Heuristic and exact algorithms for vehicle routing problems

Røpke, Stefan

Publication date:
2006

Link back to DTU Orbit

Citation (APA):
Røpke, S. (2006). Heuristic and exact algorithms for vehicle routing problems.

## General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

# Heuristic and exact algorithms for vehicle routing problems 

Stefan Ropke

December 2005

## Preface

This Ph.D. thesis has been prepared at the Department of Computer Science at the University of Copenhagen (DIKU), during the period November 2002 to December 2005. The work has been supervised by Professor David Pisinger.

The thesis consists of four introductory chapters: Chapters 1, 2, 3 and 7 , and five research papers: Chapters $4,5,6,8$ and 9 . The five research papers have been written in collaboration with coauthors which are mentioned in the beginning of each paper. The four introductory chapter have been written solely by the undersigned. The five research papers are relatively self-contained. Note that each research paper contains it own bibliography and sometimes an appendix. The bibliography for the introductory chapters are found at the end of this thesis.

The thesis contains three parts. The first part contains the introduction and is split into two chapters. The next part deals with heuristic and contains one introductory chapter and three research papers about heuristics. These papers are "technical report versions" that contains more results than the papers that have been submitted to journals. These extra results are placed in the appendix of each paper. The last part is about exact methods and contains one introductory chapter and two research papers.

The thesis started out being solely about heuristics, but after having worked with heuristics for four or five years, first as a graduate student, then in the industry and as a Ph.D. student I felt it was time to learn something new and started studying exact methods more intensively in 2004. This has certainly been interesting and I hope the knowledge I have obtained will allow me to design even better heuristics in the future.

Chapter 9 is the only one of the five papers that has not been submitted to a journal yet. In its current state it is not ready to be submitted either - it is clearly too long and contains too much material. We do plan to submit a condensed version. The rest of this section is going to describe how the paper could be condensed. To understand this, one needs to have read chapter 9 .

One way of condensing the paper would be to focus on the SP1 and SP2 relaxations and leave the SP3 and SP4 relaxations out as well as the addition of valid inequalities. The contribution of this paper would be

1. Improvements of domination criteria for ESPPTWCPD.
2. The computational comparison of SP1 and SP2.
3. The new pricing heuristics and experiments. More experiments could be carried out.
4. Introduction of standard test instances for exact solution of the PDPTW.

For this paper it would be nice if the issues with algorithms SP1* and SP2* were worked out. The simplest way of doing this would be to use algorithms SP1*/SP2* to get a lower bound. If the linear relaxation solution turns out to be fractional then one should switch to algorithms SP1/SP2 to perform branching.

A better approach would be to implement a branching rule that is compatible with the strongest domination criteria. Branching on time windows as proposed in the paper would be a good candidate. An alternative is to find a way of perturbing the ( $d_{i j}$ ) matrix such that $d_{i j}+d_{j k} \geq d_{i k}$
always holds when $j$ is a delivery node, even when general cuts have been added to the master problem. Valid perturbations of the $\left(d_{i j}\right)$ matrix include subtracting a constant $\alpha_{i}$ from all edges leaving pickup node $i$ and adding $\alpha_{i}$ to all edges leaving node $n+i$. This is valid as a path in the ESPPTWCPD and SPPTWCPD that visits a pickup must visit the corresponding delivery and vice versa. This would allow us to add cuts in the original variables to the master problem and would thereby make the current branching rule work with with SP1*/SP2*.

A second paper could describe the SP3 and SP4 relaxations and incorporate the valid inequalities in the branch-and-price algorithm. This paper could also include the strengthened SP4 relaxation that is described in the conclusion of the paper.

## Acknowledgments

I would first of all like to thank my supervisor, Professor David Pisinger for encouragement, countless discusions and for his help with writing the thesis. Without David I would not had taken on the task of doing a Ph.D. study. Associate Professor Jean-François Cordeau and Professor Gilbert Laporte also deserves great thank for making my visits to the University of Montreal possible and for taking time to work with me while I have been visiting. The input I received from my advisory group, Professor Jacques Desrosiers and Professor Oli Madsen, is also greatly appreciated.

I would also like to thank the guys at the Algorithmics and Optimization Group at DIKU for encouragement and for making the average work day more fun and interesting. Similarly I would like to thank the people I met at the Centre for Research and Transportation in Montreal, especially "the gang", for making me feel welcome in a foreign country. I also wish to thank Irina Dumitrescu for her patience with me when I have postponed working on our joint projects because of the work involved in finishing this thesis.

Finally I would like to thank friends and family for their support. I especially wish to thank my parents for their love and support throughout my life. And to my girlfriend Alice: Thank you for lifting my mood on the days when I have been feeling down in the last couple of months, for helping me improving the language in the thesis and for being you!

Copenhagen, December 2005, Stefan Røpke

## Updated version, June 2006

A number of typos and errors have been corrected in this version of the thesis. Since December 2005 I have spent time working on the research paper presented in chapter 9. This work has lead to resolution of the most of the issues discussed above and mentioned in the chapter 9: A transformation of the distance matrix has been found that makes it possible to use SP1*/SP2* after adding cuts in the master problem and it has been shown that many of the cuts that seemed worthless in the computational experiements in fact are implied by the strongest set partition relaxations. These developments have not been included in the updated version of the thesis, but are described in Ropke and Cordeau [2006].

Let me use the opportunity to thank my opponents: Stefan Irnich, Daniele Vigo and Martin Zachariasen at the Ph.D. defense, for evaluating the thesis within a short time and for valuable comments that has lead to several improvements in this updated version of the thesis.

## Contents

Preface ..... i
I Introduction ..... 1
1 Introduction ..... 2
1.1 Motivation ..... 2
1.2 Modeling and solution methods ..... 3
1.2.1 Modeling ..... 5
1.2.2 Solution methods ..... 5
1.3 Goals ..... 6
1.3.1 Achievements and contributions of the Ph.D. thesis ..... 7
1.4 Overview of Ph.D. thesis ..... 8
2 Classes of vehicle routing problems ..... 11
2.1 The traveling salesman problem ..... 11
2.2 m -Traveling salesman problem ..... 12
2.3 Capacitated vehicle routing problem ..... 13
2.4 The vehicle routing problem with time windows ..... 16
2.5 Pickup and delivery problem with time windows ..... 18
2.5.1 Heuristics for PDPTW and DARP ..... 20
2.5.2 Exact methods for PDPTW and DARP ..... 22
II Heuristics ..... 24
3 Introduction to heuristics ..... 25
3.1 Introduction ..... 25
3.2 Heuristic categories ..... 25
3.2.1 Construction heuristics ..... 25
3.2.2 Local search heuristics ..... 26
3.2.3 Neighborhoods ..... 28
3.2.3.1 Small neighborhoods ..... 28
3.2.3.2 Large and exponential sized neighborhoods ..... 29
3.2.4 Metaheuristics ..... 30
3.3 Trends in heuristic research for the VRP ..... 30
3.3.1 Trends in heuristic research for the VRP - conclusion ..... 35
4 An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows ..... 36
5 A unified heuristic for a large class of vehicle routing problems with backhauls ..... 67
6 A general heuristic for vehicle routing problems ..... 100
III Exact methods ..... 145
7 Introduction to exact methods ..... 146
7.1 Introduction ..... 146
7.2 Linear programming based lower bounds ..... 146
7.2.1 Cutting plane algorithm ..... 149
7.2.2 Branch-and-cut ..... 150
7.3 Introduction to branch-and-price ..... 151
7.3.1 Decomposition ..... 151
7.3.2 Column generation ..... 153
7.3.3 Branch-and-price ..... 155
7.3.4 Branch-and-cut-and-price ..... 156
7.3.5 Further topics ..... 156
8 Models and a Branch-and-Cut Algorithm for Pickup and Delivery Problems with Time Windows ..... 158
9 Branch-and-Cut-and-Price for the Pickup and Delivery Problem with Time Windows ..... 186
IV Conclusion ..... 239
10 Conclusion ..... 240
11 Summary (in Danish) ..... 242

## Part I

## Introduction

## Chapter 1

## Introduction

### 1.1 Motivation

Transportation of goods and passengers is an important task in the society of today. Astronomical amounts of money are spent daily on fuel, equipment, maintenance of equipment and wages.

It is therefore obvious to attempt to reduce the amount of money spent on transportation as even small improvements can lead to huge improvements in absolute terms. Several approaches could be taken, one could improve equipment or make the infrastructure better. One could also look at operations research (OR) techniques - given the resources available, what is the best that can be done? Toth and Vigo [2002b] estimate that the use of computerized procedures for planning of the distribution process often leads to savings in the area of $5 \%$ to $20 \%$ of the transportation costs, so studying such procedures definitely seems worthwhile.

Furthermore, transportation accounts for a great part of the $\mathrm{CO}_{2}$ pollution in the world today. According to Pedersen [2005] the transportation sector was in 1998 responsible for $28 \%$ of the $\mathrm{CO}_{2}$ emission in the Europe Union and road transportation alone accounted for $84 \%$ of the total $\mathrm{CO}_{2}$ emissions from the transportation sector. Moreover, it is exected that the $\mathrm{CO}_{2}$ emissions from the transportation sector is going to increase by $50 \%$ by 2010 (according to Pedersen [2005]). Thus, improvements in planning techniques could help easing the strain on the environment caused by transportation.

Operations research has been quite successful in the transportation area. One could see optimization within transportation as one of the successes of OR. Today OR techniques are applied within for example the airline, railway, trucking and shipping industries; and OR techniques are used to optimize the interplay between the different modes of transportation, for example in handling port operations.

