heuristic community to study the core
PDPTW problem though, and a set of common benchmark instances has appeared.

A variant of the PDPTW that has been studied frequently is the dial-a-ride problem (DARP).
Where the PDPTW usually is thought of as a model for transporting goods, dial-a-ride problems
are models for a class of passenger transportation problems. It is frequently used to model the
transportation of disabled and elderly people. In this variant of the PDPTW a request consists
of transporting one or more persons from one place to another. In contrast to the plain PDPTW,
the DARP has constraints or terms in the objective that seek to keep customer inconvenience at
a respectable level. How customer inconvenience is modeled differs from paper to paper - there is
not one single model that qualifies as the model for the DARP. In this thesis a DARP is solved in
two of the chapters — Chapters 8 and 9. In the DARP variant considered here, a max ride time
constraint is enforced on each request. The max ride time constraint ensures that the time from
a customer is picked up to the time he is delivered is less than a constant L. Thereby we make
sure that no customer is taken on long detours which most likely would annoy the customer even
though he makes it to his destination within his time window. This constraint can be expressed
as follows in our modeling framework

vi = l ∧ vj = n + l ⇒Svj
− (Svi

+ svi
) ≤ L ∀i, j ∈ {1, . . . , h}, ∀l ∈ {1, . . . , n}. (2.25)

Other models for the DARP contains more constraints and penalise user inconvenience in
the objective function. Toth and Vigo [1997] for example proposed a model where the customer
specifies a pickup time or a delivery time. A time window is constructed around this point in



CHAPTER 2. CLASSES OF VEHICLE ROUTING PROBLEMS 20

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 5000  10000  15000  20000  25000  30000  35000  40000  45000
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 5000  10000  15000  20000  25000  30000  35000  40000  45000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 5000  10000  15000  20000  25000  30000  35000  40000  45000

Figure 2.5: PDPTW Figure. Top left: the depot and nodes in the instance. The depot is
indicated as a black square, pickups are circles and deliveries are discs. Top right: the requests
in the problem, a pickup and a delivery connected by a line forms a request. Bottom right: The
optimal PDPTW solution. Two routes are necesarry to serve the requests (shown with solid and
dashed lines). Arc between the depot and pickup/delivery nodes are not shown in order to make
the figure more readable.

time, and service within the time window is allowed, but a penalty is added to the objective if the
vehicle does not arrive at the exact desired time. The model also contains the ride time constraint
presented above, but the maximum ride time is dependent on the user. Another feature of the
model is that it allows different types of vehicles that have different capabilities. Some vehicles
might for example be able to transport a number of wheelchair passengers and some carry trained
personnel that can help passengers in need of assistance.

Several surveys of the PDPTW and DARP literature have been presented in the last decade,
see Savelsbergh and Sol [1995], Mitrović-Minić [1998], Desaulniers et al. [2002], Cordeau et al.
[2005a]. A survey dedicated to the DARP was presented by Cordeau and Laporte [2003].

2.5.1 Heuristics for PDPTW and DARP

Several metaheuristics have been proposed for the PDPTW in recent years and a set of problem
instances has appeared as a common platform for testing heuristics. Li and Lim [2001] intro-
duced the set of instances that seems to have become a standard benchmark set for the PDPTW.
The instances were constructed from the Solomons test set for the VRPTW (Solomon [1987])
and Gehring and Hombergers larger VRPTW instances (Gehring and Homberger [1999]). The
instances were created by first solving the VRPTW instances with a VRPTW heuristic and then
pairing nodes that occur in the same route in the VRPTW solution to form a request. The re-
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quests are created such that the pickup is visited before the delivery on the VRPTW route. This
way of creating PDPTW instances might not result in very realistic instances. One can argue that
the requests that are constructed are too “easy” because the pickup and delivery fit well together
as they were served by the same route in the VRPTW solution. It turns out that the PDPTW
instances created this way are challenging for both heuristics and exact methods, especially the
larger instances with 100 requests or more.

The two earliest metaheuristics for the PDPTW were proposed by Gendreau et al. [1998] and
Nanry and Barnes [2000]. Gendreau et al. [1998] presented a tabu search for a dynamic version of
the PDPTW. They used an interesting neighborhood based on the ejection chain idea: A request
i is removed from its route r1 and reinserted into another route r2 while ejecting another request
j from r2. j is inserted into a third route, thereby ejecting a third request and so on. The chain
of ejections ends with the insertion of the last request into a route without ejecting a new request.
Gendreau et al. [1998] describe how a good ejection chain can be found using heuristics.

Nanry and Barnes [2000] used a tabu search algorithm with a neighborhood consisting of three
moves: 1) moving a request from one route to another, 2) exchanging a request in one route
with a request from another route, and 3) relocating a request to another position within its
original route. The heuristic was tested on instances with up to 50 requests. Two other tabu
search variants, based on the same neighborhood structure proposed by Nanry and Barnes, were
presented a little later by Lau and Liang [2001] and Li and Lim [2001].

Créput et al. [2004] proposed an evolutionary algorithm for the PDPTW where an individual
in the solution simply is a solution to the PDPTW. Two crossover methods are proposed, both can
produce infeasible offspring, where some requests are not visited or some requests are visited twice.
Such offspring are repaired by inserting or removing requests as necessary. The algorithm also
incorporates mutation operators based on local search. The heuristic was tested on the 50 request
instances from Li and Lim [2001], but the solution quality obtained was worse than that obtained
by Li and Lim’s tabu search heuristic. Another genetic algorithm was proposed by Pankratz
[2005] for the PDPTW where the genetic encoding stores the partitioning of requests on vehicles,
but not the actual routing of the requests. The heuristic was tested on instances with around 50
requests from Li and Lim [2001] and Nanry and Barnes [2000]. The computational results seem
to be better than the ones obtained by the other genetic algorithm (Créput et al. [2004]). Bent
and Hentenryck [2006] applied a two-stage heuristic to the PDPTW and obtained good results on
the instances proposed by Li and Lim. The first stage minimizes the number of vehicles used to
serve the requests, this is done using a simulated annealing algorithm whose neighborhood consists
of moving a request from one position in the solution to another. A modified objective function
is used while minimizing the number of vehicles. The modified objective function encourages
solutions that contain routes with a few requests and routes with many requests. This objective
was chosen from the philosophy that it should be easy to eliminate the short routes. The second
stage minimizes the traveled distance using large neighborhood search (LNS). The LNS heuristic
alternates between removing requests from the current solution and reinserting the requests again.
Removal of requests is carried out by a heuristic that removes related requests as proposed by
Shaw [1998] for the VRPTW. Re-insertion of the requests is performed using a truncated branch-
and-bound search that only allow a certain amount of branching.

Recently Lu and Dessouky [2005] proposed a new insertion algorithm for the PDPTW and
tested it on the 50 request instances proposed by Li and Lim [2001]. A non-standard measure
called the crossing length percentage was taken into account when constructing routes to make the
routes more visually attractive. The measure is zero if a route does not cross itself and increases
with the number of times it crosses itself, depending on the type of crossing.

Xu et al. [2003] have proposed a heuristic based on column generation to solve a PDPTW
inspired by real life cases. The problem considered contains several constraints that have not
been studied much in the literature. One of these constraints is that pickup and deliveries must be
nested such that the last request loaded is the first one unloaded (LIFO). The model also considers
legal working hours of drivers. The heuristic is tested on instances with up to 500 requests and
results are looking promising.

Bodin and Sexton [1986] presented a heuristic for a variant of the DARP where customer
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inconvenience were to be minimized. The heuristic used clustering and local search and were
tested on a real-life problem containing 85 requests and 7 vehicles. Jaw et al. [1986] proposed
an insertion algorithm for another DARP variant where customers either specify a desired pickup
time or a desired delivery time and the heuristic must route the customers such that their pickup or
delivery times are sufficiently close to the desired time. The ride time of a customer is furthermore
not allowed to surpass a pre-specified acceptable ride time for that customer. The algorithm was
tested on a large real-life problem.

Toth and Vigo [1997] presented a heuristic for the variant of the DARP described in Section
2.5. An initial solution is created using a parallel instertion heuristic and this solution is improved
upon by using tabu search. The heuristic is tested on real life data and compared to solutions
found by human schedulers. This comparison turned out to be difficult to perform as the hand
made solutions greatly violated the constraints of the problem. The results indicate that the
heuristic did well compared to the hand-made solutions and were fast considering the computer
used to perform the experiments.

2.5.2 Exact methods for PDPTW and DARP

Several exact methods for the PDPTW have been proposed in the last 20 years, although the
number of papers about this subject is smaller than the amount of literature about the exact
solution of the CVRP and VRPTW. There is no established set of benchmark problems used in
the exact-PDPTW literature as it is the case in the CVRP and VRPTW community. This makes
comparison of different approaches hard, as the hardness of a PDPTW instance depends just as
much on its structure as on its size. The paper presented in Chapter 9 tries to improve on this
situation by presenting results on the readily available instances proposed by Li and Lim [2001]
and on another set of PDPTW instances that are proposed in Chapter 8.

The first exact algorithm for the pure PDPTW was proposed by Desrosiers et al. [1986]. In
this paper an exact algorithm for the 1-vehicle PDPTW was described. The algorithm is based on
dynamic programming and rules for eliminating dominated labels are defined. The algorithm is
able to handle problems with up to 40 requests. In the early nineties a column generation algorithm
for the multi vehicle PDPTW was presented by Dumas et al. [1991]. This paper presented clever
label domination and label elimination rules and was able to handle instances with up to 50
requests. Later in the nineties Sol [1994] presented another column generation algorithm for the
PDPTW. This algorithm differed from the one proposed by Dumas et al. [1991] by using another
pricing problem and different branching rules. Sol [1994] also presented new pricing heuristics and
procedures for limiting the number of variables in the set partitioning problem. A condensed and
updated version of Sol [1994] can be found in Savelsbergh and Sol [1998]. The column generation
algorithms presented by Dumas et al. [1991], Sol [1994], Savelsbergh and Sol [1998] form the basis
of the column generation algorithms proposed in Chapter 9.

Another column generation algorithm for a variant of the PDPTW was proposed recently by
Sigurd et al. [2004]. The application that motivated this study was the transportation of live
pigs. Each request corresponds to the transportation of animals from one location to another
(e.g. from farm to farm). This application implies that there are extra precedence constraints on
the requests to avoid the spread of diseases: a healthy group of pigs must not be transported on
a vehicle that previously has transported pigs that have been exposed to some diseases. These
precedence rules make it possible to solve the pricing problem on a acyclic, layered graph that
allows quick evaluation of the pricing problem for even large instances.

Lübbecke [2001] used column generation to solve an Engine Scheduling problem which can
be seen as a pickup and delivery problem. The problem was solved with what the author calls
price-and-branch meaning that columns are generated in the root node only. If the LP relaxation
in the root node turns out to be fractional, then a branch and bound search is started, but new
columns are not generated in the child nodes in the branch-and-bound tree. This means that the
solution found by the price-and-branch approach only is guaranteed optimal if it has the same
objective as the lower bound found in the root node. Solutions with a different objective value
might be optimal, but there is no guarantee.
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Lu and Dessouky [2004] proposed a branch-and-cut algorithm for the PDPTW and the multiple
vehicle pickup and delivery problem with capacity constraints (PDP). They presented a compact
2-index model for the problem with a polynomial number of constraints and variables as opposed to
the model presented in Chapter 8 of this thesis that contains an exponential number of constraints.
Lu and Dessouky presened several valid inequalities to improve the lower bound obtained from
the LP relaxation of the model. Problems with up to 25 requests for the PDP and 15 requests
for the PDPTW were solved to optimality in the computational experiments. Another branch-
and-cut algorithm was proposed for the DARP by Cordeau [2006]. This algorithm forms the basis
of the branch-and-cut algorithm proposed in Chapter 8 so we refer to this chapter for further
information.

Exact methods for the single vehicle pickup and delivery problem without time window and
capacity constraints (PDTSP) have been studied by Kalantari et al. [1985] and Ruland and Rodin
[1997]. Kalantari et al. [1985] proposed a branch and bound method using a combinatorial lower
bound. Instances with up to 18 requests were solved by this approach. Ruland and Rodin [1997]
developed a branch-and-cut algorithm for the undirected version of the problem. The paper
introduced new valid inequalities for the problem and instances with up to 15 requests were
solved. The valid inequalities presented in this paper were later adapted to the directed case and
used in a branch-and-cut algorithm for the dial-a-ride problem by Cordeau [2006]. The model
for the basic PDP proposed by Ruland and Rodin [1997] was also used as an inspiration for the
model for the PDPTW presented in Chapter 8. Recently Dumitrescu [2005] presented new valid
inequalities for the PDTSP and identified classes of facet defining inequalities.

Psaraftis [1980] presented an exact dynamic programming approach for a variant of the single
vehicle DARP. In this variant of the DARP, an ordering of the customers is given and in order to
minimize customer inconvenience the order the customers are served in must not deviate too much
from their initial ordering. An integer maximum position shift (MPS) is given and this integer
defines how far out of sequence a customer can be picked up or delivered. Furthermore ride time
of the customers should be minimized as well as the overall ride time of the vehicle.
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Chapter 3

Introduction to heuristics

3.1 Introduction

This chapter introduces heuristic concepts for vehicle routing problems. The chapter uses the
CVRP as the primary example as this is a reasonably simple problem that makes it easy to
introduce the necessary concepts.

3.2 Heuristic categories

Heuristics can be categorized broadly into three different categories: construction heuristics, im-
provement heuristics and metaheuristics. These three categories are explained in the next three
sections (Section 3.2.1 to 3.2.4).

Laporte and Semet [2002] proposed a different classification of heuristics for vehicle routing
problems. The propose two main classes classical heuristics and metaheuristics. The class of
classical heuristics is divided into three groups: constructive heuristics, two-phase heuristics and
improvement methods. The term two-phase heuristics covers heuristics that divide the construction
into two phases: a clustering phase and a routing phase. In the classification of heuristics used in
this thesis, two-phase heuristics are seen as construction heuristics.

3.2.1 Construction heuristics

Laporte and Semet [2002] define construction heuristics as follows

Constructive heuristics gradually build a feasible solution while keeping an eye on solution cost,
but they do no contain an improvement phase per se.

Many construction heuristics for vehicle routing problems have been proposed during the last
40 years. In the recent years it appears that their popularity has faded somewhat in the scien-
tific literature as metaheuristics have become more dominant, however papers about construction
heuristics still appear. Some examples are the PDPTW insertion heuristic by Lu and Dessouky
[2005], the VRPTW insertion heuristic by Ioannou et al. [2001] and the savings algorithm for the
CVRP by Altinel and Öncan [2005].

Fast heuristics are important from a practical point of view as many real world applications
of heuristics require fast response times. In a vehicle routing application one needs to quickly
reconstruct part of the solution if an incident happens while carrying out the plan or if a customer
calls in with a new transportation task and wants to know if the task can be carried out. Fast
construction algorithms are often the preferable algorithm for such situations and for very large
problems containing thousands or tens of thousands of customers.

25
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Fast heuristics can also be used as subroutines in more time consuming metaheuristics, this
approach is used in this thesis.

Many construction heuristics for vehicle routing problems fall into one of the three classes:
insertion heuristics, savings heuristics and clustering heuristics.

Insertion heuristics build a solution by inserting one customer at a time. Insertion heuristics
can build one route at a time (sequential insertion heuristics) or build many or all routes in
parallel (parallel insertion heuristics). The choice of which customer to insert and where to insert
the customer is what differentiates the insertion heuristics. A very simple insertion heuristic could
choose to insert the customer that increases the overall cost the least.

Savings heuristics initially build a solution where each customer is served on its own route.
Routes are then merged one by one according to some criteria. Savings algorithms vary by the
criterion used for merging routes (what saving is obtained by merging two routes) and by how
routes are merged. For the CVRP the most simple merge operation deletes an edge between the
depot and a customer from each of the two routes that is being merged and joins the route by
adding an edge between the two customers that are adjacent to only one edge. More advanced
merging procedures consider all the customers served by the two routes and solve a TSP (in case
of the CVRP) on these customers.

The savings heuristic was first proposed by Clarke and Wright [1964] and consequently it is
often denoted the Clarke and Wright algorithm. Many variants and improvements of the algorithm
have been proposed and it has been applied to different variants of vehicle routing problems
including a heterogeneous VRPTW (Liu and Shen [1999]) and pickup and delivery problem with
full truckloads (Gronalt et al. [2004]), but most savings algorithms have been proposed for the
CVRP. New variants of the savings algorithm are still proposed. A recent example is given by
Altinel and Öncan [2005].

Clustering algorithms are two-phase algorithms. The first phase consists of grouping customers
into subsets (clusters) where each subset should be served by one route. The second phase then
creates routes for each subset. A third phase may be employed to repair the solution if it turns
out that some of the clusters could not be served by a single vehicle.

Fisher and Jaikumar [1981] presented a clustering heuristic for the CVRP where the number
of vehicles is fixed to K. In their approach a number of seed customers are selected initially and
for each remaining customer i, a heuristic cost dik of routing customer i with seed customer k
is computed. A generalized assignment problem is then solved, using dik in the objective. This
produces K clusters that each satisfies the capacity constraint. Each cluster is turned into a route
by solving a TSP to optimality.

Another clustering approach is the sweep algorithm for the CVRP which was presented by
Gillet and Miller [1974]. In this algorithm customers are clustered in sectors of the circle around
the depot as shown on Figure 3.1. In practice the algorithm works by sorting customers according
to their polar coordinate angle with the depot as (0,0). The algorithm starts from the first customer
in the list and adds this customer to a cluster. The algorithm continues to process the customers
according to the ordering and adds the customer to the current cluster as long as the cluster can
be served by a single vehicle. When it is no longer possible to add a customer to the current
cluster a new cluster is started and becomes the current cluster. When all customers have been
assigned to a cluster a TSP tour is found for each cluster to produce a CVRP solution. Gillet and
Miller [1974] also included an improvement phace after the clustering.

3.2.2 Local search heuristics

Local search heuristics are heuristics that take a solution as input, modify this solution by per-
forming a sequence of operations on the solution and produce a new, hopefully improved solution.
At all times the heuristic has a current solution and it modifies this solution by evaluating the
effect of changing the solution in systematic way. If one of the changes leads to an improved
solution, then the current solution is replaced by the new improved solution and the process is
repeated. In more advanced local search heuristics the algorithm sometimes perform changes that
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Figure 3.1: Sweep algorithm. Customers in each sector of a circle are served by one vehicle.

lead to a solution that is worse than the current. This is done as one can hope to find an even
better solution after a few more changes.

The term improvement heuristic [Laporte and Semet [2002]] can be used to describe a local
search heuristic that only performs operations that improve the objective of the solution.

In the following we introduce local search heuristics more formally. The presentation follows
that of Funke et al. [2005].

We are given an instance I of a combinatorial optimization problem. S is the set of feasible
solutions to the instance and c : S → Q is a function that maps from a solution to the solution
cost. S is assumed to be finite, but it is often an extremely large set as pointed out in Section
1.2.2. We assume that the combinatorial optimization problem is a minimization problem, that
is, we want to find the solution s∗ for which c(s∗) ≤ c(s) ∀s ∈ S.

We define a neighborhood of a solution s ∈ S as N(s) ⊆ S. That is, N is a function that maps
from a solution to a set of solutions. A solution s is said to be locally optimal or a local optimum
with respect to a neighborhood N if c(s) ≤ c(s′) ∀s′ ∈ N(s). With these definitions it is possible
to define a steepest descent algorithm (see Algorithm 1). The algorithm takes an initial solution
as input (line 1). It repeats line 3–7 as long as it found an improved solution in the last iteration.
The neighborhood of s is searched in line 3 and s′ is the best solution in the neighborhood. In
line 4 it is determined if the new solution is better than the previous. If it is, then we update
the current solution in line 5 and reiterate. If the current solution was not improved then the
algorithm terminates with the best solution observed during the search. The algorithm is called
a steepest descent algorithm as it always chooses the best solution in the neighborhood. Another
strategy is to choose the first improving solution observed in the neighborhood. Such an algorithm
would be a descent algorithm. Funke et al. [2005] use the terms best search and first search for a
steepest descent algorithm and a descent algorithm, respectively.

Another concept in local search heuristics is a move. A move m is an operation that transforms
a solution s into another, possibly infeasible, solution s′ that shares some characteristics of s.
Following Funke et al. [2005] we define a superset Z of S (S ⊆ Z) containing all solutions that can
be reached by applying moves to a solution in S. Thus m is a function that maps from Z to Z
and M is the set of all moves. The set M defines an extended neighborhood N̂(s) to each solution
s, N̂(s) = {m(x) : m ∈ M}, N̂(s) ⊆ Z and N(s) = N̂(s) ∩ S. The extended neighborhood makes
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Algorithm 1 Steepest descent
1 input: Initial solution s ∈ SI

3 improved = true

2 while (improved)

3 s′ = arg minx∈N(s) {c(x)}
4 if c(s′) < c(s)
5 s = s′

6 else

7 improved = false

8 return s

it easier to discuss the size of a neighborhood, we define the size of a neighborhood as
∣

∣

∣
N̂(s)

∣

∣

∣
or

|M |. Using N(s) to measure the size of a neighborhood is problematic as the size of this set would
depend on s, but a working definition could be max {|N(s)| : s ∈ S}.

3.2.3 Neighborhoods

In this section we describe some neighborhoods proposed for vehicle routing problems. It is far
from a complete description of all the neighborhoods conceived. Giving such a description is out of
the scope of this section. What we wish to convey with this section is an idea of the different kinds
of neighborhoods that have been proposed and attempted in practice. For a more complete survey
of neighborhoods we refer the reader to Bräysy and Gendreau [2005a] which discusses VRPTW
neighborhoods and Funke et al. [2005] for a more general presentation.

VRP neighborhoods can be split into two major categories: Single-Route Improvements and
Multiroute Improvements, following the terminology from Laporte and Semet [2002], or Single-
Route neighborhoods and Multiroute neighborhoods as we prefer to call them. Single-Route neigh-
borhoods perform changes to one route at a time, that is, they permute the customers within
a route. Thus TSP neighborhoods can be used as Single-Route neighborhoods for the CVRP;
TSPTW neighborhoods can be used for the VRPTW and 1-PDPTW neighborhoods can be used
for the PDPTW.

Multiroute neighborhoods exchange and move customers between two or more routes. This
implies that they can make greater structural changes to a solution. In the following sections we
will only consider multiroute neighborhoods.

3.2.3.1 Small neighborhoods

This section reviews a few classic neighborhoods for vehicle routing problems. The size of the

neighborhoods
∣

∣

∣
N̂(s)

∣

∣

∣
is rather small, that is a small polynomial function of n, the number of

customers. The neighborhoods are usually searched explicitly, but tricks to avoid evaluating parts
of the neighborhood have also been proposed.

Osman [1993] proposed a quite general neighborhood called the λ-interchange that encompasses
many of the neighborhoods used in other papers. Given a solution s = (R1, . . . , Rp, . . . , Rq, . . . , Rm)
where Rt are the routes of the solution the λ-interchange selects all pairs of routes (Rp, Rq) and
subsets of customers on the routes Sp ⊆ Rp and Sq ⊆ Rq with |Sp| ≤ λ and |Sq| ≤ λ. The two
sets of customers are exchanged and the routes are reoptimized. The λ-interchange neighborhood
contains all solutions that can be constructed by selecting customer sets of the given size. The
neighborhood quickly grows large and gets difficult to handle when larger lambdas are used. Us-
ing λ = 1 contains the often used relocate neighborhood where a move consits of transfering a
customer from one route to another and it also contains the exchange move that exchanges two
customers.

Another class of neighborhoods changes focuses on changing edges in the solution (of course the
λ-interchange can also be viewed as changing edges, but it’s not the object that the neighborhood
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focuses on). One example is the 2-opt* neighborhood proposed by Potving and Rousseau [1995]
for the VRPTW, this neighborhood selects two routes Rp and Rq, deletes an edge in each two
route and reconnects the first part of Rp with the last part of Rq and vice versa.

3.2.3.2 Large and exponential sized neighborhoods

This section reviews af few large neighborhoods that has been proposed for vehicle routing prob-
lems. Most notably it gives a short introduction to the Large Neighborhood Search (LNS) that is
used in Chapters 4 to 6.

A precise definition of when a neighborhood is large or small, is not simple to give. One
definition could be that a large neighborhood is exponential in the instance size, but that seems
a little to restrictive. Ahuja et al. [2002] defines a large neighborhoods the exponential ones and
the ones that are too large to search explicitely in practice. We will use this definition.

The LNS heurisitic forms the foundation of the heuristic presented in Chapters 4 to 6. It was
first presented as a heuristic framework by Shaw [1998]. The general neighborhood employed can
be described in very few words: A move in the LNS consists removing up to q customers and
then reinserting these customers into the solution somehow. When implementing the heuristic
one has a lot of freedom in determining the rules for chosing the customers to remove and for
chosing methods for reinserting them. The remove/reinsert idea has occured before Shaw [1998]
formalized it, Russell [1995] for example, proposed a VRPTW improvement heuristic that removes
up to 5 customers and reinserts them using partial enumeration. A heuristic similar to LNS idea
was also put forward by Schrimpf et al. [2000]. The heuristic proposed recently by Franceschi
et al. [2005] can also be characterized as a LNS heuristic although the authors do not make this
connection. In this heuristic the customers are reinserted by solving an IP problem to optimality.

The Adaptive Large Neighborhood Search Heuristic (ALNS) proposed in Chapters 4 to 6 extends
the LNS by not only having one removal methods and one insertion methods, but a whole set of
removal/insertion methods, which in practice are fast heuristics. The heuristic to use is selected
using an adaptive method that uses statistics from the search so far to make the choice. The
computational experiments in this thesis confirms that these two extensions, although simple,
improves the performance of the heuristic.

The LNS pricinciple has also been used as a subcomponent in the AGES heuristic propoposed
by Mester and Bräysy [2005] that currently is the best heuristic for the CVRP and competes with
the ALNS heuristic for being the best heuristic for large VRPTW instances. Thus it seems like the
neighborhood is very well suited for vehicle routing problems. Several other large neighborhoods
have been proposed for vehicle routing problems, but none of them has been as succesful as the
LNS.

Another large neighborhood for the VRP is the cyclic transfers proposed by Thompson and
Orlin [1989]. The cyclic transfer performs a chain of customer relocations: A customer i1 is moved
from its route ri1to route ri2 where a customer i2 is removed, this customer is then moved to
a new route and so on. At the end of the chain, customer ip is inserted into route ri1 . If no
route is allowed to be repeated on the chain then the problem of finding the best move in the
neighborhood can be transformed to a graph problem, the so called subset disjoint minimum cost
cycle problem (SDMCCP), that unfortunately is NP-hard. So the SDMCCP must in general be
solved by heuristics, although Dumitrescu [2002] presents an exact algorithm for the SDMCCP
that performs well in some important cases. The cyclic transfer can be extended to moving clusters
of customers between routes or to handle chains where no customers are inserted on the route from
which the first customer in the chain was taken from. Recently Agarwal et al. [2004] proposed a
CVRP heuristic based on the ideas of cyclic transfers that allowed the operations in the chain to
be more complex than just relocating a single customer. The heuristic could for example relocate
a sequence of customers from one route to another.

The last large neighborhood for VRP we are going to discuss in this section has not received
much attention. It was proposed by Hjorring [1995] and is based on the petal method [Ryan et al.
[1993]]. The petal method is a construction heuristic proposed for the CVRP. Given an ordering of
the customers i1, i2, . . . , in the heuristic creates candidates for routes by first considering customer
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i1. For customer i1 the routes containing customers {i1} , {i1, i2} , {i1, i2, i3} , . . . , {i1, . . . , ip} are
created until a customer ip′ is met for which the route containing customers {i1, . . . , ip′} would be
infeasible. Then the heuristic goes on to create routes formed by considering customer i2 and so
on. The ordering is cyclic so, for example, the set containing two elements, generated by customer
in is {in, i1}. When all the routes have been constructed the optimal selection of routes that
serves all customers can be found in polynomial time by solving a series of shortest path problems.
Hjorring creates a large CVRP neighborhood out of this procedure by making small pertubations
in the ordering of the customers. This might be a small neighborhood in the solution space defined
by permutations of customer but it is a large neighborhood in the CVRP solution space as each
permutation potentially corresponds to an exponential number of CVRP solutions. A similar idea
has later been used by Prins [2004] in a genetic algorithm where each solution in the population
is encoded as a permutation of customers.

3.2.4 Metaheuristics

Metaheuristics has been a very popular research area in the last 20 years and very impressive
results have been obtained using these heuristics. Several books and survey/tutorial papers have
been written about the topic. Consequently, we are not going to present another introduction to
metaheuristics, as it would be hard to bring anything new to the field. We assume that the reader
is familiar with the topic, if not, the following references are recommended as starting points: Voß
[2001], Blum and Roli [2003], Gendreau and Potvin [2005].

The metaheuristic used in this paper is simulated annealing - not so much because it is our
favourite metaheuristic but because it seemed easy to integrate with the ALNS. Afterwards we
have tried to combine the ALNS with tabu search and iterated local search but we have not been
able to obtain a heuristic with the same quality as the original simulated annealing heuristic.

3.3 Trends in heuristic research for the VRP

This section outlines some of the trends in the research in heuristic methods for static vehicle
routing problems and it contains some comments on the direction I foresee and/or hope the
research will move in the coming years. The section is quite subjective in some paragraphs and
other researchers in the VRP community may have different opinions or see different opportunities
than I do.

The section first lists some possible research directions and then comments on the impact I
believe these directions will have in the future.

• More complex and rich vehicle routing problems.

• Faster heuristics (disregarding increasing computer speeds) that still produces high quality
solutions.

• Ability to handle larger instances.

• More precise heuristics - better solution quality without worrying overly about the time
needed for the computation.

• Simpler heuristics.

• Heuristics using mathematical programming - combining ideas from exact optimization with
heuristics.

• Parallel implementations.

• More realistic test instances.
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More complex models. I believe that more complex and rich vehicle routing problems are going
to be a subject that will receive significant attention in the near future, and it is a trend that
already is present today. It is an important topic as real life problems contain more constraints
than what is present in a standard CVRP or VRPTW.

It is a slightly “dangerous” and problematic research path as the result might be many case
studies papers that apply heuristics to a certain, special problem arising in a given industry,
possibly with constraints that are specific to a particular region or political system and not very
general. Such studies are of course welcome, but in my opinion it can be hard to distill general
knowledge from them and comparison between different models and heuristics can be difficult due
to the lack of a common foundation. It is my hope that the research in more complex vehicle
route problems is going to continue along the following paths

1. Identify certain structures and constraints occurring in real life problems and transfer these
to the scientific community. Introduce the structure or constraint in a clear way that cap-
tures the essence of the problem. It is acceptable to leave some detail out of the new model
in order to avoid an overly cluttered model.
An example of this approach is the combination of 2D packing with the vehicle routing
problem that recently has been proposed (Iori et al. [2004], Gendreau et al. [2004]). The
packing component of the problem is occurring in practice, it has not been considered in the
literature before, and it is modeled in a reasonably simple way, such that the model is clear
and future researchers can continue working on the problem.
Note that introducing new constraints, just to introduce a new problem, is not to be recom-
mended. The new constraints should be an interesting contribution in itself.

2. Identify heuristics that are robust and easily adaptable to a variety of problem types. The
heuristic presented in Chapters 4 to 6 is an example of one such heuristic. Establishing
that a heuristic is robust and adaptable can be done as in this thesis where the heuristic is
tested on a number of different problem types, or it can be done by arguing how different
problem types could be solved by the heuristic. Another heuristic that has been shown to
be easily adaptable to many problem types is the unified tabu search by Cordeau, Laporte
and coauthors [Cordeau et al. [1997, 2000], Cordeau and Laporte [2001]].

3. Identify models that are relatively easy to solve by existing heuristics but at the same time
are able to express many problem variants. The rich PDPTW used in Chapters 4 to 6 is one
such model, but even broader models could be envisioned.

Faster heuristics, larger instances. The quest for faster heuristics has been going on since
the beginning of computerized solution of vehicle routing problems, but developments are still
taking place and will continue to do so in the future. One of the most important benefits of faster
heuristics is that it will allow us to solve larger instances, and this is surely needed in the real
world - real world problems are often larger than the 1000 customer instances that typically are
the largest instances considered by heuristic methods. Some recent research is worth pointing
out, Toth and Vigo [2003] described a way to reduce the running time of tabu search, a method
they called granular tabu search. The key idea in the granular tabu search is to restrict the
neighborhood search by discarding the most unpromising moves. In practice this can be done by
looking at the arc lengths and categorize an arc as either promising or unpromising, based on its
length but also on other features like if it is incident to the depot or has been used in one of the
best solutions encountered so far. When doing the neighborhood search, only moves that involve
at least one promising arc are attempted. The approach was tested on CVRP instances with up
to around 500 customers and showed that the heuristic was fast considering the computer used.

Another interesting development towards faster heuristics is the sequential search for vehicle
routing problems, proposed by Irnich et al. [2005]. Sequential search uses techniques developed for
local search methods for the TSP to speed up the search of VRP neighborhoods. As opposed to
the granular neighborhoods discussed above, sequential search examines the entire neighborhood,
but does so implicitly. It is out of the scope of this section to give a complete description of
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how this is done, but the key idea is that for many standard neighborhoods for vehicle routing
problems it is possible to decompose the moves of the neighborhood into so-called partial moves
that are cost-independent. A decomposition is cost-independent if the gain (change in objective
function) for the complete move is the sum of the gains of all the partial moves. This is used
together with a theorem by Lin and Kernighan [1973] that states that if a sequence of numbers
has a positive sum, there is a cyclic permutation of these numbers such that every partial sum
is positive. This theorem makes it possible to discard many potential moves. The approach is
tested on CVRP instances with between 250 to 2500 customers and dramatic improvements over
standard implementations of the neighborhood search are obtained. Speedups range from a factor
5 to a factor 800.

This approach is certainly going to be used in future metaheuristics for the CVRP and it will
probably be attempted on more complex and constrained problem types like the VRPTW or the
PDPTW. It is unknown how powerful the idea is going to be for the more constrained problem
types - the computational results in (Irnich et al. [2005]) shows that the speedup decreases when
instances become more constrained.

The last contribution toward faster heuristics mentioned here is proposed by Kytöjoki and
Bräysy [2005]. They presented a metaheuristic for the CVRP based on variable neighborhood
search and guided local search with several implementation tricks to speed up computation. The
heuristic was tested on instances with up to 20,000 customers. An instance with 1040 customers
could be solved in between 3.4 and 6.6 minutes depending on the heuristic used while the instance
with 20000 customers took between 51 and 144 minutes depending on the heuristic. The solution
quality seems good.

More precise heuristics. Heuristics that deliver solutions of high quality is a topic that
received a lot of attention, especially since the arrival of metaheuristics. I do not think it is as
important a research direction any more, as it has once been. It seems like the best of today’s
heuristics are consistently able to reach solutions whose cost is within 1–1.5% of the optimal or best
known solution cost. For many applications of vehicle routing problems this is good enough, as the
data that can be collected in real life will be influenced by errors or noise anyway. Consequently,
the notion of an optimal solution is not that important when dealing with real life instances in
most cases.

Heuristics that produce high quality solutions are nevertheless going to receive attention in
the future - one reason is that there always will be a certain personal satisfaction in seeing your
heuristic produce solutions better than the previously best known! Another reason is that solution
quality is easy to measure and therefore an obvious way of comparing heuristics

Simpler heuristics. Focusing the research toward simpler heuristics was proposed by Gen-
dreau et al. [2002]. The authors write: It is time to develop simpler methods capable of quickly
providing good quality solutions. I certainly agree that a simple heuristic is preferable (by far) to
a complicated one, but I do not feel that this is the way the research in general is moving and has
been moving in the recent years. Occasionally we will see simple heuristics appear, and we will
learn from those, perhaps more than from the complicated heuristics that are able to improve upon
best known solutions. But I believe that the ideas from these simpler heuristics are going to be
combined with other ideas to form more and more complicated heuristics due to the competitive
nature of the field.

It is worthwhile to consider if the ALNS heuristic proposed in this thesis is a simple heuristic.
I believe that the basic idea in the heuristic is simple and can be described in 1 page. The
description of the heuristic gets complicated if the sub-heuristics that define its neighborhoods
have to be explained, and the implementation of the heuristic itself is complicated. We have
gone to some lengths to try not to make the heuristic overly complicated. For example, we have
avoided trying to incorporate local searches based on more traditional neighborhoods even though
this could have improved the results somewhat.

Mathematical programming based heuristics. A line of research that I believe is going
to be studied more in the future is a combination of ideas from heuristics with exact optimiza-
tion and mathematical programming. The best heuristics in terms of solution quality for the
two most famous vehicle routing problems, the CVRP and VRPTW, typically contain very few
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applications of theoretical results. These heuristics are usually based on a clever exploration of
the neighborhood, that is, a good trade-off between intensification and diversification, and algo-
rithmic techniques to speed up the evaluation of the neighborhood. Thus it seems likely that a
more mathematic approach could provide some new insights and improvements. Heuristics based
on mathematical models have been proposed recently, some examples are heuristic column gener-
ation [Xu et al. [2003], Sigurd et al. [2005]], neighborhood evaluation by transformation to a graph
problem [Agarwal et al. [2004], Ergun et al. [2002]], neighborhood search through a polynomial
solvable set-partitioning problem [Hjorring [1995]], clustering based on a Lagrangian lower bound
[Toth and Vigo [1999]] and a removal and reinsertion based approach where insertion is done by
solving a set-partitioning problem [Franceschi et al. [2005]]. The last is actually able to find some
very high quality solutions to the CVRP if given a very good initial solution. The computation
time is very large (A problem with 120 customers took more than a day to solve on a modern PC),
but it nevertheless shows that there is some hope for using mathematical models within heuristics.

Parallel heuristics. The current trend in CPU architectures is that improvements in clock
frequencies are beginning to stagnate and chip makers are placing multiple cores in their CPUs in
order to improve performance. The top-level workstation CPUs from AMD and Intel today have
two cores on the CPU and CPUs with even 4 or even 8 cores are on Intel’s road map. In a few
years single core CPUs might become obsolete. In order to get the full performance from these
multi-core CPUs one needs to consider parallel programming. It is going to be interesting to see
how big an impact this development is going to have on the heuristic community. A recent book
about parallel metaheuristic is [Alba [2005]].

More realistic test instances. I hope that more test instances from the industry will
become available to the scientific community. Most of the instances we test our heuristics on
are generated by some random process, and it is uncertain how well these instances mimic real
life instances. Unfortunately it is often hard to release real life instances to the public. Many
companies, from which the data originates, considers such data as confidential. A step toward
more realistic instances could be to generate data in a more clever manner. For example to get a
more realistic geographic distribution of customers, one could look up the addresses of persons with
a certain, common last name in a specified area and record their addresses. These addresses could
be turned into coordinates (the process is known as geocoding). This would produce a geographic
distribution that mimics that found in a delivery problem to private customers - customers would
be clustered in urban areas. To make instances even more realistic, road network distances could
be used instead of Euclidean distances — this should have a significant impact in an area like
Denmark where there are many islands and fjords in certain parts of the country.

The lack of realistic instances is perhaps most evident when looking at the large scale instances
used to compare heuristics for the CVRP. One set of instances for the CVRP contains 20 instances
with the number of customers ranging between 240 and 483 has been proposed by Golden et al.
[1998] and is accepted in the literature as a standard set for large CVRP problems. Another set,
containing 12 instances with up to 1200 customers was proposed recently by Li et al. [2005]. This
set has not been used much in the literature yet, but it will likely be used more in the future. The
only papers I am aware of that use the instances are Li et al. [2005], Kytöjoki and Bräysy [2005]
and Chapter 6 of this thesis.

All of these instances are highly symmetrical, an example from the second set is shown in Figure
3.2. The instances were created this way to make it easy to establish a good solution by hand, and
this solution can be compared to the heuristic solution, but in my opinion it is problematic that all
of the large scale instances that we test our CVRP heuristics on have this property. The instances,
certainly do not look like the instances occurring in real life and we risk creating a generation of
heuristics that are particular well suited at solving these symmetrical problems, but that might
be less robust toward more general customer configurations. It is therefore my hope that another
data set will appear for the CVRP and be used on equal terms with the existing data sets. One
candidate for such a date set could be the one used by Irnich et al. [2005].

The unified heuristic presented in this thesis is only tested on the instances by Golden et al.
[1998] and Li et al. [2005] as well as a classic data set by Christofides et al. [1979]. The instances
by Irnich et al. [2005] were unknown to us at the time when the paper in Chapter 6 was submitted.
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Figure 3.2: Large CVRP instance, 560 customers (instance named “21” in Li et al. [2005]) . The
top figure shows the customers in the problem. Large circles have demand 30, small circles have
demand 10. The capacity of the vehicles is 1200. The bottom figure shows a solution found by
the ALNS heuristic with cost 16224.81, the different point styles mark different routes. The best
known solution has cost 16212.74.
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3.3.1 Trends in heuristic research for the VRP - conclusion

The preceding section has outlined a number of research areas within the area of heuristics for
vehicle routing problems that I believe are going to receive attention in the coming years.

With the enormous amount of literature on heuristics for the vehicle routing problem, a natural
question is: is there really much left to do? My answer to that question is “yes”. I believe that
researchers will continue to be challenged to make even better, more general and robust heuristics
for vehicle routing problems in the next decade, just as they have been in the last decade.

Designing and implementing heuristics for vehicle routing problems is a very popular topic in
the operations research community, which not necessarily only is a good thing. The reasons for the
popularity are probably the obvious applicability of the problem and the low barrier for entering
the field: the problems are easy to understand, the benchmark instances are easy to obtain and
the standard heuristics do not require much theoretical insight to understand. These are also some
of the reasons why I entered the field.

The low barrier for entering implies that many heuristics are proposed - some of them have a
quality that I believe is below what is acceptable. The many heuristics also creates a field that is
hard to get an overview of - for example, I believe that only a few researchers in the community
have thorough knowledge of all the heuristics that have been proposed for the VRPTW through
the last 15 years.

I hope that the heuristic papers in this thesis show that it is not necessary to propose a new
heuristic for every combination of the classic constraints that one can think of. It certainly is
possible to design a heuristic that can handle a variety of combinations and still produce good
results.
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An Adaptive Large Neighborhood Search Heuristic for the Pickup
and Delivery Problem with Time Windows

Stefan Ropke, David Pisinger

Abstract

Thepickup and delivery problem with time windowsis the problem of serving a number of transportation
requestsusing a limited amount of vehicles. Each request involves moving a number of goods from a
pickup location to a delivery location. Our task is to construct routes that visit all locations such that
corresponding pickups and deliveries are placed on the sameroute and such that a pickup is performed
before the corresponding delivery. The routes must also satisfy time window and capacity constraints.

This paper presents a heuristic for the problem based on an extension of theLarge Neighborhood Search
heuristic previously suggested for solving the vehicle routing problem with time windows. The proposed
heuristic is composed of a number of competing sub-heuristics which are used with a frequency correspond-
ing to their historic performance. This general framework is denotedAdaptive Large Neighborhood Search.

The heuristic is tested on more than 350 benchmark instanceswith up to 500 requests. It is able to
improve the best known solutions from the literature for more than 50% of the problems.

The computational experiments indicate that it is advantageous to use several competing sub-heuristics
instead of just one. We believe that the proposed heuristic is very robust and is able to adapt to various
instance characteristics.

Keywords: Pickup and Delivery Problem with Time Windows, Large Neighborhood Search, Simulated
Annealing, Metaheuristics

Introduction

In the considered variant of the pickup and delivery problemwith time windows (PDPTW), we are given a
number ofrequestsandvehicles. A request consists of picking up goods at one location and delivering these
goods to another location. Two time windows are assigned to each request: a pickup time window that specifies
when the goods can be picked up and a delivery time window thattells when the goods can be dropped off.
Furthermoreservice timesare associated with each pickup and delivery. The service times indicate how long
it will take for the pickup or delivery to be performed. A vehicle is allowed to arrive at a location before the
start of the time window of the location, but the vehicle mustthen wait until the start of the time window
before initiating the operation. A vehicle may never arriveto a location after the end of the time window of the
location.

Each request is assigned a set of feasible vehicles. This canfor example be used to model situations where
some vehicles cannot enter a certain location because of thedimensions of the vehicle.

Each vehicle have a limited capacity and it starts and ends its duty at given locations calledstart andend
terminals. The start and end location do not need to be the same and two vehicles can have different start and
end terminals. Furthermore each vehicle is assigned a startand end time. The start time indicates when the
vehicle must leave its start location and the end time denotes the latest allowable arrival at its end location. Note
that the vehicle leaves its depot at the specified start time even though this may introduce a waiting time at the
first location visited.

Our task is to construct valid routes for the vehicles. A route is valid if time windows and capacity con-
straints are obeyed along the route, each pickup is served before the corresponding delivery, corresponding
pickup and deliveries are served on the same route and the vehicle only serves requests it is allowed to serve.
The routes should be constructed such that they minimize thecostfunction to be described below.
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As the number of vehicles is limited, we might encounter situations where some requests cannot be assigned
to a vehicle. These requests are placed in a virtualrequest bank. In a real world situation it is up to a human
operator to decide what to do with such requests. The operator might for example decide to rent extra vehicles
in order to serve the remaining requests.

The objective of the problem is to minimize a weighted sum consisting of the following three components:
1) the sum of the distance traveled by the vehicles, 2) the sumof the time spent by each vehicle. The time spent
by a vehicle is defined as its arrival time at the end terminal minus its start time (which is given a priori), 3) the
number of requests in the request bank. The three terms are weighted by the coefficientsα, β andγ respectively.
Normally a high value is assigned toγ in order to serve as many requests as possible. A mathematical model is
presented in section 1 to define the problem precisely.

The problem was inspired from a real life vehicle routing problem related to transportation of raw materials
and goods between production facilities of a major Danish food manufacturer. For confidentiality reasons, we
are not able to present any data about the real life problem that motivated this research.

The problem is NP-hard as it contains the traveling salesmanproblem as a special case. The objective of
this paper is to develop a method for finding good but not necessarily optimal solutions to the problem described
above. The developed method should preferably be reasonably fast, robust and able to handle large problems.
Thus it seems fair to turn to heuristic methods.

The next paragraphs survey recent work on the PDPTW. Although none of the references mentioned below
consider exactly the same problem as ours, they all face the same core problem.

Nanry and Barnes [15] are among the first to present a metaheuristic for the PDPTW. Their approach is
based on a Reactive Tabu Search algorithm that combines several standard neighborhoods. In order to test
the heuristic, Nanry and Barnes create PDPTW instances froma set of standard VRPTW problems proposed
by Solomon [26]. The heuristic is tested on instances with upto 50 requests. Li and Lim [11] use a hybrid
metaheuristic to solve the problem. The heuristic combinesSimulated Annealing and Tabu search. Their
method is tested on the 9 largest instances from Nanry and Barnes [15] and they consider 56 new instances based
on Solomon’s VRPTW problems [26]. Lim, Lim and Rodrigues [12] apply “Squeaky wheel” optimization and
local search to the PDPTW. Their heuristic is tested on the set of problems proposed by Li and Lim [11]. Lau
and Liang [10] also apply Tabu search to PDPTW and they describe several construction heuristics for the
problem. Special attention is given to how test problems canbe constructed from VRPTW instances.

Recently, Bent and Van Hentenryck [2] proposed a heuristic for the PDPTW based on Large Neighborhood
Search. The heuristic was tested on the problems proposed byLi and Lim [11]. The heuristic by Bent and Van
Hentenryck is probably the most promising metaheuristic for the PDPTW proposed so far.

Gendreau et al. [9] consider a dynamic version of the problem. An ejection chain neighborhood is proposed
and steepest descent and Tabu search heuristics based on theejection chain neighborhood are tested. The tabu
search is parallelized and the sequential and parallelizedversions are compared.

Several column generation methods for PDPTW have been proposed. These methods both include exact
and heuristic methods. Dumas et al. [8] were the first to use column generation for solving PDPTW. They
propose a branch and bound method that is able to handle problems with up to 55 requests.

Xu et al. [29] consider a PDPTW with several extra real-life constraints, including multiple time win-
dows, compatibility constraints and maximum driving time restrictions. The problem is solved using a column
generation heuristic. The paper considers problem instances with up to 500 requests.

Sigurd et al. [24] solve a PDPTW problem related to transportation of livestock. This introduces some extra
constraints, such as precedence relations among the requests, meaning that some requests must be served before
others in order to avoid the spread of diseases. The problem is solved to optimality using column generation.
The largest problems solved contain more than 200 requests.

A recent survey of pickup and delivery problem literature was made by Desaulniers et al. [7].
The work presented in this paper is based on the Masters Thesis of Ropke [19]. In the papers by Pisinger

and Ropke [16], [20] it is shown how the heuristic presented in this paper can be extended to solve a variety of
vehicle routing problems, for example the VRPTW, theMulti Depot Vehicle Routing Problemand theVehicle
Routing Problem with Backhauls.

The rest of this paper is organized as follows: Section 1 define the PDPTW problem formally, Section
2 describes the basic solution method in a general context; Section 3 describes how the solution method has
been applied to PDPTW and extensions to the method are presented; Section 4 contains the results of the
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computational tests. The computational test is focused on comparing the heuristic to existing metaheuristics
and evaluating if the refinements presented in Section 3 improve the heuristic; Section 5 concludes the paper.

1 Mathematical model

This section presents a mathematical model of the problem, it is based on the model proposed by Desaulniers
et al. [7]. The mathematical model serves as a formal description of the problem. As we solve the problem
heuristically we do not attempt to write the model on integer-linear form.

A problem instance of the pickup and delivery problem containsn requests andmvehicles. The problem is
defined on a graph,P = {1, · · · ,n} is the set of pickup nodes,D = {n+1, · · · ,2n} is the set of delivery nodes.
Requesti is represented by nodesi andi +n. K is the set of all vehicles,|K|= m. One vehicle might not be able
to serve all requests, as an example a request might require that the vehicle has a freezing compartment.Ki is
the set of vehicles that are able to serve requesti andPk ⊆ P andDk ⊆ D are the set of pickups and deliveries,
respectively, that can be served by vehiclek, thus for alli andk: k∈Ki ⇔ i ∈Pk∧ i ∈Dk. Requests whereKi 6= K
are calledspecial requests. DefineN = P∪D andNk = Pk∪Dk. Letτk = 2n+k, k∈K andτ′k = 2n+m+k, k∈K
be the nodes that represents the start and end terminal, respectively, of vehiclek. The graphG= (V,A) consists
of the nodesV = N∪{τ1, · · · ,τm}∪{τ′1, · · · ,τ′m} and the arcsA = V ×V. For each vehicle we have a subgraph
Gk = (Vk,Ak), whereVk = Nk∪{τk}∪

{

τ′k
}

andAk = Vk ×Vk. For each edge(i, j) ∈ A we assign a distance
di j ≥ 0 and a travel timeti j ≥ 0. It is assumed that distances and times are nonnegative;di j ≥ 0, ti j ≥ 0 and that
the times satisfy the triangle inequality;ti j ≤ til + tl j for all i, j, l ∈V. For the sake of modeling we also assume
thatti,n+i +si > 0, this makes elimination of sub tours and the pickup-before-delivery constraint easy to model.

Each nodei ∈V has a service timesi and a time window[ai ,bi ]. The service time represents the time needed
for loading and unloading and the time window indicates whenthe visit at the particular location must start; a
visit to nodei can only take place between timeai andbi . A vehicle is allowed to arrive to a location before the
start of the time window but it has to wait until the start of the time window before the visit can be performed.
For each nodei ∈ N, l i is the amount of goods that must be loaded onto the vehicle at the particular node,l i ≥ 0
for i ∈ P andl i = −l i−n for i ∈ D. The capacity of vehiclek∈ K is denotedCk.

Four types of decision variables are used in the mathematical model.xi jk , i, j ∈V,k∈ K is a binary variable
which is one if the edge between nodei and nodej is used by vehiclek and zero otherwise.Sik, i ∈V,k∈ K is a
nonnegative integer that indicates when vehiclek starts the service at locationi, Lik, i ∈V,k∈K is a nonnegative
integer that is an upper bound on the amount of goods on vehicle k after servicing nodei. Sik andLik are only
well-defined when vehiclek actually visits nodei. Finally zi , i ∈ P is a binary variable that indicates if requesti
is placed in the request bank. The variable is one if the request is placed in the request bank and zero otherwise.

A mathematical model is:

minα ∑
k∈K

∑
(i, j)∈A

di j xi jk + β ∑
k∈K

(

Sτ′k,k−aτk

)

+ γ ∑
i∈P

zi (1)

Subject to:
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∑
k∈Ki

∑
j∈Nk

xi jk +zi = 1 ∀i ∈ P (2)

∑
j∈Vk

xi jk − ∑
j∈Vk

x j,n+i,k = 0 ∀k∈ K,∀i ∈ Pk (3)

∑
j∈Pk∪{τ′k}

xτk, j,k = 1 ∀k∈ K (4)

∑
i∈Dk∪{τk}

xi,τ′k,k = 1 ∀k∈ K (5)

∑
i∈Vk

xi jk − ∑
i∈Vk

x jik = 0 ∀k∈ K,∀ j ∈ Nk (6)

xi jk = 1⇒ Sik +si + ti j ≤ Sjk ∀k∈ K,∀(i, j) ∈ Ak (7)

ai ≤ Sik ≤ bi ∀k∈ K,∀i ∈Vk (8)

Sik ≤ Sn+i,k ∀k∈ K,∀i ∈ Pk (9)

xi jk = 1⇒ Lik + l j ≤ L jk ∀k∈ K,∀(i, j) ∈ Ak (10)

Lik ≤Ck ∀k∈ K,∀i ∈Vk (11)

Lτkk = Lτ′kk = 0 ∀k∈ K (12)

xi jk ∈ {0,1} ∀k∈ K,∀(i, j) ∈ Ak (13)

zi ∈ {0,1} ∀i ∈ P (14)

Sik ≥ 0 ∀k∈ K,∀i ∈Vk (15)

Lik ≥ 0 ∀k∈ K,∀i ∈Vk (16)

The objective function minimizes the weighted sum of the distance traveled, the sum of the time spent by
each vehicle, and the number of requests not scheduled.

Constraint (2) ensures that each pickup location is visitedor that the corresponding request is placed in the
request bank. Constraint (3) ensures that the delivery location is visited if the pickup location is visited and
that the visit is performed by the same vehicle. Constraints(4) and (5) ensure that a vehicle leaves every start
terminal and a vehicle enters every end terminal. Together with constraint (6) this ensures that consecutive
paths betweenτk andτ′k are formed for eachk∈ K.

Constraints (7), (8) ensure thatSik is set correctly along the paths and that the time windows areobeyed.
These constraints also make sub tours impossible. Constraint (9) ensures that each pickup occur before the
corresponding delivery. Constraints (10),(11) and (12) ensure that the load variable is set correctly along the
paths and that the capacity constraints of the vehicles are respected.

2 Solution method

Local search heuristics are often built on neighborhood moves that make small changes to the current solution,
such as moving a request from one route to another or exchanging two requests as in Nanry and Barnes [15]
and Li and Lim [11]. These kind of local search heuristics areable to investigate a huge number of solutions in
a short time, but a solution is only changed very little in each iteration. It is our belief that such heuristics can
have difficulties in moving from one promising area of the solution space to another, when faced with tightly
constrained problems, even when embedded in metaheuristics.

One way of tackling this problem is by allowing the search to visit infeasible solutions by relaxing some
constraints; see e.g. Cordeau et al. [5]. We take another approach — instead of using small “standard moves”
we use very large moves that potentially can rearrange up to 30-40% of all requests in a single iteration. The
price of doing this is that the computation time needed for performing and evaluating the moves becomes much
larger compared to the smaller moves. The number of solutions evaluated by the proposed heuristic per time
unit is only a fraction of the solutions that could be evaluated by a standard heuristic. Nevertheless very good
performance is observed in the computational tests as demonstrated in Section 4.

The proposed heuristic is based onLarge Neighborhood Search (LNS)introduced by Shaw [21]. The LNS
heuristic has been applied to the VRPTW with good results (see Shaw[21], [22] and Bent and Van Hentenryck
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Algorithm 1 LNS heuristic
1 Function LNS(s∈ {solutions}, q∈ N )
2 solution sbest=s;
3 repeat
4 s′ = s;
5 remove q requests from s′

6 reinsert removed requests into s′;
7 if (f(s′) < f(sbest)) then
8 sbest= s′;
9 if accept(s′, s) then
10 s= s′;
11 until stop-criterion met
12 return sbest;

[4]). Recently the heuristic has been applied to the PDPTW aswell (Bent and Van Hentenryck [2]). The LNS
heuristic itself is similar to theruin and recreateheuristic proposed by Schrimpf et al. [23].

The pseudo-code for a minimizing LNS heuristic is shown in Algorithm 1. The pseudo-code assumes
that an initial solutions already has been found, for example by a simple constructionheuristic. The second
parameterq determines the scope of the search.

Lines 5 and 6 in the algorithm are the interesting part of the heuristic. In line 5, a number of requests
are removed from the current solutions′ and in line 6 the requests are reinserted into the current solution
again. The performance and robustness of the overall heuristic is very dependent on the choice of removal
and insertion procedures. In the previously proposed LNS heuristics for VRPTW or PDPTW (see for example
Shaw [21] or Bent and Van Hentenryck [2]) near-optimal methods were used for the reinsert operation. This was
achieved using a truncated branch and bound search. In this paper we take a different approach by using simple
insertion heuristics for performing the insertions. Even though the insertion heuristics themselves usually
deliver solutions of poor quality, the quality of the LNS heuristic is very good as the bad moves that are
generated by the insertion heuristics lead to a fruitful diversification of the search process.

The rest of the code updates the so far best solution and determines if the new solution should be accepted.
A simple accept criteria would be to accept all improving solutions. Such a criteria has been used in earlier
LNS implementations (Shaw [21]). In this paper we use a simulated annealing accept criteria.

In line 11 we check if a stop criterion is met. In our implementation we stop when a certain number of
iterations has been performed.

The parameterq∈ {0, · · · ,n} determines the size of the neighborhood. Ifq is equal to zero then no search at
all will take place as no requests are removed. On the other hand if q is equal ton then the problem is resolved
from scratch in each iteration. In general, one can say that the largerq is, the easier it is to move around in
the solution space, but whenq gets larger each application of the insertion procedure is going to be slower.
Furthermore if one uses a heuristic for inserting requests,then choosingq too large might give bad results.

The LNS local search can be seen as an example of a very large scale neighborhood search as presented by
Ahuja et al. in [1]. Ahuja et al. define very large scale neighborhoods as neighborhoods whose sizes grow expo-
nentially as a function of the problem size, or neighborhoods that simply are too large to be searched explicitly
in practice. The LNS local search fits into the last category,as we have a large number of possibilities for
choosing the requests to remove and a large number of possible insertions. One important difference between
the proposed heuristic and most of the heuristics describedin [1] is that the latter heuristics typically examine
a huge number of solutions, albeit implicitly, while the LNSheuristic proposed in this paper only examines a
relatively low number of solutions.

Instead of viewing the LNS process as a sequence of remove-insert operations, it can also be viewed as a
sequence offix-optimizeoperations. In the fix operation a number of elements in the current solution are fixed.
If for example the solution is represented as a vector of variables, the fix operation could fix a number of these
variables at their current value. The optimize operation then re-optimizes the solution while respecting the
fixation performed in the previous fix-operation. This way ofviewing the heuristic might help us to apply the
heuristic to problems where the remove-insert operations do not seem intuitive. In Section 3 we introduce the
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termAdaptive Large Neighborhood Search(ALNS) to describe an algorithm using several large neighborhoods
in an adaptive way. A more general presentation of the ALNS framework can be found in the subsequent paper
[16].

3 LNS applied to PDPTW

This section describes how the LNS heuristic has been applied to the PDPTW. Compared to the LNS heuristic
developed for the VRPTW and PDPTW by Shaw [21], [22] and Bent and Van Hentenryck [2], [4] the heuristic
in this paper is different in several ways:

1. We are using several removal and insertion heuristics during the same search while the earlier LNS
heuristics only used one method for removal and one method for insertions. The removal heuristics
are described in Section 3.1 and the insertion heuristics are described in Section 3.2. The method for
selecting which sub-heuristic to use is described in Section 3.3. The selection mechanism is guided by
statistics gathered during the search, as described in Section 3.4. We are going to use the termAdaptive
Large Neighborhood Search(ALNS) heuristic for a LNS heuristic that uses several competing removal
and insertion heuristics and chooses between using statistics gathered during the search.

2. Simple and fast heuristics are used for the insertion of requests as opposed to the more complicated
branch and bound methods proposed by Shaw [21], [22] and Bentand Van Hentenryck [2], [4].

3. The search is embedded in a simulated annealing metaheuristic where the earlier LNS heuristics used a
simple descent approach. This is described in Section 3.5.

The present section also describes how the LNS heuristic canbe used in a simple algorithm designed for
minimizing the number of vehicles used to serve all requests. The vehicle minimization algorithm only works
for homogeneous fleets without an upper bound on the number ofvehicles available.

3.1 Request removal

This section describes three removal heuristics. All threeheuristics take a solution and an integerq as input.
The output of the heuristic is a solution whereq requests have been removed. The heuristicsShaw removaland
Worst removalfurthermore have a parameterp that determines the degree of randomization in the heuristic.

3.1.1 Shaw removal heuristic

This removal heuristic was proposed by Shaw in [21, 22]. In this section it is slightly modified to suit the
PDPTW. The general idea is to remove requests that are somewhat similar, as we expect it to be reasonably
easy to shuffle similar requests around and thereby create new, perhaps better solutions. If we choose to remove
requests that are very different from each other then we might not gain anything when reinserting the requests
as we might only be able to insert the requests at their original positions or in some bad positions. We define
the similarity of two requestsi and j using arelatedness measure R(i, j). The lowerR(i, j) is, the more related
are the two requests.

The relatedness measure used in this paper consists of four terms: a distance term, a time term, a capacity
term and a term that considers the vehicles that can be used toserve the two requests. These terms are weighted
using the weightsϕ, χ, ψ andω respectively. The relatedness measure is given by:

R(i, j) = ϕ
(

dA(i),A( j) +dB(i),B( j)

)

+ χ
(
∣

∣TA(i)−TA( j)

∣

∣+
∣

∣TB(i)−TB( j)

∣

∣

)

(17)
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∣
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∣
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∣
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∣

∣
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{
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∣
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∣

∣

}

)

A(i) andB(i) denote the pickup and delivery locations of requesti andTi indicates the time when locationi is
visited.di j , l i andKi are defined in Section 1. Using the decision variableSik from Section 1, we can writeTi as
Ti = ∑k∈K ∑ j∈Vk

Sikxi jk . The term weighted byϕ measures distance, the term weighted byχ measures temporal
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Algorithm 2 Shaw Removal
1 Function ShawRemoval(s∈ {solutions}, q∈ N, p∈ R+)
2 request : r = a randomly selected request from S;
3 set of requests : D = {r};
4 while |D| < q do
5 r = a randomly selected request from D;
6 Array : L = an array containing all request from s not in D;
7 sort L such that i < j ⇒ R(r,L[i]) < R(r,L[ j]);
8 choose a random number y from the interval[0,1);
9 D = D # {L [yp |L|]};
10 end while
11 remove the requests in D from s;

Algorithm 3 Worst Removal
1 Function WorstRemoval(s∈ {solutions}, q∈ N, p∈ R+)
2 while q > 0 do
3 Array : L = All planned requests i, sorted by descending cost(i,s);
4 choose a random number y in the interval[0,1);
5 request : r = L [yp |L|];
6 remove r from solution s;
7 q = q−1;
8 end while

connectedness, the term weighted byψ compares capacity demand of the requests and the term weighted by
ω ensures that two requests get a high relatedness measure if only a few or no vehicles are able to serve both
requests. It is assumed thatdi j , Tx andl i are normalized such that 0≤ R(i, j) ≤ 2(ϕ+ χ)+ψ+ω. This is done
by scalingdi j , Tx andl i such that they only take on values from[0,1]. Notice that we cannot calculateR(i, j), if
requesti or j is placed in the request bank.

The relatedness is used to remove requests in the same way as described by Shaw [21]. The procedure for
removing requests is shown in pseudo code in Algorithm 2. Theprocedure initially chooses a random request
to remove and in the subsequent iterations it chooses requests that are similar to the already removed requests.
A determinism parameterp≥ 1 introduces some randomness in the selection of the requests (a low value ofp
corresponds to much randomness).

Notice that the sorting in line 7 can be avoided in an actual implementation of the algorithm, as it is sufficient
to use a linear time selection algorithm [6] in line 9.

3.1.2 Random removal

The random removal algorithm simply selectsq requests at random and removes them from the solution. The
random removal heuristic can be seen as a special case of the Shaw removal heuristic withp = 1. We have
implemented a separate random removal heuristic though, asit obviously can be implemented to run faster than
the Shaw removal heuristic.

3.1.3 Worst removal

Given a requesti served by some vehicle in a solutions we define thecost of the request ascost(i,s) =
f (s)− f−i(s) where f−i(s) is the cost of the solution without requesti (the request is not moved to the request
bank, but removed completely). It seems reasonable to try toremove requests with high cost and inserting them
at another place in the solution to obtain a better solution value, therefore we propose a removal heuristic that
removes requests with highcost(i,s).

The worst removal heuristic is shown in pseudo-code in Algorithm 3. It reuses some of the ideas from
Section 3.1.1.
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Notice that the removal is randomized, with the degree of randomization controlled by the parameterp like
in Section 3.1.1. This is done to avoid situations where the same requests are removed over and over again.

One can say that the Shaw removal heuristic and the worst removal heuristic belong to two different classes
of removal heuristics. The Shaw heuristic is biased towardsselecting requests that “easily” can be exchanged,
while the worst-removal selects the requests that appear tobe placed in the wrong position in the solution.

3.2 Inserting requests

Insertion heuristics for vehicle routing problems are typically divided into two categories:sequentialandpar-
allel insertion heuristics. The difference between the two classes is that sequential heuristics build one route
at a time while parallel heuristics construct several routes at the same time. Parallel and sequential insertion
heuristics are discussed in further detail in [17]. The heuristics presented in this paper are all parallel. The
reader should observe that the insertion heuristic proposed here will be used in a setting where they are given a
number of partial routes and a number of requests to insert — they seldom build the solution from scratch.

3.2.1 Basic greedy heuristic

The basic greedy heuristic is a simple construction heuristic. It performs at mostn iterations as it inserts one
request in each iteration. Let∆ fi,k denote the change in objective value incurred by inserting requesti into route
k at the position that increases the objective value the least. If we cannot insert requesti in routek, then we set
∆ fi,k = ∞ . We then defineci asci = mink∈K {∆ fi,k}. In other words,ci is the “cost” of inserting requesti at
its best position overall. We denote this position bythe minimum cost position. Finally we choose the requesti
that minimizes

min ci

i ∈U
(18)

and insert it at its minimum cost position.U is the set of unplanned requests. This process continues until all
requests have been inserted or no more requests can be inserted.

Observe that in each iteration we only change one route (the one we inserted into), and we do not have to
recalculate insertion costs in all the other routes. This property is used in the concrete implementation to speed
up the insertion heuristics.

An obvious problem with this heuristic is that it often postpones the placement of “hard” requests (requests
which are expensive to insert, that is requests with largeci) to the last iterations where we do not have many
opportunities for inserting the requests as many of the routes are “full”. The heuristic presented in the next
section tries to circumvent this problem.

3.2.2 Regret heuristics

The regret heuristic tries to improve upon the basic greedy heuristic by incorporating a kind of look ahead
information when selecting the request to insert. Letxik ∈ {1, ...,m} be a variable that indicates the route
for which requesti has thek’th lowest insertion cost, that is∆ fi,xik ≤ ∆ fi,xik′

for k ≤ k′. Using this notation
we can expressci from Section 3.2.1 asci = ∆ fi,xi1. In the regret heuristic we define aregret value c∗i as
c∗i = ∆ fi,xi2 −∆ fi,xi1. In other words, the regret value is the difference in the cost of inserting the request in its
best route and its second best route. In each iteration the regret heuristic chooses to insert the requesti that
maximizes

max c∗i
i ∈U

The request is inserted at its minimum cost position. Ties are broken by selecting the insertion with lowest cost.
Informally speaking, we choose the insertion that we will regret most if it is not done now.

The heuristic can be extended in a natural way to define a classof regret heuristics: theregret-kheuristic is
the construction heuristic that in each construction step chooses to insert the requesti that maximizes:

max
{

∑k
j=1

(

∆ fi,xi j −∆ fi,xi1

)}

i ∈U
(19)
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If some requests cannot be inserted in at leastm− k+ 1 routes, then the request that can be inserted in the
fewest number of routes (but still can be inserted in at leastone route) is inserted. Ties are broken by selecting
the request with best insertion cost. The request is inserted at its minimum cost position. The regret heuristic
presented at the start of this section is a regret-2 heuristic and the basic insertion heuristic from Section 3.2.1 is
a regret-1 heuristic because of the tie-breaking rules. Informally speaking, heuristics withk > 2 investigate the
cost of inserting a request on thek best routes and insert the request whose cost difference between inserting it
into the best route and thek−1 best routes is largest. Compared to a regret-2 heuristic, regret heuristics with
large values ofk discover earlier that the possibilities for inserting a request become limited.

Regret heuristics have been used by Potvin and Rousseau [17]for the VRPTW. The heuristic in their paper
can be categorized as a regret-k heuristic withk = m, as all routes are considered in an expression similar to
(19). The authors do not use the change in the objective valuefor evaluating the cost of an insertion, but use a
special cost function. Regret heuristics can also be used for combinatorial optimization problems outside the
vehicle routing domain, an example of an application to the Generalized Assignment Problem was described
by Martello and Toth [13].

As in the previous section we use the fact that we only change one route in each iteration to speed up the
regret heuristic.

3.3 Choosing a removal and an insertion heuristic

In Section 3.1 we defined three removal heuristics (shaw, random andworst removal), and in Section 3.2 we
defined a class of insertion heuristics (basic insertion, regret-2, regret-3, etc.). One could select one
removal and one insertion heuristic and use these throughout the search, but in this paper we propose to use all
heuristics. The reason for doing this is that for example theregret-2 heuristic may be well suited for one type
of instance while the regret-4 heuristic may be the best suited heuristic for another type of instance. We believe
that alternating between the different removal and insertion heuristics gives us a more robust heuristic overall.

In order to select the heuristic to use, we assign weights to the different heuristics and use aroulette wheel
selection principle. If we havek heuristics with weightswi, i ∈ {1,2, · · · ,k}, we select heuristicj with proba-
bility

w j

∑k
i=1 wi

(20)

Notice that the insertion heuristic is selected independently of the removal heuristic (and vice versa). It is
possible to set these weights by hand, but it can be a quite involved process if many removal and insertion
heuristics are used. Instead an adaptive weight adjusting algorithm is proposed in Section 3.4.

3.4 Adaptive weight adjustment

This section describes how the weightsw j introduced in Section 3.3 can be automatically adjusted using statis-
tics from earlier iterations.

The basic idea is to keep track of a score for each heuristic, which measures how well the heuristic has
performed recently. A high score corresponds to a successful heuristic. The entire search is divided into a
number ofsegments. A segment is a number of iterations of the ALNS heuristic; here we define a segment as
100 iterations. The score of all heuristics is set to zero at the start of each segment. The score of a heuristic is
increased by eitherσ1, σ2 or σ3 in the following situations:

Parameter Description
σ1 The last remove-insert operation resulted in a new global best solution.
σ2 The last remove-insert operation resulted in a solution that has not been ac-

cepted before. The cost of the new solution is better than thecost of current
solution.

σ3 The last remove-insert operation resulted in a solution that has not been ac-
cepted before. The cost of the new solution is worse than the cost of current
solution, but the solution was accepted.
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The case forσ1 is clear: if a heuristic is able to find a new overall best solution, then it has done well.
Similarly if a heuristic has been able to find a solution that has not been visited before and it is accepted by the
accept criteria in the ALNS search then the heuristic has been successful as it has brought the search forward.
It seems sensible to distinguish between the two situationscorresponding to parametersσ2 andσ3 because we
prefer heuristics that can improve the solution, but we are also interested in heuristics that can diversify the
search and these are rewarded byσ3. It is important to note that we only reward unvisited solutions. This is to
encourage heuristics that are able to explore new parts of the solution space. We keep track of visited solutions
by assigning a hash key to each solution and storing the key ina hash table.

In each iteration we apply two heuristics: a removal heuristic and an insertion heuristic. The scores for both
heuristics are updated by the same amount as we can not tell whether it was the removal or the insertion that
was the reason for the “success”.

At the end of each segment we calculate new weights using the recorded scores. Letwi j be the weight of
heuristici used in segmentj as the weight used in formula (20). In the first segment we weight all heuristics
equally. After we have finished segmentj we calculate the weight for all heuristicsi to be used in segment
j +1 as follows:

wi, j+1 = wi j (1− r)+ r
πi

θi

πi is the score of heuristici obtained during the last segment andθi is the number of times we have attempted
to use heuristici during the last segment. Thereaction factor rcontrols how quickly the weight adjustment
algorithm reacts to changes in the effectiveness of the heuristics. If r is zero then we do not use the scores at
all and stick to the initial weights. Ifr is set to one then we let the score obtained in the last segmentdecide the
weight.

Figure 1 shows an example of how the weights of the three removal heuristics progress over time for a
certain problem instance. The plots are decreasing becauseof the simulated annealing acceptance criteria to
be described in the next section. Towards the end of the search we only accept good moves and therefore it is
harder for the heuristic to get high scores.

3.5 Acceptance and stopping criteria

As described in Section 2 a simple acceptance criteria wouldbe to only accept solutions that are better than
the current solution. This would give us a descent heuristiclike the one proposed by Shaw [21]. However,
such a heuristic has a tendency to get trapped in a local minimum so it seems sensible to, on occasion, accept
solutions that are worse than the current solution. To do this, we use the acceptance criteria from simulated

annealing. That is, we accept a solutions′ given the current solutions with probabilitye−
f(s′)− f (s)

T whereT > 0
is thetemperature.

The temperature starts out atTstart and is decreased every iteration using the expressionT = T · c, where
0 < c < 1 is thecooling rate. A good choice ofTstart is dependent on the problem instance at hand, so instead
of specifyingTstart as a parameter we calculateTstart by inspecting our initial solution. First we calculate the
costz′ of this solution using a modified objective function. In the modified objective function,γ (cost of having
requests in the request bank) is set to zero. The start temperature is now set such that a solution that isw
percent worse than the current solution is accepted with probability 0.5. The reason for settingγ to zero is that
this parameter typically is large and could cause us to set the starting temperature to a too large number if the
initial solution had some requests in the request bank. Noww is a parameter that has to be set. We denote this
parameter thestart temperature control parameter.

The algorithm stops when a specified number of LNS iterationshave passed.

3.6 Applying noise to the objective function

As the proposed insertion heuristics are quite myopic, we believe that it is worthwhile to randomize the insertion
heuristics such that they do not always make the move that seems best locally. This is achieved by adding a
noise term to the objective function. Every time we calculate the costC of an insertion of a request into a route,
we also calculate a random numbernoisein the interval[−maxN,maxN] and calculate the modified insertion
costsC′ = max{0,C+noise}. At each iteration we decide if we should useC or C′ to determine the insertions
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Figure 1: The figure shows an example of how the weights for the three removal heuristics progressed during one
application of the heuristic. The iteration number is shownalong thex-axis and the weight is shown along they-axis. The
graph illustrates that for the particular problem, therandomremoval and theShawremoval heuristics perform virtually
equally well, while theworst heuristic performs worst. Consequently theworst heuristic is not used as often as the two
other heuristics.

to perform. This decision is taken by the adaptive mechanismdescribed earlier by keeping track of how often
the noise applied insertions and the “clean” insertions aresuccessful.

In order to make the amount of noise related to the propertiesof the problem instance, we calculatemaxN=
η ·maxi, j∈V

{

di j
}

, whereη is a parameter that controls the amount of noise. We have chosen to letmaxNbe
dependent on the distancesdi j as the distances are an important part of the objective in allof the problems we
consider in this paper.

It might seem superfluous to add noise to the insertion heuristics as the heuristics are used in a simulated
annealing framework that already contains randomization,however we believe that the noise applications are
important as our neighborhood is searched by means of the insertion heuristics and not randomly sampled.
Without the noise applications we do not get the full benefit of the simulated annealing metaheuristic. This
conjecture is supported by the computational experiments reported in table 3.

3.7 Minimizing the number of vehicles used

Minimization of the number of vehicles used to serve all requests is often considered as first priority in the
vehicle routing literature. The heuristic proposed so far is not able to cope with such an objective, but by
using a simple two stage algorithm that minimizes the numberof vehicles in the first stage and then minimizes
a secondary objective (typically traveled distance) in thesecond stage, we can handle such problems. The
vehicle minimization algorithm only works for problems with a homogeneous fleet. We also assume that the
number of vehicles available is unlimited, such that constructing an initial feasible solution always can be done.

A two-stage method was also used by Bent and Van Hentenryck [4], [2], but while they used two different
neighborhoods and metaheuristics for the two stages, we usethe same heuristic in both stages.

The vehicle minimization stage works as follows: first an initial feasible solution is created using a sequen-
tial insertion method that constructs one route at a time until all requests have been planned. The number of
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vehicles used in this solution is the initial estimate on thenumber of vehicles necessary. Next step is to remove
one route from our feasible solution. The requests on the removed route are placed in the request bank. The
resulting problem is solved by our LNS heuristic. When the heuristic is run, a high value is assigned toγ such
that requests are moved out of the request bank if possible. If the heuristic is able to find a solution that serves
all requests, a new candidate for the minimum number of vehicles has been found. When such a solution has
been found, the LNS heuristic is immediately stopped, one more route is removed from the solution and the
process is reiterated. If the LNS heuristic terminates without finding a solution where all requests are served,
then the algorithm steps back to the last solution encountered in which all requests were served. This solution
is used as a starting solution in the second stage of the algorithm, which simply consists of applying the normal
LNS heuristic.

In order to keep the running time of the vehicle minimizationstage down, this stage is only allowed to
spendΦ LNS iterations all together such that if the first application of the LNS heuristic for example spendsa
iterations to find a solution where all requests are planned,then the vehicle minimization stage is only allowed
to performΦ−a LNS iterations to minimize the number of vehicles further. Another way to keep the running
time limited is to stop the LNS heuristic when it seems unlikely that a solution exists in which all requests are
planned. In practice this is implemented by stopping the LNSheuristic if 5 or more requests are unplanned
and no improvement in the number of unplanned requests has been found in the lastτ LNS iterations. In the
computational experimentsΦ was set to 25000 andτ was set to 2000.

3.8 Discussion

Using several removal and insertion heuristics during the search may be seen as using local search with several
neighborhoods. To the best of our knowledge this idea has notbeen used in the LNS literature before. The
related Variable Neighborhood Search (VNS) was proposed byMladenovíc and Hansen [14]. VNS is a meta-
heuristic framework using a parameterized family of neighborhoods. The metaheuristic has received quite a lot
of attention in the recent years and has provided impressiveresults for many problems. Where ALNS makes
use of several unrelated neighborhoods, VNS typically is based on a single neighborhood which is searched
with variable depth.

Several metaheuristics can be used at the top level of ALNS tohelp the heuristic escape a local minimum.
We have chosen to use simulated annealing as the ALNS heuristic already contains the random sampling ele-
ment. For a further discussion of metaheuristic frameworksused in connection with ALNS see the subsequent
paper [16].

The request bank is an entity that makes sense for many real life applications. In the problems considered in
Section 4 we do not accept solutions with unscheduled requests, but the request bank allows us to visit infeasible
solutions in a transition stage, improving the overall search. The request bank is particularly important when
minimizing the number of vehicles.

4 Computational experiments

In this section we describe our computational experiments.We first introduce a set of tuning instances in
Section 4.1. In Section 4.2 we evaluate the performance of the proposed construction heuristics on the tuning
instances. In Section 4.3 we describe how the parameters of the ALNS heuristic were tuned, and in Section 4.4
we present the results obtained by the ALNS heuristic and a simpler LNS heuristics.

4.1 Tuning instances

First a set of representative tuning instances is identified. The tuning instances must have a fairly limited size as
we want to perform numerous experiments on the tuning problems and they should somehow be related to the
problems our heuristic is targeted at. In the case at hand we want to solve some standard benchmark instances
and a new set of randomly generated instances.

Our tuning set consists of 16 instances. The first four instances are LR1_2_1, LR202, LRC1_2_3, and
LRC204 from Li and Lim’s benchmark problems [11], containing between 50 and 100 requests. The number
of available vehicles was set to one more than that reported by Li and Lim to make it easier for the heuristic
to find solutions with no requests in the request bank. The last 12 instances are randomly generated instances.
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These instances contain both single depot and multi depot problems and problems with requests that only can
be served by a subset of the vehicle fleet. All randomly generated problems contain 50 requests.

4.2 Evaluation of construction heuristics

First we examine how the simple construction heuristics from Section 3.2 perform on the tuning problems, to
see how well they work without the LNS framework. The construction heuristics regret-1, regret-2, regret-
3, regret-4 and regret-m have been implemented. Table 1 shows the results of the test.As the construction
heuristics are deterministic, the results were produced byapplying the heuristics to each of the 16 test problems
once.

Basic greedy Regret-2 Regret-3 Regret-4 Regret-m

Avg. gap (%) 40.7 30.3 26.3 26.0 27.7
Fails 3 3 3 2 0
Time (s) 0.02 0.02 0.02 0.02 0.03

Table 1: Performance of construction heuristics. Each column in thetable corresponds to one of the construction
heuristics. These simple heuristics were not always able toconstruct a solution where all requests are served, hence for
each heuristic we report the number of times this happened inthe fails row. TheAvg. gaprow shows the average relative
difference between the found solution and the best known solution. Only solutions where all requests are served are
included in the calculations of the average relative difference. The last row shows the average time (in seconds) needed
for applying the heuristic to one problem, running on a 1.5 GHz Pentium IV.

The results show that the proposed construction heuristicsare very fast, but also very imprecise. Basic
greedy is the worst heuristic, while all the regret heuristics are comparable with respect to the solution quality.
Regret-m stands out though, as it is able to serve all requests in all problems. It would probably be possible to
improve the results shown in Table 1 by introducing seed requests as proposed by e.g. Solomon [26]. However
we are not going to report on such experiments in this paper. It might be surprising that these very imprecise
heuristics can be used as the foundation of a much more precise local search heuristic, but as we are going to
see in the following sections, this is indeed possible.

4.3 Parameter tuning

This part of the paper serves two purposes. First it describes how the parameters used for producing the results
in Section 4.4 were found. Next, it tries to unveil which partof the heuristic contributes most to the solution
quality.

4.3.1 Parameters

This section determines the parameters that need to be tuned. We first review the removal parameters. Shaw
removal is controlled by five parameters:ϕ, χ, ψ, ω and p, while the worst removal is controlled by one
parameterpworst. Random removal has no parameters. The insertion heuristics are parameter free when we
have chosen the regret degree.

In order to control the acceptance criteria we use two parameters,w andc. The weight adjustment algorithm
is controlled by four parameters,σ1, σ2, σ3 andr. Finally we have to determine a noise rateη and a parameter
ξ that controls how many requests we remove in each iteration.In each iteration, we chose a random numberρ
that satisfies 4≤ ρ ≤ min(100,ξn), and removeρ requests.

We stop the search after 25000 LNS iterations as this resulted in a fair trade-off between time and quality.

4.3.2 LNS parameter tuning

Despite the large number of parameters used in the LNS heuristic, it turns out that it is relatively easy to find
a set of parameters that works well for a large range of problems. We use the following strategy for tuning the
parameters: first a fair parameter setting is produced by an ad-hoc trial-and-error phase, this parameter setting
was found while developing the heuristic. This parameter setting is improved in the second phase by allowing
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one parameter to take a number of values, while the rest of theparameters are kept fixed. For each parameter
setting we apply the heuristic on our set of test problems fivetimes, and the setting that shows the best average
behavior (in terms of average deviation from the best known solutions) is chosen. We now move on to the
next parameter, using the values found so far and the values from the initial tuning for the parameters that have
not been considered yet. This process continues until all parameters have been tuned. Although it would be
possible to process the parameters once again using the new set of parameters as a starting point to further
optimize the parameters, we stopped after one pass.

One of the experiments performed during the parameter tuning sought to determine the value of the parame-
ter ξ that controls how many requests we remove and insert in each iteration. This parameter should intuitively
have a significant impact on the results our heuristic is ableto produce. We tested the heuristic withξ ranging
from 0.05 to 0.5 with a step size of 0.05. Table 2 shows the influence ofξ. Whenξ is too low the heuristic
is not able to move very far in each iteration, and it has a higher chance of being trapped in one suboptimal
area of the search space. On the other hand, ifξ is large then we can easily move around in the search space,
but we are stretching the capabilities of our insertion heuristics. The insertion heuristics work fairly well when
they must insert a limited number of requests into a partial solution, but they cannot build a good solution from
scratch as seen in Section 4.2. The results in Table 2 shows that ξ = 0.4 is a good choice. One must notice that
the heuristic gets slower whenξ increases because the removals and insertions take longer when more requests
are involved, thus the comparison in Table 2 is not completely fair.

ξ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Avg. gap (%) 1.75 1.65 1.21 0.97 0.81 0.71 0.81 0.49 0.57 0.57

Table 2: Parameterξ vs. solution quality. The first row shows the values of the parameterξ that were tested and the
second row shows the gap between the average solution obtained and the best solutions produced in the experiment.

The complete parameter tuning resulted in the following parameter vector (ϕ, χ, ψ, ω, p, pworst, w, c, σ1,
σ2,σ3, r, η, ξ) = (9, 3, 2, 5, 6, 3, 0.05, 0.99975, 33, 9, 13, 0.1, 0.025, 0.4).Our experiments also indicated
that it was possible to improve the performance of the vehicle minimization algorithm by setting (w, c) = (0.35,
0.9999) while searching for solutions that serve all requests. This corresponds to a higher start temperature and
a slower cooling rate. This indicates that more diversification is needed when trying to minimize the number of
vehicles, compared to the situation where one just minimizes the traveled distance.

In order to tune the parameters we start from an initial guess, and then tune one parameter at a time. When
all parameters are tuned, the process is repeated. In this way the calibration order plays a minor order. Although
the parameter tuning is quite time consuming, it could easily be automated. In our subsequent papers [20, 16]
where 11 variants of the vehicle routing problem are solved using the heuristic proposed in this paper we only
re-tuned a few parameters and obtained very convincing results, so it seems that a complete tuning of the
parameters only needs to be done once.

4.3.3 LNS configurations

This section evaluates how the different removal and insertion heuristics behave when used in a LNS heuristic.
In most of the test cases a simple LNS heuristic was used that only involved one removal heuristic and one
insertion heuristic. Table 3 shows a summary of this experiment.