Several companies exist that solely or primarily develop software for optimization within the transportation industry. Some examples are the Swedish based Carmen Systems ${ }^{1}$ that develop software for airlines and railways; the Canadian Giro $^{2}$ that develops software for routing and scheduling of ground based vehicles; the Danish Transvision ${ }^{3}$ that develops software for ground based distribution; the Danish e2e factory ${ }^{4}$ that develops software controlling ground personnel at airports.

Consequently it is fair to say that optimization within transportation is a subject that is used and sought-after in the real world and not just a topic studied in academia. Also, the field seems to have reached a certain level of maturity as it has been studied for many decades. Having said that, there remain ample room for improvement in the solution methods employed and OR methods could be applied to a wider array of problems faced within the transportation industry. The real world need solution methods that are:

[^0]- Fast - the quicker the operator gets an answer back from the computer the better,
- Easy to apply to a variety of problem characteristics - when developing software for real life problems one wants to avoid reinventing the wheel every time a new client wants a software application for a new type of transportation problem,
- Precise - the better results a solution method returns the larger is the potential for savings,
- More robust - when solving real world problems it is often better to have a solution method that produces fairly good results for all problem instances, than one that produces very good results for $70 \%$ of the problem instances and very poor results for the remaining $30 \%$.

The four characteristics listed above are to a certain extent in conflict with each other, so some sort of trade-off has to be achieved. Solution methods described in the literature are often evaluated in terms of speed, solution quality, and to a certain extent, robustness while the second characteristic listed above often receives less attention. In this thesis a solution method that takes all four characteristics into account is presented.

One problem in the field of transportation related OR that has been given a lot of attention in the scientific literature is the so called vehicle routing problem (VRP). In the vehicle routing problem we are given a fleet of vehicles and a set of customers to be visited. The vehicles are often assumed to have a common home base, called the depot. The cost of traveling between each pair of customers and between the depot and each customer is given. Our task is to find a route for each vehicle, starting and ending at the depot, such that all customers are served by exactly one vehicle, and such that the overall cost of the routes are minimized. Typically the solution has to obey several other restrictions, such as capacity of the vehicles or desired visit times at customers. In this thesis the term vehicle routing problem (VRP) is used to describe a broad class of problems and not a specific problem with a specific set of restrictions or constraints. The class of vehicle routing problems contains all the problems that involve creating one or more routes, starting and ending in one or more common depots or at predefined start and end terminals. In the literature the term vehicle routing problem is occasionaly used for the specific problem that is called the capacitated vehicle routing problem in this thesis (see Section 2.3).

A subclass of vehicle routing problems is pickup and delivery problems. In this class of problems we are given a number of requests and a fleet of vehicles to serve the request. Each request consists of a pickup at some location and a delivery at another location. The cost of travelling between each pair of locations is given. The problem is to find routes for each vehicle such that all pickups and deliveries are served and such that the pickup and delivery corresponding to one request is served by the same vehicle and the pickup is served before the delivery. Again a number of additional constraints are often enforced, the most typical being capacity and time window constraints. Figure 1.1 shows how transportation problems, vehicle routing problems and pickup and delivery problems relate to each other. Pickup and delivery problems are shown as the innermost, most specialized problem class, but it contains many classical vehicle routing problems like the capacitated vehicle routing problem (CVRP) and the vehicle routing problem with time windows (VRPTW). How these and many other vehicle routing problems can be formulated using one pickup and delivery model is discussed in Chapter 4-6. The pickup and delivery problem with time windows (PDPTW) is the core problem studied in this thesis. In Chapter 2 the problem is formally defined together with some of the classic problems it generalizes.

### 1.2 Modeling and solution methods

The research within an area like vehicle routing problems can be grouped into two major categories: modeling and solution methods. A third area of interest is the interpretation of the results stemming from the models and solution methods. This area is typically studied together with either modeling or solution methods. The following two sections go into further details with modeling and solution methods.


Figure 1.1: The figure shows that the vehicle routing problems is one of many problems studied within operations research applied to transportation problems. Pickup and delivery problems are a subclass of vehicle routing problems. The class of transportation related OR problems, of course contains many other problems apart from vehicle routing problems. Some examples are train timetabling problems [Caprara et al. [2002]] or berth allocation problems [Imai et al. [2003]].

### 1.2.1 Modeling

The art and science of modeling can be roughly divided into two disciplines. The first discipline is concerned with modeling a problem occurring in real life. The following topics must be considered:

- While the description of the real life problem given to the modeler, may be vague and ambiguous, the opposite should be true for a good model. A good model should be expressed such that there are no ambiguities - everyone (with the right qualifications) who reads the model should get the same idea of what the model represents. This can be achieved by using a mathematical notation, but a textual representation can be sufficient as well. Notice that a mathematical model does not guarantee that the model is without ambiguities.
- The model must represent the real life problem reasonably well. The word reasonably is vague, but how close to the real life problem the model should be is dependent on the application. Often we do not want to model the real life situation in all its details for different reasons, one such reason could be that precise data is missing and another is given in the next bullet point.
- The model should not be unnecessarily complicated. As we often want to solve the problem using a computer program the model should be manageable - it might be necessary to leave out some details of the real life problem to make the model solvable by the methods we know today.

How to model a real life problem is a very important but also quite challenging task. Furthermore it may be difficult to decide if a model is good or not, or to choose between two different models that are supposed to represent the same problem. Such a decision can be dependent on experience and personal preferences.

The second discipline in modeling is how to transform one model into an equivalent model that either in some way is easier to solve using existing techniques or paradigms or that makes the model solvable using a particular tool. The word equivalent should be understood in a strict sense. The new model should have the same solution as the original model given the same input. An example could be the reformulation of an integer programming model to another model that provides a tighter linear relaxation and consequently might be better in a linear programming based branch and bound algorithm.

When transforming one model into another, the underlying modeling framework we are transforming to is important - the more expressive and rich it is, the easier the modeling becomes.

This thesis contains many examples of the second modeling discipline. Chapter 5 and 6 show how many commonly studied vehicle routing problems can be reformulated into a pickup and delivery problem and solved using the tool (heuristic) developed in Chapter 4. Chapters 8 and 9 propose different models for the PDPTW and evaluate which model that is best suited as the basis of an exact algorithm for the PDPTW.

This thesis does not explicitly deal with the first modeling discipline. This does not mean that the thesis is uninteresting for practitioners, working with real world problems though. The heuristic developed in the first three papers (Chapter 4 to 6 ) is able to handle a variety of constraints and is therefore better suited for application to real life problems compared to many special purpose heuristic proposed in the scientific literature. A variant of the heuristic is actually used in practice by at least one company solving real life problems.

### 1.2.2 Solution methods

For many of the problems considered in this thesis, the set of feasible solutions is so large that even if we had a computer that in a systematic way could construct and evaluate the cost of a trillion $\left(10^{12}\right)$ solutions per second, and we had started that computer right after the big bang, 14 billion years ago, it would still not have evaluated all the feasible solutions today. Consequently we have to turn to other methods than simple enumeration.

Three types of solution methods are typically employed to solve these types of problems (NPhard problems):

- Heuristics. Heuristics are solution methods that typically relatively quickly can find a feasible solution with reasonable quality. There are no guarantees about the solution quality though, it can be arbitrarely bad. The heuristics are tested empirically and based on these experiments comments about the quality of the heuristic can be made. Heuristics are typically used for solving real life problems because of their speed and their ability to handle large instances.
A special class of heuristics that has received special attention in the last two decades is the metaheuristics. Metaheuristics provides general frameworks for heuristics that can be applied to many problem classes. High solution quality is often obtained using metaheuristics. Part II of thesis is concerning heuristics.
- Approximation algorithms. Approximation algorithms are a special class of heuristic that provide a solution and an error guarantee. For example one method could guarantee that the solution obtained is at most $k$ times more costly than the best solution obtainable. Two classes of approximation algorithms called polynomial time approximation scheme (PTAS) and fully polynomial time approximation scheme (FPTAS) are of special interest as they can approximate the solution with any desired precision. That is for any instance $I$ of the problem considered and any $\epsilon>0$ a PTAS or FPTAS can output a solution $s$ such that $f(s) \leq(1+\epsilon)$ Opt (assuming that we are solving a minimization problem) where Opt is the optimal solution and $f(s)$ is objective of solution $s$. The difference between a PTAS and a FPTAS is that the PTAS is polynomial in the size of the instance $I$ while the FPTAS is polynomial in the size of the instance $I$ and $1 / \epsilon$. An FPTAS is therefore in a certain sense "stronger" than a PTAS. An example of a problem that admits an FPTAS is the Knapsack problem (see e.g. Kellerer et al. [2004]). For some problems it is not possible to design a FPTAS, PTAS or even an polynomial time approximation algorithm with constant error guarantee unless $P=N P$ and approximation can be impractical: the error guarantee can be too poor or the running time of the algorithm can be too high.
This thesis is not going to discuss approximation algorithms in further details, we refer the interested reader to Vazarani [2001].
- Exact methods. Exact methods guarantee that the optimal solution is found if the method is given sufficiently time and space. As stated initially, a simple enumeration is out of the question, so exact methods must use more clever techniques. The worst case running time for NP-Hard problems are still going to be high though. We cannot expect to construct exact algorithms that solve NP-hard problems in polynomial time unless NP $=\mathrm{P}$. For some classes of problems there are hope of finding algorithms that solve problem instances occuring in practice in reasonable time though.
Part III of the thesis is concerning exact methods.


### 1.3 Goals

The focus of this Ph.D. thesis is solution methods for vehicle routing problems and especially pickup and delivery problems. The problems studied in this thesis have been inspired from real world applications but the problems are not real world problems themselves. It is my hope that practitioners can apply some of the solution methods described in this thesis to the problems that occur in real life. This hope has to some extent already been fulfilled.

The thesis is divided into two major parts, one concerning heuristics and one concerning exact methods. In the heuristic part, the focus has been on developing a unified heuristic that is able to handle many of the VRP variants that have been proposed in the literature without any need for retuning the algorithm for a particular problem type.

The research into a unified heuristic for vehicle routing problems led us to investigate robust heuristics in general - is it possible to distill the components of the vehicle routing heuristic into a general heuristic?

The research in exact methods has focused on the pickup and delivery problem with time windows (see Section 2.5). The overall goal of this research has been to push the limits for what sizes of PDPTW problems that can be solved to optimality. In order to do this it has been necessary to investigate new formulations of the problem, preprocessing techniques and valid inequalities.

### 1.3.1 Achievements and contributions of the Ph.D. thesis

The papers presented in Chapters 4 to 6 describe a general heuristic that successfully handles 12 variants of the vehicle routing problem. The heuristic is able to solve the different problems types without retuning the parameters of the algorithm. The heuristic is able to solve the many variants by first transforming them to a PDPTW instance and then solving that instance using a PDPTW heuristic. For most of the problems the transformation is simple, but the thesis nevertheless presents these transformations for the first time. The heuristic has provided excellent results and has improved the best known solutions to benchmark cases for many problems.

The heuristic has been distilled into a general framework that builds upon the large neighborhood search (LNS) paradigm introduced by Shaw [1998]. We call this heuristic framework the adaptive large neighborhood search (ALNS). The heuristic is first presented in Chapter 4 which provides an easy to understand description of the ALNS. The chapter also establishes the advantages of ALNS over LNS through computational experiments and presents results on the PDPTW. These results show that the ALNS method must be considered as the best heuristic for the PDPTW currently.

In Chapter 5 the heuristic is applied to a large class of vehicle routing problem with backhauls. A total of 6 variants are considered. For all problem types the heuristic must be considered to be on par with existing specialized algorithms or even better. Some enhancements of the heuristic is proposed and the effect of these enhancements are quantified in computational experiments.

As we believe that the ALNS framework is quite robust and easy to understand and implement, we hope that it can be used outside the vehicle routing domain as well. Consequently, in Chapter 6 we describe the framework in general terms. Also in Chapter 6 we illustrate how a typical search behaves in a novel, graphical way. This leads to a better understanding of how the heuristic explores the solution space and could be used to analyse other metaheuristics as well. The heuristic is tested on 5 new classes of VRPs in Chapter 6, including some classical vehicle routing problems like the capacticated vehicles routing problem and the vehicle routing problem, again with promising results.

The unified heuristic is not only well-suited for solving different types of VRPs but it can also be used to solve problems where a variety of different constraints are in use. The heuristic could for example easily handle a problem where some customers require deliveries from a common depot while other customers need to have goods transported from one location to another.

An implementation of the ALNS heuristic is currently being used to solve real life problems at several large companies in Denmark, so the heuristic has had an impact on real life transportation problems.

In the study of exact methods for the PDPTW two new formulations of the problem have been proposed in Chapter 8. The formulations contain a polynomial number of variables and an exponential number of constraints (in $n$, the number of requests). These formulations are used in a branch and cut approach to solve the problem to optimality. The computational experiments show that the new formulations enable us to solve much larger instances to optimality compared to an earlier branch and cut algorithm by Cordeau [2006]. Furthermore two new classes of valid inequalities are presented, the so called strengthened capacity inequalities and fork inequalities. Heuristic separation procedures for the two classes of inequalities are also presented. The last
class of inequalities proves to be especially helpful in increasing the lower bound of the LP relaxation. The last contribution in Chapter 8 is the adaptation of the so called reachability inequality, introduced for the VRPTW by Lysgaard [2005], to the PDPTW.

Chapter 9 compares several lower bounds obtained by solving the set-partitioning formulation of the PDPTW by column generation using different pricing problems. Two pricing problems from the literature are investigated and two pricing problems that has not been used for the PDPTW before are proposed . This provides the first computational comparison of the lower bounds obtained by using the pricing problem proposed by Dumas et al. [1991] to the lower bound obtained by Sol [1994].

The lower bound obtained by solving the set partitioning relaxation is strengthened by adding valid inequalities, thus the implemented algorithm is of the branch-cut-and-price type. The chapter also introduces a new valid inequality for the PDPTW, the strengthened precedence inequality. This inequality is obtained by combining the ideas of the reachability inequality mentioned above with the precedence inequality proposed by Ruland and Rodin [1997].

The computational results show that the branch-and-cut-and-price algorithm is able to outperform the branch and cut algorithm from Chapter 8 on most instances considered in the test.

### 1.4 Overview of Ph.D. thesis

The thesis is divided into two parts, a part about heuristics and a part about exact methods. Each part begins with a short introduction to the field and the papers contained in that part. The heuristic part contains three papers:

- Chapter 4: An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows. This paper presents the adaptive large neighborhood search (ALNS) heuristic and applies it to the PDPTW. The paper is concluded with a computational experiment that shows the superiority of ALNS to a simpler larger neighborhood search (LNS). The results on standard benchmark problems for the PDPTW show that the heuristic overall obtain the best results compared to competing heuristics. The paper has been accepted for publication in Transportation Science and it is co-authored with David Pisinger.
- Chapter 5: A unified heuristic for a large class of vehicle routing problems with backhauls. This paper uses the heuristic from the preceding chapter to solve a large class of vehicle routing problems with backhauls. The paper gives a short survey of vehicle routing problems with backhauls and describes how the problems can be transformed to the PDPTW. On the algorithmic side the paper suggests some improvements to the ALNS. The computational tests show that the improvements suggested in the paper do have a positive impact on the algorithm and they show that the heuristics must be considered to be at least on par with existing, specialized heuristic for the considered problems when it comes to solution quality. The paper has been accepted for publication in a special issue of European Journal of Operational Research and it is co-authored with David Pisinger. This paper was submitted before the paper in Chapter 4, and consequently uses a slightly different vocabulary. Most notable is it, that the term ALNS is not used in this paper.
- Chapter 6: A general heuristic for vehicle routing problems. This paper gives a general description of the ALNS framework as we believe it can be applied to optimization problems outside the vehicle routing domain. The paper extends the unified vehicle routing heuristic to handle five additional problem classes, including the CVRP, VRPTW and MDVRP (multi depot VRP). The paper is concluded with computational experiments that among other things show that the unified heuristic is the best method currently, when it comes to minimizing the number of vehicles in large VRPTW instances. The paper has been accepted for publication in Computers and Operations Research and is co-authored with David Pisinger.

The part about exact methods contains two papers

- Chapter 8: Models and a Branch-and-Cut Algorithm for Pickup and Delivery Problems with Time Windows. This paper proposes two new models for the PDPTW, both models contains an exponential number of constraints. These constraints are added dynamically to the model along with other valid inequalities. The paper proposes two new classes of valid inequalities, the so called fork inequalities and strengthened capacity inequalities. An inequality recently proposed for the VRPTW, the so called reachability inequality is also adapted to the PDPTW. Computational experiments show that the new formulations are superior to a formulation proposed recently by Cordeau [2006], for some instances a speedup of more than a factor 1000 is observed. The paper has been submitted to a special issue of Networks and has been conditionally accepted. It is co-authored with Jean-François Cordeau and Gilbert Laporte.
- Chapter 9: Branch-and-Cut-and-Price for the Pickup and Delivery Problem with Time Windows. This paper examines the set-partitioning formulation (see for example Dumas et al. [1991]) for the PDPTW. Four different relaxations of the problem are proposed by varying the pricing problem in a column generation algorithm for the problem. Two of these pricing problems have previously been considered as pricing problems for the PDPTW. This paper gives the first computational comparison of the two lower bounds obtained by using these two pricing problems and it improves upon the exact algorithms for one of the problems by improving the dominance criterion. Valid inequalities proposed in Chapter 8 are added to the model dynamically and a new class of valid inequalities is proposed, which is denoted the strengthened precedence inequality. Extensive computational results show that the branch-cut-and-price algorithm usually is superior to the branch-and-cut algorithm, but that this is not always is the case. The paper is co-authored with Jean-François Cordeau and has not yet been submitted. Plans for publication were discussed in the preface.