The first six experiments aim at determining the influence of the removal heuristic. We see that Shaw
removal performs best, the worst removal heuristic is second, and the random removal heuristic gives the worst
performance. This is reassuring as it shows that the two slightly more complicated removal heuristics actually
are better than the simplest removal heuristic. These results also illustrate that the removal heuristic can have
a rather large impact on the solution quality obtained, thusexperimenting with other removal heuristics would
be interesting and could prove beneficial.

The next eight experiments show the performance of the insertion heuristics. Here we have chosen Shaw
removal as removal heuristic because it performed best in the previous experiments. In these experiments
we see that all insertion heuristics perform quite well, andthey are quite hard to distinguish from each other.
Regret-3 and Regret-4 coupled with noise addition are slightly better than the rest though. An observation that
applies to all experiments is that application of noise seems to help the heuristic. It is interesting to note that the
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Conf. Shaw Rand Worst Reg-1 Reg-2 Reg-3 Reg-4 Reg-m Noise Avg. gap (%)

1 • • 2.7
2 • • • 2.6
3 • • 5.4
4 • • • 3.2
5 • • 2.0
6 • • • 1.6

LNS 7 • • 2.2
8 • • • 1.6
9 • • 1.8
10 • • • 1.3
11 • • 2.0
12 • • • 1.3
13 • • 1.8
14 • • • 1.7

ALNS 15 • • • • • • • • • 1.3

Table 3: Simple LNS heuristics compared to the full adaptive LNS withdynamic weight adjustment. The first column
shows if the configuration must be considered as an LNS or an ALNS heuristic. The second column is the configuration
number, columns three to five indicate which removal heuristics were used. Columns six to ten indicate which insertion
heuristics were used. Column eleven states if noise was added to the objective function during insertion of requests (in
this case noise was added to the objective function in 50% of the insertions for the simple configurations 1-14 while
in configuration 15 the number of noise-insertions was controlled by the adaptive method). Column twelve shows the
average performance of the different heuristics. As an example, in configuration four we used random removal together
with the regret-2 insertion heuristic and we applied noise to the objective value. This resulted in a set of solutions whose
objective values on average were 3.2% above the best solutions found during the whole experiment.

basic insertion heuristic nearly performs as well as the regret heuristics when used in a LNS framework. This
is surprising seen in the light of Table 1 where the basic insertion heuristic performed particularly badly. This
observation may indicate that the LNS method is relatively robust with respect to the insertion method used.

The last row of the table shows the performance of ALNS. As onecan see, it is on par with the two best
simple approaches, but not better, which at first may seem disappointing. The results show though, that the
adaptive mechanism is able to find a sensible set of weights, and it is our hypothesis that the ALNS heuristic
is more robust than the simpler LNS heuristics. That is, the simple configuration may fail to produce good
solutions on other types of problems, while the ALNS heuristic continues to perform well. One of the purposes
of the experiments in Section 4.4 is to confirm or disprove this hypothesis.

4.4 Results

This section provides computational experiments conducted to test the performance of the heuristic. There are
three major objectives for this section:

1. To compare the ALNS heuristic to a simple LNS heuristic that only contains one removal and one inser-
tion heuristic.

2. To determine if certain problem properties influence the (A)LNS heuristics ability to find good solutions.

3. To compare the ALNS heuristic with state-of-the-art PDPTW heuristics from the literature.

In order to clarify if the ALNS heuristic is worthwhile compared to a simpler LNS heuristic we are going to
show results for both the ALNS heuristic and the best simple LNS heuristic from Table 3. Configuration 12
was chosen as representative for the simple LNS heuristics as it performed slightly better than configuration
10. In the following sections we refer to the full and simple LNS heuristic as ALNS and LNS respectively.

All experiments were performed on a 1.5 GHz Pentium IV PC with256 MB internal memory, running
Linux. The implemented algorithm measures travel times anddistances using double precision floating point
numbers. The parameter setting found in Section 4.3.2 was used in all experiments unless otherwise stated.
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4.4.1 Data sets

As the model considered in this paper is quite complicated, it is hard to find any benchmark instances that
consider exactly the same model and objective function. Thebenchmark instances that come closest to the
model considered in this paper are the instances constructed by Nanry and Barnes [15] and the instances con-
structed by Li and Lim [11]. Both data sets are single depot pickup and delivery problems with time windows,
constructed from VRPTW problems. We are only reporting results on the data set proposed by Li and Lim, as
the Nanry and Barnes instances are easy to solve due to their size.

The problem considered by Li and Lim were simpler than the oneconsidered in this paper as: 1) it did not
contain multiple depots; 2) all requests must be served; 3) all vehicles were assumed to be able to serve all
requests. When solving the Li and Lim instances using the ALNS heuristic we setα to one andβ to zero in our
objective function. In section 4.5 we minimize the number ofvehicles as first priority while we in section 4.4.2
only minimize the distance driven.

In order to test all aspects of the model proposed in this paper, we also introduce some new, randomly
generated instances. These instances are described in section 4.4.3.

4.4.2 Comparing ALNS and LNS using the Li & Lim instances

This section compares the ALNS and LNS heuristics using the benchmark instances proposed by Li and Lim
[11]. The data set contains 354 instances with between 100 and 1000 locations. The data set can be downloaded
from [25].

In this section we use the distance driven as our objective even though vehicle minimization is the standard
primary objective for these instances. The reason for this decision is that distance minimization makes compar-
ison of the heuristics easier and distance minimization is the original objective of the proposed heuristic. The
number of vehicles available for serving the requests is setto the minimum values reported by Li and Lim in
[11] and on their web page which unfortunately no longer is on-line.

The heuristics were applied 10 times to each instance with 400 or less locations and 5 times to each instance
with more than 400 locations. The experiments are summarized in Table 4.

Best known solutions Avg. gap (%) Average time (s) Fails
#locations #problems ALNS LNS ALNS LNS ALNS LNS ALNS LNS

100 56 52 50 0.19 0.50 49 55 0 0
200 60 49 15 0.72 1.41 305 314 0 0
400 60 52 6 2.36 4.29 585 752 0 0
600 60 54 5 0.93 3.20 1069 1470 0 0
800 60 46 5 1.73 3.27 2025 3051 0 2

1000 58 47 4 2.26 4.22 2916 5252 0 1

Table 4: Summary of results obtained on Li and Lim instances [11]. Thefirst column gives the problem size; the next
column indicates the number of problems in the data set of theparticular size. The rest of the table consists of four major
columns, each divided into two sub columns, one for the ALNS and one for LNS. The columnBest known solutions
indicates for how many problems the best known solution was identified. The best known solution is either the solution
reported by Li and Lim or the best solution identified by the (A)LNS heuristics depending on which is best. The next
column indicates how far the average solution is from best known solution. This number is averaged over all problems of
a particular size. The next column shows how long the heuristic on average spends to solve a problem. The last column
shows the number of times the heuristic failed to find a solution where all request are served by the given number of
vehicles in all the attempts to solve a particular problem.

The results show that the ALNS heuristic on all four terms performs better than the LNS heuristic. One also
notices that the ALNS heuristic becomes even more attractive as the problem size increases. It may seem odd
that the LNS heuristic spends more time compared to the ALNS heuristic when they both perform the same
number of LNS iterations. The reason for this behavior is that the Shaw removal heuristic used by the LNS
heuristic is more time consuming compared to the two other removal heuristics.
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4.4.3 New instances

This section provides results on randomly generated PDPTW instances that contain features of the model that
were not used in the Li and Lim benchmark problems consideredin Section 4.4.2. These features are: multiple
depots, routes with different start and end terminals andspecialrequests that only can be served by a certain
subset of the vehicles. When solving these instances we setα = β = 1 in the objective function so that distance
and time are weighted equally in the objective function. We do not perform vehicle minimization as the vehicles
are inhomogeneous.

Three types of geographical distributions of requests are considered: problems with locations distributed
uniformly in the plane, problems with locations distributed in 10 clusters and problems with 50% of the loca-
tions are put in 10 clusters and 50% of the locations distributed uniformly. These three types of problems were
inspired by Solomon’s VRPTW benchmark problems [26], and the problems are similar to the R, the C and the
RC Solomon problems respectively. We consider problems with 50, 100, 250 and 500 requests, all problems
are multi depot problems. For each problem size we generated12 problems as we tried every combination of
the three problem features shown below:

• Route type: 1) A route starts and ends at the same location, 2)a route starts and ends at different locations.

• Request type: 1) All requests are normal requests, 2) 50% of the requests arespecial requests. The
special requests can only be served by a subset of the vehicles. In the test problems each special request
could only be served by between 30% to 60% of the vehicles.

• Geographical distributions: 1) Uniform, 2) Clustered, 3) Semi-clustered.

The instances can be downloaded from www.diku.dk/~sropke.The heuristics were tested by applying them to
each of the 48 problems 10 times. Table 5 shows a summary of theresults found. In the table we list for how
many problems the two heuristics find the best known solution. The best known solution is simply the best
solution found throughout this experiment.

We observe the same tendencies as in Table 4; ALNS is still superior to LNS, but one notices that the gap
in solution quality between the two methods are smaller for this set of instances while the difference in running
time is larger compared to the results on the Li and Lim instances. One also notices that it seems harder to solve
small instances of this problem class compared to the Li and Lim instances.

Best known solutions Avg. gap (%) Average time (s)
#requests #problems ALNS LNS ALNS LNS ALNS LNS

50 12 8 5 1.44 1.86 23 34
100 12 11 1 1.54 2.18 83 142
250 12 7 5 1.39 1.62 577 1274
500 12 9 3 1.18 1.32 3805 8146

Sum: 48 35 14 5.55 6.98 4488 9596

Table 5: Summary of results obtained on new instances. The captions of the table should be interpreted as in Table 4.
The last row sums each column. Notice that the size of the problems in this table is given as number of requests and not
the number of locations.

Table 6 summarizes how the problem features influence the average solution quality. These results show that
the clustered problems are the hardest to solve, while the uniformly distributed instances are the easiest. The
results also indicate that special requests make the problem slightly harder to solve. The route type experiments
compare the situation where routes start and end at the same location (the typical situation considered in the
literature) to the situation where each route starts and ends at different locations. Here we expect the last case to
be the easiest to solve, as we by having different start and end positions for our routes, gain information about
the area the route most likely should cover. The results in Table 6 confirm these expectations.

In addition to investigate the question of how the model features influence the average solution quality
obtained by the heuristics we also want to know if the presence of some features could make LNS behave better
than ALNS. For the considered features the answer is negative.
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Feature ALNS LNS
Distribution: Uniform 1.04% 1.50%
Distribution: Clustered 1.89% 2.09%
Distribution: Semi-clustered 1.23% 1.64%
Normal Requests 1.24% 1.47%
Special Requests 1.54% 2.02%
Start of route = end of route 1.59% 2.04%
Start of route6= end of route 1.19% 1.45%

Table 6: Summary of the influence of certain problem features on the heuristic solutions. The two columns correspond
to the two heuristic configurations. Each row shows the average solution quality for each feature. The average solution
quality is defined as the average of the average gap for all instances with a specific feature. To be more precise, the

solution quality is calculated using the formula:q(h) = 1
|F | ∑i∈F

(

1
10 ∑10

j=1
c(i, j ,h)−c′(i)

c′(i)

)

whereF is the set of instances

with a specific feature,c′(i) is the cost of the best known solution to instancei andc(i, j,h) is the cost obtained in thejth
experiment on instancei using heuristich.

4.5 Comparison to existing heuristics

This section compares the ALNS heuristics to existing heuristics for the PDPTW. The comparison is performed
using the benchmark instances proposed by Li and Lim [11] that also were used in Section 4.4.2. When PDPTW
problems have been solved in the literature, the primary objective has been to minimize the number of vehicles
used while the secondary objective has been to minimize the traveled distance. For this purpose we use the
vehicle minimization algorithm described in Section 3.7. The ALNS heuristic was applied 10 times to each
instance with 200 or less locations and 5 times to each instance with more than 200 locations. The experiments
are summarized in Tables 7, 8 and 9. It should be noted that it was necessary to decrease thew parameter and
increase thec parameter when the instances with 1000 locations were solved in order to get reasonable solution
quality. Apart from that, the same parameter setting has been used for all instances.

In the literature, four heuristics have been applied to the benchmark problems: the heuristic by Li and
Lim [11], the heuristic by Bent and Van Hentenryck [2] and twocommercial heuristics; a heuristic developed
by SINTEF and a heuristic developed by TetraSoft A/S. Detailed results for the two last heuristics are not
available but some results obtained using these heuristicscan be found on a web page maintained by SINTEF
[25]. The heuristic that has obtained the best overall solution quality so far is probably the one by Bent and
Van Hentenryck [2] (shortened BH heuristic in the following), therefore the ALNS heuristic is compared to
this heuristic in Table 7. The complete results from the BH heuristic can be found in [3]. The results given
for the BH heuristic are the best obtained among 10 experiments (though for the 100 location instances only 5
experiments were performed). TheAvg. TTBcolumn shows the average time needed for the BH heuristic to
obtain its best solution. For the ALNS heuristic we only listthe time used in total as this heuristic - because of
its simulated annealing component, the heuristic usually finds its best solution towards the end of the search.
The BH heuristic was tested on a 1.2 GHz Athlon processor and the running times of the two heuristics should
therefore be comparable (we believe that the Athlon processor is at most 20% slower than our computer).
The results show that the ALNS heuristic overall dominates the BH heuristic, especially as the problem sizes
increase. It is also clear that the ALNS heuristic is able to improve considerably on the previously best known
solutions and that the vehicle minimization algorithm works very well despite its simplicity. The last two
columns in Table 7 summarize the best results obtained usingseveral experiments with different parameter
settings, which show that the results obtained by ALNS actually can be improved even further.

Table 8 compares the results obtained by ALNS with the best known solutions from the literature. It can be
seen that ALNS improves more than half of the solutions and achieves a solution that is at least as good as the
previously best known solution for 80% of the problems.

The two afore mentioned tables only dealt with the best solutions found by the ALNS heuristic. Table
9 shows the average solution quality obtained by the heuristic. These numbers can be compared to those in
Table 7. It is worth noticing that the average solution sometimes have a lower distance than the “best of 10
or 5” solution in table 7, this is the case in the last row. Thisis possible because the heuristic finds solutions
that use more than the minimum number of vehicles and this usually makes solutions with shorter distances
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Best known 2003 BH best ALNS best of 10 or 5 ALNS best

#locations #veh. Dist #veh. Dist Avg. TTB Avg. time #veh. Dist Avg. time #veh. Dist

100 402 58060 402 58062 68 3900 402 58060 66 402 56060

200 615 178380 614 180358 772 3900 606 180931 264 606 180419

400 1183 421215 1188 423636 2581 6000 1158 422201 881 1157 420396

600 1699 873850 1718 879940 3376 6000 1679 863442 2221 1664 860898

800 2213 1492200 2245 1480767 5878 8100 2208 1432078 3918 2181 1423063

1000 2698 2195755 2759 2225190 6174 8100 2652 2137034 5370 2646 2122922

Table 7: This table compares the ALNS heuristic to existing heuristics using the Li and Lim benchmark instances.
Each row in the table corresponds to a set of problems with thesame number of locations. Each of these problem sets
contain between 56 and 60 instances (see Table 8). The first column indicates the number of locations in each problem;
the next two columns give the total number of vehicles used and the total distance traveled in the previously best known
solutions as listed on the SINTEF web page [25] in the summer of 2003. The next four columns show information about
the solutions obtained by Bent and Van Hentenryck’s heuristic [2]. The two columnsAvg. TTBandAvg. timeshow the
average time needed to reach the best solution and the average time spent on each instance, respectively. Both columns
report the time needed to perform one experiment on one instance. The next three columns report the solutions obtained in
the experiment with the ALNS heuristic where the heuristic was applied either 5 or 10 times to each problem. The last two
columns report the best solutions obtained in several experiments with our ALNS heuristic and with various parameter
settings. Note that Bent and Van Hentenryck in some cases have found slightly better results than reported on the SINTEF
web page in 2003. This is the reason why the number of vehiclesused by the BH heuristic for the 200 locations problems
is smaller than in the best known solutions.

possible.
Overall, one can conclude that the ALNS heuristic must be considered as a state of the art heuristic for the

PDPTW. The cost of the best solutions identified during the experiments are listed in Tables 10 to 15.

4.6 Computational tests conclusion

In Section 4.4 we stated three objectives for our computational experiments. The tests fulfilled these objectives
as we saw that: 1) the adaptive LNS heuristic that combines several removal and construction heuristics displays
superior performance compared to the simple LNS heuristic that only uses one insertion heuristic and one
removal heuristic; 2) certain problem characteristics influence the performance of the LNS heuristic but we did
not find that any characteristics could make the LNS heuristic perform better than the ALNS heuristic; 3) the
LNS heuristic indeed is able to find good quality solutions ina reasonable amount of time, and the heuristic
outperforms previously proposed heuristics.

The experiments also illustrate the importance of testing heuristics on large sets of problem instances as the

ALNS best of 10 or 5 ALNS best
#locations #problems <PB ≤PB <PB ≤PB

100 56 0 54 0 55
200 60 22 42 27 57
400 60 40 47 41 55
600 60 41 45 51 57
800 60 37 42 48 53

1000 58 50 54 51 55

Table 8: Comparison of the ALNS heuristic to the previously best known solutions. The table is grouped by problem
size. The first column shows the problem size, the next columnshows the number of problems of that size. The next
two columns give additional information about the experiment where the ALNS heuristic was applied 5 or 10 times to
each instance. The columns<PB report how many times the best solution found by the ALNS heuristic was strictly better
than the previously best known solution. The columns≤PBshow how many times the best solution found by ALNS was
at least as good as the previously best known solution. The last two columns show information about the best solutions
obtained during experimentation with different parametersettings.

55



#locations Avg. #veh. Avg. Dist
100 403 58249
200 608 181707
400 1168 425817
600 1686 867930
800 2223 1432321

1000 2677 2129032

Table 9: The ALNS heuristic was applied 10 times to each problem with 200 or less locations and 5 times to each
problem with more than 200 locations. The best solutions reported in Table 7 and 8 were of course not obtained in all
experiments. This table shows the average number of vehicles and average distance traveled obtained. These numbers
can be compared to the figures in Table 7

R1 R2 C1 C2 RC1 RC2

1 19 1650.80 4 1253.23 10 828.94 3 591.56 14 1708.80 4 1406.94
2 17 1487.57 3 1197.67 10 828.94 3 591.56 12 1558.07 3 1374.27
3 13 1292.68 3 949.40 9 1035.35 3 591.17 11 1258.74 3 1089.07
4 9 1013.39 2 849.05 9 860.01 3 590.60 10 1128.40 3 818.66
5 14 1377.11 3 1054.02 10 828.94 3 588.88 13 1637.62 4 1302.20
6 12 1252.62 3 931.63 10 828.94 3 588.49 11 1424.73 3 1159.03
7 10 1111.31 2 903.06 10 828.94 3 588.29 11 1230.14 3 1062.05
8 9 968.97 2 734.85 10 826.44 3 588.32 10 1147.43 3 852.76
9 11 1208.96 3 930.59 9 1000.60

10 10 1159.35 3 964.22
11 10 1108.90 2 911.52
12 9 1003.77

Table 10: Best results, 100 locations. The Li and Lim benchmark instances are divided into six sets: R1, R2, C1, C2,
RC1 and RC2. Each of the major columns corresponds to one of these sets, the column at the left give the problem number.
For each problem instance we report the number of vehicles and the distance traveled in the best solution obtained during
experimentation. Bold numbers indicate best known solutions.

R1 R2 C1 C2 RC1 RC2
1 20 4819.12 5 4073.10 20 2704.57 6 1931.44 19 3606.06 6 3605.40
2 17 4621.21 4 3796.00 19 2764.56 6 1881.40 15 3674.80 5 3327.18
3 15 3612.64 4 3098.36 17 3128.61 6 1844.33 13 3178.17 4 2938.28
4 10 3037.38 3 2486.14 17 2693.41 6 1767.12 10 2631.82 3 2887.97
5 16 4760.18 4 3438.39 20 2702.05 6 1891.21 16 3715.81 5 2776.93
6 14 4178.24 4 3201.54 20 2701.04 6 1857.78 17 3368.66 5 2707.96
7 12 3550.61 3 3135.05 20 2701.04 6 1850.13 14 3668.39 4 3056.09
8 9 2784.53 2 2555.40 20 2689.83 6 1824.34 13 3174.55 4 2399.95
9 14 4354.66 3 3930.49 18 2724.24 6 1854.21 13 3226.72 4 2208.49

10 11 3714.16 3 3344.08 17 2943.49 6 1817.45 12 2951.29 3 2550.56

Table 11: Best results, 200 locations.
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R1 R2 C1 C2 RC1 RC2

1 40 10639.75 8 9758.46 40 7152.06 12 4116.33 36 9127.15 12 7471.01
2 31 10015.85 7 9496.64 38 8012.43 12 4144.29 31 8346.06 11 6303.36
3 23 8840.46 6 8116.53 33 8308.94 12 4431.75 25 7387.40 9 5438.20
4 16 6744.33 4 6649.78 30 6878.00 12 4038.00 19 5838.58 5 5322.43
5 29 10599.54 7 8574.84 40 7150.00 12 4030.63 33 8773.75 11 6120.13
6 25 9525.45 6 7995.06 40 7154.02 12 3900.29 31 8177.90 9 6479.56
7 19 8200.37 5 6928.61 40 7149.43 12 3962.51 29 7992.08 8 6361.26
8 14 5946.44 4 5447.40 39 7111.16 12 3844.45 27 7613.43 7 5928.93
9 24 9886.14 6 8043.20 36 7452.21 12 4188.93 26 8013.48 7 5303.53

10 21 8016.62 5 7904.77 35 7387.13 12 3828.44 24 7065.73 6 5760.78

Table 12: Best results, 400 locations.

R1 R2 C1 C2 RC1 RC2

1 59 22838.65 11 21945.30 60 14095.64 19 7977.98 53 17924.88 16 14817.72
2 45 20246.18 10 19666.59 58 14379.53 18 10277.23 44 16302.54 14 12758.77
3 37 18073.14 8 15609.96 50 14683.43 17 8728.30 36 14060.31 10 12812.67
4 28 13269.71 6 10819.45 47 13648.03 17 8041.97 25 10950.52 7 10574.87
5 38 22562.81 9 19567.41 60 14086.30 19 8047.37 47 16742.55 14 13009.52
6 32 20641.02 8 17262.96 60 14090.79 19 8094.11 44 16894.37 13 12643.98
7 25 17162.90 6 15812.42 60 14083.76 19 7998.18 39 15394.87 11 12007.65
8 19 11957.59 5 10950.90 59 14554.27 18 7579.93 36 15154.79 10 12163.43
9 32 21423.05 8 18799.36 54 14706.12 18 9501.00 35 15134.24 9 13768.01

10 27 18723.13 7 17034.63 53 14879.30 17 8019.94 31 13925.51 8 12016.94

Table 13: Best results, 600 locations.

R1 R2 C1 C2 RC1 RC2

1 80 39315.92 15 33816.90 80 25184.38 24 11687.06 67 32268.95 20 23289.40
2 59 34370.37 12 32575.97 78 26062.17 24 14358.92 57 28395.39 18 21786.62
3 44 29718.09 10 25310.53 65 25918.45 24 13198.29 50 24354.36 16 16586.31
4 25 21197.65 7 19506.42 60 22970.88 23 13376.82 35 18241.91 12 14122.05
5 50 39046.06 12 32634.29 80 25211.22 25 12329.80 61 30995.48 18 20292.92
6 42 33659.50 10 27870.80 80 25164.25 24 12702.87 58 28568.61 16 21088.57
7 32 27294.19 8 25077.85 80 25158.38 25 11855.86 54 28164.41 15 19695.96
8 21 19570.21 5 19256.79 78 25348.45 24 11482.88 49 26150.65 13 19009.33
9 42 36126.69 10 30791.77 73 25541.94 24 11629.61 47 24930.70 12 19003.68

10 32 30200.86 9 28265.24 71 25712.12 24 11578.58 42 24271.52 10 19766.78

Table 14: Best results, 800 locations.
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R1 R2 C1 C2 RC1 RC2

1 100 56903.88 19 45422.58 100 42488.66 30 16879.24 85 48702.83 22 35073.70
2 80 49652.10 15 47824.44 95 43870.19 31 18980.98 73 45135.70 21 30932.74
3 54 42124.44 11 39894.32 82 42631.11 30 17772.49 55 35475.72 16 28403.51
4 28 32133.36 8 28314.95 74 39443.00 29 18089.93 40 27747.04 12 23083.20
5 61 59135.86 14 53209.98 100 42477.41 31 17137.53 76 49816.18 18 34713.96
6 50 48637.63 12 43792.11 101 42838.39 31 17198.01 69 44469.08 17 31485.26
7 37 38936.54 9 36728.20 100 42854.99 31 19117.67 64 41413.16 17 29639.63
8 26 29452.32 7 26278.09 98 42951.56 30 17018.63 60 40590.17 - -
9 50 52223.15 13 48447.49 92 42391.98 31 17565.95 57 39587.85 - -

10 40 46218.35 11 44155.66 90 42435.16 29 17425.55 52 36195.00 12 29402.90

Table 15: Best results, 1000 locations. Two entries are missing as thecorresponding problem instances no longer exist.

difference between LNS and ALNS only really becomes apparent when we consider large instances. Note that
the problems that need to be solved in the real world often have dimensions comparable to or greater than the
biggest problems solved in this paper.

Finally the computational experiments performed in Section 4.3.3 indicated that a simple LNS heuristic
seems to be more sensitive to the choices of removal heuristic compared to the choices of insertion heuristics.
It would be interesting to see if this holds in general for other problems as well.

5 Conclusion

This paper presented an extension to the large neighborhoodsearch and the ruin and recreate heuristic called
adaptive LNS. The heuristic was tested on the pickup and delivery problem with time windows achieving good
results in a reasonable amount of time. The idea of combiningseveral sub heuristics in the same search proved
to be successful.

As the proposed model is quite general would be interesting to examine if the model and heuristic can be
used to solve other vehicle routing problems. We are currently working on this topic and the results are very
promising as the heuristic has been able to discover new bestsolutions to standard benchmarks for vehicle rout-
ing problems with time windows and multi-depot vehicle routing problems and other vehicle routing problems
[16], [20].

It would also be interesting to apply the ideas presented in this paper to other combinatorial optimization
problems. The adaptive LNS framework is easily applicable to most problems, taking advantage of the numer-
ous robust and fast construction heuristics designed during the last decades for various optimization problems.
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7 Appendix

Tables 16 to 21 show detailed information about the solutions found during the experiment described in Section
4.5.
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR101 19 1650.8 LL 1650.80 19.0 1650.80 19 40 19 1650.80
LR102 17 1487.57 LL 1487.57 17.0 1487.57 17 47 17 1487.57
LR103 13 1292.68 LL 1292.68 13.0 1292.68 13 45 13 1292.68
LR104 9 1013.39 LL 1013.39 9.0 1013.39 9 26 9 1013.39
LR105 14 1377.11 LL 1377.11 14.0 1377.11 14 40 14 1377.11
LR106 12 1252.62 LL 1252.62 12.0 1252.62 12 41 12 1252.62
LR107 10 1111.31 LL 1111.31 10.0 1111.31 10 44 10 1111.31
LR108 9 968.97 LL 968.97 9.0 968.97 9 25 9 968.97
LR109 11 1208.96 SAM 1208.96 11.0 1208.96 11 41 11 1208.96
LR110 10 1159.35 LL 1159.35 10.0 1159.35 10 35 10 1159.35
LR111 10 1108.9 LL 1108.90 10.0 1108.90 10 44 10 1108.90
LR112 9 1003.77 LL 1003.77 9.0 1003.77 9 27 9 1003.77
LC101 10 828.94 LL 828.94 10.0 828.94 10 43 10 828.94
LC102 10 828.94 LL 828.94 10.0 828.94 10 44 10 828.94
LC103 9 1035.35 BH 1037.77 9.0 1035.35 9 49 9 1035.35
LC104 9 860.01 SAM 860.15 9.0 860.01 9 63 9 860.01
LC105 10 828.94 LL 828.94 10.0 828.94 10 41 10 828.94
LC106 10 828.94 LL 828.94 10.0 828.94 10 42 10 828.94
LC107 10 828.94 LL 828.94 10.0 828.94 10 43 10 828.94
LC108 10 826.44 LL 826.44 10.0 826.44 10 46 10 826.44
LC109 9 1000.6 BH 1000.60 9.0 1000.60 9 35 9 1000.60
LRC101 14 1708.8 LL 1708.80 14.0 1708.80 14 38 14 1708.80
LRC102 12 1558.07 SAM 1558.07 12.0 1558.07 12 41 12 1558.07
LRC103 11 1258.74 LL 1258.74 11.0 1258.74 11 43 11 1258.74
LRC104 10 1128.4 LL 1128.40 10.0 1128.40 10 52 10 1128.40
LRC105 13 1637.62 LL 1637.62 13.0 1637.62 13 42 13 1637.62
LRC106 11 1424.73 SAM 1424.73 11.0 1424.73 11 42 11 1424.73
LRC107 11 1230.15 LL 1230.14 11.0 1230.14 11 43 11 1230.14
LRC108 10 1147.43 SAM 1147.43 10.0 1147.43 10 25 10 1147.43
LR201 4 1253.23 SAM 1253.23 4.0 1253.23 4 69 4 1253.23
LR202 3 1197.67 LL 1197.67 3.0 1197.67 3 60 3 1197.67
LR203 3 949.4 LL 949.40 3.0 949.40 3 98 3 949.40
LR204 2 849.05 LL 849.05 2.0 849.05 2 181 2 849.05
LR205 3 1054.02 LL 1054.02 3.0 1054.02 3 58 3 1054.02
LR206 3 931.63 LL 931.63 3.0 931.63 3 86 3 931.63
LR207 2 903.06 LL 903.06 2.0 903.06 2 187 2 903.06
LR208 2 734.85 LL 734.85 2.0 734.85 2 285 2 734.85
LR209 3 930.59 SAM 930.59 3.0 930.59 3 73 3 930.59
LR210 3 964.22 LL 964.22 3.0 964.22 3 77 3 964.22
LR211 2 911.52 SAM 906.69 2.2 911.52 2 126 2 911.52
LC201 3 591.56 LL 591.56 3.0 591.56 3 36 3 591.56
LC202 3 591.56 LL 591.56 3.0 591.56 3 59 3 591.56
LC203 3 585.56 LL 591.17 3.0 591.17 3 81 3 591.17
LC204 3 590.6 SAM 590.60 3.0 590.60 3 141 3 590.60
LC205 3 588.88 LL 588.88 3.0 588.88 3 48 3 588.88
LC206 3 588.49 LL 588.49 3.0 588.49 3 60 3 588.49
LC207 3 588.29 LL 588.29 3.0 588.29 3 62 3 588.29
LC208 3 588.32 LL 588.32 3.0 588.32 3 69 3 588.32
LRC201 4 1406.94 SAM 1406.94 4.0 1406.94 4 38 4 1406.94
LRC202 3 1374.27 LL 1387.74 3.8 1374.79 3 82 3 1374.27
LRC203 3 1089.07 SAM 1089.07 3.0 1089.07 3 69 3 1089.07
LRC204 3 818.66 SAM 818.66 3.0 818.66 3 173 3 818.66
LRC205 4 1302.2 LL 1302.20 4.0 1302.20 4 75 4 1302.20
LRC206 3 1159.03 SAM 1337.75 3.0 1159.03 3 48 3 1159.03
LRC207 3 1062.05 SAM 1062.05 3.0 1062.05 3 66 3 1062.05
LRC208 3 852.76 LL 852.76 3.0 852.76 3 88 3 852.76
Tot. 402 58054 58249.42 403.00 58060.03 402 3680 402 58059.50
Avg. 66
< PB 1 1
<= PB 54 55
#B 55 54 55

Table 16: Results on 100-customer problems solved with vehicle minimization as primary objective. The first column
contains the name of the problem, columns two to four show information about the previously best known solutions.
Columns two and three give the number of vehicles in the solution and the total traveled distance. Column four refers to
the method that first found the solution (LL: Li and Lim [11], BH: Bent and Van Hentenryck [2], SAM: SINTEF heuristic,
TS: TetraSoft A/S heuristic). The next five columns show information about the solutions obtained by the ALNS LNS
heuristic. The first two of these columns show the average distance traveled and the average number of vehicles (averaged
over the 10 experiments performed). The two next column display the the best solution obtained in the 10 experiments.
The columnavg. timedisplays the average time needed to perform one experiment in seconds. The two last columns
show the best results obtained during experimentation withvarious parameter settings. The last 5 columns provide some
summary information. TheTot. andAvg. rows respectively sums and averages entries in the columns.The <PB row
indicates how many solutions that are better than the previously best known solution and the<=PB row indicates how
many solution that are at least as good as the previously bestknown solution.#B reports the number of overall best known
solutions that were obtained. Best known solutions are marked with bold font.
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR1_2_1 20 4819.12 LL 4819.12 20.0 4819.12 20 137 20 4819.12
LR1_2_2 17 4666.09 BH 4625.99 17.0 4621.21 17 149 17 4621.21
LR1_2_3 15 3612.64 TS 3626.13 15.0 3612.64 15 173 15 3612.64
LR1_2_4 10 3146.06 BH 3088.07 10.0 3058.12 10 228 10 3037.38
LR1_2_5 16 4760.18 BH 4852.41 16.0 4760.18 16 136 16 4760.18
LR1_2_6 14 4175.16 BH 4261.23 14.0 4184.80 14 164 14 4178.24
LR1_2_7 12 3851.36 BH 3580.94 12.0 3551.47 12 173 12 3550.61
LR1_2_8 9 2871.67 BH 2823.91 9.0 2784.53 9 226 9 2784.53
LR1_2_9 14 4411.54 BH 4438.36 14.0 4354.66 14 144 14 4354.66
LR1_2_10 11 3744.95 BH 3787.23 11.0 3741.29 11 146 11 3714.16
LRC1_2_1 19 3606.06 SAM 3606.06 19.0 3606.06 19 136 19 3606.06
LRC1_2_2 15 3681.36 BH 3684.82 15.0 3674.80 15 143 15 3674.80
LRC1_2_3 13 3161.75 BH 3211.85 13.0 3178.17 13 183 13 3178.17
LRC1_2_4 10 2655.27 BH 2660.26 10.0 2641.67 10 284 10 2631.82
LRC1_2_5 16 3715.81 BH 3718.57 16.0 3716.72 16 141 16 3715.81
LRC1_2_6 17 3368.66 SAM 3372.68 17.0 3368.74 17 141 17 3368.66
LRC1_2_7 15 3417.16 BH 3525.21 14.7 3668.39 14 140 14 3668.39
LRC1_2_8 14 3087.62 BH 3220.69 13.2 3174.55 13 144 13 3174.55
LRC1_2_9 14 3129.65 BH 3259.40 13.1 3226.72 13 140 13 3226.72
LRC1_2_10 13 2833.85 BH 2968.69 12.1 2967.70 12 156 12 2951.29
LC1_2_1 20 2704.57 LL 2704.57 20.0 2704.57 20 146 20 2704.57
LC1_2_2 19 2764.56 LL 2764.56 19.0 2764.56 19 141 19 2764.56
LC1_2_3 17 3134.08 BH 3142.99 17.0 3136.42 17 155 17 3128.61
LC1_2_4 17 2698.73 TS 2711.42 17.0 2704.41 17 209 17 2693.41
LC1_2_5 20 2702.05 LL 2702.05 20.0 2702.05 20 137 20 2702.05
LC1_2_6 20 2701.04 LL 2701.04 20.0 2701.04 20 133 20 2701.04
LC1_2_7 20 2701.04 LL 2701.04 20.0 2701.04 20 139 20 2701.04
LC1_2_8 20 2689.83 LL 2689.83 20.0 2689.83 20 145 20 2689.83
LC1_2_9 18 2724.24 LL 2724.24 18.0 2724.24 18 157 18 2724.24
LC1_2_10 18 2741.56 LL 2967.24 17.0 2943.49 17 104 17 2943.49
LR2_2_1 5 4073.1 SAM 4110.08 5.0 4073.10 5 230 5 4073.10
LR2_2_2 4 3796 SAM 4194.32 4.0 4113.64 4 249 4 3796.00
LR2_2_3 4 3098.36 SAM 3209.80 4.0 3098.36 4 696 4 3098.36
LR2_2_4 3 2487.65 TS 2495.48 3.0 2491.87 3 1191 3 2486.14
LR2_2_5 4 3438.39 SAM 3440.71 4.0 3439.40 4 207 4 3438.39
LR2_2_6 4 3201.54 LL 3204.44 4.0 3201.86 4 499 4 3201.54
LR2_2_7 3 3190.75 LL 3216.40 3.0 3135.05 3 521 3 3135.05
LR2_2_8 3 2187.01 TS 2613.39 2.0 2559.70 2 1114 2 2555.40
LR2_2_9 4 3198.44 SAM 3272.31 3.9 3930.49 3 425 3 3930.49
LR2_2_10 3 3377.45 SAM 3387.47 3.0 3360.74 3 342 3 3344.08
LRC2_2_1 6 3690.1 BH 3722.20 6.0 3622.11 6 117 6 3605.40
LRC2_2_2 6 2666.01 BH 3403.75 5.0 3327.18 5 201 5 3327.18
LRC2_2_3 4 3141.28 SAM 3138.84 4.0 2965.88 4 323 4 2938.28
LRC2_2_4 4 2190.88 TS 3006.86 3.0 2891.10 3 993 3 2887.97
LRC2_2_5 5 2776.93 BH 2786.49 5.0 2782.83 5 302 5 2776.93
LRC2_2_6 5 2707.96 SAM 2713.57 5.0 2710.14 5 302 5 2707.96
LRC2_2_7 4 3050.03 BH 3140.57 4.0 3056.09 4 217 4 3056.09
LRC2_2_8 4 2401.84 BH 2409.16 4.0 2404.09 4 286 4 2399.95
LRC2_2_9 4 2209.54 SAM 2214.37 4.0 2210.88 4 410 4 2208.49
LRC2_2_10 3 2699.55 BH 2558.03 3.1 2551.67 3 467 3 2550.56
LC2_2_1 6 1931.44 SAM 1931.44 6.0 1931.44 6 100 6 1931.44
LC2_2_2 6 1881.4 LL 1881.40 6.0 1881.40 6 157 6 1881.40
LC2_2_3 6 1844.33 SAM 1845.57 6.0 1844.66 6 234 6 1844.33
LC2_2_4 6 1767.12 LL 1772.02 6.0 1768.22 6 427 6 1767.12
LC2_2_5 6 1891.21 LL 1891.21 6.0 1891.21 6 121 6 1891.21
LC2_2_6 6 1857.78 SAM 1857.93 6.0 1857.78 6 150 6 1857.78
LC2_2_7 6 1850.13 SAM 1850.60 6.0 1850.13 6 151 6 1850.13
LC2_2_8 6 1824.34 LL 1825.88 6.0 1824.73 6 193 6 1824.34
LC2_2_9 6 1854.21 SAM 1854.43 6.0 1854.21 6 193 6 1854.21
LC2_2_10 6 1817.45 LL 1818.04 6.0 1817.45 6 245 6 1817.45
Tot. 615 178380 181707.35 608.10 180930.62 606 15815 606 180418.58
Avg. 264
< PB 22 27
<= PB 42 57
#B 33 31 57

Table 17: Results on 200-customer problems
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR1_4_1 40 10639.75 TS 10652.59 40.0 10639.75 40 351 40 10639.75
LR1_4_2 31 10533.33 SAM 10125.79 31.0 10015.85 31 554 31 10015.85
LR1_4_3 24 8831.1 SAM 8846.24 23.3 8908.01 23 613 23 8840.46
LR1_4_4 17 5551.47 LL 6974.01 16.0 6814.84 16 575 16 6744.33
LR1_4_5 30 10233.59 TS 10606.32 29.1 10599.54 29 457 29 10599.54
LR1_4_6 25 9456.68 BH 9686.93 25.0 9573.68 25 554 25 9525.45
LR1_4_7 21 8012.3 SAM 8170.00 19.7 8200.37 19 610 19 8200.37
LR1_4_8 15 6320.03 SAM 6093.04 14.1 6044.40 14 568 14 5946.44
LR1_4_9 25 10313.6 SAM 9908.16 24.7 9886.14 24 480 24 9886.14
LR1_4_10 22 8249.87 SAM 8233.16 21.0 8145.03 21 516 21 8016.62
LR2_4_1 8 9726.88 BH 10243.45 8.0 9786.02 8 467 8 9758.46
LR2_4_2 8 7971.09 SAM 9995.30 7.0 9717.03 7 761 7 9496.64
LR2_4_3 6 9794.4 SAM 8586.52 6.0 8116.53 6 1451 6 8116.53
LR2_4_4 5 5116.24 LL 6948.40 4.0 6695.51 4 3409 4 6649.78
LR2_4_5 7 9314.23 SAM 8893.25 7.0 8642.63 7 1096 7 8574.84
LR2_4_6 6 9439.98 SAM 8156.35 6.0 8089.75 6 1236 6 7995.06
LR2_4_7 5 7935.54 SAM 7126.64 5.0 6928.61 5 2019 5 6928.61
LR2_4_8 4 6043.41 LL 5591.83 4.0 5447.40 4 4603 4 5447.40
LR2_4_9 6 8552.29 SAM 8613.50 6.0 8135.86 6 780 6 8043.20
LR2_4_10 6 7449.9 TS 8008.78 5.2 7904.77 5 1385 5 7904.77
LC1_4_1 40 7152.06 SAM 7152.06 40.0 7152.06 40 585 40 7152.06
LC1_4_2 39 7326.93 BH 7395.61 38.9 8012.43 38 597 38 8012.43
LC1_4_3 35 7896.36 SAM 8538.36 33.1 8308.94 33 628 33 8308.94
LC1_4_4 30 6451.68 LL 7013.38 30.7 7021.92 30 558 30 6878.00
LC1_4_5 40 7150 SAM 7150.00 40.0 7150.00 40 508 40 7150.00
LC1_4_6 40 7154.02 LL 7154.02 40.0 7154.02 40 520 40 7154.02
LC1_4_7 40 7149.43 SAM 7149.43 40.0 7149.43 40 529 40 7149.43
LC1_4_8 39 7111.16 LL 7111.86 39.0 7111.16 39 542 39 7111.16
LC1_4_9 36 7539.92 SAM 7471.34 36.1 7458.43 36 462 36 7452.21
LC1_4_10 36 7181.05 TS 7278.25 35.8 7474.07 35 501 35 7387.13
LC2_4_1 12 4116.33 LL 4116.33 12.0 4116.33 12 319 12 4116.33
LC2_4_2 12 4144.29 SAM 4145.71 12.0 4144.49 12 455 12 4144.29
LC2_4_3 12 4624.76 SAM 4533.47 12.0 4483.34 12 681 12 4431.75
LC2_4_4 12 3743.95 LL 4123.21 12.0 4081.93 12 1169 12 4038.00
LC2_4_5 12 4030.63 TS 4030.97 12.0 4030.64 12 366 12 4030.63
LC2_4_6 12 3900.29 SAM 3905.41 12.0 3902.25 12 475 12 3900.29
LC2_4_7 12 3962.51 BH 3976.03 12.0 3969.69 12 481 12 3962.51
LC2_4_8 12 3844.45 SAM 3879.38 12.0 3867.31 12 549 12 3844.45
LC2_4_9 12 4198.61 SAM 4229.42 12.0 4209.49 12 604 12 4188.93
LC2_4_10 12 3828.44 BH 3846.45 12.0 3839.11 12 811 12 3828.44
LRC1_4_1 37 8944.58 TS 9059.11 36.5 9127.15 36 498 36 9127.15
LRC1_4_2 31 8642.74 SAM 8189.18 32.0 8404.51 31 550 31 8346.06
LRC1_4_3 25 7307.09 BH 7413.29 25.7 7429.00 25 644 25 7387.40
LRC1_4_4 19 5944.14 TS 5918.81 19.0 5901.86 19 909 19 5838.58
LRC1_4_5 34 9133.11 SAM 8760.38 34.0 8715.74 34 487 33 8773.75
LRC1_4_6 31 8817.39 SAM 8236.27 31.2 8198.96 31 475 31 8177.90
LRC1_4_7 30 7869.45 BH 7969.23 29.8 7992.08 29 500 29 7992.08
LRC1_4_8 28 7887.67 SAM 7625.79 27.9 7613.43 27 510 27 7613.43
LRC1_4_9 27 8215.25 SAM 7942.38 26.8 8013.48 26 494 26 8013.48
LRC1_4_10 24 7404.91 SAM 7190.05 24.0 7103.78 24 503 24 7065.73
LRC2_4_1 13 6655.52 SAM 7750.57 12.0 7471.01 12 553 12 7471.01
LRC2_4_2 11 7467.34 SAM 6385.15 11.0 6332.52 11 1102 11 6303.36
LRC2_4_3 9 5480.25 TS 5485.05 9.0 5459.06 9 2126 9 5438.20
LRC2_4_4 6 4279.05 LL 5446.01 5.0 5405.16 5 4032 5 5322.43
LRC2_4_5 11 6120.13 BH 6147.77 11.0 6140.07 11 827 11 6120.13
LRC2_4_6 10 6002.63 SAM 6540.83 9.1 6479.56 9 757 9 6479.56
LRC2_4_7 9 5737.02 SAM 6497.14 8.0 6361.26 8 707 8 6361.26
LRC2_4_8 8 5364.31 SAM 6004.71 7.1 5968.27 7 834 7 5928.93
LRC2_4_9 7 6892.23 SAM 5469.65 7.0 5394.73 7 1275 7 5303.53
LRC2_4_10 7 5057.81 TS 6124.51 6.0 5760.78 6 1243 6 5760.78
Tot. 1183 421215 425816.87 1167.80 422201.17 1158 52850 1157 420395.99
Avg. 881
< PB 40 41
<= PB 47 55
#B 19 25 55

Table 18: Results on 400-customer problems
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR1_6_1 59 22838.3 BVH 23070.74 59.0 22975.40 59 1443 59 22838.65
LR1_6_2 45 20985.7 BVH 20714.68 45.0 20614.87 45 1438 45 20246.18
LR1_6_3 37 18685.9 BVH 18619.94 37.0 18548.01 37 1620 37 18073.14
LR1_6_4 28 13945.59 TS 13677.43 28.0 13604.92 28 2119 28 13269.71
LR1_6_5 39 22985.63 SAM 21983.13 39.0 22562.81 38 1105 38 22562.81
LR1_6_6 33 21427.75 SAM 20373.88 33.0 20060.42 33 1299 32 20641.02
LR1_6_7 27 17070.51 SAM 16615.48 26.6 16746.97 26 1476 25 17162.90
LR1_6_8 20 12669.88 SAM 12412.57 19.0 12302.45 19 1916 19 11957.59
LR1_6_9 34 21273.3 BVH 20917.36 33.2 20765.52 33 1059 32 21423.05
LR1_6_10 28 19337.5 SAM 18400.79 28.0 18233.75 28 989 27 18723.13
LR2_6_1 12 18840.8 BVH 22245.55 11.0 22049.96 11 1245 11 21945.30
LR2_6_2 11 17452.75 TS 20038.78 10.0 19666.59 10 2089 10 19666.59
LR2_6_3 9 17598.73 SAM 16161.38 8.0 15897.51 8 3729 8 15609.96
LR2_6_4 7 11771.45 TS 11627.85 6.0 10916.25 6 12849 6 10819.45
LR2_6_5 10 19347.2 SAM 20529.74 9.0 20079.56 9 1300 9 19567.41
LR2_6_6 9 19889.05 SAM 18788.90 8.0 17599.80 8 2238 8 17262.96
LR2_6_7 7 16262 BVH 16052.41 6.0 15877.37 6 6915 6 15812.42
LR2_6_8 6 11652.95 TS 11175.02 5.0 11026.09 5 10329 5 10950.90
LR2_6_9 9 18853.4 BVH 19465.02 8.0 19180.31 8 2123 8 18799.36
LR2_6_10 7 18449.18 SAM 17599.63 7.0 17261.53 7 1928 7 17034.63
LC1_6_1 60 14095.6 LL 14095.64 60.0 14095.64 60 1453 60 14095.64
LC1_6_2 58 14379.5 BVH 14383.04 58.0 14380.37 58 1440 58 14379.53
LC1_6_3 51 14569.3 BVH 14676.36 50.8 15028.86 50 1153 50 14683.43
LC1_6_4 48 13567.51 LL 13806.44 49.0 13750.06 49 1066 47 13648.03
LC1_6_5 60 14086.3 LL 14086.30 60.0 14086.30 60 1201 60 14086.30
LC1_6_6 60 14090.79 SAM 14090.79 60.0 14090.79 60 1198 60 14090.79
LC1_6_7 60 14083.76 SAM 14083.76 60.0 14083.76 60 1203 60 14083.76
LC1_6_8 59 14554.27 SAM 14557.89 59.0 14554.81 59 1263 59 14554.27
LC1_6_9 55 14626.25 TS 14676.34 56.0 14596.57 56 1261 54 14706.12
LC1_6_10 54 14627.2 TS 14918.57 55.6 14711.59 55 1329 53 14879.30
LC2_6_1 19 7977.98 SAM 7977.98 19.0 7977.98 19 1137 19 7977.98
LC2_6_2 19 8253.67 SAM 10612.70 18.0 10384.03 18 1277 18 10277.23
LC2_6_3 18 7436.5 BVH 7781.67 17.8 9007.34 17 2033 17 8728.30
LC2_6_4 18 8200.89 TS 8279.98 17.2 8281.94 17 2303 17 8041.97
LC2_6_5 19 8047.37 BVH 8068.59 19.0 8061.74 19 1268 19 8047.37
LC2_6_6 19 8169.95 TS 8149.37 19.0 8129.87 19 1016 19 8094.11
LC2_6_7 19 8038.56 BVH 8108.38 19.0 8086.65 19 1133 19 7998.18
LC2_6_8 18 7808.16 SAM 7632.38 18.0 7616.85 18 1067 18 7579.93
LC2_6_9 19 8134.25 SAM 8173.11 19.0 8160.19 19 1225 18 9501.00
LC2_6_10 18 7555.35 TS 7529.02 18.0 7511.89 18 1775 17 8019.94
LRC1_6_1 53 17930 BVH 18017.12 53.0 17965.79 53 1342 53 17924.88
LRC1_6_2 45 16040.3 BVH 16090.72 44.8 16302.54 44 1389 44 16302.54
LRC1_6_3 36 14407.6 BVH 14395.28 36.0 14310.59 36 1725 36 14060.31
LRC1_6_4 25 11308.6 BVH 11260.62 25.0 11097.51 25 2496 25 10950.52
LRC1_6_5 47 16803.9 BVH 16837.12 47.8 16831.90 47 1256 47 16742.55
LRC1_6_6 44 18205.25 SAM 17059.61 45.0 16994.01 45 1175 44 16894.37
LRC1_6_7 39 16407.68 SAM 15582.48 39.6 15565.62 39 1135 39 15394.87
LRC1_6_8 36 15352.6 BVH 15346.86 36.0 15174.29 36 1099 36 15154.79
LRC1_6_9 36 15751.84 SAM 15092.82 36.2 15000.49 36 1141 35 15134.24
LRC1_6_10 31 14304.37 SAM 14036.50 32.0 13940.77 32 1058 31 13925.51
LRC2_6_1 17 13111.6 BVH 14989.05 16.0 14844.71 16 1194 16 14817.72
LRC2_6_2 15 11463 BVH 12856.00 14.0 12801.40 14 2106 14 12758.77
LRC2_6_3 11 15167.3 BVH 12413.60 10.6 12812.67 10 4830 10 12812.67
LRC2_6_4 8 12512.5 BVH 10461.14 7.4 10574.87 7 13452 7 10574.87
LRC2_6_5 14 15576.76 SAM 13287.40 14.0 13216.21 14 1827 14 13009.52
LRC2_6_6 13 12655.11 SAM 12717.44 13.0 12709.04 13 1826 13 12643.98
LRC2_6_7 11 13996.73 SAM 12109.64 11.0 12070.35 11 1397 11 12007.65
LRC2_6_8 11 14572.07 SAM 12681.15 10.0 12565.94 10 2341 10 12163.43
LRC2_6_9 10 12262.51 TS 14236.58 9.0 13966.61 9 2094 9 13768.01
LRC2_6_10 9 12379.46 TS 12300.10 8.0 12129.35 8 2340 8 12016.94
Tot. 1699 873850 867929.80 1686.60 863441.95 1679 133234 1664 860898.44
Avg. 2221
< PB 41 51
<= PB 45 57
#B 9 9 57

Table 19: Results on 600-customer problems
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR181 80 39374.4 LL 39847.80 80.0 39719.88 80 2867 80 39315.92
LR182 59 36122.5 BVH 35197.46 59.0 34746.99 59 2719 59 34370.37
LR183 45 31763 BVH 30506.10 44.0 30301.99 44 2984 44 29718.09
LR184 26 23454.57 SAM 21738.05 25.6 21900.66 25 3458 25 21197.65
LR185 52 39743.88 SAM 37834.13 52.4 37856.78 52 2051 50 39046.06
LR186 42 35011.85 SAM 33815.72 42.6 34315.99 42 2250 42 33659.50
LR187 34 28551.92 SAM 27347.55 32.8 28327.14 32 2720 32 27294.19
LR188 24 21891.97 SAM 20182.46 21.2 20256.27 21 2982 21 19570.21
LR189 44 36550.5 SAM 35693.92 43.0 35531.29 43 1890 42 36126.69
LR1810 34 31443.25 SAM 29741.89 33.6 29587.53 33 1891 32 30200.86
LR281 16 29961.22 SAM 34422.50 15.0 34124.11 15 2009 15 33816.90
LR282 13 37565.81 SAM 30839.74 12.8 33326.43 12 4507 12 32575.97
LR283 11 30046.47 SAM 26211.39 10.0 25446.52 10 8134 10 25310.53
LR284 8 24925.57 SAM 20085.04 7.0 19506.42 7 24419 7 19506.42
LR285 12 34256.18 SAM 34919.19 12.0 33961.98 12 2515 12 32634.29
LR286 10 30688.6 SAM 29070.99 10.0 28629.45 10 5827 10 27870.80
LR287 9 28524.9 BVH 25809.90 8.0 25077.85 8 7397 8 25077.85
LR288 7 19878.42 TS 18168.34 6.0 17800.02 6 29265 5 19256.79
LR289 11 34700.25 SAM 30325.20 10.8 31891.23 10 3025 10 30791.77
LR2810 10 31906.16 SAM 29604.30 9.0 28941.03 9 3425 9 28265.24
LC181 80 25184.38 SAM 25184.38 80.0 25184.38 80 2663 80 25184.38
LC182 78 26056.2 BVH 26186.79 78.0 26131.65 78 2712 78 26062.17
LC183 66 26700.6 BVH 26135.96 66.8 26308.88 66 2591 65 25918.45
LC184 61 23427.2 BVH 23880.34 62.4 23786.46 62 1892 60 22970.88
LC185 80 25211.22 SAM 25211.22 80.0 25211.22 80 2207 80 25211.22
LC186 80 25164.25 SAM 25164.25 80.0 25164.25 80 2210 80 25164.25
LC187 80 25158.38 SAM 25158.38 80.0 25158.38 80 2249 80 25158.38
LC188 78 25427.1 BVH 25262.20 79.0 25255.06 79 2187 78 25348.45
LC189 74 25536 BVH 26352.66 75.4 26363.13 74 2488 73 25541.94
LC1810 72 26364.93 TS 26896.75 75.0 26522.79 74 2394 71 25712.12
LC281 24 11687.06 SAM 11687.06 24.0 11687.06 24 1030 24 11687.06
LC282 25 12575 BVH 12634.54 25.0 12614.42 25 2462 24 14358.92
LC283 25 12500.5 BVH 13687.38 24.0 13551.68 24 2010 24 13198.29
LC284 24 13438.1 TS 12662.06 24.0 12593.32 24 3046 23 13376.82
LC285 25 12298.9 BVH 12357.15 25.0 12350.55 25 1237 25 12329.80
LC286 25 12064.8 BVH 12112.84 25.0 12090.57 25 1713 24 12702.87
LC287 25 11899.18 TS 11895.72 25.0 11878.10 25 1360 25 11855.86
LC288 24 11724.46 TS 11649.71 24.0 11592.23 24 1520 24 11482.88
LC289 24 11700.86 TS 11685.81 24.0 11673.27 24 1862 24 11629.61
LC2810 24 12139.06 TS 11693.40 24.0 11615.76 24 1874 24 11578.58
LRC181 67 32587.9 BVH 32275.83 67.6 32268.95 67 2206 67 32268.95
LRC182 56 28843.1 BVH 28306.81 58.4 28180.05 58 2515 57 28395.39
LRC183 49 24933.9 BVH 24672.74 51.0 24628.67 51 3207 50 24354.36
LRC184 35 18768.4 BVH 18696.22 35.0 18666.34 35 4276 35 18241.91
LRC185 60 32578.04 SAM 31439.49 63.2 31121.74 63 2218 61 30995.48
LRC186 56 29971.97 SAM 29037.55 59.8 28934.95 59 2135 58 28568.61
LRC187 53 29948.45 SAM 28696.11 55.8 28543.20 55 1944 54 28164.41
LRC188 49 28160.88 SAM 26889.40 50.8 26971.48 50 2105 49 26150.65
LRC189 47 26668.91 SAM 25538.12 48.6 25578.39 48 2016 47 24930.70
LRC1810 43 25787.27 SAM 24424.49 44.2 24156.12 44 2004 42 24271.52
LRC281 21 21486.1 LL 21905.03 20.8 23476.51 20 2217 20 23289.40
LRC282 19 19127.96 SAM 20056.42 19.2 19930.17 19 3522 18 21786.62
LRC283 17 18842.56 TS 16423.77 16.4 16846.85 16 6751 16 16586.31
LRC284 13 17693.9 BVH 14406.39 12.0 14122.05 12 19037 12 14122.05
LRC285 18 21626.63 TS 20541.12 18.0 20474.88 18 2725 18 20292.92
LRC286 16 25106.28 SAM 21271.46 16.0 21209.60 16 2792 16 21088.57
LRC287 15 23808.4 SAM 20402.90 15.0 19764.32 15 3187 15 19695.96
LRC288 13 24260 SAM 19670.06 13.0 19423.27 13 3722 13 19009.33
LRC289 13 19514 BVH 19548.71 12.0 19267.46 12 3702 12 19003.68
LRC2810 12 19865.4 BVH 19257.95 10.8 20530.09 10 4736 10 19766.78
Tot. 2213 1492200 1432320.80 2223.00 1432077.81 2208 2350632181 1423062.65
Avg. 3918
< PB 37 48
<= PB 42 53
#B 12 9 53

Table 20: Results on 800-customer problems
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Best known FULL, Both IA = 0.01 LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR1101 100 57977 BVH 57172.54 100.0 57016.58 100 4576 100 56903.88
LR1102 80 52361.61 SAM 49937.45 80.0 49765.70 80 4495 80 49652.10
LR1103 54 44890.55 SAM 42886.53 54.0 42681.33 54 4473 54 42124.44
LR1104 31 32336.04 SAM 31450.33 29.0 32133.36 28 4522 28 32133.36
LR1105 64 58260.68 SAM 58138.72 61.6 59135.86 61 3474 61 59135.86
LR1106 51 49697.85 SAM 47333.63 51.8 48637.63 50 3673 50 48637.63
LR1107 39 39861.97 SAM 38315.35 38.2 38936.54 37 3598 37 38936.54
LR1108 29 31515.87 SAM 29674.35 26.4 29452.32 26 4892 26 29452.32
LR1109 52 52282.36 SAM 51412.70 51.0 52223.15 50 3126 50 52223.15
LR11010 42 45710.21 SAM 45873.80 41.0 46218.35 40 2841 40 46218.35
LR2101 19 45835.55 SAM 47201.18 19.0 45493.36 19 3158 19 45422.58
LR2102 16 48817.75 SAM 51094.71 15.4 50925.97 15 5324 15 47824.44
LR2103 13 43094.14 SAM 38654.94 12.0 37778.15 12 12055 11 39894.32
LR2104 10 32993.09 SAM 28821.03 8.6 29783.60 8 26496 8 28314.95
LR2105 15 56010.62 SAM 53453.03 14.8 55497.90 14 4244 14 53209.98
LR2106 13 48225.07 SAM 46388.49 12.4 46145.75 12 6565 12 43792.11
LR2107 11 38336.76 SAM 36506.87 9.6 38322.91 9 14455 9 36728.20
LR2108 8 32493.7 SAM 27137.04 7.0 26631.41 7 26592 7 26278.09
LR2109 14 55587.14 SAM 52093.74 13.0 50990.04 13 3844 13 48447.49
LR21010 12 47678.69 SAM 44815.46 11.6 46117.94 11 5945 11 44155.66
LC1101 100 42488.66 SAM 42488.66 100.0 42488.66 100 4025 100 42488.66
LC1102 96 43437.2 BVH 43417.56 95.8 43870.19 95 4008 95 43870.19
LC1103 85 42483.61 SAM 42589.34 82.6 42631.11 82 4123 82 42631.11
LC1104 76 39613.83 SAM 38950.40 74.8 39443.00 74 3617 74 39443.00
LC1105 100 42477.4 SAM 42477.41 100.0 42477.41 100 3603 100 42477.41
LC1106 101 42838.39 SAM 42838.39 101.0 42838.39 101 3714 101 42838.39
LC1107 100 42854.99 TS 42855.17 100.0 42854.99 100 3556 100 42854.99
LC1108 99 42711.7 BVH 42964.24 98.0 42954.34 98 3637 98 42951.56
LC1109 93 42899.1 BVH 42614.87 92.2 42391.98 92 3508 92 42391.98
LC11010 91 42243.4 TS 42715.95 90.2 42435.16 90 3582 90 42435.16
LC2101 30 16879.24 TS 16879.24 30.0 16879.24 30 1502 30 16879.24
LC2102 32 17598.6 BVH 19210.16 31.4 19116.33 31 2171 31 18980.98
LC2103 30 19198.95 SAM 17503.99 30.8 17940.74 30 3651 30 17772.49
LC2104 30 17726 LL 19076.31 30.2 18418.52 30 4120 29 18089.93
LC2105 31 17466.42 TS 17149.07 31.0 17137.53 31 2561 31 17137.53
LC2106 31 17352.7 TS 18276.39 31.0 17217.15 31 2012 31 17198.01
LC2107 32 18131.36 TS 19306.15 32.0 17721.20 32 2796 31 19117.67
LC2108 30 17974.2 SAM 17266.57 30.0 17035.24 30 2745 30 17018.63
LC2109 31 17769.6 BVH 17825.02 31.2 17667.44 31 2809 31 17565.95
LC21010 30 18249.85 SAM 18342.21 30.2 17266.19 30 3297 29 17425.55
LRC1101 84 49315.3 BVH 48997.27 85.4 48934.66 85 3638 85 48702.83
LRC1102 73 45679.5 BVH 45351.71 73.0 45272.96 73 3966 73 45135.70
LRC1103 55 36570.5 BVH 35393.15 55.4 35475.72 55 4397 55 35475.72
LRC1104 41 28979.2 BVH 28013.33 40.2 27930.03 40 6042 40 27747.04
LRC1105 76 51455.4 BVH 50012.71 76.2 49816.18 76 3372 76 49816.18
LRC1106 69 47014.55 SAM 44308.41 70.2 44469.08 69 3132 69 44469.08
LRC1107 65 43321.51 SAM 41395.55 65.2 41413.16 64 3047 64 41413.16
LRC1108 60 42968.34 SAM 40946.68 61.0 40590.17 60 3017 60 40590.17
LRC1109 57 42549.12 SAM 39708.07 58.0 39587.85 57 2837 57 39587.85
LRC11010 51 38274.02 SAM 36184.43 52.2 36195.00 52 2930 52 36195.00
LRC2101 23 36894.98 SAM 32969.29 23.2 35073.70 22 2864 22 35073.70
LRC2102 22 28019.7 LL 29945.79 22.2 31054.84 21 4749 21 30932.74
LRC2103 19 30226.39 SAM 27201.83 17.8 28662.28 17 9528 16 28403.51
LRC2104 14 25836.7 BVH 22976.06 12.8 23611.31 12 28075 12 23083.20
LRC2105 19 39344.9 SAM 31946.46 18.8 34713.96 18 3945 18 34713.96
LRC2106 18 29947.9 SAM 30362.74 18.0 29577.50 18 2356 17 31485.26
LRC2107 18 31633.3 BVH 29915.31 17.2 29822.82 17 4432 17 29639.63
LRC21010 13 31361.45 SAM 30293.97 12.2 30160.05 12 5729 12 29402.90
Tot. 2698 2195755 2129031.74 2677.80 2137033.93 2652 3114412646 2122921.51
Avg. 5370
< PB 50 51
<= PB 54 55
#B 7 25 55

Table 21: Results on 1000-customer problems
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A Unified Heuristic for a Large Class of
Vehicle Routing Problems with Backhauls

Stefan Ropke and David Pisinger∗

Abstract

The Vehicle Routing Problem with Backhauls is a generalization of the ordinary capacitated vehicle routing
problem where goods are delivered from the depot to the linehaul customers, and additional goods are brought
back to the depot from the backhaul customers. Numerous waysof modeling the backhaul constraints have
been proposed in the literature, each imposing different restrictions on the handling of backhaul customers. A
survey of these models is presented, and a unified model is developed that is capable of handling most variants
of the problem from the literature. The unified model can be seen as a Rich Pickup and Delivery Problem with
Time Windows, which can be solved through an improved version of the large neighborhood search heuristic
proposed by Ropke (2003). The results obtained in this way are comparable to or improve on similar results
found by state of the art heuristics for the various variantsof the problem. The heuristic has been tested on 338
problems from the literature and it has improved the best known solution for 227 of these. An additional benefit
of the unified modeling and solution method is that it allows the dispatcher to mix various variants of the Vehicle
Routing Problem with Backhauls for the individual customers or vehicles.

Keywords: metaheuristics, vehicle routing problems, large neighborhood search

1 Introduction

In the classicalCapacitated Vehicle Routing Problem(CVRP) we have to deliver goods from a depot to a set of
customers, using a set of identical vehicles. Each customerdemands a certain quantity of goods and the vehicles
have a limited capacity. Our task is to construct routes starting and ending at the depot that minimize the total travel
distance and that obey the capacity of the vehicles.

The problems that need to be solved in real life situations are usually much more complicated. One complica-
tion that arises in practice is that goods not only need to be brought from the depot to the customers, but also must
be picked up at a number of customers and brought back to the depot. A simple way of handling such problems
is to solve two independent CVRPs. One for the delivery (linehaul) customers and one for the pickup (backhaul)
customers, such that some vehicles would be designated to linehaul customers and others to backhaul customers.
This approach is not likely to create high quality solutionsthough — it seems more profitable to serve both pickup
and delivery customers using the same vehicles. TheVehicle Routing Problem with Backhauls(VRPB) models
problems with both pickup and delivery customers in the sameroute.

Applications of VRPB can be found in the distribution of groceries. Groceries are delivered to supermarkets
and grocery stores from a central distribution center and groceries are picked up at production sites and brought to
the distribution center. Another application is the handling of returnable bottles, where full bottles are brought to
customers and empty bottles are brought back to breweries tobe recycled. Such applications are likely to become
more common in the future due to the increased awareness of environmental issues. It is important to develop fast
and robust algorithms for real-life transportation problems, which are able to handle various side constraints that
appear in practice.

∗DIKU - Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark. E-
mail: {sropke, pisinger}@diku.dk
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The general trend in the transportation sector is that transportation companies are merging to larger units which
can provide a large number of delivery services. In order to get the most possible benefit from the vehicle fleet, it
can be attractive to service conceptually different transportation tasks by the same fleet, thus models are needed that
can handle all additional constraints associated with a transportation task. Cordeau et al. [6] for example provide
a unified approach for several Vehicle Routing Problems withTime Windows. The present paper considerably
extends the expressibility of the model, by also allowing pickup and delivery requests, precedence constraints, etc.
This allows us to formulate the six most common variants of vehicle routing problems with backhauls within the
framework, and to find high quality heuristic solutions thatare comparable to or improve on similar results for
specialized algorithms.

The underlying problem of all of the problems we consider is the Pickup and Delivery Problem with Time
Windows(PDPTW), which we will describe in Section 2. A survey of the six most common variants of vehicle
routing problems with backhauls — and additional, less frequently used models — is given in Section 3. The
subsequent sections present the heuristic algorithm proposed in this paper, which is outlined in Figure 1. Some
of the problem types we wish to solve are illustrated at the top of the figure. To solve an instance of one of
these problem types, we transform it to an instance of theRich Pickup and Delivery Problem with Time Windows,
as illustrated by the arrows from the top row to the next row. Transformations are discussed in Section 4. The
PDPTW instance is solved by a heuristic which will be presented in Section 5; this produces a PDPTW solution
that finally is interpreted as a solution to the original problem. This solution framework has been tested on 338
benchmarks problems proposed in the literature. The results of this computational test are reported in Section 6.
The paper is finally concluded in Section 7.

2 The Pickup and delivery problem with time windows (PDPTW)

Before starting to discuss the various variants of the VRPB we introduce theRich Pickup and Delivery Problem
with Time Windows(Rich PDPTW). All considered variants of the VRPB can be seenas extensions of the PDPTW.
IP models of the PDPTW can be found in Desaulniers et al. [8] and Sigurd et al. [34], for our purpose we will only
give a verbal description of our problem which differs slightly from the problems in the afore-mentioned papers.

In the Rich PDPTW we haven requestsand m vehicles. A request i∈ {1, ...,n} consists of picking up a
quantity l i of goods at one location and delivering it to another location. With each request is associated apickup
time window, adelivery time window, and twoservice times spi andsd

i indicating how long the pickup and delivery
operations take to perform. A vehicle is allowed to arrive ata location before the start of the time window, in which
case it will have to wait before starting the corresponding operation. A vehicle may never arrive at a location after
the end of the time window. Each request furthermore has an associatedpickup precedence number, and adelivery
precedence number. Each vehicle must visit the locations in nondecreasing order of precedence number (see e.g.
Sigurd et al. [34] for various applications of precedence constraints).

Each requesti can only be served by a vehiclek ∈ Fi, whereFi is the set of feasible vehicles corresponding
to requesti. Each vehiclek ∈ {1, . . . ,m} has an associatedcapacity Ck, a start time bk andend time ek, and an
associatedstart terminal Bk andend terminal Ek where it starts and ends its duty respectively. The vehicle must
leave its start terminal at timebk even though this might introduce waiting time at the first customer visited. The
vehicle must return to the end terminal at timeek or before.

The problem can be defined on a directed graph where the locations are represented by a set ofnodes V=
{1, ...,2n+ 2m}, and for eachedge(i, j) we have an associateddistance di j andtravel time ti j , where we assume
that travel times satisfy the triangle inequality while theonly assumption on the distances is that they must be
non-negative. The locations will often be referred to asvisits.

The task is to construct a set of valid routes for a limited number of vehicles such that an associatedobjective
function is minimized. The objective function is a weighted sum of 1) the sum of the distance traveled by the
vehicles. 2) the number of requests not assigned to a vehicle. The two terms are weighted by the coefficientsα and
β. Notice that this objective function does not necessarily assign all requests to a vehicle. Requests not assigned to a
vehicle are placed in a virtualrequest bank, which in a real world situation must be handled by a human dispatcher.
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Figure 1: Solution framework: As described in Section 3 the algorithmaccepts as input variants of the Vehicle Routing
Problem with Backhauls, including: (VRPB), (MVRPB), (MDMVRPB), (VRPBTW), (MVRPBTW) and (VRPSDP). All
of the problems are transformed to a Rich Pickup and DeliveryProblem with Time Windows, which is solved heuristically
through a Large Neighborhood Search algorithm. The last step of the algorithm transforms the obtained solution back to the
original problem. The framework is not limited to backhaul models, but can be used to solve other types of vehicle routing
problems, such as the vehicle routing problem with time windows or the capacitated vehicle routing problem.
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Hence, normally a high value is assigned to the coefficientβ to stimulate that as many requests as possible are to be
serviced. In the experiments performed in this paper,β was chosen sufficiently high to avoid situations were some
requests where left in the request bank upon termination.

3 Overview of vehicle routing problems with backhauls

This section gives an overview of the vehicle routing problems with backhauls proposed in the literature. We
restrict ourselves to multi-vehicle problems. Single-vehicle problems have been studied by for example Gendreau
et al. [14], Ghaziri and Osman [15] and Süral and Bookbinder [36].

3.1 The Vehicle Routing Problem with Backhauls (VRPB)

In thevehicle routing problem with backhauls(VRPB) we wish to minimize the total traveled distance and weare
allowed to serve linehaul and backhaul customers on the sameroutes subject to the following limitations.

(A) If a route contains both linehaul and backhaul customersthen the backhaul customers must be served
after the linehaul customers.

(B) A route is not allowed to consist entirely of backhaul customers.
(C) The capacity of the vehicle should be obeyed, that is, neither the sum of the demands of the linehaul

customers nor the sum of the demands of the backhaul customers served by a vehicle may exceed the
vehicle capacity.

(D) The number of vehicles to use is given in advance. This means that even if it is possible to find better
solutions using fewer or more vehicles, we must report the best solution we can find that uses the specified
number of vehicles.

(E) All customers are serviced from a single depot.
(F) All vehicles have the same capacity.

Constraint (A) might seem artificial but it is justified by thefact that many vehicles are rear-loaded. This makes
it problematic to try to load the vehicle with goods heading for the depot before we have delivered all goods to the
customers as the pickup goods might block access to the delivery goods. The constraint is also justified by the fact
that the linehaul customers frequently prefer early deliveries while backhaul customers prefer late pickups.

A recent survey of the VRPB was presented by Toth and Vigo [42]. Exact methods for the VRPB are proposed
by Mingozzi et al. [26] and Toth and Vigo [41]. Heuristics have been developed by Anily [3], Casco et al. [5],
Crispim and Brandao [7], Goetschalckx and Jacobs-Blecha [16], [22] and Toth and Vigo [40].

3.2 The Mixed Vehicle Routing Problem with Backhauls (MVRPB)

TheMixed Vehicle Routing Problem with Backhauls(MVRPB) is derived from the VRPB by relaxing limitations
(A), (B) and (D). That is, we can mix linehaul and backhaul customers freely within a route and we are free to
use as many vehicles as we want. We still have to obey the capacity limit of the vehicles. The capacity check is
slightly more complicated in the MVRPB problem as the vehicle load fluctuates during the route. Furthermore,
some MVRPB also have a duration limit that implies that routes should be completed within a certain time frame;
for such problems the travel time between customers and the service time at the customers is given.

The nameVehicle Routing Problem with Pickups and Deliveries(VRPPD) is sometimes used instead of MVRPB.
Heuristics for this problem are presented by Halse [19], Nagy and Salhi [27], [32] and Wade and Salhi [43], [44].

3.3 The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB)

The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB) is a generalization of the
MVRPB. In the MDVRPB limitation (E) is relaxed such that we instead of just considering a single depot are
faced with problems where several depots are present. At each depot a limited fleet of vehicles is available, and a
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Figure 2: An example showing that simultaneous pickup and delivery atcustomers may increase the overall route lengths.
The four customers have pickup/delivery requests of 2/2, 1/2, 1/2, 2/0 respectively. The vehicle has a capacityC of 6 units,
and normal Euclidean distances are used. In a MVRPB setting,the shortest route is D1, P2/D2, P4/D4, P3/D3, P1 of total
length 7.66. If simultaneous pickup and deliveries are demanded, theshortest route becomes P3/P3, P2/D2, P4/D4, P1/D1 of
total length 8.65.

vehicle should start and end its duty at the same depot. Heuristics for the problem are proposed by Nagy and Salhi
[27], [32]. They denoted the problem theMulti Depot Vehicle Routing Problem with Pickup and Deliveries.

3.4 The Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW)

TheVehicle Routing Problem with Backhauls and Time Windows(VRPBTW) extends VRPB by assigning a time
window to each customer, by having travel times associated with each pair of locations, and by having service
times associated with the customers. Visits at a customer should start within the time window. If the vehicle arrives
too early at a customer it has to wait until the start of the time window. If the vehicle arrives too late the route is
invalid. Limitations (B) and (D) from the VRPB are relaxed inthe VRPBTW. The objective of VRPBTW is either
to minimize the total traveled distance or to minimize the number of vehicles as the first priority and then minimize
the total traveled distance as the second priority.

An exact algorithm for the VRPBTW based on column generationwas proposed by Gelinas et al. [13], and
heuristics were proposed by Duhamel et al. [12], Hasama et al. [20], Reimann et al. [30], Thangiah et al. [38] and
Zhong and Cole [48].

3.5 The Mixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW)

TheMixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW) is derived from VRPBTW
by relaxing limitation (A) saying that backhaul customers should be visited after linehaul customers. The objective
that has been considered in the literature is to minimize thenumber of vehicles as the first priority and the distance
traveled as the second priority. Two heuristics have been proposed in Kontoravdis and Bard [23] and Zhong and
Cole [48].

3.6 The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP)

In the Vehicle Routing Problem with Simultaneous Deliveries and Pickups(VRPSDP) a subset of the customers
simultaneously demand goods from—and supply goods to—the depot, and thus both a delivery and a pickup
should occur at these customers. The pickup and delivery should be performed simultaneously such that each
customer is visited only once by a vehicle. Unloading is obviously done before loading at these customers. The
simultaneous pickup and delivery operation decreases the customers’ expenses or inconvenience associated with
handling vehicles, but may result in longer routes as illustrated in Figure 2.

This problem was first introduced by Min [25] in the context oftransportation material between public libraries
and a library administration center (acting as a depot). Halse [19] presented exact and heuristic methods for the
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problem and Dethloff [9], [10] considered heuristic algorithms. Nagy and Salhi [32] used their MVRPB heuristic
to solve the problem, but apparently the “simultaneous” constraint is not handled by the heuristic. This is discussed
in further detail by Dethloff [10]. Two variants of the problem have been proposed recently. Nagy and Salhi [32]
introduce a multi depot version of the problem, while Angelelli and Mansini [2] solve a version with time windows
to optimality using column generation. The heuristic proposed in the present paper is not tested on the two last
problem types although the underlying PDPTW model without modifications could handle these problem classes
also.

3.7 Other backhauling problems

Wade and Salhi [45] introduce a problem that generalizes VRPB and MVRPB. In this problem one is not allowed
to mix linehaul and backhaul customers on a route freely. A vehicle can only start to serve backhaul customers
after a certain percentage of the linehaul load has been delivered. If this percentage is set to 0% then we get the
MVRPB and if the percentage is set to 100% then we get the VRPB.Percentages in between 0% and 100% result
in a blend between VRPB and MVRPB.

Halskau et al. [17] propose a backhauling problem with so called lassotours. In their problem most customers
require both a pickup and a delivery. At the first few customers visited on a route a delivery is performed to free
up some room in the vehicle, at the customers in the middle of the route, the delivery and pickup operation is
performed simultaneously. The tour is ended by visiting thefirst couple of customers again, this time in the reverse
order to perform the omitted pickups. This creates a tour that looks like a lasso, as the first customers that are
visited twice form the spoke of the lasso, while the customers that are visited once form the loop of the lasso.

These two problem variants cannot be solved by the heuristicpresented in this paper in its present form. It
would only require minor modifications to the heuristic and the underlying model to be able to solve these problems
though.

4 Problem transformations

This section describes how each of the problems discussed inSection 3.1–3.6 can be transformed to a Rich PDPTW.
The basic transformation is to represent a linehaul customer by a request with a pickup at the depot and a delivery
at the linehaul customer. Backhaul customers are represented by a request with a pickup at the backhaul customer
and a delivery at the depot. This transformation might seem sufficient to represent the MVRPB but it has the
flaw that it allows a vehicle to go back to the depot for re-stocking or offloading and afterwards continue its duty.
This is not allowed in a standard MVRPB. The problem is easilysolved by assigning precedences to the different
tasks: pickups at the depot get precedence 1, deliveries at linehaul customers and pickups at backhaul customers
get precedence 2 and deliveries at the depot get precedence 3.

The backhaul after linehaul constraint (A) found in VRPB is also easily modeled using precedences. Instead
of giving linehaul and backhaul customers identical precedences, we assign precedence 2 to the linehaul deliveries,
precedence 3 to the backhaul pickups and precedence 4 to the deliveries at the depot.

In the VRPB we have to use a specified number of vehicles as stated by constraint (D). Our model only allows
us to set an upper bound on the number of vehicles, so we need tomodel a vehicle equality constraint. This is done
by modifying the distance matrix by setting the distance from the start terminal to the end terminal of each vehicle
to M, whereM is a sufficiently large number. This forces the heuristic towards solutions with at least one request
on each route in order to avoid the penaltyM.

The VRPB constraint (B) saying that no route can consist of backhauls only, is handled in a similar way. Here
we add the penaltyM to the cost of each edge from a start terminal to one of the backhaul pickup locations.
This drives the heuristic towards solutions where such edges are not used, which means that at least one linehaul
customer is served before a backhaul customer.

The simultaneous delivery and pickup constraint in VRPSDP is also modeled using penalties. As before, the
delivery to a customer is modeled by a request from the depot to the customer and a pickup at a customer is
modeled as a request going from the customer to the depot. In order to ensure that the delivery and pickup occur
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“simultaneously” we modify the distance matrix. The distance from a delivery visit to the simultaneous pickup
visit is set to zero, while the distances from the pickup to all other visits are increased by the penalty termM. This
forces the heuristic to visit the simultaneous pickup aftera delivery. The situation is illustrated on Figure 3.
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Figure 3: Modeling of simultaneous delivery and pickup. Request 1 is adelivery to a customer, request 2 represents the
simultaneous pickup at the same customer and request 3 is another unrelated request. The names “Px” denotes “the pickup
of requestx” and “Dx” denotes “the delivery of requestx”. Edge weights are the distancesdi j . In order to ensure that D1
is followed by P2 we increase all other distances from D1 withM, while the distance from D1 to P2 is set to zero. In this
way, the algorithm will first visit the pickup site of request1 (the depot) and then travel to the delivery site of request 1(the
customer site). We might perform other visits along the dashed edges. After performing the delivery of request 1, only one
edge has cost less thanM, hence we go to P2 which is the simultaneous pickup.

The multiple depots in the MDMVRPB are harder to model even though the underlying PDPTW model already
supports multiple depots. The problem is that we until now have modeled a linehaul customer by a pickup at the
depot and a delivery at the customer, and vice-versa for the backhaul customers. In the multi depot problems we
cannot assign a request to a given depot in advance as we do notknow where the pickup of a linehaul request or
the delivery of a backhaul request should occur. To model this kind of constraint we do the following. For each
vehicle in the problem (remember that in the MDMVRPB a fixed number of vehicles is available in each depot)
we create a dummy request with pickup and delivery locationsat the depot of the vehicle. There is no demand
associated with the dummy requests. A dummy request should only be served by the vehicle it is designed for,
which is ensured by letting its feasible set of vehiclesFi contain that one vehicle only. We still represent each
linehaul customer by one request. All pickups of these linehaul requests take place at a virtual depot. All distances
to and from the virtual depot are set to zero. Backhaul customers are represented in the same way — by a pickup
at the backhaul customer and a delivery at the virtual depot.The idea is that linehaul requests should travel via
the dummy pickup location and backhaul requests should travel via the dummy delivery location. This is ensured
using precedences: Linehaul pickups get precedence 1, pickups of the dummy requests get precedence 2, linehaul
deliveries and backhaul pickups get precedence 3, deliveries of the dummy requests get precedence 4 and linehaul
deliveries get precedence 5. This forces the dummy request to “surround” the linehaul deliveries and backhaul
pickups such that the distance to and from the right depot is used. Figure 4 shows an example of a MDMVRPB
route with two linehaul customers and one backhaul customer.

A remark should be made about penalty based modeling: If a feasible solution exists that does not violate any of
the constraints, the optimal solution will not contain any of the penalty terms. However, since we use heuristics for
solving the model, we may end up with a solution which still contains some penalties. This can easily be detected
by inspecting the objective value and the heuristic can either be repeated (hoping that a second run will find a better
solution) or some manual adjustment of the data may be needed, e.g. by increasing the number of vehicles or by
removing some customers which cannot be handled. It should,however, be pointed out that the heuristic has never
produced any infeasible solutions during the computational experiments performed in Section 6.
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We made heavy use of precedences in the transformations described above. The precedences can also be used
to speed up the heuristic when faced with the problem types described in this paper. Consider for example the
MVRPB where several pickup and deliveries occur at the depotand all permutations of the pickups at the depot
within a route are feasible and equally good as long as the deliveries stay fixed (and similarly for the backhaul
deliveries). We can use precedences to create an ordering onthe pickups and deliveries at the depot such that only
one permutation is valid. We enumerate the request from 1 ton. If requesti involves a pickup at the depot, then this
pickup gets precedencei, if requesti involves a delivery at the depot then this delivery gets precedencei + n+ 2.
Pickups and deliveries that corresponds to visits at the customers gets precedencen+1. The same idea can be used
for the five other problems as well.

5 Solution methods

Recent work on local search methods indicate that larger neighborhoods may be needed to solve some difficult
optimization problems as shown by e.g. Ahuja et al. [1]. Due to the size of the neighborhoods, various heuristics
are generally used to search the neighborhood in order to keep the time complexity at a reasonable level. This
means, that the performance of a local search algorithm is limited by the quality of the heuristic that searches
the neighborhood. To work around this bottleneck, Ropke [31] proposed to use several heuristics to search the
neighborhood, where the frequency of using each heuristic is based on some empirical evidence from the search.
An extended version of this heuristic is used to solve our PDPTW model.

The heuristic is based onLarge Neighborhood Search(LNS) as proposed by Shaw [35] and it has similarities
with the Ruin and Recreate(R&R) framework proposed by Schrimpf et al. [33]. Our heuristic repeatedly runs
through the following steps:

LNS iteration
1 Choose a removal heuristicRand an insertion heuristicI .
2 Remove a numberq of requests from the routes using heuristicR.
3 Insert the free requests into the existing routes using heuristic I .
4 Evaluate the objective function of the new solution.
5 If the objective function is improved, accept the new solution. Otherwise accept the new

solution with a probability that depends on the increase of the objective function.