The three papers about the heuristic have been presented in different forms at the following occasions

- Route2003 - International Workshop on Vehicle Routing, Denmark, June 22-25, 2003 (speaker: Stefan Ropke).
- The EURO Summer Institute - ESI XXI Stochastic and Heuristic Methods in Optimization, July 25 - August 7 2003, Neringa, Lithuania (speaker: Stefan Ropke).
- ISMP2003 - International Symposium on Mathematical Programming, Denmark, August 18-22, 2003 (speaker: Stefan Ropke).
- CORS/INFORMS International Meeting, Banff 2004, May 16-19, 2004 (speaker: Stefan Ropke).
- Seminar at the Center for Research on Transportation, University of Montreal, Canada, September 30, 2004 (speaker: Stefan Ropke).
- Route2005 - International workshop on vehicle routing and intermodal transportation, Bertinoro, Italy - June 23-26, 2005 (speaker: David Pisinger)

Chapter 8 has been presented at the following occasions

- International Colloquium for the 25th anniversary of GERAD, Montreal, Canada, May 1113, 2005, (preliminary version) (speaker: Jean-François Cordeau)
- Route2005 - International workshop on vehicle routing and intermodal transportation, Bertinoro, Italy - June 23-26, 2005 (speaker: Jean-François Cordeau)
- Seminar at Mathematics department, Brunel University, 19th December 2005 (planned) (speaker: Gilbert Laporte)

A very early version of Chapter 9 was presented at

- Optimization days 2005, Montreal, Canada, May 9-11, 2005 (speaker: Stefan Ropke)


## Chapter 2

## Classes of vehicle routing problems

The objective of this section is to introduce the core problem studied in this thesis, the pickup and delivery problem with time windows (PDPTW). In order to do so four simpler variants of the problem are first introduced. This gives an introduction to some of the core problems in the field of vehicle routing and surveys the relevant literature. The four preliminary problems studied are the traveling salesman problem (Section 2.1), the m-traveling salesmen problem (Section 2.2), the capacitated vehicle routing problem (Section 2.3) and the vehicle routing problem with time windows (Section 2.4). The section on the pickup and delivery problem with time windows can be found in Section 2.5. Each section first introduces the problem in words and then gives a mathematical definition of the problem. Finally literature pointers are given and recent advances are discussed (in Section 2.3, 2.4 and 2.5). The introduction of the problem and mathematical models can be understood with a basic knowledge of operations research, while the literature discussion can be technical at times and requires a deeper understanding of operations research and in particular of solution method paradigms.

It should be mentioned that all five problem classes discussed here are NP-hard.

### 2.1 The traveling salesman problem

One of the simplest, but still NP-hard, routing problems is probably the traveling salesman problem (TSP). In the TSP one is given a set of cities and a way of measuring the distance between each city. One has to find the shortest tour that visits all cities exactly once and returns back to the starting node. In Figure 2.1 an example of a TSP instance is shown to the left and to the right the optimal solution is shown when Euclidean distances are used to measure the distance between two cities.

The problem comes in different flavours depending on what properties the distances satisfy. If the distances satisfy that the distance from city $i$ to city $j$ is the same as the distance from city $j$ to city $i$ for all cities $i$ and $j$, the the problem is said to be symmetric. If this property does not hold then the problem is said to be asymmetric. A problem is said to be Euclidean if the cities are located in $\mathbb{R}^{d}$ and the distance between two cities is the Euclidean distance.

The problem can be formulated as a mathematical model in the following way. Let $G=(V, A)$ be a complete, directed graph where $V=\{1, \ldots, n\}$ is the set of nodes/cities and $A$ is the set of arcs. To each arc $(i, j) \in A$ is a assigned a distance or cost $c_{i j}$. We define binary decision variable $x_{i j}$ that is set to one if and only if $\operatorname{arc}(i, j)$ is used in the solution. The problem can be formulated as

$$
\begin{equation*}
\min \sum_{i \in V} \sum_{j \in V \backslash\{i\}} c_{i j} x_{i j} \tag{2.1}
\end{equation*}
$$



Figure 2.1: TSP illustration
subject to

$$
\begin{align*}
\sum_{j \in V \backslash\{i\}} x_{i j} & =1 & & \forall i \in V  \tag{2.2}\\
\sum_{i \in V \backslash\{j\}} x_{i j} & =1 & & \forall j \in V  \tag{2.3}\\
\sum_{i \in S} \sum_{j \in V \backslash S} x_{i j} & \geq 1 & & \forall S \subset V  \tag{2.4}\\
x_{i j} & \in\{0,1\} & & \forall(i, j) \in A \tag{2.5}
\end{align*}
$$

The objective (2.1) minimizes the arc costs, equations (2.2) and (2.3) ensures that one arc leaves each node and one arc enters each node, equation (2.4) eliminates sub-tours.

The amount of scientific literature on the TSP is staggering. Good starting points for getting to know the problem are E. L. Lawler and Shmoys [1985] and Gutin and Punnen [2002]. The origins of the TSP are discussed in Schrijver [2005]. Very large Euclidean instances of the TSP can be solved to optimality, the largest instance solved to optimality so far contains 24,978 cities. It was solved by branch-and-cut by the research team of Applegate, Bixby, Cvátal, Cook and Helsgaun ${ }^{1}$. Heuristic methods for the TSP have been applied to an instance with more than 1.9 million cities and the gap between the currently best know upper and lower bounds for this instance has been shown to be $0.068 \%^{2}$ which is quite remarkable. It is safe to say that the TSP is one of the most studied NP-hard problems and solution methods for this problem have reached a very high level. More general routing problems like the capacitated vehicle routing problem or the pickup and delivery problem with time windows turn out to be much harder to solve, both heuristically and exactly, compared to the TSP. I think that the impressive development in solution methods for the TSP leaves hope of significant improvements in solution methods for the more general routing problems.

## 2.2 m -Traveling salesman problem

The $m$-traveling salesman problem ( $m$-TSP) is a generalization of the TSP that introduces more than one salesman. In the $m$-TSP we are given $n$ cities, $m$ salesmen and one depot or home base. All cities should be visited exactly once on one of $m$ tours, starting and ending at the depot. The tours are not allowed to be empty. If distances satisfy the triangle inequality, that is

[^1]if $d(i, k) \leq d(i, j)+d(j, k)$ for all $i, j$ and $k$ then it is easy to see that the distance of the shortest TSP tour on the $n$ cities plus the depot always is less than or equal to the distance of the shortest $m$-TSP solution for any $m$.

Any $m$-TSP with $n$ cities can be formulated as a TSP with $m+n$ cities. One first creates $m$ copies of the depot node. The distances between depot nodes is then set to a sufficiently large number while the distances between the depot nodes and ordinary nodes are copied from the $m$ TSP. The large distance between depot nodes ensures that no salesmen tours are empty. Notice that the resulting TSP does not obey the triangle inequality.

In Figure 2.2 an example of a solution to an $m-T S P$ with $m=3$ and $n=38$ is shown. The actual solution is shown in the top right part of the figure. Observe that one salesman serves one city, the next salesman serves 4 cities and the last salesman serves the rest of the cities. Thus the workload is by no means split fairly between the salesmen.

The $m$-TSP is not studied widely in the literature, probably because it is so closely related to the TSP. The literature about heuristics and exact methods has recently been surveyed by Bektas [2006]. An interesting variant of the problem is the min-max $m$-TSP where the length of the longest salesman tour has to be minimized. This problem has been studied by França et al. [1995] who proposed heuristic and exact methods for the problem. More recently Applegate et al. [2002] solved a challenging min-max $m$-TSP instance to optimality for the first time. The instance originated from a competition from 1996 and had been unsolved since then. The problem was solved on a network of 188 processors and required 10 days of computing, which corresponds to roughly $79 \times 10^{6} \mathrm{CPU}$ seconds scaled to a 500 MHz Alpha EV6 processor.

### 2.3 Capacitated vehicle routing problem

In the capacitated vehicle routing problem (CVRP) a vocabulary different from the one used in the TSP community is used. The objects called cities in the TSP world are called customers in the CVRP world and the salesmen are called vehicles. The common starting point is still denoted the depot. In the CVRP we are given a depot, a set of $n$ customers, a set of $m$ vehicles and a distance measure as in the $m$-TSP, but in the CVRP every vehicle has a capacity $Q$ and every customer $i \in\{1, \ldots, n\}$ has a demand $q_{i}$. The task in the CVRP is to construct vehicle routes such that all customers are served exactly once and such that the capacities of the vehicles are obeyed. This should be done while minimizing the total distance traveled.

We now introduce a mathematical model for the problem. We use a set partitioning approach (or path-based modeling) as this makes it easier to model the more complicated problems that are described below. A model similar to the one presented for the TSP (Section 2.1) is certainly possible; such a model can be found in Toth and Vigo [2002b]. Let $G=(V, A)$ be a directed graph as before, let $V=\{0,1, \ldots, n, n+1\}$ be the set of nodes in the graph where node 0 and $n+1$ corresponds to the depot and node $\{1, \ldots, n\}$ corresponds to customers. The depot has been split into two nodes to make modeling easier, node 0 corresponds to the start of the routes and $n+1$ corresponds to the end of the routes. We assume that distances are given as a matrix $\left(c_{i j}\right), i, j \in\{0, \ldots, n+1\}$. From now on we will call the distances for costs.

A legal route $\bar{r}$ must be a simple (that is, no node is visited twice) path from node 0 to node $n+1$. We can write such a path

$$
\begin{equation*}
\bar{r}=\left(v_{0}, v_{1} \ldots, v_{h}, v_{h+1}\right) \tag{2.6}
\end{equation*}
$$

where $v_{i}, i \in\{0, \ldots, h+1\}$ are the nodes visited on the route. We always have that $v_{0}=0$ and $v_{h+1}=n+1 . h$ is the number of customers visited on the route. The route should satisfy the capacity requirement. We can write this as

$$
\begin{equation*}
\sum_{i=1}^{h} q_{v_{i}} \leq Q \tag{2.7}
\end{equation*}
$$



Figure 2.2: m-TSP figure. Top left: the depot and cities in the instance. The depot is indicated as a black square. Top right: the optimal $m$-TSP solution for $m=3$. Bottom right: The optimal TSP solution when the TSP was solved on the same set of cities plus the depot. The length of the $m$-TSP solution is 5699 units while the length of the TSP solution is 5026 units.
the cost $c_{\bar{r}}$ of a route $\bar{r}$ is

$$
\begin{equation*}
c_{\bar{r}}=\sum_{i=0}^{h} c_{v_{i}, v_{i+1}} \tag{2.8}
\end{equation*}
$$

Let $R$ be the set of all feasible routes and let $\left(a_{i \bar{r}}\right)$ be a boolean matrix with $n$ rows and $|R|$ columns. Let $a_{i \bar{r}}=1$ if and only if route $\bar{r}$ serves customer $i$. The CVRP can be formulated as

$$
\begin{equation*}
\min \sum_{\bar{r} \in R} c_{\bar{r}} x_{\bar{r}} \tag{2.9}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \sum_{\bar{r} \in R} a_{i \bar{r}} x_{\bar{r}}=1  \tag{2.10}\\
& \sum_{\bar{r} \in R} x_{\bar{r}}=m  \tag{2.11}\\
& x_{\bar{r}} \in\{0,1\} \quad \bar{r} \in\{1, \ldots, n\}  \tag{2.12}\\
&
\end{align*}
$$

The objective function (2.9) selects a set of the feasible of routes that minimizes the sum of the route costs while equation (2.10) ensures that all customers are served exactly once and equation (2.11) ensures that exactly $m$ vehicles are used. In some variants of the CVRP equation (2.11) is relaxed such that at most $m$ vehicles are used or such that there are no restrictions on the number of vehicles used.

A variant of the CVRP that is often studied in the heuristic literature is the distance constrained CVRP, where a distance measure $d_{i j}$ (possibly different from $c_{i j}$ ) is assigned to each arc. An upper bound on distance $D$ is also given and no routes must be longer than $D$. This constraint is easily added to our model, we simply require that the visits $v_{0}, \ldots, v_{h+1}$ in our feasible path $\bar{r}$ should satisfy

$$
\begin{equation*}
\sum_{i=0}^{h} d_{v_{i}, v_{i+1}} \leq D \tag{2.13}
\end{equation*}
$$

The constraint (2.13) can also be seen as a limit of time spent on the route and service times at customers can be incorporated in $\left(d_{i j}\right)$.

Figure 2.3 shows an optimal solution to a small CVRP instance. Note that routes can cross each other in an optimal solution with euclidean distances. This is caused by the capacity constraint.

The CVRP was introduced by Dantzig and Ramser [1959] and has been subject to intense research since then. Many heuristic methods have been proposed in the last 45 years and it is out of the scope of this section to give an overview of these. Instead we would recommend four surveys. Heuristics proposed up until around 1980 are surveyed in Christofides et al. [1979], while the most successful heuristics until the new millennium are surveyed in Laporte and Semet [2002] and Gendreau et al. [2002]. The most recent advances in metaheuristics have been surveyed in Cordeau et al. [2004]. The best heuristic for the problem at the moment is the metaheuristic proposed by Mester and Bräysy [2005]. The general heuristic, presented in this thesis, is tested on benchmark CVRP instances in Chapter 6. The results show that the heuristic is on par with most of the heuristics proposed for the problem recently, but the heuristic by Mester and Bräysy [2005] produces better results than the heuristic proposed in this thesis for the particular problem.

Quite a lot of attention has been given to exact methods for the CVRP in the recent years and substantial advances in the size of problems that can be solved to optimality has been achieved. Most research has gone into developing branch and cut methods and valid inequalities for the problem. The two most successful branch and cut algorithms are the one proposed by Lysgaard et al. [2004] and Blasum and Hochstättler [2000]. Recently it has been shown that the combination of column generation and cutting planes is a powerful approach for the CVRP and the branch-and-cut-and-price algorithm proposed by Fukasawa et al. [2005] must be considered as the best


Figure 2.3: CVRP illustration. The figure on the left shows the nodes in a CVRP instance with 32 customers, the figure on the left shows the optimal CVRP solution for this instance.
algorithm currently. This algorithm was able to solve all instances with up to 134 customers that it was tested with. This does not mean that all instances with 130 customers or less can be solved routinely though, as only two instances with more than 100 customers were attempted.

Many more exact methods have been proposed through the years for the CVRP. Most of these are surveyed by Toth and Vigo [2002a], Naddef and Rinaldi [2002], Bramel and Simchi-Levi [2002] and Cordeau et al. [2005b].

### 2.4 The vehicle routing problem with time windows

The vehicle routing problem with time windows (VRPTW) generalizes the CVRP by associating travel times $t_{i j}$ with arcs $(i, j)$ and service times $s_{i}$ and time windows $\left[a_{i}, b_{i}\right]$ with customers $i$ and depot $i=0$. The vehicle should arrive before or within the time window of a customer. If it arrives before the start of the time window, it has to wait until the time window opens before service at the customer can start. The problem can be modelled using the framework introduced in Section 2.3. To ease the notation, we again consider the depot as split into two nodes. The route $\bar{r}=\left(v_{0}, v_{1} \ldots, v_{h}, v_{h+1}\right)$ should satisfy the following criteria in order to be valid. The capacity requirement is identical to the one from equation (2.7):

$$
\begin{equation*}
\sum_{i=1}^{h} q_{v_{i}} \leq Q \tag{2.14}
\end{equation*}
$$

We introduce a variable $S_{i}$ to indicate when service starts at node $i$. A route must obey the following constraints to be time feasible

$$
\begin{array}{rlrl}
a_{v_{i}} & \leq \quad S_{v_{i}} \leq b_{v_{i}} & \forall i \in\{0, \ldots, h+1\} \\
S_{v_{i+1}} \geq S_{v_{i}}+s_{v_{i}}+t_{v_{i}, v_{i+1}} & \forall i \in\{0, \ldots, h\} \tag{2.16}
\end{array}
$$

Equation (2.15) ensures that the service start time is within the time window of the node and equation (2.16) updates the start time along the route. The cost of a route is defined as in equation (2.8). Given the set $R$ of feasible VRPTW routes, the VRPTW can now be formulated as

$$
\begin{equation*}
\min f(x) \tag{2.17}
\end{equation*}
$$

subject to

$$
\begin{array}{cl}
\sum_{\bar{r} \in R} a_{i \bar{r}} x_{\bar{r}}=1 & \forall i \in\{1, \ldots, n\} \\
x_{\bar{r}} \in\{0,1\} & \bar{r} \in R \tag{2.19}
\end{array}
$$

Two different objectives are studied in the literature. The first objective is to minimize the sum of the route costs as in the CVRP, that is $f(x)=\sum_{\bar{r} \in R} c_{\bar{r}} x_{\bar{r}}$. The alternative objective is to minimize the number of vehicles used as first priority and the route costs as second priority. This can be written as $f(x)=M \sum_{\bar{r} \in R} x_{\bar{r}}+\sum_{\bar{r} \in R} c_{\bar{r}} x_{\bar{r}}$, where $M$ is a sufficiently large integer. The first objective function is usually considered in the literature about exact methods for the VRPTW while the second objective is used with heuristics.

Figure 2.4 shows an example of an optimal VRPTW solution. The figure only shows the geometrical aspects, not the time windows. The time windows cause routes to cross themselves, even in optimal solutions.

The amount of heuristics proposed for the VRPTW is exceptional. Especially in the nineties and in the new millennium many metaheuristics have been proposed. A short overview of metaheuristics is given by Cordeau et al. [2002] while a more recent and comprehensive survey is given by Bräysy and Gendreau [2005b]. Another recent survey is presented by Cordeau et al. [2005b]. It is hard to say which metaheuristic that is the best for the VRPTW currently as a heuristic can be judged on many different parameters like speed, robustness and precision. Two good candidates would be the hybrid evolutionary algorithm proposed by Mester and Bräysy [2005] and the general heuristic presented in this thesis. The heuristic proposed in this thesis is particularly well suited for minimizing the number of vehicles necessary to serve all customers, as the computational experiments in Chapter 6 show.

Exact methods for the VRPTW have been surveyed by Cordeau et al. [2002] and Cordeau et al. [2005b]. Exact methods for the VRPTW have been developing rapidly in the recent years. This can be illustrated by the fact that 5 years ago, several instances from the Solomon test set (Solomon [1987]) with 25 customers were still unsolved while today all instances with 25 and 50 customers from the test set have been solved. The last unsolved instances with 50 customers were reported solved this year by Jepsen et al. [2005] and Kallehauge and Boland [2005]. Although neither of the two papers could solve all of the 50 customer problems, the union of the solved instances covers all instances.

It is interesting to note that one of the new inequalities proposed in Kallehauge and Boland [2005], which is one of the reasons for the success of the approach presented in that paper is almost identical to the fork inequality proposed in Chapter 8 of this thesis. The two inequalities were developed independently of each other.

Exact solution methods for the VRPTW are dominated by column generation methods, with the branch and cut method by Kallehauge and Boland [2005] as the lone exception. Much of the improvement in exact column generation approaches is due to developments in solving the pricing problem. Prior to Irnich and Villeneuve [2003], Feillet et al. [2004] and Chabrier [2005], the pricing problem that was solved in column generation approaches was the shortest path problem with time window and capacity constraints (SPPTWCC) that allowed cycles of length 3 or more in the shortest paths. Irnich and Villeneuve [2003] proposed an algorithm for the pricing problem that eliminated cycles of length $k$ in the shortest paths, where $k$ is a parameter. $k=2$ corresponds to the traditional pricing problem solved. Irnich and Villeneuve [2003] showed that using $k>2$ drastically improved the lower bound obtained from the column generation approach. Feillet et al. [2004] and Chabrier [2005] went a step further and solved the elementary shortest path problem with time window and capacity constraints (ESPPTWCC) as pricing problem. In the ESPPTWCC the shortest paths have to be simple, that is without any cycles. They empirically showed that the problem is not too hard to solve and that using this pricing problem once more increased the lower bounds to the VRPTW.