The heuristic differs from the ordinary LNS and R&R methods by incorporating several large-neighborhood heuris-
tics, which are applied with a variable frequency controlled by a learning layer. Each insertion or removal heuristic
in the LNS heuristic may have various properties. Some heuristics are used tointensify the search while other
heuristics mainly play the role ofdiversifyingthe search. In this way, the learning layer not only distributes CPU-
time among the various heuristics involved, but also controls the intensification or diversification of the search
based on empirical information. This can be seen as an extension of the tabu search methods described by Hertz
et al. [21]. One may also see the LNS algorithm as a variant ofVariable Neighborhood Search(VNS) described
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Figure 4: An example of a MDMVRPB route with two linehaul customers andone backhaul customer. The linehaul
customers are represented by request 1 and 2 and the backhaulcustomer is represented by request 3. Request 4 is the dummy
request. The start and end terminals are represented by squares, the visits of the normal requests are represented by circles
and the visits of the dummy request are represented by hexagons. Pickups and deliveries at the depot are shown in grey and
the precedence of the visits is displayed underneath the route. One can observe that the actual MDMVRPB route can be
inspected by looking at the white visits; here the hexagons should be viewed as depot visits and the normal deliveries and
pickups correspond to the linehaul and backhaul customers respectively.
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by Hansen and Mladenovic [18], the main difference being that VNS operates on one type of neighborhood with
variable depth, while LNS operates with structurally different neighborhoods.

In the PDPTW heuristic the removal heuristicR removes up to 40% of the requests in each iteration. This
enables the heuristic to make significant changes to the current solution in a single iteration. We use six different
removal heuristics in our LNS heuristic; each removal heuristic has its own strategy for choosing the requests to
remove. The heuristics are:

• Random removal: The requests are chosen at random.

• Shaw removal: Remove related requests, i.e. requests that are geographically close to each other (Shaw [35]).

• Worst request removal: Remove the request whose removal decreases the cost function the most.

• Cluster removal: Attempt to partition the nodes into subsets so that the nodes in each subset are somehow
“close to each other”. For a more detailed description of this removal heuristics see Section 5.3.

• History based removal: This heuristic makes use of historical information when removing requests. Two
variants of this heuristic have been considered as will be described in Sections 5.4 and 5.5.

The first three removal heuristics have been used previously[31] while the three last are new.
In order to insert the requests we use the five insertion heuristics proposed by Ropke [31]. The heuristics can

be divided into two classes:

• Basic insertion heuristics: which are similar to the insertion heuristic of Solomon [37]. In each iteration a
request is inserted into the solution such that the cost function is increased the least possible.

• Regret insertion heuristics: which are similar to heuristics proposed by Potvin and Rousseau [29] and Tillman
and Cain [39]. In each iteration of the standard version of the heuristic a request is inserted so as to maximize
the gap in the cost function between inserting the request into its best route and its second best route.

The insertion heuristics are described in more details in [31].
In each step of the PDPTW heuristic one removal and one insertion heuristic are used. Computational exper-

iments have shown that in order to reach high-quality solutions all removal and insertion heuristics are necessary,
but their contribution to the solution process may vary during the search.

Themonitoring and learninglayer observes how often a given removal or insertion heuristic contributes to a
new, accepted solution, and increases the probability of choosing the given heuristic according to its success. This
is done usingroulette wheel selectionwhere each heuristic has a probability corresponding to itssuccess-rate. In
order to ensure that statistical information is collected for all heuristics throughout the search, each heuristic is used
not less than a given lower limit.

The LNS algorithm is basically a local search algorithm, andhence it can be combined with most state-of-art
local search paradigms. Using thesimulated annealingparadigm, we evaluate the cost function after each LNS
step. If the cost has decreased or is unchanged, the new solution is always accepted. If the cost has increased, the
solution is randomly accepted with a probability exponentially decreasing with the increase of the cost.

5.1 Measuring the distance between two requests

In the removal heuristics we need a measure for the distanced(r1, r2) between two requestsr1 and r2. Ropke
[31] used the following expression:d(r1, r2) = da1,a2 + db1,b2 wherea1 anda2 are the pickups of the requests and
b1 and b2 are the deliveries. This works fine for the pure PDPTW problems but the definition is problematic
for backhaul problems. Consider for example two requests corresponding to a linehaul and a backhaul customer
located far from the depot. Using the old distance function,the distance between these two requests would be
large even though the linehaul and backhaul customer are located close to each another. Instead we used(r1, r2) =
1
4(da1,a2 +da1,b2 +db1,a2 +db1,b2). If a pickup or a delivery is located at the depot then the distances involving this
visit are removed from the formula and the denominator is decremented accordingly.
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5.2 Simplified Shaw removal

Shaw [35] defines a removal method that removes related requests. Ropke [31] defines the relatedness between
two requests in terms of the distance between the two requests, their capacity demands, temporal information and
information about which vehicles can serve the requests. Inthis paper we take a simpler approach as we define the
relatedness between two requests solely by the distanced(r1, r2) between the requests.

5.3 Cluster removal

Given a set of points in the plane we can ask to partition the set into k ≥ 2 disjoint subsets such that the points
within each subset are close together with respect to the distanced(r1, r2). We say that we partition the points into
k clusters.

A heuristic for finding such a partition can be constructed bymodifying Kruskal’s algorithm [24] for the mini-
mum spanning tree problem. Instead of running Kruskal’s algorithm to the end, it can be stopped whenk connected
components are left. These connected components are our approximation of the desired clusters.

The clustering algorithm is used in a removal heuristic as follows. First a route is selected at random. Then the
requests on this route are partitioned into two clusters. One of these clusters is chosen at random and the requests
from the chosen cluster are removed. If we need to remove morerequests then we pick one of the removed requests
and find a request that is close to the chosen request. The new request should come from a route that has not been
touched by removals in the current iteration. The route of the new request is partitioned into two clusters and so
the process continues until the desired number of requests has been removed. The motivation for the heuristic is
to remove large chunks of related requests from a few routes instead of removing a few requests from each route.
Figure 5 illustrates when the cluster removal heuristic canbe useful.
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Figure 5: Cluster Removal example: The circles mark the delivery locations, all pickups take place at the depot (marked by
the square). In the figure to the left we have a suboptimal solution and we would like to move to the solution shown in the right
part of the figure where requestsh-k are placed on the same route as requestsa- f . To reach this solution we need to remove
requestsh, i, j andk at once. If just one of the requestsh, i, j or k is left on route 2 then the insertion heuristics most likely are
going to insert the rest of the requests back into route 2. Theremoval heuristics presented so far may not be able to remove
all of the requests at once, but the cluster removal heuristic does just that. The result of applying the clustering algorithm on
route 2 would be the two clustersg, l ,m,n andh, i, j,k and the last cluster would be removed with probability 0.5.

5.4 Neighbor graph removal

None of the removal heuristics proposed so far have made any use of historical information when removing re-
quests. The decision about which requests to remove has beenmade solely by using the information available in
the current state.

Theneighbor graph removal heuristicuses both historical information and the current state to select the requests
to remove. The historical information is stored in a complete, directed, weighted graph called theneighbor graph.
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The graph contains a node for each visit in the problem. The weight of all edges is initially set to plus infinity. The
weight of an edge(a,b) stores the cost of the best solution encountered so far in which the visit corresponding toa
is performed just before the visit corresponding tob. Each time a new solution is discovered during the search, the
edge weights in the graph are updated if necessary.

The graph is used to remove requests that seem to be placed in an unsuitable place. When the removal heuristic
is invoked it calculates a score for each request in the current solution. The score is calculated by summing the edge
weights in the neighbor graph corresponding to the neighborconfiguration in the current solution. The requests
with high scores seem to be misplaced and are removed. Every time a request has been removed the scores of the
surrounding requests are recalculated. Some randomness isintroduced in the removal process in order to avoid
removing the same requests over and over again. Specificallythe randomness ensures that we sometimes do not
remove the requests with the highest score but instead remove some with slightly lower scores.

5.5 Request graph removal

In the request graph removal heuristic we store historical information in a graph called therequest graph. This
graph is complete and undirected and each node in the graph corresponds to a request in the PDPTW problem. The
weight of an edge(a,b) denotes the number of times the two requests corresponding to a andb have been served by
the same vehicle in thet best unique solutions observed so far in the search. The weights of all edges are initially
set to zero, and in all experiments the parametert was set to 100.

This graph could be used in a similar fashion as the graph described in Section 5.4. That is, we could examine
all planned requestsr and calculate the score

score(r) = ∑
i∈R(r),i 6=r

wri

whereR(r) is the set of requests in the route containingr andwri is the weight of the edge betweenr and i in the
requests graph. A request with a low score is situated in an unsuitable route according to the request graph and
should be removed. Our initial experiments indicated that this was an unpromising approach, probably because it
strongly counteracts the diversification mechanisms in theLNS heuristic.

Instead, the graph is used to define the relatedness between two requests, such that two requests are considered
to be related if the weight of the corresponding edge in the request graph is high. This relatedness measure is used
as in the removal heuristic proposed by Shaw [35], mentionedin Section 5.2.

6 Computational experiments

6.1 Parameter tuning

Even though the proposed heuristic is controlled by quite a few parameters, we have tried to keep the parameter
tuning to a minimum in this paper. This is achieved by using the same parameters that were found in the parameter
tuning performed by Ropke [31], where applicable. The only parameters that have been tuned are the two parame-
ters that control the simulated annealing:the cooling rate cand thestart temperature control parameter w. After
each LNS iteration the temperatureT is updated using the recursionT := cT. The parameterw controls the start
temperatureT0. In order to set the start temperatureT0 we use an estimate of the objective value of a reasonable
solution to the problem. This estimate is found by obtainingan initial solution using one of our insertion heuristics
and calculating themodified objective value z′ of this solution. The modified objective value is obtained bysetting
the coefficientβ to zero, such that unplanned requests do not make the estimate of the objective value unreason-
ably high. Now the start temperature is set such that a solution that is 1+ w times larger thanz′ is accepted with
probability 0.5 when the current solution has objectivez′. We have tested the algorithm on 11 problems chosen
from 5 of the 6 problem categories. The configurationw= 0.05 andc= 0.9998 proved to be the best among the 30
configurations tested. The same parameters were used for allproblem types considered in the following sections.
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6.2 Test strategy

The LNS heuristic is tested on 9 data sets proposed in the literature. The test serves two major purposes. The first
purpose is to compare three configurations of the LNS heuristic against each other. The three configurations are:

• A configuration similar to the one used by Ropke [31]. This configuration benefits from the learning layer
but is limited to the 3 “old” removal heuristics: Thesimplified Shaw removal, the worst removaland the
random request removal. This configuration is denotedstandardin the following.

• A configuration that uses all 6 removal heuristics but has disabled the learning layer. This implies that all
removal and insertion heuristics are equally likely to be selected during the search. This configuration is
denoted6R - no learningin the following (the “6R” indicates that 6 removal heuristics are in use).

• The last configuration is similar to the second, but in the third configuration the learning layer is activated
again. The configuration is denoted6R - normal learning.

These three configurations allow us to see if the new removal heuristics improve the quality of the heuristic and
enable us to judge the effectiveness of the learning layer.

The second major purpose of the test is to compare the solution quality obtained by the unified heuristic to the
results obtained by more specialized heuristics proposed for the various problem types. We want to know whether
a general heuristic can be competitive with specialized heuristics.

The stopping criterion employed is to stop when the heuristic has performed 25000 remove-insert iterations.
Each configuration of the heuristic is applied 10 times to each problem instance. The reported computation times
are, however, for a single run of the algorithm.

All problems considered in the following are geometric problems where distances and travel times are defined
by the Euclidean distance, hence the triangle inequality issatisfied for both parameters. When it has been necessary
to calculate distances from a set of coordinates we have useddouble precision calculations unless otherwise stated.
For many of the problem classes we only present a summary of the experiments performed. We refer the reader
to the appendix for the full tables for these problems. All experiments were performed on a Linux based PC,
equipped with 256 MB RAM and a 1.5 GHz Pentium IV processor. The heuristic was implemented in C++.

6.3 The Vehicle Routing Problem with Backhauls (VRPB)

The first problem type we study is the symmetric VRPB. This problem along with the VRPBTW is probably the
most studied of the backhaul problems. Two data sets are proposed in the literature, the first was proposed by
Goetschalckx and Jacobs-Blecha [16] and contains 62 instances with between 20 and 150 customers. The second
data set was proposed by Toth and Vigo [40] and contains 33 instances with between 21 and 100 customers. We
denote the two data sets theGoetschalckxand theToth-Vigodata sets respectively.

Comparing results on the Goetschalckx data set are a little problematic as at least 3 different rounding conven-
tions have been used for calculating the distances between the customers in the data sets. We report our results
obtained using 2 of the 3 rounding conventions and refer to the appendix for a discussion about the third rounding
convention and the results obtained using it.

Currently the two best heuristics for the VRPB are probably the heuristic proposed by Toth and Vigo [40] and
the heuristic by Osman and Wassan [28]. The heuristic by Tothand Vigo finds good solutions in a short time
while the heuristic proposed by Osman and Wassan spends moretime but on the overall finds better solutions.
We compare our heuristic with the results found by Osman and Wassan as the running time of our algorithm is
comparable to that of Osman and Wassan’s heuristic. In orderto calculate the distance between two customers,
Osman and Wassan used floating point arithmetic, hence we do the same (using double precision) in the tests
reported in Table 1.

The tests show that the configurations using all 6 removal heuristics are better than the one using only three
removal heuristics. This test also shows that the configuration that does not include the learning layer overall is
slightly better than the configuration including the learning layer, which is a bit surprising. All configurations of
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the LNS heuristics do better than Osman and Wassan’s heuristic when looking at how many best known solutions
the heuristics have found. It should be noted that the best solution found by Osman and Wassan’s heuristic was
found in 8 experiments, while we used 10 experiments for eachLNS configuration. If one looks at the sum of
the best solution costs identified by the heuristics, it is observed that the LNS heuristics overall only marginally
improve the solutions found by Osman and Wassan’s heuristic; for all LNS heuristics the improvement is within
0.1%. All together the LNS heuristics improved the solutionof 26 of the 62 problem instances. Finally we see that
the average solution costs found by the LNS heuristics are quite good as they on average are less than 0.5% from
the best known solution costs.

Generally it is hard to compare the running time of our heuristic to that of the heuristics proposed in the
literature, as the computational experiments have been performed on different computers. According to the Linpack
benchmarks reports [11], our computer has a TPP rating (Toward Peak Performance) of 1311 MFlops while Osman
and Wassan’s Computer has a TPP rating of 25 MFlops, implyingthat our computer is around 53 times faster.
The average time for solving one problem was between 69 and 73seconds for the LNS heuristics. Osman and
Wassan tested two versions of their heuristic, the fastest version using around 2800 seconds to solve one problem
and the slower version using 4000 seconds. This correspondsto 52 and 75 seconds on our computer, which is very
comparable to the time used by our algorithm. Hence our general heuristic is on par with Osman and Wassan’s
specialized heuristic both with respect to solution quality and solution times.

The second way to calculate the distances is to round them to one decimal, and store them as an integers
using a fixed point representation. The final result is rounded to an integer. This type of rounding is used in
the exact methods developed by Toth and Vigo [41] and Mingozzi et al. [26]. 34 of the 62 instances have been
solved to optimality and a good solution is provided for 13 more problems without proving optimality. Table 2
summarizes the results obtained by applying the heuristic to these 47 problems (problemA1-K4) using the same
rounding conventions as the exact methods. These results also show that the configurations that use the new removal
heuristics are better than the one that only uses the 3 old removal heuristics. This time the configurations with and
without the learning layer are virtually equally good. All configurations find 28 optimal solutions out of the 34
optimal solutions reported by Toth and Vigo [41] and Mingozzi et al. [26]. Eight new best solutions were found in
the tests.

TheToth-Vigodata set have been approached by the exact methods of Toth andVigo [41] and Mingozzi et al.
[26] and by the heuristics of Crispim and Brandao [7], Osman and Wassan [28] and Toth and Vigo [40]. Table 3
reports the results found by the LNS heuristic compared withthe best known results from the literature. We see
that the configuration with learning enabled provides the best solutions on the average; furthermore it is the only
one which identifies all known optimal solutions. The configuration without learning overall finds slightly better
solutions compared to the learning version when summing thebest solution from the ten experiments. The LNS
heuristics improve the best known solutions to 5 of the problems.

A class of asymmetric problem instances was proposed by Tothand Vigo [41], but we have not included this
data set in our test even though our PDPTW model would be able to handle the asymmetric problems.

6.4 The Mixed Vehicle Routing Problem with Backhauls (MVRPB)

Two data sets have been proposed for the MVRPB. The first set isbased on a relaxed version of theGoetschalckx
problems, and it has been studied by Halse [19] and Wade and Salhi [43], [44]. The other data set, which was
proposed by Nagy and Salhi [27], is constructed by transforming 14 well-known CVRP instances into MVRPB
instances. Three MVRPB instances are constructed from eachCVRP instance, having 10%, 25% and 50% of the
customers transformed to backhaul customers. Heuristics are applied to the last data set by Dethloff [9] and Nagy
and Salhi [27], [32]. We decided to test our heuristic on MVRPB by using the last data set.

The chosen data set contains 42 problems with 50 to 199 customers. Table 4 compares the solutions obtained
by the LNS heuristics to the solutions obtained by Nagy and Salhi. Unfortunately it is not possible to include the
results obtained by Dethloff [9] in the table as Dethloff only tested his algorithm on a subset of the problems. The
heuristic named NS1 in the table is a construction algorithmand the heuristic named NS2 is a construction heuristic
followed by an improvement algorithm. Both are much faster than the LNS heuristics. The comparison shows that
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Best known Standard 6R - no learning 6R - normal learning
n cost avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

A1 25 229885.65 229885.65 229885.65 0.00 7 229885.65 229885.65 0.00 7 229885.65 229885.65 0.00 7
A2 25 180119.21 180119.21 180119.21 0.00 8 180119.21 180119.21 0.00 8 180119.21 180119.21 0.00 8
A3 25 163405.38 163405.38 163405.38 0.00 9 163405.38 163405.38 0.00 10 163405.38 163405.38 0.00 9
A4 25 155796.41 155796.41 155796.41 0.00 10 155796.41 155796.41 0.00 10 155796.41 155796.41 0.00 11
B1 30 239080.15 239080.16 239080.16 0.00 9239080.16 239080.16 0.00 9239080.16 239080.16 0.00 9
B2 30 198047.77 198047.77 198047.77 0.00 10 198047.77 198047.77 0.00 10 198047.77 198047.77 0.00 10
B3 30 169372.29 169372.29 169372.29 0.00 13 169372.29 169372.29 0.00 14 169372.29 169372.29 0.00 14
C1 40 250556.77 250846.82 250556.77 0.12 14 250560.15 250556.77 0.00 14 250556.77 250556.77 0.00 13
C2 40 215020.23 215020.23 215020.23 0.00 16 215020.23 215020.23 0.00 16 215020.23 215020.23 0.00 16
C3 40 199345.96 199345.96 199345.96 0.00 18 199345.96 199345.96 0.00 20 199345.96 199345.96 0.00 18
C4 40 195366.63 195366.63 195366.63 0.00 19 195366.63 195366.63 0.00 19 195366.63 195366.63 0.00 19
D1 38 322530.13 322530.13 322530.13 0.00 12 322530.13 322530.13 0.00 12 322530.13 322530.13 0.00 12
D2 38 316708.86 316708.86 316708.86 0.00 11 316708.86 316708.86 0.00 12 316708.86 316708.86 0.00 12
D3 38 239478.63 239478.63 239478.63 0.00 13 239478.63 239478.63 0.00 13 239478.63 239478.63 0.00 13
D4 38 205831.94 205831.94 205831.94 0.00 16 205831.94 205831.94 0.00 16 205831.94 205831.94 0.00 15
E1 45 238879.58 238879.58 238879.58 0.00 18 238879.58 238879.58 0.00 18 238879.58 238879.58 0.00 18
E2 45 212263.11 212463.34 212263.11 0.09 23 212263.11 212263.11 0.00 23 212458.75 212263.11 0.09 22
E3 45 206659.17 206710.33 206659.17 0.02 26 206697.72 206659.17 0.02 27 206761.96 206659.17 0.05 26
F1 60 264299.6 268346.03 267060.43 1.53 31268430.58 267060.43 1.56 30268306.24 267060.43 1.52 29
F2 60 265653.47 265214.16 265214.16 0.00 29 265214.16 265214.16 0.00 29 265214.16 265214.16 0.00 28
F3 60 241120.77 241969.77 241969.77 0.35 37241969.77 241969.77 0.35 36241969.77 241969.77 0.35 35
F4 60 233861.85 235175.20 235175.20 0.56 43235528.13 235175.20 0.71 44235449.66 235175.20 0.68 42
G1 57 306305.4 306388.11 306305.40 0.03 23 306322.98 306305.40 0.01 23 306354.90 306305.40 0.02 22
G2 57 245440.99 245529.35 245440.99 0.04 29 245440.99 245440.99 0.00 28 245440.99 245440.99 0.00 27
G3 57 229507.48 229507.48 229507.48 0.00 33 230737.17 229507.48 0.54 32 230583.46 229507.48 0.47 30
G4 57 235251.47 232913.81 232521.25 0.17 32 233006.36 232521.25 0.21 32 233263.98 232521.25 0.32 31
G5 57 221730.35 221826.32 221730.35 0.04 35 222435.96 221730.35 0.32 36 222442.67 221730.35 0.32 35
G6 57 213457.45 213541.70 213457.45 0.04 40 214090.55 213457.45 0.30 42 213457.45 213457.45 0.00 39
H1 68 268933.06 269342.45 268933.06 0.15 41 269467.78 268933.06 0.20 42 269317.64 268933.06 0.14 39
H2 68 253365.5 253423.34 253365.50 0.02 49 253462.09 253365.50 0.04 49 254194.18 253365.50 0.33 47
H3 68 247449.04 247532.87 247449.04 0.03 56 247508.59 247449.04 0.02 55 247449.04 247449.04 0.00 53
H4 68 250220.77 250317.37 250220.77 0.04 52 250269.07 250220.77 0.02 53 250269.07 250220.77 0.02 52
H5 68 246121.31 246532.25 246121.31 0.17 58 246767.73 246121.31 0.26 58 246217.90 246121.31 0.04 55
H6 68 249135.32 249294.67 249135.32 0.06 55 249231.92 249135.32 0.04 57 249206.96 249135.32 0.03 55
I1 90 351606.91 350958.02 350258.81 0.20 55350852.85 350245.28 0.17 54 350897.94 350247.61 0.19 52
I2 90 309955.04 312489.95 309943.84 0.82 66 311016.93 309943.84 0.35 65 310434.77 309943.84 0.16 63
I3 90 294507.38 295236.14 294507.38 0.25 86 294858.13 294507.38 0.12 83 294821.76 294507.38 0.11 81
I4 90 295999.65 296820.65 295988.45 0.28 79 296159.12 295988.45 0.06 77 296401.46 295988.45 0.14 76
I5 90 302524.33 302707.04 301236.01 0.49 76 301909.59 301236.01 0.22 75 301980.98 301236.01 0.25 74
J1 95 335593.42 336680.78 335006.68 0.50 60 336522.31 335006.68 0.45 58 336789.92 335479.75 0.53 56
J2 95 310800.53 312206.97 310417.21 0.58 71 312458.56 310417.21 0.66 67 311763.08 310417.21 0.43 65
J3 95 279219.21 281807.92 279219.21 0.93 94 279423.74 279219.21 0.07 87 279729.03 279219.21 0.18 84
J4 95 296773.38 298412.68 297232.88 0.63 77297781.22 296533.16 0.42 74 297344.74 297086.58 0.27 72
K1 113 395546.4 397774.56 394846.98 0.86 86395993.78 394375.63 0.41 83 397076.46 395006.60 0.68 81
K2 113 363214.24 365791.18 362656.70 1.01 100362998.61 362130.00 0.24 97 363253.47 362130.00 0.31 96
K3 113 366222.05 367806.64 365694.08 0.58 99 366218.02 365694.08 0.14 97 366388.14 365694.08 0.19 95
K4 113 349038.84 351441.74 348949.39 0.71 113 349266.17 348949.39 0.09 111 349241.78 348949.39 0.08 108
L1 150 426017.86 428037.41 426013.41 0.48 162 427658.80 426013.41 0.39 153 427641.03 426281.89 0.38 149
L2 150 402245.17 402073.43 401466.27 0.21 192401587.25 401228.80 0.09 181 401492.36 401247.70 0.07 176
L3 150 403886.22 404784.84 402677.72 0.52 187 403029.19 402677.72 0.09 176 402860.67 402677.72 0.05 174
L4 150 384844.01 387660.68 384636.33 0.79 220 385207.32 384636.33 0.15 207 385073.14 384636.33 0.11 205
L5 150 388061.69 390091.24 387564.55 0.65 210 388677.62 387564.55 0.29 211 389778.12 387564.55 0.57 200
M1 125 400860.79 402962.88 401006.99 1.02 108401540.39 398913.70 0.66 104 401666.48 398913.70 0.69 102
M2 125 398908.71 400924.09 399001.11 0.53 108401724.68 399336.27 0.73 102401347.29 398827.67 0.63 100
M3 125 377352.81 379362.69 377411.62 0.85 122378502.30 377212.23 0.62 115378031.96 376159.13 0.50 114
M4 125 348624.42 349984.33 348624.42 0.45 147348663.06 348417.94 0.07 140 348905.97 348532.69 0.14 137
N1 150 408926.4 414655.53 409210.18 1.40 162414044.03 410789.32 1.25 156414915.65 410419.05 1.46 155
N2 150 409280.16 413434.54 410595.02 1.02 164413124.59 409385.19 0.94 155415985.72 411131.25 1.64 153
N3 150 396167.85 402418.80 398841.27 2.05 181399363.23 394337.86 1.27 177 400984.40 396827.00 1.69 170
N4 150 397753.86 401362.13 397363.45 1.67 178402131.56 398965.12 1.86 172400553.31 394788.36 1.46 170
N5 150 376431.84 380168.38 375895.96 1.79 222377447.83 373476.30 1.06 214 378201.49 375201.45 1.27 210
N6 150 377665.19 381099.86 377368.09 1.96 216376612.61 373758.65 0.76 211 376966.15 373789.70 0.86 209
Tot. 18058230 18124900 18055590 453618093048 18042916 440518098312 18044860 4299
Avg. 0.43 73 0.29 71 0.31 69
BTPB 20 24 23
#B 36 43 53 46

Table 1: Goetschalckxproblems. The table compares the results obtained by the three configurations of the LNS heuristics
with the best results obtained by Osman and Wassan’s heuristic [28]. The two first columns show the problem name and the
number of customers in the problem. The third column displays the best solution found by Osman and Wassan’s heuristic.
The rest of the columns are divided into three sections, one for each configuration. These should be interpreted as follows:
avg. sol.- the average of the solution costs obtained in the 10 experiments,best sol.- the cost of the best solution found in the
10 experiments,avg. gap (%)- the gap between average and best known solution cost,avg. time (s)- the average time needed
to perform one experiment (in seconds). The best solution for each problem instance is marked with bold. The rowTot. at
the bottom of the table gives the sum of the given column and the rowAvg. gives the average of the column. The rowBTPB
reports the number of problem instances where a particular configuration found solutions that were better than the previous
best known solution, the row#Bcontains the number of times the heuristic found the best known solution to a problem.
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Avg. gap (%) #B Avg. time (s) Opt. BTPB
Standard 0.28 35 39 28 8

6R - no learning 0.18 38 40 28 8
6R - normal learning 0.17 36 40 28 8

Table 2: Summary of testing the 47 firstGoetschalckxproblems using distances rounded to one decimal. Each row inthe
table corresponds to one of the three LNS configurations. ThecolumnsAvg. gap (%)andAvg. Time (s)should be interpreted
like the corresponding entries in theAvg. row in Table 1. The rest of the columns are:#B - the number of problems where the
best known solution was reached,Opt. the number of optimal solutions found (out of 34 known optimal solutions),BTPB- the
number of problems for which the heuristic improved the solutions found by the branch and bound methods. The improved
solutions correspond to problems were the branch and bound algorithms did not reach optimality because they were stopped
before optimality was proved.

Best known Standard 6R - no learning 6R - normal learning
n cost opt reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

EIL22.50A 21 371 X TV + EHP 371 371 0.00 8 371 371 0.00 8 371 371 0.00 8
EIL22.66A 21 366 X TV + EHP 366 366 0.00 7 366 366 0.00 8 366 366 0.00 7
EIL22.80A 21 375 X TV + EHP 375 375 0.00 7 375 375 0.00 8 375 375 0.00 8
EIL23.50A 22 682 X TV + EHP 709 682 3.94 13 682 682 0.00 12 682 682 0.00 12
EIL23.66A 22 649 X TV + EHP 654 649 0.77 12 649 649 0.00 13 649 649 0.00 13
EIL23.80A 22 623 X TV + EHP 625 623 0.26 11 623 623 0.00 12 623 623 0.00 12
EIL30.50A 29 501 X TV + EHP 501 501 0.00 17 501 501 0.00 19 501 501 0.00 18
EIL30.66A 29 537 X TV + EHP 537 537 0.00 13 537 537 0.00 14 537 537 0.00 14
EIL30.80A 29 514 X TV + EHP 514 514 0.00 13 514 514 0.00 14 514 514 0.00 14
EIL33.50A 32 738 X TV + EHP 738 738 0.00 17 738 738 0.00 20 738 738 0.00 20
EIL33.66A 32 750 X TV + EHP 750 750 0.00 15 750 750 0.00 17 750 750 0.00 16
EIL33.80A 32 736 X TV + EHP 737 736 0.18 15 736 736 0.05 15 736 736 0.05 15
EIL51.50A 50 559 X TV + EHP 561 559 0.41 35 559 559 0.00 39 559 559 0.00 36
EIL51.66A 50 548 X TV + EHP 553 548 0.91 30 550 548 0.35 31 549 548 0.11 30
EIL51.80A 50 565 X TV + EHP 569 565 0.65 28 571 565 1.12 29 570 565 0.80 28
EILA76.50A 75 739 X TV + EHP 740 739 0.16 49 739 739 0.00 50 739 739 0.00 48
EILA76.66A 75 768 X TV + EHP 774 768 0.77 44 774 769 0.73 44 772 768 0.51 42
EILA76.80A 75 781 TV + EHP 794 783 1.63 41 794 783 1.72 40 791 783 1.22 39
EILB76.50A 75 801 X TV + EHP 804 801 0.31 42 802 801 0.12 42 803 801 0.25 40
EILB76.66A 75 873 X TV + EHP 876 873 0.38 38 875 873 0.22 38 873 873 0.01 37
EILB76.80A 75 919 X TV + EHP 927 919 0.90 36 924 919 0.58 38 922 919 0.37 37
EILC76.50A 75 713 X TV + EHP 715 713 0.21 60 713 713 0.04 61 713 713 0.00 59
EILC76.66A 75 734 X EHP 740 735 0.75 51 739 734 0.69 51 736 734 0.23 50
EILC76.80A 75 733 TV + EHP 738 734 0.71 48 741 736 1.09 48 738 737 0.70 47
EILD76.50A 75 690 X TV + EHP 702 690 1.77 71 696 690 0.81 75 691 690 0.20 71
EILD76.66A 75 715 TV + EHP 717 715 0.22 59 716 715 0.20 60 715 715 0.00 57
EILD76.80A 75 694 EHP 699 694 0.72 53 699 695 0.76 55 696 694 0.26 53
EILA101.50A 100 842 OSMAN 845 837 1.72 138 840 831 1.05 137 836 831 0.55 129
EILA101.66A 100 846 X TV + EHP 852 846 0.67 99 848 846 0.21 100 846 846 0.05 99
EILA101.80A 100 875 OSMAN 872 862 1.77 91 869 857 1.41 87 866 861 1.03 86
EILB101.50A 100 933 EHP 930 925 0.54 82 928 925 0.31 79 929 925 0.38 77
EILB101.66A 100 998 OSMAN 1007 994 1.79 69 1010 989 2.13 66 1001 991 1.24 66
EILB101.80A 100 1021 OSMAN 1022 1018 1.43 63 1021 1010 1.26 61 1015 1008 0.65 61
Tot. 23189 23314 23160 137323251 23140 139423201 23142 1349
Avg. 0.71 42 0.45 42 0.26 41
BTPB 5 5 5
#B 28 26 28 29

Table 3: Toth-Vigodata set. The columnopt indicates if optimality is proven for the particular instance and the column
referencepoints to the algorithm that found the solution in thebest knowncolumn. TV refers to the exact method by Toth
and Vigo [41],EHP refers to the exact algorithm by Mingozzi et al. [26] andOSMANrefers to the heuristic by Osman and
Wassan [28].
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NS1 NS2 Standard 6R - no learning 6R - normal learning
10% 1011 995 956 (3.9%) 955 (4.0%) 956 (3.9%)
25% 1034 998 923 (7.5%) 923 (7.5%) 922 (7.6%)
50% 1045 991 881 (11.1%) 881 (11.1%) 881 (11.1%)

Table 4: Summary of the 42 Nagy-Salhi MVRPB problem instances. This table compares the solutions obtained by the LNS
heuristic to those obtained by Nagy and Salhi [27], [32]. Each row reports the average solution over 14 MVRPB instances
with a particular percentage of backhaul customers (10%, 25% or 50%). The columns NS1 and NS2 contain the best results
reported by Nagy and Salhi in [32] and [27] respectively. Thelast three columns show the results obtained by the LNS
heuristic. The numbers in parenthesis show how much better the LNS solutions are compared to the solutions reported by
Nagy and Salhi.

Standard 6R - no learning 6R - normal learning
Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

gap (%) time (s)gap (%) time (s) gap (%) time (s)
10% 0.51 10 13 129 0.43 11 13 133 0.37 11 13 133
25% 0.49 11 14 135 0.38 9 14 142 0.30 11 14 143
50% 0.71 7 13 164 0.45 10 14 178 0.41 12 13 178

Table 5: This table provides a comparison of the 3 LNS configurations when applied to the 42 Nagy-Salhi MVRPB instances.
Each row summarizes 14 instances with the same percentage ofbackhaul customers. The meaning of the headings is as in
Table 2.

great improvements can be achieved by using a more advanced heuristics such as the LNS heuristic proposed here,
as we get results that are more than 10% better than those obtained by the simpler heuristics. We succeeded in
improving the best known solution for 41 out of the 42 problems. On the last problem we matched the solution
reported by Nagy and Salhi. Notice that the average solutioncost decreases when more customers are turned into
backhaul customers in the solutions provided by the LNS heuristic. This is expected as a greater percentage of
backhaul customers leads to greater flexibility in the planning as long as the percentage of backhaul customers is
not greater than 50%. It is worth noting that Nagy and Salhi’sresults do not show this behavior.

Table 5 compares the three LNS configurations. The results show that the configurations with six removal
heuristics overall are better than the one with three removal heuristics when one compares the gaps. The results
also show that the configuration with the learning layer enabled is better than the one without the learning layer.
One can also notice that the computation time increases as more customers are turned into backhaul customers.
This behavior can most likely be explained by the fact that routes in general contain many customers when the
percentage of backhauls customers is around 50%. Long routes imply that more time is spent in the insertion
heuristics.

6.5 The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB)

Only one data set has been proposed for the MDMVRPB. This dataset was proposed by Nagy and Salhi [32] and
is constructed from Gillett and Johnson’s 11 multi depot vehicle routing problems. Each of the 11 problems are
turned into three MDMVRPB problems by creating problems with 10%, 25% and 50% backhaul customers; thus
the MDMVRPB data set contains 33 problems with between 50 and249 customers. The only heuristics that have
been applied to the problems so far are those by Nagy and Salhiwhich also were used for the MVRPB discussed
in Section 6.4.

In Table 6 we compare the results obtained by the LNS heuristic with those obtained by the best heuristics of
Nagy and Salhi [27], [32]. It has been necessary to reconstruct the problems from Gillett and Johnson’s original
problems following the description in [32], as the originalproblems no longer were available from the authors. We
believe that the problems have been constructed properly. The reconstructed problems have been made available
on the web [46] for future comparisons. Again, we observe that the LNS heuristic offers huge improvements over
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NS1 NS2 Standard 6R - no learning 6R - normal learning
10% 2008 1996 1798 (9.9%) 1795 (10.1%) 1799 (9.9%)
25% 2050 2007 1671 (16.7%) 1663 (17.1%) 1662 (17.2%)
50% 2088 1993 1512 (24.1%) 1510 (24.2%) 1509 (24.3%)

Table 6: Summary of results obtained on the 33 Nagy-Salhi MDMVRPB instances. The columns NS1 and NS2 contain the
best results reported by Nagy and Salhi in [32] and [27] respectively.

Standard 6R - no learning 6R - normal learning
Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

gap (%) time (s)gap (%) time (s) gap (%) time (s)
10% 0.93 7 11 204 0.63 10 11 217 0.61 6 11 216
25% 0.97 5 11 219 0.65 6 11 237 0.66 8 11 237
50% 0.88 8 11 258 0.71 6 11 288 0.66 7 11 288

Table 7: Nagy-Salhi MDMVRPB instances. Comparison of the performance of the three LNS configurations.

the simpler heuristics. This time the solution costs are decreased by up to 24% and the best known solutions to
all problems were improved. As before we note that the heuristics proposed by Nagy and Salhi are faster than the
LNS heuristic.

Table 7 compares the three LNS configurations with each other. The most interesting observation is that the
multi depot problems seem to be the hardest problems considered so far, as the average solutions are farther from
the best known solutions than before, but the results must anyway be considered as very promising.

6.6 The Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW)

The VRPBTW is another well-studied backhauling problem. The primary objective considered in the heuristics
described in the literature is to minimize the number of vehicles used and the secondary objective is to minimize the
traveled distance. These objectives are also used in our experiments. The vehicle minimization is done by solving
the problem for a decreasing number of vehicles, as proposedby Ropke [31]. Gelinas et al. [13] proposed a data
set containing 15 problems with 100 customers and Thangiah et al. [38] introduced a data set containing 24 large
problems.

Our heuristics are tested on both data sets. The results obtained on Gelinas’ data set are presented in Table
8. Five papers have reported results on this data set: Duhamel et al. [12], Hasama et al. [20], Reimann et al.
[30], Thangiah et al. [38] and Zhong and Cole [48]. It should be noted that apparently there is no standard for
how distances should be represented internally in the heuristic, which makes comparisons a bit problematic. We
have chosen to represent the distances using doubles like Reimann et al. [30], as is standard in the literature about
VRPTW heuristics. The tables reveal that we are able to improve 10 out of the 15 solutions and reduce the number
of vehicles needed for 5 of the problems. Again the configurations using all removal heuristics turns out to be the
best.

The only heuristic that has been applied to the large VRPBTW problems is the heuristic by Thangiah et al. [38].
Table 9 compares the results obtained by this algorithm to the results obtained by the LNS heuristic. We see that
the LNS heuristic is able to decrease the necessary number ofvehicles by a large amount and at the same time also
decrease the traveled distance. The best known solutions toall 24 problems were improved by the LNS heuristic.
Table 10 gives further information about the performance ofthe LNS heuristic, including the running time. The
time increases with the problem size, but its growth is not alarming. Once again the configurations using 6 removal
heuristics found the best solutions.
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Best known Standard 6R - no learning 6R - normal learning
% BH m cost ref avg. best best avg. avg. best best avg. avg. best best avg.

#veh. sol. #veh. time #veh. sol. #veh. time #veh. sol. #veh. time
(s) (s) (s)

BHR101A 10% 22 1831.68 RDH 22.0 1818.86 22 98 22.0 1818.86 22 107 22.0 1818.86 22 109
BHR101B 30% 23 1999.16 RDH 23.0 1959.86 23 94 23.0 1959.56 23 101 23.0 1959.56 23 103
BHR101C 50% 24 1909.84 HKK 24.0 1939.10 24 93 24.0 1939.10 24 100 24.0 1939.10 24 101
BHR102A 10% 19 1677.62 RDH 19.0 1653.19 19 110 19.0 1653.19 19 118 19.0 1653.19 19 121
BHR102B 30% 21 1764.3 TPS 22.0 1750.70 22 103 22.0 1750.70 22 111 22.0 1750.70 22 114
BHR102C 50% 21 1745.7 TPS 22.0 1775.76 22 103 22.0 1775.76 22 111 22.0 1775.76 22 113
BHR103A 10% 15 1371.6 TPS 15.0 1387.57 15 117 15.0 1387.57 15 123 15.0 1387.57 15 128
BHR103B 30% 16 1395.88 RDH 15.0 1390.33 15 108 15.0 1390.33 15 112 15.0 1390.33 15 115
BHR103C 50% 16 1486.56 ZC 17.0 1457.31 17 106 17.0 1456.48 17 113 17.0 1456.48 17 115
BHR104A 10% 11 1205.78 RDH 11.0 1084.22 11 127 11.0 1084.17 11 130 11.0 1084.17 11 132
BHR104B 30% 12 1128.3 RDH 11.0 1163.24 11 119 11.0 1154.84 11 121 11.0 1154.84 11 122
BHR104C 50% 12 1208.46 RDH 11.0 1191.41 11 117 11.0 1191.38 11 119 11.0 1191.38 11 119
BHR105A 10% 16 1544.81 RDH 15.5 1564.88 15 104 15.3 1561.28 15 110 15.4 1561.28 15 109
BHR105B 30% 16 1592.23 RDH 16.0 1583.30 16 97 16.0 1583.30 16 102 16.0 1583.30 16 102
BHR105C 50% 17 1633.01 RDH 16.6 1711.36 16 96 16.6 1710.75 16 100 16.5 1710.19 16 100
Tot. 261 23495 260.2 23432 259 1593260.0 23418 259 1679259.9 23417 259 1703
Avg. 106 112 114
BTPB 10 10 10
#B 5 4 9 10

Table 8: The table shows the results obtained on the VRPBTW instancesproposed by Gelinas et al. [13]. The first column
shows the name of the problem, the next columns are:%BH - ratio of backhaul customers,m - number of vehicles in best
known solution,cost- distance traveled in best known solution,ref - HKK = Hasama et al. [20], RDH = Reimann et al. [30],
TPS = Thangiah et al. [38] and ZC = Zhong and Cole [48], the result found by Zhong and Cole was listed in their technical
report [47]. The rest of the columns report the solutions found by the LNS heuristics:avg. #veh.- average number of vehicles
best #veh.- lowest number of vehicles found. The other columns should be interpreted as in Table 1. The original data files do
not specify the latest return time to the depot and the maximum capacity of the vehicle. In our experiments these parameters
have been set to the values they have in the original Solomon problems from which the Gelinas problems were created.

TPS Standard 6R - no learning6R - normal learning
#veh. cost #veh. cost #veh. cost #veh. cost

250 517 57509 449 54256 444 54711 445 54499
500 799 94144 677 83498 676 82946 675 82796

Table 9: Large VRPBTW instances. This table compares the 3 LNS configurations to the heuristics by Thangiah et al. (TPS).
The data set contains 12 problems containing 250 customers and 12 containing 500 customers. The best solutions found by the
heuristics have been accumulated and the table shows the total number of vehicles needed and the total traveled distancefor
all instances of a particular size. The vehicle capacity wasset to 200 for all problems and no latest arrival time was specified
for the depot.

Standard 6R - no learning 6R - normal learning
Customers Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

#veh. time (s) #veh. time (s) #veh. time (s)
250 37.5 1 12 489 37.3 6 12 492 37.4 5 12 504
500 57.1 0 12 1562 56.8 4 12 1651 56.7 8 12 1570

Table 10: Comparison of the three LNS configurations when faced with the large VRPBTW instances proposed by Thangiah.
TheAvg. #vehcolumn displays the average of the average number of vehicles needed to serve all customers.
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LB KB ZC Standard 6R - no learning6R - normal learning
#veh. #veh. cost #veh. cost #veh. cost #veh. cost #veh. cost

MR2 4 4 1168.53 4 1016.66 4 904.55 4 902.73 4 903.00
MC2 4 4 1094.94 4.625 903.56 4 731.38 4 732.38 4 732.13

MRC2 4 4.5 1496.91 4.125 1330.314.125 1125.004.125 1129.25 4.125 1127.63

Table 11: Kontoravdis MVRPBTW problems. The table compares the results reported by Kontoravdis and Bard [23] (KB)
and Zhong and Cole [48] (ZC) with the results obtained using the LNS heuristics. The primary objective in these problems
is to minimize the number of vehicles needed to serve the customers. The data set is divided into three classes according to
the geographical distribution of the customers in the problems: randomly distributed customers (MR2), clustered customers
(MC2), and a mix between the two first categories (MRC2). The MRC2 and MC2 classes both contain 8 problems while the
MR2 class contains 11 problems. Each row in the table summarizes the performance on each class. The columnLB #veh.
shows the lower bound on the number of vehicles as given by Kontoravdis and Bard.

Standard 6R - no learning 6R - normal learning
Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

gap (%) time (s)gap (%) time (s)gap (%) time (s)
MR2 1.34 4 11 362 0.63 8 11 375 0.63 8 11 368
MC2 0.62 6 8 162 0.60 5 8 165 0.65 5 8 163

MRC2 2.83 5 8 183 1.99 1 8 183 1.76 4 8 180

Table 12: The table compares the three LNS configurations when appliedto Kontoravdis’ MVRPBTW problems. In all test
runs the heuristics reached the same number of vehicles whenapplied to the same problem. This allows us to report theavg.
gap, which doesn’t make sense if the heuristics use a different number of vehicles to solve the same problem.

6.7 The Mixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW)

Two datasets have been proposed for the MVRPBTW. Hasama et al. [20] use Gelinas’ data set by relaxing the
linehaul-before-backhaul constraint while Kontoravdis and Bard [23] construct 27 new problems from Solomon’s
VRPTW problems. We test our heuristics using Kontoravdis and Bard’s data set which also has been attempted
by Zhong and Cole [48]. The LNS heuristic is compared to the previous heuristics in Table 11. Again the LNS
heuristic is able to find solutions of better quality compared to the older heuristics. It is interesting to note that
the LNS heuristic reaches the lower bound on the number of vehicles needed to solve the problems on all but one
instance. The LNS heuristics improved all the previously best known solutions to the problem instances.

Table 12 provides the usual comparison of the three LNS configurations. It should be observed that the MRC2
problems turn out to be hard to solve, as indicated by the rather large gaps. This is not surprising as the MRC2
problems were constructed from Solomon’s RC2 VRPTW problems, which are known to be hard to solve. One
cannot expect that adding the extra complexity of backhaul customers should make the problems easier to solve.

6.8 The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP)

Allthough the VRPSDP is not the problem in the backhauling family that has received the most attention, there
exist nevertheless quite a few data sets for the problem. Thefirst data set was proposed by Min [25] and con-
tained only one problem, which originated from a real life application. Halse [19] proposed a set containing 16
problems constructed from CVRP problems and Dethloff [10] proposed 40 new problems containing 50 customers
each. Nagy and Salhi [32] constructed two classes of VRPSDP problems and two classes of multi depot VRPSDP
problems. Finally Angelelli and Mansini [2] presented a class of VRPSDP problems with time windows.

As mentioned earlier we are not going to test our heuristic onthe multi depot and time window variants of the
VRPSDP. The problems we choose for our tests are Min’s problem, Dethloff’s problems and the first class of Nagy
and Salhi’s VRPSDP problems (the one denoted with anX in [32]). The results are summarized in Tables 13 and
14. Again it must be stressed that the heuristics by Dethloffand Nagy and Salhi are simple construction heuristics
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Dethloff NS1 NS2 Standard 6R - no learning 6R - normal learning
Dethloff 824 - - 747 ( 9.3%) 746 (9.5%) 745 (9.6%)
NS-X 1006 1096 991 927 (6.5%) 925 (6.7%) 919 (7.3%)

Table 13: Summary of the results obtained on the VRPSDP instances. Thetable should be interpreted like Table 4. The row
denotedDethloff summarizes the results obtained on Dethloff’s 40 instances[10] and the single instance provided by Min
[25]. Each of Dethloff’s instances contains 50 customers. The row markedNS-Xsummarizes Nagy and Salhi’s 14 VRPSDP
instances of classX [32]. These problems contain between 50 and 200 customers. Results for these problems are reported by
Dethloff [10] and Nagy and Salhi [32], [27]. The columnsDethloff, NS1andNS2summarize the best results reported in [10],
[32] and [27] respectively.

Standard 6R - no learning 6R - normal learning
Avg. #B BTPB Avg. Avg. #B BTPB Avg. Avg. #B BTPB Avg.

gap (%) time (s)gap (%) time (s)gap (%) time (s)
Dethloff 1.07 24 40 128 0.96 23 40 129 0.58 36 40 155
NS-X 2.81 6 11 685 2.73 7 13 686 2.00 7 12 772

Table 14: The table compares the 3 LNS configurations when applied to VRPSDP instances.

that are substantially faster than the LNS heuristics.
The LNS heuristics find the optimal solution to Min’s problem(the optimal solution was found by Halse [19])

and are able to improve all of the best known solutions to Dethloff’s problems which were found using Dethloff’s
construction heuristic. The6R - normal learningconfiguration is able to improve the best known solutions by more
than 9%. Having said that, it should be noticed that the LNS heuristics are fairly slow when faced with this type
of problems, because each order is represented by 2 requestsand introduces significant overhead in the algorithm.
This also suggests that this problem type would benefit greatly from a specialized version of the LNS heuristic
where the overhead can be avoided. The LNS heuristic also experiences difficulties when faced with the larger
problems from Nagy and Salhi’s data set. Here the avg. gap increases to 2% for the best configuration, but the
heuristic nevertheless improves 13 of the 14 best known solutions. The configuration with learning enabled and
using all 6 removal heuristics clearly is the most robust configuration when faced with these hard problems.

6.9 Computational experiments conclusion

In Section 6.2 we raised a number of questions that the computational experiments should clarify. The first question
was whether it is possible to design a unified heuristic for a large class of vehicle routing problems with backhauls
that is able to provide solutions comparable to those obtained by specialized heuristics. We believe that the experi-
ments conducted in this paper show that this indeed is possible. This is an interesting achievement, as it to a large
extent allows practitioners to focus on a single heuristic and apply this to the problems they are faced with instead
of “reinventing the wheel” each time a new problem type needsto be solved.

The second question asked to give an evaluation of the effectof the three new removal heuristics and the
consequence of disabling the learning layer. Table 15 provides an overview of the experiments performed. The
Avg. row displays the overall gaps between average solutions andbest known solutions. This gap is an indication
of the robustness of the heuristic. TheSumrow contains the number of problems for which the particularLNS
configuration found the best known solution. The table clearly shows the impact of adding the three new removal
heuristics, as we see a great improvement in the quality of the heuristic from configuration 1 to configuration
3. The table also shows that disabling the learning layer decreases the overall quality of the results as expected.
Although comparable results can be obtained without the learning layer for specific problem types, the learning
layer apparently helps the algorithm to adapt to all the various problem types.
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#prob Standard 6R - no learning 6R - normal learning
Avg. #B Avg. #B Avg. #B

gap (%) gap (%) gap (%)
Goetschalckx 1 62 0.43 43 0.29 53 0.31 46
Goetschalckx 2 47 0.28 35 0.17 38 0.17 36

Toth-Vigo 33 0.71 26 0.45 28 0.26 29
MVRPB 50% 14 0.71 7 0.45 10 0.41 12
MVRPB 25% 14 0.49 11 0.38 9 0.3 11
MVRPB 10% 14 0.51 10 0.43 11 0.37 11

MDMVRPB 50% 11 0.88 8 0.71 6 0.66 7
MDMVRPB 25% 11 0.97 5 0.65 6 0.66 8
MDMVRPB 10% 11 0.93 7 0.63 10 0.61 6

VRPSDP 1 41 1.07 24 0.96 23 0.58 36
VRPSDP 2 14 2.81 5 2.73 7 2.00 7

MVRPBTW C 8 0.63 6 0.6 5 0.65 5
MVRPBTW R 11 1.34 4 0.63 8 0.63 8

MVRPBTW RC 8 2.83 5 1.99 1 1.76 3
VRPBTW 1 15 4 9 10
VRPBTW 2 24 1 10 13

Avg. 0.81 0.62 0.50
Sum 338 201 234 248

Table 15: Summary of experiments. This table shows a summary of the tests performed in this paper. Each row in the
table corresponds to a problem class. Most of the titles in the first row should be fairly self explanatory:Goetschalckx 1-
Goetschalckx VRPB without rounding distances,Goetschalckx 2- Goetschalckx VRPB where distances have been rounded to
one decimal.VRPSDP 1- Dethloff VRPSDP ,VRPSDP 2- Nagy-Salhi VRPSDP,VRPBTW 1- Gelinas VRPBTWVRPBTW 2
- Thangiah VRPBTW. The column#probdisplays the number of problems in each class. TheAvg.row shows the averages of
theAvg. gap(%)column. The numbers in the avg. row were calculated by summing the products of the numbers in the#prob
column with the numbers in thegapcolumn and dividing the sum by the total number of problems. This was done to take
into account that some data sets contains more problems thanothers. The missing entries in the VRPBTW rows have been
left out because the primary objective of these problems is to minimize the number of vehicles and not all test runs resulted
in the same number of vehicles. Reporting the gap for these runs could make the heuristic that could not reach the minimum
number of vehicles look too good.
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7 Conclusion

This paper is the first to present a unified heuristic for a large class of vehicle routing problems with backhauls.
For this purpose we have introduced a Rich VRPTW model which extends the ordinary VRP model with time
windows, pickup and delivery pairs, as well as precedence constraints. The model is very expressive, and it allows
us to model all of the most common VRPB models within the framework, as well as other routing problems from
the literature. The unified model has the additional benefit that it allows us to combine pickup and delivery request
with a more clean VRPB or VRPSPD, as well as scheduling mixed transportation problems for a general fleet of
vehicles.

For several of the VRPB problem types presented in this paper, we report the first applications of a metaheuristic
to the problem. The results are very promising as we found a new best solution to 67% of the problems tested.
Even faster and better performing heuristics could be constructed by specializing the proposed heuristic to just one
of the problem types. We have chosen not to do this to maintainthe generality of the solution approach.

The present experiments indicate that the combination of several neighborhoods makes it easier for the local
search heuristic to explore the solution space, and hence tofind solutions of high quality. This conforms to similar
observations for simpler neighborhoods.

The monitoring and learning layer to control the choice of neighborhoods can be seen as a layer which maintains
a proper balance between intensification and diversification. Several other approaches have been working with this
balance, see e.g. Reactive Tabu Search [4]. In the proposed framework we do not explicitly care about which
heuristics intensify or diversify the search. The layer steadily maintains a proper balance of the heuristics so that
new, improved solutions are found. The computational results show that the learning layer overall is able to increase
the robustness of the heuristic but also indicate that further refinements may be possible as the configuration without
the learning layer occasionally outperformed the configuration that included the learning layer.

An interesting topic for further research would be to apply the framework proposed in this paper to combinato-
rial optimization problems outside the vehicle routing domain.
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9 Appendix

This section contains additional information about the experiments performed in section 6. Tables 16 to 31 list the
individual solutions found to the many problem instances considered in this paper.

An important comment should be made about Table 17. The results in this table were obtained by rounding
distances to the nearest integer when doing distance calculations. This gives results that look like the results
reported in Table III in Osman and Wassan [28] and Table 1 in Toth and Vigo [40] but both author pairs state
that results in these tables were found using a different rounding procedure. We have not been able to reproduce
the results in the two mentioned tables from Toth and Vigo andOsman and Wassan papers using the rounding
procedures described in the papers. Consequently, the objective values listed in the columnBest knownin table
17 should only be seen as a rough guideline of the obtainable solution quality, and the table should not be used to
make a direct comparison between the LNS heuristic and the heuristics by Toth and Vigo and Osman and Wassan.
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Best known Std. Removals 6R - no learning 6R - normal learning
n cost opt. reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

A1 25 229886 X TV + EHP 229886 229886 0.00 7 229886 229886 0.00 7 229886 229886 0.00 7
A2 25 180119 X TV + EHP 180119 180119 0.00 7 180119 180119 0.00 8 180119 180119 0.00 8
A3 25 163405 X TV + EHP 163405 163405 0.00 9 163405 163405 0.00 10 163405 163405 0.00 9
A4 25 155796 X TV + EHP 155796 155796 0.00 10 155796 155796 0.00 11 155796 155796 0.00 10
B1 30 239080 X TV + EHP 239080 239080 0.00 8 239080 239080 0.00 9 239080 239080 0.00 9
B2 30 198048 X TV + EHP 198048 198048 0.00 10 198048 198048 0.00 10 198048 198048 0.00 10
B3 30 169372 X TV + EHP 169372 169372 0.00 12 169372 169372 0.00 14 169372 169372 0.00 14
C1 40 249449 X TV + EHP 250899 250557 0.58 13 251037 250557 0.64 14 250557 250557 0.44 13
C2 40 215020 X TV + EHP 215020 215020 0.00 15 215020 215020 0.00 16 215020 215020 0.00 16
C3 40 199346 X TV + EHP 199346 199346 0.00 17 199346 199346 0.00 18 199346 199346 0.00 18
C4 40 195366 X TV + EHP 195366 195366 0.00 18 195366 195366 0.00 19 195366 195366 0.00 19
D1 38 322530 X TV + EHP 322530 322530 0.00 11 322530 322530 0.00 12 322530 322530 0.00 12
D2 38 316709 X TV + EHP 316709 316709 0.00 11 316709 316709 0.00 13 316709 316709 0.00 12
D3 38 239479 X EHP 239479 239479 0.00 12 239479 239479 0.00 13 239479 239479 0.00 12
D4 38 205832 X EHP 205832 205832 0.00 14 205832 205832 0.00 15 205832 205832 0.00 15
E1 45 238880 X TV + EHP 238880 238880 0.00 16 238880 238880 0.00 18 238880 238880 0.00 18
E2 45 212263 X TV + EHP 212547 212263 0.13 21 212263 212263 0.00 23 212505 212263 0.11 24
E3 45 206659 X TV + EHP 206698 206659 0.02 24 206698 206659 0.02 27 206711 206659 0.03 26
F1 60 263173 X TV + EHP 268334 267060 1.96 28 268463 267060 2.01 29 268321 267060 1.96 29
F2 60 265213 X TV + EHP 265213 265213 0.00 27 265213 265213 0.00 28 265213 265213 0.00 28
F3 60 241120 X TV + EHP 241969 241969 0.35 33 241969 241969 0.35 35 241969 241969 0.35 35
F4 60 233861 X TV + EHP 236547 235175 1.15 40 235258 235175 0.60 42 235449 235175 0.68 42
G1 57 306305 X EHP 306450 306306 0.05 21 306306 306306 0.00 22 306306 306306 0.00 22
G2 57 245441 X EHP 245441 245441 0.00 27 245441 245441 0.00 27 245441 245441 0.00 27
G3 57 229507 X TV 229536 229507 0.01 30 230430 229507 0.40 30 230003 229507 0.22 30
G4 57 232521 - EHP 232784 232521 0.11 29 233767 232521 0.54 31 233649 232521 0.48 31
G5 57 221730 X TV 221805 221730 0.03 33 221771 221730 0.02 35 221730 221730 0.00 36
G6 57 213457 X TV 213562 213457 0.05 38 213457 213457 0.00 41 214084 213457 0.29 39
H1 68 268933 X TV 269701 268933 0.29 38 269276 268933 0.13 40 269371 268933 0.16 40
H2 68 253365 X TV + EHP 253414 253365 0.02 45 253437 253365 0.03 48 253365 253365 0.00 47
H3 68 247449 X TV + EHP 247684 247449 0.10 51 247474 247449 0.01 53 247475 247449 0.01 54
H4 68 250221 X TV + EHP 250244 250221 0.01 49 250221 250221 0.00 52 250295 250221 0.03 51
H5 68 246121 X TV + EHP 247300 246121 0.48 56 246170 246121 0.02 57 246140 246121 0.01 55
H6 68 249135 X TV + EHP 249397 249135 0.11 53 249246 249135 0.04 54 249246 249135 0.04 55
I1 90 353021 - EHP 351106 350437 0.25 52 350951 350246 0.20 52 351069 350801 0.24 52
I2 90 309943 X EHP 311714 309944 0.57 63 310738 309944 0.26 63 310846 309944 0.29 63
I3 90 294833 - EHP 296221 294507 0.58 80 294728 294507 0.07 84 294950 294507 0.15 81
I4 90 295988 - EHP 296889 295988 0.30 75 296172 295988 0.06 75 296374 295988 0.13 76
I5 90 301226 - EHP 302666 301236 0.48 71 301619 301236 0.13 74 302066 301236 0.28 73
J1 95 335006 - EHP 336598 335007 0.48 57 336475 335480 0.44 58 336347 335007 0.40 57
J2 95 315644 - EHP 311853 310417 0.46 65 311440 310417 0.33 66 310964 310417 0.18 67
J3 95 282447 - EHP 282335 280401 1.12 83 279801 279219 0.21 86 279468 279219 0.09 84
J4 95 300548 - EHP 298004 296773 0.50 72 297529 296533 0.34 74 297249 296533 0.24 72
K1 113 394637 - EHP 398657 394376 1.09 82 397183 394376 0.71 83 395965 394517 0.40 82
K2 113 362360 - EHP 364447 362130 0.64 96 363103 362130 0.27 98 363258 362130 0.31 95
K3 113 365693 - EHP 367725 365694 0.56 95 366549 365694 0.23 97 366698 365694 0.27 96
K4 113 358308 - EHP 352064 348950 0.89 108 349775 348950 0.24 109 349483 348950 0.15 107
Tot. 12174445 12188672 12157811 183212172829 12156670 190212171434 12156893 1881
Avg. 0.28 39 0.18 40 0.17 40
< PB 8 8 8
#B 39 35 38 36

Table 16: Goetschalckxdata set. The results have been produced by using distances rounded to one decimal and rounding
the final result to an integer. This rounding scheme allows usto compare the LNS heuristics to the exact methods by Toth
and Vigo [41] and Mingozzi et al. [26], we only report resultson the instances that either Toth and Vigo or Mingozzi et al.
attempted to solve. The table should be read like Table 3, notice that the row<PB should be interpretted like theBTPBrow in
Table 3.
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Best known Std. Removals 6R - no learning 6R - normal learning
n cost reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

A1 25 229884 TV 229884 229884 0.00 7 229884 229884 0.00 8 229884 229884 0.00 8
A2 25 180117 TV 180117 180117 0.00 8 180117 180117 0.00 9 180117 180117 0.00 8
A3 25 163403 TV 163403 163403 0.00 9 163403 163403 0.00 10 163403 163403 0.00 10
A4 25 155795 TV 155795 155795 0.00 10 155795 155795 0.00 11 155795 155795 0.00 11
B1 30 239077 TV 239077 239077 0.00 9 239077 239077 0.00 10 239077 239077 0.00 9
B2 30 198045 TV 198045 198045 0.00 10 198045 198045 0.00 11 198045 198045 0.00 11
B3 30 169368 TV 169368 169368 0.00 13 169368 169368 0.00 15 169368 169368 0.00 15
C1 40 250557 TV 250557 250557 0.00 13 250557 250557 0.00 14 250557 250557 0.00 14
C2 40 215019 TV 215019 215019 0.00 15 215019 215019 0.00 17 215019 215019 0.00 17
C3 40 199344 TV 199344 199344 0.00 18 199344 199344 0.00 20 199344 199344 0.00 21
C4 40 195365 TV 195365 195365 0.00 18 195365 195365 0.00 20 195365 195365 0.00 20
D1 38 322533 TV 322533 322533 0.00 11 322533 322533 0.00 13 322533 322533 0.00 13
D2 38 316711 TV 316711 316711 0.00 11 316711 316711 0.00 13 316711 316711 0.00 12
D3 38 239482 TV 239482 239482 0.00 12 239482 239482 0.00 14 239482 239482 0.00 13
D4 38 205834 TV 205834 205834 0.00 15 205834 205834 0.00 16 205834 205834 0.00 16
E1 45 238880 TV 238880 238880 0.00 17 238880 238880 0.00 19 238880 238880 0.00 19
E2 45 212262 TV 212262 212262 0.00 23 212262 212262 0.00 24 212262 212262 0.00 24
E3 45 206658 TV 206734 206658 0.04 25 206709 206658 0.02 28 206722 206658 0.03 28
F1 60 263175 TV 268435 267061 2.00 30 267941 267061 1.81 31 268242 267061 1.93 31
F2 60 265214 TV 265230 265214 0.01 29 265214 265214 0.00 30 265214 265214 0.00 30
F3 60 241121 OW 242014 241970 0.37 36 241970 241970 0.35 38 241970 241970 0.35 37
F4 60 233861 TV 235912 235178 0.88 42 235261 235178 0.60 45 235204 235178 0.57 44
G1 57 306304 OW 306455 306304 0.05 22 306336 306304 0.01 23 306304 306304 0.00 24
G2 57 245441 TV 245533 245441 0.04 28 245441 245441 0.00 29 245441 245441 0.00 29
G3 57 229506 OW 229963 229506 0.20 32 230421 229506 0.40 33 230414 229506 0.40 32
G4 57 232646 TV 233142 232519 0.27 31 233951 232519 0.62 33 233705 232519 0.51 33
G5 57 221731 OW 221823 221731 0.04 36 221858 221731 0.06 38 221800 221731 0.03 39
G6 57 213457 TV 213605 213457 0.07 41 213457 213457 0.00 43 213516 213457 0.03 43
H1 68 268933 OW 269630 268933 0.26 40 269460 268933 0.20 43 269226 268933 0.11 42
H2 68 253366 TV 253513 253366 0.06 48 253463 253366 0.04 50 253414 253366 0.02 50
H3 68 247449 TV 247803 247449 0.14 54 247594 247449 0.06 57 247472 247449 0.01 57
H4 68 250221 TV 250449 250221 0.09 51 250269 250221 0.02 56 250269 250221 0.02 55
H5 68 246121 TV 246367 246121 0.10 57 246265 246121 0.06 61 246339 246121 0.09 60
H6 68 249136 TV 249280 249136 0.06 54 249284 249136 0.06 60 249187 249136 0.02 59
I1 90 351609 OW 351136 350437 0.25 54 350902 350248 0.19 55 350992 350248 0.21 55
I2 90 309957 OW 312017 309946 0.67 66 311039 309946 0.35 66 310739 309946 0.26 66
I3 90 294509 OW 295043 294509 0.18 86 294788 294509 0.09 88 294773 294509 0.09 88
I4 90 295988 TV 296414 295988 0.14 79 296370 295988 0.13 80 296254 295988 0.09 84
I5 90 302525 OW 302482 301238 0.41 75 301916 301238 0.23 78 302225 301238 0.33 80
J1 95 335590 OW 336867 335004 0.56 60 336418 335478 0.42 61 336243 335004 0.37 60
J2 95 310798 OW 312248 310417 0.59 70 311378 310417 0.31 71 311662 310417 0.40 70
J3 95 279220 OW 281860 279307 0.95 90 279830 279220 0.22 91 279889 279220 0.24 92
J4 95 296774 OW 297926 296861 0.47 77 297487 296533 0.32 79 297436 296533 0.30 78
K1 113 395544 OW 397824 394511 0.88 87 396806 394458 0.62 88 395328 394369 0.24 87
K2 113 363213 OW 365244 362358 0.86 102 363938 362128 0.50 103 363350 362128 0.34 102
K3 113 366222 OW 368228 365693 0.69 100 366593 365693 0.25 102 366420 365693 0.20 101
K4 113 349037 OW 351283 348947 0.67 115 349713 348947 0.22 116 349191 348947 0.07 114
L1 150 426021 OW 427532 426014 0.36 162 427786 426283 0.42 162 428031 426178 0.47 160
L2 150 402246 OW 402643 401231 0.35 196 401917 401426 0.17 192 401720 401231 0.12 188
L3 150 403886 OW 404400 402681 0.43 189 402829 402681 0.04 189 402681 402681 0.00 187
L4 150 384843 OW 388152 384635 0.91 221 384962 384635 0.08 219 385656 384635 0.27 218
L5 150 388060 OW 392003 387563 1.15 216 388986 387563 0.37 215 388398 387563 0.22 214
M1 125 400858 OW 403542 400085 0.86 109 402393 400660 0.58 109 402158 401076 0.52 108
M2 125 398902 OW 400668 398712 0.81 109 400842 399263 0.85 109 400262 397448 0.71 106
M3 125 377352 OW 379724 377139 0.70 123 378814 377399 0.46 121 378548 377093 0.39 121
M4 125 348624 OW 349623 348604 0.31 149 349083 348530 0.16 149 349331 348530 0.23 146
N1 150 408921 OW 416448 409897 1.84 166 414350 410046 1.33 165 413239 409506 1.06 163
N2 150 409275 OW 415947 410232 1.63 167 415411 410232 1.50 163 415049 410616 1.41 163
N3 150 396162 OW 401857 396870 1.44 185 401359 396825 1.31 182 400977 397546 1.22 180
N4 150 397748 OW 402257 398293 1.89 180 399558 394785 1.21 180 401012 398667 1.58 181
N5 150 376426 OW 380571 377081 1.90 229 375915 373471 0.65 227 378486 374553 1.34 222
N6 150 377660 OW 379159 375646 1.45 221 378089 373752 1.16 226 376755 375348 0.80 225
Tot. 18053986 18130660 18051840 455518096042 18044295 462918092915 18048852 4598
Avg. 0.45 73 0.30 75 0.28 74
< PB 20 20 20
#B 39 45 49 51

Table 17: Goetschalckxdata set. The results have been produced by using distances rounded to integers. The results in the
best knowncolumns were found by the heuristics proposed by Toth and Vigo (TV) [40] and Osman and Wassan (OW) [28].
Notice that the TV and OW heuristics might have used a different rounding procedure, and consequently this table cannot be
used to compare the LNS heuristics to the two earlier heuristics (see the text in the appendix). The table is provided for future
reference only.
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Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

CMT01T 541 NS 520 520 0.00 32 520 520 0.00 34 520 520 0.00 34
CMT02T 839 NS 790 783 0.95 52 792 784 1.13 56 788 783 0.63 57
CMT03T 903 NS 805 801 0.83 104 804 801 0.72 110 803 798 0.65 109
CMT04T 1111 NS 1004 998 0.63 203 1004 998 0.61 213 1005 1000 0.73 212
CMT05T 1423 NS 1239 1231 0.97 323 1239 1232 0.95 334 1234 1227 0.57 333
CMT06T 571 NS 555 555 0.00 29 555 555 0.00 31 555 555 0.00 31
CMT07T - - 909 903 0.69 48 907 903 0.38 52 904 903 0.16 52
CMT08T 911 NS 869 866 0.43 91 868 866 0.33 94 866 866 0.10 95
CMT09T 1164 NS 1172 1166 0.75 173 1170 1164 0.56 179 1172 1164 0.67 178
CMT10T 1418 NS 1410 1398 1.09 285 1408 1395 0.93 291 1410 1402 1.05 291
CMT11T 1075 NS 1002 999 0.29 158 1001 999 0.24 163 1003 1000 0.39 164
CMT12T 827 NS 789 788 0.14 92 788 788 0.00 96 788 788 0.00 96
CMT13T 1600 NS 1550 1544 0.35 124 1548 1544 0.23 126 1547 1544 0.21 127
CMT14T 866 NS 827 827 0.06 84 827 827 0.00 86 827 827 0.00 86
Tot. 13249 13442 13378 1801 13430 13375 1864 13422 13376 1864
Avg. 0.51 129 0.43 133 0.37 133
< PB 13 13 13
#B 1 10 11 11

Table 18: Nagy and Salhi MVRPB problems with 10% backhaul customers. The entries in theBest knowncolumns are the
best result reported by Nagy and Salhi (NS) [32] and Dethloff(D) [9]. It should be noted that Dethloff’s heuristic only have
been applied to half of the problems. No solution were given for problem 7 (this explains the dash in the table).

Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

CMT01Q 557 NS 490 490 0.02 35 490 490 0.00 40 490 490 0.00 41
CMT02Q 860 NS 737 732 0.62 57 736 733 0.54 64 737 733 0.64 65
CMT03Q 918 NS 752 747 0.68 119 751 747 0.58 126 749 747 0.23 128
CMT04Q 1164 NS 922 916 0.60 228 921 918 0.58 244 922 918 0.59 244
CMT05Q 1477 NS 1133 1124 1.35 358 1127 1118 0.83 382 1124 1119 0.52 381
CMT06Q 594 NS 555 555 0.00 28 555 555 0.00 30 555 555 0.00 30
CMT07Q - - 905 901 0.44 48 903 901 0.26 52 902 901 0.17 53
CMT08Q 918 NS 868 866 0.25 90 867 866 0.23 93 866 866 0.10 93
CMT09Q 1178 NS 1170 1162 0.69 167 1170 1164 0.69 170 1169 1162 0.62 171
CMT10Q 1477 NS 1404 1394 1.06 280 1405 1398 1.11 285 1402 1389 0.91 288
CMT11Q 1075 NS 941 939 0.22 183 941 939 0.23 195 941 939 0.12 196
CMT12Q 843 NS 731 729 0.28 100 731 729 0.21 107 730 729 0.17 108
CMT13Q 1613 NS 1554 1545 0.67 117 1546 1544 0.14 120 1546 1543 0.14 120
CMT14Q 873 NS 822 822 0.00 84 822 822 0.00 85 822 822 0.00 85
Tot. 13547 12983 12922 1896 12966 12924 1993 12954 12914 2003
Avg. 0.49 135 0.38 142 0.30 143
< PB 14 14 14
#B 0 11 9 11

Table 19: Nagy Salhi MVRPB problems with 25% backhaul customers. See Table 18 for a decription.

Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

CMT01H 536 D 468 466 0.63 44 465 465 0.08 50 466 465 0.19 51
CMT02H 801 D 666 663 0.47 69 664 663 0.21 76 664 663 0.21 78
CMT03H 850 D 705 701 0.62 165 702 701 0.14 183 702 701 0.11 186
CMT04H 1099 D 842 835 1.57 306 840 829 1.27 346 840 829 1.24 345
CMT05H 1329 D 996 986 1.36 461 994 986 1.12 514 991 983 0.78 514
CMT06H 595 NS 555 555 0.00 29 555 555 0.00 31 555 555 0.00 31
CMT07H - - 904 901 0.40 49 902 901 0.23 52 903 900 0.29 54
CMT08H 915 NS 866 866 0.08 92 867 866 0.14 94 868 866 0.26 95
CMT09H 1164 NS 1169 1164 0.72 172 1171 1161 0.86 176 1169 1166 0.69 177
CMT10H 1509 NS 1406 1389 1.24 290 1406 1396 1.23 295 1401 1393 0.92 296
CMT11H 961 D 829 818 1.37 271 820 818 0.26 315 818 818 0.04 303
CMT12H 765 D 636 630 1.00 135 633 629 0.65 146 635 629 0.86 150
CMT13H 1546 NS 1552 1544 0.54 120 1545 1544 0.13 123 1546 1543 0.18 125
CMT14H 866 NS 822 822 0.00 87 822 822 0.00 89 822 822 0.00 89
Tot. 12936 12416 12338 2291 12387 12335 2490 12379 12333 2493
Avg. 0.71 164 0.45 178 0.41 178
< PB 13 14 13
#B 0 7 10 12

Table 20: Nagy Salhi MVRPB problems with 50% backhaul customers. See Table 18 for a decription.
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Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

GJ01T 614 NS 570 569 0.12 30 569 569 0.00 34 569 569 0.00 35
GJ02T 497 NS 464 464 0.04 34 464 464 0.04 37 464 464 0.00 38
GJ03T 662 NS 627 624 0.34 60 626 624 0.29 65 626 625 0.19 64
GJ04T 1055 NS 976 972 1.43 80 969 962 0.75 85 971 962 0.92 86
GJ05T 794 NS 739 735 0.85 114 738 733 0.62 118 738 733 0.61 119
GJ06T 914 NS 859 851 0.90 85 853 851 0.21 90 852 851 0.16 91
GJ07T 992 NS 864 854 1.23 82 862 855 1.04 88 859 854 0.59 87
GJ08T 4674 NS 4183 4134 1.17 417 4170 4134 0.86 431 4179 4152 1.08 435
GJ09T 4087 NS 3727 3684 1.39 452 3718 3677 1.12 492 3716 3678 1.06 485
GJ10T 4002 NS 3540 3502 1.58 444 3524 3485 1.11 472 3516 3492 0.88 467
GJ11T 3794 NS 3428 3390 1.12 445 3421 3390 0.92 469 3432 3409 1.23 464
Tot. 22085 19977 19780 2243 19915 19745 2382 19921 19789 2371
Avg. 2008 0.93 204 0.63 217 0.61 216
< PB 11 11 11
#B 0 7 10 6

Table 21: Nagy Salhi MDMVRPB problems with 10% backhaul customers.

Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

GJ01Q 666 NS 529 528 0.04 32 528 528 0.00 36 528 528 0.00 38
GJ02Q 550 NS 451 450 0.34 38 451 450 0.27 43 451 450 0.39 44
GJ03Q 670 NS 607 605 0.26 64 608 605 0.40 71 607 605 0.36 72
GJ04Q 1168 NS 879 876 0.47 87 876 875 0.13 94 880 876 0.55 95
GJ05Q 828 NS 705 700 0.72 124 705 702 0.65 133 706 703 0.83 134
GJ06Q 978 NS 805 794 1.39 92 800 794 0.78 100 799 794 0.60 100
GJ07Q 940 NS 808 803 0.69 89 807 803 0.51 94 806 802 0.45 95
GJ08Q 4877 NS 3826 3799 1.72 449 3810 3774 1.29 479 3792 3762 0.80 478
GJ09Q 4087 NS 3433 3391 2.31 482 3393 3355 1.13 535 3394 3362 1.15 535
GJ10Q 3931 NS 3294 3259 1.61 477 3267 3245 0.79 513 3276 3242 1.04 510
GJ11Q 3840 NS 3191 3171 1.15 472 3192 3165 1.17 511 3189 3155 1.10 505
Tot. 22535 18528 18375 2407 18437 18296 2609 18428 18279 2608
Avg. 2049 0.97 219 0.65 237 0.66 237
< PB 11 11 11
#B 0 5 6 8

Table 22: Nagy Salhi MDMVRPB problems with 25% backhaul customers.

Best known Std. Removals 6R - no learning 6R - normal learning
cost Reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

GJ01H 619 NS 499 499 0.06 36 499 499 0.04 40 499 499 0.00 42
GJ02H 562 NS 440 440 0.00 44 440 440 0.00 51 440 440 0.00 53
GJ03H 662 NS 584 581 0.60 73 583 581 0.40 81 583 581 0.35 82
GJ04H 1055 NS 795 789 0.73 102 797 790 0.91 112 796 790 0.84 114
GJ05H 853 NS 681 678 0.50 154 680 678 0.28 168 680 678 0.27 171
GJ06H 1034 NS 753 748 1.06 106 751 747 0.80 116 751 745 0.91 118
GJ07H 932 NS 739 733 0.88 107 734 733 0.23 117 735 733 0.29 113
GJ08H 5188 NS 3391 3370 1.92 530 3373 3327 1.38 581 3371 3342 1.31 577
GJ09H 4087 NS 3043 3005 1.27 582 3028 3006 0.78 646 3027 3008 0.75 650
GJ10H 4041 NS 2961 2931 1.16 547 2963 2930 1.21 644 2962 2927 1.19 637
GJ11H 3933 NS 2898 2855 1.49 557 2905 2880 1.74 609 2893 2859 1.33 606
Tot. 22966 16785 16630 2841 16753 16611 3166 16738 16601 3163
Avg. 2088 0.88 258 0.71 288 0.66 288
< PB 11 11 11
#B 0 8 6 7

Table 23: Nagy Salhi MDMVRPB problems with 50% backhaul customers.
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Best known Std. Removals 6R - no learning 6R - normal learning
% BH n m cost ref avg. best best avg. avg. best best avg. avg. best best avg.

#veh. sol. #veh. time #veh. sol. #veh. time #veh. sol. #veh. time
(s) (s) (s)

BHR1DO.10 10% 250 49 5085 TPS 46.0 4848.2 46 556 46.0 4844.8 46 571 46.0 4843.9 46 586
BHR1DO.30 20% 250 48 5243 TPS 45.0 5074.2 45 502 45.0 5062.7 45 512 45.0 5066.9 45 528
BHR1DO.50 50% 250 52 5403.1 TPS 49.0 5122.6 49 508 49.0 5107.1 49 531 49.0 5113.7 49 541
BHR1UP.10 10% 250 39 4278.6 TPS 32.0 3942.3 32 514 31.8 4056.9 31 503 32.0 3943.1 32 530
BHR1UP.30 30% 250 41 4715.2 TPS 35.0 4448.9 35 475 35.0 4427.8 35 474 34.8 4549.7 34 488
BHR1UP.50 50% 250 43 4921.4 TPS 36.0 4443.7 36 465 35.6 4618.4 35 473 36.0 4442.2 36 476
BHRC1DO.10 10% 250 39 4613.4 TPS 33.0 4116.8 33 506 32.8 4310.4 32 500 32.6 4211.6 32 519
BHRC1DO.30 20% 250 41 4852.2 TPS 34.4 4506.3 34 466 34.2 4534.4 34 466 34.2 4526.2 34 478
BHRC1DO.50 50% 250 41 4329.4 TPS 35.0 4500.2 35 456 34.4 4513.9 34 458 34.6 4589.6 34 463
BHRC1UP.10 10% 250 40 4445.8 TPS 33.4 4160.9 33 497 33.0 4137.0 33 488 33.4 4105.3 33 506
BHRC1UP.30 30% 250 43 4722.4 TPS 36.0 4485.2 36 466 35.0 4538.0 35 459 35.4 4555.8 35 469
BHRC1UP.50 50% 250 41 4899.4 TPS 35.6 4605.8 35 455 35.6 4558.5 35 464 35.2 4550.2 35 464
Tot. 517 57509 450.4 54255.1 449 5868447.4 54710.0 444 5899448.2 54498.3 445 6050
Avg. 489 492 504
< PB 12 12 12
#B 0 1 6 5

Table 24: Thangiah et al. 250 customer VRPBTW instances. The previously best known results have been found in [38]
(TPS).

Best known Std. Removals 6R - no learning 6R - normal learning
% BH n m cost ref avg. best best avg. avg. best best avg. avg. best best avg.

#veh. sol. #veh. time #veh. sol. #veh. time #veh. sol. #veh. time
(s) (s) (s)

BHR1DO.10 10% 500 67 7620.4 TPS 58.4 6899.9 58 1726 58.0 6860.2 58 1691 58.0 6868.0 58 1763
BHR1DO.30 20% 500 69 9020.2 TPS 59.4 7320.8 59 1555 58.8 7337.2 58 1557 59.0 7262.3 59 1595
BHR1DO.50 50% 500 76 8376.5 TPS 61.8 7342.7 61 1554 61.0 7342.4 61 1575 60.8 7294.7 60 1584
BHR1UP.10 10% 500 64 7267.2 TPS 55.0 6776.6 54 1660 55.0 6702.7 54 1378 54.6 6784.7 54 1692
BHR1UP.30 30% 500 73 7926.6 TPS 57.8 7243.0 57 1533 57.8 7055.0 57 1679 57.6 6991.0 57 1566
BHR1UP.50 50% 500 68 8043.7 TPS 59.4 7119.1 59 1500 59.0 7126.2 59 1741 58.6 7217.3 58 1548
BHRC1DO.10 10% 500 61 7099.4 TPS 52.2 6362.6 52 1652 52.2 6346.8 52 1814 52.2 6313.3 52 1658
BHRC1DO.30 20% 500 63 7707.1 TPS 54.8 6959.3 54 1511 54.8 6889.0 54 1703 54.4 6813.6 54 1530
BHRC1DO.50 50% 500 65 7771.6 TPS 55.0 6983.7 54 1503 54.8 6914.5 54 1727 54.4 6896.5 54 1520
BHRC1UP.10 10% 500 63 7209.4 TPS 55.8 6493.5 55 1584 55.2 6483.4 55 1622 55.2 6464.1 55 1591
BHRC1UP.30 30% 500 63 7967.1 TPS 58.0 7030.2 57 1476 58.0 6918.8 58 1628 58.0 7028.3 57 1500
BHRC1UP.50 50% 500 67 8135.1 TPS 57.4 6965.8 57 1486 56.6 6969.6 56 1701 57.2 6862.3 57 1296
Tot. 799 94144 685.0 83497.3 677 18742681.2 82945.7 676 19815680.0 82796.0 675 18843
Avg. 1562 1651 1570
< PB 12 12 12
#B 0 0 4 8

Table 25: Thangiah et al. 500 customer VRPBTW instances. The previously best known results are the solutions found by
Thangiah et al. (TPS) [38].

Best known Std. Removals 6R - no learning 6R - normal learning
veh. cost Reference avg. avg. best best avg. avg. avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s) (%) (s)

MC201 5 763.88 ZC 774.59 4.0 766.82 4 1.01 140 769.96 4.0 766.82 4 0.41 141 766.82 4.0 766.82 4 0.00 144
MC202 4 1186.24 ZC 736.76 4.0 732.93 4 0.52 165 734.85 4.0 732.93 4 0.26 171 737.51 4.0 732.93 4 0.63 165
MC203 4 1096.31 ZC 710.14 4.0 705.86 4 0.80 171 708.68 4.0 707.75 4 0.60 177 708.48 4.0 704.49 4 0.57 174
MC204 4 885.73 ZC 677.75 4.0 676.18 4 0.23 188 679.06 4.0 676.18 4 0.43 193 678.54 4.0 676.18 4 0.35 189
MC205 5 781.7 ZC 754.81 4.0 748.34 4 0.86 152 755.72 4.0 751.96 4 0.99 153 758.83 4.0 751.96 4 1.40 152
MC206 5 860.74 ZC 750.16 4.0 748.17 4 0.41 157 748.33 4.0 747.08 4 0.17 158 748.09 4.0 747.08 4 0.14 157
MC207 5 792.96 ZC 745.38 4.0 737.39 4 1.08 161 745.43 4.0 737.39 4 1.09 164 745.57 4.0 738.70 4 1.11 162
MC208 5 859.92 ZC 736.19 4.0 735.17 4 0.14 161 741.69 4.0 738.70 4 0.89 164 742.76 4.0 738.70 4 1.03 162
Tot. 37 7227 5885.79 32.00 5850.87 32 12955883.72 32.00 5858.82 32 13205886.63 32.00 5856.87 32 1305
Avg. 5 0.63 162 0.60 165 0.65 163
< PB 8 8 8
#B 0 6 5 5

Table 26: Kontoravdis and Bard’s MVRPBTW instances. C-type problems. The previously best known results are the
solutions found by Zhong and Cole (ZC) [48]. Kontoravdis andBard [23] do not give detailed information about their
solutions.
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Best known Std. Removals 6R - no learning 6R - normal learning
veh. cost Reference avg. avg. best best avg. avg. avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s) (%) (s)

MR201 4 1388.73 ZC 1272.20 4.0 1260.48 4 1.27 1571263.64 4.0 1256.31 4 0.58 165 1261.90 4.0 1256.31 4 0.45 160
MR202 4 1198.99 ZC 1101.54 4.0 1092.01 4 1.39 3591092.08 4.0 1086.46 4 0.52 371 1092.36 4.0 1086.46 4 0.54 362
MR203 4 988.82 ZC 913.57 4.0 894.54 4 2.13 387 900.08 4.0 896.14 4 0.62 383 899.59 4.0 896.14 4 0.56 374
MR204 4 858.32 ZC 739.43 4.0 737.51 4 0.36 419 737.87 4.0 737.51 4 0.15 436 738.63 4.0 736.75 4 0.25 432
MR205 4 1172.53 ZC 994.25 4.0 974.26 4 2.05 351 994.86 4.0 974.26 4 2.11 367 989.36 4.0 974.26 4 1.55 353
MR206 4 979.5 ZC 910.42 4.0 897.03 4 1.83 386 896.47 4.0 894.05 4 0.27 397 894.25 4.0 894.04 4 0.02 388
MR207 4 912.69 ZC 811.92 4.0 800.79 4 1.39 421 800.79 4.0 800.79 4 0.00 426 800.79 4.0 800.79 4 0.00 422
MR208 4 764.52 ZC 722.34 4.0 719.12 4 0.85 412 719.05 4.0 716.28 4 0.39 435 718.91 4.0 716.28 4 0.37 431
MR209 4 978.82 ZC 894.18 4.0 879.63 4 1.65 354 886.97 4.0 879.63 4 0.83 371 893.49 4.0 881.60 4 1.58 361
MR210 4 1061.36 ZC 936.45 4.0 930.92 4 1.29 361 929.49 4.0 924.56 4 0.53 377 928.71 4.0 924.56 4 0.45 369
MR211 4 878.81 ZC 767.51 4.0 763.54 4 0.58 376 770.42 4.0 763.09 4 0.96 400 772.21 4.0 765.03 4 1.19 394
Tot. 44 11183 10063.80 44.00 9949.83 44 39839991.73 44.00 9929.07 44 41289990.20 44.00 9932.21 44 4046
Avg. 4 1.34 362 0.63 375 0.63 368
< PB 11 11 11
#B 0 4 8 8

Table 27: Kontoravdis and Bard’s MVRPBTW instances. R-type problems.