Recently Righini and Salani [2004, 2005] proposed improvements to the ESPPTWCC algorithm that resulted in great speed ups. The improvements came from performing a bidirectional search that simultaneously searches for shortest paths from the source and destination nodes and merges the result "when the two searches meet". Traditional algorithms search from the source node only. Their other contribution is decremental state space relaxation that initially solves a SPPTWCC where cycles are allowed and then gradually forbids repetition of the nodes that take part in cycles. This usually improves the running time as the algorithm typically only needs to disallow repetition of a small subset of nodes in order to get an elementary path instead of disallowing


Figure 2.4: VRPTW illustration. The figure on the right shows the optimal solution to instance r107 with 50 nodes from the Solomon data set. The figure on the left shows the nodes in the problem
repetition of all nodes which is more time consuming. It should be noted that the last idea also has been proposed by Boland et al. [2005].

Jepsen et al. [2005] proposed to use valid inequalities from the set-partitioning problem to raise the lower bound obtained by the column generation approach. They examined the clique inequality from the set-partitioning problem and showed how the pricing problem must be changed to handle an inequality similar to the clique inequality (a non-robust inequality according to the vocabulary introduced in Poggi de Aragão and Uchoa [2003]). The computational results showed that the lower bound was improved significantly when introducing these cuts and several previously unsolved instances in the Solomon set were solved using these inequalities.

The developments that have taken place within column generation for the VRPTW inspired the research into set-partitioning relaxations of the PDPTW, which is presented in Chapter 9.

If the capacity constraint (2.14) is removed from the problem then one gets a multiple traveling salesman problem with time windows (m-TSPTW), which is a problem that has received much less attention in the literature compared to its sibling, the VRPTW. A short overview of some papers on the m-TSPTW is given by Cordeau et al. [2002].

### 2.5 Pickup and delivery problem with time windows

The pickup and delivery problem with time windows (PDPTW) generalizes the VRPTW. In the PDPTW one no longer delivers goods from a depot to the customers, instead the customers need goods to be transported from a pickup location to a delivery location. Each pickup-delivery pair is called a request. The problem is defined on a graph with $2 n+2$ nodes, where $n$ is the number of requests. Each request $i$ is associated with node $i$ and $n+i$, where $i$ is the pickup and $n+i$ is the delivery of the request. Node 0 and $2 n+1$ represents the terminals where vehicles start (0) and end $(2 n+1)$ their trips. A time window $\left[a_{i}, b_{i}\right]$ is associated with every node in the graph and a load $d_{i}$ is associated with every node $1 \leq i \leq 2 n$. It is assumed that $d_{n+i}=-d_{i}$ for all $i=1, \ldots, n$. Just as for the VRPTW, travel times $t_{i j}$ and costs $c_{i j}$ are associated with arcs $(i, j)$ and service times $s_{i}$ are associated with node $i$. It is assumed that all vehicles are identical and have capacity $Q$.

The task in the PDPTW is to construct routes for the vehicles such that the pickup and delivery corresponding to the same request is served by the same vehicle, that the pickup is served before the corresponding delivery and such that time window and the capacity constraints are obeyed. Just as for the VRPTW it is common to either minimize route costs $\left(c_{i j}\right)$ or minimize the number of vehicles necessary to serve all requests.

Using the modeling framework from the previous sections, the requirement to a feasible route $\bar{r}=\left(v_{0}, v_{1} \ldots, v_{h}, v_{h+1}\right)$ can be stated as follows. The pairing constraint that ensures that the pickup and delivery of a request is served on the same route can be stated as

$$
\begin{equation*}
i \in\left\{v_{1}, \ldots, v_{h}\right\} \Leftrightarrow n+i \in\left\{v_{1}, \ldots, v_{h}\right\} \quad \forall i \in\{1, \ldots, n\} \tag{2.20}
\end{equation*}
$$

The precedence constraint between the pickup and delivery node of the same request can be stated as

$$
\begin{equation*}
v_{j}=i \Rightarrow n+i \in\left\{v_{j+1}, \ldots, v_{h}\right\} \quad \forall i \in\{1, \ldots, n\}, \forall j \in\{1, \ldots, h\} \tag{2.21}
\end{equation*}
$$

The time windows are modeled as for the VRPTW, $S_{i}$ is a variable that indicates when service starts at node $i$

$$
\begin{array}{crl}
a_{v_{i}} & \leq \quad S_{v_{i}} \leq b_{v_{i}} & \forall i \in\{0, \ldots, h+1\} \\
S_{v_{i+1}} \geq S_{v_{i}}+s_{v_{i}}+t_{v_{i}, v_{i+1}} & \forall i \in\{0, \ldots, h\} \tag{2.23}
\end{array}
$$

Capacity checks are a little more complicated than in the preceding sections as the capacity no longer is increasing monotonously along the route

$$
\begin{equation*}
0 \leq \sum_{i=0}^{j} d_{v_{i}} \leq Q \quad \forall j \in\{0, \ldots, h+1\} \tag{2.24}
\end{equation*}
$$

As for the VRPTW the typical objectives are to minimize the sum of the arc costs $c_{i j}$ or minimize the number of vehicles used as first priority and then minimize arc costs as second priority.

A more complex variant of the PDPTW is studied in Chapters 4 to 6. This variant includes multiple depots, precedences between nodes not belonging to the same request and site dependencies. Mathematical models for the more complex problem are given in Chapters 4 and 6.

Figure 2.5 shows an optimal solution for a single-depot PDPTW instance. It is clear that the capacity, time windows, pairing and precedence constraints give rise to a quite messy solution.

The literature about the PDPTW is not as extensive as the VRPTW and it is less homogeneous. The PDPTW studied in the literature often contains extra constraints not present in the core formulation presented in this chapter which makes comparison among different methods difficult. In the recent years there has been some tendency in the heuristic community to study the core PDPTW problem though, and a set of common benchmark instances has appeared.

A variant of the PDPTW that has been studied frequently is the dial-a-ride problem (DARP). Where the PDPTW usually is thought of as a model for transporting goods, dial-a-ride problems are models for a class of passenger transportation problems. It is frequently used to model the transportation of disabled and elderly people. In this variant of the PDPTW a request consists of transporting one or more persons from one place to another. In contrast to the plain PDPTW, the DARP has constraints or terms in the objective that seek to keep customer inconvenience at a respectable level. How customer inconvenience is modeled differs from paper to paper - there is not one single model that qualifies as the model for the DARP. In this thesis a DARP is solved in two of the chapters - Chapters 8 and 9 . In the DARP variant considered here, a max ride time constraint is enforced on each request. The max ride time constraint ensures that the time from a customer is picked up to the time he is delivered is less than a constant $L$. Thereby we make sure that no customer is taken on long detours which most likely would annoy the customer even though he makes it to his destination within his time window. This constraint can be expressed as follows in our modeling framework

$$
\begin{equation*}
v_{i}=l \wedge v_{j}=n+l \Rightarrow S_{v_{j}}-\left(S_{v_{i}}+s_{v_{i}}\right) \leq L \quad \forall i, j \in\{1, \ldots, h\}, \forall l \in\{1, \ldots, n\} \tag{2.25}
\end{equation*}
$$

Other models for the DARP contains more constraints and penalise user inconvenience in the objective function. Toth and Vigo [1997] for example proposed a model where the customer specifies a pickup time or a delivery time. A time window is constructed around this point in


Figure 2.5: PDPTW Figure. Top left: the depot and nodes in the instance. The depot is indicated as a black square, pickups are circles and deliveries are discs. Top right: the requests in the problem, a pickup and a delivery connected by a line forms a request. Bottom right: The optimal PDPTW solution. Two routes are necesarry to serve the requests (shown with solid and dashed lines). Arc between the depot and pickup/delivery nodes are not shown in order to make the figure more readable.
time, and service within the time window is allowed, but a penalty is added to the objective if the vehicle does not arrive at the exact desired time. The model also contains the ride time constraint presented above, but the maximum ride time is dependent on the user. Another feature of the model is that it allows different types of vehicles that have different capabilities. Some vehicles might for example be able to transport a number of wheelchair passengers and some carry trained personnel that can help passengers in need of assistance.

Several surveys of the PDPTW and DARP literature have been presented in the last decade, see Savelsbergh and Sol [1995], Mitrović-Minić [1998], Desaulniers et al. [2002], Cordeau et al. [2005a]. A survey dedicated to the DARP was presented by Cordeau and Laporte [2003].

### 2.5.1 Heuristics for PDPTW and DARP

Several metaheuristics have been proposed for the PDPTW in recent years and a set of problem instances has appeared as a common platform for testing heuristics. Li and Lim [2001] introduced the set of instances that seems to have become a standard benchmark set for the PDPTW. The instances were constructed from the Solomons test set for the VRPTW (Solomon [1987]) and Gehring and Hombergers larger VRPTW instances (Gehring and Homberger [1999]). The instances were created by first solving the VRPTW instances with a VRPTW heuristic and then pairing nodes that occur in the same route in the VRPTW solution to form a request. The re-
quests are created such that the pickup is visited before the delivery on the VRPTW route. This way of creating PDPTW instances might not result in very realistic instances. One can argue that the requests that are constructed are too "easy" because the pickup and delivery fit well together as they were served by the same route in the VRPTW solution. It turns out that the PDPTW instances created this way are challenging for both heuristics and exact methods, especially the larger instances with 100 requests or more.

The two earliest metaheuristics for the PDPTW were proposed by Gendreau et al. [1998] and Nanry and Barnes [2000]. Gendreau et al. [1998] presented a tabu search for a dynamic version of the PDPTW. They used an interesting neighborhood based on the ejection chain idea: A request $i$ is removed from its route $r_{1}$ and reinserted into another route $r_{2}$ while ejecting another request $j$ from $r_{2} . j$ is inserted into a third route, thereby ejecting a third request and so on. The chain of ejections ends with the insertion of the last request into a route without ejecting a new request. Gendreau et al. [1998] describe how a good ejection chain can be found using heuristics.