Best known Std. Removals 6R - no learning 6R - normal learning
veh. cost Reference avg. avg. best best avg. avg. avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s) (%) (s)

MRC201 5 1498.9 ZC 1370.16 5.0 1346.30 5 1.77 234 1357.26 5.0 1355.42 5 0.81 2381356.84 5.0 1355.63 5 0.78 236
MRC202 4 1539.41 ZC 1263.92 4.0 1230.24 4 2.74 171 1261.06 4.0 1241.77 4 2.51 1741250.88 4.0 1230.24 4 1.68 171
MRC203 4 1303.48 ZC 1020.29 4.0 997.06 4 2.48 1771004.33 4.0 995.63 4 0.87 175 999.79 4.0 995.63 4 0.42 176
MRC204 4 932.48 ZC 843.99 4.0 833.60 4 1.25 187 844.08 4.0 835.13 4 1.26 188 846.01 4.0 836.89 4 1.49 187
MRC205 4 1632.04 ZC 1461.20 4.0 1417.14 4 3.30 1681449.27 4.0 1419.07 4 2.46 1661452.19 4.0 1414.52 4 2.66 160
MRC206 4 1433.43 ZC 1286.51 4.0 1231.52 4 4.47 168 1277.35 4.0 1249.48 4 3.72 1701291.85 4.0 1254.51 4 4.90 166
MRC207 4 1217.2 ZC 1119.23 4.0 1096.06 4 3.31 1751109.06 4.0 1084.81 4 2.37 1741101.21 4.0 1083.33 4 1.65 169
MRC208 4 1085.57 ZC 875.86 4.0 847.46 4 3.35 180 863.90 4.0 852.25 4 1.94 182 851.50 4.0 849.30 4 0.48 175
Tot. 33 10643 9241.15 33.00 8999.36 33 14619166.31 33.00 9033.57 33 14679150.29 33.00 9020.05 33 1441
Avg. 4 2.83 183 1.99 183 1.76 180
< PB 8 8 8
#B 0 5 1 4

Table 28: Kontoravdis and Bard’s MVRPBTW instances. RC-type problems.
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Best known Std. Removals 6R - no learning 6R - normal learning
n cost reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

Min 22 88 H 88.3 88.0 0.34 37 88.5 88.0 0.57 44 88.5 88.0 0.57 50
SCA3-0 50 689 D 640.6 640.5 0.71 173 641.1 640.5 0.79 173 638.3 636.1 0.35 232
SCA3-1 50 765.6 D 698.4 697.8 0.08 170 698.8 697.8 0.14 173 697.8 697.8 0.00 218
SCA3-2 50 742.8 D 659.3 659.3 0.00 161 660.2 659.3 0.14 160 659.3 659.3 0.00 203
SCA3-3 50 737.2 D 681.4 680.6 0.12 182 682.7 681.3 0.31 179 681.4 680.6 0.11 241
SCA3-4 50 747.1 D 691.2 690.5 0.11 160 693.1 690.5 0.38 166 691.0 690.5 0.08 208
SCA3-5 50 784.4 D 662.2 659.9 0.34 178 660.5 659.9 0.10 179 659.9 659.9 0.00 226
SCA3-6 50 720.4 D 651.3 651.1 0.04 179 652.1 651.1 0.15 171 651.3 651.1 0.04 233
SCA3-7 50 707.9 D 667.9 666.1 0.27 169 667.0 666.1 0.13 162 667.0 666.1 0.13 206
SCA3-8 50 807.2 D 721.3 719.5 0.26 167 719.5 719.5 0.00 157 719.5 719.5 0.00 190
SCA3-9 50 764.1 D 681.0 681.0 0.01 171 681.0 681.0 0.01 167 681.0 681.0 0.00 220
SCA8-0 50 1132.9 D 991.1 982.2 1.63 82 993.2 987.9 1.85 94 986.3 975.1 1.15 98
SCA8-1 50 1150.9 D 1083.1 1072.8 2.92 82 1082.6 1068.8 2.87 94 1066.5 1052.4 1.35 95
SCA8-2 50 1100.8 D 1046.3 1039.6 0.64 83 1049.9 1044.5 0.99 87 1049.2 1044.5 0.92 94
SCA8-3 50 1115.6 D 1016.5 1007.8 2.49 85 1012.5 991.8 2.08 91 1006.3 999.1 1.45 94
SCA8-4 50 1235.4 D 1067.4 1065.5 0.18 84 1067.0 1065.5 0.14 87 1065.6 1065.5 0.01 93
SCA8-5 50 1231.6 D 1052.8 1039.6 2.50 84 1047.9 1040.4 2.02 89 1039.9 1027.1 1.24 96
SCA8-6 50 1062.5 D 996.2 986.0 2.44 82 987.5 972.5 1.54 93 983.5 977.0 1.14 94
SCA8-7 50 1217.4 D 1067.1 1062.2 0.57 82 1068.3 1063.2 0.69 88 1065.8 1061.0 0.45 92
SCA8-8 50 1231.6 D 1086.4 1071.2 1.42 85 1084.3 1077.7 1.22 93 1078.8 1071.2 0.71 98
SCA8-9 50 1185.6 D 1077.0 1067.3 1.55 82 1068.8 1060.5 0.79 86 1064.7 1060.5 0.40 92
CON3-0 50 672.4 D 623.4 617.6 1.11 173 621.5 616.5 0.81 171 619.0 616.5 0.40 215
CON3-1 50 570.6 D 558.1 554.5 0.65 190 555.5 554.5 0.18 190 554.5 554.5 0.00 245
CON3-2 50 534.8 D 522.3 521.4 0.18 176 523.0 521.4 0.32 177 521.6 521.4 0.05 232
CON3-3 50 656.9 D 591.2 591.2 0.00 185 591.2 591.2 0.00 177 591.2 591.2 0.00 231
CON3-4 50 640.2 D 591.7 588.8 0.49 187 590.5 588.8 0.29 173 590.0 588.8 0.21 221
CON3-5 50 604.7 D 566.3 563.7 0.47 181 567.3 563.7 0.64 179 564.4 563.7 0.12 209
CON3-6 50 521.3 D 501.6 499.1 0.51 195 503.0 501.8 0.78 180 501.9 500.8 0.57 225
CON3-7 50 602.8 D 579.7 577.5 0.56 178 584.1 578.4 1.32 181 579.5 576.5 0.53 227
CON3-8 50 556.2 D 523.5 523.1 0.08 186 523.7 523.1 0.12 174 523.5 523.1 0.08 237
CON3-9 50 612.8 D 585.9 578.2 1.32 175 587.4 578.2 1.58 163 588.2 586.4 1.71 207
CON8-0 50 967.3 D 867.8 857.2 1.24 86 867.7 858.0 1.22 87 860.9 857.2 0.43 94
CON8-1 50 828.7 D 761.0 740.9 2.72 85 754.2 741.7 1.81 92 750.5 740.9 1.30 94
CON8-2 50 770.2 D 731.3 719.3 2.14 85 728.8 718.3 1.79 93 721.4 716.0 0.75 94
CON8-3 50 906.7 D 827.9 822.9 2.07 88 816.7 811.1 0.69 91 813.7 811.1 0.33 98
CON8-4 50 876.8 D 779.1 772.3 0.89 88 779.3 772.3 0.91 87 774.3 772.3 0.27 95
CON8-5 50 866.9 D 773.9 763.1 2.41 85 772.2 763.1 2.19 92 766.5 755.7 1.44 94
CON8-6 50 749.1 D 717.0 705.8 3.46 88 712.5 696.9 2.81 95 707.9 693.1 2.14 96
CON8-7 50 929.8 D 844.8 831.5 3.69 86 843.1 818.0 3.48 94 833.1 814.8 2.24 94
CON8-8 50 833.1 D 781.2 774.1 0.93 87 781.3 775.9 0.94 88 778.8 774.0 0.63 94
CON8-9 50 877.3 D 813.3 812.0 0.49 86 814.5 812.0 0.64 91 813.0 809.3 0.46 92
Tot. 33797 30867.6 30642.7 526730823.9 30592.8 530830695.7 30530.3 6368
Avg. 824 1.07 128 0.96 129 0.58 155
< PB 40 40 40
#B 1 24 23 36

Table 29: The first problem in the table is Min’s 21 customer problem which was solved to optimality by Halse (H) [19].
The rest of the problems were proposed by Dethloff (D) [10].

Best known Std. Removals 6R - no learning 6R - normal learning
n cost reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

SN1X 50 501 D 475 467 1.75 171 472 467 1.22 190 473 467 1.27 221
SN2X 75 782 D 718 702 2.40 255 722 709 2.84 271 719 704 2.46 294
SN3X 100 847 D 739 727 1.56 768 746 731 2.54 695 741 731 1.93 863
SN4X 150 1050 D 919 894 4.75 1345 903 877 2.95 1459 893 879 1.79 1676
SN5X 199 1348 D 1132 1108 2.13 2057 1162 1138 4.83 2217 1130 1108 1.99 2340
SN6X 50 584 D 559 559 0.08 97 559 559 0.08 98 559 559 0.08 113
SN7X 75 961 D 918 905 1.82 154 917 903 1.72 158 910 901 0.95 167
SN8X 100 923 NS 872 866 0.69 384 872 866 0.74 367 868 866 0.29 413
SN9X 150 1215 NS 1239 1221 3.54 703 1235 1197 3.17 726 1228 1205 2.57 765
SN10X 199 1571 D 1526 1494 4.42 1136 1522 1490 4.13 1214 1501 1462 2.71 1275
SN11X 120 959 D 907 875 8.33 1725 921 875 10.05 1410 901 837 7.70 1821
SN12X 100 804 D 698 688 2.11 628 692 683 1.32 574 692 685 1.29 684
SN13X 120 1576 D 1637 1595 3.90 494 1601 1591 1.57 539 1593 1578 1.09 563
SN14X 100 871 D 904 876 4.69 354 896 863 3.75 367 897 885 3.87 387
Tot. 13992 13242 12976 1027013219 12947 1028613105 12866 11585
Avg. 999 3.01 734 2.92 735 2.14 827
< PB 11 13 12
#B 1 6 7 7

Table 30: Nagy and Salhi’s VRPSDP instances. X-type problems.
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Best known Std. Removals 6R - no learning 6R - normal learning
n cost reference avg. best avg. avg. avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s) (%) (s)

SN1Y 50 501 D 470 467 0.69 194 471 467 0.88 192 469 467 0.53 235
SN2Y 75 782 D 692 685 1.04 315 704 691 2.88 268 694 685 1.34 331
SN3Y 100 847 D 743 734 1.20 632 751 742 2.28 625 747 738 1.71 708
SN4Y 150 1050 D 868 854 1.57 1866 876 856 2.56 1487 881 876 3.08 1788
SN5Y 199 1348 D 1158 1131 2.37 2030 1186 1132 4.86 2106 1169 1146 3.31 2177
SN6Y 50 584 D 560 559 0.21 93 562 559 0.63 96 560 559 0.20 101
SN7Y 75 961 D 987 969 3.73 158 1008 979 5.92 163 993 952 4.38 166
SN8Y 100 923 NS 896 880 2.63 361 916 894 4.85 362 895 873 2.43 398
SN9Y 150 1215 NS 1282 1267 5.55 732 1286 1256 5.83 720 1288 1271 6.03 757
SN10Y 199 1527 NS 1597 1567 4.57 1207 1596 1573 4.54 1195 1591 1552 4.16 1255
SN11Y 120 1070 D 972 938 5.71 1193 980 956 6.54 1154 951 920 3.42 1376
SN12Y 100 825 D 683 673 1.58 531 689 686 2.39 506 684 675 1.65 539
SN13Y 120 1576 D 1771 1726 12.38 531 1629 1612 3.34 538 1613 1602 2.33 547
Tot. 13209 12680 12451 9844 12654 12403 9412 12534 12315 10378
Avg. 944 3.33 703 3.65 672 2.66 741
< PB 9 9 10
#B 3 7 2 6

Table 31: Nagy and Salhi’s VRPSDP instances. Y-type problems.
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A general heuristic for vehicle routing problems

David Pisinger∗

Stefan Ropke∗

Abstract

We present a unified heuristic which is able to solve five different variants of the vehicle routing
problem: the vehicle routing problem with time windows (VRPTW), the capacitated vehicle routing
problem (CVRP), the multi-depot vehicle routing problem (MDVRP), the site dependent vehicle routing
problem (SDVRP) and the open vehicle routing problem (OVRP).

All problem variants are transformed into a rich pickup and delivery model and solved using the
Adaptive Large Neighborhood Search (ALNS) framework presented in Ropke and Pisinger (2004). The
ALNS framework is an extension of the Large Neighborhood Search framework by Shaw (1998) with
an adaptive layer. This layer adaptively chooses among a number of insertion and removal heuristics
to intensify and diversify the search. The presented approach has a number of advantages: it provides
solutions of very high quality, the algorithm is robust, andto some extent self-calibrating. Moreover, the
unified model allows the dispatcher to mix various variants of VRP problems for individual customers or
vehicles.

As we believe that the ALNS framework can be applied to a largenumber of tightly constrained
optimization problems, a general description of the framework is given, and it is discussed how the
various components can be designed in a particular setting.

The paper is concluded with a computational study, in which the five different variants of the vehicle
routing problem are considered on standard benchmark testsfrom the literature. The outcome of the
tests is promising as the algorithm is able to improve 183 best known solutions out of 486 benchmark
tests. The heuristic has also shown promising results for a large class of vehicle routing problems with
backhauls as demonstrated in Ropke and Pisinger (2005).

Keywords: metaheuristics, large neighborhood search, vehicle routing problem

1 Introduction

Most scientific papers in the area of heuristic solution methods for vehicle routing problems target a specific
vehicle routing problem, e.g. vehicle routing problems with time windows (VRPTW). In such papers a
heuristic is designed, implemented and fine-tuned to fit thisparticular problem type. Only a few papers
(see e.g. Cordeau et al. [17, 19]) consider heuristics that “out-of-the-box” can be used to solve several
problem types. We believe that general vehicle routing heuristics are an important research area as such
heuristics are needed for real life problems, in which the transportation needs of different companies often
are different and thus call for various types of vehicle routing problems.

The heuristic in this paper is applied to five different problems: the vehicle routing problem with
time windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle routing
problem (MDVRP), the site dependent vehicle routing problem (SDVRP) and the open vehicle routing
problem (OVRP). In the CVRP one has to deliver goods to a set ofcustomers with known demands on
minimum-cost vehicle routes originating and terminating at a depot. The vehicles are assumed to be homo-
geneous and having a certain capacity. In some versions of the CVRP one also has to obey a route duration
constraint that limits the lengths of the feasible routes. The VRPTW extends the CVRP by associating
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time windows with the customers. The time window defines an interval during which the customer must
be visited. The OVRP is closely related to the CVRP, but contrary to the CVRP a route ends as soon as the
last customer has been served as the vehicles do not need to return to the depot. The MDVRP extends the
CVRP by allowing multiple depots. The SDVRP is another generalization of the CVRP in which one can
specify that certain customers only can be served by a subsetof the vehicles. Furthermore, vehicles do not
need to have the same capacity in the SDVRP. In the CVRP, MDVRPand SDVRP one seeks to minimize
the total traveled distance whereas in the OVRP and VRPTW, the first priority is to minimize the number
of vehicles and minimizing the traveled distance is the second priority. The choice of objective is not an
intrinsic feature of the problems, but just the tradition inthe metaheuristic literature. Most exact methods
and some metaheuristics for the VRPTW minimize total traveled distance instead of minimizing number
of vehicles used.

All problem types are transformed to a rich pickup and delivery problem with time windows (RPDPTW)
and are solved using the adaptive large neighborhood search(ALNS) framework introduced by [49, 50].
The heuristic presented in the two aforementioned papers has been reused, with some small improvements
(summarized in section 5), to solve the five problem types considered in this paper.

In the RPDPTW we have a number of requests to be carried out by agiven set of vehicles. Each
request consists of picking up a quantity of goods at one location and delivering it to another location. The
objective of the problem is to find a feasible set of routes forthe vehicles so that all requests are serviced,
and such that the overall travel distance is minimized. A feasible route of a vehicle must start at a given
location, service a number of requests such that the capacity of the vehicle is not exceeded, and finally
end at a given location. A pickup or delivery must take place within a given time window. Each request
has an associated pickup precedence number, and a delivery precedence number. A vehicle must visit the
locations in nondecreasing order of precedences (see e.g. Sigurd et al. [54] for various applications of
precedence constraints). Since not all vehicles may be ableto service all requests (e.g. due to their physical
size or the absence of some cooling compartments) we need to ensure that every request is serviced by
a given subset of vehicles. Between any two locations we havean associated, nonnegative distance and
travel time. It is assumed that travel times satisfy thetriangle inequality. This assumption implies that
any removal of requests from a feasible route will keep the route feasible with respect to the imposed time
windows.

The five vehicle routing problems considered in the present paper have all been intensively studied in
the literature. The two best known problems are the VRPTW andthe CVRP. The VRPTW has been the
target of extensive research and almost any type of metaheuristic has been applied to the problem. For
recent surveys on the state of the art in VRPTW research we recommend the survey by Cordeau et al [15]
that describes both exact and heuristic methods, and the survey by Bräysy and Gendreau [8] that focuses on
metaheuristics. It is hard to single out a few VRPTW metaheuristics as the number of proposed heuristics is
huge, and no heuristic dominates all the other heuristics inall aspects. We would, however, like to mention
the metaheuristic by Mester and Bräysy [42] as it has achieved outstanding results on larger VRPTW
instances with between 200 and 1000 customers. For the smaller VRPTW instances like the Solomon data
set, some of the best heuristics in terms of solution qualityachieved are the Large Neighborhood Search by
Bent and Van Hentenryck [2] and the Hybrid Genetic Algorithmby Homberger and Gehring [32].

Solving the VRPTW to optimality has also received much attention. The current state of the art exact
methods are proposed by Kallehauge et al [35], Irnich and Villeneuve [34] and Chabrier [10], and all follow
the branch-and-price framework. The two first mentioned approaches also strengthen the obtained lower
bound by adding valid inequalities to the LP formulation. The size of the instances that consistently can be
solved to optimality is rather limited as unsolved instances with 50 customers exist, but some large scale
instances can be solved. For example, Kallehauge et al. [35]report that a 1000 customer instance has been
solved. Solving problems of this size is only possible by current techniques if the instance has a certain
structure and the time constraints are very tight. These observations justify the research into heuristics for
the VRPTW as industrial routing problems demand robust algorithms for large-sized instances.

The CVRP literature is also vast. Classic heuristics for theproblem have been surveyed by Laporte and
Semet [38], and metaheuristics have been surveyed by Gendreau et al. [29] and more recently by Cordeau
et al. [16]. CVRP heuristics have typically been tested on 14instances containing between 50 and 199
customers. In the early ’90s very good metaheuristics for the CVRP were developed such as parallel tabu
search by Taillard [56]. Most of the solutions to the 14 classic instances found back then have still not been
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improved. More recently, some larger instances have been introduced containing between 240 and 1200
customers (Golden et al. [30] and Li et al. [40]). These new instances seem to have spurred a new interest
into metaheuristics for the CVRP as indicated in the survey by Cordeau et al. [16].

Until recently, exact methods for the CVRP were dominated bybranch-and-cut methods. One of the
best branch-and-cut algorithms for the CVRP was developed by Lysgaard et al. [41]. Recent research re-
sults indicate that branch-and-cut-and-price algorithmsare a more promising approach as shown by Fuka-
sawa et al. [26]. For the CVRP, the largest problem that has been solved to optimality contains 135
customers.

The OVRP is a variant of the CVRP that has received less attention. The problem appears in various
distribution problems, in which the vehicle simply stops after the last delivery. The problem was introduced
by Sariklis and Powell [51] and they proposed a two-phase cluster first-route second heuristic. Recently,
tabu search heuristics were proposed by Fu et al. [25] and Brandão [6].

Tabu search heuristics for the MDVRP have been proposed by Renaud et al. [48] and Cordeau et al.
[17]. The last paper deserves special attention as it describes a general heuristic that also solves periodic
vehicle routing problems (PVRP) and periodic traveling salesman problems. Earlier, Chao et al. [11]
proposed arecord-to-recordimprovement heuristic for the MDVRP.

The SDVRP was first studied by Nag et al. [43] who developed several simple heuristics for the
problem. Chao et al. [12] developed a more advanced heuristic and constructed several new test instances.
Cordeau and Laporte [18] showed that the problem could be seen as a special case of the PVRP and they
presented computational results obtained by solving the problem using their PVRP tabu search heuristic.

The main contribution of this paper is to describe a general ALNS heuristic that is able to solve all the
above variants of the VRP problem. The computational results are promising as the ALNS, for the large
scale VRPTW instances suggested by Gehring and Homberger [27], on average use less vehicles compared
to competing heuristics , and the method becomes even more attractive compared to other heuristics as the
problem size increases. For the OVRP, MDVRP and SDVRP we are able to improve a large number of best
known solutions. The ALNS heuristic is comparable to most recently proposed heuristics for the CVRP,
but it is surpassed by the very best heuristic for the problemtype.

Due to the promising results of ALNS, we give a general description of the paradigm to make it easier
to adapt the framework to other problem types. Various strategies for designing construction and removal
heuristics are discussed.

In Section 2 we give a formal mathematical definition of the RPDPTW and in Section 3 we describe
how the considered problem variants are transformed into the RPDPTW. In Section 4 we give a general
presentation of the ALNS algorithm forming the core of our solution approach. Section 5 describes how
the general framework has been adapted to solve the RPDPTW. Section 6 presents a number of computa-
tional experiments which document that the proposed heuristic does not perform worse than state-of-the-art
heuristics specialized to solve each problem variant. The paper is concluded in Section 7.

2 Formal problem definition

We now present a mathematical formulation of the RPDPTW problem. The mathematical model is used
to describe the heuristic in details in later sections and todescribe how the considered VRP variants are
transformed to the RPDPTW.

Following the terminology of Desaulniers et al. [22], a problem instance of the pickup and delivery
problem containsn requests andm vehicles. The problem is defined on a graph whereP = {1, . . . , n} is
the set of pickup nodes, andD = {n + 1, . . . , 2n} is the set of delivery nodes. Requesti is represented
by nodei andi + n. K = {1, . . . , m} is the set of all vehicles. LetPk ⊆ P andDk ⊆ D be the set of
pickups and deliveries that can be served by vehiclek. Since a request is serviced by the same vehicle we
may assume thati ∈ Pk ⇔ i + n ∈ Dk, i.e. that both the pickup and delivery can be serviced by vehicle
k. DefineN = P ∪ D andNk = Pk ∪ Dk. Let τk = 2n + k, k ∈ K andτ ′

k = 2n + m + k, k ∈ K be
the nodes that represent the start and end terminals of vehicle k. The directed graphG = (V, A) consists
of the nodesV = N ∪ {τ1, . . . , τm} ∪ {τ ′

1, . . . , τ
′
m} and the arcsA = V × V . For each vehicle we have

a subgraphGk = (Vk, Ak), whereVk = Nk ∪ {τk} ∪ {τ ′
k} andAk = Vk × Vk. For each edge(i, j) ∈ A
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we assign a distancedij ≥ 0 and a travel timetij ≥ 0. Again, it is assumed that the travel times satisfy the
triangle inequalityi.e. tij ≤ til + tlj for all i, j, l ∈ V . We assign a service timesi and a time window
[ai, bi] to each nodei∈ V . The service time represents the time needed for loading andunloading and the
time window indicates when the visit at the particular site must start; a visit to nodei can only take place
between timeai andbi. A vehicle is allowed to arrive to a site before the start of the time window but it
has to wait until the start of the time window before the visitcan be performed. For each nodei ∈ N we
defineli to be the amount of goods that should be loaded onto the vehicle at the particular node. We have
thatli ≥ 0 for i ∈ P andli = −li−n for i ∈ D. Each vehiclek ∈ K has a certain capacityCk. Each node
has assigned aprecedence numberΠi. Nodes with low precedence must always be visited before nodes
with higher precedence.

Each vehiclek should follow a legal route from its start terminalτk to its destination terminalτ ′
k. A

legal router is a simple (loop-free) path

r = (τk = v1, v2, . . . , vh = τ ′
k) (1)

satisfying the precedences and time windows at the customers, the capacity of the vehicle, and ensuring
that a pickup takes place before a delivery, and that only requests serviceable by vehiclek are carried out.

More formally, we demand that a vehicle only visits nodes that can be serviced by the vehicle, i.e.

vi ∈ Nk, i = 2, . . . , h − 1 (2)

A pickup-delivery pair must be served by the same vehicle, and the pickup must take place before the
delivery, hence we have

i ≤ j, vi ∈ Pk, vj ∈ Dk, vj = vi + n (3)

Precedences should be obeyed along the route, this is ensured by the constraints

i ≤ j, Πvi
≤ Πvj

(4)

To ensure that time windows are satisfied, we introduceSi ∈ R+
0 to denote when the vehicle starts the

service at sitevi. We then have the constraints

avi
≤ Si ≤ bvi

i = 1, . . . , h (5)
Si+1 ≥ Si + si + tvi,vi+1 i = 1, . . . , h − 1 (6)
aτk

≤ S1 ≤ bτk
(7)

aτ ′

k
≤ Sh ≤ bτ ′

k
(8)

where[aτk
, bτk

] is the time window of terminalτk and[aτ ′

k
, bτ ′

k
] is the time window of terminalτ ′

k. Finally,
the capacity of the vehicle should be respected throughout the path. For this purpose we introduceLi ∈ R+

0

to denote the load of the vehicle at nodei after serving nodei. Then we have

Li ≤ Ck i = 1, . . . , h (9)
Li+1 = Li + li+1 i = 1, . . . , h − 1 (10)
L1 = 0 (11)
Lh = 0 (12)

Thetravel costof a given router is

cr =

h−1
∑

i=1

dvi,vi+1 (13)

Situations may occur in which some requests cannot be serviced by the available vehicles. To model
this situation we createn dummy routes, consisting of a single request. These routes do not make use of
any vehicles but they have a large cost, denotedΓ. Requests that are not served by a vehicle are said to be
located in therequest bank.
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The whole problem can now be formulated as follows: letR be the set of all feasible routes. The
boolean matrix(αjr) for r ∈ R andj = 1, . . . , n is used to indicate whether requestj is serviced using
router. The boolean matrix(βkr) for r ∈ R andk = 1, . . . , m is used to indicate whether the router is
carried out by vehiclek. Using binary variablesxr to indicate whether router is used in the solution we
get the following model

min f(x) =
∑

r∈R

crxr (14)

s.t.
∑

r∈R

αjrxr = 1 j = 1, . . . , n (15)

∑

r∈R

βkrxr = 1 k = 1, . . . , m (16)

xr ∈ {0, 1} r ∈ R (17)

Note that a dummy route is not assigned to any vehicle, that is, for any dummy router we have that
βkr = 0, ∀k = 1, . . . , m.

3 Problem transformations

The heuristic in this paper is applied to five different problems — VRPTW, CVRP, OVRP, MDVRP, SD-
VRP — which all are transformed to a RPDPTW. The conversions which will be described in the following
paragraphs are extensions of the transformations presented by Ropke and Pisinger [50] for solving VRP
problems with backhauls.

3.1 Vehicle Routing Problem with Time Windows

In order to transform a VRPTW instance to a RPDPTW instance wemap every customer in the VRPTW to
a request in the RPDPTW. Such a request consists of a pick up atthe depot and a delivery at the customer
site. The amount of goods that should be carried by the requests is equal to the demand of the corresponding
customer. The time window of the pickup is set to[ad, ad] wheread is the start of the time window of the
depot in the VRPTW and its service time is set to zero. The timewindow and service time of the delivery
are copied from the corresponding customer in the VRPTW. In order to avoid routes that return to the depot
for restocking we let all pickups and deliveries have precedence zero and one respectively. All vehicles in
the RPDPTW have the same start and end terminals corresponding to the depot in the VRPTW. Distances
and travel times in the RPDPTW are set in the natural way.

3.2 Capacitated Vehicle Routing Problem

A CVRP instance can easily be transformed to a VRPTW instance. This can for example be done by setting
all travel and service times to zero and all time windows to [0,0]. If the CVRP contains a route duration
constraint then travel times and durations should be set as in the CVRP. All time windows (including the
ones at the end terminals) should be set to [0,D] whereD is the route duration. The VRPTW is transformed
to a RPDPTW as described in Section 3.1.

3.3 Site Dependent Vehicle Routing Problem

In the SDVRP a customer may only be serviced by a given subset of the vehicles, typically because the
access paths to the node do not allow given vehicles to pass, or because specific facilities are demanded in
the vehicle (e.g. a freezing compartment).

The SDVRP is easily modeled as a RPDPTW by using the transformation from CVRP to RPDPTW
and noting that the RPDPTW allows us to specify the pickupsPk and deliveriesDk that can be carried out
by vehiclek.
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3.4 Open Vehicle Routing Problem

The OVRP is very close to the CVRP. The difference between thetwo problems is that in the OVRP the
vehicles do not have to return to the depot. Thus an OVRP can besolved as an asymmetric CVRP by
setting distances and travel times from every customer to the depot to zero.

The travel times in the resulting RPDPTW do not satisfy the triangle inequality, but our method is able
to handle the problems anyway sincetij ≤ til + tlj is only violated whenl is an end terminal. Our only
reason for assuming that the triangle inequality is satisfied for the travel times is that we have to avoid
situations in which the removal of one or more requests causes the travel time to increase. As the node
sequencei → l → j wherel ∈ {τ ′

1, . . . , τ
′
m} never occurs in a valid route this violation of the triangle

inequality does not cause any problems.

3.5 Multi-Depot Vehicle Routing Problem

In the MDVRP each customer may be serviced by a vehicle originating at any of the available depots. Even
though our underlying RPDPTW model supports multiple depots, it requires that each request is assigned
to a specific depot. In general this is a hard optimization problem of its own which needs to be handled
together with the routing problem. Hence we use the following transformation:

Create a dummy base location where all routes start and end and where all ordinary requests are picked
up. Also create a dummy request for each vehiclek in the problem. The pickup and delivery locations of
these requests are located at the depot of the correspondingvehicle. A dummy request has demand zero,
it does not have any service time and it can be served at any time. The setNk of each vehiclek contains
all ordinary requests and the dummy request corresponding to the vehicle. In this way we ensure that each
vehicle will carry precisely one dummy request.

The precedencesΠi of a pickup and a delivery corresponding to an ordinary request are set to zero
and two respectively. The precedence of the pickup and delivery of the dummy requests are set to one and
three respectively. This ensures that all ordinary deliveries will be surrounded by the pickup and delivery
of a dummy request. The distance and travel time between a pickup of an ordinary request and any other
location is set to zero. All other distances and travel timesare set as defined by the original MDVRP.

In a solution to the RPDPTW that serves all requests we know that each vehicle will begin at a start
terminal located at the dummy base location, then perform a number of pickups and then go to the pickup of
the dummy request. Next, the ordinary deliveries will be served and the vehicle will return to the delivery
of the dummy request and then to the end terminal of the route.Before starting the pickup of the dummy
request and after the delivery of it all travel times and distances will be zero. Furthermore travel times and
distances are accumulated correctly while carrying the dummy request.

While solving MDVRP problems the cost of dummy routesΓ must be set to a sufficiently large number
such that it will never be profitable to leave a dummy request in the request bank.

N1

N2

N3

Nk

VNS

N1

N2

N3

N4N5

N∗

ALNS

Figure 1: Illustration of neighborhoods used by VNS and ALNS. VNS typically operates on one
type of neighborhood with variable depth while ALNS operates on structurally different neighborhoods
N1, . . . , Nk defined by the corresponding search heuristics. All neighborhoodsN1, . . . , Nk in ALNS are
a subset of the neighborhoodN∗ defined by modifyingq variables.

106



4 Adaptive Large Neighborhood Search

We will now describe theAdaptive Large Neighborhood Search(ALNS) framework used in the present
paper. We believe that ALNS can be applied to a large class of difficult optimization problems, hence in
the following we consider an optimization problem in the general IP form:

min{f(x) : Ax ≤ b, x ∈ Zn} (18)

ALNS is a local search framework in which a number of simple algorithms compete to modify the current
solution. In each iteration an algorithm is chosen to destroy the current solution, and an algorithm is chosen
to repair the solution. The new solution is accepted if it satisfies some criteria defined by the local search
framework applied at the master level.

To be more formal, we extend the domain of each variablexi to Z ∪ {⊥}, where⊥ means undefined.
A destroy heuristicchooses at mostq variables which are assigned the value⊥. A repair heuristic assigns
feasible valuesxi ∈ Z to theq variables.

The ALNS framework is an extension of theLarge Neighborhood Searchpresented by Shaw [53],
where a large collection of variables are modified in each iteration. In ALNS the neighborhoods are
searched by simple and fast heuristics. ALNS is also based ontheRuin and Recreateparadigm presented
by Schrimpf et al. [52], or theRipup and Rerouteparadigm applied in [21]. In each iteration the current
solution is partially destroyed and then repaired using some heuristics. ALNS also has similarities with
Very Large Neighborhood Search(VLNS) presented by Ahuja et al. [1]. In VLNS the algorithm operates
on very large neighborhoods chosen in a way so that they can still be searched efficiently.

Variable Neighborhood Search(VNS) was presented by Hansen and Mladenovic [31]. VNS makes
use of a parameterized family of neighborhoods, typically obtained by using a given neighborhood with
variable depth. When the algorithm reaches a local minimum using one of the neighborhoods, it proceeds
with a larger neighborhood from the parameterized family. When the VNS algorithm gets out of the local
minimum it proceeds with the smaller neighborhood. On the contrary, ALNS operates on a predefined
set of large neighborhoods corresponding to the destroy (removal) and repair (insertion) heuristics. The
neighborhoods are not necessarily well-defined in a formal mathematical sense — they are rather defined
by the corresponding heuristic algorithm. The difference between VNS and ALNS is illustrated in Figure
1. In the sections that follow, we will distinguish between aneighborhood and the heuristic searching it.

Instead of viewing the ALNS heuristic as a sequence of destroy and repair operations one can alterna-
tively see it as a sequence offix andoptimizeoperations. The fix operation selects a number of variables
that are fixed at their current value; the optimize operationseeks to find a near-optimal solution that respects
the fixed variables, that is, only non-fixed variables can be changed. After the optimization operation, all
variables are unlocked again. The fix operation is analogousto the destroy operation and the optimize
operation is analogous to the repair operation. The fix/optimize view might be helpful when applying the
heuristic to problems where the destroy and repair operations do not seem intuitive.

4.1 Outline of algorithm

ALNS can be based on any local search framework, e.g. simulated annealing, tabu search or guided local
search. The general framework is outlined in Figure 2, wherelines 2–8 form the main loop of the local
search framework at the master level. Implementing a simulated annealing algorithm is straightforward as
one solution is sampled in each iteration of the ALNS. A simple tabu search could for example be imple-
mented by randomly sampling a number of candidate solutionsand choosing the best non tabu solution.

In each iteration of the main loop we choose one destroy and one repair neighborhood (line 3). An
adaptive layer stochastically controls which neighborhoods to choose according to their past performance
(score). The more a neighborhoodNi has contributed to the solution process, the larger scoreπi it obtains,
and hence it has a larger probability of being chosen.

The adaptive layer uses roulette wheel selection for choosing a destroy and a repair neighborhood. If the
past score of a neighborhoodi is denotedπi and we haveω neighborhoods, then we choose neighborhood
Nj with probability

πj
∑ω

i=1 πi
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Adaptive Large Neighborhood Search

1 Construct a feasible solution x; set x∗ := x

2 Repeat

3 Choose a destroy neighborhood N− and a repair neighborhood
N+ using roulette wheel selection based on previously
obtained scores {πj}

4 Generate a new solution x′ from x using the heuristics
corresponding to the chosen destroy and repair neighborhoods

5 If x′ can be accepted then set x := x′

6 Update scores πj of N− and N+

7 If f(x) < f(x∗) set x∗ := x

8 Until stop criteria is met

9 Return x∗

Figure 2: Outline of the ALNS framework

Notice that the destroy and repair neighborhoods are selected independently, and hence two separate
roulette wheel selections are performed.

In most applications the neighborhoods are searched by fastheuristics, hence it is reasonable to assume
that they are equally fast. But if some heuristics are significantly slower than others, one may normalize
the scoreπi of a neighborhood with a measure of the time consumptionti of the corresponding heuristic.
This ensures a proper trade-off between time consumption and solution quality.

In line 4 of the ALNS-algorithm, we first destroy the current solutionx using a heuristic searching the
neighborhoodN− and then repair the solution using a heuristic corresponding to neighborhoodN+. It
can be advantageous to use noising or randomization in the destroy and repair heuristics to obtain a proper
diversification. In traditional local search heuristics the diversification is controlled implicitly by the local
search paradigm (accept ratio, tabu list, etc.), but since we use large neighborhoods which are searched by
simple heuristics, it is not sufficient to have a diversification operator at the master level. We also need a
diversification operator at the sub-level to avoid stagnating search processes where the destroy and repair
neighborhoods keep performing the same modifications to a solution.

Finally, in line 6 we update the scoresπi of the neighborhoods. A number of criteria can be used to
measure how much a neighborhood contributes to the solutionprocess: new best solutions are obviously
given a large score, but also not previously visited solutions are given a score. Depending on the local
search framework used on the master level, one may also give specific scores to accepted solutions e.g. in
a simulated annealing framework. Since each step of the ALNSheuristic involves two neighborhoods (a
destroy and a repair neighborhood), the score obtained in a given iteration is divided equally between them.

EveryM iterations of the ALNS algorithm, the scoresπi are reset, and the probabilities for choosing the
neighborhoods are recalculated. Each neighborhood is assigned a minimum probability for being chosen
to ensure that statistical information about its performance can be collected. The probabilities for choosing
a neighborhood can also be a weighted sum of the score during the lastM iterations, and the overall score
since the beginning of the algorithm.

4.2 Designing an ALNS algorithm

In order to design an ALNS algorithm for a given optimizationproblem one needs to

• Choose a number of fast construction heuristics which are able to construct a full solution given a
partial solution (a solution where some variables are set to⊥ and some have a real value).

• Choose a number of destroy heuristics. It might be worthwhile to choose destroy heuristics that are
expected to work well with the chosen construction heuristics, but it is not necessary.

• Choose a local search framework at the master level.
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In each iteration the heuristic corresponding to adestroy neighborhoodshould remove a given number
q of variables. The destroy neighborhoods(N−) should be a proper mix of neighborhoods which can
intensify and diversify the search. To diversify the search, one may randomly chooseq decision variables,
i.e. using arandom removalneighborhood. To intensify the search one may try to removeq “critical”
variables, i.e. variables having a large cost or variables spoiling the current structure of the solution (e.g.
edges crossing each other in a Euclidean traveling salesmanproblem). This is known asworst removal
or critical removal. Concrete examples onrandom removalandworst removalneighborhoods in a VRP
context are given in Sections 5.1.1–5.1.2.

One may also choose a number of related variables that are easy to interchange while maintaining
feasibility of the solution. Thisrelated removalneighborhood was introduced by Shaw [53]. More formally
we can measure the relatednessrij of two variablesxi and xj by the deviation of the corresponding
coefficients in the constraint matrixA in problem (18). The smallerrij the more related are variables
xi andxj . How exactlyrij should be defined depends on the concrete problem at hand, andone may even
have several simultaneous neighborhoods defined by variouschoices of the relatedness measure(rij). In
order to choose theq most related variables, one needs to solve the NP-harddispersion-sum problemgiven
by

minimize
n
∑

i=1

n
∑

j=1

rijxixj

subject to
n
∑

j=1

xj = q

xj ∈ {0, 1}, j = 1, . . . , n

(19)

A greedy heuristic for this problem running inO(n3) was presented in [44] together with a more time-
consuming exact algorithm. Ifn is large, it may be too time-consuming even to compute the whole matrix
(rij) and one will instead choose related variables according to some heuristics. Shaw [53] presented an
algorithm running inO(qn) time by initially selecting a variable at random, and then repeatedly selecting
an already selected variablei and finding a variablej which minimizesrij and addingj to the set of chosen
variables. An alternative heuristic is based on a modified Kruskal’s algorithm for the minimum spanning
tree problem, usingrij as edge weights, which stops when a connected component withq or more elements
has been constructed. The variables in this component are set to ⊥. The worst-case running time of this
algorithm isO(n2 log n) as we haven2 edges in Kruskal’s algorithm. Ropke and Pisinger [49] used a
modified version of this algorithm in the VRP for splitting requests on a route into two strongly connected
subsets. It should be noted that solving the dispersion sum problem (19) to optimality seldom would be
a good idea even if it could be done in a very short time. Ifrij is independent of the current solution the
destroy neighborhood obtained by solving the dispersion sum problem to optimality would always assign
⊥ to the same set of variables. Concrete examples on variousrelated removalneighborhoods are given in
Sections 5.1.3–5.1.5.

Following the same idea as inrelated removalone may choose a number of variables having small co-
efficients in the resource constraints in (18), as these generally are easy to interchange and loosely speaking
can fill up unused resource constraints. We denote this strategysmall removal.

Finally, one may usehistory based removalwhere theq variables are chosen according to some histor-
ical information as presented in [49]. The historical information could for example count how often setting
a given variable (or set of variables) to a specific value leads to a bad solution. One may then try to remove
variables that currently are assigned an improper value, based on the historical information. Variants of the
history based removalneighborhood are discussed in Sections 5.1.6–5.1.7.

repair neighborhoods(N+) are typically based on concrete well-performing heuristics for the given
problem. These heuristics can make use of variants of the greedy paradigm, e.g. performing the locally
best choice in each step, or performing the least bad choice in each step. An alternative variant of the
greedy paradigm is to set all variables to their upper bound in problem (18), and repeatedly decrease
the most expensive variable until a feasible solution is obtained. The repair heuristics can also be based on
approximation algorithms or exact algorithms which have been relaxed to obtain faster solution times at the
cost of solution quality. Shaw [53] and Bent and Van Hentenryck [2] proposed more expensive algorithms
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like searchingN+ based on relaxed branch-and-bound methods. Although ALNS mainly is intended
to use cheap heuristics, more expensive search methods can be used if the scores of the corresponding
neighborhoods are normalized with respect to the time consumption. In the context of VRP problems,
repair neighborhoodsare considered in more detail in Section 5.2 discussing both simple greedy approaches
and variants of regret heuristics.

Some optimization problems can be split into a number of sub-problems, where each sub-problem can
be solved individually. Such problems include the Bin Packing Problem in which a number of bins are
to be filled, or the Vehicle Routing Problem in which a number of routes are to be constructed. For such
problems one should decide whether the subproblems should be solved one by one (sequential heuristics)
or all subproblems should be solved at the same time (parallel heuristics). Sequential heuristics are easier
to implement but may have the disadvantage that the last subproblem solved is left with variables that do
not fit well together. This is to some extent avoided in parallel heuristics.

A natural extension to the ALNS framework is to havecoupled neighborhoods. In principle one may,
for each destroy neighborhoodN−

i , define a subsetKi ⊆ {N+} of repair neighborhoods that can be used
with N−

i . The roulette wheel selection of repair neighborhoods willthen only choose a neighborhood in
Ki if N−

i was chosen.
As a special case, one may haveKi = ∅ meaning that the neighborhoodN−

i takes care of both the
destroy and repair steps. One could use an ordinary local search heuristic to compete with the other destroy
and repair neighborhoods, ensuring that a thorough investigation of the solution space close to the current
solution is made from time to time.

For some problems it may be sufficient to have a number of destroy and repair heuristics that are
selected randomly with equal probability, that is without the adaptive layer. We will denote such a heuristic
a Large Multiple-Neighborhood Search(LMNS). The LMNS heuristics share the robustness of the ALNS
heuristics, while having considerably fewer parameters tocalibrate.

4.3 Properties of the ALNS framework

The ALNS framework has several advantages. For most optimization problems we already know a number
of well-performing heuristics which can form the core of an ALNS algorithm. Due to the large neigh-
borhoods and diversity of the neighborhoods, the ALNS algorithm will explore large parts of the solution
space in a structured way. The resulting algorithm becomes very robust, as it is able to adapt to various
characteristics of the individual instances, and seldom istrapped in a local minima.

ALNS is particularly well suited for tightly constrained problems, in which small neighborhoods are
not sufficient to escape a local minima or certain areas of thesolution space. In such problems, the large
neighborhood search makes it possible to change many variables each time to reach new feasible solutions.

The calibration of the ALNS algorithm is quite limited as theadaptive layer automatically adjusts the
influence of each neighborhood used. It is still necessary tocalibrate the individual sub-heuristics used for
searching the destroy and repair neighborhoods, but one maycalibrate these individually or even use the
parameters used in existing algorithms.

In the design of most local search algorithms the researcherhas to choose between a number of possible
neighborhoods. In ALNS the question is not “either-or” but rather “both-and”. As a matter of fact, our
experience is that the more (reasonable) neighborhoods theALNS heuristic makes use of, the better it
performs [49].

5 ALNS applied to the RPDPTW

We will now describe how the general ALNS framework has been adapted to the RPDPTW problem. The
“variables” in the ALNS framework correspond to requests inthe RPDPTW. A destroy neighborhoodN−

consists of removingq requests from the existing routes and assigning them to therequest bank.
The heuristic described in this section is almost identicalto the heuristic used to solve a large class of

vehicle routing problems with backhauls ([50]). One more destroy heuristic has been added (see section
5.1.5) and the formula determining the number of requests toremove has been changed (see section 6.1.1).

110



For completeness we will describe the various heuristics associated with the destroy neighborhoods
in Section 5.1. A repair neighborhoodN+ inserts requests from the request bank into one or more legal
routes. The associated insertion heuristics are describedin Section 5.2. The local search framework used
at the master level is simulated annealing to be described inSection 5.3. Section 5.4 describes the noising
method used to diversify the search of the heuristics. Finally, the scheme used for adjusting the weights in
the roulette wheel selection is described in Section 5.5.

5.1 Request removal

The ALNS heuristic for the RPDPTW makes use of seven different removal heuristics, each searching a
given removal neighborhoodN−. The heuristics take as input a given solutionx and outputsq requests
that have been removed from the routes.

5.1.1 Random removal

The simplest removal heuristic,random removal, selectsq requests at random and removes them from
the solution. This obviously has the effect of diversifyingthe search.

5.1.2 Worst removal

The purpose of theworst removal heuristic is to choose a number of requests that are very expensive,
or which somehow spoil the structure of the current solution. In the RPDPTW it seems reasonable to try to
remove requests with high cost and insert them at another place in the solution to obtain a better solution
value.

Given a requesti served by some vehicle in a solutionx we define the cost of the request∆f−i as
the difference between the value off(x) and the cost of solutionx where requesti is removed completely
from the problem.

Theworst removal heuristic now repeatedly chooses a new requesti, having the largest cost∆f−i

until q requests have been removed. The removal heuristic is randomized, the randomization is controlled
by the parameterp. If p is small, the most expensive request is selected, while lessexpensive requests may
be chosen for larger values ofp with a probability that decreases with the cost∆f−i. We refer to [49] for
additional details.

5.1.3 Related removal

The purpose of therelated removal heuristic is to remove a set of requests that in some sense are
relatedand hence easy to interchange. For the RPDPTW we define the relatednessrij of two ordersi andj
solely by the distance between the requests, as introduced by Ropke and Pisinger [49]. Since each request
i consists of a pickup nodei and a delivery nodei + n we get the expression

rij =
1

D
(d′(i, j) + d′(i, j + n) + d′(i + n, j) + d′(i + n, j + n)) (20)

where the distance measured′(u, v) between two nodes in this context is defined as

d′(u, v) =

{

duv if u andv are not located at a terminal
0 if u or v is located at a terminal

(21)

The motivation for neglecting the distance from a terminal is that the terminal is going to be visited in any
case, and hence should not contribute to the relatedness measure of two requests.

The denominatorD is set to the number of nonzero terms in equation (20), i.e. the number of pickups
and deliveries taking place at a site different from a terminal. Hence if all nodes are different from a
terminal we setD := 4 while if both requests have a pickup at a terminal we setD := 1.

The relatedness measure is used to remove customers as described in Shaw [53]. The algorithm initially
selects a requesti by random. Then it repeatedly chooses an already selected requestj and selects a new
request which is most related toj. The algorithm stops whenq requests have been chosen. Like in the
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worst removal heuristic (Section 5.1.2) the process is controlled by a randomization parameterp. If
p is zero, the most related request is always chosen in the inner loop. If p > 0 a less related request may
be chosen, where the probability of choosing a request decreases with the relatedness measurerij and
increases withp. The algorithm is described in more detail in [49].

5.1.4 Cluster removal

Thecluster removal heuristic is a variant of therelated removal heuristic in which we try
to remove clusters of related requests from a few routes. As amotivation, consider a route where the
requests are grouped into two geographical clusters. When removing requests from such a route it is often
important to remove one of these clusters entirely as the insertion methods otherwise would be prone to
insert the removed requests back into the route. Therelated removal heuristic from Section (5.1.3)
has a tendency to leave requests from such a cluster on the original route so therefore we propose a heuristic
that seeks to remove an entire cluster at once.

Although we could use the same algorithm as above for selecting related requests — just restricted to
a single route — we have chosen to use a heuristic based on strongly connected components, as described
in Section 4.2. We simply run Kruskal’s algorithm for the minimum spanning tree problem (usingrij for
the edge distances) and terminate the algorithm when two connected components remain. One of these
clusters is chosen at random and the requests from the chosencluster are removed. If less thanq requests
have been selected, we randomly pick a removed request and choose a request from a different route, that
is most related to the given request. The route of the new request is partitioned into two clusters and so the
process continues until the desired number of requests has been removed. We refer the reader to Ropke
and Pisinger [50] for more details.

5.1.5 Time-oriented removal

Thetime oriented removal is another variant of therelated removal heuristic. In this heuris-
tic we try to remove requests that are served at roughly the same time as we hope that these requests are
easy to interchange.

The heuristic works as follows. A requestr̃ is chosen at random and theB requests that are closest to
r̃ (according to the distancerij defined in (20)) are marked. We define a time-oriented distance between
two requests as

∆tij = |tpi
− tpj

| + |tdi
− tdj

| (22)

wheretpi
andtdi

are the times of the pickup and the delivery of requesti in the current solution. Among the
B marked requests we select theq − 1 that are closest tõr according to∆tij . The process is controlled by
a randomization parameterp like in therelated removal heuristic described in Section 5.1.3. These
requests are removed together withr̃.

Before running the removal heuristic we first select a subsetof all requests that are geographically
close to the chosen request, as we observed that this selection made the heuristic perform better on large
instances. The reason for this is that if the heuristic only considered requests that are close to the chosen
request time-wise, then only one or two requests would be removed from each route in the larger problems,
and this makes it hard to make any major improvements to the solution.

5.1.6 Historical node-pair removal

It is well-known from several metaheuristics that using historical information in the local search (e.g. the
long term memory or the aspiration level in tabu search) may improve the performance of a local search
algorithm. In the present heuristic we look at the historical success of visiting two nodes right after each
other in a route, while the heuristic in Section 5.1.7 looks at the historical success of servicing two requests
by the same vehicle.

Thehistorical node-pair removal heuristic (denoted theneighbor graph removal heuristic
in [50]) makes use of both historical information and the present solution when removing the requests. With
each pair of nodes(u, v) ∈ A we associate a weightf∗

(u,v) which indicates the best solution value found so
far, in a solution which used edge(u, v). Initially f∗

(u,v) is set to infinity, and each time a new solution is
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found, we update the weightsf∗
(u,v) of all edges used in the given solution, for which the edge weight can

be improved.
We may use the edge weightsf∗

(u,v) to remove requests that seem to be misplaced. The removal
heuristic simply calculates the cost of a request(i, i + n) in the current solution by summing the weights
of edges incident toi andi + n. The most costly request is removed, and the process is repeated untilq
requests have been extracted. To ensure some variation in the extracted requests, randomness is introduced
in the removal process.

5.1.7 Historical request-pair removal

An alternative history-based removal heuristic can make use of the historical success of placing pairs of
requests in the same route. We will call this approachhistorical request-pair removal (de-
notedrequest graph removalin [50]).

For this purpose we introduce the weighth(a,b) for each pair of requests(a, b) ∈ {1, . . . , n} ×
{1, . . . , n}. The weighth(a,b) denotes the number of times the two requestsa andb have been served
by the same vehicle in theB best unique solutions observed so far in the search. Initially h(a,b) is set
to zero, and each time a new unique top-B solution is observed, the weights are incremented and decre-
mented according to the solutions entering and leaving the top-B solutions. An appropriate value forB
was experimentally found to be 100.

The weightsh(a,b) could be used in a similar way as in the historical node-pair removal heuristic
described above, but initial experiments indicated that this was an unpromising approach. Instead, the
graph is used to define the relatedness between two requests,such that two requests are considered to be
related if the weight of the corresponding edge in the request graph is high. This relatedness measure is
used as in the related removal heuristic described in Section 5.1.3.

5.2 Inserting requests

The considered insertion heuristics all construct a numberof routes for the vehicles. As each route can
be considered as an individual sub-problem the heuristics can build the routessequentiallyor in parallel
as discussed in Section 4.2. The sequential heuristics build one route at a time while parallel heuristics
construct several routes at the same time. The heuristics presented in this paper are all parallel, as they are
used in a context where a number of partial routesk ∈ R are given, and a number of unplaced requestsU
is inserted from the request bank.

5.2.1 Basic greedy heuristic

A simple greedy approach is to repeatedly insert a request inthe cheapest possible route. More formally,
let ∆fi,k denote the change in the objective value incurred by inserting requesti at thecheapestposition
in routek. We set∆fi,k = ∞ if requesti cannot be inserted in routek. Following the greedy approach we
calculate

(i, k) := arg min
i∈U,k∈R

∆fi,k (23)

and insert requesti in routek at its minimum cost position. This process continues until all requests have
been inserted or no more requests are feasible. The time complexity of thisbasic greedy heuristic is
decreased by tabulating all values of∆fi,k and noting that only one route is changed in each iteration.

5.2.2 Regret heuristics

An obvious problem with thebasic greedy heuristic is that it often postpones the placement of difficult
requests to the last iterations where we do not have much freedom of action. Theregret heuristic tries
to circumvent the problem by incorporating a kind of look-ahead information when selecting the request
to insert. Regret heuristics have been used by Potvin and Rousseau [45] for the VRPTW and in the context
of the Generalized Assignment Problem by Trick [59].

113



Let ∆f q
i denote the change in the objective value incurred by inserting requesti into its best position

in the qth cheapestroute for requesti. For example∆f2
i denotes the change in the objective value by

inserting requesti in the route where the request can be insertedsecond cheapest. In each iteration, the
regret heuristic chooses to insert the requesti according to:

i := arg max
i∈U

(

∆f2
i − ∆f1

i

)

(24)

The request is inserted in the best possible route at the minimum cost position. In other words, we maximize
the difference of cost of inserting the requesti in its best route and its second best route. We repeat the
process until no more requests can be inserted.

The heuristic can be extended in a natural way to define a classof regret heuristics: theregret-q
heuristic is the construction heuristic that in each construction step chooses to insert requesti given by:

i := arg max
i∈U

(

q
∑

h=2

∆fh
i − ∆f1

i

)

(25)

Ties are broken by selecting the request with smallest insertion cost. The requesti is inserted at its minimum
cost position, in its best route.

The regret heuristic based on criteria (24) is obviously aregret-2 heuristic and thebasic
greedy heuristic from Section 5.2.1 is aregret-1 heuristic due to the tie-breaking rules. Informally
speaking, heuristics withq > 2 investigate the cost of inserting a request on theq best routes and chooses
to insert the request whose cost difference between inserting it into the best route and theq − 1 best routes
is largest. Compared to aregret-2 heuristic,regret-q heuristics with large values ofq discover earlier
when the possibilities for inserting a request at a favorable place becomes limited.

5.3 Master local search framework

At the master level we have chosen to use simulated annealingas our local search framework. Our ac-
ceptance criteria in Line 5 of the main algorithm depicted inFigure 2 thus becomes to accept a candidate
solutionx′ given the current solutionx with probability

e−
f(x′)−f(x)

T , (26)

whereT > 0 is thetemperature. We use a standard exponential cooling rate, starting from the temperature
Tstart and decreasingT according to the expressionT = T · c, wherec is thecooling rate, 0 < c < 1 . We
calculateTstart by inspecting our initial solution. The following method was developed in [50] and works
well when the number of requests in the problems to be solved is relatively constant. First the costz′ of the
initial solution is calculated using a modified objective function. In the modified objective function,Γ (cost
of having requests in the request bank) is set to zero. The start temperature is now set such that a solution
that isw percent worse than the current solution is accepted with probability 0.5. The reason for setting
Γ to zero is that typically this parameter is large and could cause us to set the starting temperature too
high if the initial solution had some requests in the requestbank. Noww is a parameter that has to be set.
We denote this parameter thestart temperature control parameter. We have observed that this approach is
better at coping with instances of different sizes if we divide the start temperature found by the number of
requests in the instance.

5.4 Applying noise to the objective function

As mentioned in Section 4.1 it can be necessary to use noisingor randomization in the destroy and repair
heuristics, as a diversification operator at the master level is not sufficient.

For the RPDPTW problem we have chosen to add a noise term to theobjective function of the insertion
heuristics. Every time we calculate the costC of a request insertion into a route, we add some noiseδ and
calculate a modified insertion costC′ = max{0, C + δ}. The noiseδ is chosen as a random number in the
interval[−Nmax, Nmax], whereNmax = η ·maxi,j∈V {dij}, andη is a parameter that controls the amount
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of noise. We use the maximum distance to make the noise level proportional to the objective value. The
distances form part of the objective function in all problems considered, hence the noise level is somehow
proportional to the objective function.

Every insertion heuristic is split into two heuristics — oneusing noise, and one using the original
objective function only. After selecting which removal andinsertion heuristic to use, it is decided if the
clean or the noise imposed insertion heuristic should be used. This is again done using the roulette wheel
selection principle as we keep track of how well the insertion heuristics with and without noise have been
performing recently. Notice that we do not keep track of how well each individual insertion heuristic is
performing with and without noise, but only the insertion heuristics in general.

5.5 Adaptive weights adjustment

The roulette wheel selection mechanism in the ALNS framework presented in Section 4.1 is based on the
scoresπi of the respective heuristics. A high score corresponds to a successful heuristic, and hence the
heuristic should be chosen with larger probability.

The scores are collected during some small time segments, defined as 100 iterations. Theobserved
scoreπi,j of a heuristici in time segmentj is incremented with the following values depending on the new
solutionx′:

σ1 The last remove-insert operation resulted in a new global best solutionx′.

σ2 The last remove-insert operation resulted in a solutionx′ that has not been accepted before, and the
cost of the new solution is better than the cost of current solution.

σ3 The last remove-insert operation resulted in a solutionx′ that has not been accepted before. The cost
of the new solution is worse than the cost of current solution, but the solution was accepted.

We distinguish between the two latter situations since we prefer heuristics that are able to improve on the
solution, but we also want to reward heuristics that can diversify the search to some extent. We keep track
of visited solutions by assigning a hash key to each solutionand storing the key in a hash table.

At the end of each segment we calculate thesmoothenedscores to be used in the roulette wheel selection
as

πi,j+1 = ρ
πi,j

ai

+ (1 − ρ)πi,j (27)

whereai is the number of times the heuristic has been called in the time segment. Thereaction factorρ
controls how quickly the weight adjustment algorithm reacts to changes in the scores. Ifρ = 1 then the
roulette wheel selection is only based on the scores in the most recent segment, while ifρ < 1 the scores
of past segments is also taken into account. For an illustration of how the scores evolve during a search we
refer the reader to [49].

5.6 Minimizing the number of vehicles used

The presented heuristic minimizes the travel costs, hence in order to minimize the number of vehicles also,
we use a two-stage approach.

Starting from a heuristic solution which makes use ofm vehicles, we repeatedly remove one route and
place the corresponding requests in the request bank. If theALNS heuristic is able to find a solution that
serves all requests we proceed with a lower number of routes.We assign a large costΓ to requests in the
request bank to encourage solutions with all requests serviced.

If the ALNS heuristic fails to find a solution with all requests serviced, the algorithm steps back to the
last feasible solution encountered and proceeds with the second stage of the algorithm which consists of
the ordinary ALNS heuristic with the last found feasible solution as a starting point. For additional detail
on the two-stage algorithm see [49].

A different two-stage approach was used by Bent and Van Hentenryck [2], in which two distinct neigh-
borhoods and metaheuristics were used for the two stages.
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5.7 Initial solution

The initial solution used in the local search is found by a regret-2 heuristic. All requests are initially placed
in the request bank, and the regret-2 heuristic is run in parallel for all vehicles.

6 Computational experiments

6.1 Parameter tuning

In order to keep the parameter tuning to a minimum we have usedalmost the same parameter setting as
determined in [49], with the exception of the cooling ratec and the start temperature control parameter
w. These were calibrated by selecting 5 reasonable values foreach parameter and testing the 25 possible
combinations on 8 VRPTW instances with between 100 and 1000 customers. This was done separately for
both the vehicle minimizing ALNS and the ordinary distance minimizing ALNS, so different values forc
andw are used when trying to find a feasible solution and when minimizing the distance.

6.1.1 Selecting the number of requests to remove

In our past work [49, 50] we have removed up to 100 requests in each iteration. Experiments indicated
that we seldom accepted the moves resulting from such removals as the insertion heuristics are too weak.
Consequently the maximum number of requests that can be removed in a single iteration has been reduced
to 60. It was also observed that moves resulting from removing a small number of requests often were
accepted, but seldom lead to any major improvements of the solution. Therefore we now remove at least
0.1n requests in each iteration. To be precise, the number of requests to remove is found as a random
number betweenmin {0.1n, 30} andmin {0.4n, 60}. That is, for small instances the number of requests
to remove will be in the interval[0.1n, 0.4n] while for larger instances the interval is[30, 60].

6.2 Analysis of typical search

In order to illustrate how the present ALNS heuristic works,we have produced a number of figures by
running the heuristic on a 200 customer VRPTW instance minimizing the traveled distance. All figures are
from the same search.

Figure 3 shows the cost of the accepted solutions and the bestknown solution as a function of the iter-
ation count. The figure is very typical for a Simulated Annealing metaheuristic. Initially very poor moves
are accepted and consequently the graph of accepted solutions is fluctuating wildly. As the temperature
is decreased the fluctuations become smaller and they eventually nearly die out such that only improving
solutions or very mildly deteriorating solutions are accepted.

The next sequence of figures all show the distance between selected solutions. We have chosen to define
the distance between two solutionsx andx′ as the Hamming distance between the corresponding binary
edge-variables. Figure 4 (left) shows the distance betweeneach new accepted solution and the previously
accepted solution (the current solution). The figure illustrates that in the first half of the search the ALNS
can make huge changes to the solution in a single move as discussed in Section 4.3. In the other half of
the search only small moves are accepted. Figure 4 (right) depicts the difference between each proposed
solution and the last accepted solution. The figure shows that large moves are proposed throughout the
search process, but toward the end of the search these large moves are not accepted.

The above observations cause us to suggest some possible improvements to the algorithm: (1) To wards
the end of the search it seems to be beneficial to reduce the number of requestsq that are removed in each
iteration as the simulated annealing framework generally only will accept minor changes. This could speed
up the algorithm or allow us to perform more iterations within the same amount of time. (2) Several moves
have distance zero, meaning that no changes were made to the solution vector. Obviously, such moves
should be avoided, possibly by incorporating a tabu-like principle in the insertion heuristics.

Figure 5 (top left) shows the Hamming distance between the accepted solutions and the previously best
known solution. Every time the distance reaches zero we havemost likely found a new best solution (or
we have returned to the previously best known solution). It is interesting to see how quickly the search
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Figure 3: Solution cost as function of iteration count. Along thex-axis we show the iteration count while
they-axis shows solution cost. The upper graph is the cost of the accepted solutions while the lower graph
is the cost of the currently best known solution.

moves away from the currently best known solution. This behavior is contrary to some of the ideas behind
the Variable Neighborhood metaheuristics and the Noising Method, where one tries to stick around the
currently best known solution or return to it if the current search direction seems fruitless. Also notice that
we move very far away from the best solutions. This can be seenas the number of edges in a solution is
equal to2n + m. The maximum Hamming distance between two solutions is therefore2(2n + m). In
the instance studied in this sectionn = 200 andm = 20, thus the maximum hamming distance for this
instance is 840.

Figure 5 (top right) shows the Hamming distance from each accepted solution and the best solution
found throughout the search. It is interesting to see that this plot is much more steady compared to the plot
in Figure 5 (top left) and that even though we are moving very far away from the previously best known
solution, the distance to the overall best solution (which of course is unknown early in the search) remains
roughly stable.

Figure 5 (bottom) combines the two previous plots. The uppercontours of the two plots fit each other
surprisingly well. This indicates that the ALNS heuristic quickly moves away from the currently best
known solution until the distance to the currently best known solution is roughly the same as the distance
to the final best known solution. The search then visits solutions where the two distances are roughly the
same until a new best solution is found. We believe that the Simulated Annealing framework is responsible
for this behavior.

6.3 Application of the heuristic to standard benchmark problems

In this section we examine how the proposed heuristic performs on standard benchmark instances for the
five problem types considered in this paper. In order to investigate how much influence the number of LNS
iterations has on the solution quality, we have tested two configurations of our algorithm. One version
(ALNS-25K) that does 25000 iterations while minimizing the total traveled distance and one that does
50000 iterations (ALNS-50K). Both configurations use up to 25000 iterations in the vehicle minimization
stage. The cooling ratec in the simulated annealing algorithm described in Section 5.3 was adjusted such
that both configurations go through the same temperature span.

We have applied the heuristic to each instance 5 or 10 times, depending on the instance size. We report
the best solution value out of the 5 or 10 experiments as well as the average solution value.

All experiments were performed on a 3GHz Pentium 4 computer.Detailed results from the experiments
can be found in the appendix. As mentioned before, the same parameter configuration has been used for
all experiments.
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Figure 4:Left: Difference between accepted solutions. The figure shows theHamming distance between
an accepted solution and the last accepted solution.Right: Difference between proposed solution and last
accepted solution. The figure shows the Hamming distance between each proposed solution and the last
accepted solution. Thex-axis shows iteration count and they-axis shows solution distance.
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Figure 5:Top left: Hamming distance between accepted solutions and the currently best known solution.
Top right: Hamming distance between accepted solutions and the best solution found during the search.
Bottom: The two plots showed in the same diagram. Thex-axis shows iteration count and they-axis
shows Hamming distance.
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6.3.1 Vehicle routing problems with time windows (VRPTW)

A large number of metaheuristics have been proposed for solving the VRPTW. Bräysy and Gendreau [8]
have surveyed most of these approaches, and their survey contains 47 metaheuristics. Most of these meta-
heuristics have been applied to theSolomon data set[55]. The Solomon data set contains 56 VRPTW
instances that all contain 100 customers. The instances contain a variety of customer and time window
distributions and have proved to be a challenge for both heuristics and exact methods since their introduc-
tion. Most of the proposed metaheuristics use vehicle minimization as primary objective and travel distance
minimization as secondary objective, we prioritize our objectives in the same way. In this section we com-
pare the ALNS heuristic to the “best” of the previously proposed metaheuristics. It is hard to decide which
of the previously proposed metaheuristics that are the best, as several criteria for comparing the heuristics
could be used. In this paper we have selected the metaheuristics that have been able to reach the minimum
number of total vehicles used for all of the instances in the Solomon data set, as these in a certain sense can
be regarded as the best heuristics in terms of solution quality. Table 1 summarizes this comparison.

The table shows that the ALNS heuristic is able to compete with the best heuristics for the VRPTW
when considering the moderately sized Solomon instances, even though it was not specifically designed for
this problem type. The heuristics by Homberger and Gehring [32] and Bent and Van Hentenryck [2] obtain
slightly better results compared to the best solutions obtained by ALNS-25K, but the papers do not state
how many experiments that were performed to reach these results. On the other hand, ALNS-25K reaches
slightly better solutions than the three remaining heuristics and the computational time is reasonable. The
column showing the average performance of ALNS-25K indicates that a single run of the heuristic can be
performed quite fast but then one should not expect to reach the minimum number of vehicles. It does
not seem worthwhile to spend 50000 iteration instead of 25000 for these rather small problems. During
the calibration of the algorithm we discovered a new best solution to problem R207. This solution can be
found in the Appendix.

When the VRPTW has been solved by exact methods in the literature one has usually considered
minimizing the traveled distance without putting any limits on the number of vehicles. Furthermore all
distances are usually truncated to one decimal (see for example the work by Larsen [39]). In Table 2 we
summarize the result of applying the ALNS-25K heuristic to the Solomon VRPTW instances using the
same objective and rounding criteria as the exact methods. The heuristic has been applied to each instance
10 times and the table reports the best and average performances. The table shows that the heuristic is
able to find solutions that are very close to the optimal solutions and in many cases the heuristic is able to
identify the optimal solution in at least one of the test runs.

The optimal solutions have been collected from Chabrier [10], Cook and Rich [14], Danna and Le Pape
[20], Feilet et al. [24], Irnich and Villeneuve [34], Kallehauge et al. [35], Kohl et al. [36] and Larsen [39].

Larger VRPTW instances have been proposed by Gehring and Homberger [27]. The Gehring/Homberger
data set contains 300 instances with between 200 and 1000 customers. In Tables 3–7 we compare the ALNS
heuristic to the best heuristics that have been applied to these problems. The two heuristics that reach the
best solution quality is the heuristic by Mester and Bräysy [42] and the ALNS heuristic. Overall the ALNS
heuristic is better at minimizing the number of vehicles which is the primary objective of these problems.
The heuristic of Mester and Bräysy is very good at minimizingthe traveled distance though. The exper-
iments show that the time used by the ALNS heuristic scales quite well with the problem size when the
number of iterations is kept fixed. The 50000 iteration ALNS configuration becomes worthwhile for the
larger problems. For problems with 600 customers or more thedifference in total traveled distance ob-
tained by the ALNS-25K and ALNS-50K configurations become quite large, as the simulated annealing
metaheuristic needs more iterations to obtain a good solution for large problems.

The ALNS heuristic has been able to improve the best known solution for 122 out of the 300 large
scale VRPTW instances. The best solutions for the large VRPTW instances obtained by the ALNS-25K
and ALNS-50K configurations are shown in Table 8.

6.3.2 Multi depot vehicle routing problem (MDVRP)

Table 9 shows the results obtained on 33 MDVRP instances usedby Cordeau et al. [17]. Both ALNS
configurations have been applied 10 times to each instance. The results obtained by the ALNS heuristic
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BBB HG B BH IIKMUY ALNS 25K ALNS 50K
R1 11.92 11.92 11.92 11.92 11.92 11.92 12.03 11.92 12.03

1221.10 1212.73 1222.121211.10 1217.40 1213.39 1216.93 1212.39 1215.16
R2 2.73 2.73 2.73 2.73 2.73 2.73 2.75 2.73 2.75

975.43 955.03 975.12 954.27 959.11 958.60 968.01 957.72 965.94
C1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

828.48 828.38 828.38 828.38 828.38 828.38 828.38 828.38 828.38
C2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

589.93 589.86 589.86 589.86 589.86 589.86 589.86 589.86 589.86
RC1 11.50 11.50 11.50 11.50 11.50 11.50 11.60 11.50 11.60

1389.89 1386.44 1389.581384.17 1391.03 1385.39 1386.91 1385.78 1385.56
RC2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25

1159.37 1108.52 1128.38 1124.46 1122.791124.77 1140.06 1123.49 1135.46
CNV 405 405 405 405 405 405 407.5 405 407.5
CTD 57952 57192 57710 57273 57444 57360 57641 57332 57550
CPU P-400 Mhz P-400 Mhz P-200Mhz SU 10 P3 1GhzP4 3Ghz P4 3GhzP4 3Ghz P4 3Ghz
T. (s) 1800 N/A 4950 7200 15000 86 86 146 146
Exp. 3 N/A 1 > 5 1 10 1 10 1

Table 1: Solomon instances with 100 customers. The table compares the ALNS heuristic to the heuristics
by Berger et al. (BBB) [4], Homberger and Gehring (HG) [32], Bräysy (B) [7], Bent and Van Hentenryck
(BH) [2] and Ibaraki et al. (IIKMUY) [33]. The data set is divided into six groups: R1, R2, C1, C2, RC1,
RC2. For each group we report two numbers per heuristic. The top number is the number of vehicles used
and the bottom number is the distance traveled. These numbers have been averaged over all the instance
in the given group. The rows namedCNV andCTD show the cumulative number of vehicles and distances
respectively. The rowCPU shows the computer used in the experiment and the rowT. (s)shows the number
of CPU seconds used for finding the solutions. The last row shows the number of experiments that were
performed in order to obtain the results presented in the table (if multiple experiments were performed, the
table shows the best results obtained). The two columns for the ALNS heuristic show the results obtained
with the 25000 iteration configuration and the 50000 iteration configuration. For each configuration we
show two columns. The first column shows the best result out often experiments, and the second column
show the average solution quality (averaged over the ten experiments). Bold entries mark the best solution
quality obtained among the heuristics in the comparison.

Customers Instances Solved toOptimums Avg. gap Avg. gap Avg. time
optimality found all (%) opt.(%) (s)

25 56 56 56 0.02 0.02 5
50 56 53 48 0.19 0.13 15

100 56 37 27 0.36 0.26 47

Table 2: Comparison of ALNS to exact methods. The columns should be interpreted as follows:Customers
— the number of customers in the test set,Instances— the number of instances in the test set,Solved to
optimality— the number of instances that has been solved to optimality in the literature,Optimums found
— the number of optimal solutions that were found by the heuristic, Avg. gap all (%)— the average gap
over all instances,Avg. gap opt. (%)— the average gap over instances solved to optimality in the literature,
Avg. time (s)— the average time in seconds spent on performing one experiment.
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GH99 GH01 BH LL LC BHD MB ALNS 25K ALNS 50K
R1 18.2 18.2 18.2 18.3 18.2 18.2 18.2 18.2 18.20 18.2 18.20

3705.00 3855.03 3677.96 3736.20 3676.95 3718.303618.68 3635.94 3664.6483631.226 3652.747
R2 4.0 4.0 4.1 4.1 4.0 4.0 4.0 4.0 4.05 4.0 4.05

3055.00 3032.49 3023.62 3023.00 2986.01 3014.282942.92 2950.30 2950.042949.368 2942.594
C1 18.9 18.9 18.9 19.1 18.9 18.9 18.8 18.9 18.90 18.9 18.90

2782.00 2842.08 2726.63 2728.60 2743.66 2749.832717.21 2723.10 2732.4582721.522 2728.382
C2 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.00 6.0 6.00

1846.00 1856.99 1860.17 1854.90 1836.10 1842.65 1833.571833.33 1836.41832.947 1834.675
RC1 18.0 18.1 18.0 18.3 18.0 18.0 18.0 18.0 18.00 18.0 18.00

3555.00 3674.91 3279.99 3385.80 3449.71 3329.62 3221.343233.76 3282.9893212.282 3257.168
RC2 4.3 4.4 4.5 4.9 4.3 4.4 4.4 4.3 4.33 4.3 4.33

2675.00 2671.34 2603.08 2518.70 2613.75 2585.89 2519.792560.59 2592.392556.874 2578.575
CNV 694 696 697 707 694 695 694 694 694.8 694 694.8
CTD 176180 179328 171715 172472 173061 172406168573 169370 170589 169042 169941
CPU P-200Mhz P-400Mhz SU 10 P-545Mhz P-933Mhz A-700Mhz P4 2GhzP4-3Ghz P4-3Ghz P4-3Ghz P4-3Ghz

T. (min) 4x10 4x2.1 n/a 182.1 5x10 2.4 8 4.3 4.3 7.7 7.7
Exp. 1 3 n/a 3 1 3 1 10 1 10 1

Table 3: Gehring/HombergerVRPTW instances with 200 customers. The table compares the ALNS heuris-
tic to the heuristics by Gehring and Homberger (GH99) [27] and (GH01) [28], Bent and Van Hentenryck
(BH) [2], Le Bouthillier and Cranic (LC) [5], Bräysy et al (BHD) [9] and Mester and Bräysy (MB) [42].
The table should be interpreted like Table 1. Notice that computing times are reported in minutes. Entries
of the formx × y appearing in theT. (min) row indicate that the experiment was run fory minutes on a
parallel computer withx processors.

GH99 GH01 BH LL LC BHD MB ALNS 25K ALNS 50K
R1 36.4 36.4 36.4 36.6 36.5 36.4 36.3 36.4 36.40 36.4 36.40

8925.00 9478.22 8713.37 8912.40 8839.28 8692.178530.03 8609.38 8663.57 8540.04 8589.90
R2 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.00 8.0 8.00

6502.00 6650.28 6959.75 6610.60 6437.68 6382.636209.94 6252.01 6309.84 6241.72 6277.07
C1 38.0 38.0 38.0 38.7 37.9 37.9 37.9 37.6 37.62 37.6 37.62

7584.00 7855.82 7220.96 7181.40 7447.09 7230.48 7148.277369.88 7450.84 7290.16 7372.49
C2 12.0 12.0 12.0 12.1 12.0 12.0 12.0 12.0 12.00 12.0 12.00

3935.00 3940.19 4154.40 4017.10 3940.87 3894.483840.85 3849.27 3884.44 3844.69 3875.95
RC1 36.1 36.1 36.1 36.5 36.0 36.0 36.0 36.0 36.00 36.0 36.00

8763.00 9294.99 8330.98 8377.90 8652.01 8305.558066.44 8149.61 8240.28 8069.30 8148.81
RC2 8.6 8.8 8.9 9.5 8.6 8.9 8.8 8.5 8.64 8.5 8.64

5518.00 5629.43 5631.70 5466.20 5511.22 5407.87 5243.065366.82 5388.76 5335.09 5351.56
CNV 1390 1392 1393 1414 1390 1391 1389 1385 1386.6 1385 1386.6
CTD 412270 428489 410112 405656 408281 399132 390386395970 399377 393210 396158
CPU P-200Mhz P-400Mhz SU 10 P-545Mhz P-933Mhz A-700Mhz P4 2GhzP4-3Ghz P4-3GhzP4-3Ghz P4-3Ghz

T. (min) 4x20 4x7.1 n/a 359 5x20 7.9 17 9.7 9.7 15.8 15.8
Exp. 1 3 n/a 3 1 3 1 5 1 5 1

Table 4: Gehring/Homberger VRPTW instances with 400 customers
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GH99 GH01 BH LL LC BHD MB ALNS 25K ALNS 50K
R1 54.5 54.5 55.0 55.2 54.8 54.5 54.5 54.5 54.50 54.5 54.50

20854.00 21864.47 19308.62 19744.80 19869.82 19081.1818358.68 19370.04 19562.3418888.52 19048.49
R2 11.0 11.0 11.0 11.1 11.2 11.0 11.0 11.0 11.00 11.0 11.00

13335.00 13656.15 14855.43 13592.40 13093.97 13054.83 12703.52 12729.51 12826.3912619.26 12721.32
C1 57.9 57.7 57.8 58.2 57.9 57.8 57.8 57.5 57.56 57.5 57.56

14792.00 14817.25 14357.11 14267.30 14205.58 14165.90 14003.09 14125.94 14212.7114065.89 14098.04
C2 17.9 17.8 17.8 18.2 17.9 18.0 17.8 17.5 17.80 17.5 17.80

7787.00 7889.96 8259.04 8202.60 7743.92 7528.73 7455.837891.70 7834.727801.296 7682.61
RC1 55.1 55.0 55.1 55.5 55.2 55.0 55.0 55.0 55.00 55.0 55.00

18411.00 19114.02 17035.91 17320.00 17678.13 16994.2216418.63 16846.71 17006.9416594.94 16722.51
RC2 11.8 11.9 12.4 13.0 11.8 12.1 12.1 11.6 11.78 11.6 11.78

11522.00 11670.29 11987.89 11204.90 11034.71 11212.36 10677.46 10922.44 10938.3010777.12 10828.45
CNV 2082 2079 2091 2112 2088 2084 2082 2071 2076.4 2071 2076.4
CTD 867010 890121 858040 843320 836261 820372 796172818863 823814 807470 811014
CPU P-200Mhz P-400Mhz SU 10 P-545Mhz P-933Mhz A-700Mhz P4 2GhzP4-3Ghz P4-3Ghz P4-3Ghz P4-3Ghz

T. (min) 4x30 4x12.9 n/a 399.8 5x30 16.2 40 10.5 10.5 18.3 18.3
Exp. 1 3 n/a 3 1 3 1 5 1 5 1

Table 5: Gehring/Homberger VRPTW instances with 600 customers.

GH99 GH01 BH LL LC BHD MB ALNS 25K ALNS 50K
R1 72.8 72.8 72.7 73.0 73.1 72.8 72.8 72.8 72.80 72.8 72.80

34586.00 34653.8833337.91 33806.34 33552.40 32748.06 31918.4732697.85 32905.5232316.79 32528.76
R2 15.0 15.0 15.0 15.1 15.0 15.0 15.0 15.0 15.00 15.0 15.00

21697.00 21672.85 24554.63 21709.39 21157.56 21170.1520295.28 20477.77 20627.4020353.51 20499.72
C1 76.7 76.1 76.1 77.4 76.3 76.3 76.2 75.6 75.66 75.6 75.66

26528.00 26936.68 25391.67 25337.02 25668.82 25170.88 25132.27 25365.59 25547.8225193.13 25269.64
C2 24.0 23.7 24.4 24.4 24.1 24.2 23.7 23.7 23.98 23.7 23.94

12451.00 11847.92 14253.83 11956.60 11985.11 11648.9211352.29 11985.80 11999.2811725.46 11741.73
RC1 72.4 72.3 73.0 73.2 72.3 73.0 73.0 73.0 73.00 73.0 73.00

38509.00 40532.35 30500.15 31282.5437722.62 30005.95 30731.0729864.06 30016.05 29478.3 29625.04
RC2 16.1 16.1 16.6 17.1 15.8 16.3 15.8 15.7 15.82 15.7 15.82

17741.00 17941.23 18940.84 17561.22 17441.60 17686.65 16729.18 16870.87 17022.3316761.95 16852.95
CNV 2770 2760 2778 2802 2766 2776 2765 2758 2762.6 2758 2762.2
CTD 1515120 1535849 1469790 1416531 1475281 1384306 13615861372619 1381184 1358291 1365178
CPU P-200Mhz P-400Mhz SU 10 P-545Mhz P-933Mhz A-700Mhz P4-2GhzP4-3Ghz P4-3Ghz P4-3Ghz P4-3Ghz

T. (min) 4x40 4x23.2 n/a 512.9 5x40 26.2 145 13.5 13.5 22.7 22.7
Exp. 1 3 n/a 3 1 3 1 5 1 5 1

Table 6: Gehring/Homberger VRPTW instances with 800 customers

GH99 GH01 BH LL LC BHD MB ALNS 25K ALNS 50K
R1 91.9 91.9 92.8 92.7 92.2 92.1 92.1 92.2 92.30 92.2 92.30

57186.00 58069.61 51193.47 50990.80 55176.95 50025.64 49281.4852131.96 51900.5350751.25 50584.55
R2 19.0 19.0 19.0 19.0 19.2 19.0 19.0 19.0 19.00 19.0 19.00

31930.00 31873.62 36736.97 31990.90 30919.77 31458.23 29860.32 30108.84 30327.3429780.82 30016.08
C1 96.0 95.4 95.1 96.3 95.3 95.8 95.1 94.6 94.72 94.6 94.72

43273.00 43392.59 42505.35 42428.50 43283.92 42086.77 41569.67 42123.87 42266.4241877.00 42034.65
C2 30.2 29.7 30.3 30.8 29.9 30.6 29.7 29.7 29.90 29.7 29.86

17570.00 17574.72 18546.13 17294.90 17443.50 17035.8816639.54 17307.16 17589.7016840.37 17052.62
RC1 90.0 90.1 90.2 90.4 90.0 90.0 90.0 90.0 90.00 90.0 90.00

50668.00 50950.14 48634.15 48892.40 49711.36 46736.9245396.41 47735.43 48168.7446752.15 47081.64
RC2 19.0 18.5 19.4 19.8 18.5 19.0 18.7 18.3 18.46 18.3 18.46

27012.00 27175.98 29079.78 26042.30 26001.11 25994.12 25063.51 25267.93 25466.1325090.88 25185.45
CNV 3461 3446 3468 3490 3451 3465 3446 3438 3443.8 3438 3443.4
CTD 2276390 2290367 2266959 2176398 2225366 2133376 20781102146752 2157189 2110925 2119550
CPU P-200Mhz P-400Mhz SU 10 P-545Mhz P-933Mhz A-700Mhz P4 2GhzP4-3Ghz P4-3Ghz P4-3Ghz P4-3Ghz

T. (min) 4x50 4x30.1 n/a 606.3 5x50 39.6 600 16 16 26.6 26.6
Exp. 1 3 n/a 3 1 3 1 5 1 5 1

Table 7: Gehring/Homberger VRPTW instances with 1000 customers.
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R1 R2 C1 C2 RC1 RC2
# Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist.

200 customers
1 20 4785.96 4 4563.55 20 2704.57 6 1931.44 18 3647.56 6 3126.03
2 18 4059.57 4 3650.54 18 2943.83 6 1863.16 18 3269.91 5 2828.39
3 18 3387.64 4 2892.07 18 2710.21 6 1776.96 18 3034.45 4 2613.12
4 18 3086.11 4 1981.30 18 2644.92 6 1713.46 18 2869.74 4 2052.74
5 18 4125.19 4 3377.18 20 2702.05 6 1878.85 18 3430.03 4 2912.13
6 18 3586.80 4 2929.72 20 2701.04 6 1857.35 18 3357.90 4 2975.13
7 18 3160.44 4 2456.71 20 2701.04 6 1849.46 18 3233.29 4 2539.85
8 18 2971.66 4 1849.87 19 2775.48 6 1820.53 18 3110.46 4 2314.61
9 18 3802.55 4 3113.74 18 2687.83 6 1830.05 18 3114.02 4 2175.98

10 18 3312.44 4 2666.10 18 2644.25 6 1808.21 18 3020.24 4 2015.61
400 customers

1 40 10432.30 8 9338.49 40 7152.06 12 4116.3336 8813.43 11 6834.02
2 36 9115.68 8 7649.87 36 7733.55 12 3930.05 36 8118.43 9 6355.59
3 36 7988.22 8 5998.04 36 7082.13 12 3775.32 36 7663.73 8 5055.02
4 36 7415.81 8 4326.48 36 6816.17 12 3543.60 36 7368.47 8 3647.39
5 36 9479.10 8 7252.64 40 7152.06 12 3946.14 36 8426.57 9 6119.44
6 36 8556.38 8 6212.37 40 7153.4512 3875.94 36 8390.24 8 5997.24
7 36 7725.97 8 5136.74 39 7546.78 12 3894.98 36 8223.65 8 5476.57
8 36 7390.76 8 4055.22 37 7546.32 12 3796.00 36 7922.67 8 4877.39
9 36 8970.98 8 6507.40 36 7573.18 12 3881.21 36 7953.208 4601.30

10 36 8325.16 8 5894.40 36 7145.92 12 3687.13 36 7774.83 8 4355.52
600 customers

1 59 21677.41 11 18837.28 60 14095.64 18 7780.84 55 17751.33 15 13163.03
2 54 20045.49 11 15069.24 56 14174.12 17 8799.3855 16548.43 12 11853.72
3 54 17733.91 11 11291.52 56 13803.50 17 7604.00 55 15499.02 11 9863.35
4 54 16374.29 11 8163.24 56 13578.66 17 6993.77 55 15072.90 11 7231.64
5 54 21243.24 11 15418.00 60 14085.72 18 7578.12 55 17401.34 12 12560.43
6 54 18948.53 11 12936.28 60 14089.66 18 7554.61 55 17355.10 11 12282.52
7 54 17438.28 11 10269.96 58 15017.03 18 7520.3455 17058.40 11 11052.49
8 54 16146.17 11 7752.78 57 14343.05 17 8696.1555 16510.65 11 10488.75
9 54 20375.70 11 13885.52 56 13767.45 18 7356.19 55 16435.7111 9882.71

10 54 18902.19 11 12568.79 56 13688.57 17 7938.94 55 16316.51 11 9340.06
800 customers

1 80 37492.04 15 28822.48 80 25184.38 24 11664.0073 31275.38 19 20954.95
2 72 33816.69 15 23274.22 74 25536.76 24 11428.07 73 29172.08 17 18032.89
3 72 30317.49 15 18078.82 72 24629.86 24 11184.67 73 28164.66 15 14800.78
4 72 28568.78 15 13413.79 72 23938.33 23 10999.42 73 27201.39 15 11368.19
5 72 35503.63 15 25077.09 80 25166.28 24 11451.57 73 30548.23 16 19180.13
6 72 32360.07 15 20969.81 80 25160.85 24 11403.57 73 30511.07 15 19075.89
7 72 29979.63 15 16977.49 79 25425.92 24 11412.08 73 30007.8215 17329.32
8 72 28341.21 15 12945.52 75 25450.99 23 13878.4073 29547.96 15 16226.78
9 72 34218.41 15 22877.21 72 25737.46 24 11650.10 73 29360.93 15 15687.20

10 72 32569.97 15 21092.27 72 25697.68 23 12103.56 73 28993.52 15 14944.14
1000 customers

1 100 54720.19 19 43264.68100 42478.95 30 16879.24 90 48933.68 21 30396.13
2 91 55428.79 19 34417.47 91 42249.6029 17563.06 90 46165.33 18 27552.05
3 91 49634.84 19 25400.16 90 40376.43 30 16109.71 90 44014.81 18 20811.18
4 91 45303.47 19 18332.77 90 39980.07 29 16011.3090 42607.34 18 16007.59
5 92 53089.15 19 37746.01100 42469.18 30 16596.69 90 48934.53 18 28368.48
6 91 54555.32 19 30778.85100 42471.29 30 16369.10 90 48766.98 18 28746.61
7 91 48141.47 19 23991.71 99 42673.51 31 16590.48 90 48005.94 18 26765.43
8 91 44853.70 19 17844.36 95 42359.27 29 18407.27 90 47122.61 18 24961.29
9 92 52015.72 19 34349.70 91 41482.00 30 16294.72 90 46889.79 18 24113.72

10 92 49769.85 19 31682.52 90 42214.60 29 17582.15 90 46080.51 18 23056.75

Table 8: The table shows the best solutions to large VRPTW instances identified by the ALNS heuristic.
The first column shows the problem number. The columnsveh.anddist. show the number of vehicles and
total distance traveled in the best solution found. The table is grouped by instance type and instance size.
Bold entries indicate a best solution (either a tie with one of the heuristics from the literature or a new best
solution).
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are compared to the best results obtained by heuristics proposed by Chao et al. [11], Renaud et al. [48] and
Cordeau et al. [17]. The heuristic that previously has achieved the best solution quality is the one proposed
by Cordeau et al. The cost of a solution is defined as the total distance traveled by the vehicles. The table
shows that the ALNS heuristic has been able to improve upon the best solution for a considerable number
of instances. Each configuration has found 14 new best solutions, but as most of these overlap, the total
number of new best solutions is 15. The individual improvements are typically rather small though. The
table also shows that the ALNS heuristic is quite stable as the average gap from the best known solution
never surpasses 2% and 1% in the ALNS-25K and ALNS-50K configurations, respectively. It should be
mentioned that the ALNS heuristic is slower than the previously proposed heuristics. The ALNS-25K and
ALNS-50K configurations use on average two and four minutes respectively to perform one experiment
on a 3GHz Pentium 4. The heuristic by Cordeau et al. on averageused 11.7 minutes to perform one
experiment on a Sun SPARCstation 10 which is considerably slower than our computer.

6.3.3 Site dependent vehicle routing problem (SDVRP)

The heuristic has been applied to the same test instances as used by [18]. The results obtained on the
SDVRP instances are summarized in Table 10. The results are promising as the average solution quality of
ALNS-25K overall is better than results previously published. Also the sum of the costs of the best known
solutions found by the ALNS-50K configuration is more than 2%better than the previous best known
solution and the best known solution was improved for 30 out of the 35 instances. The computational time
needed for performing one experiment with the ALNS-25K configuration seems to be roughly comparable
with the time needed for performing one experiment with the heuristic proposed by Cordeau and Laporte
[18]. The ALNS-25K configuration spends on average 1.4 minutes to perform one experiment while the
heuristic by Cordeau and Laporte spent around 12 minutes to perform the same task on a Sun Ultra 2, 300
MHz. It should be mentioned that the problem PR02 caused the ALNS heuristic some difficulties, as it
was only able to find a feasible solution in one out of ten experiments for the ALNS-25K configuration and
three out of ten experiments for the ALNS-50K configuration.

6.3.4 Capacitated vehicle routing problem (CVRP)

For the CVRP we have chosen to test the ALNS heuristic on threedatasets. The first dataset was proposed
by Christofides et al. [13] and contains instances with between 50 and 200 customers. The second dataset
was proposed by Golden et al. [30] and contains instances with up to 483 customers. The last dataset was
proposed by Li et al. [40] and contains instances with up to 1200 customers. These are the so-far largest
instances that the ALNS heuristic has been applied to. Table11 summarizes these experiments. Notice
that we only compare the ALNS heuristic to a subset of all the CVRP heuristics that have been proposed
in the literature. The heuristics used for benchmarking arethe most recent heuristics that were surveyed by
Cordeau et al. [16].

The table shows that the ALNS heuristic cannot compete with the well-performing heuristic by Mester
and Bräysy [42], but its performance is comparable to the rest of the heuristics. For the last dataset, the
heuristic proposed by Li et al. must be considered to be the best as it is very fast compared to the ALNS
heuristic although the ALNS heuristic overall is able to reach better solutions. We discovered one new best
solution for the Golden et al. dataset and three new best solutions for the Li et al. dataset.

6.3.5 Open vehicle routing problem (OVRP)

The results on the OVRP are summarized in Table 12. The heuristic was tested on the same 16 instances
that were used by Brandão [6] and Fu et al. [25]. The primary objective considered was to minimize
the number of vehicles used, while the secondary objective was to minimize the traveled distance. The
solutions obtained by the ALNS heuristic are promising as the best known solution to 11 out of the 16
instances has been improved. The running time of the ALNS heuristic is comparable to the two other
heuristics: The configuration of Brandão’s heuristic that obtains the best results spends on average 9.6
minutes to solve an instance on a 500MHz Pentium III. In the paper by Fu et al. two configurations of their
heuristic are tested. These configurations spend on average6.6 and 13.9 minutes respectively to solve an
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instance on a 600 MHz Pentium II. The ALNS-25K and ALNS-50K configurations use 1.4 and 2.3 minutes
respectively to solve an instance on a 3GHz Pentium IV.

6.3.6 Computational results conclusion

The computational results presented in this section are very encouraging. The results show that the general
ALNS heuristic is on par with the best specialized heuristics for the VRPTW and that the heuristic currently
is the best when it comes to minimizing the number of vehiclesin large VRPTW instances. One should
keep in mind that numerous specialized heuristics have beenproposed for the VRPTW making it difficult
for a general heuristic to compete on these instances.

For the MDVRP, SDVRP and OVRP the ALNS heuristic has been ableto find many new best solutions
and the results on the SDVRP are especially promising. For the CVRP the proposed heuristic is able to
compete with many of the most recent heuristics, but it is outperformed by a more specialized heuristic
for this problem. Nevertheless, a couple of new best solutions were found for this problem type also. One
should also keep in mind that the heuristic was not tuned for each problem type, but a general parameter
setting was used for all experiments.

The comparison between the fast and the slow version of the ALNS heuristic showed that it did not
pay off to use the ALNS-50K variant for the smaller instances, while for instances with around 400 to 600
or more customers it seemed worthwhile to use the ALNS-50K configuration. Consequently, it might be
useful to use a variable number of iterationsI which depends on the numbern of requests. E.g.I :=
20000 + 50n.

7 Conclusion

A new general heuristic framework, denoted Adaptive Large Neighborhood Search has been presented.
The framework has been used to solve several variants of vehicle routing problems in the present paper as
well as in [49, 50]. This includes the vehicle routing problem with time windows (VRPTW), the capacitated
vehicle routing problem (CVRP), the multi-depot vehicle routing problem (MDVRP), the site dependent
vehicle routing problem (SDVRP), the open vehicle routing problem (OVRP), the pickup and delivery
problem with time windows (PDPTW), the vehicle routing problem with backhauls (VRPB), the mixed
vehicle routing problem with backhauls (MVRPB), the multi-depot mixed vehicle routing problem with
backhauls (MDMVRPB), the vehicle routing problem with backhauls and time windows (VRPBTW), the
mixed vehicle routing problem with backhauls and time windows (MVRPBTW) and the vehicle routing
problem with simultaneous deliveries and pickups (VRPSDP).

Due to the generality of the ALNS framework and the encouraging results demonstrated for a wide
spectrum of VRP problems, we believe that ALNS should be considered as one of the standard frameworks
for solving large-sized optimization problems.

Supply chain management is a research area getting increasing attention [37]. By co-ordinating activ-
ities in the supply chain, companies can rationalize the process resulting in mutual gains. If the involved
companies co-ordinate their transportation activities wewill see a need for solving mixed transportation
problems, where the instances for example consist of a mixture of PDPTW, MDVRP and SDVRP prob-
lems. In order to handle future changes in the distribution structure, these algorithms need to be stable for
various input types, and should not need to be tuned for particular problem characteristics. It should be
clear that the ALNS framework is very promising for these such types.

In conclusion we may add an interesting observation: We haveseen that a mixture of good and less good
heuristics lead to better solutions than using good heuristics solely. It is however necessary to hierarchically
control the search, such that well-performing heuristics are given most influence, but such that all heuristics
participate in the solution process. Using this principle one gets a robust and well-performing solution
approach.
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9 Appendix

New best solution to the Solomon R207 instance

Route Length Visit sequence
1 437.339 42 92 45 46 36 64 11 62 88 30 20 65 71 9 81 34 78 79 3 76 28 53 40 2 87 57

41 22 73 21 72 74 75 56 4 25 55 54 80 68 77 12 26 58 13 97 37 100 98 93 59
95 94

2 453.269 27 1 69 50 33 29 24 39 67 23 15 43 14 44 38 86 16 61 91 85 99 96 6 84 8 82 7
48 47 49 19 10 63 90 32 66 35 51 70 31 52 18 83 17 5 60 89

Total length: 890.61

Full VRPTW tables

The full tables documenting the VRPTW experiments described in section 6.3.1 can be found in Tables 13
– 18.

Tables 19 – 21 contain detailed result from the experiment comparing the ALNS heuristic to exact
methods.

Full CVRP tables

The detailed results for the CVRP experiments described in section 6.3.4 can be found in Tables 22 – 24.
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Best known ALNS 25K ALNS 50K
n t type cost ref avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s)

P01 50 4 C 576.87 CGW 576.87 576.87 0.00 14 576.87 576.87 0.00 29
P02 50 4 C 473.53 RLB 473.53 473.53 0.00 14 473.53 473.53 0.00 28
P03 75 2 C 641.19 CGW 641.19 641.19 0.00 32 641.19 641.19 0.00 64
P04 100 2 C 1001.59 CGL 1008.49 1001.59 0.74 42 1006.09 1001.04 0.50 88
P05 100 2 C 750.03 CGL 753.04 751.86 0.40 58 752.34 751.26 0.31 120
P06 100 3 C 876.5 RLB 884.36 880.42 0.90 47 883.01 876.70 0.74 93
P07 100 4 C 885.8 CGL 889.14 881.97 0.81 43 889.36 881.97 0.84 88
P08 249 2 CD 4437.68 CGL 4426.86 4387.38 0.90 166 4421.03 4390.80 0.77 333
P09 249 3 CD 3900.22 CGL 3902.18 3874.75 0.74 182 3892.50 3873.64 0.49 361
P10 249 4 CD 3663.02 CGL 3676.93 3655.18 0.74 180 3666.85 3650.04 0.46 363
P11 249 5 CD 3554.18 CGL 3592.82 3552.27 1.32 174 3573.23 3546.06 0.77 357
P12 80 2 C 1318.95 RLB 1319.70 1318.95 0.06 38 1319.13 1318.95 0.01 75
P13 80 2 CD 1318.95 RLB 1321.10 1318.95 0.16 30 1318.95 1318.95 0.00 60
P14 80 2 CD 1360.12 CGL 1360.12 1360.12 0.00 29 1360.12 1360.12 0.00 58
P15 160 4 C 2505.42 CGL 2517.96 2505.42 0.50 125 2519.64 2505.42 0.57 253
P16 160 4 CD 2572.23 RLB 2577.28 2572.23 0.20 92 2573.95 2572.23 0.07 188
P17 160 4 CD 2709.09 CGL 2709.65 2709.09 0.02 90 2709.09 2709.09 0.00 179
P18 240 6 C 3702.85 CGL 3751.85 3727.58 1.32 209 3736.53 3702.85 0.91 419
P19 240 6 CD 3827.06 RLB 3846.35 3839.36 0.50 158 3838.76 3827.06 0.31 315
P20 240 6 CD 4058.07 CGL 4065.32 4058.07 0.18 151 4064.76 4058.07 0.16 300
P21 360 9 C 5474.84 CGL 5576.82 5519.47 1.86 293 5501.58 5474.84 0.49 582
P22 360 9 CD 5702.16 CGL 5731.10 5714.46 0.51 228 5722.19 5702.16 0.35 462
P23 360 9 CD 6095.46 CGL 6107.84 6078.75 0.48 223 6092.66 6078.75 0.23 443
PR01 48 4 CD 861.32 CGL 861.32 861.32 0.00 16 861.32 861.32 0.00 30
PR02 96 4 CD 1307.61 CGL 1311.54 1307.34 0.32 52 1308.17 1307.34 0.06 103
PR03 144 4 CD 1806.6 CGL 1810.90 1806.53 0.24 106 1810.66 1806.60 0.23 214
PR04 192 4 CD 2072.52 CGL 2080.55 2066.64 0.95 146 2073.16 2060.93 0.59 296
PR05 240 4 CD 2385.77 CGL 2352.59 2341.65 0.63 188 2350.31 2337.84 0.53 372
PR06 288 4 CD 2723.27 CGL 2695.15 2685.35 0.36 232 2695.74 2687.60 0.39 465
PR07 72 6 CD 1089.56 CGL 1089.56 1089.56 0.00 29 1089.56 1089.56 0.00 58
PR08 144 6 CD 1666.6 CGL 1677.31 1665.80 0.75 105 1675.74 1664.85 0.65 207
PR09 216 6 CD 2153.1 CGL 2148.85 2136.42 0.58 173 2144.84 2136.42 0.39 350
PR10 288 6 CD 2921.85 CGL 2913.34 2889.49 0.83 228 2905.43 2889.82 0.55 455
Tot. 80394 80651.59 80249.57 3894 80448.26 80133.89 7809
Avg. 0.52 118 0.34 237
< PB 14 14
#B 18 20 27

Table 9: Multi depot vehicle routing problems. The leftmostcolumn shows the problem name, while the
rest of the table is divided into three major columns that display the previously best known results and the
results obtained by the ALNS-25K and ALNS-50K configurations. The sub columns should be interpreted
like this: n — number of customers,t — number of depots,type— the type of the instance (C indicates
that the instance is capacity constrained, whileD indicates that route duration constraints are present),cost
— the cost of the previously best known solution (the cost is calculated as the total distance traveled),ref
— where the solution was first reported. The following abbreviations are used:CGW— Chao et al. [11],
RLB— Renaud et al. [48],CGL — Cordeau et al. [17]. The last 10 instances were introduced by Cordeau
et al. [17] and the two other heuristics have not been appliedto these instances. The columnsbest sol.
andavg. sol.show the cost of the best solution and the average cost of the solutions obtained during 10
experiments.avg. gapshows how far the average solution cost is from the best knownsolution.avg. time
shows how much time the heuristic spends in one experiment. The rowsTot. andAvg. sums and averages
key columns."<PB" shows how many times the best solution found by the ALNS configuration was better
than the previous best known solution and#Bshows the number of best known solutions obtained. Entries
written in bold indicate best known solutions.
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Best known ALNS 25K ALNS 50K
n t cost ref avg. best avg. avg. avg. best avg. avg.

sol. sol. gap time sol. sol. gap time
(%) (s) (%) (s)

P01 50 3 642.66 CL 645.04 640.32 0.74 10 642.93 640.32 0.41 20
P02 50 2 598.1 CL 599.40 598.10 0.22 10 598.82 598.10 0.12 19
P03 75 3 959.36 CL 962.36 958.14 0.56 20 963.14 957.04 0.64 40
P04 75 2 854.43 CL 858.05 854.43 0.42 18 856.22 854.43 0.21 36
P05 100 3 1020.22 CL 1012.46 1007.51 0.89 34 1009.08 1003.57 0.55 68
P06 100 2 1036.02 CL 1034.09 1028.70 0.54 35 1032.67 1028.52 0.40 69
P07 27 3 391.3 CGW 391.30 391.30 0.00 4 391.30 391.30 0.00 8
P08 54 3 664.46 CGW 664.46 664.46 0.00 12 664.46 664.46 0.00 24
P09 81 3 948.23 CGW 958.69 948.23 1.10 24 961.36 948.23 1.38 47
P10 108 3 1223.88 CL 1229.42 1218.75 0.88 38 1225.28 1218.75 0.54 76
P11 135 3 1464.98 CL 1488.28 1468.38 1.70 58 1475.85 1463.33 0.86 116
P12 162 3 1695.67 CL 1697.98 1690.56 1.17 78 1689.62 1678.40 0.67 157
P13 54 3 1196.73 CL 1194.40 1194.18 0.02 12 1194.91 1194.18 0.06 24
P14 108 3 1962.66 CL 1961.11 1960.62 0.02 36 1960.83 1960.62 0.01 72
P15 162 3 2751.45 CL 2712.10 2695.22 1.01 77 2701.61 2685.09 0.61 152
P16 216 3 3491.18 CL 3421.74 3402.94 0.75 109 3411.50 3396.36 0.45 213
P17 270 3 4230.96 CL 4109.62 4084.92 0.60 146 4114.26 4085.61 0.72 291
P18 324 3 4929.71 CL 4821.55 4775.35 1.39 177 4795.31 4755.50 0.84 346
P19 100 3 850.39 CL 852.09 846.35 0.71 43 848.54 846.07 0.29 85
P20 150 3 1046.14 CL 1048.75 1042.21 1.74 83 1042.10 1030.78 1.10 168
P21 199 3 1337.83 CL 1281.58 1272.41 0.77 110 1283.03 1271.75 0.89 217
P22 120 3 1012.17 CL 1010.30 1008.78 0.16 65 1008.81 1008.71 0.01 130
P23 100 3 818.75 CL 807.67 803.29 0.55 37 807.00 803.29 0.46 73
PR01 48 4 1384.15 CL 1387.37 1380.77 0.48 10 1393.85 1380.77 0.95 19
PR02 96 4 2320.97 CL 2311.54 2311.54 0.00 32 2330.60 2311.54 0.82 63
PR03 144 4 2623.31 CL 2608.31 2590.01 0.71 71 2607.66 2602.13 0.68 140
PR04 192 4 3500.79 CL 3510.26 3481.44 1.04 98 3489.51 3474.01 0.45 191
PR05 240 4 4479.34 CL 4430.28 4382.65 1.09 123 4431.16 4416.38 1.11 251
PR06 288 4 4546.79 CL 4475.52 4452.93 0.70 159 4465.18 4444.52 0.47 314
PR07 72 6 1955.11 CL 1926.52 1889.82 1.94 19 1916.50 1889.82 1.41 39
PR08 144 6 3082.32 CL 3001.88 2976.76 0.84 66 3007.99 2977.50 1.05 135
PR09 216 6 3664.22 CL 3581.58 3548.22 1.28 113 3567.15 3536.20 0.88 226
PR10 288 6 4739.43 CL 4675.65 4646.96 0.62 162 4673.67 4648.76 0.57 322
PR11 1008 4 13227.96 CL 12987.58 12888.47 2.11 433 12810.71 12719.65 0.72 847
PR12 720 6 9621.99 CL 9510.37 9437.14 1.30 332 9437.56 9388.07 0.53 658
Tot. 90274 89169.30 88541.88 2853 88810.17 88273.77 5658
Avg. 0.80 81 0.60 162
< PB 29 30
#B 5 18 30

Table 10: Site dependent vehicle routing problems. The table should be interpreted like Table 9. Columnt
shows the number of vehicle types.CL refers to the the heuristic by Cordeau and Laporte [18] andCGW
refers to the heuristic by Chao et al [12]. The ALNS heuristicwas applied 10 times for each problem.
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Christofides Golden et al. Li et al.
Heuristic CPU % Minutes % Minutes % Minutes

TV P-200MHz 0.64 3.84 2.88 17.55 - -
LGV Athlon 1Ghz - - 1.05 - 1.20 3.16

CGLM P4-2GHz 0.56 24.62 1.46 56.11 - -
EOS P3-733MHz 0.24 30.95 3.77 137.95 - -

P P3-1GHz 0.24 5.19 0.92 66.90 - -
TK P2-400MHz 0.23 5.22 - - - -

MB Best P4-2GHz 0.03 7.72 0.01 72.94 - -
MB Fast P4-2GHz 0.07 0.27 0.94 0.63 - -

BB P-400MHz 0.49 21.25 - - - -
RDH P-900Mhz - - 0.67 49.33 - -

ALNS 25K Best of 10 P4-3GHz 0.15 9.33 0.67 53.00 0.88 243.17
ALNS 25K Avg. P4-3GHz 0.39 0.93 1.25 5.30 2.40 24.32

ALNS 50K Best of 10 P4-3GHz 0.11 17.50 0.49 107.67 0.50 497.90
ALNS 50K Avg. P4-3GHz 0.31 1.75 1.02 10.77 1.90 49.79

14 instances 20 instances 12 instances
50-200 customers 240-483 customers 560-1200 customers

Table 11: Capacitated vehicle routing problems. The table compares the ALNS heuristic to nine heuristics
proposed in the literature recently. The first column indicates the heuristic considered.TV — granular tabu
search by Toth and Vigo [58],LGV — variable-length neighbor list record-to-record travel heuristic by Li
et al. [40],CGLM — unified tabu search by Cordeau et al. [17, 19],EOS— very large scale neighborhood
search by Ergun et al [23],P — evolutionary algorithm by Prins [46],TK — bone route heuristic by
Tarantilis and Kiranoudis [57],MB — AGES heuristic by Mester and Bräysy [42] (two configurations
of this heuristic is included in the table),BB — hybrid genetic algorithm by Berger and Barkaoui [3],
RDH — ants system algorithm by Reimann et al. [47]. The table contains four rows for the ALNS
heuristic. For each of the configurations ALNS-25K and ALNS-50K we report the best solution quality
in ten experiments and the average solution quality (averaged over the same ten experiments). TheCPU
column lists the CPU used,P is used as an abbreviation for Pentium. The rest of the table contains three
major columns, one for each dataset. For each of the datasetswe report the gap between the solution
obtained by the heuristic and the best known solution and we report the time spend on average by the
heuristic to solve one instance. When reporting solution times for finding the best solution of ten runs, the
time of all runs has been included. The ALNS heuristic is the only heuristic that has been applied to all
datasets, which explains the missing entries. It should be noted that some of the numbers reported in the
table were obtained from the survey by Cordeau et al. [16].
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Best known ALNS 25K ALNS 50K
n #veh. cost References avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s)

P01 50 5 408.5 FEL 416.67 5.0 416.06 5 2.00 12 416.45 5.0 416.06 5 1.95 23
P02 75 10 570.6 FEL 570.81 10.0 567.14 10 0.65 36 568.86 10.0 567.14 10 0.30 53
P03 100 8 617 FEL 642.93 8.0 641.76 8 4.20 85 642.32 8.0 641.76 8 4.10 128
P04 150 12 734.5 FEL 734.34 12.0 733.13 12 0.17 179 733.49 12.0 733.13 12 0.05 279
P05 199 16 953.4 B 912.54 16.0 897.93 16 1.84 124 907.03 16.0 896.08 16 1.22 237
P06 50 6 400.6 FEL 412.96 6.0 412.96 6 3.08 20 412.96 6.0 412.96 6 3.08 31
P07 75 10 634.5 B 592.16 10.0 584.15 10 1.54 18 588.72 10.0 583.19 10 0.95 33
P08 100 9 638.2 FEL 646.23 9.0 645.31 9 1.26 73 646.28 9.0 645.16 9 1.27 114
P09 150 13 785.2 B 766.42 13.1 759.35 13 1.13 108 764.32 13.1 757.84 13 0.85 185
P10 199 17 884.6 B 882.33 17.0 875.67 17 0.76 120 878.42 17.0 875.67 17 0.31 224
P11 120 7 683.4 B 682.68 7.0 682.12 7 0.08 73 682.39 7.0 682.12 7 0.04 141
P12 100 10 534.8 FEL 534.81 10.0 534.24 10 0.11 80 534.44 10.0 534.24 10 0.04 118
P13 120 11 943.7 B 911.98 11.0 909.80 11 0.24 61 911.12 11.0 909.80 11 0.15 116
P14 100 11 597.3 B 591.87 11.0 591.87 11 0.00 40 591.89 11.0 591.87 11 0.00 75
F11 71 4 175 FEL 177.00 4.0 177.00 4 1.14 69 177.00 4.0 177.00 4 1.14 104
F12 134 7 778.5 FEL 770.59 7.0 770.17 7 0.06 237 770.31 7.0 770.17 7 0.02 359
Tot. 156 10340 10246.32 156.10 10198.67 156 133610225.99 156.10 10194.19 156 2222
Avg. 1.14 83 0.97 139
< PB 11 11
#B 5 8 11

Table 12: Open vehicle routing problem instances. The tableshould be interpreted like Table 9. The
abbreviations used in theReferencescolumn are:B - Brandao’s heuristic [6],FEL - the heuristic by Fu et
al. [25]. The column#veh.indicates the number of vehicles used in the previous best solution, avg. #veh.
indicates the number of vehicles used on average by the particular ALNS configuration (averaged over ten
experiments). The columnbest #veh.indicates the number of vehicles used in the best found solution (out
of 10 experiments).
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Best known ALNS 25K ALNS 50K
veh. cost References avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s)

R101 19 1645.79 H (2000) 1650.86 19.0 1650.80 19 0.31 551650.80 19.0 1650.80 19 0.30 85
R102 17 1486.12 RT (1995) 1486.89 17.0 1486.12 17 0.05 62 1486.75 17.0 1486.12 17 0.04 94
R103 13 1292.68 LLH (2001) 1294.89 13.0 1292.68 13 0.17 64 1294.04 13.0 1292.68 13 0.11 97
R104 9 1007.24 M (2002) 987.85 9.8 1013.13 9 -1.93 61 987.85 9.8 1013.13 9 -1.93 96
R105 14 1377.11 RT (1995) 1378.77 14.0 1377.11 14 0.12 56 1378.11 14.0 1377.11 14 0.07 85
R106 12 1251.98 M (2002) 1258.40 12.0 1252.03 12 0.51 611255.52 12.0 1252.03 12 0.28 92
R107 10 1104.55 S97 (1997) 1118.18 10.0 1113.70 10 1.23 521115.19 10.0 1104.76 10 0.96 85
R108 9 960.88 BBB (2001) 969.37 9.0 963.91 9 0.88 40 965.36 9.0 960.88 9 0.47 75
R109 11 1194.73 HG (1999) 1213.09 11.1 1194.73 11 1.54 47 1211.44 11.1 1194.73 11 1.40 77
R110 10 1118.59 M (2002) 1149.56 10.0 1119.14 10 2.77 411148.92 10.0 1119.14 10 2.71 71
R111 10 1096.72 RGP (2001?) 1112.14 10.0 1096.74 10 1.41 461105.36 10.0 1096.73 10 0.79 78
R112 9 982.14 GTA (1999) 983.16 9.5 1000.60 9 0.10 58 982.62 9.5 1000.60 9 0.05 91
C101 10 828.94 RT (1995) 828.94 10.0 828.94 10 0.00 29 828.94 10.0 828.94 10 0.00 57
C102 10 828.94 RT (1995) 828.94 10.0 828.94 10 0.00 59 828.94 10.0 828.94 10 0.00 91
C103 10 828.06 RT (1995) 828.06 10.0 828.06 10 0.00 65 828.06 10.0 828.06 10 0.00 99
C104 10 824.78 RT (1995) 824.78 10.0 824.78 10 0.00 69 824.78 10.0 824.78 10 0.00 105
C105 10 828.94 RT (1995) 828.94 10.0 828.94 10 0.00 31 828.94 10.0 828.94 10 0.00 59
C106 10 828.94 RT (1995) 828.94 10.0 828.94 10 0.00 32 828.94 10.0 828.94 10 0.00 62
C107 10 828.94 RT (1995) 828.94 10.0 828.94 10 0.00 32 828.94 10.0 828.94 10 0.00 62
C108 10 828.94 RT (1995) 828.94 10.0 828.94 10 0.00 61 828.94 10.0 828.94 10 0.00 93
C109 10 828.94 RT (1995) 828.94 10.0 828.94 10 0.00 64 828.94 10.0 828.94 10 0.00 99
RC101 14 1696.94 TBGGP (1997) 1688.35 14.2 1697.43 14 -0.51 531688.17 14.2 1697.43 14 -0.52 80
RC102 12 1554.75 TBGGP (1997) 1547.04 12.1 1554.75 12 -0.50 56 1555.06 12.1 1554.75 12 0.02 84
RC103 11 1261.67 S98 (1998) 1270.78 11.0 1262.02 11 0.72 581268.53 11.0 1262.02 11 0.54 90
RC104 10 1135.48 CLM (2000) 1135.80 10.0 1135.52 10 0.03 601135.89 10.0 1135.83 10 0.04 92
RC105 13 1629.44 BBB (2001) 1640.18 13.0 1629.44 13 0.66 54 1640.92 13.0 1633.72 13 0.70 83
RC106 11 1424.73 BBB (2001) 1413.07 11.5 1432.12 11 -0.82 491411.92 11.5 1432.12 11 -0.90 76
RC107 11 1230.48 S97 (1997) 1232.48 11.0 1230.95 11 0.16 561231.65 11.0 1230.54 11 0.09 86
RC108 10 1139.82 TBGGP (1997) 1167.55 10.0 1140.87 10 2.43 411152.30 10.0 1139.82 10 1.10 71
R201 4 1252.37 HG (1999) 1253.23 4.0 1253.23 4 0.07 1331253.23 4.0 1253.23 4 0.07 193
R202 3 1191.7 RGP (2001?) 1229.81 3.0 1195.30 3 3.20 961223.62 3.0 1195.30 3 2.68 181
R203 3 939.54 M (2002) 944.64 3.0 939.58 3 0.54 164 943.57 3.0 941.08 3 0.43 256
R204 2 825.52 BVH (2001) 841.48 2.0 833.09 2 1.93 182 843.39 2.0 833.09 2 2.16 346
R205 3 994.42 RGP (2001?) 1018.90 3.0 994.43 3 2.46 97 1010.43 3.0 994.43 3 1.61 186
R206 3 906.14 SSSD (2000) 923.91 3.0 915.27 3 1.96 192 921.07 3.0 906.14 3 1.65 282
R207 2 893.33 BVH (2001) 928.28 2.0 893.33 2 3.91 180 927.62 2.0 893.33 2 3.84 332
R208 2 726.75 M (2002) 736.12 2.0 726.82 2 1.29 185 735.76 2.0 726.82 2 1.24 369
R209 3 909.16 H (2000) 926.72 3.0 914.45 3 1.93 101 923.48 3.0 914.13 3 1.58 185
R210 3 939.34 M (2002) 955.02 3.0 954.12 3 1.67 112 955.29 3.0 950.52 3 1.70 204
R211 2 892.71 BVH (2001) 889.99 2.3 925.03 2 -0.30 216 887.93 2.3 926.83 2 -0.54 349
C201 3 591.56 RT (1995) 591.56 3.0 591.56 3 0.00 78 591.56 3.0 591.56 3 0.00 147
C202 3 591.56 RT (1995) 591.56 3.0 591.56 3 0.00 88 591.56 3.0 591.56 3 0.00 163
C203 3 591.17 RT (1995) 591.17 3.0 591.17 3 0.00 96 591.17 3.0 591.17 3 0.00 181
C204 3 590.6 RT (1995) 590.60 3.0 590.60 3 0.00 102 590.60 3.0 590.60 3 0.00 189
C205 3 588.88 RT (1995) 588.88 3.0 588.88 3 0.00 81 588.88 3.0 588.88 3 0.00 155
C206 3 588.49 RT (1995) 588.49 3.0 588.49 3 0.00 83 588.49 3.0 588.49 3 0.00 156
C207 3 588.29 RT (1995) 588.29 3.0 588.29 3 0.00 84 588.29 3.0 588.29 3 0.00 167
C208 3 588.32 RT (1995) 588.32 3.0 588.32 3 0.00 85 588.32 3.0 588.32 3 0.00 161
RC201 4 1406.91 M (2002) 1417.80 4.0 1413.52 4 0.77 831414.69 4.0 1413.52 4 0.55 140
RC202 3 1367.09 CC (2002) 1405.16 3.0 1368.04 3 2.78 961403.60 3.0 1367.09 3 2.67 177
RC203 3 1049.62 CC (2002) 1075.51 3.0 1068.08 3 2.47 1001072.57 3.0 1068.60 3 2.19 192
RC204 3 798.41 M (2002) 818.00 3.0 799.27 3 2.45 228 806.81 3.0 798.46 3 1.05 320
RC205 4 1297.19 M (2002) 1318.01 4.0 1302.42 4 1.60 1341312.75 4.0 1302.42 4 1.20 194
RC206 3 1146.32 H (2000) 1155.91 3.0 1146.32 3 0.84 87 1155.16 3.0 1146.32 3 0.77 166
RC207 3 1061.14 BVH (2001) 1095.29 3.0 1070.85 3 3.22 961088.15 3.0 1061.84 3 2.55 182
RC208 3 828.14 IKMUY (2001) 834.83 3.0 829.69 3 0.81 109 829.96 3.0 829.69 3 0.22 196
Tot. 405 57192 57641.28 407.50 57360.86 405 480057549.75 407.50 57332.03 405 8182
Avg. 0.77 86 0.61 146
< PB 0 0
#B 56 25 28

Table 13: Solomon VRPTW instances. The table should be interpreted as
table 12. The best known solutions were gathered from the webpage:
http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html. See this page for complete
references to where the best known solutions first were identified.
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Best known ALNS 25K ALNS 50K
veh. cost References avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s)

R1_2_1 19 5024.65 B 4809.44 20.0 4798.22 20 -4.28 170 4798.77 20.0 4785.96 20 -4.50 257
R1_2_2 18 4054.44 MB 4091.46 18.0 4066.91 18 0.91 165 4079.18 18.0 4059.57 18 0.61 256
R1_2_3 18 3164.41 LC 3414.89 18.0 3387.64 18 7.92 160 3407.48 18.0 3396.47 18 7.68 260
R1_2_4 18 3067.93 MB 3104.90 18.0 3086.11 18 1.20 200 3100.94 18.0 3086.65 18 1.08 308
R1_2_5 18 4112.88 MB 4184.89 18.0 4125.19 18 1.75 147 4157.28 18.0 4125.19 18 1.08 231
R1_2_6 18 3599.84 MB 3643.10 18.0 3616.52 18 1.57 167 3631.74 18.0 3586.80 18 1.25 258
R1_2_7 18 3151.42 MB 3187.56 18.0 3170.98 18 1.15 169 3186.04 18.0 3160.44 18 1.10 271
R1_2_8 18 2963.9 MB 2992.96 18.0 2971.66 18 0.98 200 2989.62 18.0 2975.59 18 0.87 310
R1_2_9 18 3784.33 MB 3853.46 18.0 3802.55 18 1.83 135 3840.07 18.0 3823.15 18 1.47 223
R1_210 18 3307.78 MB 3363.82 18.0 3333.66 18 1.69 148 3336.35 18.0 3312.44 18 0.86 241
C1_2_1 20 2704.57 GH 2704.57 20.0 2704.57 20 0.00 94 2704.57 20.0 2704.57 20 0.00 181
C1_2_2 18 2917.89 BVH 2977.48 18.0 2948.73 18 2.04 152 2969.62 18.0 2943.83 18 1.77 242
C1_2_3 18 2708.08 MB 2744.41 18.0 2719.62 18 1.34 145 2729.39 18.0 2710.21 18 0.79 245
C1_2_4 18 2644.61 MB 2646.94 18.0 2645.60 18 0.09 146 2646.36 18.0 2644.92 18 0.07 253
C1_2_5 20 2702.05 GH 2702.05 20.0 2702.05 20 0.00 96 2702.05 20.0 2702.05 20 0.00 186
C1_2_6 20 2701.04 GH 2701.04 20.0 2701.04 20 0.00 101 2701.04 20.0 2701.04 20 0.00 193
C1_2_7 20 2701.04 GH 2701.04 20.0 2701.04 20 0.00 184 2701.04 20.0 2701.04 20 0.00 281
C1_2_8 18 2769.19 MB 2791.15 19.0 2775.48 19 0.79 157 2789.38 19.0 2775.48 19 0.73 250
C1_2_9 18 2642.82 MB 2705.26 18.0 2687.83 18 2.36 104 2688.82 18.0 2687.83 18 1.74 196
C1_210 18 2649.26 MB 2650.64 18.0 2645.08 18 0.24 117 2651.55 18.0 2644.25 18 0.28 214
RC1_2_1 18 3691.99 MB 3812.41 18.0 3727.17 18 4.52 93 3731.52 18.0 3647.56 18 2.30 175
RC1_2_2 18 3298.68 MB 3342.07 18.0 3269.91 18 2.21 96 3309.57 18.0 3276.88 18 1.21 185
RC1_2_3 18 3025.9 MB 3053.11 18.0 3036.32 18 0.90 104 3051.91 18.0 3034.45 18 0.86 201
RC1_2_4 18 2879.4 MB 2906.27 18.0 2869.74 18 1.27 109 2887.58 18.0 2873.54 18 0.62 215
RC1_2_5 18 3419.81 MB 3509.40 18.0 3463.01 18 2.62 90 3500.46 18.0 3430.03 18 2.36 173
RC1_2_6 18 3393.09 MB 3473.96 18.0 3398.67 18 3.46 91 3431.75 18.0 3357.90 18 2.20 174
RC1_2_7 18 3266.48 MB 3353.23 18.0 3290.65 18 3.71 93 3302.54 18.0 3233.29 18 2.14 179
RC1_2_8 18 3115.82 MB 3163.78 18.0 3147.87 18 1.71 95 3149.37 18.0 3110.46 18 1.25 183
RC1_2_9 18 3083.41 MB 3152.09 18.0 3114.02 18 2.23 94 3150.15 18.0 3116.47 18 2.16 183
RC1_210 18 3038.85 MB 3063.57 18.0 3020.24 18 1.43 98 3056.83 18.0 3042.24 18 1.21 190
R2_2_1 4 4501.8 MB 4340.82 4.5 4563.55 4 -3.58 527 4329.15 4.5 4571.67 4 -3.84 821
R2_2_2 4 3645.38 MB 3683.64 4.0 3666.72 4 1.05 416 3669.25 4.0 3650.54 4 0.65 795
R2_2_3 4 2932.44 MB 2928.17 4.0 2892.07 4 1.25 458 2924.73 4.0 2892.07 4 1.13 890
R2_2_4 4 1981.29 MB 1992.90 4.0 1981.30 4 0.59 482 1989.24 4.0 1981.30 4 0.40 910
R2_2_5 4 3367.55 SAM::OPT 3431.26 4.0 3382.22 4 1.89 385 3417.75 4.0 3377.18 4 1.49 723
R2_2_6 4 2914.56 MB 2957.14 4.0 2929.72 4 1.46 414 2947.20 4.0 2931.14 4 1.12 807
R2_2_7 4 2453.62 MB 2461.82 4.0 2456.71 4 0.33 461 2465.00 4.0 2459.82 4 0.46 883
R2_2_8 4 1849.87 MB 1874.00 4.0 1850.85 4 1.30 495 1866.03 4.0 1849.87 4 0.87 959
R2_2_9 4 3111.41 MB 3134.41 4.0 3113.74 4 0.74 405 3126.66 4.0 3113.74 4 0.49 768
R2_210 4 2657 MB 2696.24 4.0 2666.10 4 1.48 399 2690.93 4.0 2666.35 4 1.28 784
C2_2_1 6 1931.44 GH 1931.44 6.0 1931.44 6 0.00 214 1931.44 6.0 1931.44 6 0.00 391
C2_2_2 6 1863.16 GH 1863.16 6.0 1863.16 6 0.00 233 1863.16 6.0 1863.16 6 0.00 445
C2_2_3 6 1775.11 M 1784.79 6.0 1776.96 6 0.55 263 1783.42 6.0 1776.96 6 0.47 497
C2_2_4 6 1720.09 MB 1719.58 6.0 1713.46 6 0.36 275 1715.66 6.0 1713.46 6 0.13 527
C2_2_5 6 1878.85 BVH 1881.87 6.0 1879.31 6 0.16 224 1879.27 6.0 1878.85 6 0.02 413
C2_2_6 6 1857.35 B 1859.74 6.0 1857.35 6 0.13 224 1857.35 6.0 1857.35 6 0.00 425
C2_2_7 6 1849.46 GH 1851.62 6.0 1849.46 6 0.12 231 1849.46 6.0 1849.46 6 0.00 431
C2_2_8 6 1820.59 MB 1828.56 6.0 1823.88 6 0.44 233 1823.21 6.0 1820.53 6 0.15 442
C2_2_9 6 1830.18 SAM::OPT 1833.78 6.0 1830.05 6 0.20 241 1834.31 6.0 1830.05 6 0.23 449
C2_210 6 1806.6 M 1809.46 6.0 1808.21 6 0.16 249 1809.47 6.0 1808.21 6 0.16 466
RC2_2_1 6 3103.48 MB 3146.36 6.0 3126.03 6 1.38 428 3143.65 6.0 3129.07 6 1.29 635
RC2_2_2 5 2827.45 M 2870.43 5.0 2828.39 5 1.52 629 2856.08 5.0 2835.67 5 1.01 916
RC2_2_3 4 2617.9 MB 2652.00 4.0 2620.87 4 1.49 444 2631.97 4.0 2613.12 4 0.72 849
RC2_2_4 4 2055.97 MB 2080.99 4.0 2056.93 4 1.38 476 2063.32 4.0 2052.74 4 0.52 923
RC2_2_5 4 2912.57 MB 3039.09 4.0 2913.21 4 4.36 433 3041.01 4.0 2912.13 4 4.43 803
RC2_2_6 4 3086.76 LC 2920.37 4.3 2977.41 4 -1.84 525 2900.85 4.3 2975.13 4 -2.50 846
RC2_2_7 4 2550.56 M 2609.93 4.0 2563.90 4 2.76 408 2572.96 4.0 2539.85 4 1.30 789
RC2_2_8 4 2317.8 MB 2341.46 4.0 2322.52 4 1.16 413 2330.66 4.0 2314.61 4 0.69 788
RC2_2_9 4 2175.61 MB 2216.32 4.0 2175.98 4 1.87 417 2214.61 4.0 2180.81 4 1.79 795
RC2_210 4 2015.6 MB 2046.95 4.0 2020.68 4 1.56 424 2030.64 4.0 2015.61 4 0.75 808
Tot. 692 168997 170589.23 694.80 169370.28 694 15341169941.42 694.80 169042.17 694 27688
Avg. 1.17 256 0.81 461
< PB 8 18
#B 41 14 26

Table 14: Gehring/HombergerVRPTW instances, 200 customers.. The best known solutions were gathered
from the web page: http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html in January 2005.
This list of best known solutions was supplemented by the solutions found by Mester and Bräysy [42] (MB)
and Le Bouthillier and Crainic [5] (LC). See the aforementioned web page for full references. The same
sources were used for the best known solution columns in tables 4 to 7.
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Best known ALNS 25K ALNS 50K
veh. cost References avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s)

R1_4_1 38 11084 B 10557.71 40.0 10502.22 40 -4.75 36810485.89 40.0 10432.30 40 -5.40 554
R1_4_2 36 9161.26 MB 9277.12 36.0 9239.87 36 1.77 224 9166.43 36.0 9115.68 36 0.56 401
R1_4_3 36 7941.53 MB 8029.69 36.0 7996.33 36 1.11 269 8053.08 36.0 7988.22 36 1.40 464
R1_4_4 36 7332.93 MB 7468.64 36.0 7449.60 36 1.85 227 7441.43 36.0 7415.81 36 1.48 439
R1_4_5 36 9512.25 MB 9738.05 36.0 9588.45 36 2.73 182 9560.46 36.0 9479.10 36 0.86 347
R1_4_6 36 8534.05 MB 8740.69 36.0 8677.13 36 2.42 227 8613.60 36.0 8556.38 36 0.93 407
R1_4_7 36 7710.41 MB 7812.04 36.0 7769.68 36 1.32 245 7763.04 36.0 7725.97 36 0.68 439
R1_4_8 36 7398.68 MB 7468.69 36.0 7425.43 36 1.05 231 7398.80 36.0 7390.76 36 0.11 444
R1_4_9 36 8878.19 MB 9125.58 36.0 9058.30 36 2.79 217 9053.20 36.0 8970.98 36 1.97 386
R1_410 36 8227.49 MB 8417.50 36.0 8386.75 36 2.31 194 8363.10 36.0 8325.16 36 1.65 377
C1_4_1 40 7152.02 M 7152.06 40.0 7152.06 40 0.00 203 7152.06 40.0 7152.06 40 0.00 387
C1_4_2 37 7357.45 MB 7815.71 36.2 7830.99 36 1.06 260 7759.63 36.2 7733.55 36 0.34 437
C1_4_3 36 7151.17 MB 7208.25 36.0 7174.23 36 1.78 212 7104.35 36.0 7082.13 36 0.31 403
C1_4_4 36 6822.18 MB 6909.71 36.0 6833.32 36 1.37 224 6861.13 36.0 6816.17 36 0.66 431
C1_4_5 40 7152.02 M 7152.06 40.0 7152.06 40 0.00 215 7152.06 40.0 7152.06 40 0.00 404
C1_4_6 40 7153.41 M 7153.45 40.0 7153.45 40 0.00 286 7153.45 40.0 7153.45 40 0.00 479
C1_4_7 39 7668.33 LC 7643.60 39.0 7620.09 39 1.28 297 7621.62 39.0 7546.78 39 0.99 485
C1_4_8 38 7113.4 MB 7814.18 37.0 7661.98 37 3.55 284 7794.27 37.0 7546.32 37 3.29 464
C1_4_9 36 7524.32 MB 8042.29 36.0 7673.65 36 6.88 255 7800.59 36.0 7573.18 36 3.67 428
C1_410 36 6907.26 MB 7617.12 36.0 7446.94 36 10.28 214 7325.70 36.0 7145.92 36 6.06 398
RC1_4_1 36 8960.82 MB 9139.22 36.0 9044.65 36 3.70 207 8939.82 36.0 8813.43 36 1.43 371
RC1_4_2 36 8174.27 MB 8287.21 36.0 8181.05 36 2.08 197 8176.96 36.0 8118.43 36 0.72 370
RC1_4_3 36 7737.99 MB 7744.57 36.0 7668.27 36 1.05 214 7729.95 36.0 7663.73 36 0.86 403
RC1_4_4 36 7411.02 MB 7497.41 36.0 7447.70 36 1.75 226 7433.65 36.0 7368.47 36 0.88 436
RC1_4_5 36 8499.15 MB 8634.51 36.0 8503.19 36 2.47 190 8520.69 36.0 8426.57 36 1.12 356
RC1_4_6 36 8304.99 MB 8640.29 36.0 8533.72 36 4.04 185 8445.05 36.0 8390.24 36 1.69 351
RC1_4_7 36 8051.71 MB 8355.82 36.0 8223.65 36 3.78 192 8331.40 36.0 8227.10 36 3.47 360
RC1_4_8 36 7917.68 MB 8174.94 36.0 8135.05 36 3.25 192 8070.47 36.0 7922.67 36 1.93 363
RC1_4_9 36 7890.45 MB 8067.40 36.0 7953.20 36 2.24 194 8016.28 36.0 7987.55 36 1.59 370
RC1_410 36 7716.32 MB 7861.40 36.0 7805.59 36 1.88 199 7823.83 36.0 7774.83 36 1.39 376
R2_4_1 8 9257.92 MB 9513.88 8.0 9375.10 8 2.76 1002 9432.87 8.0 9338.49 8 1.89 1574
R2_4_2 8 7674.9 MB 7762.67 8.0 7728.27 8 1.47 1313 7744.54 8.0 7649.87 8 1.24 1942
R2_4_3 8 5988.02 MB 6078.27 8.0 5998.04 8 1.51 1426 6053.22 8.0 6034.08 8 1.09 2120
R2_4_4 8 4331.07 MB 4356.73 8.0 4326.48 8 0.70 1565 4345.23 8.0 4327.61 8 0.43 2333
R2_4_5 8 7143.55 MB 7305.24 8.0 7255.52 8 2.26 1207 7277.89 8.0 7252.64 8 1.88 1841
R2_4_6 8 6163.81 MB 6284.34 8.0 6222.32 8 1.96 1326 6229.61 8.0 6212.37 8 1.07 1986
R2_4_7 8 5082.1 MB 5182.15 8.0 5138.58 8 1.97 1441 5154.64 8.0 5136.74 8 1.43 2164
R2_4_8 8 4068.97 MB 4090.90 8.0 4055.22 8 0.88 1587 4076.34 8.0 4060.51 8 0.52 2384
R2_4_9 8 6493.13 MB 6565.87 8.0 6526.20 8 1.12 1222 6537.26 8.0 6507.40 8 0.68 1817
R2_410 8 5895.93 MB 5958.31 8.0 5894.40 8 1.08 1283 5919.14 8.0 5897.46 8 0.42 1891
C2_4_1 12 4116.05 M 4125.50 12.0 4116.33 12 0.23 403 4116.93 12.0 4116.33 12 0.02 753
C2_4_2 12 3930.29 MB 3930.22 12.0 3930.05 12 0.00 477 3930.13 12.0 3930.05 12 0.00 858
C2_4_3 12 3739.72 GH 3782.86 12.0 3775.32 12 1.15 525 3780.81 12.0 3775.54 12 1.10 952
C2_4_4 12 3535.99 MB 3549.80 12.0 3546.66 12 0.39 520 3568.37 12.0 3543.60 12 0.92 965
C2_4_5 12 3939.42 MB 3981.35 12.0 3946.94 12 1.06 434 3951.72 12.0 3946.14 12 0.31 783
C2_4_6 12 3875.94 MB 3883.95 12.0 3875.94 12 0.21 457 3921.04 12.0 3875.94 12 1.16 811
C2_4_7 12 3894.13 M 3937.44 12.0 3903.46 12 1.11 453 3960.36 12.0 3894.98 12 1.70 829
C2_4_8 12 3787.08 MB 3863.49 12.0 3804.12 12 2.02 498 3850.01 12.0 3796.00 12 1.66 884
C2_4_9 12 3876.1 MB 4025.46 12.0 3887.00 12 3.85 471 3964.79 12.0 3881.21 12 2.29 851
C2_410 12 3684.89 MB 3764.34 12.0 3706.87 12 2.16 502 3715.36 12.0 3687.13 12 0.83 896
RC2_4_1 11 7019.89 GH 6876.33 11.2 6834.02 11 0.62 786 6857.62 11.2 6840.51 11 0.35 1198
RC2_4_2 10 5924.84 MB 6166.44 9.8 6356.23 9 -2.98 1029 6125.49 9.8 6355.59 9 -3.62 1553
RC2_4_3 8 5114.76 MB 5139.79 8.0 5073.80 8 1.68 820 5109.29 8.0 5055.02 8 1.07 1503
RC2_4_4 8 3648.64 MB 3737.66 8.0 3666.70 8 2.47 959 3692.45 8.0 3647.39 8 1.24 1694
RC2_4_5 9 6063.46 MB 6107.39 9.4 6257.87 9 0.72 901 6019.04 9.4 6119.44 9 -0.73 1416
RC2_4_6 8 6054.21 GH 6093.66 8.0 5997.24 8 1.61 835 6092.17 8.0 6008.41 8 1.58 1425
RC2_4_7 8 5519.25 MB 5664.90 8.0 5529.42 8 3.44 714 5623.09 8.0 5476.57 8 2.68 1324
RC2_4_8 8 4854.16 MB 4949.32 8.0 4877.39 8 1.96 1284 4933.15 8.0 4891.18 8 1.63 1903
RC2_4_9 8 4628.26 MB 4736.64 8.0 4674.88 8 2.94 1168 4662.33 8.0 4601.30 8 1.33 1779
RC2_410 8 4316.36 MB 4415.46 8.0 4400.68 8 2.30 1290 4401.00 8.0 4355.52 8 1.96 1937
Tot. 1386 392070 399377.24 1386.60 395969.66 1385 34732396157.93 1386.60 393210.00 1385 56699
Avg. 1.80 579 1.05 945
< PB 12 24
#B 35 7 21

Table 15: Gehring/Homberger VRPTW instances, 400 customers..
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Best known ALNS 25K ALNS 50K
veh. cost References avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s)

R1_6_1 59 21131.09 MB 21881.08 59.0 21767.25 59 3.55 51421743.91 59.0 21677.41 59 2.90 763
R1_6_2 54 19603.7 MB 20892.38 54.0 20719.50 54 6.57 27620253.42 54.0 20045.49 54 3.31 504
R1_6_3 54 17400.6 MB 18399.70 54.0 18154.60 54 5.74 28917886.87 54.0 17733.91 54 2.79 535
R1_6_4 54 15993.8 MB 16640.46 54.0 16550.00 54 4.04 30016459.06 54.0 16374.29 54 2.91 569
R1_6_5 54 20395 MB 22399.39 54.0 22051.85 54 9.83 35921462.92 54.0 21243.24 54 5.24 577
R1_6_6 54 18620.26 MB 19759.95 54.0 19610.14 54 6.12 26319206.68 54.0 18948.53 54 3.15 494
R1_6_7 54 17107.91 MB 17915.15 54.0 17773.37 54 4.72 27917483.82 54.0 17438.28 54 2.20 527
R1_6_8 54 15725.86 MB 16509.06 54.0 16436.50 54 4.98 29516245.90 54.0 16146.17 54 3.31 560
R1_6_9 54 19372.96 MB 21316.90 54.0 20860.58 54 10.03 27620548.47 54.0 20375.70 54 6.07 494
R1_610 54 18235.57 MB 19909.33 54.0 19776.64 54 9.18 25819193.80 54.0 18902.19 54 5.25 485
R2_6_1 11 18325.6 MB 19066.50 11.0 18865.57 11 4.04 87218937.51 11.0 18837.28 11 3.34 1622
R2_6_2 11 15346.42 MB 15318.18 11.0 15222.07 11 1.65 92815187.30 11.0 15069.24 11 0.78 1727
R2_6_3 11 11663.06 MB 11422.68 11.0 11395.17 11 1.16 100111386.17 11.0 11291.52 11 0.84 1903
R2_6_4 11 8386.64 MB 8331.34 11.0 8264.60 11 2.06 1115 8251.65 11.0 8163.24 11 1.08 2021
R2_6_5 11 15640.6 MB 15637.54 11.0 15430.80 11 1.42 86215558.66 11.0 15418.00 11 0.91 1621
R2_6_6 11 12937.47 MB 13133.25 11.0 13038.58 11 1.52 92013026.65 11.0 12936.28 11 0.70 1766
R2_6_7 11 10536.84 MB 10487.56 11.0 10437.39 11 2.12 100010352.03 11.0 10269.96 11 0.80 1904
R2_6_8 11 8023.64 MB 7886.24 11.0 7849.32 11 1.72 1095 7805.77 11.0 7752.78 11 0.68 2086
R2_6_9 11 13567.84 MB 14181.45 11.0 14016.38 11 4.52 87614000.78 11.0 13885.52 11 3.19 1627
R2_610 11 12607.09 MB 12799.15 11.0 12775.18 11 1.83 88112706.72 11.0 12568.79 11 1.10 1690
C1_6_1 60 14095.64 GH 14095.64 60.0 14095.64 60 0.00 286 14095.64 60.0 14095.64 60 0.00 540
C1_6_2 56 14325.96 MB 14446.21 56.0 14179.06 56 1.92 49514278.31 56.0 14174.12 56 0.74 737
C1_6_3 56 13898.99 MB 13866.54 56.0 13842.83 56 0.46 50913842.21 56.0 13803.50 56 0.28 767
C1_6_4 56 13610.66 MB 13626.16 56.0 13615.92 56 0.35 53813603.40 56.0 13578.66 56 0.18 812
C1_6_5 60 14085.7 BVH 14085.72 60.0 14085.72 60 0.00 30614085.72 60.0 14085.72 60 0.00 564
C1_6_6 60 14089.7 BVH 14089.66 60.0 14089.66 60 0.00 413 14089.66 60.0 14089.66 60 0.00 674
C1_6_7 59 14659.74 GH 14832.65 58.6 15017.03 58 -1.23 473 14803.08 58.6 15032.51 58 -1.42 726
C1_6_8 57 14976.88 GH 14690.74 57.0 14409.78 57 2.42 43314510.17 57.0 14343.05 57 1.17 675
C1_6_9 56 13733.56 MB 14265.06 56.0 14017.73 56 3.87 48313883.26 56.0 13767.45 56 1.09 723
C1_610 56 13758.19 MB 14128.71 56.0 13906.05 56 3.22 49213788.90 56.0 13688.57 56 0.73 742
C2_6_1 18 7774.1 MB 7789.40 18.0 7780.84 18 0.20 553 7791.82 18.0 7786.86 18 0.23 987
C2_6_2 18 7486.88 MB 7764.29 17.8 8800.94 17 -11.76 727 7763.97 17.8 8799.38 17 -11.77 1224
C2_6_3 17 8371.07 GH 7676.89 17.6 7795.66 17 0.96 762 7613.00 17.6 7604.00 17 0.12 1275
C2_6_4 17 7216.45 MB 7269.90 17.2 7054.65 17 3.95 722 7088.64 17.2 6993.77 17 1.36 1266
C2_6_5 18 7576.35 MB 7694.89 18.0 7592.79 18 1.56 581 7606.34 18.0 7578.12 18 0.40 1007
C2_6_6 18 7478.63 MB 8515.65 18.0 7984.40 18 13.87 635 7910.69 18.0 7554.61 18 5.78 1088
C2_6_7 18 7560.53 MB 8474.41 18.0 7520.34 18 12.69 727 8234.69 18.0 7610.04 18 9.50 1190
C2_6_8 18 7352.42 MB 7771.07 17.8 8696.15 17 -10.64 672 7734.91 17.8 8782.31 17 -11.05 1159
C2_6_9 18 7350.94 MB 7609.44 18.0 7356.19 18 3.52 669 7384.14 18.0 7364.93 18 0.45 1148
C2_610 17 7523.34 MB 7781.30 17.6 8334.99 17 3.43 656 7697.89 17.6 7938.94 17 2.32 1136
RC1_6_1 55 17454.39 MB 18210.19 55.0 17987.59 55 4.33 27517928.76 55.0 17751.33 55 2.72 494
RC1_6_2 55 16208.24 MB 16883.37 55.0 16718.63 55 4.17 43616686.63 55.0 16548.43 55 2.95 671
RC1_6_3 55 15524.33 MB 15968.19 55.0 15907.78 55 3.03 33315642.26 55.0 15499.02 55 0.92 584
RC1_6_4 55 15180.72 MB 15295.11 55.0 15214.81 55 1.47 35815192.70 55.0 15072.90 55 0.79 621
RC1_6_5 55 17468.57 MB 17981.80 55.0 17879.49 55 3.34 32917543.75 55.0 17401.34 55 0.82 551
RC1_6_6 55 17248.87 MB 17913.64 55.0 17646.26 55 3.85 32917466.21 55.0 17355.10 55 1.26 548
RC1_6_7 55 16454.79 MB 17484.20 55.0 17159.31 55 6.26 41017143.21 55.0 17058.40 55 4.18 636
RC1_6_8 55 16462.49 MB 17043.31 55.0 16955.52 55 3.53 33616705.09 55.0 16510.65 55 1.47 568
RC1_6_9 55 16153 MB 16806.32 55.0 16609.24 55 4.04 37816525.18 55.0 16435.71 55 2.30 604
RC1_610 55 16030.86 MB 16483.29 55.0 16388.47 55 2.82 26516391.34 55.0 16316.51 55 2.25 498
RC2_6_1 15 13275.93 GH 13415.25 15.0 13314.03 15 1.92 102013322.77 15.0 13163.03 15 1.21 1573
RC2_6_2 12 12071.4 GH 11652.71 12.8 12039.89 12 -1.70 125011539.21 12.8 11853.72 12 -2.65 1970
RC2_6_3 11 9978.25 MB 10220.80 11.0 10032.99 11 3.62 100610066.43 11.0 9863.35 11 2.06 1889
RC2_6_4 11 7349.88 MB 7409.35 11.0 7344.31 11 2.46 1069 7274.39 11.0 7231.64 11 0.59 1993
RC2_6_5 13 11919.72 MB 12224.60 12.8 12560.43 12 -2.67 1286 12188.40 12.8 12612.91 12 -2.96 1954
RC2_6_6 12 10700.42 LC 12498.61 11.2 12464.98 11 1.76 124212405.28 11.2 12282.52 11 1.00 1963
RC2_6_7 11 11687.04 MB 11510.79 11.0 11347.57 11 4.15 92711309.89 11.0 11052.49 11 2.33 1706
RC2_6_8 11 10474.95 MB 10744.43 11.0 10627.04 11 2.57 89410617.44 11.0 10488.75 11 1.36 1658
RC2_6_9 11 10113.82 MB 10094.97 11.0 9982.66 11 2.15 89510060.58 11.0 9882.71 11 1.80 1661
RC2_610 11 9339.41 MB 9611.45 11.0 9510.51 11 2.91 900 9500.07 11.0 9340.06 11 1.72 1660
Tot. 2076 798645 823814.02 2076.40 818863.38 2071 37731811014.16 2076.40 807470.21 2071 65718
Avg. 2.83 629 1.28 1095
< PB 22 30
#B 29 6 28

Table 16: Gehring/Homberger VRPTW instances, 600 customers..
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Best known ALNS 25K ALNS 50K
veh. cost References avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s)

R1_8_1 79 39612.2 BVH 37859.00 80.0 37631.40 80 -4.43 684 37756.07 80.0 37492.04 80 -4.69 1010
R1_8_2 72 33548.54 MB 34705.63 72.0 34435.01 72 3.45 613 34273.25 72.0 33816.69 72 2.16 917
R1_8_3 72 30151.9 MB 31065.56 72.0 30746.68 72 3.03 645 30593.64 72.0 30317.49 72 1.47 969
R1_8_4 72 26838.04 MB 29002.34 72.0 28831.80 72 8.06 678 28672.14 72.0 28568.78 72 6.83 1025
R1_8_5 72 34741.53 MB 36198.65 72.0 36038.57 72 4.19 524 35739.41 72.0 35503.63 72 2.87 809
R1_8_6 72 31737.47 MB 32820.77 72.0 32757.13 72 3.41 610 32487.44 72.0 32360.07 72 2.36 913
R1_8_7 72 29538.4 MB 30493.16 72.0 30393.12 72 3.23 644 30089.26 72.0 29979.63 72 1.86 967
R1_8_8 72 28342.64 MB 28803.77 72.0 28622.63 72 1.63 676 28509.27 72.0 28341.21 72 0.59 1020
R1_8_9 72 34231.38 MB 34961.84 72.0 34856.18 72 2.17 576 34437.83 72.0 34218.41 72 0.64 864
R1_810 72 31730.45 MB 33144.45 72.0 32665.95 72 4.46 586 32729.29 72.0 32569.97 72 3.15 879
R2_8_1 15 28440.28 MB 29209.61 15.0 28923.27 15 2.71 951 29086.28 15.0 28822.48 15 2.27 1811
R2_8_2 15 23335.67 MB 23655.16 15.0 23524.65 15 1.64 1070 23492.15 15.0 23274.22 15 0.94 1964
R2_8_3 15 17992.25 MB 18188.06 15.0 18103.52 15 1.09 1127 18137.61 15.0 18078.82 15 0.81 2091
R2_8_4 15 13625.25 MB 13658.48 15.0 13584.57 15 1.82 1213 13525.52 15.0 13413.79 15 0.83 2322
R2_8_5 15 24611.39 MB 25479.70 15.0 25260.54 15 3.53 978 25255.01 15.0 25077.09 15 2.62 1803
R2_8_6 15 20697.06 MB 21104.29 15.0 20969.81 15 1.97 1032 21014.57 15.0 20973.12 15 1.53 1962
R2_8_7 15 17058.3 MB 17114.71 15.0 16977.49 15 0.81 1119 17128.01 15.0 16980.58 15 0.89 2134
R2_8_8 15 13053.31 MB 13187.89 15.0 13054.95 15 1.87 1254 13063.15 15.0 12945.52 15 0.91 2365
R2_8_9 15 22588.02 MB 23303.95 15.0 23138.51 15 3.17 982 23061.61 15.0 22877.21 15 2.10 1849
R2_810 15 21551.26 MB 21372.15 15.0 21240.42 15 1.33 979 21233.28 15.0 21092.27 15 0.67 1841
C1_8_1 80 25030.36 M 25184.38 80.0 25184.38 80 0.62 397 25184.38 80.0 25184.38 80 0.62 741
C1_8_2 75 25518.17 GH 25711.25 74.2 25667.72 74 0.68 664 25634.80 74.2 25536.76 74 0.38 993
C1_8_3 72 25438.6 BVH 25359.87 72.0 24756.97 72 2.96 373 24728.90 72.0 24629.86 72 0.40 682
C1_8_4 72 24040.47 MB 24256.32 72.0 24118.80 72 1.33 378 24005.77 72.0 23938.33 72 0.28 706
C1_8_5 80 25166.3 BVH 25166.28 80.0 25166.28 80 0.00 417 25166.28 80.0 25166.28 80 0.00 762
C1_8_6 80 25160.9 BVH 25162.17 80.0 25160.85 80 0.01 560 25162.21 80.0 25160.85 80 0.01 913
C1_8_7 79 25518.85 GH 25481.02 79.0 25425.92 79 0.22 623 25449.95 79.0 25428.67 79 0.09 972
C1_8_8 76 25379.85 MB 25740.77 75.2 25622.69 75 1.14 608 25538.76 75.2 25450.99 75 0.34 930
C1_8_9 73 24713.38 MB 26318.36 72.2 26169.29 72 2.26 575 25673.55 72.2 25737.46 72 -0.25 868
C1_810 72 29536.81 GH 27097.82 72.0 26382.98 72 5.45 473 26151.75 72.0 25697.68 72 1.77 770
C2_8_1 24 11654.72 MB 11678.08 24.0 11665.21 24 0.20 730 11672.47 24.0 11664.00 24 0.15 1238
C2_8_2 24 11422.34 MB 11456.70 24.0 11428.07 24 0.30 807 11440.98 24.0 11433.46 24 0.16 1397
C2_8_3 23 11554.18 MB 11312.58 24.0 11184.67 24 -2.09 839 11212.69 24.0 11188.30 24 -2.96 1468
C2_8_4 23 10963.49 MB 11511.87 23.2 11440.25 23 5.00 955 11180.00 23.2 10999.42 23 1.97 1627
C2_8_5 24 11432.92 MB 12110.19 24.0 11902.99 24 5.92 896 11565.06 24.0 11451.57 24 1.16 1441
C2_8_6 24 11357.86 MB 12282.80 24.4 12342.70 24 8.14 812 11909.95 24.2 11403.57 24 4.86 1360
C2_8_7 24 11397.54 MB 12058.86 24.6 11540.25 24 5.80 881 11871.66 24.4 11412.08 24 4.16 1443
C2_8_8 24 11206.32 MB 12728.62 23.8 13892.26 23 -8.28 860 12371.35 23.8 13878.40 23 -10.86 1414
C2_8_9 24 11249 MB 13015.41 24.0 12358.05 24 15.70 897 12446.59 24.0 11650.10 24 10.65 1469
C2_810 23 11284.46 MB 11837.70 23.8 12103.56 23 4.90 786 11746.59 23.8 12173.74 23 4.10 1358
RC1_8_1 73 31590.23 MB 31990.65 73.0 31851.54 73 2.29 438 31396.64 73.0 31275.38 73 0.39 720
RC1_8_2 72 39696.2 GH 29762.99 73.0 29537.14 73 -25.02 608 29377.34 73.0 29172.08 73 -25.99 912
RC1_8_3 72 35577.87 GH 28634.08 73.0 28466.83 73 -19.52 646 28301.03 73.0 28164.66 73 -20.45 970
RC1_8_4 72 32654.1 GH 27481.23 73.0 27393.06 73 -15.84 685 27303.22 73.0 27201.39 73 -16.39 1029
RC1_8_5 73 30454.15 MB 31228.63 73.0 31067.35 73 2.54 578 30742.88 73.0 30548.23 73 0.95 865
RC1_8_6 73 29674.68 MB 31019.63 73.0 30863.25 73 4.53 573 30749.36 73.0 30511.07 73 3.62 858
RC1_8_7 72 43829.43 GH 30600.17 73.0 30455.56 73 -30.18 575 30135.52 73.0 30007.82 73 -31.24 868
RC1_8_8 72 43694.6 GH 30006.93 73.0 29820.15 73 -31.33 580 29603.68 73.0 29547.96 73 -32.25 872
RC1_8_9 72 41816.7 GH 29918.07 73.0 29812.35 73 -28.45 581 29493.38 73.0 29360.93 73 -29.47 871
RC1_810 72 41182.44 GH 29518.16 73.0 29373.39 73 -28.32 586 29147.32 73.0 28993.52 73 -29.22 884
RC2_8_1 20 19989.12 MB 20734.14 19.8 21005.11 19 -1.05 1385 20605.53 19.8 20954.95 19 -1.67 2046
RC2_8_2 17 18099.68 MB 18369.12 17.0 18184.31 17 1.86 1728 18208.97 17.0 18032.89 17 0.98 2585
RC2_8_3 15 15116.26 MB 15033.15 15.0 14800.78 15 1.57 1212 14920.27 15.0 14810.81 15 0.81 2172
RC2_8_4 15 11392.25 MB 11592.05 15.0 11402.27 15 1.97 1196 11440.47 15.0 11368.19 15 0.64 2263
RC2_8_5 16 19105.75 MB 19293.34 16.4 19214.57 16 0.98 1529 19181.34 16.4 19180.13 16 0.40 2328
RC2_8_6 15 18882.3 MB 19560.50 15.0 19173.09 15 3.59 1063 19210.08 15.0 19075.89 15 1.74 1918
RC2_8_7 15 17461.44 MB 17798.95 15.0 17519.63 15 2.71 990 17643.28 15.0 17329.32 15 1.81 1858
RC2_8_8 15 16529.24 MB 16756.53 15.0 16485.06 15 3.26 994 16368.61 15.0 16226.78 15 0.87 1859
RC2_8_9 15 15823.5 MB 16071.87 15.0 15979.71 15 2.45 989 15902.97 15.0 15687.20 15 1.38 1825
RC2_810 15 14892.29 MB 15013.68 15.0 14944.14 15 0.82 1001 15048.01 15.0 14953.29 15 1.05 1873
Tot. 2754 1429914 1381184.08 2762.60 1372619.40 2758 484111365178.33 2762.20 1358291.43 2758 81648
Avg. -0.86 807 -2.07 1361
< PB 15 25
#B 35 5 22

Table 17: Gehring/Homberger VRPTW instances, 800 customers..
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Best known ALNS 25K ALNS 50K
veh. cost References avg. avg. best best avg. avg. avg. avg. best best avg. avg.

sol. #veh. sol. #veh. gap time sol. #veh. sol. #veh. gap time
(%) (s) (%) (s)

R110_1 100 54145.31 MB 55493.78 100.0 55108.89 100 2.49 825 55029.87 100.0 54720.19 100 1.63 1229
R110_2 91 56367.45 GH 54167.93 91.6 57478.64 91 -2.27 698 52844.31 91.6 55428.79 91 -4.66 1066
R110_3 91 46621.19 MB 52196.91 91.0 51840.30 91 11.96 435 50296.23 91.0 49634.84 91 7.88 807
R110_4 91 43461.84 MB 46878.36 91.0 46645.90 91 7.86 435 45626.47 91.0 45303.47 91 4.98 829
R110_5 91 70838.01 GH 54671.65 92.0 54270.08 92 -22.82 705 53259.01 92.0 53089.15 92 -24.82 1061
R110_6 91 49059.8 MB 54109.35 91.4 55826.83 91 10.29 541 52485.80 91.4 54555.32 91 6.98 905
R110_7 91 45847.84 MB 50656.58 91.0 49880.51 91 10.49 429 48869.74 91.0 48141.47 91 6.59 801
R110_8 91 42767.77 MB 46752.56 91.0 46512.13 91 9.32 452 45286.98 91.0 44853.70 91 5.89 847
R110_9 91 51391.8 MB 53216.59 92.0 53163.89 92 3.55 706 52139.44 92.0 52015.72 92 1.45 1067
R11010 91 49348.36 MB 50861.54 92.0 50592.40 92 3.07 674 50007.62 92.0 49769.85 92 1.34 1038
R210_1 19 42922.56 BSJ 44524.99 19.0 44213.65 19 3.73 1192 43904.40 19.0 43264.68 19 2.29 2083
R210_2 19 34918.49 BSJ 34969.52 19.0 34698.44 19 1.60 1800 34564.64 19.0 34417.47 19 0.43 2795
R210_3 19 25689.62 BSJ 26067.93 19.0 25964.09 19 2.63 2088 25807.15 19.0 25400.16 19 1.60 3230
R210_4 19 18858.24 BSJ 18594.33 19.0 18425.77 19 1.43 2289 18477.00 19.0 18332.77 19 0.79 3480
R210_5 19 37265.32 BSJ 38149.38 19.0 37773.72 19 2.37 1328 37833.57 19.0 37746.01 19 1.52 2247
R210_6 19 30725.2 BSJ 31253.33 19.0 30975.00 19 1.72 1453 31007.89 19.0 30778.85 19 0.92 2500
R210_7 19 24363.83 BSJ 24340.48 19.0 24243.39 19 1.45 1923 24228.74 19.0 23991.71 19 0.99 3009
R210_8 19 18185.38 BSJ 18361.52 19.0 18139.74 19 2.90 2313 18037.86 19.0 17844.36 19 1.08 3540
R210_9 19 33777.76 BSJ 35005.84 19.0 34872.05 19 3.64 1345 34496.05 19.0 34349.70 19 2.13 2265
R21010 19 31599.84 BSJ 32006.08 19.0 31782.57 19 1.29 1645 31803.51 19.0 31682.52 19 0.64 2586
C110_1 100 42478.95 GH 42478.95 100.0 42478.95 100 0.00 499 42478.95 100.0 42478.95 100 0.00 915
C110_2 92 42920.7 BVH 42339.69 91.6 42667.84 91 0.21 798 42222.18 91.6 42249.60 91 -0.06 1188
C110_3 90 40934.87 MB 41395.50 90.0 40915.89 90 2.52 506 40904.59 90.0 40376.43 90 1.31 884
C110_4 90 40410.58 MB 40681.78 90.0 40441.12 90 1.76 515 40222.27 90.0 39980.07 90 0.61 902
C110_5 100 42469.2 BVH 42469.50 100.0 42469.18 100 0.00 542 42469.18 100.0 42469.18 100 0.00 968
C110_6 100 42471.3 BVH 42472.69 100.0 42471.29 100 0.00 678 42471.57 100.0 42471.29 100 0.00 1103
C110_7 99 42711.39 GH 42726.27 99.0 42673.51 99 0.12 739 42708.94 99.0 42688.64 99 0.08 1159
C110_8 96 42170.31 MB 42641.48 95.4 42402.12 95 0.67 757 42539.98 95.4 42359.27 95 0.43 1150
C110_9 91 45386.93 GH 42048.67 91.2 41586.54 91 1.37 645 41774.68 91.2 41482.00 91 0.71 1005
C11010 90 40894.38 MB 43409.67 90.0 43132.22 90 6.15 612 42554.17 90.0 42214.60 90 4.06 962
C210_1 30 16879.24 LL 16905.00 30.0 16879.24 30 0.15 888 16893.15 30.0 16879.24 30 0.08 1514
C210_2 29 17228.82 MB 17446.99 29.4 17677.61 29 1.27 1066 17314.77 29.4 17563.06 29 0.50 1719
C210_3 29 16367.59 MB 16938.59 30.0 16253.60 30 3.49 971 16446.58 30.0 16109.71 30 0.48 1690
C210_4 29 17153.19 MB 16845.74 29.0 16712.08 29 5.21 1151 16063.32 29.0 16011.30 29 0.32 1905
C210_5 30 16586.46 GH 17613.87 30.6 16825.34 30 6.19 964 16888.66 30.4 16596.69 30 1.82 1575
C210_6 30 16371.65 MB 17393.97 30.4 17596.06 30 6.26 1070 16696.06 30.2 16369.10 30 2.00 1697
C210_7 31 16578.42 MB 17348.99 31.0 16878.12 31 4.65 978 17057.54 31.0 16590.48 31 2.89 1617
C210_8 29 17219.59 LC 18921.39 29.6 19122.58 29 9.88 1047 17790.97 29.6 18407.27 29 3.32 1700
C210_9 30 16651.96 MB 17626.12 30.0 16679.15 30 8.17 1104 16999.89 30.0 16294.72 30 4.33 1771
C21010 29 16178.26 MB 18856.35 29.0 18447.85 29 16.55 1103 18375.30 29.0 17582.15 29 13.58 1759
RC110_1 90 47143.9 MB 51246.49 90.0 50976.00 90 8.70 517 49693.36 90.0 48933.68 90 5.41 863
RC110_2 90 44906.58 MB 47283.88 90.0 46913.77 90 5.29 539 46647.41 90.0 46165.33 90 3.88 904
RC110_3 90 43782.57 MB 45167.52 90.0 44833.81 90 3.16 562 44408.40 90.0 44014.81 90 1.43 938
RC110_4 90 41917.14 MB 43355.81 90.0 43144.87 90 3.43 668 42844.52 90.0 42607.34 90 2.21 1071
RC110_5 90 47632.31 MB 50533.91 90.0 50226.31 90 6.09 431 49082.31 90.0 48934.53 90 3.04 772
RC110_6 90 46391.6 MB 50436.65 90.0 49703.43 90 8.72 402 49131.04 90.0 48766.98 90 5.91 745
RC110_7 90 46157.71 MB 49716.92 90.0 49238.95 90 7.71 460 48308.95 90.0 48005.94 90 4.66 806
RC110_8 90 45585.08 MB 48391.77 90.0 47670.50 90 6.16 396 47416.90 90.0 47122.61 90 4.02 743
RC110_9 90 45405.54 MB 48343.65 90.0 47930.01 90 6.47 513 46998.60 90.0 46889.79 90 3.51 864
RC11010 90 45041.64 MB 47210.76 90.0 46716.69 90 4.82 466 46284.90 90.0 46080.51 90 2.76 822
RC210_1 22 30320.41 BSJ 30930.47 21.2 30478.44 21 1.76 1429 30618.08 21.2 30396.13 21 0.73 2316
RC210_2 19 26592.4 BSJ 26301.14 19.4 27552.05 18 -4.54 1955 26412.31 19.4 27681.62 18 -4.14 2953
RC210_3 18 20588.38 BSJ 21313.73 18.0 20983.66 18 3.52 1324 21060.93 18.0 20811.18 18 2.30 2443
RC210_4 18 16480.17 BSJ 16617.79 18.0 16254.55 18 3.81 1345 16499.16 18.0 16007.59 18 3.07 2544
RC210_5 18 29352.08 LC 29008.22 18.0 28647.57 18 2.26 1249 28610.45 18.0 28368.48 18 0.85 2198
RC210_6 18 27003.3 MB 29267.17 18.0 28825.98 18 8.38 1136 29005.97 18.0 28746.61 18 7.42 2035
RC210_7 18 26161.91 BSJ 27503.47 18.0 27110.84 18 5.13 1106 26958.52 18.0 26765.43 18 3.04 2067
RC210_8 18 24995 BSJ 25445.17 18.0 25211.63 18 1.94 1103 25128.20 18.0 24961.29 18 0.67 2097
RC210_9 18 23582.89 MB 24729.65 18.0 24420.99 18 4.86 1129 24417.63 18.0 24113.72 18 3.54 2079
RC21010 18 22481.03 BSJ 23544.52 18.0 23193.63 18 4.73 1101 23143.27 18.0 23056.75 18 2.95 2066
Tot. 3438 2099741 2157188.54 3443.80 2146751.97 3438 577412119549.93 3443.40 2110924.81 3438 95895
Avg. 3.73 962 1.89 1598
< PB 16 22
#B 38 6 22

Table 18: Gehring/Homberger VRPTW instances, 1000 customers..
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Optimal ALNS 25K
cost ref avg. best avg. avg.

sol. sol. gap time
(%) (s)

R101***25 617.1 KDMSS99 617.1 617.1 0.00 3
R102***25 547.1 KDMSS99 547.1 547.1 0.00 3
R103***25 454.6 KDMSS99 454.6 454.6 0.00 4
R104***25 416.9 KDMSS99 416.9 416.9 0.00 4
R105***25 530.5 KDMSS99 530.5 530.5 0.00 3
R106***25 465.4 KDMSS99 465.4 465.4 0.00 3
R107***25 424.3 KDMSS99 424.3 424.3 0.00 4
R108***25 397.3 KDMSS99 397.3 397.3 0.00 4
R109***25 441.3 KDMSS99 441.3 441.3 0.00 3
R110***25 444.1 KDMSS99 444.1 444.1 0.00 4
R111***25 428.8 KDMSS99 428.8 428.8 0.00 4
R112***25 393 KDMSS99 393.0 393.0 0.00 4
C101***25 191.3 KDMSS99 191.3 191.3 0.00 4
C102***25 190.3 KDMSS99 190.3 190.3 0.00 4
C103***25 190.3 KDMSS99 190.3 190.3 0.00 4
C104***25 186.9 KDMSS99 186.9 186.9 0.00 4
C105***25 191.3 KDMSS99 191.3 191.3 0.00 4
C106***25 191.3 KDMSS99 191.3 191.3 0.00 4
C107***25 191.3 KDMSS99 191.3 191.3 0.00 4
C108***25 191.3 KDMSS99 191.3 191.3 0.00 5
C109***25 191.3 KDMSS99 191.3 191.3 0.00 4
RC101***25 461.1 KDMSS99 461.1 461.1 0.00 4
RC102***25 351.8 KDMSS99 351.8 351.8 0.00 4
RC103***25 332.8 KDMSS99 332.8 332.8 0.00 4
RC104***25 306.6 KDMSS99 306.6 306.6 0.00 4
RC105***25 411.3 KDMSS99 411.3 411.3 0.00 4
RC106***25 345.5 KDMSS99 345.5 345.5 0.00 4
RC107***25 298.3 KDMSS99 298.3 298.3 0.00 4
RC108***25 294.5 KDMSS99 294.5 294.5 0.00 4
R201***25 463.3 L99 463.3 463.3 0.00 4
R202***25 410.5 L99 410.5 410.5 0.00 4
R203***25 391.4 L99 391.4 391.4 0.00 4
R204***25 355 C03 355.2 355.0 0.06 6
R205***25 393 L99 393.0 393.0 0.00 5
R206***25 374.4 CR99 374.4 374.4 0.00 5
R207***25 361.6 KLM01 361.6 361.6 0.00 5
R208***25 328.2 FDGG04 328.2 328.2 0.00 11
R209***25 370.7 KLM01 371.5 370.7 0.21 6
R210***25 404.6 CR99 404.6 404.6 0.00 5
R211***25 350.9 KLM01 350.9 350.9 0.00 6
C201***25 214.7 L99 214.7 214.7 0.00 7
C202***25 214.7 L99 214.7 214.7 0.00 8
C203***25 214.7 L99 214.7 214.7 0.00 8
C204***25 213.1 CR99 214.4 213.1 0.59 8
C205***25 214.7 L99 214.7 214.7 0.00 8
C206***25 214.7 L99 214.7 214.7 0.00 7
C207***25 214.5 L99 214.5 214.5 0.00 9
C208***25 214.5 L99 214.5 214.5 0.00 7
RC201***25 360.2 L99 360.2 360.2 0.00 4
RC202***25 338 CR99 338.0 338.0 0.00 4
RC203***25 326.9 FDGG04 326.9 326.9 0.00 4
RC204***25 299.7 FDGG04 299.7 299.7 0.00 5
RC205***25 338 L99 338.0 338.0 0.00 4
RC206***25 324 KLM01 324.0 324.0 0.00 4
RC207***25 298.3 KLM01 298.3 298.3 0.00 5
RC208***25 269.1 C03 269.1 269.1 0.00 6
Tot. 18551.0 18553.2 18551.0 276
Avg. 0.02 5
< PB 0
#B 56 56

Table 19: Solomon VRPTW instances with 25 customers, comparison to exact solutions (distances and
travel times are truncated to one decimal and traveled distance is minimized). The table should be read as
the preceding tables. The abbreviations in theref column refers to the following papers:C03– Chabrier
[10], CR99– Cook and Rich [14],DP03– Danna and Le Pape [20],FDGG04– Feillet [24],IV03– Irnich
and Villeneuve [34],KLM01 – Kallehauge et al. [35],KDMSS99– Kohl et al. [36] andL99– Larsen [39].
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Optimal ALNS 25K
cost ref avg. best avg. avg.

sol. sol. gap time
(%) (s)

R101***50 1044 KDMSS99 1044.0 1044.0 0.00 9
R102***50 909 KDMSS99 909.0 909.0 0.00 10
R103***50 772.9 KDMSS99 772.9 772.9 0.00 10
R104***50 625.4 KDMSS99 626.1 625.4 0.12 11
R105***50 899.3 KDMSS99 899.8 899.3 0.05 9
R106***50 793 KDMSS99 793.0 793.0 0.00 10
R107***50 711.1 KDMSS99 711.1 711.1 0.00 10
R108***50 617.7 CR99 617.7 617.7 0.00 11
R109***50 786.8 KDMSS99 786.8 786.8 0.00 10
R110***50 697 KDMSS99 697.0 697.0 0.00 10
R111***50 707.2 L99 707.2 707.2 0.00 10
R112***50 630.2 L99 635.1 635.0 0.77 11
C101***50 362.4 KDMSS99 362.4 362.4 0.00 9
C102***50 361.4 KDMSS99 361.4 361.4 0.00 11
C103***50 361.4 KDMSS99 361.4 361.4 0.00 11
C104***50 358 KDMSS99 358.0 358.0 0.00 12
C105***50 362.4 KDMSS99 362.4 362.4 0.00 10
C106***50 362.4 KDMSS99 362.4 362.4 0.00 10
C107***50 362.4 KDMSS99 362.4 362.4 0.00 10
C108***50 362.4 KDMSS99 362.4 362.4 0.00 11
C109***50 362.4 KDMSS99 362.4 362.4 0.00 12
RC101***50 944 KDMSS99 944.0 944.0 0.00 9
RC102***50 822.5 KDMSS99 822.8 822.5 0.04 10
RC103***50 710.9 KDMSS99 710.9 710.9 0.00 10
RC104***50 545.8 KDMSS99 545.8 545.8 0.00 10
RC105***50 855.3 KDMSS99 855.3 855.3 0.00 10
RC106***50 723.2 KDMSS99 723.2 723.2 0.00 9
RC107***50 642.7 KDMSS99 643.7 642.7 0.16 10
RC108***50 598.1 KDMSS99 598.1 598.1 0.00 10
R201***50 791.9 L99 795.8 791.9 0.49 13
R202***50 698.5 L99 698.5 698.5 0.00 14
R203***50 605.3 C03 608.2 605.9 0.49 15
R204***50 506.4 IV03 506.4 506.4 0.00 24
R205***50 690.1 C03 698.2 696.7 1.17 15
R206***50 632.4 C03 634.0 632.4 0.25 16
R207***50 - - 576.1 576.1 0.01 22
R208***50 - - 489.6 487.7 0.39 29
R209***50 600.6 C03 602.5 600.6 0.32 15
R210***50 645.6 C03 648.3 645.6 0.42 16
R211***50 535.5 IV03 549.8 543.3 2.67 25
C201***50 360.2 L99 360.2 360.2 0.00 25
C202***50 360.2 CR99 360.2 360.2 0.00 27
C203***50 359.8 CR99 359.8 359.8 0.00 27
C204***50 350.1 KLM01 350.1 350.1 0.00 29
C205***50 359.8 CR99 359.8 359.8 0.00 30
C206***50 359.8 CR99 359.8 359.8 0.00 26
C207***50 359.6 CR99 359.6 359.6 0.00 27
C208***50 350.5 CR99 350.5 350.5 0.00 28
RC201***50 684.4 L99 684.8 684.8 0.06 12
RC202***50 613.6 FDGG04 613.6 613.6 0.00 12
RC203***50 555.3 C03 555.3 555.3 0.00 15
RC204***50 444.2 DP03 444.2 444.2 0.00 19
RC205***50 630.2 FDGG04 630.2 630.2 0.00 12
RC206***50 610 FDGG04 610.3 610.0 0.05 13
RC207***50 558.6 FDGG04 558.6 558.6 0.00 16
RC208***50 - - 497.9 481.8 3.33 24
Tot. 32560.9 32519.7 841
Avg. 0.19 15

Table 20: Solomon VRPTW instances with 50 customers, comparison to exact solutions .
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Optimal ALNS 25K
cost ref avg. best avg. avg.

sol. sol. gap time
(%) (s)

R101 1637.7 KDMSS99 1638.6 1637.7 0.05 30
R102 1466.6 KDMSS99 1467.7 1467.6 0.08 33
R103 1208.7 CR99 1208.9 1208.7 0.01 34
R104 971.5 IV03 977.1 976.0 0.58 34
R105 1355.3 KDMSS99 1355.8 1355.3 0.03 31
R106 1234.6 L99 1234.6 1234.6 0.00 33
R107 1064.6 L99 1068.2 1064.6 0.34 33
R108 - - 943.5 933.7 1.05 36
R109 1146.9 CR99 1150.2 1146.9 0.29 31
R110 1068 CR99 1083.1 1075.6 1.41 33
R111 1048.7 CR99 1049.2 1048.7 0.05 33
R112 - - 952.2 948.6 0.38 35
C101 827.3 KDMSS99 827.3 827.3 0.00 29
C102 827.3 KDMSS99 827.3 827.3 0.00 32
C103 826.3 KDMSS99 826.3 826.3 0.00 34
C104 822.9 KDMSS99 822.9 822.9 0.00 36
C105 827.3 KDMSS99 827.3 827.3 0.00 30
C106 827.3 KDMSS99 827.3 827.3 0.00 31
C107 827.3 KDMSS99 827.3 827.3 0.00 31
C108 827.3 KDMSS99 827.3 827.3 0.00 32
C109 827.3 KDMSS99 827.3 827.3 0.00 34
RC101 1619.8 KDMSS99 1629.8 1619.8 0.61 28
RC102 1457.4 CR99 1475.1 1463.5 1.22 30
RC103 1258 CR99 1272.2 1267.0 1.13 31
RC104 - - 1132.8 1132.6 0.01 33
RC105 1513.7 KDMSS99 1514.2 1513.8 0.04 30
RC106 - - 1376.1 1373.9 0.16 29
RC107 1207.8 IV03 1213.0 1209.3 0.43 30
RC108 1114.2 IV03 1124.6 1114.2 0.94 31
R201 1143.2 KLM01 1153.9 1148.5 0.94 45
R202 - - 1041.0 1036.9 0.40 54
R203 - - 876.5 872.4 0.47 60
R204 - - 731.5 731.3 0.03 67
R205 - - 952.4 949.8 0.27 58
R206 - - 880.6 880.6 0.00 61
R207 - - 796.4 794.0 0.30 72
R208 - - 703.1 701.2 0.27 86
R209 - - 860.2 855.8 0.52 60
R210 - - 914.0 908.4 0.61 59
R211 - - 758.3 752.3 0.80 67
C201 589.1 CR99 589.1 589.1 0.00 69
C202 589.1 CR99 589.1 589.1 0.00 74
C203 588.7 KLM01 588.7 588.7 0.00 80
C204 588.1 IV03 588.1 588.1 0.00 84
C205 586.4 CR99 586.4 586.4 0.00 76
C206 586 CR99 586.0 586.0 0.00 72
C207 585.8 CR99 585.8 585.8 0.00 74
C208 585.8 KLM01 585.8 585.8 0.00 74
RC201 1261.8 KLM01 1272.3 1262.6 0.84 42
RC202 1092.3 C03 1097.4 1095.8 0.47 46
RC203 - - 937.6 923.7 1.50 56
RC204 - - 788.1 785.8 0.29 68
RC205 1154 C03 1154.0 1154.0 0.00 45
RC206 - - 1062.5 1051.1 1.08 52
RC207 - - 976.2 966.6 0.99 55
RC208 - - 790.5 777.3 1.70 65
Tot. 54752.7 54579.5 2649
Avg. 0.36 47

Table 21: Solomon VRPTW instances with 100 customers, comparison to exact solutions .
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Best known ALNS 25K ALNS 50K
n type cost avg. best avg. best avg. avg. best avg. best avg.

sol. sol. gap above time sol. sol. gap above time
(%) B.K (s) (%) B.K (s)

P01 50 C 524.61 524.61 524.61 0.00 0.00 12 524.61 524.61 0.00 0.00 21
P02 75 C 835.26 841.81 838.87 0.78 0.43 20 839.62 835.26 0.52 0.00 38
P03 100 C 826.14 828.18 826.14 0.25 0.00 46 826.99 826.14 0.10 0.00 85
P04 150 C 1028.42 1037.43 1031.23 0.88 0.27 961034.20 1029.56 0.56 0.11 176
P05 199 C 1291.29 1309.36 1298.92 1.40 0.59 1241306.63 1297.12 1.19 0.45 233
P06 50 CD 555.43 555.43 555.43 0.00 0.00 12 555.43 555.43 0.00 0.00 21
P07 75 CD 909.68 913.03 909.68 0.37 0.00 19 911.78 909.68 0.23 0.00 36
P08 100 CD 865.94 867.65 865.94 0.20 0.00 42 866.97 865.94 0.12 0.00 78
P09 150 CD 1162.55 1169.06 1164.24 0.56 0.15 861167.68 1163.68 0.44 0.10 160
P10 199 CD 1395.85 1408.19 1404.17 0.88 0.60 1161410.27 1405.88 1.03 0.72 219
P11 120 C 1042.11 1042.37 1042.12 0.03 0.00 731042.46 1042.12 0.03 0.00 132
P12 100 C 819.56 819.56 819.56 0.00 0.00 43 819.56 819.56 0.00 0.00 79
P13 120 CD 1541.14 1543.77 1542.86 0.17 0.11 611543.54 1542.86 0.16 0.11 113
P14 150 CD 866.37 866.37 866.37 0.00 0.00 40 866.37 866.37 0.00 0.00 73
Tot. 13664 13726.83 13690.13 78913716.09 13684.21 1464
Avg. 0.39 0.15 56 0.31 0.11 105
< PB 0 0
#B 14 7 8

Table 22: Christofides et al. CVRP problems [13]. The columntype indicates if the problem is capacity
constrained (C) or both capacity and duration constrained (CD). The columnbest above B.Kindicates how
much the best solution found differs from the best known solution from the literature (in percent). The best
known solutions where obtained from Cordeau et al. [16].