Nanry and Barnes [2000] used a tabu search algorithm with a neighborhood consisting of three moves: 1) moving a request from one route to another, 2) exchanging a request in one route with a request from another route, and 3) relocating a request to another position within its original route. The heuristic was tested on instances with up to 50 requests. Two other tabu search variants, based on the same neighborhood structure proposed by Nanry and Barnes, were presented a little later by Lau and Liang [2001] and Li and Lim [2001].

Créput et al. [2004] proposed an evolutionary algorithm for the PDPTW where an individual in the solution simply is a solution to the PDPTW. Two crossover methods are proposed, both can produce infeasible offspring, where some requests are not visited or some requests are visited twice. Such offspring are repaired by inserting or removing requests as necessary. The algorithm also incorporates mutation operators based on local search. The heuristic was tested on the 50 request instances from Li and Lim [2001], but the solution quality obtained was worse than that obtained by Li and Lim's tabu search heuristic. Another genetic algorithm was proposed by Pankratz [2005] for the PDPTW where the genetic encoding stores the partitioning of requests on vehicles, but not the actual routing of the requests. The heuristic was tested on instances with around 50 requests from Li and Lim [2001] and Nanry and Barnes [2000]. The computational results seem to be better than the ones obtained by the other genetic algorithm (Créput et al. [2004]). Bent and Hentenryck [2006] applied a two-stage heuristic to the PDPTW and obtained good results on the instances proposed by Li and Lim . The first stage minimizes the number of vehicles used to serve the requests, this is done using a simulated annealing algorithm whose neighborhood consists of moving a request from one position in the solution to another. A modified objective function is used while minimizing the number of vehicles. The modified objective function encourages solutions that contain routes with a few requests and routes with many requests. This objective was chosen from the philosophy that it should be easy to eliminate the short routes. The second stage minimizes the traveled distance using large neighborhood search (LNS). The LNS heuristic alternates between removing requests from the current solution and reinserting the requests again. Removal of requests is carried out by a heuristic that removes related requests as proposed by Shaw [1998] for the VRPTW. Re-insertion of the requests is performed using a truncated branch-and-bound search that only allow a certain amount of branching.

Recently Lu and Dessouky [2005] proposed a new insertion algorithm for the PDPTW and tested it on the 50 request instances proposed by Li and Lim [2001]. A non-standard measure called the crossing length percentage was taken into account when constructing routes to make the routes more visually attractive. The measure is zero if a route does not cross itself and increases with the number of times it crosses itself, depending on the type of crossing.

Xu et al. [2003] have proposed a heuristic based on column generation to solve a PDPTW inspired by real life cases. The problem considered contains several constraints that have not been studied much in the literature. One of these constraints is that pickup and deliveries must be nested such that the last request loaded is the first one unloaded (LIFO). The model also considers legal working hours of drivers. The heuristic is tested on instances with up to 500 requests and results are looking promising.

Bodin and Sexton [1986] presented a heuristic for a variant of the DARP where customer
inconvenience were to be minimized. The heuristic used clustering and local search and were tested on a real-life problem containing 85 requests and 7 vehicles. Jaw et al. [1986] proposed an insertion algorithm for another DARP variant where customers either specify a desired pickup time or a desired delivery time and the heuristic must route the customers such that their pickup or delivery times are sufficiently close to the desired time. The ride time of a customer is furthermore not allowed to surpass a pre-specified acceptable ride time for that customer. The algorithm was tested on a large real-life problem.

Toth and Vigo [1997] presented a heuristic for the variant of the DARP described in Section 2.5. An initial solution is created using a parallel instertion heuristic and this solution is improved upon by using tabu search. The heuristic is tested on real life data and compared to solutions found by human schedulers. This comparison turned out to be difficult to perform as the hand made solutions greatly violated the constraints of the problem. The results indicate that the heuristic did well compared to the hand-made solutions and were fast considering the computer used to perform the experiments.

### 2.5.2 Exact methods for PDPTW and DARP

Several exact methods for the PDPTW have been proposed in the last 20 years, although the number of papers about this subject is smaller than the amount of literature about the exact solution of the CVRP and VRPTW. There is no established set of benchmark problems used in the exact-PDPTW literature as it is the case in the CVRP and VRPTW community. This makes comparison of different approaches hard, as the hardness of a PDPTW instance depends just as much on its structure as on its size. The paper presented in Chapter 9 tries to improve on this situation by presenting results on the readily available instances proposed by Li and Lim [2001] and on another set of PDPTW instances that are proposed in Chapter 8.

The first exact algorithm for the pure PDPTW was proposed by Desrosiers et al. [1986]. In this paper an exact algorithm for the 1-vehicle PDPTW was described. The algorithm is based on dynamic programming and rules for eliminating dominated labels are defined. The algorithm is able to handle problems with up to 40 requests. In the early nineties a column generation algorithm for the multi vehicle PDPTW was presented by Dumas et al. [1991]. This paper presented clever label domination and label elimination rules and was able to handle instances with up to 50 requests. Later in the nineties Sol [1994] presented another column generation algorithm for the PDPTW. This algorithm differed from the one proposed by Dumas et al. [1991] by using another pricing problem and different branching rules. Sol [1994] also presented new pricing heuristics and procedures for limiting the number of variables in the set partitioning problem. A condensed and updated version of Sol [1994] can be found in Savelsbergh and Sol [1998]. The column generation algorithms presented by Dumas et al. [1991], Sol [1994], Savelsbergh and Sol [1998] form the basis of the column generation algorithms proposed in Chapter 9.

Another column generation algorithm for a variant of the PDPTW was proposed recently by Sigurd et al. [2004]. The application that motivated this study was the transportation of live pigs. Each request corresponds to the transportation of animals from one location to another (e.g. from farm to farm). This application implies that there are extra precedence constraints on the requests to avoid the spread of diseases: a healthy group of pigs must not be transported on a vehicle that previously has transported pigs that have been exposed to some diseases. These precedence rules make it possible to solve the pricing problem on a acyclic, layered graph that allows quick evaluation of the pricing problem for even large instances.

Lübbecke [2001] used column generation to solve an Engine Scheduling problem which can be seen as a pickup and delivery problem. The problem was solved with what the author calls price-and-branch meaning that columns are generated in the root node only. If the LP relaxation in the root node turns out to be fractional, then a branch and bound search is started, but new columns are not generated in the child nodes in the branch-and-bound tree. This means that the solution found by the price-and-branch approach only is guaranteed optimal if it has the same objective as the lower bound found in the root node. Solutions with a different objective value might be optimal, but there is no guarantee.

Lu and Dessouky [2004] proposed a branch-and-cut algorithm for the PDPTW and the multiple vehicle pickup and delivery problem with capacity constraints (PDP). They presented a compact 2-index model for the problem with a polynomial number of constraints and variables as opposed to the model presented in Chapter 8 of this thesis that contains an exponential number of constraints. Lu and Dessouky presened several valid inequalities to improve the lower bound obtained from the LP relaxation of the model. Problems with up to 25 requests for the PDP and 15 requests for the PDPTW were solved to optimality in the computational experiments. Another branch-and-cut algorithm was proposed for the DARP by Cordeau [2006]. This algorithm forms the basis of the branch-and-cut algorithm proposed in Chapter 8 so we refer to this chapter for further information.

Exact methods for the single vehicle pickup and delivery problem without time window and capacity constraints (PDTSP) have been studied by Kalantari et al. [1985] and Ruland and Rodin [1997]. Kalantari et al. [1985] proposed a branch and bound method using a combinatorial lower bound. Instances with up to 18 requests were solved by this approach. Ruland and Rodin [1997] developed a branch-and-cut algorithm for the undirected version of the problem. The paper introduced new valid inequalities for the problem and instances with up to 15 requests were solved. The valid inequalities presented in this paper were later adapted to the directed case and used in a branch-and-cut algorithm for the dial-a-ride problem by Cordeau [2006]. The model for the basic PDP proposed by Ruland and Rodin [1997] was also used as an inspiration for the model for the PDPTW presented in Chapter 8. Recently Dumitrescu [2005] presented new valid inequalities for the PDTSP and identified classes of facet defining inequalities.

Psaraftis [1980] presented an exact dynamic programming approach for a variant of the single vehicle DARP. In this variant of the DARP, an ordering of the customers is given and in order to minimize customer inconvenience the order the customers are served in must not deviate too much from their initial ordering. An integer maximum position shift (MPS) is given and this integer defines how far out of sequence a customer can be picked up or delivered. Furthermore ride time of the customers should be minimized as well as the overall ride time of the vehicle.

## Part II

## Heuristics

## Chapter 3

## Introduction to heuristics

### 3.1 Introduction

This chapter introduces heuristic concepts for vehicle routing problems. The chapter uses the CVRP as the primary example as this is a reasonably simple problem that makes it easy to introduce the necessary concepts.

### 3.2 Heuristic categories

Heuristics can be categorized broadly into three different categories: construction heuristics, improvement heuristics and metaheuristics. These three categories are explained in the next three sections (Section 3.2.1 to 3.2.4).

Laporte and Semet [2002] proposed a different classification of heuristics for vehicle routing problems. The propose two main classes classical heuristics and metaheuristics. The class of classical heuristics is divided into three groups: constructive heuristics, two-phase heuristics and improvement methods. The term two-phase heuristics covers heuristics that divide the construction into two phases: a clustering phase and a routing phase. In the classification of heuristics used in this thesis, two-phase heuristics are seen as construction heuristics.