Best known ALNS 25K ALNS 50K
n type cost ref avg. best avg. best avg. avg. best avg. best avg.

sol. sol. gap above time sol. sol. gap above time
(%) B.K (s) (%) B.K (s)

KELLY01 240 C 5627.54 MB 5667.04 5660.88 0.70 0.59 1935662.57 5650.91 0.62 0.42 393
KELLY02 320 C 8447.92 MB 8499.27 8478.73 0.61 0.36 3218487.94 8469.32 0.47 0.25 672
KELLY03 400 C 11036.22 MB 11067.48 11045.81 0.28 0.09 48211052.72 11047.01 0.15 0.10 1015
KELLY04 480 C 13624.52 MB 13752.13 13635.31 0.94 0.08 65413748.50 13635.31 0.91 0.08 1328
KELLY05 200 C 6460.98 TK 6479.80 6478.09 0.29 0.26 3066482.49 6466.68 0.33 0.09 629
KELLY06 280 C 8412.8 MB 8507.29 8415.67 1.12 0.03 4188543.30 8416.13 1.55 0.04 876
KELLY07 360 C 10195.56 MB 10273.80 10231.34 0.90 0.35 46410265.15 10181.75 0.82 -0.14 941
KELLY08 440 C 11663.55 MB 11804.08 11721.35 1.20 0.50 49911766.07 11713.62 0.88 0.43 1011
KELLY09 255 CD 583.39 MB 591.75 584.48 1.43 0.19 225 590.33 585.14 1.19 0.30 437
KELLY10 323 CD 742.03 MB 753.48 749.47 1.54 1.00 305 751.36 748.89 1.26 0.92 616
KELLY11 399 CD 918.45 MB 933.42 926.63 1.63 0.89 371 926.57 922.70 0.88 0.46 761
KELLY12 483 CD 1107.19 MB 1129.53 1125.11 2.02 1.62 4581125.22 1119.06 1.63 1.07 911
KELLY13 252 CD 859.11 MB 878.22 876.01 2.22 1.97 142 874.24 864.68 1.76 0.65 285
KELLY14 320 CD 1081.31 MB 1107.97 1096.92 2.47 1.44 1941103.53 1095.40 2.06 1.30 393
KELLY15 396 CD 1345.23 MB 1370.94 1355.91 1.91 0.79 2361366.23 1359.94 1.56 1.09 468
KELLY16 480 CD 1622.69 MB 1652.00 1639.81 1.81 1.05 2791645.67 1639.11 1.42 1.01 549
KELLY17 240 CD 707.79 MB 713.76 710.36 0.84 0.36 153 710.59 708.90 0.39 0.16 304
KELLY18 300 CD 998.73 MB 1008.11 1003.20 0.94 0.45 1961007.84 1002.42 0.91 0.37 387
KELLY19 360 CD 1366.86 MB 1380.49 1377.52 1.00 0.78 2271377.88 1374.24 0.81 0.54 449
KELLY20 420 CD 1821.15 MB 1843.08 1828.35 1.20 0.40 2451834.70 1830.80 0.74 0.53 488
Tot. 88623 89413.66 88940.91 636989322.91 88832.02 12914
Avg. 1.25 0.66 318 1.02 0.48 646
< PB 0 1
#B 19 0 1

Table 23: Golden et al. CVRP problems ([30]). The best known solutions where obtained from Cordeau et
al. [16], MB refers to the heuristic by Mester and Bräysy [42] (the results are not given in [42], but can be
found in [16]),TK refers to the heuristic by Tarantilis and Kiranoudis [57].
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Best known ALNS 25K ALNS 50K
n cost ref avg. best avg. best avg. avg. best avg. best avg.

sol. sol. gap above time sol. sol. gap above time
(%) B.K (s) (%) B.K (s)

CVRP_L_21 560 16212.83 EST 16488.67 16296.21 1.70 0.51 86916391.23 16224.81 1.10 0.07 1735
CVRP_L_22 600 14641.64 ORTR 14737.97 14638.37 0.73 -0.02 56914644.06 14631.08 0.09 -0.07 1168
CVRP_L_23 640 18801.13 EST 19155.50 18925.36 1.88 0.66 109719112.56 18837.49 1.66 0.19 2268
CVRP_L_24 720 21389.43 EST 22024.22 21652.78 2.97 1.23 125921913.83 21522.48 2.45 0.62 2739
CVRP_L_25 760 17053.26 EST 17170.49 17082.81 1.59 0.17 65017115.78 16902.16 1.26 -0.89 1320
CVRP_L_26 800 23977.74 EST 24577.43 24084.92 2.50 0.45 142524405.05 24014.09 1.78 0.15 3081
CVRP_L_27 840 17651.6 ORTR 17833.67 17749.35 1.25 0.55 72317769.75 17613.22 0.89 -0.22 1504
CVRP_L_28 880 26566.04 EST 27315.94 26651.15 2.82 0.32 169227172.63 26791.72 2.28 0.85 3441
CVRP_L_29 960 29154.34 EST 30117.04 29487.26 3.30 1.14 188729976.86 29405.60 2.82 0.86 3921
CVRP_L_30 1040 31742.64 EST 32828.86 32133.28 3.42 1.23 219232607.06 31968.33 2.72 0.71 4348
CVRP_L_31 1120 34330.94 EST 35617.70 34962.16 3.75 1.84 239535472.51 34770.34 3.33 1.28 5003
CVRP_L_32 1200 36919.24 EST 37989.05 37401.49 2.90 1.31 275037818.65 37377.35 2.44 1.24 5321
Tot. 288441 295856.55 291065.13 17509294399.98 290058.65 35849
Avg. 2.40 0.78 1459 1.90 0.40 2987
< PB 1 3
#B 9 0 3

Table 24: Li et al. CVRP problems [40].EST refers to a solution found by hand by Li et al [40] (the
instances are highly symmetrical which makes it easy to construct good solutions by hand).ORTRrefers
to a solution found by a heuristic by Li et al. [40].
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Chapter 7

Introduction to exact methods

7.1 Introduction

Solving NP-hard optimization problems to optimality is a topic, that has challenged researchers
almost since the beginning of computer history (long before the concept of NP-hardness was
discovered). Significant progress has been made in the recent decades, but for many problem
types only fairly small instances can be solved. Vehicle routing problems belong to a class of
problems that has proved to be difficult to solve. Only moderately sized problems can be solved
to optimality consistently.

The topic of this chapter and the following is quite different from that studied in part II and
so is the goal of the methods developed. In part II we studied heuristics, and an objective that
always was kept in mind in this part of the thesis was the applicability of the heuristics to real life
problems.

In this part of the thesis, we are not concerned about the methods we develop should be
applicable to real life problems. The purposes of the work presented in this part is mainly to

• Enhance our knowledge about the PDPTW. This include investigating which formulations of
the problem that appear to be best suited for solving the problem to optimality and finding
new valid inequalities for the problem.

• Provide the research community with knowledge about optimal solutions for the PDPTW.
This can be used to evaluate the performance of heuristics for the problem.

In this chapter we review some of the methods used for solving NP-hard optimization problems
to optimality. We review the methods that has been used in Chapter 8 and 9, namely branch-
and-cut (BAC) and branch-and-price (BAP) and their combination branch-cut-and-price (BCP).
It is assumed that the reader is familiar with the branch-and-bound paradigm, if not, for example
Wolsey [1998] gives an introduction to the subject.

7.2 Linear programming based lower bounds

The structure of this section is to a certain degree inspired from Ralphs and Galati [2005] and the
notation has been taken from same paper.

In what follows we assume that a integer linear program (ILP) is to be solved and we assume
that the problem is a minimization problem. We can write the problem as:

zIP = min
x∈Zn

{

cT x |Ax ≥ b
}

where c ∈ Qn, A ∈ Qm×n and b ∈ Qm. Such a problem is often solved using a branch-and-bound
method.
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When solving NP-hard optimization problems exactly, one often resort to branch-and-bound
methods. In order to construct a branch-and-bound algorithm for solving zIP , one needs a lower
bound to zIP - preferably one that can computed efficiently. One way to obtain a lower bound is
to solve the linear relaxation of zIP

zLP = min
x∈Rn

{

cT x |Ax ≥ b
}

(7.1)

as zLP is minimizing over a superset Zn, it is clearly a valid lower bound to zIP . Let Q =
{x ∈ Rn |Ax ≥ b} be the polyhedron of feasible solutions to zLP . We can express the set of
feasible solutions to zIP as F = Q ∩ Zn. Now let conv (·) denote the convex hull. From Wolsey
[1998], proposition 1.1 and 1.2 we know that conv (F) is a polyhedron and that the extreme points
of conv(X) always lie in X , this gives us the the second equality sign in

zIP = min
x∈Zn

{

cT x |Ax ≥ b
}

= min
x∈F

{

cT x
}

= min
x∈conv(F)

{

cT x
}

The fact that P = conv(F) is a polyhedron means that ZIP in theory can be solved as linear
program — in practice, this does not give us a way to solve ZIP though, as we for interesting
problems do not know the inequalities defining P and even if we knew the set of inequalities it
could be of exponential size. We can try to approximate P though. This is what is being done
in a branch-and-cut algorithm in order to get better lower bounds, we will return to this a little
later.

To illustrate the concepts, consider the following ILP

min−2x1 + 3x2

subject to

2x1 + x2 ≥ 8 (7.2)

−3x1 + x2 ≥−12 (7.3)

x1 − 4x2 ≥−20 (7.4)

−x1 + 2x2 ≥ −1 (7.5)

x1, x2 ∈ Z (7.6)

The polyhedron Q is in this case defined by equation (7.2)–(7.5) and

x1, x2 ∈R (7.7)

The polyhedron Q is illustrated in Figure 7.1 (upper left). We find that zLP = −3.8 and the
optimal point in Q is (x∗

1, x
∗
2) = (4.6, 1.8) (see Figure 7.1, lower right). The set F = Q ∩ Z2

and the polyhedron conv(F) are easily obtained in this simple case and is illustrated in Figure 7.1
(upper right and lower left). We find that zIP = −2 and the optimal point in F is (x∗

1, x
∗
2) = (4, 2).

We note that zLP indeed is a lower bound to zIP .
It is possible to use the lower bound zLP in a branch and bound algorithm, but often a tighter

bound is desirable. As we saw above it is possible to close the gap between zLP and zIP completely
by adding all the inequalities from conv(F) to the linear programming problem. This leads to the
term valid inequality. The definition of a valid inequality (from definition 8.1 in Wolsey [1998]) is

Definition: An inequality πx ≥ π0 is a valid inequality for F ⊆ Rn if πx ≥ π0 for all x ∈ F .
In other words, a valid inequality should not cut away any feasible integer points. We are of

course interested in inequalities that do cut away fractional solutions. Given an optimal solution
x∗ to the LP relaxation that is fractional we want to find a valid inequality that cuts away x∗.
The problem of finding such an inequality is called a separation problem as we want to find
an inequality that separates x∗ from F . An algorithm that finds such an inequality is called a
separation algorithm.
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Figure 7.1: Polyhedrons. The upper left figure illustrates the polyhedron Q defined by equations
(7.2)–(7.5) and (7.7). The upper right figure illustrates F = Q ∩ Z2, the elements of F are the
black dots. The figure at the bottom left illustrates the convex hull of F . The figure in the bottom
right illustrates both Q, F and conv(F), the figure also show the objective (the dotted line) and
the optimal LP and IP solutions (grey rectangles).
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In Figure 7.2 (left) we have added the valid inequality

−2x1 + x2 ≥−7 (7.8)

Adding this inequalities separates the old optimal LP solution x∗ = (4.6, 1.8) from F . The new
optimal LP solution is x∗ = (4 1

3 , 1 2
3 ) with objective −3 2

3 , which is a slightly better lower bound.
Adding the inequalities

−x1 + x2 ≥−2 (7.9)

x2 ≥ 2 (7.10)

once again separates x∗ from F and the LP relaxation now gives the optimal solution to the
integer problem, x∗ = (4, 2), zIP = zLP = −2, this is illustrated in Figure 7.2 (right). This
example shows that it is not necessary to have a complete description of the convex hull of F to
get the IP optimal solution using the LP relaxation. A description of the convex hull around the
IP optimal point is enough. In this case the inequalities (7.9) and (7.10) are enough. We also see
that the inequality (7.8) is redundant because of inequalities (7.9) and (7.3). Inequalities (7.9) and
(7.10) are examples of the so called facet defining inequalities of the polyhedron conv(F) while
(7.8) is defining a face of the polyhedron conv(F). The facet defining inequalities are the strongest
valid inequalities. The proper definition of facets and faces are given in Definition 9.5 in Wolsey
[1998]

Definition

1. F defines a face of the polyhedron P if F = {x ∈ P : πx = π0} for some valid inequality
πx ≥ π0 of P .

2. F is a facet of P if F is a face of P and dim(F ) = dim(P ) − 1.

3. If F is a face of P with F = {x ∈ P : πx = π0}, the valid inequality πx ≥ π0 is said to
represent or define the face.

To give a more intuitive sense of faces and facets we can say, that for a 2-dimensional polyhedron
like the one in our figure, the faces are lines and extreme points of the polyhedron while the facets
are the lines defining the polyhedron. For a 3-dimensional polyhedron the faces are the planes plus
the extreme lines and extreme points of the polyhedron, facets are the planes of the polyhedron.

7.2.1 Cutting plane algorithm

Valid inequalities give us a an algorithmic framework for solving IP problems. Our starting point
is the linear relaxation (7.1). By using the definition of Q from section 7.2 we can write it as

zLP = min
{

cT x |x ∈ Q
}

(7.11)

the cutting plane algorithm works by iteratively adding valid inequalities to Q to make it approx-
imate conv(F ) better and better. The algorithm follows the following steps (assuming that the IP
has a feasible solution)

1. set t = 0, Qt = Q

2. solve the linear program
zt = min

{

cT x
∣

∣x ∈ Qt
}

3. let x∗ be the corresponding optimal solution.

4. if x∗ is integer then
we have found the optimal solution to the IP problem - STOP.

5. Find an inequality πtx ≥ πt
0 that separates x∗ from F .



CHAPTER 7. INTRODUCTION TO EXACT METHODS 150

� � �� � � �

�
�
�
�
�
�
�
��

�� � � �� � � �

�
�
�
�
�
�
�
��

��

Figure 7.2: Valid inequalities. In the left figure the inequality (7.8) has been added to (7.2)–(7.5),
yielding a better lower bound. The LP optimal solution is marked with a square while the old LP
optimal solution is marked with a star. In the right figure the inequalities (7.9) and (7.10) have
been added and the LP relaxation now gives the IP optimal solution, the star marks the old LP
optimal solution.

6. Set Qt+1 = Qt ∩ {x ∈ Rn |πtx ≥ πt
0 }, set t = t + 1

7. Goto step 2

Step 5 is of course the most complex part of the algorithm, but Gomory’s fractional cutting
plane algorithm (GFCPA) provides a way of generating a violated valid inequality and it can be
proved that the GFCPA finds the IP optimal solution in a finite number of steps (see [Nemhauser
and Wolsey, 1988, Theorem 3.8]). The convergence of the GFCPA is very slow though and the
algorithm is not really useful in practice.

Instead one can separate inequalities from a family of inequalities, known to be useful for the
particular IP problem (e.g. one could use the comb inequalities if solving the TSP). When no more
violated inequalities can be found the algorithm must stop and the problem is instead solved by
branch and bound using the tighter lower bound provided by zLP = min

{

cT x |x ∈ Qt
}

instead of
zLP = min

{

cT x |x ∈ Q
}

.

7.2.2 Branch-and-cut

Branch-and-cut extends on the cutting plane algorithm idea from the preceding section. The idea
in branch-and-cut is simply to generate valid, violated inequalities throughout the branch and
bound tree and not only in the root node. The valid inequalities are typically chosen from some
preselected families of valid inequalities and in each node there is a trade off between improving
the lower bound as much as possible versus processing the node as fast as possible. Thus one will
often stop generating valid inequalities in a node if the improvements of the lower bound has been
small for a number of iterations. In that case it may be better to branch and then try to generate
more valid inequalities in the child nodes. It is important to note that some cuts are globally valid
- they can be used throughout the branch and bound tree, even if detected in a child node deep
in the tree, while other cuts are locally valid - they can only be used in the node where they were
discovered and in its child nodes. In the branch-and-cut algorithm presented in this paper only
globally valid cuts are used.

The branch and cut paradigm has been successful for many problem types, most notable is
probably the development in TSP branch-and-cut methods Applegate et al. [2003].
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7.3 Introduction to branch-and-price

The preceding section introduced one technique for getting strong lower bounds and shortly dis-
cussed how to use these lower bounds in a branch and bound framework. This section introduces
the Dantzig-Wolfe decomposition technique for integer programs and investigates how it can be
used within a branch-and-bound method. Dantzig Wolfe decomposition was originally introduced
for linear programs by Dantzig and Wolfe [1960].

The branch-and-price paradigm relies on two concepts. The first concept is decomposition
that transforms the original or compact formulation into a model that contains many columns,
but typically fewer rows than the original formulation. The new formulation is often denoted an
extensive formulation.

The second concept is column generation. In order to solve the linear relaxation of the extensive
formulation one does not generate the entire model as it typically is very large - the number
of variables often grow exponentially in the size of the original problem. Instead columns are
generated dynamically using a technique known as column generation. When the lower bound
within a branch-and-bound framework is solved using dynamic column generation the resulting
branch and bound algorithm is called branch-and-price or IP column generation. Adding a branch
and bound search on top of a linear programming relaxation based on column generation might
seem straightforward, but the approach has some pitfalls. An example of such a pittfall is how to
create the subproblems when branching such that they doesn’t change the structure of the pricing
problem.

This section only gives a short introduction to column generation and branch-and-price, more
information can be found in Wolsey [1998], Desrosiers and Lübbecke [2005], Ralphs and Galati
[2005], Sigurd [2004], Vanderbeck [2000]. The description given in this chapter follows that of
Wolsey [1998] and Sigurd [2004].

7.3.1 Decomposition

Consider an integer programming problem of the form (compact formulation)

min cT x (7.12)

subject to

Ax ≥ b (7.13)

Dx ≥ d (7.14)

x ∈Nn
0 (7.15)

Where A is an mA × n matrix and D is an mD × n matrix and all elements are assumed to be
rationals, b ∈ QmA and d ∈ QmD are vectors. Assume that the polyhedron

{

x ∈ Rn
+ : Dx ≥ d

}

is bounded (see Sigurd [2004] for the unbounded case). Then the set X = {x ∈ Nn
0 : Dx ≥ d}

contains a finite number of elements {pω}ω∈Ω and we can write the set X as

X =

{

x ∈ Rn
+ : x =

∑

ω∈Ω

λωpω,
∑

ω∈Ω

λω = 1, λω ∈ {0, 1}, ∀ω ∈ Ω

}

Substituting for x in the compact formulation (7.12)–(7.15) leads to the extensive formulation

min cT

(

∑

w∈Ω

λωpω

)

(7.16)
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subject to

A

(

∑

w∈Ω

λωpω

)

≥ b (7.17)

∑

ω∈Ω

λω = 1 (7.18)

λω ∈{0, 1} ∀ω ∈ Ω (7.19)

Defining cω = cT pω and aω = Apω for ω ∈ Ω we get

min
∑

w∈Ω

cωλω (7.20)

subject to
∑

ω∈Ω

aωλω ≥ b (7.21)

∑

ω∈Ω

λω = 1 (7.22)

λω ∈{0, 1} ∀ω ∈ Ω (7.23)

The extensive formulation contains fewer rows (inequalities) than the compact formulation but
it typically contains many more columns (variables). The real benefit of the extensive formu-
lation is that its LP relaxation often is better (tighter) than the LP relaxation of the com-
pact formulation. To see this consider the two polyhedra Qc =

{

x ∈ Rn
+ : Ax ≥ b, Dx ≥ d

}

and
Qe =

{

x ∈ Rn
+ : Ax ≥ d, x ∈ conv(X)

}

. Qc is the polyhedron that the linear relaxation of the
compact formulation optimizes over, while Qe is the polyhedron that the linear relaxation of the
extensive formulation optimizes over. It is clear that Qe ⊆ Qc as

conv(X) = conv
({

x ∈ N+
0 : Dx ≥ d

})

⊆
{

x ∈ Rn
+ : Dx ≥ d

}

If conv(X) =
{

x ∈ Rn
+ : Dx ≥ d

}

then the extensive and the compact formulation give the same
lower bound. This is the case when all the extreme points of

{

x ∈ Rn
+ : Dx ≥ d

}

are integer and
the polyhedron is said to have the integrality property.

The price one has to pay for getting a tighter lower bound is that the set X must be known. In
Section 7.3.2 we show that it is not necessary to have an explicit definition of X in the the model.

The decomposition described above is in particular useful if the matrix D has a block diagonal
structure, that is

D =







D1

. . .
D∆







The matrices Dδ, δ = 1, . . . , ∆ are mδ × nδ matrices and the d=(d1, . . . , d∆) where dδ ∈ Qmδ . In
that case we can consider the smaller, independent polyhedrons Xδ =

{

x ∈ N
nδ

0 : Dδx ≥ dδ
}

that
are bounded if X is and therefore contains a finite number of elements

{

pδ
ω

}

ω∈Ωδ . We can write
Xδ as

Xδ =







x ∈ R
nδ

+ : x =
∑

ω∈Ωδ

λδ
ωpδ

ω,
∑

ω∈Ωδ

λδ
ω = 1, λδ

ω ∈ {0, 1}, ∀ω ∈ Ωδ







Let p′δω =
(

0, . . . , 0,
(

pδ
ω

)T
, 0, . . . , 0

)T

where there are
∑δ−1

i=1 ni leading zeros and
∑∆

i=δ+1 ni trail-

ing zeros . The polyhedron X can be written as X = X1× . . .×X∆ and we can express any point
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x in X as

x =

∆
∑

δ=1





∑

ω∈Ωδ

λδ
ωp′δω





substituting into (7.12)–(7.15) yields

min cT





∆
∑

δ=1





∑

ω∈Ωδ

λδ
ωp′δω







 (7.24)

subject to

A





∆
∑

δ=1





∑

ω∈Ωδ

λδ
ωp′δω







 ≥ b (7.25)

∑

ω∈Ωδ

λδ
ω = 1 ∀δ ∈ {1, . . .∆} (7.26)

λδ
ω ∈{0, 1} ∀δ ∈ {1, . . .∆}, ∀ω ∈ Ωδ (7.27)

Defining cδ
ω = cT p′δω and aδ

ω = Ap′δω this simplifies to

min
∆
∑

δ=1

∑

ω∈Ωδ

cδ
ωλδ

ω (7.28)

subject to

∆
∑

δ=1

∑

ω∈Ωδ

aδ
ωλδ

ω ≥ b (7.29)

∑

ω∈Ωδ

λδ
ω = 1 ∀δ ∈ {1, . . .∆} (7.30)

λδ
ω ∈{0, 1} ∀δ ∈ {1, . . .∆}, ∀ω ∈ Ωδ (7.31)

The model (7.28)–(7.31) has fewer variables than model (7.20)–(7.23) that did not take advantage
of the block diagonal structure (see for example Sigurd [2004]).

If all the blocks in the diagonal block matrix are identical, then by selecting Ω1 as representative
of the points in the Xδ sets, the model can be simplified to

min
∑

ω∈Ω1

c1
ωλ1

ω (7.32)

subject to
∑

ω∈Ω1

a1
ωλ1

ω ≥ b (7.33)

∑

ω∈Ω1

λ1
ω = ∆ (7.34)

λ1
ω ∈N0 ∀ω ∈ Ω1 (7.35)

7.3.2 Column generation

Column generation is a technique for solving large scale linear programming problems. When
using column generation we are not using all variables explicitly in the model we are solving, but
only a subset. Variables are generated dynamically when necessary by using the properties of the
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simplex algorithm. Column generation can be used for any linear programming problem, but it is
particularly useful for linear programs with a huge number of variables as the ones arising from
the extensive models obtained in section 7.3.1. In this section we are going to see how column
generation works for the linear relaxation of (7.20)–(7.23), we refer to Sigurd [2004] for a more
throughout exposition.

The linear relaxation of (7.20)–(7.23) is:

min
∑

w∈Ω

cωλω (7.36)

subject to
∑

ω∈Ω

aωλω ≥b (7.37)

∑

ω∈Ω

λω =1 (7.38)

0 ≤ λω ≤1 ∀ω ∈ Ω (7.39)

Thus the linear relaxion considers a linear combination of the elements from X . Consider looking
at a reduced set of columns Ω̄ ⊆ Ω such that

∣

∣Ω̄
∣

∣ is much smaller that |Ω|. Ω̄ must be chosen such
that the linear program

min
∑

w∈Ω̄

cωλω (7.40)

subject to
∑

ω∈Ω̄

aωλω ≥b (7.41)

∑

ω∈Ω̄

λω =1 (7.42)

0 ≤ λω ≤1 ∀ω ∈ Ω̄ (7.43)

has a feasible solution. If it is difficult to select a subset of columns such that the linear program
has a feasible solution, then one can generate one or more dummy columns that has very high
cost, but constitute a feasible solution. In order to proceed one first need to consider how the
simplex algorithm solves a linear program like

min cT x (7.44)

subject to

Ax ≥ b (7.45)

x ∈Rn
+ (7.46)

The simplex algorithm maintains a basic feasible solution that as the name implies is a feasible
solution to the LP, but not necessarily optimal. In each iteration of the simplex algorithm a new
column is chosen to enter the basis. If the new column should have a chance of improving the
basic feasible solution, it must have negative reduced cost cπ

i

cπ
i = ci − πAi

where π is the current dual variables associated with the constraints (7.45) and Ai is the ith
column in A. The typical approach is to select the column with minimum reduced cost, that is,
the column

arg min
i∈{1,...,n}

{ci − πAi}
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when no column with negative reduced cost is found, then the simplex algorithm has reached the
optimal solution to (7.44)–(7.46).

Returning to column generation for the relaxed, decomposed problem (7.36)–(7.39), it is now
clear, that after solving the reduced problem (7.40)–(7.43) we can use the dual vector π to see
if more columns should be added to Ω̄. We simply have to calculate the reduced costs of all the
columns in Ω \ Ω̄. If one of these columns has negative reduced cost then it is added to Ω̄ and
(7.40)–(7.43) is resolved. Frequently one will add the column with the most negative reduced cost.
If no column in Ω \ Ω̄ has negative reduced cost then the solution to (7.40)–(7.43) is optimal for
(7.36)–(7.39) as well.

The above description require us to know column Aω for all ω ∈ Ω or at least to have a function
that can generate all these columns on demand. This is impractical for most problems. Instead
we need an oracle that given the dual vector π can return a column with negative reduced cost or
tell if such a column does not exist. The oracle solves the following problem

min cT x − πAx (7.47)

subject to

x ∈X (7.48)

or alternatively
min cT x − πAx (7.49)

subject to

Dx ≥ d (7.50)

x ∈Nn
0 (7.51)

The problem (7.49)–(7.51) is called the pricing problem while the problem (7.40)–(7.43) is called
the master problem. The pricing problem is often a hard problem in itself.

One decomposition of the VRPTW decomposes the problem into a master problem that is
a set-partitioning problem and a pricing problem that is a elementary shortest path problem
with time windows and capacity constraints which is a NP-hard problem. In Chapter 9 several
decompositions of the PDPTW is considered.

7.3.3 Branch-and-price

Section 7.3.2 showed how an LP lower bound for the extensive formulation of an integer program
could be obtained. Sometimes the LP solution happens to be integer and the original IP is solved.
But in general the LP solution will be fractional. The paradigm branch-and-price or IP column
generation deals with how to obtain an integer solution when the LP relaxation is fractional.

The obvious approach is to use branch and bound, where branching is performed on the λω

variables, that is, if λω is fractional for some ω ∈ Ω then two branches are created, one where
λw = 1 and one where λω = 0. One problem with this approach is that it creates highly unbalanced
branch-and-bound trees as the λω = 0 branch most often does not change the problem much -
we are excluding one column out of millions of columns. The second problem with the branching
rule is that it can create difficulties for the pricing problem. The first case is generally easy to
handle while the second case is problematic - it changes the structure of the pricing problem -
when imposing λω = 0 the pricing problem is no longer allowed to generate column ω. Depending
on the pricing problem this can make it much harder to solve.

To avoid these problems one prefers a branching scheme that is compatible with the pricing
problem. This can often be obtained by branching on the variables of the compact formulation.
For the VRPTW Dumas et al. [1991] for example proposed to branch on the arcs in the compact
formulation, this information was easily transfered to the subproblem.

The topic of branching in IP column generation is discussed further in the literature mentioned
in section 7.3 and in Chapter 9 it is discussed how branching can be done for an IP column
generation algorithm for the PDPTW.
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7.3.4 Branch-and-cut-and-price

It is possible to combine the branch-and-cut and branch-and-price paradigms to obtain even
stronger lower bounds. For problems of the vehicle routing family this has been proposed by
Kohl [1995], Desaulniers et al. [1998], Kohl et al. [1999]. The approach described by Kohl [1995],
Kohl et al. [1999] allows us to generate cuts based on the x-variables in the compact formulation
(7.12)–(7.15). Such a cut can be expressed as αx ≥ β where β ∈ Q and αT ∈ Qn. The x vector cor-
responding to the current solution of the master problem is simple to obtain as x =

∑

ω∈Ω̄ λωpω.
When a cut in the original variables has been identified, it can be added to the master prob-
lem by substituting for x. The cut in the λ variables is: α

∑

ω∈Ω λωpω ≥ β or alternatively
∑

w∈Ω αωλω ≥ β where αω = αpω. Adding this row to the master problem changes the objective
of the pricing problem to

min cT x − πAx − ναx (7.52)

while the equations (7.50)–(7.51) remains the same. ν is the dual variable corresponding to the
new row. What happens with the pricing problem is that some of coefficients of the variables in
the objective function are changed. This usually means that the pricing problem occurring when
adding cuts can be solved by the same pricing algorithm as was used to solve the pricing problem
when no cuts were added. Such a cut is called robust in the terminology introduced by Poggi de
Aragão and Uchoa [2003]. As we are going to see in Chapter 9 it is not always the case that the
change in objective is harmless to the pricing problem.

Poggi de Aragão and Uchoa [2003] present a different way of handling cuts expressed in the
variables of the original formulation. In their decomposition they keep the original variables x and
can introduce cuts in a direct way. The drawback of this approach is that larger linear programs
must be solved compared to the approach outlined above.

Jepsen et al. [2005] experiments with some classes of cuts derived from the clique inequality for
the set-partitioning problem, that operate directly on the λ variables. This changes the structure
of the pricing problem and makes them harder to solve, but has a significant impact on the lower
bounds. Computational tests on the VRPTW are promising.

7.3.5 Further topics

This section gives pointers to the literature for further topics within column generation.

• Alternative decomposition. An alternative way of decomposing the compact formulation
is proposed by Desrosiers et al. [1995]. This decomposition is done as in linear programming,
using Minkowski’s Theorem by decomposing by conv(X). Vanderbeck [2000] compares this
approach to the decomposition presented in section 7.3.1. The two decompositions give the
same lower bounds.

• Relation to Lagrangian relaxation. It has long been known that performing Lagrangian
relaxation on the compact formulation (7.12)–(7.15) by relaxing the constraints Ax ≥ b gives
the same lower bound as performing Dantzig-Wolfe decomposition where the constraints
Ax ≥ b is kept in the master problem. This was shown by Geoffrion [1974]. Research have
been carried in the recent years to combine the two approaches. This topic is considered
by Huisman et al. [2005] while Kallehauge et al. [2006] compares a Lagrangian relaxation
approach to a column generation approach.

• Stabilization. It has been observed that the convergence of column generation algorithms
can be very slow. The observation made is that dual variable initially fluctuates violently and
their initial values seem almost random. This implies that worthless columns are generated
early on in the process. The fluctuation in dual variables only slowly dies out, and it is
typically only towards the end of the column generation process that useful columns (the
ones ending up in the optimal LP solution) are generated. To alleviate this problem, stabilized
column generation has been proposed. Stabilized column generation works by limiting how
much the dual variables can change. This can be done by selecting a current “guess” of the
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dual variables. Setting the dual variable to a value far from the guess is penalized, typically by
a piecewise linear function. This causes the dual variables to stay close to the guess. At times
the guesses are updated, moving them toward the current value of the dual in question, and
the penalty functions can be modified as well. A different approach is suggested by Rousseau
et al. [2003]. Given an optimal primal solution they consider the polydron D containing all
optimal dual solutions. They show how to find a set of different extreme points of D (each
point corresponds to a feasible, optimal dual solution) and produces an interior point in D
by a creating a convex combination of the set of extreme points. This interior point is more
stable than the extreme point of D returned by the LP when using an unstabilized approach
and the computational experiments suggest that method is comparable to the approach
based on penalties functions while requiring fewer parameters.
Some references to literature about stabilization in column generation are du Merle et al.
[1999], Sigurd and Ryan [2003], Rousseau et al. [2003], Amor et al. [2004] and Oukil et al.
[2004]. Significant speed ups are reported when using stabilization.

• Implementation tricks. Many implementation tricks for speeding up column generation
algorithms have been proposed. Some of these are: solving the pricing problem heuristically,
adding more than one column in each iteration, only keeping a limited set of the columns
generated in the linear programming model. These and many more tricks are described in
Desaulniers et al. [2001] and Lübbecke and Desrosiers [2005].
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Abstract

In the pickup and delivery problem with time windows (PDPTW), capacitated vehicles
must be routed to satisfy a set of transportation requests between given origins and
destinations. In addition to capacity and time window constraints, vehicle routes must
also satisfy pairing and precedence constraints on pickups and deliveries. This paper
introduces two new formulations for the PDPTW and the closely related dial-a-ride
problem (DARP) in which a limit is imposed on the elapsed time between the pickup
and the delivery of a request. Several families of valid inequalities are introduced to
strengthen these two formulations. These inequalities are used within branch-and-cut
algorithms which have been tested on several sets of instances for both the PDPTW
and the DARP. Instances with up to eight vehicles and 96 requests (192 nodes) have
been solved to optimality.
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1 Introduction

In the Pickup and Delivery Problem (PDP), capacitated vehicles must be routed to satisfy
a set of transportation requests between given origins and destinations. Each route must
start and finish at a common depot and satisfy pairing and precedence constraints: for
each request, the origin must precede the destination, and both locations must be visited
by the same vehicle. The PDP arises naturally in several contexts such as urban courier
services and door-to-door transportation systems for the elderly and the disabled. In most
applications, time windows restrict the time at which each pickup and delivery location may
be visited by a vehicle. This gives rise to the PDP with Time Windows (PDPTW). In
the case of passenger transportation, additional constraints may also be present to reduce
customer dissatisfaction. In particular, ride time constraints are often imposed to limit the
time spent by a passenger in the vehicle. The resulting problem is called the Dial-a-Ride
Problem (DARP).

Both the PDP and PDPTW are generalizations of the classical Vehicle Routing Problem
(VRP) and are thus NP-hard. As a result, the development of solution methods for these
problems has focused on heuristics (see, e.g., Desaulniers et al., 2002; Cordeau et al.,
2006). Nevertheless, when the problem is sufficiently constrained, it is possible to obtain
optimal solutions within reasonable computation time. For instance, dynamic programming
has been used successfully to solve the single-vehicle PDP with or without time windows
(Psaraftis, 1980, 1983; Desrosiers et al., 1986). For the multiple-vehicle case, column
generation approaches have been proposed. The first such method was introduced by Dumas

et al. (1991) who addressed the PDPTW. Their set-partitioning formulation is solved by
a branch-and-price method in which columns of negative reduced-cost are generated by
a dynamic programming algorithm similar to that of Desrosiers et al. (1986) for the
single-vehicle case. The method has been successful in solving instances with tight capacity
constraints and a small number of requests per route. Several arc elimination rules have also
been proposed to reduce the size of the problem. A similar approach was later developed by
Savelsbergh and Sol (1998) who used a column management mechanism to reduce the
size of the master problem, and construction and improvement heuristics to accelerate the
solution of the pricing subproblem.

Another solution methodology that has proven successful for solving the PDP is branch-and-
cut. The single-vehicle case without time windows was first studied by Ruland and Rodin

(1997) who introduced several families of valid inequalities that are also valid for the PDPTW
and will thus be described in more detail in Section 3. Branch-and-cut has also been used
to solve the more general Precedence-Constrained Asymmetric Traveling Salesman Problem
(PCATSP) in which each node may have multiple predecessors. Valid inequalities and a
branch-and-cut algorithm for this problem have been developed, respectively, by Balas

et al. (1995) and Ascheuer et al. (2000b). A branch-and-cut algorithm for the capacitated
multiple-vehicle PDP and PDPTW was later described by Lu and Dessouky (2004). Their
formulation contains a polynomial number of constraints and uses two-index flow variables,
but relies on extra variables to impose pairing and precedence constraints. Instances with
up to five vehicles and 25 requests were solved optimally with this approach. More recently,
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Cordeau (2006) has developed a branch-and-cut algorithm for the DARP. It is based on
a three-index formulation with a polynomial number of constraints. It uses several families
of valid inequalities that are either adaptations of existing inequalities for the TSP and the
VRP, or new inequalities which take advantage of the structure of the problem. Most of
these inequalities are valid for the PDPTW and will also be described in Section 3. This
approach was capable of solving instances with up to four vehicles and 32 requests.

In this paper, we introduce new branch-and-cut algorithms for the classical version of the
PDPTW, as defined in Desaulniers et al. (2002), and the closely related DARP. We make
three contributions. First, we propose two new formulations for the PDPTW which, unlike
the formulation of Cordeau (2006), have an exponential number of constraints, but lead to
more efficient solution algorithms because they contain fewer variables and provide tighter
bounds. Second, we introduce new valid inequalities combining the pickup and delivery
structure of the problem with either the vehicle capacity constraints or the time window
constraints. Third, we report computational experiments on several sets of test instances
and show that our approach is capable of solving some instances with up to eight vehicles
and 96 requests.

The remainder of the paper is organized as follows. Section 2 formally defines the PDPTW
and introduces two formulations of the problem. Section 3 describes the valid inequalities
used in the branch-and-cut algorithms which are then introduced in Section 4. Computa-
tional results are reported in Section 5, followed by conclusions in the last section.

2 Formulations of the PDPTW

Let n denote the number of requests to satisfy. The PDPTW can be defined on a directed
graph G = (N, A) with node set N = {0, . . . , 2n + 1} and arc set A. Nodes 0 and 2n + 1
represent the origin and destination depots (which may have the same location) while subsets
P = {1, . . . , n} and D = {n + 1, . . . , 2n} represent pickup and delivery nodes, respectively.
With each request i are thus associated a pickup node i and a delivery node n + i. With
each node i ∈ N are associated a load qi and a non-negative service duration di satisfying
d0 = d2n+1 = 0, q0 = q2n+1 = 0, and for i = 1, . . . , n, qi ≥ 0 and qn+i = −qi. An unlimited
fleet of identical vehicles with capacity Q is available to serve the requests. With each arc
(i, j) ∈ A are associated a routing cost cij and a travel time tij . A time window [ei, li] is
also associated with every node i ∈ P ∪ D, where ei and li represent the earliest and latest
time, respectively, at which service may start at node i. The depot nodes may also have
time windows [e0, l0] and [e2n+1, l2n+1] representing the earliest and latest times, respectively,
at which the vehicles may leave from and return to the depot. We assume that the triangle
inequality holds both for routing costs and travel times. For any node subset S ⊆ N , define
its complement S̄ = N \ S. Finally, to impose pairing and precedence constraints, it is
convenient to define the set S of all node subsets S ⊆ N such that 0 ∈ S, 2n + 1 6∈ S and
there is at least one request i for which i 6∈ S and n + i ∈ S.

For each arc (i, j) ∈ A let xij be a binary variable equal to 1 if and only if a vehicle travels
directly from node i to node j. For each node i ∈ P ∪D let Bi be the time at which service
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begins at node i, and Qi be the vehicle load upon leaving node i.

The PDPTW can be formulated as the following mixed-integer program:

(PDPTW1) Minimize
∑

i∈N

∑

j∈N

cijxij (1)

subject to

∑

i∈N

xij = 1 ∀j ∈ P ∪ D (2)

∑

j∈N

xij = 1 ∀i ∈ P ∪ D (3)

∑

i,j∈S

xij ≤ |S| − 2 ∀S ∈ S (4)

Bj ≥ (Bi + di + tij)xij ∀i ∈ N, j ∈ N (5)

Qj ≥ (Qi + qj)xij ∀i ∈ N, j ∈ N (6)

ei ≤ Bi ≤ li ∀i ∈ N (7)

max {0, qi} ≤ Qi ≤ min {Q, Q + qi} ∀i ∈ N (8)

xij ∈ {0, 1} ∀i ∈ N, j ∈ N. (9)

The objective function (1) minimizes the total routing cost. Constraints (2) and (3) require
each node to be visited exactly once. Consistency of the time and load variables is ensured
through constraints (5) and (6). The respect of time windows and vehicle capacity is then
ensured through constraints (7) and (8). Under the assumption that di + ti,n+i > 0 for every
request i, constraints (5) and (7) also ensure that no subtours exist in the solution.

Finally, inequalities (4) are precedence constraints (see Ruland and Rodin, 1997) which
guarantee that for each user i, node n + i is visited after node i and both nodes are visited
by the same vehicle. These constraints were originally proposed in a single-vehicle context
but they apply directly to the multi-vehicle case because route feasibility conditions are the
same in both cases. In multi-vehicle problems constraints (4) do not only enforce precedence
relations but, because of the definition of S, they also ensure that the two nodes of the same
request are on the same route. Indeed, suppose that a feasible integer solution contains a
path (0, k1, . . . , kr, n + i) where kj 6= i, ∀j, i.e., a path connects the origin depot to node
n + i without visiting node i. In this case, the set S = {0, k1, . . . , kr, n + i} clearly belongs
to S and leads to a violation of the associated inequality (4). It is also worth pointing
out that because x(S) = |S| − 1 − x(δ−(S)), inequality (4) can be written equivalently as
x(δ−(S)) ≥ 1.

By introducing variables Li representing the ride time of each user i, and denoting by L the
maximum ride time, the DARP can be modeled by introducing the following constraints:

Li = Bn+i − (Bi + di) ∀i ∈ P (10)

ti,n+i ≤ Li ≤ L ∀i ∈ P. (11)
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Formulation (1)-(9) is non-linear because of constraints (5) and (6). Introducing constants
Mij and Wij , these constraints can, however, be linearized as follows:

Bj ≥ Bi + di + tij − Mij(1 − xij) ∀i ∈ N, j ∈ N (12)

Qj ≥ Qi + qj − Wij(1 − xij) ∀i ∈ N, j ∈ N. (13)

The validity of these constraints is ensured by setting Mij ≥ max{0, li + di + tij − ej} and
Wij ≥ min{Q, Q + qi}. As shown by Desrochers and Laporte (1991), constraints (12)
and (13), for a given pair i, j ∈ N , can be lifted as follows by taking the reverse arc (j, i)
into account:

Bj ≥ Bi + di + tij − Mij(1 − xij) + (Mij − di − tij − max{dj + tji, ei − lj})xji (14)

Qj ≥ Qi + qj − Wij(1 − xij) + (Wij − qi − qj)xji. (15)

In the case of the DARP, lifting (14) is, however, invalid because of constraints (10) and (11)
which put additional restrictions on the time variables Bi.

As suggested by Desrochers and Laporte, bounds on the time variables can also be
strengthened as follows:

Bi ≥ ei +
∑

j∈N\{i}

max{0, ej − ei + dj + tij}xji (16)

Bi ≤ li −
∑

j∈N\{i}

max{0, li − lj + di + tij}xij . (17)

Similarly, bounds on load variables Qi can be strengthened as follows:

Qi ≥ max{0, qi} +
∑

j∈N\{i}

max{0, qj}xji (18)

Qi ≤ min{Q, Q + qi} − (Q − max
j∈N\{i}

{qj} − qi)x0i −
∑

j∈N\{i}

max{0, qj}xij . (19)

A formulation with fewer variables can be obtained by replacing constraints (5)-(8) with
rounded capacity inequalities (see, e.g., Naddef and Rinaldi, 2002) and infeasible path
elimination constraints (see, e.g., Ascheuer et al., 2000a). For any subset S ⊆ P ∪ D,
define q(S) =

∑

i∈S qi. A lower bound on the number of times vehicles must enter and leave
S in order to visit all nodes in the set is then provided by d|q(S)|/Qe. Denote by R the set
of infeasible paths with respect to time windows, and for each path R ∈ R, let A(R) ⊂ A
be the set of arcs in this path. With these definitions, the PDPTW can be reformulated as
follows:

(PDPTW2) Minimize
∑

i∈N

∑

j∈N

cijxij (20)
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subject to

∑

i∈N

xij = 1 ∀j ∈ P ∪ D (21)

∑

j∈N

xij = 1 ∀i ∈ P ∪ D (22)

∑

i,j∈S

xij ≤ |S| − 2 ∀S ∈ S (23)

∑

i,j∈S

xij ≤ |S| − max

{

1,
d|q(S)|e

Q

}

∀S ⊆ N \ {0, 2n + 1}, |S| ≥ 2 (24)

∑

(i,j)∈A(R)

xij ≤ |A(R)| − 1 ∀R ∈ R (25)

xij ∈ {0, 1} ∀i ∈ N, j ∈ N. (26)

With formulation (PDPTW2), the DARP can be modeled by simply introducing in set R
the paths violating the ride time constraints.

Constraints (25) can in fact be strengthened into so-called tournament constraints (see, e.g.,
Ascheuer et al., 2000a) as follows. If R = (k1, . . . , kr) is an infeasible path, then the
following inequality is valid:

r−1
∑

i=1

r
∑

j=i+1

xki,kj
≤ |A(R)| − 1. (27)

Infeasible path constraints can also be strengthened when they link a node pair i, n + i.
Consider a path R = (i, k1, . . . , kr, n + i). If R is infeasible because of time windows or ride
time constraints (and the triangle inequality holds), then the following inequality is valid
(see Cordeau, 2006):

xi,k1
+

r−1
∑

h=1

xkh,kh+1
+ xkr ,n+i ≤ |A(R)| − 2. (28)

Finally, if both the path R = (k1, . . . kr) and the reverse path R′ = (kr, . . . , k1) are infeasible,
then the following symmetric inequality is clearly valid:

r−1
∑

i=1

(xki,ki+1
+ xki+1,ki

) ≤ r − 1. (29)

Although formulations (PDPTW1) and (PDPTW2) assume identical vehicles, vehicles of
different capacities can be handled through the introduction of dummy requests. Suppose
that m vehicles of capacity Q1, Q2, . . . , Qm are available and let Q = max1≤i≤m{Qi}. One
can then define m dummy requests i = 1, . . . , m with di = dn+i = 0 and qi = −qn+i = Q−Qi.
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Each dummy pickup node should be reachable only from the origin depot while each dummy
delivery node should connect only to the destination depot (both with cost and travel time
equal to 0). The arc from a dummy pickup node to a normal pickup node j should have
a cost c0j and a travel time t0j while the arc from a normal delivery node n + j to a
dummy delivery node should have a cost cn+j,2n+1 and a travel time tn+j,2n+1. Finally, the
corresponding values should be zero for all arcs between dummy pickup and delivery nodes.

Finally note that, as observed by Ascheuer et al. (2001) in the context of the TSP with
time windows, model (PDPTW1) is more flexible than model (PDPTW2) in the sense that
it can accomodate a more general objective function involving time and load variables. For
example, one could minimize the makespan or a weighted sum of waiting times.

3 Valid Inequalities

We now describe several families of valid inequalities for the PDPTW. These inequalities
can be used to strengthen both (PDPTW1) and (PDPTW2). The first two families, sub-
tour elimination constrains and generalized order constraints are borrowed from Cordeau

(2006). The next three families, strengthened capacity constraints, strengthened infeasible
path constraints, and fork constraints, are new. The reachability constraints are adapted
from existing inequalities for the VRPTW (Lysgaard, 2004).

Throughout the remainder of the paper, let x(S) =
∑

i,j∈S xij and x(S : T ) =
∑

i∈S

∑

j∈T xij ,
where S, T ⊆ N . For any node subset S, define also δ(S) = δ+(S) ∪ δ−(S) where δ+(S) =
{(i, j) ∈ A|i ∈ S, j 6∈ S} and δ−(S) = {(i, j) ∈ A|i 6∈ S, j ∈ S}.

3.1 Subtour elimination constraints

Consider the simple subtour elimination constraint x(S) ≤ |S| − 1 for S ⊆ P ∪ D. In the
case of the PDPTW, this inequality can be lifted in many different ways by taking into
account the fact that for each request i, node i must be visited before node n + i. For any
set S ⊆ P ∪ D, let π(S) = {i ∈ P |n + i ∈ S} and σ(S) = {n + i ∈ D|i ∈ S} denote the
sets of predecessors and successors of S, respectively. Balas et al. (1995) have proposed
two families of inequalities for the PCATSP which also apply to the PDPTW because each
node i ∈ P ∪ D is either the predecessor or the successor of exactly one other node. For
S ⊆ P ∪ D, the following predecessor and successor inequalities are valid for the PDPTW:

x(S) +
∑

i∈S

∑

j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑

j∈S̄\π(S)

xij ≤ |S| − 1 (30)

x(S) +
∑

i∈S̄∩σ(S)

∑

j∈S

xij +
∑

i∈S̄\σ(S)

∑

j∈S∩σ(S)

xij ≤ |S| − 1. (31)

As shown by Cordeau (2006), the D−
k and D+

k inequalities introduced by Grötschel and
Padberg (1985) for the asymmetric TSP can also be lifted by taking precedence relation-
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ships into account. Let S = {i1, i2, . . . , ik} ⊆ P ∪ D be an ordered set of nodes with k ≥ 3.
The following inequalities are then valid for the PDPTW:

k−1
∑

j=1

xij ,ij+1
+ xik ,i1 + 2

k
∑

j=3

xi1,ij +

k
∑

j=4

j−1
∑

l=3

xij ,il +
∑

h∈S̄∩π(S)

xi1,h ≤ k − 1 (32)

k−1
∑

j=1

xij ,ij+1
+ xik ,i1 + 2

k−1
∑

j=2

xij ,i1 +
k−1
∑

j=3

j−1
∑

l=2

xij ,il +
∑

h∈S̄∩σ(S)

xh,i1 ≤ k − 1. (33)

3.2 Generalized order constraints

Let U1, . . . , Us ⊂ N be mutually disjoint subsets and let i1, . . . , is ∈ P be requests such that
0, 2n+1 6∈ Ul and il, n+ il+1 ∈ Ul for l = 1, . . . , s (where is+1 = i1). The following inequality,
introduced by Ruland and Rodin (1997), is also valid for the PDPTW:

s
∑

l=1

x(Ul) ≤
s
∑

l=1

|Ul| − s − 1. (34)

Similar inequalities, called precedence cycle breaking inequalities, have also been proposed
by Balas et al. (1995) for the PCATSP. In the case of a directed formulation, Cordeau

(2006) has shown that generalized order constraints can be lifted in two different ways as
follows:

s
∑

l=1

x(Ul) +
s−1
∑

l=2

xi1,il +
s
∑

l=3

xi1,n+il ≤
s
∑

l=1

|Ul| − s − 1 (35)

s
∑

l=1

x(Ul) +
s−2
∑

l=2

xn+i1,il +
s−1
∑

l=2

xn+i1,n+il ≤
s
∑

l=1

|Ul| − s − 1. (36)

3.3 Strengthened capacity constraints

Capacity constraints can be strengthened by considering node pairs (k, n + k) such that the
pickup node k is visited before entering set S while the delivery node n + k is visited after
leaving this set. In this case, the number of vehicles visiting set S increases to accommodate
the demand of all such node pairs. This yields the following result.

Proposition 1. Let S, T ⊂ P ∪ D be two disjoint sets such that q(S) > 0. Also define
U = π(T ) \ (S ∪ T ). The following inequality is then valid for the PDPTW:

x(S) + x(T ) + x(S : T ) ≤ |S| + |T | −

⌈

q(S) + q(U)

Q

⌉

. (37)

Proof. Because q(S) > 0 and q(U) ≥ 0, x(δ+(S)) ≥ dq(S)/Qe and x(δ−(T )) ≥ dq(U)/Qe.
If a path uses an arc from the set (S : T ) and reaches a node n+ k ∈ T with k ∈ U , without
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leaving set T , then node k must have been visited by that path before entering set S. Hence,

x(δ+(S)) + x(δ−(T )) − x(S : T ) ≥

⌈

q(S) + q(U)

Q

⌉

.

Because x(S) + x(δ−(S)) = x(S) + x(δ+(S)) = |S|, this is equivalent to

|S| − x(S) + |T | − x(T ) − x(S : T ) ≥

⌈

q(S) + q(U)

Q

⌉

,

which yields the desired result after properly rearranging the terms.�

One may observe that inequalities (37) constitute a strengthening of the rounded capacity
inequalities. From the inequalities

x(s) ≤ |S| −

⌈

q(S)

Q

⌉

and
x(T ) + X(S : T ) ≤ x(T ) + δ−(T ) = |T |,

one obtains

x(S) + x(T ) + x(S : T ) ≤ |S| + |T | −

⌈

q(S)

Q

⌉

,

which is weaker than (37) if q(U) > 0.

Figure 1 depicts an example for which at most two arcs can be used if qi = qj = qk = ql = 1
and the vehicle capacity is Q = 2. Arcs in the figure are those on the left-hand-side of (37).

TS

i

j

n+k

n+l

l

k

U

Figure 1: Strengthened capacity constraint where S = {i, j}, T = {n + k, n + l} and
U = π(T ) \ (S ∪ T ) = {k, l}.

3.4 Strengthened infeasible path constraints

Paths that satisfy time windows can sometimes be eliminated by taking precedence relation-
ships into account. Consider for instance the path R = (i, n + j, k). Obviously, node j must
be visited before R, while nodes n + i and n + k must be visited after R. Hence, if both
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(j, i, n+j, k, n+ i, n+k) and (j, i, n+j, k, n+k, n+ i) are infeasible, then R cannot belong to
a feasible solution. More generally, let φ(S) denote the set of all permutations of nodes in S.
For any path R, denote by N(R) ⊆ N the set of nodes visited by that path. If R is a feasible
path in G but (φp, R, φd) is infeasible for all φp ∈ φ(π(R) \N(R)) and φd ∈ φ(σ(R) \N(R))
then R cannot belong to a feasible solution and it can thus be eliminated by (27).

3.5 Fork constraints

Infeasible paths can also be eliminated in a different way by considering groups of infeasible
paths sharing some common arcs. For instance, if the path R = (k1, . . . , kr) is feasible, but
the path (i, R, j) is infeasible for every i ∈ S and j ∈ T with S, T ⊂ N , then the following
inequality is clearly valid:

∑

i∈S

xi,k1
+

r−1
∑

h=1

xkh,kh+1
+
∑

j∈T

xkr ,j ≤ r. (38)

This inequality can be strengthened by associating to each intermediate node k2, . . . , kr−1 a
set of nodes leading to infeasible paths. This results in the following outfork inequality .

Proposition 2. Let R = (k1, . . . , kr) be a feasible path in G and S, T1, . . . , Tr ⊂ (P ∪ D) \
N(R) be subsets such that for any integer h ≤ r and any node pair i ∈ S, j ∈ Th, the path
(i, k1, . . . , kh, j) is infeasible. The following inequality is then valid for the PDPTW:

∑

i∈S

xi,k1
+

r−1
∑

h=1

xkh,kh+1
+

r
∑

h=1

∑

j∈Th

xkh,j ≤ r. (39)

Proof. Assume that the inequality is violated in a feasible integer solution. Then, among
the arcs belonging to the inequality, r + 1 must have been selected. Because of the degree
constraints, there must be one arc from S to k1, one outgoing arc from each node k1, . . . , kr−1,
and one arc from kr to Tr. As a result, the path originating in S reaches one of the nodes in
the sets Th, 1 ≤ h ≤ r, and must thus be infeasible.�

The outfork inequality is illustrated in Figure 2 for the case r = 3. Similar inequalities, called
infork inequalities and illustrated in Figure 3 for the case r = 3, are obtained by reversing
the orientation of the arcs reaching path R. These lead to the following proposition.

Proposition 3. Let R = (k1, . . . , kr) be a feasible path in G and S1, . . . , Sr, T ⊂ (P ∪ D) \
N(R) be subsets such that for any integer h ≤ r and any node pair i ∈ Sh, j ∈ T , the path
(i, kh, . . . , kr, j) is infeasible. The following inequality is then valid for the PDPTW:

r
∑

h=1

∑

i∈Sh

xi,kh
+

r−1
∑

h=1

xkh,kh+1
+
∑

j∈T

xkr,j ≤ r. (40)

It is worth pointing out that fork constraints can be used in any routing problem where the
concept of infeasible paths is well defined, for instance the vehicle routing problem with time
windows.
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Figure 2: Outfork constraint with r = 3
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Figure 3: Infork constraint with r = 3

3.6 Reachability constraints

For any node i ∈ N , let A−
i ⊂ A be the minimum arc set such that any feasible path from the

origin depot 0 to node i uses only arcs from A−
i . Let also A+

i be the minimum arc set such
that any feasible path from i to the destination depot 2n + 1 uses only arcs in A+

i . Consider
a node set T such that each node in T must be visited by a different vehicle. This set is said
to be conflicting. For any conflicting node set T , define the reaching arc set A−

T = ∪i∈T A−
i

and the reachable arc set A+
T = ∪i∈T A+

i . For any node set S ⊆ P ∪ D and any conflicting
node set T ⊆ S, the following two valid inequalities were introduced by Lysgaard (2004)
for the VRP with time windows:

x(δ−(S) ∩ A−
T ) ≥ |T | (41)

x(δ+(S) ∩ A+
T ) ≥ |T |. (42)

These inequalities are obviously also valid for the PDPTW. In this problem, however, nodes
can be conflicting not only because of time windows but also because of the precedence
relationships and the capacity constraints. In the case of the DARP, the ride time constraints
should also be taken into account when checking whether a pair of requests is conflicting.
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4 Branch-and-Cut Algorithms

We have implemented two branch-and-cut algorithms for the PDPTW: one with formula-
tion (PDPTW1) and one with formulation (PDPTW2). In both algorithms, an attempt
is made to generate violated valid inequalities at each node of the search tree. With for-
mulation (PDPTW1), precedence inequalities (4) must be generated to ensure feasibility.
With formulation (PDPTW2), feasibility is ensured by generating not only the precedence
inequalities (23), but also the capacity inequalities (24) and infeasible path inequalities (25).
In both formulations, the additional inequalities described in the previous section can be
used to improve the LP relaxation obtained at each node of the branch-and-bound tree.
In addition, inequalities (24) and (25) can be used to strengthen formulation (PDPTW1)
although these are not required to ensure feasiblity.

Taking into account the precedence relationships, time windows and ride time constraints,
several arc elimination rules can be used in a preprocessing step to reduce the size of the
problem. In addition, time windows can often be tightened. Details on these preprocessing
steps can be found in the papers of Dumas et al. (1991) and Cordeau (2006).

In both branch-and-cut algorithms, the LP relaxations are solved by the simplex algorithm.
Branching is performed on the xij variables by choosing, at each node of the enumeration tree,
the variable whose value is the farthest from the nearest integer. The search is performed by
applying the best-bound strategy. Prior to solving the problem, an upper bound is computed
by using either the adaptive large neighbourhood search algorithm of Ropke and Pisinger

(2004) for the PDPTW or the tabu search heuristic of Cordeau and Laporte (2003) for
the DARP.

We now describe the separation procedures used to generate the precedence, capacity and
infeasible path inequalities. We then describe procedures for the additional inequalities
introduced in Section 3.

4.1 Precedence constraints

Violated precedence constraints (4) and (23) can be identified in polynomial time by solving
a series of maximum flow problems: for each request i, one can compute the maximum flow
from nodes i and 2n + 1 to nodes 0 and n + i in G, with arc capacities given by the values
of the xij variables. If the value of this flow is less than 1, then a precedence constraint is
violated for a set S such that 0, n + i ∈ S and i, 2n + 1 6∈ S. The set S corresponds to one
of the shores of the corresponding minimum cut. We have implemented this procedure by
using the Ford-Fulkerson algorithm described by Cormen et al. (1990).

4.2 Capacity constraints

Two heuristics are used for the identification of violated capacity constraints. The first
one is a randomized construction heuristic which starts from a given node i ∈ P ∪ D and
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gradually adds nodes to S by considering, at each iteration, the nodes connected to S with
some flow. The choice of the node being added to S from the set of potential nodes is done
randomly (with each node having a probability of being selected proportional to the flow on
the corresponding arc). The procedure is repeated several times for each start node. If a
capacity constraint is violated in an integer solution, the violation will clearly be detected by
this procedure since it will add, at each iteration, the only node connected to the previously
added node. At some point during the process, the set S will thus satisfy q(S) > Q.

The second heuristic is a simple tabu search heuristic described by Cordeau (2006) and
inspired by that originally proposed by Augerat et al. (1999). This heuristic starts with
either a random subset S ⊆ P or a random subset S ⊆ D. At each iteration, a node is either
removed or added to S so as to minimize the value of x(δ(S)) while satisfying q(S) > Q.

4.3 Subtour elimination constraints

It is well known that the separation problem for subtour elimination constraints is solvable
in polynomial time by computing the maximum flow between each node i and all other
nodes j ∈ N \ {i}. This procedure, however, does not take into account the various liftings
proposed in inequalities (30)-(33). Hence, we resort here to a simple tabu search heuristic
very similar to the one used for capacity constraints and also described in more detail by
Cordeau (2006).

4.4 Generalized order constraints

We use two simple heuristics for the lifted generalized order constraints (35) and (36). These
heuristics consider the case where m = 3 and |U1| = |U2| = |U3| = 2. The first heuristic
identifies, for each user i, a user j maximizing xi,n+j +xn+j,i +xij. It then finds a user k such
that the left-hand side of (35) is maximized. The second heuristic identifies, for each user
i, a user j maximizing xi,n+j + xn+j,i + xn+i,n+j and then a user k maximizing the left-hand
side of (36).

4.5 Strengthened capacity constraints

To identify sets S and T for which the strengthened capacity constraint is violated, we use a
construction heuristic similar to that used for the capacity constraints. This procedure starts
from a set S containing a single pickup node and gradually augments this set by adding one
node at a time. Before augmenting the set, the procedure determines

bp ∈ arg max
i∈P\S

{x(S : i) + x(i : S)}

and
bd ∈ arg max

i∈D\S
{x(S : i) + x(i : S)}
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which we consider to be the best pickup (resp. delivery) node to add to the set. We prefer
to add a pickup node to S in order to increase q(S) on the right-hand side of inequality (37).
Node bd is only added if x(S : bp) + x(bp : S) < x(S : bd) + x(bd : S), q(S ∪ {bd}) > 0 and
either x(S : bd) + x(bd : S) ≥ 1 or x(S : i) + x(i : S) = 0 for all i ∈ P \ S. Each time a node
is added to S, the set T is reconstructed by using a similar construction heuristic where the
roles of pickups and deliveries are interchanged. Only nodes from N \ S are added to T .

At the root node of the search tree we use a modified version of this heuristic where a random
perturbation ε ∼ [0, 0.5] is added to the evaluation of x(S : i) + x(i : S) and the heuristic is
restarted several times from each pickup node.

4.6 Strengthened infeasible path constraints

To identify infeasible paths violating constraints (25), we use an enumerative procedure
similar to that of Ascheuer et al. (2001). In this procedure, every node i ∈ P ∪ D is in
turn considered as a start node from which a tree of paths with positive flow is constructed.
Each path is extended as long as a violation along this path is still possible (i.e., as long
as the total flow on the arcs in path R is strictly greater than |A(R)| − 1 and the path
has not reached node 2n + 1). Each time an infeasible path is identified, the corresponding
tournament constraint (27) is generated.

A very similar procedure is used to identify violated strengthened infeasible path constraints
for the DARP. In this case, however, each node i ∈ P is considered as a start node and
the extension of a path also stops if it reaches node n + i, at which point it is checked for
feasibility with respect to the time windows and the ride time constraint for user i.

4.7 Fork constraints

A partial enumeration procedure is used to separate the fork constraints with r = 1. This
procedure first enumerates the set H of all infeasible paths containing three nodes. To iden-
tify violated outfork constraints, it starts from an arc (i, j) and constructs the set S by
identifying all paths of the form (h, i, j) belonging to H . Finally, the set T1 is constructed
by identifying all nodes k such that (h, i, k) ∈ H for every node h ∈ S. This procedure is
repeated for every arc (i, j) for which xij > 0 in the current solution. To identify violated
infork constraints, a similar procedure starts from an arc (i, j) and constructs a set T con-
taining all nodes k such that (i, j, k) ∈ H . The set S1 is then constructed by identifying all
nodes h such that (h, j, k) ∈ H for every node k ∈ T .

For r ≥ 2 a different heuristic is used. The heuristic iteratively uses every node k0 ∈ P ∪D as
a seed node. From k0, feasible paths (k0, k1, . . . , kl) are gradually constructed by extending
existing paths along arcs with positive flow. For every path, one then checks if a violated
fork constraint can be found with the path as a backbone. First, the set T is constructed
such that (k0, k1, . . . , kl, j) is infeasible for all j ∈ T . Then, the set S 3 k0 is constructed
such that all paths (i, k1, . . . , kl, j), i ∈ S, j ∈ T are infeasible. The two sets S and T and the
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path (k1, . . . , kl) define a simple fork inequality (38). If this inequality is not violated, the
procedure attempts to lift it into an outfork or an infork inequality. To lift the inequality
into an outfork inequality, one adds as many nodes as possible to the sets T1, . . . , Tl. A
similar approach is used to lift the inequality into an infork. In order to keep running times
low, only paths containing at most six nodes are considered. Checking whether a path is
infeasible can be time consuming as many permutations have to be examined as described
in section 3.4. To alleviate this problem the feasibility of a path is only checked once, and
the result of the query is stored in a hash table from which it can be quickly retrieved.

4.8 Reachability constraints

Our procedure first computes, for each node i ∈ P∪D, the sets A+
i and A−

i . When doing this,
precedence relationships must be taken into account. For example, when checking whether
an arc (i, n + j) belongs to the set A−

n+k, one must check the existence of a path containing
this arc and such that k is visited before n + k, j is visited before n + j, and n + i is visited
after i in this path. The procedure then identifies, by complete enumeration, all sets of
conflicting requests with a cardinality smaller than or equal to a given threshold. Each set
of conflicting requests gives rise to several sets of conflicting nodes. For a set of k conflicting
requests, 2k sets of conflicting nodes exist. When k is greater than a parameter τ we do
not generate all conflicting node sets, but only those two consisting of either the pickups or
the deliveries of the conflicting requests. For a fractional solution, one then considers each
conflicting node set T and solves a maximum flow problem between the node 0 and the set
T by considering only the arcs in A−

T . If the capacity of the corresponding minimum cut is
smaller than |T |, then a violation of a reachability cut has been found. The same is done
by considering A+

T and solving a maximum flow problem between set T and the destination
depot 2n + 1.

5 Computational Experiments

The two branch-and-cut algorithms were implemented in C++ by using ILOG Concert
1.3 and CPLEX 9.0. All experiments were performed on a AMD Opteron 250 computer
(2.4GHz). Several sets of instances for the PDPTW and the DARP were used for testing.
All instances are available on http://www.hec.ca/chairedistributique/data.

5.1 Results for the PDPTW

We first generated some PDPTW instances as suggested by Savelsbergh and Sol (1998).
In these instances, the coordinates of each pickup and delivery location are chosen randomly
according to a uniform distribution over the [0, 200]× [0, 200] square. The load qi of request
i is selected randomly from the interval [5, Q], where Q is the vehicle capacity. A planning
horizon of length H = 600 is considered and each time window has width W . The time
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windows for request i are constructed by first randomly selecting ei in the interval [0, H −
ti,n+i] and then setting li = ei + W , en+i = ei + ti,n+i and ln+i = en+i + W . In all instances,
the primary objective consists of minimizing the number of vehicles, and a fixed cost of 104

is thus imposed on each outgoing arc from the depot. Four classes of instances are obtained
by varying the values of Q and W , as indicated in the following table.

Table 1: Characteristics of the Savelsbergh and Sol PDPTW instances

Class Q W
A 15 60
B 20 60
C 15 120
D 20 120

In the test instances generated by Savelsbergh and Sol (1998), each vehicle has a different
depot whose location is also chosen randomly over the [0, 200]× [0, 200] square. Because our
formulations cannot handle multiple depots directly, we have instead used a single depot
located in the middle of the square.

As is apparent from the results reported by Savelsbergh and Sol (1998), using the
[0, 200] × [0, 200] square with H = 600 yields instances in which it is difficult to serve more
than two or three requests in the same route. In addition, the long travel times make it
difficult to stop at an intermediate location between the pickup of a request and its delivery.
As a result, all instances generated in this way could be solved at the root node by our
algorithms. To obtain harder instances, we have decreased the size of the square from which
the locations are chosen. By choosing coordinates from the set [0, 50] × [0, 50], travel times
become smaller and it is then possible to serve more requests in each route. Furthermore,
it becomes easier to produce a sequence of several successive pickups followed by the corre-
sponding deliveries. In each of the four problem classes, we have generated ten instances by
considering values of n between 30 and 75. The name of each instance (e.g., A50) indicates
the class to which it belongs and the number of requests it contains.

We first present in Table 2 the solution values and computing times (in minutes) of the
Ropke and Pisinger (2004) adaptive large neighbourhood search heuristic for the PDPTW.
The table also shows the graph density after preprocesing, calculated as

100 ×
number of arcs

(2n + 2)2

To evaluate the strength of formulations (PDPTW1) and (PDPTW2), we have first solved
the LP relaxation of both formulations by considering the minimal sets of inequalities re-
quired for feasibility. Hence, violated precedence constraints were generated for (PDPTW1),
while for (PDPTW2) we have also generated violated capacity constraints and infeasible path
constraints. These results are reported in Table 3. For each instance, we indicate in columns
LP1 and LP2 the value of the lower bound computed at the root node as a percentage of
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Table 2: Solution values and computing times for the heuristic

UB Time Graph
Instance heuristic heuristic density (%)

A30 51,317.40 0.45 14.9
A35 51,343.53 0.55 18.4
A40 61,609.44 0.69 15.9
A45 61,693.01 0.83 25.2
A50 71,932.03 0.98 17.5
A55 82,185.31 1.07 19.2
A60 92,366.70 1.28 16.9
A65 82,331.12 1.46 17.3
A70 112,458.28 1.64 16.3
A75 92,529.42 1.88 20.6

B30 51,193.62 0.47 21.9
B35 61,400.07 0.54 20.4
B40 51,421.35 0.74 20.4
B45 61,787.28 0.82 21.5
B50 71,889.75 0.98 20.9
B55 82,080.73 1.07 18.6
B60 102,323.77 1.23 14.7
B65 82,623.98 1.42 19.7
B70 92,647.75 1.68 18.9
B75 92,476.30 1.88 20.1

C30 51,145.18 0.47 14.4
C35 51,235.64 0.57 17.6
C40 61,473.91 0.72 18.6
C45 81,408.89 0.83 21.1
C50 61,936.27 1.06 20.1
C55 61,930.55 1.19 20.9
C60 72,104.00 1.38 18.0
C65 82,326.62 1.50 24.0
C70 92,613.68 1.70 19.0
C75 92,711.74 1.88 21.4

D30 61,040.10 0.46 22.9
D35 71,308.04 0.56 25.6
D40 61,531.68 0.72 25.5
D45 81,601.63 0.80 17.7
D50 71,761.23 1.00 20.9
D55 72,051.95 1.15 21.7
D60 82,308.08 1.31 18.0
D65 82,200.77 1.50 24.9
D70 82,631.56 1.70 19.2
D75 92,970.84 1.83 21.6

the upper bound indicated in the rightmost column of the table. This upper bound is either
the optimal value of the problem, if the instance could be solved to optimality, or an upper
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bound computed by a heuristic, otherwise. One can see that for most instances (PDPTW2)
provides a tighter lower bound, with an average of 72.33 for (PDPTW2) compared to 69.90
for (PDPTW1). In Tables 3 and 4, the number of vehicles in the solution is equal to bU/104c
where U is the upper bound.

To measure the strength of each type of inequality introduced in Section 3, we then solved
the LP relaxation of (PDPTW2) by separately considering each type of inequality: subtour
elimination constraints (SEC), strengthened capacity constraints (SCC), generalized order
constraints (GOC), fork constraints (FC) and reachability constraints (RC). Finally, column
“Full” reports the lower bound obtained with (PDPTW2) when considering all families of
valid inequalities. Again, all lower bounds are expressed as a percentage of the upper bound
reported in the last column of the table. These results show that fork constraints and
reachability constraints have the largest impact, with all other types of inequalities playing
only a minor role in the improvement of the lower bound. It is worth pointing out that for
some instances (e.g., B55), the lower bound obtained with one type of inequality is sometimes
worse than that obtained with just the basic formulation (column LP2). This is explained
by the fact that we use a heuristic separation procedure for capacity constraints, which may
lead to the generation of a different set of inequalities.

In Table 4, we report the results obtained by considering both formulations with all types
of valid inequalities. For each instance that was solved to optimality, we indicate the CPU
time in minutes (including the preprocessing time) needed to prove optimality, the number
of nodes explored in the search tree and the total number of cuts generated during the
search. When an instance could not be solved to optimality within the maximum CPU time
(two hours), we report the value of the current lower bound at the end of the computation
(i.e., the lower bound associated with the best pending node). These results show that
formulation (PDPTW2) provides a slightly better performance: it solved five more instances
to optimality and for those instances that were solved by both formulations, (PDPTW2)
required on average less CPU time, fewer nodes and fewer cuts. Finally, when neither model
could reach an optimal solution, the latter usually provided a higher lower bound.

5.2 Results for the DARP

We have then tested our approach on two sets of randomly generated Euclidean DARP
instances comprising up to 96 requests. These instances have narrow time windows of 15
minutes. In the first set (’a’ instances), qi = 1 for every request i and the vehicle capacity
is Q = 3. In the second set (’b’ instances), qi belongs to the interval [1, 6] and Q = 6.
These data are described in detail in Cordeau (2006) and their main characteristics are
summarized in Table 5. In this table, columns |K| and H indicate, respectively, the number
of available vehicles and the length of the planning horizon in which time windows are
generated. The constraint on the number of vehicles is easily imposed in our formulations as
a bound on the total outgoing flow from the origin depot. Finally, L denotes the maximum
ride time.

We present in Table 6 the solution values and computing times for the Cordeau and
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Table 3: Lower bounds obtained in the root node as a percentage of the upper bound

LP1 LP2 SEC SCC GOC FC RC FULL U. Bound

A30 99.95 99.98 99.98 99.98 99.98 100.00 99.99 100.00 51,317.40
A35 99.68 99.84 99.85 99.86 99.84 100.00 99.99 100.00 51,343.53
A40 97.42 99.85 99.85 99.86 99.85 100.00 100.00 100.00 61,609.44
A45 83.21 83.35 83.35 83.39 83.35 83.90 83.83 83.99 61,693.01
A50 78.09 72.20 72.20 74.53 72.20 93.13 99.99 100.00 71,932.03
A55 71.49 88.50 88.50 88.52 88.17 93.85 99.91 99.95 82,185.31
A60 83.70 92.19 92.19 92.21 92.19 100.00 100.00 100.00 92,366.70
A65 89.27 89.23 89.23 89.24 89.23 99.99 99.97 100.00 82,331.12
A70 82.03 91.00 91.00 91.01 91.00 93.93 93.98 95.60 112,458.28
A75 57.29 70.27 70.27 70.30 70.27 78.44 99.89 99.97 92,525.46

B30 85.21 84.36 84.36 84.36 84.36 99.99 99.99 99.99 51,193.62
B35 67.35 70.74 70.74 72.89 70.74 89.24 91.92 91.93 61,400.07
B40 64.97 65.45 65.45 65.48 65.45 83.55 80.86 85.72 51,421.35
B45 67.29 67.51 67.51 69.73 67.51 99.96 99.92 99.97 61,787.28
B50 51.32 66.52 66.52 66.53 66.52 87.90 99.95 99.98 71,889.75
B55 63.37 58.88 58.89 59.85 58.89 99.98 99.97 99.99 82,080.73
B60 80.37 80.43 80.43 80.43 80.43 90.58 99.99 100.00 102,323.77
B65 85.88 75.39 75.39 75.40 75.39 94.41 99.89 99.93 82,617.22
B70 61.03 67.32 67.32 67.34 67.32 94.57 99.92 99.96 92,641.67
B75 56.32 58.66 60.10 59.05 58.93 85.46 89.23 89.35 92,476.30

C30 90.17 90.28 90.28 90.28 90.28 100.00 99.99 100.00 51,145.18
C35 80.24 80.33 80.33 80.35 80.33 80.72 99.94 99.98 51,235.64
C40 67.20 67.32 67.33 67.34 67.32 83.80 83.78 83.83 61,473.91
C45 50.74 75.51 75.58 75.61 75.60 87.76 99.96 100.00 81,405.96
C50 99.40 99.52 99.52 99.53 99.52 99.92 99.86 99.94 61,933.09
C55 67.04 67.20 67.21 67.23 67.20 91.90 99.81 99.92 61,930.55
C60 57.85 68.07 68.07 68.10 68.07 99.86 99.80 99.89 72,100.68
C65 53.96 54.84 54.84 54.86 54.84 76.57 99.70 99.79 82,326.62
C70 56.35 56.47 56.48 56.48 56.48 84.96 89.11 89.22 92,613.68
C75 56.17 67.03 67.04 67.06 67.03 78.33 99.71 99.82 92,711.74

D30 64.68 67.16 67.16 67.18 67.15 88.45 99.95 99.99 61,040.10
D35 46.34 47.20 47.19 47.21 47.20 58.04 99.86 99.93 71,308.04
D40 67.00 67.11 67.12 67.15 67.11 99.86 99.79 99.87 61,531.68
D45 87.76 87.56 87.56 87.56 87.56 99.98 99.98 99.99 81,601.52
D50 54.60 57.99 57.99 58.03 57.99 86.14 99.92 99.99 71,761.23
D55 52.59 57.95 57.95 58.00 57.96 86.06 99.80 99.90 72,051.95
D60 75.36 75.40 75.40 75.41 75.40 99.97 99.91 99.98 82,306.47
D65 49.05 38.71 38.72 38.78 38.73 93.77 99.72 99.85 82,200.77
D70 55.52 51.12 51.13 51.14 51.12 79.38 99.73 99.83 82,631.56
D75 38.78 34.84 34.84 34.89 37.51 63.49 99.62 99.76 92,970.84

avg. 69.90 72.33 72.37 72.55 72.40 90.20 97.73 97.95

Laporte (2003) tabu search heuristic for the DARP. The table also shows the graph density
after preprocesing.
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Table 4: Computational results for PDPTW instances

(PDPTW1) (PDPTW2)
Instance U. Bound Time Nodes Cuts L. Bound Time Nodes Cuts L. Bound

A30 51,317.40 0.05 0 78 0.05 0 140
A35 51,343.53 0.11 0 407 0.10 0 602
A40 61,609.44 0.16 0 382 0.16 0 510
A45 61,693.01 51,824.39 51,842.89
A50 71,932.03 0.52 0 838 0.41 0 988
A55 82,185.31 18.30 855 3877 4.75 91 3704
A60 92,366.70 0.86 0 766 0.81 0 1071
A65 82,331.12 2.15 2 1325 1.75 0 1423
A70 112,458.28 109,244.57 4.74 11 2492
A75 92,525.46 92,503.50 36.82 438 6414

B30 51,193.62 0.10 2 426 0.10 7 549
B35 61,400.07 0.18 2 462 0.15 2 743
B40 51,421.35 1.26 70 1638 0.52 17 1134
B45 61,787.28 1.53 98 1636 0.87 31 1814
B50 71,889.75 6.19 603 2134 1.32 8 2441
B55 82,080.73 1.06 2 1138 1.07 2 1684
B60 102,323.77 2.26 4 1891 2.17 6 1975
B65 82,617.22 82,573.37 77.00 1884 10505
B70 92,641.67 109.08 3012 5777 13.97 158 4578
B75 92,476.30 82,649.55 84,105.71

C30 51,145.18 0.06 0 103 0.06 0 158
C35 51,235.64 0.32 5 920 0.26 6 1059
C40 61,473.91 51,565.97 51,628.73
C45 81,405.96 0.94 4 1515 0.69 6 1994
C50 61,933.09 40.64 1541 5637 7.49 228 3989
C55 61,930.55 96.36 2529 8311 19.32 345 6188
C60 72,100.68 72,053.40 76.54 3294 10498
C65 82,326.62 82,159.87 82,163.46
C70 92,613.68 82,666.21 86,645.63
C75 92,711.74 92,555.04 92,554.26

D30 61,040.10 0.30 12 896 0.23 18 1166
D35 71,308.04 71,299.29 33.07 3155 8618
D40 61,531.68 61,463.09 61,493.63
D45 81,601.52 1.16 34 1167 0.82 27 1270
D50 71,761.23 4.22 204 2100 1.61 16 2216
D55 72,051.95 72,001.09 72,034.13
D60 82,306.47 5.36 144 2098 3.25 51 2589
D65 82,200.77 82,091.05 82,122.81
D70 82,631.56 82,493.27 82,514.97
D75 92,970.84 92,751.85 92,751.63
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Table 5: Characteristics of DARP instances

Instance |K| n H Q L Instance |K| n H Q L
a2-16 2 16 480 3 30 b2-16 2 16 480 6 45
a2-20 2 20 600 3 30 b2-20 2 20 600 6 45
a2-24 2 24 720 3 30 b2-24 2 24 720 6 45
a3-24 3 24 480 3 30 b3-24 3 24 480 6 45
a3-30 3 30 600 3 30 b3-30 3 30 600 6 45
a3-36 3 36 720 3 30 b3-36 3 36 720 6 45
a4-32 4 32 480 3 30 b4-32 4 32 480 6 45
a4-40 4 40 600 3 30 b4-40 4 40 600 6 45
a4-48 4 48 720 3 30 b4-48 4 48 720 6 45
a5-40 5 40 480 3 30 b5-40 5 40 480 6 45
a5-50 5 50 600 3 30 b5-50 5 50 600 6 45
a5-60 5 60 720 3 30 b5-60 5 60 720 6 45
a6-48 6 48 480 3 30 b6-48 6 48 480 6 45
a6-60 6 60 600 3 30 b6-60 6 60 600 6 45
a6-72 6 72 720 3 30 b6-72 6 72 720 6 45
a7-56 7 56 480 3 30 b7-56 7 56 480 6 45
a7-70 7 70 600 3 30 b7-70 7 70 600 6 45
a7-84 7 84 720 3 30 b7-84 7 84 720 6 45
a8-64 8 64 480 3 30 b8-64 8 64 480 6 45
a8-80 8 80 600 3 30 b8-80 8 80 600 6 45
a8-96 8 96 720 3 30 b8-96 8 96 720 6 45

Tables 7 and 8 show the strength of the lower bounds obtained with the different types of
valid inequalities. These tables can be interpreted in the same way as Table 3. This time,
however, we also indicate in column LP0 the lower bound obtained with the three-index
formulation of Cordeau (2006). Again, formulation (PDPTW2) provides better bounds
than (PDPTW1) while fork constraints and reachability constraints are the most useful.
One can also see that both (PDPTW1) and (PDPTW2) do much better than the three-
index formulation in terms of the initial lower bound.

Finally, Tables 9 and 10 report the computational statistics collected when solving each
instance to optimality with both (PDPTW1) and (PDPTW2), again using all types of in-
equalities. In column (DARP), we also indicate comparable statistics for the three-index
DARP fomulation of Cordeau (2006). For the latter formulation, only a small subset of
all instances could be solved to optimality. As in Table 4, one can see that formulation
(PDPTW2) usually requires less computation time and a smaller number of branch-and-
bound nodes than (PDPTW1). The largest CPU time for (PDPTW1) is 1210.56 minutes
compared to 120.09 minutes for (PDPTW2). Comparisons with the three-index DARP
formulation show that the latter is totally dominated by the two new formulations. For
example, instance b4-32 required more than one hour of CPU time with the DARP formu-
lation (and 44877 branch-and-cut nodes) while it was solved in the root node with both
(PDPTW1) and (PDPTW2). This dramatic improvement results from the improved lower
bound provided by the tighter (PDPTW1) and (PDPTW2) formulations, and from the new

179



Table 6: Solution values and computing times (in minutes) for the DARP instances

U. Bound Time Graph U. Bound Time Graph
Instance heuristic heuristic density (%) Instance heuristic heuristic density (%)
a2-16 294.25 0.05 31.2 b2-16 309.61 0.05 28.1
a2-20 344.83 0.12 32.1 b2-20 334.93 0.10 18.9
a2-24 431.12 0.21 32.6 b2-24 445.11 0.21 23.2
a3-24 344.83 0.12 35.2 b3-24 394.57 0.11 23.3
a3-30 496.52 0.24 31.6 b3-30 536.04 0.24 23.5
a3-36 600.75 0.48 31.2 b3-36 611.79 0.46 21.8
a4-32 486.57 0.20 32.9 b4-32 500.92 0.17 20.8
a4-40 571.07 0.38 32.3 b4-40 662.91 0.38 20.2
a4-48 680.99 0.75 34.8 b4-48 685.46 0.77 27.0
a5-40 507.59 0.28 33.5 b5-40 619.09 0.26 27.2
a5-50 699.86 0.58 34.8 b5-50 777.20 0.55 23.5
a5-60 825.57 1.20 32.8 b5-60 923.07 1.08 27.6
a6-48 618.00 0.37 34.2 b6-48 727.06 0.31 21.7
a6-60 847.19 0.75 33.1 b6-60 888.28 0.77 23.3
a6-72 946.41 1.50 33.8 b6-72 1007.99 1.44 24.3
a7-56 745.08 0.52 32.3 b7-56 844.54 0.45 24.0
a7-70 936.96 1.00 33.4 b7-70 939.10 0.89 21.7
a7-84 1069.77 1.87 33.6 b7-84 1255.10 1.78 25.3
a8-64 770.52 0.69 33.9 b8-64 865.65 0.54 23.7
a8-80 992.52 1.22 35.0 b8-80 1085.91 1.33 21.3
a8-96 1289.59 2.55 33.5 b8-96 1236.42 2.36 26.0

inequalities introduced in this paper.

6 Conclusion

By using appropriate inequalities, we have introduced two new formulations for the PDPTW
which do not require the use of a vehicle index to impose pairing and precedence constraints,
as is the case in three-index formulations. In addition to adapting infeasible path constraints
and reachability constraints to take advantage of the structure of the problem, we have
also introduced two new families of inequalities: strenghtened capacity constraints and fork
constraints. Computational experiments performed on PDPTW and DARP instances show
that both formulations are competitive although the more compact one (in terms of variables)
has a slight advantage. In the case of the DARP, comparisons with a previously introduced
three-index formulation show that the two new formulations are able to solve much larger
instances. The largest instance solved to optimality contains 192 nodes. Given the current
state of the art for the exact solution of vehicle routing problems with time windows, it
seems fair to say that these are large instances.
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Table 7: Impact of valid inequalities for first set of DARP instances

LP0 LP1 LP2 SEC SCC GOC FC RC FULL U. Bound

a2-16 98.42 99.14 99.93 99.93 99.93 99.93 100.00 100.00 100.00 294.25
a2-20 93.38 95.49 99.31 99.47 99.31 99.31 100.00 100.00 100.00 344.83
a2-24 87.51 95.25 98.81 99.03 98.81 98.81 99.80 99.51 99.80 431.12
a3-24 81.07 88.58 95.62 95.63 95.63 95.62 100.00 99.92 100.00 344.83
a3-30 79.16 88.84 94.55 94.55 94.55 94.52 100.00 100.00 100.00 494.85
a3-36 87.67 92.21 96.85 96.85 96.85 96.85 99.29 98.92 99.29 583.19
a4-32 78.12 85.69 92.23 92.23 92.32 92.23 100.00 100.00 100.00 485.50
a4-40 76.36 92.00 95.64 95.67 95.64 95.64 99.22 99.15 99.32 557.69
a4-48 64.63 86.12 91.96 91.96 91.97 91.96 99.38 98.75 99.62 668.82
a5-40 65.25 84.89 93.10 93.16 93.10 93.10 100.00 99.14 100.00 498.41
a5-50 59.92 78.87 88.40 88.44 88.41 88.40 98.79 97.71 99.04 686.62
a5-60 59.68 75.39 87.18 87.22 87.28 87.18 99.43 98.03 99.48 808.42
a6-48 63.57 79.95 88.25 88.31 88.26 88.26 99.97 98.75 100.00 604.12
a6-60 60.11 75.74 86.22 86.29 86.27 86.22 99.37 98.89 99.61 819.25
a6-72 65.42 79.88 89.08 89.27 89.22 89.09 99.14 98.18 99.36 916.05
a7-56 64.08 81.07 88.12 88.27 88.15 88.12 99.02 98.15 99.21 724.04
a7-70 62.66 77.81 85.74 85.76 85.87 85.74 99.57 98.78 99.75 889.12
a7-84 55.81 71.45 82.27 82.35 82.53 82.28 99.05 97.66 99.20 1033.37
a8-64 66.86 74.63 85.40 85.65 85.40 85.41 99.09 98.13 99.51 747.46
a8-80 58.29 69.87 81.10 81.10 81.19 81.10 99.04 96.17 99.18 945.73
a8-96 53.83 66.81 78.57 78.60 78.67 78.57 97.85 95.03 98.49 1232.61

Avg. 70.56 82.84 90.40 90.46 90.45 90.40 99.43 98.61 99.56
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Abstract

In the pickup and delivery problem with time windows (PDPTW), vehicle routes must
be designed to satisfy a set of transportation requests, each involving a pickup and a
delivery location, under capacity, time window and precedence constraints. This paper
introduces a branch-and-cut-and-price algorithm in which lower bounds are computed
by solving the linear programming relaxation of a set-partitioning formulation. This
relaxation is solved by a column generation scheme with an elementary shortest path
pricing problem. Various relaxations, yielding different pricing problems, are also in-
vestigated, and valid inequalities are proposed to strengthen some of these relaxations.
The strength of the different relaxations is investigated through extensive computa-
tional experiments. These experiments also show that the proposed method outper-
forms a recent branch-and-cut algorithm. The largest problem instance solved contains
500 requests.
Keywords: pickup and delivery; time windows; branch-and-cut-and-price.

1 Introduction

In the classical Vehicle Routing Problem (VRP), a fleet of vehicles based at a common depot
must be routed to visit exactly once a set of customers with known demand. Each vehicle
route must start and finish at the depot and the total demand of the customers visited by
the route must not exceed the vehicle capacity. In the VRP with Time Windows (VRPTW),
a time window is associated with each customer and the vehicle visiting a given customer
cannot arrive after the end of the time window. The Pickup and Delivery Problem with
Time Windows (PDPTW) is a further generalization of the VRP in which each customer
request is associated with two locations: an origin location where a certain demand must
be picked up and a destination where this demand must be delivered. Each route must also
satisfy pairing and precedence constraints: for each request, the origin must precede the
destination, and both locations must be visited by the same vehicle. The VRPTW can be
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seen as a special case of the PDPTW in which all requests have a common origin which
corresponds to the depot.

The PDPTW has applications in various contexts such as urban courier services, less-
than-truckload transportation, and door-to-door transportation services for the elderly and
the disabled. In the latter case, narrow time windows are often considered and ride time
constraints are imposed to control the time spent by a passenger in the vehicle. The resulting
problem is called the Dial-a-Ride Problem (DARP) and will also be addressed in this paper.

The VRP and VRPTW are well known combinatorial optimization problems which have
received a lot of attention (see, e.g., Toth and Vigo, 2002). Since it generalizes the VRPTW,
the PDPTW is clearly NP-hard. Over the last few decades, several heuristics have been
proposed for both the PDPTW and the closely-related DARP. However, because of the
difficulty of these problems, work on exact methods has been somewhat limited.

Two main approaches have been used to solve the PDPTW exactly: branch-and-price
and branch-and-cut. Branch-and-price methods (see, e.g., Barnhart et al., 1998; Desaulniers
et al., 1998) use a branch-and-bound scheme in which lower bounds are computed by column
generation. The first branch-and-price algorithm for the PDPTW was proposed by Dumas
et al. (1991) who considered a set-partitioning formulation of the problem in which each
each column corresponds to a feasible vehicle route and each constraint is associated to a
request that must be satisfied exactly once. The resulting pricing subproblem is a shortest
path problem with time window, capacity, pairing and precedence constraints. This problem
is solvable by dynamic programming and the authors use an algorithm similar to the one
developed by Desrosiers et al. (1986) for the single-vehicle pickup and delivery problem with
time windows. Several label elimination methods are proposed to accelerate the dynamic
programming algorithm, and arc elimination rules are used to reduce the size of the problem.
The authors point out that their approach works well when the demand of each customer
is large with respect to vehicle capacity. The largest instance solved with their approach
contains 55 requests.

Another branch-and-price approach for the PDPTW was later described by Savelsbergh
and Sol (1998). Their approach differs from that of Desrosiers et al. in several respects:
i) whenever possible, they use construction and improvement heuristics to solve the pricing
subproblem; ii) a sophisticated column management mechanism is used to keep the column
generation master problem as small as possible; iii) columns are selected with a bias toward
increasing the likelihood of identifying feasible integer solutions during the solution of the
master problem; iv) branching decisions are made on additional variables representing the
fraction of a request that is served by a given vehicle; and v) a primal heuristic is used at
each node of the search tree to compute upper bounds.

Column generation was also used recently by Xu et al. (2003) and Sigurd et al. (2004)
to address variants of the PDPTW arising in long-haul transportation planning and in the
transportation of live animals, respectively.

The second family of exact approaches for the PDPTW is branch-and-cut. In branch-
and-cut, valid inequalities (i.e., cuts) are added to the formulation at each node of the
branch-and-bound tree to strengthen the relaxations which are usually solved by the simplex
algorithm. Relying on the previous work of Balas et al. (1995) and Ruland and Rodin (1997)
on the Precedence-Constrained Traveling Salesman Problem (PCTSP) and the TSP with
Pickup and Delivery (TSPPD), Cordeau (2005) developed a branch-and-cut algorithm for the
DARP based on a three-index formulation of the problem. This algorithm was able to solve
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instances with four vehicles and 32 requests. It was later improved by Ropke et al. (2005) who
compared different formulations of the DARP and PDPTW, and introduced two new families
of inequalities for these problems. One is an adaptation of the reachability cuts introduced by
Lysgaard (2005) for the VRPTW, while the other is called fork inequalities. Both families
can also be used in the context of column generation and will be described in Section 4.
Using these inequalities, Ropke et al. were able to solve instances with eight vehicles and 96
requests. Another branch-and-cut approach, based on a two-index formulation was proposed
by Lu and Dessouky (2004). This formulation contains a polynomial number of constraints,
but relies on extra variables to impose pairing and precedence constraints. Instances with
up to five vehicles and 25 requests were solved optimally with this approach.

For reviews on pickup and delivery problems, the reader is referred to the works of
Savelsbergh and Sol (1995), Desaulniers et al. (2002) and Cordeau et al. (2005).

In this paper, we introduce a new branch-and-cut-and-price algorithm for the PDPTW
and the DARP. It is well known that set partitioning formulations of vehicle routing problems
tend to provide stronger lower bounds than formulations based on arc (flow) variables (see
Bramel and Simchi-Levi, 2002). Unfortunately, the column generation pricing subproblem
used with this formulation is often an elementary resource-constrained shortest path problem
which is NP–hard. Our aim is to investigate various relaxations of the pricing subproblem.
These relaxations are still NP-hard but in practice they can be easier to solve to optimality.

The contributions of the paper are threefold. First, we analyze the different relaxations
in terms of lower bound quality and computational difficulty. Second, we show that valid
inequalities can be introduced in the formulation to improve the quality of some of the
lower bounds. Third, we report extensive computational experiments on several sets of test
instances from the literature and introduce new large-scale instances.

The remainder of the paper is organized as follows. Section 2 defines the PDPTW and
introduces mathematical formulations of the problem. Section 3 discusses possible pricing
subproblems that can be used within a branch-and-price algorithm, while Section 4 describes
valid inequalities that can be added to the formulation. The resulting branch-and-cut-and-
price algorithm is then described in Section 5. Finally, computational results are reported
in Section 6, followed by conclusions in the last section.

2 Mathematical Formulation

In this section, we introduce the notation that is used throughout the paper. We then present
a classical three-index model of the problem, followed by a set-partitioning formulation.

2.1 Notation

Let n denote the number of requests to satisfy. We define the PDPTW on a directed graph
G = (N, A) with node set N = {0, . . . , 2n + 1} and arc set A. Nodes 0 and 2n + 1 represent
the origin and destination depots while subsets P = {1, . . . , n} and D = {n + 1, . . . , 2n}
represent pickup and delivery nodes, respectively. With each request i are thus associated a
pickup node i and a delivery node n + i.

With each node i ∈ N are associated a load qi and a non-negative service duration di

satisfying q0 = q2n+1 = 0, qi = −qn+i (i = 1, . . . , n) and d0 = d2n+1 = 0. A time window
[ai, bi] is also associated with every node i ∈ P ∪ D, where ai and bi represent the earliest
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and latest time, respectively, at which service may start at node i. The depot nodes may
also have time windows [a0, b0] and [a2n+1, b2n+1] representing the earliest and latest times,
respectively, at which the vehicles may leave from and return to the depot. Let K denote
the set of vehicles. We assume that vehicles are identical and have capacity Q. With each
arc (i, j) ∈ A are associated a routing cost cij and a travel time tij . In the remainder of the
paper, we assume that the travel time tij includes the service time di at node i. We also
assume that the triangle inequality holds both for routing costs and travel times.

2.2 Three-index formulation of the PDPTW

For each arc (i, j) ∈ A and each vehicle k ∈ K, let xk
ij be a binary variable equal to 1 if

and only if vehicle k travels directly from node i to node j. For each node i ∈ N and each
vehicle k ∈ K, let Bk

i be the time at which vehicle k begins service at node i, and Qk
i be the

load of vehicle k immediately after visiting node i. Using these variables, the PDPTW can
be formulated as the following mixed-integer program:

Min
∑

k∈K

∑

i∈N

∑

j∈N

cijx
k
ij (1)

subject to
∑

k∈K

∑

j∈N

xk
ij = 1 ∀i ∈ P (2)

∑

j∈N

xk
ij −

∑

j∈N

xk
n+i,j = 0 ∀i ∈ P, k ∈ K (3)

∑

j∈N

xk
0j = 1 ∀k ∈ K (4)

∑

j∈N

xk
ji −

∑

j∈N

xk
ij = 0 ∀i ∈ P ∪ D, k ∈ K (5)

∑

i∈N

xk
i,2n+1 = 1 ∀k ∈ K (6)

Bk
j ≥ (Bk

i + tij)x
k
ij ∀i ∈ N, j ∈ N, k ∈ K (7)

Qk
j ≥ (Qk

i + qj)x
k
ij ∀i ∈ N, j ∈ N, k ∈ K (8)

Bk
i + ti,n+i ≤ Bk

n+i ∀i ∈ P (9)

ai ≤ Bk
i ≤ bi ∀i ∈ N, k ∈ K (10)

max{0, qi} ≤ Qk
i ≤ min{Q, Q + qi} ∀i ∈ N, k ∈ K (11)

xk
ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ K. (12)

The objective function (1) minimizes the total routing cost. Constraints (2) and (3)
ensure that each request is served exactly once and that the pickup and delivery nodes are
visited by the same vehicle. Constraints (4)-(6) guarantee that the route of each vehicle k
starts at the origin depot and ends at the destination depot. Consistency of the time and
load variables is ensured by constraints (7) and (8). Constraints (9) ensure that for each
request i, the pickup node is visited before the delivery node. Finally, inequalities (10) and
(11) impose time windows and capacity constraints, respectively.
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2.3 Set partitioning formulation of the PDPTW

To formulate the problem as a set partitioning problem, let Ω denote the set of all feasible
routes satisfying constraints (3)-(12), dropping index k (as all vehicles are identical). Alter-
natively the routes should satisfy (3)-(12) for a particular k ∈ K. For each route r ∈ Ω, let
c̃r be the cost of the route and let air be a constant indicating the number of times node
i ∈ P is visited by r. Let also yr be a binary variable equal to 1 if and only if route r ∈ Ω is
used in the solution. The PDPTW can then be formulated as the following set partitioning
problem:

Min
∑

r∈Ω

c̃ryr (13)

subject to

∑

r∈Ω

airyr = 1 ∀i ∈ P (14)

yr ∈ {0, 1} ∀r ∈ Ω. (15)

The objective function (13) minimizes the cost of the chosen routes while constraints (14)
ensure that every request is served once. A lower bound on the optimal value of (13)-(15)
can be obtained by solving the linear programming (LP) relaxation which is obtained by
replacing (15) with the simple bound constraints 0 ≤ yr ≤ 1 ∀r ∈ Ω.

Because of the large size of set Ω, it is usually very difficult to solve or even to represent
model (13)-(15) explicitly. Instead its LP relaxation is solved using column generation. In a
column generation approach, a restricted master problem is obtained by considering a subset
Ω̄ ⊆ Ω of routes. Additional columns of negative reduced-cost are generated by solving a
pricing subproblem. Following Wolsey (1998), we call the problem defined by (13)–(15) the
integer programming master problem (IPM ) and its LP relaxation the linear programming
master problem (LPM ). The pricing problem for the PDPTW is

Min
∑

dijxij (16)

subject to constraints (3)–(12) (dropping index k), where dij is defined as

dij =

{

cij − πi ∀i ∈ P, j ∈ N
cij ∀i ∈ N \ P, j ∈ N,

(17)

and πi is the dual variable associated with the set partitioning constraint (14) for node i.
The definition of dij in equation (17) ensures that dij + djk ≥ dik if j is a delivery node.

As will be shown in Section 3 this is computationally convenient. We denote this problem
as SP1. The problem defined by objective (16) and constraints (3)–(12) is a constrained
shortest path problem called the Elementary Shortest Path Problem with Time Windows,
Capacity, and Pickup and Delivery (ESPPTWCPD). In Section 3 we explain how this and
related problems can be solved using label setting algorithms.

Instead of solving the shortest path problem SP1 one can solve relaxed versions of this
problem. A relaxed shortest path problem implies that a set of routes Ω′ is implicitly
considered, where Ω ⊆ Ω′. If Ω′ satisfies the property that none of the columns from the set
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Ω′ \ Ω can be used in a feasible integer solution to IPM then the set partitioning problem
solved on the set Ω′ will have the same set of optimal solutions as the one solved on Ω.
Obviously, the lower bound obtained by solving the LP relaxation on Ω′ may, however, be
weaker. An example of a relaxation of the shortest path problem that satisfies this property
consists of allowing cycles in the path. In this case, some requests may be served more than
once. Paths containing cycles cannot, however, appear in a feasible integer solution because
of constraints (14). This relaxation was used by Dumas et al. (1991) and it is described in
more detail in Section 3.3.

Relaxations inducing sets Ω′ for which one cannot ensure that no column from Ω′ \Ω can
belong to a feasible integer solution to IPM can also be used. In this case, however, valid
inequalities must be added to the master problem to render such solutions infeasible.

Valid inequalities expressed in terms of the xk
ij variables from the three-index formulation

(1)-(12) can be added to the master problem following the approach proposed by Kohl et al.
(1999) for the VRPTW. We first observe that such inequalities can be expressed in terms of
xij variables as all vehicles are identical (xij =

∑

k∈K xk
ij). The inequalities can be written

in the form
2n+1
∑

i=0

2n+1
∑

j=0

αijxij ≥ β,

where αij ∈ R is the coefficient of arc (i, j) ∈ A and β ∈ R is a constant. This inequality is
transfered to the master problem as

∑

r∈Ω

φryr ≥ β,

where φr =
∑

(i,j)∈r αij. The notation (i, j) ∈ r means that arc (i, j) ∈ A is used in route r.
It is easy to see that the introduction of a valid inequality in the master problem modifies
the pricing problem. Indeed, the arc costs dij are now defined as follows:

dij =

{

cij − πi − αijµ ∀i ∈ P, j ∈ N
cij − αijµ ∀i ∈ N \ P, j ∈ N,

(18)

where µ is the dual variable associated with the added inequality. Any number of inequalities
can be added in this way. Notice that this definition of dij does not guarantee dij +djk ≥ dik

when j is a delivery node, as it was the case with definition (17).

3 Constrained Shortest Path Problems

Resource constrained shortest path problems arising in column generation approaches for
vehicle routing problems are typically solved using dynamic programming techniques called
labeling algorithms. Notice that the term “shortest path” should be interpreted carefully:
given a cost function which can itself be viewed as a resource, one wishes to find the least-cost
feasible path from the source node to the sink node. An overview of constrained shortest
path problems and of appropriate labeling algorithms for their solution is given by Irnich
and Desaulniers (2005).

In this section we will show how the ESPPTWCPD introduced in section 2.3 can be solved
using a labeling algorithm. Three relaxations of the problem is considered in sub-section 3.3
– 3.5.
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3.1 Label setting shortest path algorithms

Consider a weighted directed graph G = (V, A) where V is the set of nodes, A is the set
of arcs, s is the source node and t is the sink node. We assume that no arc enters node s
and no arc leave node t. Let γ be the number of resources in the problem. Traversing arcs
”consumes” resources. Let f p

ij ∈ Q denote the consumption of resource p ∈ {1, . . . , γ} for
arc (i, j) ∈ A. For every node i ∈ V lower bounds lpi ∈ Q and upper bounds up

i ∈ Q on the
resource variables p ∈ {1, . . . , γ} are given.

In label setting shortest path algorithms, a label consists of three elements: a node, the
cumulated resource consumption at that node, and a pointer to its parent label. A label
L = (i, R, p) corresponds to a path starting at node s and ending at node i with a certain
resource consumption characterized by the vector R ∈ Qγ. The parent label p is necessary
to reconstruct the path between s and i. Resource constrained shortest path problems can
be solved using an algorithm based on the pseudo-code presented in Algorithm 1.

Algorithm 1 Pseudo code for labeling algorithm

1 Input: graph G = (V, A), source node s, sink node t
2 U = {(s, (l1s , . . . , l

γ
s ), nil)}

3 while U 6= ∅ do

4 L = removefirst(U)

5 i = node(L)
6 if no label in Li dominates L then

7 Li = Li ∪ {L}
8 extend L along all arcs (i, j) leaving node i
9 add all feasible extensions to U
10 return path corresponding to best label in Lt

In line 2 of the algorithm, an initial label (s, (l1s , . . . , l
γ
s ), nil) corresponding to the source

node s is created. In this label, the resource consumption is set according to the lower bounds
for node s. Here, U designates the set of unprocessed labels and Li is the set of processed
labels at node i (paths ending at node i). Lines 4 to 8 are repeated as long as there are
unprocessed labels. In line 4 a new unprocessed label is selected using the removefirst

function (the function removes the label from U). In line 5 the node of the label is retrieved
and line 6 checks whether the label can be discarded (this is explained in more detail below).
If the label cannot be discarded then it it is stored in the set of processed labels for node i in
line 7. In line 8, new labels are created by extending label L. Extending a label L = (i, R, p)
along arc (i, j) results in the label (j, R′, L) where the kth component R′

k of R′ is given by
either R′

k = max
(

lkj , Rk + fk
ij

)

or R′
k = Rk + fk

ij depending on the type of resource. The new
label is feasible if all resource variables are within their lower and upper bounds for node j.
All labels corresponding to feasible extensions of label L is added to U in line 9. In line 10,
the label with the least cost at the sink node is returned.

To guarantee the termination of the algorithm it is sufficient to assume the following:
i) it should be possible to define an ordering of all labels such that given two distinct labels,
one should be strictly greater than the other according to the chosen ordering; ii) the process
of extending a label (line 7) should result in a greater label according to the ordering; and
iii) there should exist a maximal label such that all other labels are smaller than or equal
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to that label. If the function removefirst returns the smallest label in U according to
the ordering then the algorithm will terminate. First, we will never process a label twice
as we choose the smallest unprocessed label and extending it yields greater labels. Second,
because we have an upper bound on the possible labels and because each extension results
in a greater label, the process will terminate as it will eventually reach the upper bound.

Without the test in line 6 the algorithm is a brute-force approach that enumerates all
feasible paths. The test in line 6 removes unpromising labels based on a so called dominance
criterion. We say that label L1 dominates label L2, written L1 �dom L2 if and only if they
are assigned to the same node and no feasible extension of the path corresponding to L2 with
a path to t has a lower cost than the best (with respect to cost) feasible extension of the
path corresponding to L1 with a path to t. If L1 �dom L2 then there is no need to consider
L2, and we need only examine extensions of L1.

Given two labels it can be difficult to determine whether one label dominates the other
as we potentially have to examine all possible augumentations of the corresponding paths to
node t. Consequently we use simpler criteria which for some pairs of labels (L1, L2) cannot
determine whether one of the labels dominates the other. In section 3.2 and 3.3 we describe
examples of such criteria.

3.2 ESPPTWCPD - SP1

The ESPPTWCPD, denoted SP1, is the natural pricing problem for the PDPTW and the
one that provides the best lower bounds. In the context of the PDPTW, it was first used
by Sol (1994) and later by Sigurd et al. (2004) for a PDPTW with additional precedence
constraints. Sigurd et al. (2004) described a general labeling algorithm for the ESPPTWCPD
and a more efficient one that takes advantage of the additional precedence constraints.

In this section we present a new labeling algorithm for the ESPPTWCPD which contains
a better dominance criteria compared to the algorithm proposed by Sol (1994) and the
general one described by Sigurd et al. (2004).

In what follows we assume that the source and sink nodes are, respectively, 0 and 2n+1,
as is the case in the shortest path problems that must be solved as pricing problems in our
column generation algorithm.

3.2.1 Label management

Table 1 summarizes the data that are stored for each label (the parent label is omitted in
this table). Thus, t, l, c, V and O are resources. The notation t(L) is used to refer to the
arrival time in label L and similar notation is used for the rest of the resources. The notation
P(L) represents the path corresponding to L and (p1, p2) represents the path obtained by
concatenating path p2 on path p1.

When extending a label L along an arc (η(L), j), the extension is legal only if

t(L) + tη(L),j ≤ bj (19)

l(L) + qj ≤ Q. (20)

Inequality (19) ensures time window feasibility while inequality (20) ensures capacity
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Table 1: Resources used in SP1

η The node of the label
t The arrival time at the node
l The current load
c The current cost
V V ⊆ {1, . . . , n} is the set of requests that have been

started on the path (and possibly finished).
O O ⊆ {1, . . . , n} is the set of requests that have been

started but not finished, i.e., the pickup has been served
but not the delivery. The requests in O are said to be
open.

feasibility. Furthermore, L and j must satisfy one of the following three conditions:

0 < j ≤ n ∧ V(L) ∩ {j} = ∅ (21)

n < j ≤ 2n ∧ j ∈ O(L) (22)

j = 2n + 1 ∧ O(L) = ∅. (23)

Condition (21) ensures that if j is a pickup node then that node must not have been
visited before on the path. This is to ensure that the the algorithm finds an elementary
path. Condition (22) ensures that if j is a delivery node then the path must have already
visited the corresponding pickup node, i.e., the precedence relationship between pickups and
deliveries is satisfied. Finally, condition (23) ensures that if j is the sink node then all
requests that have been started have also been finished. This condition enforces the pairing
constraint: the pickup and delivery from any given request must be served on the same path.
In the presence of (22), condition (21) is sufficient to ensure that only elementary paths are
considered.

If extension along the arc (η(L), j) is feasible then a new label L′ is created at node j.
The information in label L′ is set as follows:

η(L′) = j (24)

t(L′) = max{aj , t(L) + tη(L),j} (25)

l(L′) = l(L) + qj (26)

c(L′) = c(L) + dη(L),j (27)

V(L′) =

{

V(L) ∪ {j} if j ∈ P
V(L) if j ∈ D

(28)

O(L′) =

{

O(L) ∪ {j} if j ∈ P
O(L) \ {j − n} if j ∈ D.

(29)

Equations (24)-(27) set the current node, the time, the load and the cost of the new label,
respectively. Equation (28) updates the set of visited requests. Node j is only added if it is
a pickup node. Equation (29) updates the set of open requests. If a pickup (resp. delivery)
node is visited, the corresponding request is added to (resp. removed from) the set to indicate
that the request has been started (resp. completed).
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3.2.2 Dominance criterion

The dominance criterion employed in this section is the following: a label L1 dominates a
label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), V(L1) ⊆ V(L2), O(L1) ⊆ O(L2).

We denote this criterion (DOM1).
Proposition 1. DOM1 is a valid dominance criterion when considering the definition

of dij from equation (17).
Proof. The proof follows from that of Proposition 4 in Dumas et al. (1991). Let p be an

optimal (with respect to cost) and feasible path extending the path of L2 to 2n+1. If such a
path does not exist then clearly one can remove label L2. Let p′ be the path obtained from p
by removing the deliveries corresponding to the requests in O(L2) \O(L1). As (P (L1) , p) is
feasible, then so is (P (L2) , p′). Indeed, it is easy to see that it is feasible with respect to time
windows because travel times satisfy the triangle inequality. The capacity is not violated
on (P (L2) , p′) as it was not violated on (P (L1) , p) and P (L2) does not visit the pickups
corresponding to the deliveries removed from p. It is also easy to see that (P (L2) , p′) is
elementary and satisfies pairing constraints. The cost of (P (L2) , p′) is less than or equal to
the cost of (P (L1) , p) because c(L1) ≤ c(L2) and the cost of p′ is less than or equal to the
cost of p because removing deliveries cannot increase the cost of a path due to the definition
of dij in equation (17) and the triangle inequality on cij. As a result, the best (with respect
to cost) extension of label L1 to 2n + 1 will always be better than the best extension of L2

to 2n + 1. Hence, label L1 dominates label L2.�
Notice that it is not necessary to consider the load of a label in the dominance criterion.

Indeed, since O(L1) ⊆ O(L2) then the load of label L1 must be smaller than that of L2.
In the labeling algorithm of Sol (1994), labels contain the cost c, the arrival time t, and

the sets S+ ⊆ {1, . . . , n} and S− ⊆ {1, . . . , n}. Here, S+ is the set of requests that have
been picked up and S− is the set of requests that have been delivered. With respect to the
sets V and O, one obtains S+ = V and S− = V \ O. In terms of S+ and S− the dominance
criterion proposed in this paper is the following: label L1 dominates label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2),

S+(L1) ⊆ S+(L2),
(

S+(L1) \ S−(L1)
)

⊆
(

S+(L2) \ S−(L2)
)

Sol (1994) used the following criterion:

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2),

S+(L1) = S+(L2), S−(L1) = S−(L2).

If label L1 dominates label L2 according to the criterion used by Sol (1994) then it also
dominates L2 using the criterion proposed in this paper, but the converse is not true. Our
new criterion is therefore stronger than the one used by Sol.

Given a label L, let U(L) be the set of unreachable requests from P(L). This set is
defined as follows: U(L) = V(L) ∪

{

i ∈ {1, . . . , n} : t(L) + tη(L),i > bi

}

.
By replacing V(L) with U(L) in (DOM1) and in equation (21) and (28), one obtains a

stronger dominance criterion (DOM1’). This new dominance criterion is stronger for the
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following reason: if a label L1 dominates a label L2 according to (DOM1) it also dominates
L2 according to the new criterion (DOM1’), but the converse is not true. In order to prove
the validity of the new dominance criterion one has to consider the case where a label L1

dominates a label L2 according to the new criterion, but not according to (DOM1). That
is when U(L1) ⊆ U(L2) but V(L1) * V(L2). Define W = V(L1) \ V(L2). Any extension
of P(L1) cannot visit the requests in W . Hence, if an extension of P(L2) could visit one
request i ∈ W then there could be an extension of P(L2) that would be better than any
extension of P(L1) if πi is large. To see that no extension of P(L2) can visit requests in W
observe that W ⊆ U(L2) since W ⊆ V(L1) ⊆ U(L1) ⊆ U(L2). As a result, any extension
of P(L2) that visits a node from W is violating a time window because of the definition of
U(L) and the assumption that tij satisfies the triangle inequality.

The idea of considering U(L) instead of V(L) was proposed by Feillet et al. (2004) in the
context of the pricing problem for the VRPTW.

The dominance criteria (DOM1) and (DOM1’) are strong, but they give rise to strict
requirements on the cost structure of the underlying network. The definition of dij from
equation (18) cannot be used together with (DOM1) and (DOM1’). Indeed, one cannot
ensure that the removal of a delivery node from a sub path will reduce the cost, and this
property is used in the proof of Proposition 1. Consequently, the dominance criterion cannot
be used directly in the presence of additional valid inequalities. Another drawback of these
dominance criteria is that the removing of arcs from the network must be performed very
carefully. An arc (i, j) cannot be removed if the sub path i, k, j is valid for some delivery
k. In this case one cannot argue that removing deliveries from a path will yield a path with
lower cost since removing the deliveries will result in an invalid route. Arc elimination is
often useful within a branch-and-bound scheme that branches on the arcs in the original
formulation (1)-(12).

As a consequence of the above discussion, we define an alternative dominance criterion
(DOM1†) as follows: a label L1 dominates a label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), U(L1) ⊆ U(L2), O(L1) = O(L2).

This criterion is not as strong as (DOM1’), but it is easier to use, as it does not rely on any
specific assumption regarding the cost structure of the network.

3.2.3 Label elimination

Dumas et al. (1991) proposed rules for eliminating labels that cannot be extended to node
2n + 1. The key observation is that given a label L one can examine the deliveries of the
open requests in O(L). If it is impossible to create a path from η(L) through the deliveries
of O(L) to node 2n+1 that satisfies all time windows, then label L can be discarded because
of the triangle inequality on tij . Determining whether such a path exists can be done by
solving a traveling salesman problem with time windows which is NP-hard. Consequently,
Dumas et al. (1991) proposed to consider only subsets of O(L) of cardinality one and two.
We are going to use the same approach. Furthermore we also test a single subset containing
three deliveries. The first delivery i1 in this subset is the one farthest from η(L), the next
delivery i2 is the one farthest from η(L) and i1 and the last delivery is the one farthest from
η(L), i1 and i2.
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3.3 SPPTWCPD - SP2

We now consider the Shortest Path Problem with Time Windows, Capacity, and Pickup
and Delivery (SPPTWCPD), denoted SP2, which relaxes SP1 by not requiring paths to
be elementary. In this problem we do, however, impose two conditions which help prevent
cycles: i) after performing a pickup, the same pickup cannot be performed again before the
corresponding delivery has been performed, and ii) a delivery cannot be performed before
the corresponding pickup has been performed. These conditions ensure that any cycle in a
path will contain at least four nodes. The shortest cycle is of the form i → n + i → j → i.
One cannot go from n + i to i as the corresponding arc does not exist in our graph (see
Section 5.2 for details on preprocessing). If time windows are tight, such cycles are unlikely
to arise and the SPPTWCPD should yield good lower bounds. This shortest path problem
was used as a pricing problem by Dumas et al. (1991).

3.3.1 Label management

For SP2, we store for each label the data summarized in Table 2.

Table 2: Resources used in SP2

η The node of the label
t The arrival time at the node
l The current load
c The current cost
O O ⊆ {1, . . . , n} is the set of requests that have been

started but not finished.

Determining if an extension of a label is feasible and creating new labels is done in a
similar way as for SP1. We do not, however, maintain the set V. Hence, equation (28) is
not used and equation (21) is replaced with

0 < j ≤ n ∧ O(L) ∩ {j} = ∅. (30)

Replacing equation (21) with (30) implies that non elementary paths can be generated. When
the delivery of request i has been performed, i is removed from O according to equation (29)
and the path may then visit the pickup node of request i once again.

3.3.2 Dominance criterion

The dominance criterion employed, denoted (DOM2) is the following: a label L1 dominates
a label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), O(L1) ⊆ O(L2).

Dumas et al. (1991) showed that this dominance criterion is valid.
Criterion (DOM2) has the same weaknesses as (DOM1) and (DOM1’), i.e., it can only

be used on a network that satisfies certain assumptions on the cost structure, and therefore
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cannot be used directly in a branch-and-cut-and-price algorithm. As a result, we again resort
to a weaker criterion that allows arbitrary cost structures:

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), O(L1) = O(L2).

We denote this dominance criterion (DOM2†).
The label elimination rules described in Section 3.2.3 can be used for the SPPTWCPD

as well. It is actually in this context that they were first introduced by Dumas et al.

3.4 ESPPTW - SP3

The Elementary Shortest Path Problem with Time Windows (ESPPTW), denoted as SP3,
relaxes SP1 by removing the capacity, precedence and pairing constraints. As a result, the
shortest path may visit the pickup node of a given request without visiting the corresponding
delivery node, and vice-versa. In addition, if both the pickup and delivery nodes of a request
are visited then the pickup node may be visited after the delivery node.

This problem is also a relaxation of the Elementary Shortest Path Problem with Time
Windows and Capacity (ESPPTWC) which was recently used with success as a pricing
problem for the VRPTW (Chabrier, 2003; Feillet et al., 2004).

If SP3 is used as a pricing subproblem for the PDPTW, the set partitioning formulation
(13)-(15) must be modified to include one constraint for each node in P ∪D (instead of only
one constraint for each pickup node).

3.4.1 Label management

We store for each label the data summarized in Table 3.

Table 3: Resources used in SP3

η The node of the label
t The arrival time at the node
c The current cost
V V ⊆ {1, . . . , 2n} is the nodes that have been visited on

the path.

A label L can be extended to a node j if

t(L) + tη(L),j ≤ bj (31)

V(L) ∩ {j} = ∅. (32)

Inequality (31) ensures time window feasibility while inequality (32) ensures that the
path is elementary.

If extension along the arc (η(L), j) is feasible then a new label L′ is created at node j.
The information in label L′ is set as follows:

η(L′) = j (33)

t(L′) = max{aj, t(L) + tη(L),j} (34)

c(L′) = c(L) + dη(L),j (35)

V(L′) = V(L) ∪ {j}. (36)
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Equation (33) sets the node of the new label, equation (34) sets the start time at the
new label, equation (35) sets the cost of the new label, and equation (36) updates the set of
visited nodes.

3.4.2 Dominance criterion

The following dominance criterion is used: a label L1 dominates a label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), V(L1) ⊆ V(L2).

By defining U(L) = V(L)∪{i ∈ {1, . . . , 2n} : t(L)+ tη(L),i > bi} be the set of unreachable
nodes, the dominance criterion can be improved to

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), U(L1) ⊆ U(L2).

This idea was proposed by Feillet et al. (2004) and is similar to the improvement for the
ESPPTWCPD described in Section 3.2.2.

We should point out that in the PDPTW, the load of a vehicle is not monotonous
increasing or decreasing along a path as is the case for the VRP and VRPTW. As a result,
including capacity constraints makes the pricing subproblem much harder to solve. This
is why we have chosen to consider the ESPPTW instead of the ESPPTWC which was
considered by Chabrier (2003) and Feillet et al. (2004).

3.5 ESPPTWP - SP4

The Elementary Shortest Path Problem with Time Windows and Precedence Constraints
(ESPPTWP), denoted SP4, relaxes SP1 by removing the capacity and pairing constraints.
In this relaxation, a path may visit the pickup node of a given vertex without visiting the
corresponding delivery node, and vice-versa. However, if both nodes are visited, then the
pickup node must be visited before the delivery node.

This shortest path algorithm is easily obtained from the algorithm for SP3 that uses the
set U of unreachable nodes instead of V. The definition of U in SP4 is:

U(L) = V(L) ∪ {i ∈ {1, . . . , 2n} : t(L) + tη(L),i > bi ∨ i /∈
⋂

j∈V(L)

Sj}

where Sj is the set of possible successors to node j. The basic definition of Sj is

Sj =

{

(P \ {j}) ∪ D ∪ {2n + 1} if j ∈ P
(P \ {j − n}) ∪ (D \ {j}) ∪ {2n + 1} if j ∈ D.

If j is a delivery node then j − n clearly is not a valid successor. It is possible to reduce
the sets Sj even more. For example, nodes that cannot be visited after node j because of
conflicting time windows can be removed from the set. This will not, however, have any
impact on the lower bound obtained from the LPM.

One may instead use the pairing and precedence constraints from the PDPTW to further
reduce the set Sj . For example, if j and i are two pickup nodes for which time windows and
capacity constraints make it impossible to visit both i, n + i and n + j after j, then i and
n+ i can be removed from Sj even though it may be possible to visit either i or n+ i after j
if they are considered as individual nodes. These reductions may improve the lower bound
obtained from the LPM because they transfer some of the pairing and precedence structure
from the PDPTW to the ESPPTW.
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3.6 Implementation issues

When implementing the labeling algorithms, one can store the sets V and O as binary vectors
encoded as vectors of integers. In this representation, the i-th bit indicates whether the i-th
request is part of the set. Consider for example a computer with 32-bit integers. If n = 50
then d50

32
e = 2 integers are necessary to store each set. The labeling algorithms must perform

a large number of dominance checks and each check requires that a set inclusion test be
carried out twice (in case of SP1). The set inclusion test can be implemented using bitwise
operations on the integers such that w bits can be processed in parallel, where w is the size
of a machine word. To compare two words x and y one perform the operation x & y, where
& performs bitwise ”and”. If x − (x & y) = 0 then the set corresponding to x is included
in the set corresponding to y. The other inclusion can be tested in the same way. If both
x − (x & y) 6= 0 and y − (x & y) 6= 0 then neither set is a subset of the other. To test for
inclusion when the sets contain more than w items the operation is repeated for each word in
the vector. This approach yields a significant speed improvement when compared to testing
each bit separately. It has likely been used before but we are not aware of it having been
described in the shortest path literature.

3.7 Strength of lower bounds using various pricing algorithms

Figure 3.7 shows the relative strength of the LP relaxation obtained using the different
pricing algorithms. An arrow from X to Y indicates that the LP relaxation obtained by
using pricing problem Y is tighter than the one obtained with pricing problem X.
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3.8 Possible improvements

Irnich and Villeneuve (2003) have proposed a labeling algorithm that solves non-elementary
shortest path problems while ensuring that cycles of length k or smaller do not occur. Their
approach could be used to strengthen the lower bound of the LPM when using SP2 as
a pricing problem since SP2 allows cycles containing more than two arcs. However, the
computational results presented in section 6 show that the lower bound obtained with SP2
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already are quite close to the lower bounds obtained with SP1, so it is not clear if the effort
involved with forbidding longer cycles is worthwhile.

On a different note, Righini and Salani (2004) have proposed a bi-directional approach
to shortest path problems with resource constraints. Instead of starting the label extension
only from the source node, they simultaneously extend labels both from the source and the
sink nodes. The two searches eventually meet at a point where the paths from the source are
merged with paths from the sink. This approach has shown great potential for reducing the
running time of the shortest path algorithm. It is out of the scope of the current paper to
apply this technique to the shortest path problems considered, but it would be a promising
area for future research.

4 Valid Inequalities

This section describes families of valid inequalities that can be used to strengthen the linear
relaxation of the set partitioning formulation of the problem. To describe these inequalities,
it is convenient to introduce new notation. For any node subset S ⊆ V , let δ+(S) = {(i, j) ∈
A|i ∈ S, j 6∈ S}. We also use δ+(i) to designate the set δ+({i}). Finally, let xij =

∑

k∈K xk
ij .

4.1 Infeasible path inequalities

Cordeau (2005) and Ropke et al. (2005) discussed infeasible path inequalities and various
strengthenings for the PDPTW. In this paper we will use two types of infeasible path in-
equalities. Consider an infeasible path R = (k1, . . . , kr), then the inequality

r−1
∑

i=1

xki,ki+1
≤ r − 2 (37)

is valid. In this paper the inequality is used as a simple way of handling ride time constraints,
it is not believed to be very strong. Cordeau (2005) observed that the inequality can be
strengthened if k1 = i and kr = n + i for some i ∈ P and the path is infeasible because of
time windows or ride time constraints. In that case the inequality can be strengthened to

r−1
∑

i=1

xki,ki+1
≤ r − 3 (38)

4.2 Fork inequalities

Let R = (k1, . . . , kr) be a feasible path in G and S, T1, . . . , Tr ⊂ (P ∪ D) \ R be subsets
such that for any integer h ≤ r and any node pair i ∈ S, j ∈ Th, the path (i, k1, . . . , kh, j) is
infeasible. The following inequality is then valid for the PDPTW:

∑

i∈S

xi,k1 +
r−1
∑

h=1

xkh,kh+1
+

r
∑

h=1

∑

j∈Th

xkh,j ≤ r. (39)

Similarly, if R = (k1, . . . , kr) is a feasible path in G and S1, . . . , Sr, T ⊂ (P ∪ D) \ R
are subsets such that for any integer h ≤ r and any node pair i ∈ Sh, j ∈ T , the path
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(i, kh, . . . , kr, j) is infeasible, then the following inequality is valid for the PDPTW:

r
∑

h=1

∑

i∈Sh

xi,kh
+

r−1
∑

h=1

xkh,kh+1
+
∑

j∈T

xkr,j ≤ r. (40)

Inequalities (39) and (40) were introduced by Ropke et al. (2005) and are called outfork
and infork inequalities, respectively.

4.3 Reachability inequalities

For any node i ∈ N , let A−
i ⊂ A be the minimum arc set such that any feasible path from the

origin depot 0 to node i uses only arcs from A−
i . Let also A+

i be the minimum arc set such
that any feasible path from i to the destination depot 2n + 1 uses only arcs in A+

i . Consider
a node set T such that each node in T must be visited by a different vehicle. This set is said
to be conflicting. For any conflicting node set T , define the reaching arc set A−

T = ∪i∈T A−
i

and the reachable arc set A+
T = ∪i∈T A+

i . For any node set S ⊆ P ∪ D and any conflicting
node set T ⊆ S, the following two valid inequalities were introduced by Lysgaard (2005) for
the VRP with time windows:

x(δ−(S) ∩ A−
T ) ≥ |T | (41)

x(δ+(S) ∩ A+
T ) ≥ |T |. (42)

These inequalities are obviously also valid for the PDPTW. In this problem, however,
nodes can be conflicting not only because of time windows but also because of the precedence
relationships and the capacity constraints. In the case of the DARP, the ride time constraints
should also be taken into account when checking whether a pair of requests is conflicting.

4.4 Rounded capacity inequalities

Rounded capacity inequalities often used in the context of the vehicle routing problem (see,
e.g., Naddef and Rinaldi, 2002) can also be used for the PDPTW. For any node subset
S ⊆ V \ ({0, 2n + 1}), the following inequality is valid:

∑

i∈S

∑

j∈V \S

xij ≥

⌈
∣

∣

∑

i∈S qi

∣

∣

Q

⌉

.

4.5 Precedence inequalities

Let S be a subset of V \ ({0, 2n + 1}) such that i ∈ S and n + i /∈ S for some i ∈ P . Then
the following inequality is valid:

∑

i∈S

∑

j∈V \S

xij ≥ 1.

Precedence inequalities were introduced by Ruland and Rodin (1997) in the context of
the TSP with pickup and delivery.
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4.6 Strengthened precedence cuts

Using ideas from the reachability inequalities, the precedence inequalities can be strength-
ened as follows. Let Ai be the set of arcs that can be used in a feasible path from i to n + i.
Furthermore let S be a subset of V \ ({0, 2n + 1}) such that i ∈ S and n + i /∈ S for some
i ∈ P . Then the following inequality is clearly valid for the PDPTW:

∑

(i,j)∈(δ+(S)∩Ai)

xij ≥ 1.

5 Branch-and-Cut-and-Price Algorithm

5.1 Overview

Branch-and-cut is a well-known solution paradigm which has proved to very efficient for the
solution of several families of combinatorial problems. In particular, this approach has been
successful in solving the TSP and the VRP. In branch-and-cut algorithms, some constraints
are relaxed and introduced dynamically in the model when they are violated by the solution
to the relaxation solved in a node of the branch-and-bound tree. This is accomplished by
solving a separation problem to identify violated inequalities. Branch-and-cut-and-price is
a variant of branch-and-cut in which the linear programming relaxations obtained at each
node of the branch-and-bound tree are solved by column generation.

It is well known that the running time of branch-and-price algorithms can be improved
by using heuristic algorithms for the pricing problem. As long as the heuristic algorithms
are able to find columns with negative reduced-cost one can add those columns to the LPM
and solve the problem again. If the heuristics fail to identify columns with a negative
reduced-cost, one then has to apply an exact pricing algorithm to verify whether no negative
reduced-cost columns exist, or to find one or more columns that can be added to the LPM.

Ideally it should be necessary to call the exact pricing algorithm only once for each node
in the branch-and-bound tree to verify that no reduced-cost column exists. In fact, this is
not even necessary if the relaxation value associated with a node is lower than the current
upper bound. In this case, the lower bound will not be used to fathom the node and it is not
necessary to find the optimal relaxation value for this node. To use this strategy, however,
one needs good pricing heuristics to avoid branching on incorrect data.

Every time the LPM has been solved we are faced with a choice of either trying to generate
more variables (columns) or valid inequalities (rows). Adding both at the same time does
not seem to make sense as the inclusion of more violated valid inequalities probably implies
that other variables are needed compared to the ones we need with the current model. The
simplest approach would be to add variables until no more variables with negative reduced
cost exists and then try to generate violated inequalities.

We take a very similar approach: variables are generated as long as the heuristics are
able to identify promising variables. When the heuristics fail, the cut generation routines
take over unless the lower bound is above the upper bound or if cut generation has been tried
before without success in the current branch and bound node. If cut generation is tried and
identifies violated inequalities, then they are added to the model and the pricing heuristics
are allowed to try to find variables with negative reduced costs again. If the cut generation
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is unsuccessful or if it is not tried because of the reasons listed above then the exact pricing
algorithm is called.

In the following sections, we first describe preprocessing techniques to reduce the size of
the problem and strengthen some of its parameters. We then explain the branching strategy
used to explore the enumeration tree, and the separation procedures for the identification of
violated valid inequalities. We finally describe several heuristics which can be used to solve
the pricing problem.

5.2 Preprocessing

Several preprocessing rules for tightening time windows in the PDPTW and the DARP
have been described in Dumas et al. (1991) and Cordeau (2005). All these rules have been
implemented here. In addition, Desrochers et al. (1992) propose the following four rules for
tightening time windows in the VRPTW:

1. Minimal arrival time from predecessors

ak = max

{

ak, min

{

bk, min
(i,k)∈A′

{ai + tik}

}}

2. Minimal arrival time to successors

ak = max

{

ak, min

{

bk, min
(k,j)∈A′

{aj − tkj}

}}

3. Maximal departure time from predecessors

bk = min

{

bk, max

{

ak, max
(i,k)∈A′

{bi + tik}

}}

4. Maximal departure time to successors

bk = min

{

bk, max

{

ak, max
(k,j)∈A′

{bj − tkj}

}}

In these rules, the set A′ is the set of feasible arcs for the problem. Cordeau (2005) describes
how to compute this set from A. The four rules are applied to each node in a cyclic fashion.
In combination with the rules described in Dumas et al. (1991) and Cordeau (2005) one
actually need only apply rules 2 and 3.

In the case of the DARP, however, care must be taken when applying these time window
tightening rules. Indeed, one cannot tighten the start of the time window of a delivery node
or the end of the time window of a pickup node as this may then lead to an increase of the
ride time associated to the corresponding request.
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5.3 Branching strategy

When the solution of the LPM is fractional and no violated inequality can be identified, one
has to resort to branching. Branching in a column generation algorithm should be done with
care as the branching strategy should preferably be compatible with the algorithm used for
solving the pricing problem, i.e., the same type of pricing problem should be solved in the
child nodes as in the parent node. This implies that branching decisions should be easily
transferred to the subproblem and should not change its structure.

Three branching strategies have been implemented which are compatible with the pricing
problems considered in this paper except for solving SP1 and SP2 using dominance criteria
(DOM1’) and (DOM2).

The first strategy branches on the arc variables xij . The procedure for doing this is
described in detail by Desrochers et al. (1992). Our implementation branches on the arc
with a flow closest to 0.5.

The second strategy branches on the outflow of a set of nodes as proposed for VRP
by Naddef and Rinaldi (2002). A set of nodes S is first selected such that x(δ+(S)) is
as fractional as possible. Two branches are then created: x(δ+(S)) ≤ bx(δ+(S))c and
x(δ+(S)) ≥ dx(δ+(S))e. In our implementation, the set S is found using a simple greedy
heuristic.

The last strategy calculates x(δ+(0)). If x(δ+(0)) is fractional then the two branches
x(δ+(0)) ≤ bx(δ+(0))c and x(δ+(0)) ≥ dx(δ+(0))e are created. If x(δ+(0)) is integer then
one of the two previous branching strategies is used. This rule was proposed by Desrochers
et al. (1992). This branching strategy is often called branching on the number of vehicles.

In our branch-and-cut-and-price algorithm, the enumeration tree is explored in a depth-
first fashion. This choice is motivated by the availability of high-quality heuristics for the
PDPTW which generally provide tight upper bounds.

5.4 Separation routines

We refer the reader to Ropke et al. (2005) for a description of the separation procedures
for the fork, capacity, reachability and precedence inequalities. An exact, polynomial-time
separation procedure for the strengthened precedence inequality is described below.

5.4.1 Strengthened precedence inequality

Before starting the branch-and-bound procedure the sets Ai are calculated for every request
i. If the sets A−

i and A+
i are known then one can use the fact that Ai ⊆ A−

n+i ∩ A+
i to

speed up the calculation of Ai. In order to separate the inequality the following procedure
is applied for every request i:

1. Construct a graph with nodes {1, . . . , 2n} and arcs Ai.

2. Set the the weight of each arc (i, j) equal to x̃ij where x̃ij is the total flow on arc (i, j)
in the current solution to LPM.

3. Solve a minimum cut problem on the graph with node i as source and node n + i as
sink, yielding a set S 3 i.
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If the flow across the minimum cut is less than 1, then one has identified a violated
inequality

∑

(i,j)∈(δ+(S)∩Ai)
xij ≥ 1.

5.4.2 Cut pool management

Every time the LPM is solved the algorithm determines which of the valid inequalities
previously generated are satisfied at equality by the current solution. If an inequality has
not been binding for ten consecutive iterations, it is removed from the problem and inserted
in a cut pool. Every time the LPM is solved, the cut pool is checked for violated inequalities.
If a violated inequality is found in the cut pool, it is then added to the linear relaxation and
the problem is solved again. Once an inequality has been identified by one of the separation
procedures it will always stay in the program, either explicitly in the model, or implicitly in
the cut pool. In computational experiments, a significant performance boost was observed
when using this approach compared to keeping all inequalities in the formulation.

5.5 Pricing problem heuristics

We first present in Section 5.5.1 two general heuristics which are valid for all the pricing
problems described in section 3. They both work by truncating the labeling algorithms. In
Section 5.5.2 and 5.5.3 we then introduce more specialized heuristics that work by the classic
construction and improvement principle.

5.5.1 Label heuristics

It has previously been proposed to turn exact labeling algorithms into heuristics by limiting
the number of labels created in different ways. For example, Dumas et al. (1991) proposed
to reduce the network before running the pricing algorithm. They created networks with
between 30% and 50% of the best arcs. Irnich and Villeneuve (2003) used a variant of this
idea by creating reduced networks Gl where each node is connected to its l nearest neighbors.

In this paper we let the reduced network Gl consist of the shortest arcs with respect to
dij. Each node i ∈ {1, . . . , 2n} is incident with at most l outgoing arcs reaching a pickup
node and l outgoing arcs reaching a delivery node. After construction, all feasible arcs
(i, n + i), (0, i), (n + i, 2n + 1), i ∈ {0, . . . , n} which are not already in Gl are added to Gl.
The arcs are grouped into pickup/delivery arcs to keep the network balanced. The current
implementation uses two reduced networks G5 and G10. If the search using network G5 does
not find any negative paths then it switches to network G10. The corresponding heuristics
is denoted H1.

Dumitrescu (2002) proposed to limit the number of unprocessed labels at any time. For
our purpose this corresponds to putting a limit on U (|U | ≤ µ) in Algorithm 1. Only the
µ best (with respect to the reduced cost) labels are kept, the worst labels being discarded.
This heuristic is used in a three-phase fashion. First a limit µ = 500 is used. If the heuristic
does not find any negative cost paths then µ = 1000, and finally µ = 2000 is tried. This
heuristic is denoted H2.

If H2 does not return any negative cost paths then, it can in some cases be proved that
no negative cost paths exists. This happens if one has never discarded labels because of
the limit on unprocessed labels. However, this is only likely to happens for easy problem
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instances. A similar property was observed by Jepsen et al. (2005) when creating a heuristic
by limiting the total number of labels processed.

For both of the heuristics and the exact algorithms based on the labeling algorithm we
generate more than one negative cost column, but stop the algorithm if 100 different negative
reduced-cost columns have been generated. All negative reduced cost columns are added to
the LPM.

5.5.2 Construction heuristic

Heuristics that do not use the label setting algorithm have been implemented to determine
whether another heuristic paradigm could provide the same or better solution quality as the
heuristics based on labeling algorithms which are the most popular in column generation
algorithms.

Sol (1994) proposed to use a cheapest insertion heuristic to solve the ESPPTWCPD. A
similar approach is implemented in this paper. Starting from a route containing only request
i we add the request that increases the least the reduced-cost of the path. During insertions
we keep track of the best route observed. The process is repeated with every request as a
starting point. This algorithm is denoted H3.

A straightforward way to improve this heuristic is by randomizing it. This can be done
by performing insertions that are not the most promising: the possible insertions are ranked
by insertion cost and a request is chosen by a random process that tends to select insertions
with low cost. When using the randomized insertion it is worthwhile to try to construct a
route starting from the same initial route containing request i several times. This algorithm
is denoted H4.

5.5.3 LNS heuristic

It is well known that improvement or steepest descent heuristics often produce high quality
solutions in little time. This has been used by Savelsbergh and Sol (1998) (see also Sol
(1994)) to propose improvement heuristics for the pricing problem. As an initial solution,
routes from the current LPM with reduced cost 0 were used. Their neighborhood move
consisted of removing one node and inserting another. Notice that this move never changes
the length of the initial path.

In this section we describe a different improvement heuristic which is based on the Large
Neighborhood Search (LNS) introduced by Shaw (1998). Ropke and Pisinger (2004) showed
that the LNS can be easily implemented by using simple construction heuristics, an idea that
will be used here. The LNS algorithm attempts to improve an initial path by alternating
between removing requests from the path and inserting requests into the path. The requests
to remove are chosen randomly and requests are inserted using the randomized insertion
algorithm outlined in section 5.5.2.

The pseudo-code for the LNS is shown in Algorithm 2. The algorithm takes a path p and
an integer σ as input. The parameter σ determines how many times the removal/insertion
iterations should be performed without improving the path.

In line 3 we set f , the cost of the currently best solution. Line 4 makes the algorithm
continue as long as an improvement is found. In line 6 nodes are removed from the path.
The function removeNodes(p) returns a path where up to 50% of the nodes from p have
been removed, p itself is not changed. In line 7 nodes are inserted into the path again, the
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Algorithm 2 LNS pseudo code.
1 Input: Path p, integer σ
2 for i = 1, . . . , σ
3 f = ∞;

4 while (c(p) < f)
5 f = c(p);
6 p′ = removeNodes(p);
7 p′ = randomizedInsert(p′);
8 if c(p′) < f
9 p = p′;
10 return p;

insertion is randomized but good insertions are favored. Any unplanned node can be inserted.
In line 8 and 9 the current solution is updated if an improvement was found. The functions
removeNodes and randomizedInsert are dependent on the shortest path problem that is
solved (e.g. they take into account whether the path must satisfy the pairing constraint).

The improvement heuristic is used in two contexts: In heuristic H5, LNS is used to
improve the paths that are selected (yr > 0) in the current LP solution, in H5, σ is set to 20.
In heuristic H6, LNS is used to improve the paths generated by the randomized insertion
heuristic described in Section 5.5.2. The LNS heuristic is applied to paths with reduced cost
greater than or equal to zero to try to bring the reduced-cost below 0. In H6, σ is set to 5
as many paths are given to the improvement heuristic.

6 Computational experiments

This section describes the computational experiments that we have performed on several
sets of test instances for both the PDPTW and the DARP. The algorithm was implemented
in C++ and all experiments were carried out on an AMD Opteron 250 computer (2.4 GHz)
running Linux. CPLEX 9.0 was used as LP solver and the COIN-OR Open Solver Interface
(OSI, http://www.coin-or.org/index.html) was used as an interface to the LP solver. In
all experiments, a limit of two hours of CPU time was used unless otherwise indicated.

For the PDPTW, we have used two main sets of instances. The first one was introduced
by Li and Lim (2001) and is based on the well-known Solomon test problems for the VRPTW.

The second set of instances was introduced by Ropke et al. (2005) and is based on a
generator initially proposed by Savelsbergh and Sol (1998). As explained by Ropke et al.,
the generator was modified to obtain harder instances by reducing the ratio between the
travel times and the length of the planning horizon. In addition, the new generator considers
a single depot located at the middle of a square instead of a different depot for each vehicle.

In all instances, the coordinates of each pickup and delivery location are chosen randomly
according to a uniform distribution over the [0, 50] × [0, 50] square. The load qi of request
i is selected randomly from the interval [5, Q], where Q is the vehicle capacity. A planning
horizon of length T = 600 is considered and each time window has width W . The time
windows for request i are constructed by first randomly selecting ei in the interval [0, T−ti,n+i]
and then setting li = ei + W , en+i = ei + ti,n+i and ln+i = en+i + W . In all instances, the
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primary objective consists of minimizing the number of vehicles, and a fixed cost of 104 is
thus imposed on each outgoing arc from the depot.

Five groups of instances were generated by considering different values of Q and W . The
characteristics of these groups are summarized in Table 4. Ropke et al. (2005) considered
ten instances with 30 ≤ n ≤ 75 in each of the first four groups. Here, we introduce larger
instances with 100 ≤ n ≤ 200 as well as a new group of instances (group E) with Q = 30.
This yields a total of 75 instances. The name of each instance (e.g., A50) indicates the class
to which it belongs and the number of requests it contains.

Table 4: Characteristics of the new PDPTW instances

Class Q W
A 15 60
B 20 60
C 15 120
D 20 120
E 30 120

The third set of instances that we have used for testing was introduced by Cordeau
(2005) for the DARP. These consist of randomly generated Euclidean DARP instances
comprising up to 96 requests. They all have narrow time windows of 15 minutes. In
the first subset (’a’ instances), qi = 1 for every request i and the vehicle capacity is
Q = 3. In the second set (’b’ instances), qi belongs to the interval [1, 6] and Q = 6.
These data are described in detail in Cordeau (2005) and are available on the following web
site: http://www.hec.ca/chairedistributique/data/darp. Their main characteristics
are summarized in Table 5. In this table, columns |K| and T indicate, respectively, the num-
ber of available vehicles and the length of the planning horizon in which time windows are
generated. The constraint on the number of vehicles is easily imposed in our formulations
as a bound on the total outgoing flow from the origin depot.

The pricing algorithms operate on travel times with a fixed number of decimals. Thus
for the DARP and Li and Lim instances distances and travel times have been truncated
(rounded down) to four decimals. For the PDPTW instances similar to the ones proposed
by Savelsbergh and Sol, distances and travel times have been rounded up to two decimals.
We have less precision for these instances to avoid numerical problems due to the fixed costs
on vehicles that results in high route costs. Travel times are rounded up to ensure that the
travel times satisfy the triangle inequality. For the DARP and Li and Lim instances this is
not a problem as a service time is associated with each request.

Our computational experiments focus on four aspects. First, we wished to investigate the
impact of the various subproblems described in Section 3. Second, we wanted to measure the
impact of the valid inequalities described in Section 4 on the performance of the branch-and-
price algorithm. Third, we wanted to compare the performance of our branch-and-cut-and-
price algorithm to the branch-and-cut algorithm of Ropke et al. (2005). Fourth, we wanted
to measure the impact of the pricing heuristics.
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Table 5: Characteristics of DARP instances

Instance |K| n T Q L Instance |K| n T Q L
a2-16 2 16 480 3 30 b2-16 2 16 480 6 45
a2-20 2 20 600 3 30 b2-20 2 20 600 6 45
a2-24 2 24 720 3 30 b2-24 2 24 720 6 45
a3-24 3 24 480 3 30 b3-24 3 24 480 6 45
a3-30 3 30 600 3 30 b3-30 3 30 600 6 45
a3-36 3 36 720 3 30 b3-36 3 36 720 6 45
a4-32 4 32 480 3 30 b4-32 4 32 480 6 45
a4-40 4 40 600 3 30 b4-40 4 40 600 6 45
a4-48 4 48 720 3 30 b4-48 4 48 720 6 45
a5-40 5 40 480 3 30 b5-40 5 40 480 6 45
a5-50 5 50 600 3 30 b5-50 5 50 600 6 45
a5-60 5 60 720 3 30 b5-60 5 60 720 6 45
a6-48 6 48 480 3 30 b6-48 6 48 480 6 45
a6-60 6 60 600 3 30 b6-60 6 60 600 6 45
a6-72 6 72 720 3 30 b6-72 6 72 720 6 45
a7-56 7 56 480 3 30 b7-56 7 56 480 6 45
a7-70 7 70 600 3 30 b7-70 7 70 600 6 45
a7-84 7 84 720 3 30 b7-84 7 84 720 6 45
a8-64 8 64 480 3 30 b8-64 8 64 480 6 45
a8-80 8 80 600 3 30 b8-80 8 80 600 6 45
a8-96 8 96 720 3 30 b8-96 8 96 720 6 45

6.1 Pricing algorithms

Six different pricing algorithms will be used in the rest of this section. The SP1 pricing prob-
lem is solved using two algorithms. The algorithm denoted SP1* uses the algorithm based
on the (DOM1’) dominance criterion, while the algorithm denoted SP1 uses the algorithm
based on the (DOM1†) dominance criterion. Similarly SP2 uses the (DOM2†) criterion while
SP2* uses the (DOM2) criterion. The (DOM1’) and (DOM2) criteria are stronger than the
(DOM1†) and DOM2†) criteria, but they are not compatible with our branching scheme and
cutting planes (see Sections 3.2 and 3.3) so the SP1* and SP2* algorithms are only used to
calculate a lower bound.

For the SP3 and SP4 pricing problems we only have one pricing algorithm for each
problem.

Notice that SP1 and SP2 are used to denote both a PDPTW relaxation and an algorithm.
The meaning should be clear from the context.

6.2 Pricing heuristics

In this section, we report the results of experiments performed with the pricing heuristics
introduced in Section 5.5. The heuristics have been tested on series 1 of the 50 request
test set proposed by Li and Lim (2001) as these instances turn out to produce hard pricing
problems.

To limit the number of tables, we only report results for relaxation SP1. We propose
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a number of configurations of the pricing heuristic and test how long it takes to prove the
lower bound for each instance when using the particular heuristic configuration together with
either exact algorithm SP1* or SP1. Results for SP1* are shown in Table 7 while results for
SP1 are shown in Table 8.

Nine combinations (A2–A10) of the heuristics were tested and the algorithm was also
tested without any heuristic (A1). Table 6 gives an overview of these configurations. The
left column shows the configuration name and the right one shows the heuristics used in the
configuration. The sequence of the heuristics shows their calling sequence. As an example,
in configuration A3, heuristic H3 is tried first and if this fails to find paths with negative
reduced cost then heuristic H1 is tried. If this also fails then the algorithm resorts to the
exact shortest path algorithm.

Only the construction heuristic (H3) was tested alone (configuration A2). The rest of the
heuristics were tested together with the construction heuristic as it quickly can produce some
routess early in the column generation process. Configurations A3 to A7 test one heuristic
together with the construction heuristic. Configuration A8 tests the two heuristics based
on the label setting algorithm together. Configuration A9 tests the randomized insertion
together with the LNS heuristics and configuration A10 includes all heuristics.

Configuration Heuristics and
name sequence

A1 None
A2 H3
A3 H3-H1
A4 H3-H2
A5 H3-H4
A6 H3-H5
A7 H3-H6
A8 H3-H2-H1
A9 H3-H4-H5-H6

A10 H3-H4-H5-H6-H2-H1

Table 6: Overview of pricing heuristic configurations.

Table 7 and 8 show the results of the tests. For every heuristic configuration the table
contains three columns: ok - indicates if the lower bound in the root node was proved within
the time limit (2 hours), time (s) - the total time needed to prove the lower bound in the
root node (in seconds). #ex - number of calls to the exact pricing algorithm needed to prove
the lower bound. Blank entries indicate that a time out occurred. The row Sum sums each
column (in case of the ok column it counts the number of proved lower bounds) while the
Sum’ column sums over the instances that could be solved by all configurations.

The results clearly show the importance of using good pricing heuristics. For the SP1*
algorithm we can observe speedups by more than a factor 250 between having no pricing
heuristic and using the heuristics given by configuration A10 (see instance lr104), for the SP1
algorithm the highest speedup factor is 60 (instance lrc104, A1 vs. A10). Using even the
simplest construction heuristic helps significantly as the first pricing problems are especially
hard to solve using the exact algorithm as many negative cycles exists.
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It can be seen that the configurations that use the LNS pricing heuristics (heuristics H5
and H6, configurations A6, A7, A9 and A10) are performing well, so using more advanced
local search heuristics to solve pricing problems is a worthwhile research path. For the SP1
algorithm it can be seen that the configurations that are able to prove the lower bound of
lc109 all use heuristic H1, so the more traditional pricing heuristics are still useful. It is
clear that configuration A10 that uses all heuristics is the most powerful. If one looks at the
number of calls to the exact pricing algorithm when using A10 one sees that the heuristic is
close to reducing the number of calls to 1 which is what we can hope for (the exact pricing
algorithm is called at the end to prove that no negative cost paths exist). Notice that entries
where 0 calls to the exact algorithm were carried out are the ones where optimality is proved
by heuristic H2 (see Section 5.5.1).

It is also interesting to note that reducing the number of calls to the exact pricing
algorithm from 10 down to 2 (for example) often will result in a speed up larger than 5, as
the pricing problem tends to get easier towards the end of the column generation process.
The two tables also show that SP1* is much more powerful than SP1. This finding will be
confirmed in the following tests.

Configuration A10 will be used in the following tests unless otherwise noted.
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex

lr101 X 0.3 16 X 0.2 1 X 0.2 1 X 0.2 0 X 0.2 1 X 0.2 1 X 0.3 1 X 0.2 0 X 0.3 1 X 0.3 0
lr102 X 2.3 28 X 0.3 3 X 0.3 2 X 0.6 1 X 0.3 1 X 0.3 1 X 0.4 1 X 0.7 1 X 0.5 1 X 0.8 1
lr103 X 74.3 34 X 1.2 4 X 0.7 1 X 1.8 2 X 1.4 4 X 1.4 4 X 1.8 4 X 1.8 1 X 2.0 4 X 2.4 1
lr104 X 2479.6 39 X 60.2 10 X 30.3 5 X 101.4 11 X 64.4 8 X 34.5 8 X 19.9 3 X 41.0 5 X 10.3 2 X 8.6 1
lr105 X 0.3 22 X 0.1 2 X 0.2 1 X 0.1 0 X 0.2 1 X 0.2 1 X 0.3 1 X 0.1 0 X 0.3 1 X 0.2 0
lr106 X 1.1 27 X 0.2 3 X 0.3 2 X 0.5 1 X 0.4 3 X 0.3 2 X 0.5 2 X 0.5 1 X 0.5 1 X 0.8 1
lr107 X 930.8 40 X 15.2 11 X 2.8 3 X 8.2 6 X 16.4 6 X 9.7 6 X 3.3 2 X 6.2 2 X 9.2 3 X 9.1 2
lr108 X 5390.4 14 X 1004.2 4 X 1843.2 16 X 1236.3 16 X 525.3 11 X 282.3 4 X 303.0 5 X 196.0 5 X 94.4 2
lr109 X 3.5 41 X 1.0 9 X 0.8 2 X 1.7 3 X 1.2 5 X 0.8 6 X 0.8 1 X 1.9 1 X 1.2 1 X 1.6 1
lr110 X 35.9 37 X 7.1 9 X 5.4 4 X 10.7 10 X 4.5 5 X 4.0 4 X 3.3 3 X 6.5 2 X 1.9 1 X 2.6 1
lr111 X 47.5 35 X 3.1 9 X 2.2 3 X 5.4 4 X 1.8 4 X 1.5 4 X 2.5 3 X 6.5 3 X 2.9 4 X 3.0 1
lr112 X 4163.6 18 X 1072.1 6 X 3285.0 15 X 2535.1 12 X 965.0 6 X 681.6 3 X 1107.2 6 X 330.6 2 X 350.0 2
lc101 X 0.4 35 X 0.1 1 X 0.1 1 X 0.1 0 X 0.2 1 X 0.1 1 X 0.3 1 X 0.1 0 X 0.3 1 X 0.2 0
lc102 X 27.9 33 X 0.3 3 X 0.3 1 X 0.7 1 X 0.5 2 X 0.3 1 X 0.7 1 X 0.7 1 X 0.7 1 X 1.1 1
lc103 X 8.7 8 X 7.2 5 X 15.6 5 X 7.3 6 X 3.3 3 X 7.4 5 X 19.1 4 X 3.5 1 X 4.8 1
lc104 X 6763.7 3
lc105 X 1.2 33 X 0.1 1 X 0.1 1 X 0.2 0 X 0.2 1 X 0.1 1 X 0.3 1 X 0.2 0 X 0.4 1 X 0.3 0
lc106 X 2.8 32 X 0.3 4 X 0.3 1 X 0.8 1 X 0.5 3 X 0.4 4 X 0.8 2 X 0.8 1 X 1.3 2 X 1.6 1
lc107 X 3.9 36 X 0.3 3 X 0.4 2 X 0.5 1 X 0.4 1 X 0.4 3 X 0.8 1 X 0.6 1 X 0.8 1 X 1.1 1
lc108 X 28.7 44 X 1.1 9 X 1.1 3 X 3.8 2 X 3.3 8 X 0.8 3 X 2.8 4 X 4.0 1 X 4.3 3 X 4.9 1
lc109 X 224.6 47 X 5.4 13 X 3.4 4 X 9.6 6 X 6.5 10 X 3.6 6 X 5.5 3 X 11.7 4 X 7.8 4 X 9.8 1

lrc101 X 0.3 18 X 0.2 2 X 0.2 1 X 0.2 0 X 0.2 1 X 0.2 1 X 0.3 1 X 0.2 0 X 0.3 1 X 0.2 0
lrc102 X 2.4 28 X 0.4 4 X 0.5 2 X 0.9 1 X 0.5 2 X 0.4 2 X 0.4 1 X 1.0 1 X 0.7 1 X 1.0 1
lrc103 X 8.8 34 X 2.4 12 X 1.5 2 X 3.0 3 X 2.4 9 X 1.0 4 X 2.0 3 X 3.0 1 X 2.7 3 X 2.9 1
lrc104 X 3055.3 47 X 434.6 11 X 379.4 3 X 448.8 11 X 318.5 10 X 233.6 6 X 257.5 4 X 445.1 3 X 174.7 4 X 102.1 2
lrc105 X 0.8 29 X 0.3 6 X 0.4 2 X 0.4 0 X 0.4 3 X 0.3 4 X 0.5 1 X 0.4 0 X 0.7 1 X 0.7 0
lrc106 X 1.5 33 X 0.5 8 X 0.6 2 X 1.0 1 X 0.4 2 X 0.4 4 X 0.6 1 X 1.1 1 X 0.7 2 X 0.9 1
lrc107 X 9.7 33 X 3.1 10 X 3.2 3 X 4.3 5 X 2.9 7 X 1.6 4 X 2.5 4 X 4.7 1 X 2.9 5 X 2.8 1
lrc108 X 81.1 37 X 35.8 14 X 31.1 6 X 40.3 14 X 28.4 10 X 13.6 6 X 20.2 7 X 21.3 3 X 16.9 6 X 13.2 2

Sum 25 7024.5 838 28 10136.1 202 28 2549.2 73 28 5788.9 120 28 4234.6 142 28 1803.3 107 28 1299.5 68 28 1989.3 49 28 774.5 63 29 7385.1 30
Sum’ 7024.5 838 573.5 162 465.7 58 645.1 84 456.0 108 309.7 87 328.2 56 560.1 34 244.4 55 172.2 22

Table 7: Pricing problem heuristics used with exact pricing algorithm SP1*.
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex ok time (s) #ex

lr101 X 0.5 20 X 0.2 1 X 0.3 1 X 0.2 0 X 0.3 1 X 0.3 1 X 0.3 1 X 0.2 0 X 0.3 1 X 0.3 0
lr102 X 11.5 25 X 1.3 2 X 0.8 1 X 1.2 1 X 0.8 1 X 0.7 1 X 0.9 1 X 1.3 1 X 1.0 1 X 1.5 1
lr103 X 139.1 32 X 35.3 10 X 13.1 3 X 13.3 3 X 28.2 8 X 14.2 4 X 11.3 3 X 6.9 1 X 8.5 2 X 6.2 1
lr104 X 4725.1 12 X 2543.5 7 X 3784.9 10 X 2015.6 6 X 2614.8 6 X 704.1 2 X 3195.8 7 X 684.6 2 X 769.3 2
lr105 X 0.6 22 X 0.3 2 X 0.3 1 X 0.3 0 X 0.4 1 X 0.3 1 X 0.5 1 X 0.3 0 X 0.5 1 X 0.4 0
lr106 X 3.7 27 X 1.1 7 X 0.8 1 X 1.3 1 X 0.9 3 X 0.9 2 X 0.9 1 X 1.5 1 X 0.9 1 X 1.3 1
lr107 X 1814.8 40 X 502.9 11 X 188.5 4 X 551.1 11 X 320.9 7 X 326.4 7 X 180.6 4 X 144.3 3 X 46.9 1 X 53.7 1
lr108 X 2578.1 17 X 1466.3 7 X 2400.5 14 X 1879.0 14 X 1452.0 10 X 977.5 5 X 715.7 6 X 870.6 5 X 499.9 2
lr109 X 5.7 36 X 2.0 9 X 1.2 1 X 2.1 2 X 2.0 6 X 1.4 4 X 1.7 2 X 1.9 1 X 1.4 1 X 1.8 1
lr110 X 72.0 33 X 24.9 11 X 16.5 6 X 16.7 6 X 7.5 3 X 7.3 3 X 5.7 2 X 11.7 3 X 3.5 1 X 4.5 1
lr111 X 599.3 38 X 100.5 8 X 27.3 2 X 43.7 3 X 111.8 9 X 64.5 5 X 62.7 5 X 32.2 2 X 51.2 4 X 18.3 1
lr112 X 6730.5 18 X 3288.2 9 18 X 5104.1 13 X 2741.3 7 X 1434.4 4 X 2549.3 6 X 724.8 2 X 803.5 2
lc101 X 1.7 36 X 0.8 2 X 0.5 1 X 0.5 0 X 0.5 1 X 0.8 2 X 0.6 1 X 0.5 0 X 0.7 1 X 0.6 0
lc102 X 1020.7 3 X 348.8 1 X 374.8 1 X 670.8 2 X 1012.6 3 X 337.4 1 X 370.2 1 X 337.9 1 X 344.5 1
lc103
lc104
lc105 X 5.8 41 X 0.9 1 X 0.7 1 X 0.9 1 X 0.7 1 X 0.6 1 X 0.8 1 X 1.0 1 X 0.9 1 X 1.3 1
lc106 X 165.7 33 X 34.6 6 X 14.0 2 X 14.4 2 X 37.0 6 X 30.5 5 X 18.4 3 X 8.9 1 X 13.7 2 X 9.4 1
lc107 X 119.6 37 X 13.5 4 X 4.9 1 X 5.1 1 X 4.1 1 X 10.6 3 X 4.3 1 X 5.9 1 X 4.2 1 X 5.5 1
lc108 X 2379.3 9 X 1326.7 5 X 869.4 3 X 1962.5 7 X 1920.3 7 X 518.9 2 X 890.0 3 X 520.0 2 X 265.5 1
lc109 X 3514.7 2 X 5813.0 3 X 1898.7 1

lrc101 X 0.7 20 X 0.5 3 X 0.3 1 X 0.3 0 X 0.6 2 X 0.6 2 X 0.5 1 X 0.3 0 X 0.5 1 X 0.5 0
lrc102 X 6.0 32 X 1.4 5 X 0.7 1 X 2.4 3 X 1.4 3 X 1.2 3 X 1.2 2 X 1.9 1 X 1.5 2 X 1.5 1
lrc103 X 22.0 26 X 9.3 12 X 2.6 1 X 7.0 5 X 4.6 5 X 3.5 4 X 4.2 4 X 5.2 1 X 2.9 2 X 3.4 1
lrc104 X 2737.6 47 X 588.9 13 X 227.1 4 X 716.0 13 X 296.0 7 X 468.6 9 X 137.5 3 X 430.3 6 X 80.1 2 X 45.6 1
lrc105 X 1.8 32 X 0.8 6 X 0.9 2 X 0.7 1 X 0.9 2 X 0.8 4 X 0.6 1 X 0.7 1 X 0.7 1 X 1.0 1
lrc106 X 2.2 29 X 0.9 5 X 1.1 3 X 0.9 1 X 1.0 3 X 0.9 3 X 1.2 2 X 1.0 1 X 1.0 1 X 1.3 1
lrc107 X 18.3 31 X 5.8 9 X 5.2 4 X 5.4 4 X 5.5 7 X 3.8 5 X 3.4 3 X 5.5 3 X 3.5 3 X 3.3 1
lrc108 X 178.4 42 X 62.8 13 X 42.2 6 X 64.7 12 X 43.0 8 X 23.6 5 X 21.3 4 X 39.3 5 X 21.9 4 X 11.8 1

Sum 21 5906.9 679 26 18822.4 199 27 13037.1 78 25 8877.9 116 26 12499.7 127 26 10702.4 107 26 4430.7 60 27 14234.9 59 26 3383.6 46 27 4754.5 26
Sum’ 5906.9 679 1388.8 140 549.0 47 1448.2 70 867.7 85 961.5 74 458.6 46 700.8 33 245.8 34 173.1 17

Table 8: Pricing problem heuristics used with exact pricing algorithm SP1.
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6.3 Label elimination

In Section 3.2.3 methods for eliminating labels were discussed. The basic idea is to select
a subset D′ of deliveries of O(L) and test if it is possible to find a time window feasible
tour from η(L) through all the nodes in D′ and ending in 2n + 1. As explained in Section
3.2.3 we use subsets D′ of cardinality 1,2 and 3. The resulting label elimination rules are
denoted Label elim. 1, 2 and 3, respectively, in the computational results below. The three
elimination rules are tested on the same set of instances as considered in Section 6.2, the
results are shown in Table 9. The table contains three major columns, one for each label
elimination rule (the rules are applied incrementally, that is, the last column contains the
results where all three elimination rules are used). The columns denoted time reports the
time in seconds needed to solve the problem to optimality and the columns speedup reports
the speedup relative to only using label eliminate rule 1. Blank entries in the time column
indicate that the algorithm did not finish within the time limit. The tests show that the
label elimination rules certainly are worthwhile, especially for hard instances. Furthermore,
they seem to come ”for free” - the running time did not increase for any of the instances as
one might have feared. It is also clear that the simple extension of the label elimination rule
presented in this paper (considering a single subset of deliveries of O(L) containing three
elements) is able to speed up the pricing algorithm considerably. For hard instances the new
elimination rule often gives a speedup of at least two, compared to the elimination criterion
proposed by Dumas et al. (1991).

Label elim. 1 Label elim. 1+2 Label elim. 1+2+3
time time speedup time speedup

lr101 0.3 0.3 1.0 0.3 1.0
lr102 2.8 1.5 1.8 1.5 1.9
lr103 65.9 8.1 8.2 5.9 11.1
lr104 2584.1 887.9
lr105 0.5 0.4 1.0 0.4 1.0
lr106 1.4 1.3 1.1 1.3 1.1
lr107 2521.0 124.4 20.3 49.2 51.3
lr108 1390.4 448.2 0.0
lr109 2.0 1.8 1.1 1.8 1.1
lr110 75.1 22.3 3.4 17.1 4.4
lr111 156.7 26.4 5.9 17.1 9.2
lr112 1378.0 0.0 749.6 0.0
lc101 0.9 0.9 1.0 0.6 1.5
lc102 2064.8 604.2 3.4 339.2 6.1
lc103
lc104
lc105 1.5 1.3 1.1 1.3 1.1
lc106 53.3 11.8 4.5 9.3 5.7
lc107 63.4 8.4 7.6 5.4 11.7
lc108 2329.5 378.1 6.2 266.0 8.8
lc109 3882.0 2481.5

lrc101 0.9 0.9 1.0 0.9 1.0
lrc102 1.9 1.6 1.2 1.5 1.2
lrc103 6.6 3.6 1.8 3.4 1.9
lrc104 2157.9 116.2 18.6 47.6 45.3
lrc105 1.0 1.0 1.0 1.0 1.0
lrc106 1.3 1.3 1.0 1.3 1.0
lrc107 5.0 3.4 1.5 3.3 1.5
lrc108 40.7 14.0 2.9 12.5 3.3

Sum 9554.1 10567.6 5354.9
Average 4.0 6.9

Table 9: Label elimination rules.

6.4 Branching rule

In Section 5.3 three different branching strategies were presented. In this section the effect of
these strategies is tested. Four configurations are tested, these are described in Table 10. In
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Strategy name Description
B1 branch on edges
B2 branch on vehicles + edges
B3 branch on outflow
B4 branch on vehicles + outflow

Table 10: Branching strategies

strategy B2 and B4 the algorithm first tries to branch on vehicles and if this is not possible
then the algorithm selects the alternative branching rule.

The branching rules were tested on 14 instances where the LPM was known to yield a
fractional solution in the root node. Instances from all three problem classes were tested. The
results are shown in Table 11. The first column shows the name of the instance, the next five
show information about the instance: n — number of requests, Alg. — relaxation/pricing
problem used, RLB — lower bound in root node, UB — upper bound (optimal solution),
RLB/UB — the ratio between lower and upper bound. For each branching strategy three
columns are shown: Opt — indicates if the optimal solution was reached within the time
limit, #nodes — the number of nodes explored (if the algorithm timed out, this column
shows the number of nodes explored within the time limit), time — the total running time
in seconds.

The results show that branching on vehicles is useful as all problems can be solved when
using this rule. For instance B75, which is one of the PDPTW instances with a fixed cost
of 10000 per vehicle, the branching rule that branch on edges does not do very well, while
the branching rule that branch on vehicles solves the instance quite quickly. This is easy
to explain. The fractional solution uses a fractional number of vehicles, less than 9. When
branching on vehicles, two branches are created, one where at most 8 vehicles can be used
and one where at lest 9 vehicles must be used. The first branch is discarded as infeasible
and the other branch improves the lower bound significantly.

Altogether B4 comes out as the best strategy and it will be used in the following sections.

B1 B2 B3 B4
name n Alg. RLB UB RLB/UB Opt #nodes time Opt #nodes time Opt #nodes time Opt #nodes time
lrc101 53 SP3 1697.8 1703.2 99.684% X 7 67.9 X 7 70.8 X 9 74.0 X 7 69.6
lrc108 52 SP4 1141.1 1147.4 99.446% X 37 1335.0 X 35 1410.1 X 43 1422.5 X 23 1117.2

LR1 2 5 106 SP3 4217.6 4221.6 99.904% X 7 2290.1 X 7 2176.6 X 17 2967.3 X 17 2917.4
LC1 2 8 105 SP4 2682.7 2689.8 99.734% 77 X 3 898.2 116 X 3 896.6

LRC1 2 1 106 SP3 3593.3 3606.1 99.647% X 21 4909.6 X 5 2167.5 X 19 5211.3 X 7 2323.7
LR1 4 5 206 SP1 9509.6 9517 99.922% X 39 3678.0 X 21 1964.7 X 5 489.8 X 11 1167.5

B65 65 SP1 82615.2 82618 99.997% X 9 63.7 X 9 63.7 X 23 126.9 X 23 126.8
D40 40 SP1 61515.8 61528 99.981% X 37 55.9 X 37 55.9 X 35 63.5 X 35 63.1
B75 75 SP2 87514.1 92473 94.638% 1732 X 31 576.9 180 X 33 572.8
D35 35 SP2 71305.3 71308 99.996% X 15 19.4 X 15 19.4 X 9 14.9 X 9 14.9

a5-50 50 SP2 680.8 686.62 99.149% 279 X 187 5743.6 X 129 5517.6 X 103 5016.2
a6-60 60 SP1 819.1 819.24 99.981% X 3 584.1 X 3 586.4 X 3 560.6 X 3 557.6
b5-60 60 SP1 898.3 902.03 99.583% X 75 3167.9 X 75 3177.3 X 23 1367.7 X 23 1360.3
b8-64 64 SP2 836.6 839.88 99.610% X 63 1318.8 X 63 1322.0 X 25 808.0 X 25 807.0

Sum 11 2401 17490.3 14 498 20233.1 12 636 18624.0 14 322 17010.7

Table 11: Effect of branching rules.
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6.5 Cuts

This section investigates the effect of adding valid inequalities to the PDPTW relaxations
SP1 – SP4. A test set consisting of 12 instances, 4 from each problem class was chosen for
the experiments. Tables 12 – 15 show the quality of the lower bounds obtained using cuts
and the different relaxations. The left most column gives the name of the instance, the next
8 columns show LB

UB
∗ 100 where LB is the root lower bound and UB is the upper bound.

The columns indicate the classes of cuts added: No cuts — no cuts added, IPC — infeasible
paths, CC — capacity constraints, FC — fork constraints, RC — reachability constraints,
PC — precedence constraints, SPC — strengthened precedence constraints. The column
U.Bound shows the upper bound on the solution cost. The row Avg. reports the average
lower bound quality and the row Tot #cuts shows the total number of cuts added in for all
the 12 instances.

Looking at Table 12 that uses relaxation SP1 it can be seen that the lower bound obtained
from this relaxation has a very high quality and adding cuts does not have a big impact. The
8 first instances are pure PDPTW instances while the 4 last are DARP instances. The cuts
have the biggest impact on the DARP instances as the cuts enforce the ride time constraint
that is not handled by the pricing problem. For the PDPTW instances it is only the infeasible
path and the capacity cuts that have an effect. It is the strengthened infeasible paths of
the type shown in equation (38) that are able to improve the lower bound. It is hard to see
that the rounded capacity inequalities have an effect on the lower bound, but they do raise
the lower bound on instance B30 from 51193.11 to 51193.95, and it was observed to have
an impact on other instances from this class as well (but not the ones in this test). The
fork, reachability, precedence and strengthened precedence inequalities did not improve the
lower bound when solving pure PDPTW instances, and we have never seen these inequalities
impact the lower bound when using the SP1 relaxation to solve other PDPTW instances.
It seems like they all are implied by the relaxation, but we have not made any attempts to
prove or disprove this. It is worth noting that Lysgaard (2005) proved that the reachability
cuts for the VRPTW are redundant for a VRPTW set-partitioning relaxation based on the
ESPPTWC. The FC, RC, PC and SPC inequalities have been disabled in the rest of the
testing on the SP1 relaxation in the subsequent sections.

Table 13 shows that the SP2 relaxation is very close to the SP1 relaxation. For the SP2
relaxation all of the inequalities IPC, CC, FC and RC were found to have an impact when
solving pure PDPTW problems while PC and SPC inequalities did not have an effect, and
we have never observed these inequalities to have an effect on other pure PDPTW instances
either. It seems like the PC and SPC inequalities are implied by the SP2 relaxation when
solving pure PDPTW problems.

Tables 14 and 15 show that the lower bounds obtained by using the plain SP3 and SP4
relaxations are much worse than the SP1 and SP2 relaxations. It is also clear that the valid
inequalities have a large impact on these relaxations as they can bring the lower bounds
close to the ones for the SP1 and SP2. One notices that SP4 really is better than SP3 as
predicted in Section 3.7. This is especially visible in the results where no cuts are applied.
The tables also show that the strengthened precedence inequality introduced in this paper
is a worthwhile contribution even though it does not seem to improve the SP1 and SP2
relaxation. Looking at Table 14 we see that SPC lower bound dominates the FC lower
bound in 5 out of 12 cases and the RC lower bound in 8 out of 12 cases. The SPC inequality
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No cuts IPC CC FC RC PC SPC Full U.Bound
LR1 2 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 4819.1
LR1 2 9 99.34 99.36 99.34 99.34 99.34 99.34 99.34 99.36 3953.5
LC1 2 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 2689.8

LRC1 2 5 99.84 99.86 99.84 99.84 99.84 99.84 99.84 99.86 3715.9
A60 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 92367.4
B30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 51194.0
C30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 51145.5
D30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 61040.4

a3-36 98.11 98.77 98.11 99.29 98.89 98.11 98.89 99.29 583.2
a5-40 99.68 99.79 99.68 100.00 99.68 99.68 99.68 100.00 498.4
b3-36 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 603.8
b6-48 99.86 99.99 99.86 100.00 99.86 99.86 99.86 100.00 714.8
Avg. 99.74 99.81 99.74 99.87 99.80 99.74 99.80 99.88

Tot #cuts 0 13 4 50 51 0 6 62

Table 12: Impact of valid inequalities on SP1 .

No cuts IPC CC FC RC PC SPC Full U.Bound
LR1 2 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 4819.1
LR1 2 9 99.34 99.36 99.34 99.34 99.34 99.34 99.34 99.36 3953.5
LC1 2 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 2689.8

LRC1 2 5 99.61 99.66 99.61 99.62 99.63 99.61 99.61 99.68 3715.9
A60 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 92367.4
B30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 51194.0
C30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 51145.5
D30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 61040.4

a3-36 98.11 98.77 98.11 99.29 98.89 98.11 98.89 99.29 583.2
a5-40 99.68 99.79 99.68 100.00 99.68 99.68 99.68 100.00 498.4
b3-36 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 603.8
b6-48 99.86 99.99 99.86 100.00 99.86 99.86 99.86 100.00 714.8
Avg. 99.72 99.80 99.72 99.85 99.78 99.72 99.78 99.86

Tot #cuts 0 13 4 59 163 0 6 172

Table 13: Impact of valid inequalities on SP2 .

would most likely improve the branch-and-cut algorithms presented by Cordeau (2005) and
Ropke et al. (2005).

Tables 16 and 17 show the time used on separating inequalities in order to calculate the
lower bound with the 6 different valid inequalities. Table 16 shows the time used separating
inequalities when using relaxation SP1. Table 17 shows the time used separating inequalities
when using relaxation SP3. It is clear that more time is spent when using SP3 as more
inequalities can be added and we are going through more cut separation iterations. Compared
to the overall time spend on proving the lower bound (see below) the algorithm do not
spend a great deal of time on separating inequalities. The tables show that the reachability
inequalities have the most time consuming separation procedure.

Tables 18 and 19 show the total time needed to prove the lower bound for the SP1 and
SP3 relaxation respectively (dominance criterion (DOM1†) is used when solving the SP1
pricing problem). It is clear that the SP3 lower bound is more time consuming to obtain for
these instances (except for LC1 2 8). The reason for the high running times for SP3 will be
explained in Section 6.6.2.

6.6 Comparison of relaxations

This section compares the four set-partitioning relaxations to each other as well as to the
branch-and-cut algorithm proposed by Ropke et al. (2005). We also test the limits of the
algorithms - how large instances can be solved, how many instances from each problem class
can be solved?
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No cuts IPC CC FC RC PC SPC Full U.Bound
LR1 2 1 98.58 100.00 98.58 100.00 100.00 100.00 100.00 100.00 4819.1
LR1 2 9 91.75 92.79 91.75 95.78 96.45 94.84 96.85 97.71 3953.5
LC1 2 8 98.92 99.04 98.92 99.46 99.21 99.43 99.70 99.74 2689.8

LRC1 2 5 85.51 86.77 85.51 91.65 96.31 92.07 96.66 97.27 3715.9
A60 92.53 92.58 96.20 100.00 99.91 92.66 96.45 100.00 92367.4
B30 99.67 99.76 99.79 99.99 99.97 99.81 99.99 99.99 51194.0
C30 99.90 99.93 99.99 100.00 99.97 99.91 100.00 100.00 51145.5
D30 66.95 67.00 83.46 89.10 99.93 67.00 90.51 100.00 61040.4

a3-36 92.38 95.27 92.49 99.29 98.23 96.02 98.03 99.29 583.2
a5-40 80.23 87.99 80.27 100.00 98.85 98.26 99.62 100.00 498.4
b3-36 93.82 97.85 97.98 99.97 98.61 99.01 100.00 100.00 603.8
b6-48 92.77 95.53 95.54 100.00 98.99 97.04 99.73 100.00 714.8
Avg. 91.08 92.88 93.37 97.94 98.87 94.67 98.13 99.50

Tot #cuts 0 741 2243 3347 10226 3131 1689 5362

Table 14: Impact of valid inequalities on SP3 .

No cuts IPC CC FC RC PC SPC Full U.Bound
LR1 2 1 99.60 100.00 99.60 100.00 100.00 100.00 100.00 100.00 4819.1
LR1 2 9 93.38 94.13 93.38 96.40 96.92 95.89 97.39 98.06 3953.5
LC1 2 8 98.92 99.04 98.92 99.45 99.21 99.43 99.70 99.74 2689.8

LRC1 2 5 92.05 92.45 92.05 95.70 96.82 95.63 97.42 97.63 3715.9
A60 92.53 92.58 96.20 100.00 99.91 92.65 96.45 100.00 92367.4
B30 99.67 99.76 99.79 99.99 99.97 99.81 99.98 99.99 51194.0
C30 99.90 99.93 99.99 100.00 99.97 99.91 100.00 100.00 51145.5
D30 66.95 67.00 83.46 89.10 99.93 67.00 90.51 100.00 61040.4

a3-36 94.41 97.03 94.47 99.29 98.23 97.73 98.89 99.29 583.2
a5-40 81.00 88.74 81.28 100.00 98.85 98.38 99.62 100.00 498.4
b3-36 93.82 97.85 98.19 99.97 98.61 99.01 100.00 100.00 603.8
b6-48 92.77 95.56 95.55 100.00 98.99 97.02 99.73 100.00 714.8
Avg. 92.08 93.67 94.41 98.32 98.95 95.21 98.31 99.56

Tot #cuts 0 616 2423 2892 8079 562 1268 4349

Table 15: Impact of valid inequalities on SP4 .

No cuts IPC CC FC RC PC SPC Full
LR1 2 1 0.0 1.7 0.5 0.0 78.9 0.0 0.1 80.7
LR1 2 9 0.0 3.7 0.8 0.0 31.7 0.1 0.1 36.7
LC1 2 8 0.0 3.3 1.0 0.0 4.8 0.1 0.1 9.5

LRC1 2 5 0.0 7.3 0.8 0.0 49.8 0.1 0.1 80.0
A60 0.0 0.2 0.2 0.0 0.8 0.0 0.0 1.1
B30 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2
C30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
D30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

a3-36 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.3
a5-40 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.3
b3-36 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2
b6-48 0.0 0.2 0.1 0.0 0.1 0.0 0.0 0.4
Avg. 0.0 1.4 0.3 0.0 13.9 0.0 0.0 17.5

Table 16: Time spent separating valid inequalities using relaxation SP1 .

No cuts IPC CC FC RC PC SPC Full
LR1 2 1 0.0 13.6 0.5 1.6 83.3 0.4 0.2 82.3
LR1 2 9 0.0 12.0 0.4 10.9 237.3 4.8 2.2 402.1
LC1 2 8 0.0 9.1 0.4 4.1 21.2 0.5 0.5 14.1

LRC1 2 5 0.0 12.5 0.6 16.5 584.0 3.9 3.4 549.5
A60 0.0 1.9 0.8 1.4 11.2 0.5 0.3 2.2
B30 0.0 0.3 0.2 0.3 0.8 0.0 0.0 0.7
C30 0.0 0.1 0.3 0.1 0.2 0.0 0.0 0.2
D30 0.0 0.2 0.3 0.6 1.4 0.1 0.1 1.1

a3-36 0.0 0.4 0.1 0.2 0.1 0.0 0.0 0.4
a5-40 0.0 0.5 0.3 0.5 0.2 0.1 0.0 0.6
b3-36 0.0 0.3 0.4 0.2 0.1 0.1 0.0 0.3
b6-48 0.0 1.0 0.7 0.7 1.4 0.2 0.1 0.9
Avg. 0.0 4.3 0.4 3.1 78.4 0.9 0.6 87.9

Table 17: Time spent separating valid inequalities using relaxation SP3 .
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No cuts IPC CC FC RC PC SPC Full
LR1 2 1 1.9 3.6 2.4 2.0 110.8 2.0 32.3 112.9
LR1 2 9 127.9 69.2 129.1 130.6 192.2 113.2 173.2 149.9
LC1 2 8 1802.1 1832.1 1838.4 1815.3 1885.4 1801.6 1888.2 1905.9

LRC1 2 5 612.0 814.7 614.1 607.6 713.3 762.9 661.0 937.0
A60 1.9 2.0 2.0 1.9 13.0 1.9 12.3 13.4
B30 0.2 0.2 0.3 0.2 1.5 0.2 1.5 1.7
C30 0.2 0.2 0.2 0.2 2.1 0.2 2.1 2.2
D30 0.2 0.3 0.3 0.3 2.4 0.3 2.4 2.5

a3-36 2.2 3.8 2.3 4.5 6.6 2.2 6.3 7.5
a5-40 2.2 2.7 2.2 2.6 5.2 2.2 5.2 5.8
b3-36 1.9 1.9 1.9 1.9 3.7 1.8 3.7 4.0
b6-48 1.6 1.9 1.7 1.7 6.5 1.6 6.5 7.1
Avg. 212.9 227.7 216.2 214.0 245.2 224.2 232.9 262.5

Table 18: Time for obtaining lower bound using valid inequalities and SP1 .

No cuts IPC CC FC RC PC SPC Full
LR1 2 1 228.6 344.2 228.8 298.8 443.0 373.5 349.4 411.2
LR1 2 9 652.0 1297.3 669.9 2826.3 9152.7 4495.2 4457.3 9021.7
LC1 2 8 349.9 490.1 349.6 511.4 814.8 647.4 687.7 663.6

LRC1 2 5 569.4 1101.2 567.8 4250.8 14229.2 5479.1 9255.7 16244.8
A60 568.0 705.5 942.3 2948.0 4667.7 2822.6 9947.1 2447.6
B30 10.9 22.2 39.8 216.8 220.1 55.8 148.2 239.8
C30 2.4 3.6 20.4 22.2 9.0 3.7 13.1 14.0
D30 23.7 59.3 329.9 1549.5 1834.8 81.9 2683.7 6560.0

a3-36 21.6 83.2 23.0 218.7 137.0 69.8 122.8 223.5
a5-40 32.1 98.1 34.2 1192.2 508.7 1454.8 1497.3 1198.1
b3-36 46.9 105.1 119.5 159.2 113.5 162.1 122.9 136.3
b6-48 101.7 187.7 370.8 690.6 580.4 661.3 507.4 602.0
Avg. 217.3 374.8 308.0 1240.4 2725.9 1358.9 2482.7 3146.9

Table 19: Time for obtaining lower bound using valid inequalities and SP3 .

6.6.1 PDPTW results

The first problem class we consider is the instances proposed by Li and Lim (2001), produced
from the Solomon instances for the VRPTW. In their paper, instances with approximately
50 requests were presented and larger instances were made available on the Internet. For
each instance size the set is divided into two classes: series 1 and series 2. Time windows and
capacities in series 2 are constructed such that much longer routes are possible compared to
series 1. When solving these instances we solely minimize distance, there are no fixed cost
on using vehicles and no limit on the number of vehicles available.

Table 20 shows results for series 1 of the 50 request instances. The two first columns
show the instance name and the upper bound for the instance. The remaining columns show
Opt — if the problem was solved to optimality within the time limit, RLB — lower bound
in root node after adding cuts, time — total amount of time used (in seconds), LB — if the
bound was proved (this is interesting as the pricing problem often is so hard that getting a
lower bound is very time consuming), nodes — the number of nodes in the branch and bound
tree, Cuts — the number of cuts added. Notice that results for two algorithms for each of
SP1 and SP2 are shown in the table (see Section 6.1). For SP1* and SP2* we only solve the
root node and do not add cuts, so these algorithms only solve the problem to optimality if
the LPM happens to return an integer solution, which does occur quite often.

The row Sum sums the number of times that optimally was reached and the number of
times a lower bound was established. For the branch-and-cut algorithm a lower bound is
always proved. The row Avg. averages the total time used (only for the instances solved to
optimality) and the average number of cuts added. The entries in the RLB column show the
root lower bound quality relative to the upper bound. Blank entries in any column indicate
that the problem was not solved within the time limit.

Several comments can be made for this table. One will first notice that SP1* is much
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faster than SP1 and the same comment is true for SP2* vs. SP2. Therefore it would
definitely be profitable to develop a branching strategy compatible with the dominance
criteria within these algorithms, or to make the algorithms compatible with adding valid
inequalities. Secondly it can be seen that the lower bounds obtained by relaxation SP1
and SP2 are very similar and perhaps even more surprisingly that the pricing problems for
the two relaxations seem comparably hard to solve, judging from the time used. For these
instances the SP3 and SP4 relaxations are slightly inferior to the SP1 and SP2 relaxations,
although the difference is rather small. SP4 appears better than SP3, but the difference
in lower bound is very small after cuts have been added. Looking at the cuts added for
the weakest set-partitioning formulation, SP3, one sees that instances lr102, lr106, lc101
and lc106 are very easy as no cuts have to be added. This means that the precedence and
pairing constraints are not binding in these instances or they are handled by the time window
tightening presented in Section 5.2.

The branch-and-cut algorithm is clearly inferior to all the set-partitioning approaches for
these instances as only 18 instances were solved to optimality.

All instances in the set was solved to optimality by at least one approach so no unsolved
instances in this set remain.

Table 21 shows the results on the series 2 instances, and here we see a completely different
picture. The most striking observation is that the cut-compatible pricing algorithms for SP1
and SP2 are not even able to prove a lower bound for any of the instances — the pricing
problems are too hard. The algorithms using the stronger dominance criterion do a little
better as 7 instances are solved to optimality and a tight lower bound was proven for one
more instance. The SP3 and SP4 relaxations appear to be better for these instances as they
are able to prove a lower bound. The overall winner for these instances, however, is the
branch and cut algorithm. 17 instances remain unsolved in this data set.

Table 22 shows results for larger instances, containing around 100 requests. This set of
instances also contains two series. We only show results for series 1, as we judged series 2
to be too hard. The best algorithms in this test are SP1* and SP4. Once again we see that
SP1* and SP2* are looking promising and more instances could be solved to optimality with
a compatible branch and bound algorithm. The branch-and-cut algorithm is performing
worst in this test, at least in terms of number of instances solved to optimality, but it is not
very far behind. Overall, 12 instances were solved to optimality while 18 remain unsolved.

Table 23 contains results for instances with between 200 and 500 requests. 238 of such
instances exist in the dataset provided by Li and Lim (2001), but here we chose the 24
instances that we expected to be easiest to solve. We selected the instances with the tightest
time windows. We did not test the branch and cut code on these instances as it is not tuned
towards such large instances. We also had to turn off the reachability and strengthened
precedence inequalities as the preprocessing method for calculating A+

i , A−
i and Ai took up

a large fraction of the running time.
The results are quite encouraging as the SP1* and SP2* algorithms were able to obtain

a lower bound for all instances and the SP1 and SP2 algorithms solved half of the instances
to optimality. Note that two instances with 500 requests were solved to optimality. We
believe that these are the largest PDPTW instances solved to optimality in the literature.
The SP3 and SP4 relaxations did not do well in these tests. This is not so much because
the pricing problem is hard to solve or the lower bounds are too poor, but more because
the set partitioning formulations turned out to contain many columns and many cuts. We
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investigate this problem further for another class of problems in Section 6.6.2. 12 instances
remain unsolved in this class of instances.

The last set of PDPTW instances were proposed in Ropke et al. (2005) and are similar to
the ones proposed by Savelsbergh and Sol (1998). One special feature about these instances
is that each vehicle has a fixed cost equal to 10000. The results for these instances are
shown in Tables 24 and 25. The pricing problems for most of these instances are relatively
easy, so algorithm SP1* and SP2* were not applied to these instances. Some preliminary
testing showed that using pricing heuristic configuration A8 was faster than A10, so this
heuristic configuration has been used for producing these results and the DARP results in
Section 6.6.2. Both SP1 and SP2 produce very good results for these instances and clearly
outperform the branch-and-cut algorithm - the set-partitioning formulation using SP1 and
SP2 is much better at getting the number of vehicles right in the LP relaxation. The SP3
and SP4 relaxations do not do very well though. For most of the instances they fail to find
a lower bound. We again refer to Section 6.6.2 for an explanation.

Even though the SP1 and SP2 relaxations do very well, they fail to solve the largest
instances and the E class proves to be difficult as well. 17 out of the 75 instances are
unsolved.

223



Branch & Cut SP1* SP2* SP1 SP2 SP3 SP4
name UB Opt RLB time Opt LB RLB time Opt LB RLB time Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts
lr101 1650.8 X 1650.8 19.5 X X 1650.8 0.1 X X 1650.8 0.1 X X 1650.8 0.3 1 0 X X 1650.8 10.9 1 0 X X 1650.8 16.8 1 16 X X 1650.8 13.6 1 0
lr102 1487.6 X 1487.6 55.7 X X 1487.6 0.7 X X 1487.6 0.8 X X 1487.6 1.5 1 0 X X 1487.6 12.4 1 0 X X 1487.6 29.5 1 0 X X 1487.6 20.9 1 0
lr103 1292.7 X 1292.7 49.5 X X 1292.7 2.2 X X 1292.7 2.2 X X 1292.7 5.9 1 0 X X 1292.7 18.0 1 0 X X 1292.7 88.8 1 65 X X 1292.7 36.7 1 0
lr104 1013.4 - 964.4 X X 1013.4 7.1 X X 1013.4 5.6 X X 1013.4 690.9 1 0 X X 1013.4 445.9 1 0 X X 1013.4 297.5 1 301 X X 1013.4 197.2 1 62
lr105 1377.2 X 1377.1 26.6 X X 1377.1 0.2 X X 1377.1 0.2 X X 1377.1 0.5 1 0 X X 1377.1 7.1 1 0 X X 1377.1 19.2 1 4 X X 1377.1 15.9 1 4
lr106 1252.6 X 1252.6 36.1 X X 1252.6 0.8 X X 1252.6 0.7 X X 1252.6 1.3 1 0 X X 1252.6 9.2 1 0 X X 1252.6 20.1 1 0 X X 1252.6 14.0 1 0
lr107 1111.3 X 1108.3 151.8 X X 1111.3 5.5 X X 1111.3 3.3 X X 1111.3 49.3 1 0 X X 1111.3 64.9 1 0 X X 1111.3 43.0 1 5 X X 1111.3 35.1 1 5
lr108 969.0 - 863.6 X X 969.0 44.0 X X 969.0 15.3 X X 969.0 452.0 1 0 X X 969.0 389.2 1 0 X X 969.0 169.8 1 181 X X 969.0 181.5 1 110
lr109 1209.0 - 1162.1 X X 1209.0 1.3 X X 1209.0 1.7 X X 1209.0 1.8 1 0 X X 1209.0 11.0 1 0 X X 1207.9 74.4 3 207 X X 1208.2 85.3 3 208
lr110 1159.3 - 966.8 - X 1157.7 2.1 - X 1157.5 3.0 X X 1157.7 100.1 27 0 X X 1157.5 192.5 45 0 - X 1136.1 211 1335 - X 1135.9 247 1259
lr111 1108.9 - 1045.7 X X 1108.9 4.5 X X 1108.9 3.1 X X 1108.9 17.2 1 0 X X 1108.9 34.0 1 0 X X 1106.7 337.4 5 367 X X 1107.0 253.0 5 386
lr112 1003.8 - 739.8 X X 1003.8 50.5 X X 1003.8 29.2 X X 1003.8 755.6 1 0 X X 1003.8 518.1 1 0 - X 974.3 34 544 - X 975.6 45 541
lc101 828.9 X 828.9 14.8 X X 828.9 0.3 X X 828.9 0.2 X X 828.9 0.6 1 0 X X 828.9 7.2 1 0 X X 828.9 24.4 1 0 X X 828.9 13.9 1 0
lc102 828.9 X 828.9 43.5 X X 828.9 1.3 X X 828.9 1.7 X X 828.9 343.6 1 0 X X 828.9 480.7 1 0 X X 828.9 56.8 1 85 X X 828.9 75.8 1 85
lc103 827.9 X 824.3 125.4 X X 827.9 5.8 X X 827.9 4.8 - - - - X X 827.9 116.6 1 36 X X 827.9 99.5 1 31
lc104 818.6 - 709.9 X X 818.6 943.4 X X 818.6 177.9 - - - - - X 816.1 13 133 - X 816.8 13 79
lc105 828.9 X 828.9 15.1 X X 828.9 0.4 X X 828.9 0.3 X X 828.9 1.3 1 0 X X 828.9 8.2 1 0 X X 828.9 39.9 1 19 X X 828.9 39.2 1 19
lc106 828.9 X 828.9 26.3 X X 828.9 2.0 X X 828.9 1.1 X X 828.9 9.3 1 0 X X 828.9 15.8 1 0 X X 828.9 34.4 1 0 X X 828.9 55.8 1 0
lc107 828.9 X 828.9 16.2 X X 828.9 1.2 X X 828.9 1.0 X X 828.9 5.5 1 0 X X 828.9 13.7 1 0 X X 828.9 80.0 1 20 X X 828.9 113.7 1 20
lc108 826.4 X 807.4 60.2 X X 826.4 4.0 X X 826.4 3.7 X X 826.4 264.9 1 0 X X 826.4 378.6 1 0 X X 826.4 41.0 1 22 X X 826.4 77.8 1 22
lc109 827.8 - 751.2 X X 827.8 13.0 X X 827.8 8.5 X X 827.8 1907.7 1 0 X X 827.8 2178.8 1 0 X X 827.8 81.1 1 31 X X 827.8 111.1 1 31

lrc101 1703.2 X 1694.1 56.6 - X 1701.9 0.3 - X 1701.9 0.2 X X 1701.9 0.9 3 0 X X 1701.9 11.9 3 0 X X 1698.2 68.8 7 411 X X 1699.8 40.6 7 277
lrc102 1558.1 X 1541.7 184.2 X X 1558.1 1.1 X X 1558.1 1.0 X X 1558.1 1.5 1 0 X X 1558.1 9.3 1 0 X X 1558.1 45.7 1 329 X X 1558.1 21.6 1 30
lrc103 1258.7 X 1220.1 456.0 X X 1258.7 2.2 X X 1258.7 3.3 X X 1258.7 3.4 1 0 X X 1258.7 15.0 1 0 - X 1258.5 3 76 X X 1258.6 262.6 3 40
lrc104 1128.4 - 998.5 X X 1128.4 8.4 X X 1128.4 10.1 X X 1128.4 45.6 1 0 X X 1128.4 143.0 1 0 - X 1127.9 5 404 X X 1128.2 406.9 3 99
lrc105 1637.6 X 1632.3 61.5 X X 1637.6 0.4 X X 1637.6 0.7 X X 1637.6 1.0 1 0 X X 1637.6 9.4 1 0 X X 1637.6 34.2 1 126 X X 1637.6 23.4 1 39
lrc106 1424.7 X 1369.6 1059.4 X X 1424.7 1.0 X X 1424.7 1.1 X X 1424.7 1.3 1 0 X X 1424.7 8.0 1 0 X X 1424.7 64.5 1 308 X X 1424.7 52.1 1 328
lrc107 1230.1 - 1094.3 X X 1230.1 2.5 X X 1230.1 2.9 X X 1230.1 3.3 1 0 X X 1230.1 14.1 1 0 X X 1230.1 93.8 1 149 X X 1230.1 89.6 1 133
lrc108 1147.4 - 928.6 X X 1147.4 6.6 - X 1145.4 6.5 X X 1147.4 11.8 1 0 X X 1146.1 70.6 5 9 X X 1141.0 1021.2 17 292 X X 1141.2 937.5 23 282

Sum 18 27 29 26 29 27 27 27 27 24 29 26 29
Avg. 95.03% 136.57 99.99% 41.1 99.99% 10.8 99.99% 173.3 0.0 99.99% 188.0 0.3 99.78% 120.8 123.9 99.79% 125.9 85.0

Table 20: Li and Lim instances, series 1. Each instance contains approximately 50 request.
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Branch & Cut SP1* SP2* SP1 SP2 SP3 SP4
name UB Opt RLB time Opt LB RLB time Opt LB RLB time Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB Tot. time nodes Cuts Opt LB RLB time nodes Cuts
lr201 1253.3 X 1229.0 211.8 - X 1253.1 147.4 - X 1253.1 210.8 - - - - - X 1242.0 21 443 - X 1241.8 14 453
lr202 1250.1 - 1069.9 - - - - - - - - - - - -
lr203 949.4 - 845.8 - - - - - - - - - - - -
lr204 849.1 - 689.5 - - - - - - - - - - - -
lr205 1054.1 - 982.3 - - - - - - - - - - - -
lr206 931.7 - 855.5 - - - - - - - - - - - -
lr207 903.1 - 759.7 - - - - - - - - - - - -
lr208 734.9 - 671.0 - - - - - - - - - - - -
lr209 930.6 - 845.9 - - - - - - - - - - - -
lr210 964.3 - 880.7 - - - - - - - - - - - -
lr211 884.3 - 700.9 - - - - - - - - - - - -
lc201 591.6 X 591.6 15.4 X X 591.6 4.1 X X 591.6 5.4 - - - - X X 591.6 342.2 1 0 X X 591.6 550.9 1 0
lc202 591.6 X 591.6 17.8 X X 591.6 160.6 X X 591.6 1206.7 - - - - X X 591.6 1387.5 1 0 X X 591.6 1966.8 1 0
lc203 591.2 X 591.2 46.8 - - - - - - - - X X 591.2 1804.3 1 0 X X 591.2 1661.0 1 0
lc204 590.6 X 585.5 162.4 - - - - - - - - - - - -
lc205 588.9 X 588.9 20.7 X X 588.9 272.6 X X 588.9 121.4 - - - - X X 588.9 274.8 1 0 X X 588.9 306.7 1 0
lc206 588.5 X 588.5 20.4 X X 588.5 479.1 - - - - - - X X 588.5 686.9 1 0 X X 588.5 310.6 1 0
lc207 588.3 X 588.3 19.4 X X 588.3 392.4 X X 588.3 822.6 - - - - X X 588.3 1545.4 1 0 X X 588.3 941.8 1 0
lc208 588.3 X 588.3 20.8 X X 588.3 503.4 X X 588.3 843.3 - - - - X X 588.3 518.9 1 0 X X 588.3 458.8 1 0

lrc201 1406.9 X 1366.3 3646.8 X X 1406.9 272.4 X X 1406.9 473.2 - - - - - X 1395.1 11 511 - X 1395.0 5 422
lrc202 1390.6 - 1206.3 - - - - - - - - - X 1293.4 2 486 - -
lrc203 1090.8 - 880.9 - - - - - - - - - - - -
lrc204 818.7 - 734.7 - - - - - - - - - - - -
lrc205 1302.2 - 1180.6 - - - - - - - - - X 1264.1 2 617 - -
lrc206 1159.1 - 1069.5 - - - - - - - - - X 1115.4 4 301 - X 1116.2 2 252
lrc207 1062.1 - 909.9 - - - - - - - - - X 1030.7 2 301 - -
lrc208 852.8 - 674.3 - - - - - - - - - - - -

Sum 10 7 8 6 7 0 0 0 0 7 13 7 10
Avg. 91.74% 418.23 100.00% 297.8 100.00% 578.7 98.58% 937.2 0.0 99.45% 885.2 0.0

Table 21: Li and Lim instances, series 2. Each instance contains approximately 50 request.
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Branch & Cut SP1* SP2* SP1 SP2 SP3 SP4
name UB Opt RLB time Opt LB RLB time Opt LB RLB time Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts

LR1 2 1 4819.1 X 4819.1 298 X X 4819.1 2 X X 4819.1 2 X X 4819.1 4 1 0 X X 4819.1 111 1 0 X X 4819.1 407 1 91 X X 4819.1 294 1 5
LR1 2 2 4093.0 - 4067.4 X X 4093.0 81 X X 4093.0 78 - - - - X X 4093.0 3147 1 564 X X 4093.0 1107 1 19
LR1 2 3 3486.9 - 3312.0 - - - - - - - - - - - -
LR1 2 4 2830.7 - 2452.8 - - - - - - - - - - - -
LR1 2 5 4221.6 X 4215.0 1123 - X 4220.7 3 - X 4220.7 4 X X 4221.6 11 1 1 X X 4221.6 129 1 1 X X 4218.7 2888 17 602 X X 4219.8 1292 11 280
LR1 2 6 3763.0 - 3482.1 - - - X 3762.4 5766 - - - - - - - -
LR1 2 7 3112.9 - 2773.2 - - - - - - - - - - - -
LR1 2 8 2650.0 - 2149.3 - - - - - - - - - - - -
LR1 2 9 3953.5 - 3815.1 - X 3927.5 16 - X 3927.5 19 - X 3928.1 101 4 - X 3928.1 92 109 - - - X 3876.8 7 1110

LR1 2 10 3391.6 - 2879.5 - - - - - - - - - - - -
LC1 2 1 2704.6 X 2704.6 179 X X 2704.6 2 X X 2704.6 1 X X 2704.6 4 1 0 X X 2704.6 114 1 0 X X 2704.6 272 1 9 X X 2704.6 255 1 0
LC1 2 2 2764.5 X 2753.8 5030 X X 2764.5 18 X X 2764.5 12 - - - - X X 2763.5 1488 3 354 X X 2763.7 1219 3 59
LC1 2 3 2772.2 - 2561.2 X X 2772.2 1232 X X 2772.2 308 - - - - - - - -
LC1 2 4 2661.4 - 1944.6 - - - - - - - - - - - -
LC1 2 5 2702.0 X 2702.0 226 X X 2702.0 3 X X 2702.0 2 X X 2702.0 6 1 0 X X 2702.0 82 1 0 X X 2702.0 428 1 15 X X 2702.0 437 1 18
LC1 2 6 2701.0 X 2701.0 596 X X 2701.0 7 X X 2701.0 5 X X 2701.0 32 1 0 X X 2701.0 96 1 0 X X 2701.0 496 1 17 X X 2701.0 505 1 11
LC1 2 7 2701.0 X 2701.0 433 X X 2701.0 5 X X 2701.0 4 X X 2701.0 52 1 0 X X 2701.0 121 1 0 X X 2701.0 402 1 12 X X 2701.0 516 1 12
LC1 2 8 2689.8 - 2316.8 X X 2689.8 32 X X 2689.8 27 X X 2689.8 1880 1 0 X X 2689.8 1878 1 0 X X 2682.9 876 3 182 X X 2682.8 894 3 179
LC1 2 9 2724.3 - 1966.8 - X 2714.2 201 - X 2711.8 95 - - - - - X 2707.1 23 664 - X 2707.2 12 656

LC1 2 10 2741.6 - 1493.7 - X 2734.1 957 - X 2730.7 936 - - - - - X 2670.3 2 836 - X 2671.6 2 850
LRC1 2 1 3606.1 X 3569.1 2535 - X 3603.2 6 - X 3603.2 9 X X 3603.6 25 3 1 X X 3603.6 221 3 1 X X 3593.3 2316 7 607 X X 3594.2 938 5 164
LRC1 2 2 3292.5 - 3026.6 - X 3264.2 637 - X 3264.2 1887 - - - - - - - X 3221.1 4 1982
LRC1 2 3 3079.6 - 2529.8 - - - - - - - - - - - -
LRC1 2 4 2535.8 - 2103.1 - - - - - - - - - - - -
LRC1 2 5 3715.8 - 3333.6 - X 3709.9 96 - X 3701.5 65 - X 3710.7 17 2 - X 3703.8 13 218 - - - X 3627.7 7 1379
LRC1 2 6 3360.8 - 3072.7 X X 3360.8 25 - X 3360.7 26 X X 3360.8 38 1 0 X X 3360.7 195 3 0 - X 3265.9 4 1044 - X 3280.1 9 1346
LRC1 2 7 3317.8 - 2720.4 - X 3294.9 745 - X 3280.7 453 - X 3294.9 9 0 - X 3286.4 5 254 - - - -
LRC1 2 8 3097.0 - 2441.6 - X 3024.3 4533 - - - - - - - - - -
LRC1 2 9 3058.6 - 2261.3 - - - - - - - - - - - -

LRC1 2 10 2837.5 - 2074.2 - - - - - - - - - - - -
Sum 8 10 19 9 19 9 12 9 12 10 13 10 16
Avg. 88.26% 1303 99.71% 141 99.79% 49 99.87% 228 0.2 99.83% 327 0.2 99.48% 1272 245.3 99.20% 746 74.7

Table 22: Li & Lim instances. Each instance contains approximately 100 requests, series 1.
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SP1* SP2* SP1 SP2 SP3 SP4
name n UB Opt LB RLB time Opt LB RLB time Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts

LR1 4 1 208 10639.7 X X 10639.7 12 X X 10639.7 9 X X 10639.7 28 1 0 X X 10639.7 26 1 0 - - X X 10639.7 1318 1 31
LR1 4 5 206 9517.0 - X 9509.6 27 - X 9509.6 19 X X 9509.6 1360 11 1 X X 9509.6 811 9 1 - - - -
LC1 4 1 211 7152.0 X X 7152.0 7 X X 7152.0 8 X X 7152.0 25 1 0 X X 7152.0 27 1 0 X X 7152.0 2020 1 4 X X 7152.0 488 1 0
LC1 4 5 211 7150.0 X X 7150.0 17 X X 7150.0 14 X X 7150.0 45 1 0 X X 7150.0 40 1 0 X X 7150.0 2497 1 17 X X 7150.0 1365 1 17

LRC1 4 1 208 8944.6 - X 8848.4 20 - X 8848.4 19 - X 8848.5 356 8 - X 8848.5 379 6 - - - X 8803.0 7 740
LRC1 4 5 207 8667.9 - X 8485.5 202 - X 8472.2 143 - X 8485.9 26 4 - X 8474.7 40 19 - - - -

LR1 6 1 317 22515.4 X X 22515.4 52 X X 22515.4 41 X X 22515.4 120 1 0 X X 22515.4 108 1 0 - - X X 22515.4 6764 1 40
LR1 6 5 313 20439.9 - X 20385.6 231 - X 20385.6 217 - X 20386.5 9 3 - X 20386.5 10 3 - - - - 0
LC1 6 1 315 14095.6 X X 14095.6 19 X X 14095.6 19 X X 14095.6 82 1 0 X X 14095.6 83 1 0 - - X X 14095.6 2123 1 0
LC1 6 5 314 14086.3 X X 14086.3 35 X X 14086.3 27 X X 14086.3 113 1 0 X X 14086.3 100 1 0 - - X X 14086.3 4419 1 21

LRC1 6 1 313 17789.2 - X 17659.6 113 - X 17652.5 109 - X 17659.6 69 10 - X 17652.5 81 14 - - - -
LRC1 6 5 315 16645.8 - X 16257.1 1063 - X 16237.7 662 - X 16258.3 2 2 - X 16240.0 2 16 - - - -

LR181 421 39291.3 X X 39291.3 149 X X 39291.3 143 X X 39291.3 498 1 0 X X 39291.3 304 1 0 - - - -
LR185 419 34656.0 - X 34480.2 432 - X 34480.2 352 - - - X 34507.5 2 3 - - - -
LC181 420 25184.4 X X 25184.4 44 X X 25184.4 37 X X 25184.4 188 1 0 X X 25184.4 175 1 0 - - X X 25184.4 5281 1 0
LC185 421 25211.2 X X 25211.2 64 X X 25211.2 50 X X 25211.2 220 1 0 X X 25211.2 193 1 0 - - - -

LRC181 411 31836.5 - X 31673.0 218 - X 31672.3 220 - X 31679.2 20 6 - X 31678.5 20 8 - - - -
LRC185 418 30814.1 - X 29993.1 3758 - X 29948.5 3756 - - - - - - - -
LR1101 527 56806.0 - X 56740.8 234 - X 56740.8 233 - X 56740.8 11 0 - X 56740.8 11 0 - - - -
LR1105 524 52944.2 - X 52310.9 1346 - X 52310.2 1231 - - - X 52348.9 2 10 - - - -
LC1101 527 42488.6 X X 42488.6 74 X X 42488.6 78 X X 42488.6 341 1 0 X X 42488.6 333 1 0 - - - -
LC1105 529 42477.4 X X 42477.4 110 X X 42477.4 100 X X 42477.4 411 1 0 X X 42477.4 388 1 0 - - - -

LRC1101 527 48551.1 - X 47982.7 353 - X 47973.1 424 - X 47990.6 9 11 - X 47984.2 10 17 - - - -
LRC1105 526 49392.6 - X 48224.8 5056 - X 48131.4 5621 - - - - - - - -

Sum 11 24 11 24 12 20 12 22 2 2 7 8
Avg. 99.4% 52.8 99.3% 47.9 99.6% 286.2 0.1 99.5% 215.7 0.1 100.0% 2259 10.5 99.8% 3108 15.6

Table 23: Large scale Li & Lim instances. 200-500 requests.
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Branch & Cut SP1 SP2 SP3 SP4
name UB Opt RLB time Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts
A30 51317.7 X 51317.7 3.1 X X 51317.7 0.2 1 0 X X 51317.7 1.6 1 0 X X 51317.7 12.0 1 61 X X 51317.7 13.9 1 61
A35 51343.9 X 51343.9 5.9 X X 51343.9 0.5 1 0 X X 51343.9 2.7 1 0 X X 51343.9 406.7 1 214 X X 51343.9 409.2 1 214
A40 61609.9 X 61609.9 8.3 X X 61609.9 0.6 1 4 X X 61609.9 4.2 1 4 X X 61609.9 410.1 1 231 X X 61609.9 397.9 1 231
A45 61693.5 - 51814.1 X X 52716.1 5.5 3 2 X X 52716.1 10.1 3 3 - - - -
A50 71932.6 X 71932.6 24.6 X X 71932.6 1.4 1 0 X X 71932.6 7.7 1 0 X X 71932.6 5841.7 1 501 - -
A55 82185.9 X 82143.0 214.6 X X 82185.9 3.2 1 15 X X 82185.9 13.4 1 17 - - - -
A60 92367.4 X 92367.4 41.4 X X 92367.4 2.2 1 0 X X 92367.4 13.7 1 0 X X 92367.4 2498.5 1 270 X X 92367.4 2965.1 1 270
A65 82331.8 X 82331.8 77.0 X X 82331.8 4.5 1 0 X X 82331.8 18.7 1 0 - - - -
A70 112459.0 X 107528.1 202.7 X X 107488.7 7.6 3 4 X X 107488.7 27.8 3 4 - - - -
A75 92526.3 X 92494.0 990.9 X X 92526.3 12.8 1 0 X X 92526.3 31.8 1 0 - - - -

A100 123515.5 - 123435.2 X X 123512.3 100.8 7 9 X X 123512.3 219.4 9 23 - - - -
A125 134297.7 - 134214.4 X X 134293.2 714.1 47 32 X X 134293.2 1634.7 37 30 - - - -
A150 135062.5 - 124890.2 - X 135056.3 222 60 X X 135056.3 5224.6 49 39 - - - -
A175 176052.7 - 165851.1 - X 176013.1 199 69 - X 176013.1 19 33 - - - -
A200 206856.7 - 166033.6 - X 206801.8 133 78 - X 206801.8 9 11 - - - -
B30 51194.0 X 51191.1 4.8 X X 51194.0 0.3 1 4 X X 51194.0 1.7 1 4 X X 51191.1 401.7 3 273 X X 51190.6 353.2 5 241
B35 61400.4 X 56446.9 8.2 X X 56448.2 0.6 3 0 X X 56448.2 2.8 3 0 X X 56448.2 1160.5 3 348 X X 56448.2 867.6 3 360
B40 51421.8 X 44077.0 33.8 X X 46481.8 1.9 3 3 X X 46481.8 5.3 3 3 - - - -
B45 61787.8 X 61767.5 38.2 X X 61780.8 4.4 11 13 X X 61780.8 8.8 5 12 - - - -
B50 71890.3 X 71873.7 56.2 X X 71889.1 4.3 7 13 X X 71889.1 11.9 7 14 - - - -
B55 82081.3 X 82077.5 46.0 X X 82081.3 2.3 1 0 X X 82081.3 11.0 1 0 - - - -
B60 102324.5 X 102322.1 74.6 X X 102324.5 2.0 1 0 X X 102324.5 14.2 1 0 X X 102324.5 6922.8 3 981 X X 102324.5 6837.9 3 1001
B65 82618.0 X 82559.7 5748.3 X X 82615.2 23.2 19 0 X X 82615.2 37.1 13 0 - - - -
B70 92642.4 X 92605.4 462.9 X X 92640.9 23.0 11 16 X X 92640.9 37.3 5 14 - - - -
B75 92472.7 - 82626.8 X X 87514.2 51.7 15 10 X X 87512.9 83.4 13 9 - - - -

B100 113564.9 - 103757.2 X X 108590.6 242.4 33 37 X X 108589.5 259.0 9 17 - - - -
B125 134514.9 - 134369.3 X X 134512.5 3212.5 353 32 X X 134512.5 1108.7 25 14 - - - -
B150 144663.4 - 136401.0 X X 141417.4 2042.2 27 32 X X 141418.1 1818.8 9 12 - - - -
B175 165996.6 - 142472.2 - X 161000.6 77 178 - X 161000.7 17 64 - - - -
B200 206642.6 - 154459.4 - X 206593.6 73 47 - X 206593.6 7 13 - - - -
C30 51145.5 X 51145.5 3.3 X X 51145.5 0.2 1 0 X X 51145.5 2.2 1 0 X X 51145.5 14.5 1 84 X X 51145.5 15.9 1 84
C35 51236.0 X 51226.3 16.0 X X 51235.2 0.8 3 1 X X 51233.5 4.1 3 0 - - - -
C40 61474.3 - 51534.1 X X 54048.2 1.7 3 0 X X 54048.2 6.7 3 0 - - - -
C45 81406.4 X 81406.4 30.5 X X 81406.4 1.3 1 0 X X 81406.4 7.4 1 0 - - - -
C50 61933.6 X 61893.7 265.2 X X 61933.2 7.2 3 4 X X 61933.2 14.1 3 4 - - - -
C55 61931.2 X 61880.2 1274.5 X X 61931.2 10.0 1 0 X X 61931.2 20.2 1 0 - - - -
C60 72101.3 X 72022.7 6982.1 X X 72101.3 6.6 1 0 X X 72101.3 22.4 1 0 - - - -
C65 82319.7 - 82152.7 X X 82316.5 76.8 15 3 X X 82316.5 81.4 13 3 - - - -
C70 92612.3 - 82630.5 X X 87683.4 34.9 5 19 X X 87684.0 70.6 7 25 - - - -
C75 92712.5 - 92546.0 X X 92708.7 81.7 13 8 X X 92708.7 111.1 13 2 - - - -

C100 113373.2 - 103186.0 - X 105477.2 795 99 - X 105477.4 449 73 - - - -
C125 153862.8 - 143650.3 X X 148890.1 1076.4 41 12 X X 148890.1 1078.1 19 4 - - - -
C150 174895.8 - 174571.8 - X 174880.8 283 60 - X 174880.8 62 12 - - - -
C175 175876.5 - 175410.6 - X 175794.0 103 3 - X 175794.0 20 0 - - - -
C200 196432.4 - 185722.7 - X 196314.7 40 40 - X 196314.9 6 14 - - - -

sum 24 16613.0 36 45 7761.6 273 37 45 12028.3 257 9 9 17668.3 2963 8 8 11860.6 2462
avg. 692.2 215.6 8 325.1 7 1963.1 329 1482.6 308

Table 24: Instances proposed by Ropke, Cordeau and Laporte Ropke et al. (2005). Class A, B and C
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Branch & Cut SP1 SP2 SP3 SP4
name UB Opt RLB time Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts
D30 61040.4 X 61032.9 11.0 X X 61040.4 0.3 1 0 X X 61040.4 2.5 1 0 X X 61040.4 6504.9 1 822 X X 61040.4 6751.6 1 822
D35 71308.4 X 71256.1 2078.8 X X 71305.3 3.2 9 0 X X 71305.3 5.7 9 0 - - - -
D40 61527.5 - 61451.3 X X 61515.8 16.1 29 9 X X 61515.8 17.8 25 5 - - - -
D45 81602.0 X 81597.3 31.8 X X 81600.6 3.4 11 0 X X 81600.6 10.6 11 0 X X 81600.5 6171.1 3 641 - X 81600.6 5 630
D50 71761.8 X 71750.5 68.6 X X 71761.8 4.6 1 0 X X 71761.8 13.7 1 0 - - - -
D55 72052.5 - 71982 X X 72052.5 10.9 1 0 X X 72052.5 18.5 1 0 - - - -
D60 82307.1 X 82291.3 144.0 X X 82307.1 4.0 1 0 X X 82307.1 20.1 1 0 - - - -
D65 82201.5 - 82076.9 X X 82201.5 19.0 1 0 X X 82201.5 30.1 1 0 - - - -
D70 82624.2 - 82489.5 X X 82623.9 44.7 5 0 X X 82623.9 62.2 3 0 - - - -
D75 92971.7 - 92751.1 X X 92971.7 42.5 1 4 X X 92971.7 71.4 1 3 - - - -

D100 103449.2 - 103065.3 X X 103449.1 310.9 3 2 X X 103449.1 296.3 3 2 - - - -
D125 174237.6 - 173986.2 - X 174205.0 696 63 - X 174205.0 130 25 - - - -
D150 154832.8 - 70675.2 - X 148352.3 41 33 - X 148352.3 22 46 - - - -
D175 175708.2 - 98833.8 - X 165802.9 4 21 - X 165802.9 4 17 - - - -
D200 176370.0 - 140779.5 - X 176198.5 10 14 - X 176198.5 4 10 - - - -
E30 41258.0 X 41247.4 11.6 X X 41258.0 0.4 1 0 X X 41258.0 2.2 1 0 - X 41251.2 13 513 - X 41249.9 12 528
E35 71312.6 - 61309.2 X X 66333.0 0.7 3 0 X X 66333.0 4.2 3 0 - - - -
E40 61512.4 X 61461.9 1677.6 X X 61511.9 2.8 3 2 X X 61511.9 6.9 3 2 - - - -
E45 61472.7 X 61424.0 2842.9 X X 61472.7 4.9 1 0 X X 61472.7 10.4 1 0 - - - -
E50 81784.3 X 81734.9 2621.3 X X 81780.3 48.3 45 9 X X 81780.3 64.5 51 6 - - - -
E55 91920.7 - 91795.4 X X 91915.8 92.7 63 21 X X 91915.8 176.0 109 26 - - - -
E60 71998.8 - 71872.4 X X 71990.7 904.2 245 32 X X 71990.7 783.1 241 51 - - - -
E65 62315.7 - 62009.8 X X 62315.0 82.3 5 8 X X 62315.0 133.7 7 12 - - - -
E70 82590.6 - 82364.9 X X 82577.2 241.8 13 7 X X 82577.2 249.9 19 5 - - - -
E75 112464.8 - 102290.2 X X 107486.6 229.0 5 33 X X 107486.5 194.7 5 34 - - - -

E100 103367.3 - 92862.7 - X 93621.8 9 7 - X 93621.8 11 17 - - - -
E125 133937.7 - 133419.4 - X 133898.1 23 21 - X 133898.1 28 13 - - - -
E150 134704.3 - 133735.8 - - - - - - - -
E175 165800.6 - 164939.9 - - - - - - - -
E200 156202.0 - 71105.9 - - - - - - - -

sum 9 9487.4 21 27 2066.7 127 21 27 2174.2 146 2 3 12676.1 1463 1 3 6751.6 822
avg. 1054.2 98.4 6 103.5 7 6338.0 732 6751.6 822

Table 25: Instances proposed by Ropke, Cordeau and Laporte Ropke et al. (2005). Class D, E

229



6.6.2 DARP results

Tables 26 and 27 shows the results of applying the column generation algorithm to the DARP
instances.

The ride time constraints are not handled in any of the pricing algorithms proposed in
this paper. Instead, these must be handled by dynamically added inequalities. Using the
SP1 or SP2 pricing problems one only needs to add infeasible path inequalities to obtain
feasible DARP solutions, but the other inequalities can improve the quality of the lower
bound as well.

The pricing problems for the DARP instances are easy to solve so the pricing algorithms
SP1* and SP2* have not been applied to these problems. Inspecting the tables one first
notices that many more cuts can be added to the SP1 and SP2 models compared to when
solving pure PDPTW instances. The reason is obviously that the cuts ensure that ride time
constraints are satisfied. One also notices that the lower bounds obtained with SP2 virtually
are as good as the ones obtained with SP1. In three cases SP1 is better than SP2 (a4-48,
a6-72, b8-96), but SP2 is better than SP1 in three other cases (a8-64, a8-80, 8-64). The
cases where SP2 is better than SP1 occur because heuristic separation routines are used for
fork and capacity inequalities.

The SP3 and SP4 formulations perform quite poorly on the DARP instances - for more
than half of the instances they do not even establish a lower bound within the time limit.
Table 28 contains detailed statistics for the solution of a typical instance (a6-48). This
table reveals why SP3 and SP4 perform so badly. The table contains a line for each of
the four lower bounds. All of the lower bounds solve the problem in the root node. The
columns should be interpreted as follows cols - number of columns generated, iter - number
of column generation iterations, cuts - number of cuts added, time total time to solve the
root node (in seconds). The next five columns show how time is distributed among the major
components of the algorithm: preprocessing - time spent doing preprocessing (finding A−

i

and A+
i , performing time window reductions, etc.), LP - time spent in LP solver, pricing heur

- time spent in the pricing heuristics, pricing exact - time spent in exact pricing algorithm,
cut generation - time spent separating valid inequalities, other - time spent on bookkeeping
and updating the model with new columns and rows.

It is clear that SP3 and SP4 perform many column generation iterations and generate
numerous columns and consequently spend almost all of their time in the LP solver. There
are several ways to improve on this. The simplest improvement would be to implement a
column management routine that removes unpromising columns from the LP formulation.
This is not done currently, so all generated variables are present in the LP. Savelsbergh and
Sol (1998) describe one way of managing columns.

In order to reduce the number of column generation iterations, two approaches can be
taken. One is to try to fine tune the choice between generating variables and cuts. It might
be beneficial to generate cuts earlier compared to what is being done now. A more promising,
but possibly more complicated improvement would be to use stabilized column generation
(see du Merle et al. (1999)).

Compared to the branch-and-cut (BAC) algorithm presented in Ropke et al. (2005) one
can see that the BAC algorithm performs better than the branch-and-cut-and-price (BCP)
algorithm as all instances were solved by BAC while two are unsolved using BCP. It should
be noted that the BAC algorithm was allowed to spend longer time on a8-96 than the BCP
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algorithm. One should also note that the BCP algorithm often obtains significantly better
lower bounds than the BAC.
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Branch & Cut SP1 SP2 SP3 SP4
name UB Opt RLB time Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts
a2-16 294.2 X 294.2 0.6 X X 294.2 0.3 1 13 X X 294.2 0.3 1 13 X X 294.2 1.5 1 23 X X 294.2 1.7 1 23
a2-20 344.8 X 344.8 1.1 X X 344.8 0.8 1 27 X X 344.8 0.9 1 27 X X 344.8 14.8 1 54 X X 344.8 11.1 1 53
a2-24 431.1 X 430.3 2.6 X X 430.4 2.2 3 21 X X 430.4 3.0 3 21 X X 430.3 200.5 7 81 X X 430.3 164.2 5 71
a3-24 344.8 X 344.8 2.1 X X 344.8 1.6 1 52 X X 344.8 1.3 1 52 X X 344.8 36.5 1 115 X X 344.8 49.3 1 113
a3-30 494.8 X 494.8 4.7 X X 494.8 2.6 1 24 X X 494.8 3.0 1 24 X X 494.8 208.7 1 133 X X 494.8 80.1 1 114
a3-36 583.2 X 579.0 9.5 X X 579.0 13.1 7 58 X X 579.0 12.3 7 64 X X 579.0 645.8 5 181 X X 579.0 557.5 7 134
a4-32 485.5 X 485.5 5.3 X X 485.5 3.7 1 73 X X 485.5 3.8 1 73 X X 485.5 789.0 1 280 X X 485.5 378.6 1 283
a4-40 557.7 X 553.9 17.6 X X 556.7 10.9 3 78 X X 556.6 12.2 3 77 - X 554.9 5 231 X X 554.9 5863.0 5 261
a4-48 668.8 X 666.5 35.8 X X 668.1 40.9 3 85 X X 668.1 45.7 5 85 - - - -
a5-40 498.4 X 498.4 11.0 X X 498.4 5.6 1 3 X X 498.4 6.4 1 3 X X 498.4 1274.6 1 225 X X 498.4 740.0 1 255
a5-50 686.6 X 680.0 50.4 X X 680.8 623.0 113 241 X X 680.8 544.9 101 250 - - - -
a5-60 808.4 X 804.1 102.5 X X 808.4 60.4 1 103 X X 808.4 63.4 1 102 - - - -
a6-48 604.1 X 604.1 28.3 X X 604.1 18.3 1 121 X X 604.1 17.4 1 121 - - - -
a6-60 819.2 X 816.2 106.6 X X 819.1 58.4 3 110 X X 819.1 54.9 3 110 - - - -
a6-72 916.0 X 910.1 210.9 X X 914.4 1646.2 33 320 X X 913.6 1721.6 31 337 - - - -
a7-56 724.0 X 718.5 103.7 X X 720.9 70.1 23 145 X X 720.9 63.0 17 186 - - - -
a7-70 889.1 X 886.7 201.0 X X 888.8 146.9 7 146 X X 888.8 135.1 7 137 - - - -
a7-84 1033.4 X 1025.2 547.9 X X 1028.6 2468.5 85 367 X X 1028.6 1436.5 57 374 - - - -
a8-64 747.5 X 743.7 233.2 X X 747.1 58.3 3 122 X X 747.3 53.2 3 146 - - - -
a8-80 945.7 X 938.1 589.7 - X 940.1 201 534 - X 940.3 270 495 - - - -
a8-96 1232.6 X 1213.4 11585.4 - X 1224.5 37 831 - X 1224.5 31 780 - - - -

Sum 21 19 21 19 21 8 9 9 9
Avg. 99.56% 659.5 99.79% 275.4 111.0 99.79% 219.9 115.9 99.84% 396.4 136.5 99.84% 871.7 145.2

Table 26: DARP instances, type A.
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Branch & Cut SP1 SP2 SP3 SP4
name UB Opt RLB time Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts Opt LB RLB time nodes Cuts
b2-16 309.4 X 308.1 0.8 X X 309.4 0.3 1 11 X X 309.4 0.3 1 11 X X 309.0 26.8 9 61 X X 309.0 15.8 5 67
b2-20 332.6 X 332.6 0.6 X X 332.6 0.4 1 0 X X 332.6 0.4 1 0 X X 332.6 2.4 1 12 X X 332.6 2.3 1 12
b2-24 444.7 X 444.5 2.0 X X 444.5 1.5 3 5 X X 444.5 1.7 3 5 X X 444.5 85.8 3 63 X X 444.5 42.1 3 47
b3-24 394.5 X 392.9 2.0 X X 392.2 2.0 17 11 X X 392.2 2.0 17 11 X X 391.9 57.1 13 118 X X 391.9 60.7 11 112
b3-30 531.4 X 531.4 2.8 X X 531.4 1.7 1 0 X X 531.4 1.9 1 0 X X 531.4 67.5 1 48 X X 531.4 50.2 1 47
b3-36 603.8 X 603.8 4.8 X X 603.8 3.8 1 0 X X 603.8 3.7 1 0 X X 603.8 149.5 1 66 X X 603.8 132.6 1 66
b4-32 494.8 X 494.8 3.1 X X 494.8 2.0 1 0 X X 494.8 2.1 1 0 X X 494.8 7.8 1 50 X X 494.8 8.9 1 50
b4-40 656.6 X 656.6 8.4 X X 656.6 5.2 1 10 X X 656.6 6.3 1 10 X X 656.6 451.5 1 173 X X 656.6 337.6 1 183
b4-48 673.8 X 671.9 26.6 X X 673.2 24.2 3 31 X X 673.2 23.1 3 31 - - - -
b5-40 613.7 X 611.1 18.9 X X 613.7 4.2 1 5 X X 613.7 4.8 1 5 - - X X 613.7 6945.5 3 446
b5-50 761.4 X 756.2 43.6 X X 761.4 12.0 1 0 X X 761.4 11.6 1 0 - - - -
b5-60 902.0 X 893.9 102.6 X X 898.3 178.1 29 66 X X 898.3 192.8 33 78 - - - -
b6-48 714.8 X 714.8 13.7 X X 714.8 6.7 1 7 X X 714.8 7.2 1 7 X X 714.8 598.4 1 189 X X 714.8 483.8 1 186
b6-60 860.1 X 860.1 42.9 X X 860.1 18.5 1 0 X X 860.1 18.4 1 0 - - - -
b6-72 978.5 X 963.1 868.2 X X 975.7 632.8 73 70 X X 975.7 402.7 41 66 - - - -
b7-56 824.0 X 808.3 1103.3 X X 822.2 70.1 27 30 X X 822.2 66.2 39 34 - - - -
b7-70 912.6 X 907.2 165.6 X X 911.1 73.1 15 12 X X 911.1 65.1 9 22 - - - -
b7-84 1203.4 X 1193.2 382.2 X X 1202.0 302.6 11 18 X X 1202.0 237.6 9 18 - - - -
b8-64 839.9 X 834.7 158.2 X X 836.6 123.2 65 56 X X 836.9 105.1 57 29 - - - -
b8-80 1036.3 X 1032.6 190.5 X X 1036.2 69.9 3 6 X X 1036.2 73.1 3 6 - - - -
b8-96 1185.5 X 1165.1 5059.4 X X 1182.0 3859.2 191 93 X X 1181.5 3403.5 225 112 - - - -

Sum 21 21 21 21 21 9 9 10 10
Avg. 99.49% 390.5 99.88% 256.7 20.5 99.88% 220.4 21.2 99.91% 160.7 86.7 99.92% 807.9 121.6

Table 27: DARP instances, type B.

233



time distribution
pre- pricing pricing cut

cols iter cuts time processing LP heur. Exact generation other
SP1 2096 383 85 18.3 27.9% 11.2% 52.1% 0.0% 5.4% 3.4%
SP2 2060 347 85 17.4 29.1% 10.4% 51.7% 0.0% 5.5% 3.3%
SP3 80584 8613 704 27884.9 0.0% 95.4% 1.0% 0.0% 0.0% 3.6%
SP4 75078 9148 592 22696.5 0.0% 95.8% 1.8% 0.0% 0.0% 2.3%

Table 28: Statistics for DARP instance a6-48.

7 Conclusion

In the beginning of the paper we raised the question: How do the four relaxations presented
in this paper compare to each other and how do they compare to a pure branch and cut
approach? Can one approach be recommended as ”the best”?

The computational tests bring us closer to answering these questions. Table 29 gives an
overview of the number of instances solved to optimality for the different relaxations and
instance classes. Each line in the table corresponds to a class of instances, thus LL50-1 and
LL50-2 correspond to Tables 20 and 21. LL100 and LL200-500 correspond to Tables 22 and
23 while SaSo correspond to Tables 24 and 25 and DARP correspond to Tables 26 and 27.
For the SP1 relaxations we have reported the union of solutions found by SP1 and SP1*
algorithms. This seems fair as we could run the SP1* first and switch to SP1 if the solution
to the LPM in the root is fractional. The same has been done for SP2. We see that SP1 and
SP2 come out as winners of this test.

This leads to an interesting observation: the SP1 and SP2 lower bounds are very close
and their pricing problems are roughly equally difficult with the algorithms available for
solving shortest path problems. That their lower bounds were going to be close was already
hinted by the fact that the cycles that can occur in the solutions to the SPPTWCPD contain
at least four nodes, but there are also results in the literature that suggest that SP1 should
be much stronger than SP2. Sol (1994), page 73 showed that the SP2 relaxation can be half
the value of the SP1 relaxation.

At first sight it seems like the ESPPTWCPD should be much harder to solve compared
to the SPPTWCPD due to the many extra resources. This does not turn out to be the
case. The best explanation is probably, that although the domination check is weaker for
the ESPPTWCPD than for the SPPTWCPD, the ESPPTWCPD has another advantage:
the SPPTWCPD algorithm has to loop around in negative cycles - this implies that it has
to store and extend sets of labels whose corresponding paths only differ by how many times
a certain negative cycle has been traversed, while the ESPPTWCPD algorithm never does
such looping.

The branch-and-cut algorithm is worthwhile for some problem classes, but overall SP1
and SP2 are preferable. The SP4 relaxation has the advantage in a few cases but it is not
really competitive. However, it does seem like further programming efforts would be able
to improve on the SP4 performance. Overall the SP4 relaxation is preferable to the SP3
relaxation. The SP4 relaxation is interesting as it often is easier to solve its pricing problem
than solving the SP1 pricing problem but its resulting lower bound is of poorer quality. It is
better than solving the 2-index model proposed in Ropke et al. (2005) or the 3-index model
proposed in Cordeau (2005) though. It can be seen as a relaxation in between the two lower
bounds.

The experiments with pricing heuristics demonstrated that it is useful to consider more
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BAC SP1 SP2 SP3 SP4
LL50-1 18 29 29 24 26
LL50-2 10 7 6 7 7
LL100 8 12 11 10 10

LL200-500 - 12 12 2 7
SaSo 31 57 58 11 9

DARP 42 40 40 17 19
Sum 109 157 156 71 78

Table 29: Overview of number of optimal solutions

advanced pricing heuristics - significant speed ups can be obtained. More research could be
done in this field though. It seems like an automatic selection of the heuristic to use to solve
the pricing problem would be helpful - some pricing problems are easier than others.

There are ample opportunities for further research. The most obvious line of research is
to find a branching rule compatible with the (DOM1’) and (DOM2) dominance criteria or to
find a way to perturb the costs dij such that the dominance criteria can be used with valid
inequalities. Dumas et al. (1991) proposed a branching rule, but it creates nr + 2 branches
where nr is the number of requests served in the route that is chosen for branching. Thus
the branch and bound tree may grow very rapidly. A better approach might be to branch on
time windows as proposed for the vehicle routing problem with time windows and backhauls
by Gélinas et al. (1995).

The valid inequalities improve the SP3 and SP4 lower bounds significantly, but none of
the inequalities used in this paper are able to influence the SP1 lower bound much. One
candidate is the 2-path cuts for the VRPTW proposed by Kohl et al. (1999). It is possible
to strengthen the cut when used for the PDPTW so it appears to be promising.

Improving the performance of the SP3 and SP4 relaxations as described in Section 6.6.2
would be interesting. It is also possible to deduce new, tighter relaxations from SP4. For
example the pricing problem ESPPTWP could be constrained even more by demanding that
an even number of nodes must be visited on every path or even stronger: that the number
of pickup and delivery nodes must be equal on every path.

Proving or disproving theorems about the relationships between classes of valid inequal-
ities and relaxations obtained by set-partitioning, put forward in Section 6.5, would be an
interesting contribution.

We can conclude that several large-scale instances can be solved with the current approach
and that many of the proposed test instances can be solved to optimality. We hope that the
unsolved instances will challenge future researchers in the years to come.
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Chapter 10

Conclusion

This thesis has touched many subjects within vehicle routing problems but the core problem, in
the methods developed in the five papers, has always been a pickup and delivery problem with
time windows (PDPTW). It is my hope that this thesis significantly has increased our knowledge
about the PDPTW. The thesis has also moved the bounderies for which PDPTW/DARP instances
that are solvable with exact methods and improved the quality of heuristics for the PDPTW. In
the thesis

• We showed how the PDPTW can be used to model many other vehicle routing problems.
This insight has allowed us to design a single heuristic that can solve many variants of vehicle
routing problem, obtaining just as good solutions as specialized heuristics without the need
for any retuning or customization of the heurisitic.

• We compared different models for the PDPTW in order to solve the problem to optimality.

• Several new valid inequalities and corresponding separation algorithms for the problem
PDPTW and dial-a-ride problems (DARP) was proposed. We have not performed any
polyhedral analysis, but computational experiments show that the valid inequalities are able
to improve the lower bounds of the LP relaxations significantly.

• We saw that the models proposed in Chapter 8 combined with the new valid inequalities
allowed us to solve some DARP instances up to 1000 times faster than in a recent study
Cordeau [2006].

• We saw that the set partitioning formulations presented in Chapter 9 solved through column
generation allowed us to solve larger PDPTW instances than was reported by Savelsbergh
and Sol [1998].

The Adaptive Large Neighborhood search (ALNS) presented in Chapters 4 to 6 proved to be
a worthwhile extension of the Large Neighborhood Search (LNS) heuristic proposed by Shaw
[1998]. Using multiple, fast neighborhoods turned out to help the heuristic a great deal, and the
adaptive mechanism was able to select a good weighting of the subheuristics. We believe that the
heuristic can be applied to problems outside the vehicle routing domain as well. We expect it
to be particularly well suited for tightly constrained problems where smaller neighborhoods can
have trouble getting from one area of the solution space to another. We still need to substantiate
this hypothesis by computational tests. Some implementation for the graph coloring problem is
underway - even though this problem hardly can be considered as tightly constrained.

It would be interesting to combine the ALNS heuristic for the PDPTW with the exact methods
to produce new heuristics. We could use the lower bound and exact methods for both the removal
and insertion phase. To insert a set S of requests into a partial solution s using the exact methods
one can follow this procedure
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1. Create a graph G with nodes corresponding to the nodes of the PDPTW instance.

2. Add the edges occuring in the partial solution s.

3. Add all edges among nodes corresponding to requests in S

4. Add all edges to/from nodes in s from/to nodes corresponding to requests in S.

5. Perform preprocessing based on G, reducing time windows and removing infeasible arcs from
G.

6. Solve the PDPTW on the graph G using one of the exact methods. The exact method can
be truncated in different ways to speed up the solution time.

This would give optimal insertions if step 6 is solved to optimality, but it would also be quite time
consuming, so it should be used rarely. It is similar to the approach presented by Franceschi et al.
[2005] for the CVRP, but it can use any optimization method developed for the routing problem
in step 6, and is not solving a general ILP, this could potentially mean quicker computations. The
method could also be applied to insert edges instead of nodes.

The lower bounds developed could be used in a removal heuristic in the ALNS. In Chapter 4
we proposed the worst removal. This method defines a cost function cost(i, s) for each request i in
solution s and removes requests with high cost. The function cost(i, s) could be redifined to the
lower bound obtained when the edges adjacent to request i are fixed as they are in the solution s.

A third posibility is to use the exact methods as a postprocesing step after running the ALNS.
While the ALNS is running a number of good, unique, solutions (e.g. 10) are stored. When
the ALNS terminates a graph is created by taking the union of the edges used in the stored
solution. The PDPTW is then solved to optimality on this graph and thus computes the optimal
combination of the selected solutions. When the graph is sparse it should be reasonably fast to
solve the problem through column generation. A similar strategy has been proposed and tested
for the TSP by Cook and Seymour [2003] with worthwhile improvements in solution quality.

Some ideas for further improvements of the exact methods for the PDPTW based on set-
partitioning formulations are given in the preface and in Chapter 9. Implementing (some of) these
are my short term plans for the development of exact methods for the PDPTW, but the devel-
opment possibilities certainly does not stop there. One project I personally would find intersting
is to develop a pricing algorithm for the DARP that takes the ride time constraints into account.
This would most like improve the branch-and-price results for the DARP instances if the pricing
problem can be solved reasonably fast.

On a longer term horizon I hope to study exact methods for the VRPTW and/or CVRP. These
are clearly the vehicle routing problems that are most “mature” when it comes to exact methods.
I believe that there nevertheless still are room for improvements of the exact algorithms for both
of the problems.



Chapter 11

Summary (in Danish)

Rutelægningsproblemer (eng. vehicle routing problems) er en vigtig klasse af optimeringsproble-
mer. I det grundlæggende problem er vi givet en række kunder med forskellige behov der skal
forsynes med varer fra et depot. Til at forsyne kunderne har vi en flåde af køretøjer (typisk
lastbiler) der hver har en begrænset laste kapacitet. Problemet består nu i at fremstille ruter
der starter og slutter i depotet så hver kunde bliver besøgt præcist en gang og således af lastka-
paciteten af lastbilen der betjener i ruten ikke overskrides - målet er at minimere omkostningen
ved transporten. Omkostningen ved transporten udmåles ofte som den samlede distance kørt eller
antallet af køretøjer der skal bruges til transporten.

En lang række varianter af problemet findes, f.eks. udvider nogle varianter problemet så hver
kunde har et tidsvindue hvori betjeningen skal foregå og andre varianter definerer at varer skal
samles op hos nogle kunder og returneres til depotet.

En vigtig variant af problemet er afhentnings og leveringsproblemet med tidsvinduer (eng.
pickup and delivery problem with time windows - PDPTW ). I dette problem er vi givet en række
transportopgaver. Hver opgave består i at samle varer op på lokalitet A og bringe disse varer
til lokalitet B. Der er knyttet et tidsvindue til både afhentningen og leveringen. Køretøjerne der
benyttes til transporten starter og slutter deres rute på en terminal men de pålæsser og aflæsser
ikke nødvendigvis varer her.

Rutelægningsproblemer er en vigtig klasse af problemer inden for både forskningen i opera-
tionsanalyse og i den virkelige verden. Inden for forskningen i operationsanalyse har rutelægn-
ingsproblemer udgjort en af de hyppigste problemtyper som nye varianter af metaheuristikker er
blevet testet og sammenlignet på. Desuden, og måske mere vigtigt, er det at problemstillingen
har været drivende for udviklingen af branch-and-price paradigmet.

Det er oplagt at problemet er anvendeligt i praksis. En lang række virksomheder bruger store
summer på transport af varer vha. lastbiler. Hvis antallet af kørte kilometer kan bringes ned
vil det give en besparelse på brandstofudgifterne og på udgifterne til vedligeholdelse af køretø-
jerne. Tilsvarende vil en reduktion i antallet af nødvendige køretøjer også give en besparelse.
Toth and Vigo [2002b] skønner at brugen af computerbaserede løsningsmetoder til optimering af
transportplanlægningsproblemer i industrien fører til besparelser på mellem 5% og 20% af trans-
portomkostningerne, hvilket må forventes at være en betydelig sum i mange større virksomheder.
En lang række virksomheder i Danmark bruger da også computerbaserede løsningsmetoder til den
daglige planlægning af transportopgaver. Nogle eksempler er Arla, Statoil og Unicon (betonkørsel).

Hovedbidraget i afhandlingen er 5 artikler. Den første artikel beskriver en robust heuristik
for en udvidet udgave af PDPTW. Heuristikken afprøves på en række standardproblemer fra
litteraturen og denne test viser at heuristikken kan forbedre mange tidligere bedst kendte løsninger
til standardproblemerne og heuristikken må betragtes som den bedste heuristik til PDPTW for
tiden.
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De næste to artikler foreslår en række forbedringer til heuristikken og viser hvordan en række
standard ruteplanlægningsproblemer kan transformeres til et udvidet PDPTW og dermed løses
ved hjælp af den allerede udviklede heuristik. Resultaterne er meget lovende idet heuristikken ofte
løser disse problemer ligeså godt eller bedre end mere specialiserede heuristikker. Vi forbedrer
igen en lang række løsninger til standard testproblemer for varianter af rutelægningsproblemet.
På grund af disse positive erfaringer udleder vi essensen af heuristikken så den kan anvendes på
optimeringsproblemer generelt.

De to sidste artikler omhandler også PDPTW, men denne gang anvendes eksakte optimer-
ingsmetoder. Dvs. den løsning som returneres fra metoden er beviseligt den bedste der findes,
givet de kriterier der optimeres efter. Da PDPTW er NP-hårdt er det beregningsmæssigt meget
tungt at løse problemet eksakt, og for probleminstanser af selv moderat størrelse kan det være
umuligt at finde den optimale løsning indenfor en overskuelig tidsperiode med en given løsningsme-
tode. De to artikler anvender to relaterede paradigmer til løsning af problemet (på engelsk branch-
and-cut og branch-and-cut-and-price). De eksperimentelle resultater viser at løsningsmetoderne
flytter grænserne for hvilke problemstørrelser der er mulige at løse til optimalitet. F.eks. ser vi
i den ene artikel at løsningstiden for en probleminstans forbedres med mere end en faktor 1000 i
forhold til en for nyligt offentliggjort løsningsmetode.

Udover de 5 artikler indeholder afhandling introducerende kapitler der beskriver vigtige rutelægn-
ingsproblemer, heuristikker og eksakte metoder.
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