### 3.2.1 Construction heuristics

Laporte and Semet [2002] define construction heuristics as follows
Constructive heuristics gradually build a feasible solution while keeping an eye on solution cost, but they do no contain an improvement phase per se.

Many construction heuristics for vehicle routing problems have been proposed during the last 40 years. In the recent years it appears that their popularity has faded somewhat in the scientific literature as metaheuristics have become more dominant, however papers about construction heuristics still appear. Some examples are the PDPTW insertion heuristic by Lu and Dessouky [2005], the VRPTW insertion heuristic by Ioannou et al. [2001] and the savings algorithm for the CVRP by Altinel and Öncan [2005].

Fast heuristics are important from a practical point of view as many real world applications of heuristics require fast response times. In a vehicle routing application one needs to quickly reconstruct part of the solution if an incident happens while carrying out the plan or if a customer calls in with a new transportation task and wants to know if the task can be carried out. Fast construction algorithms are often the preferable algorithm for such situations and for very large problems containing thousands or tens of thousands of customers.

Fast heuristics can also be used as subroutines in more time consuming metaheuristics, this approach is used in this thesis.

Many construction heuristics for vehicle routing problems fall into one of the three classes: insertion heuristics, savings heuristics and clustering heuristics.

Insertion heuristics build a solution by inserting one customer at a time. Insertion heuristics can build one route at a time (sequential insertion heuristics) or build many or all routes in parallel (parallel insertion heuristics). The choice of which customer to insert and where to insert the customer is what differentiates the insertion heuristics. A very simple insertion heuristic could choose to insert the customer that increases the overall cost the least.

Savings heuristics initially build a solution where each customer is served on its own route. Routes are then merged one by one according to some criteria. Savings algorithms vary by the criterion used for merging routes (what saving is obtained by merging two routes) and by how routes are merged. For the CVRP the most simple merge operation deletes an edge between the depot and a customer from each of the two routes that is being merged and joins the route by adding an edge between the two customers that are adjacent to only one edge. More advanced merging procedures consider all the customers served by the two routes and solve a TSP (in case of the CVRP) on these customers.

The savings heuristic was first proposed by Clarke and Wright [1964] and consequently it is often denoted the Clarke and Wright algorithm. Many variants and improvements of the algorithm have been proposed and it has been applied to different variants of vehicle routing problems including a heterogeneous VRPTW (Liu and Shen [1999]) and pickup and delivery problem with full truckloads (Gronalt et al. [2004]), but most savings algorithms have been proposed for the CVRP. New variants of the savings algorithm are still proposed. A recent example is given by Altinel and Öncan [2005].

Clustering algorithms are two-phase algorithms. The first phase consists of grouping customers into subsets (clusters) where each subset should be served by one route. The second phase then creates routes for each subset. A third phase may be employed to repair the solution if it turns out that some of the clusters could not be served by a single vehicle.

Fisher and Jaikumar [1981] presented a clustering heuristic for the CVRP where the number of vehicles is fixed to $K$. In their approach a number of seed customers are selected initially and for each remaining customer $i$, a heuristic cost $d_{i k}$ of routing customer $i$ with seed customer $k$ is computed. A generalized assignment problem is then solved, using $d_{i k}$ in the objective. This produces $K$ clusters that each satisfies the capacity constraint. Each cluster is turned into a route by solving a TSP to optimality.

Another clustering approach is the sweep algorithm for the CVRP which was presented by Gillet and Miller [1974]. In this algorithm customers are clustered in sectors of the circle around the depot as shown on Figure 3.1. In practice the algorithm works by sorting customers according to their polar coordinate angle with the depot as $(0,0)$. The algorithm starts from the first customer in the list and adds this customer to a cluster. The algorithm continues to process the customers according to the ordering and adds the customer to the current cluster as long as the cluster can be served by a single vehicle. When it is no longer possible to add a customer to the current cluster a new cluster is started and becomes the current cluster. When all customers have been assigned to a cluster a TSP tour is found for each cluster to produce a CVRP solution. Gillet and Miller [1974] also included an improvement phace after the clustering.

### 3.2.2 Local search heuristics

Local search heuristics are heuristics that take a solution as input, modify this solution by performing a sequence of operations on the solution and produce a new, hopefully improved solution. At all times the heuristic has a current solution and it modifies this solution by evaluating the effect of changing the solution in systematic way. If one of the changes leads to an improved solution, then the current solution is replaced by the new improved solution and the process is repeated. In more advanced local search heuristics the algorithm sometimes perform changes that


Figure 3.1: Sweep algorithm. Customers in each sector of a circle are served by one vehicle.
lead to a solution that is worse than the current. This is done as one can hope to find an even better solution after a few more changes.

The term improvement heuristic [Laporte and Semet [2002]] can be used to describe a local search heuristic that only performs operations that improve the objective of the solution.

In the following we introduce local search heuristics more formally. The presentation follows that of Funke et al. [2005].

We are given an instance $I$ of a combinatorial optimization problem. $\mathcal{S}$ is the set of feasible solutions to the instance and $c: \mathcal{S} \rightarrow \mathbb{Q}$ is a function that maps from a solution to the solution cost. $\mathcal{S}$ is assumed to be finite, but it is often an extremely large set as pointed out in Section 1.2.2. We assume that the combinatorial optimization problem is a minimization problem, that is, we want to find the solution $s^{*}$ for which $c\left(s^{*}\right) \leq c(s) \forall s \in \mathcal{S}$.

We define a neighborhood of a solution $s \in \mathcal{S}$ as $N(s) \subseteq \mathcal{S}$. That is, $N$ is a function that maps from a solution to a set of solutions. A solution $s$ is said to be locally optimal or a local optimum with respect to a neighborhood $N$ if $c(s) \leq c\left(s^{\prime}\right) \forall s^{\prime} \in N(s)$. With these definitions it is possible to define a steepest descent algorithm (see Algorithm 1). The algorithm takes an initial solution as input (line 1). It repeats line $3-7$ as long as it found an improved solution in the last iteration. The neighborhood of $s$ is searched in line 3 and $s^{\prime}$ is the best solution in the neighborhood. In line 4 it is determined if the new solution is better than the previous. If it is, then we update the current solution in line 5 and reiterate. If the current solution was not improved then the algorithm terminates with the best solution observed during the search. The algorithm is called a steepest descent algorithm as it always chooses the best solution in the neighborhood. Another strategy is to choose the first improving solution observed in the neighborhood. Such an algorithm would be a descent algorithm. Funke et al. [2005] use the terms best search and first search for a steepest descent algorithm and a descent algorithm, respectively.

Another concept in local search heuristics is a move. A move $m$ is an operation that transforms a solution $s$ into another, possibly infeasible, solution $s^{\prime}$ that shares some characteristics of $s$. Following Funke et al. [2005] we define a superset $Z$ of $\mathcal{S}(\mathcal{S} \subseteq Z)$ containing all solutions that can be reached by applying moves to a solution in $\mathcal{S}$. Thus $m$ is a function that maps from $Z$ to $Z$ and $M$ is the set of all moves. The set $M$ defines an extended neighborhood $\hat{N}(s)$ to each solution $s, \hat{N}(s)=\{m(x): m \in M\}, \hat{N}(s) \subseteq Z$ and $N(s)=\hat{N}(s) \cap \mathcal{S}$. The extended neighborhood makes

```
Algorithm 1 Steepest descent
    input: Initial solution \(s \in \mathcal{S}_{I}\)
    improved = true
    while (improved)
        \(s^{\prime}=\arg \min _{x \in N(s)}\{c(x)\}\)
        if \(c\left(s^{\prime}\right)<c(s)\)
            \(s=s^{\prime}\)
        else
            improved = false
    return \(s\)
```

it easier to discuss the size of a neighborhood, we define the size of a neighborhood as $|\hat{N}(s)|$ or $|M|$. Using $N(s)$ to measure the size of a neighborhood is problematic as the size of this set would depend on $s$, but a working definition could be $\max \{|N(s)|: s \in \mathcal{S}\}$.

### 3.2.3 Neighborhoods

In this section we describe some neighborhoods proposed for vehicle routing problems. It is far from a complete description of all the neighborhoods conceived. Giving such a description is out of the scope of this section. What we wish to convey with this section is an idea of the different kinds of neighborhoods that have been proposed and attempted in practice. For a more complete survey of neighborhoods we refer the reader to Bräysy and Gendreau [2005a] which discusses VRPTW neighborhoods and Funke et al. [2005] for a more general presentation.

VRP neighborhoods can be split into two major categories: Single-Route Improvements and Multiroute Improvements, following the terminology from Laporte and Semet [2002], or SingleRoute neighborhoods and Multiroute neighborhoods as we prefer to call them. Single-Route neighborhoods perform changes to one route at a time, that is, they permute the customers within a route. Thus TSP neighborhoods can be used as Single-Route neighborhoods for the CVRP; TSPTW neighborhoods can be used for the VRPTW and 1-PDPTW neighborhoods can be used for the PDPTW.

Multiroute neighborhoods exchange and move customers between two or more routes. This implies that they can make greater structural changes to a solution. In the following sections we will only consider multiroute neighborhoods.

### 3.2.3.1 Small neighborhoods

This section reviews a few classic neighborhoods for vehicle routing problems. The size of the neighborhoods $|\hat{N}(s)|$ is rather small, that is a small polynomial function of $n$, the number of customers. The neighborhoods are usually searched explicitly, but tricks to avoid evaluating parts of the neighborhood have also been proposed.

Osman [1993] proposed a quite general neighborhood called the $\lambda$-interchange that encompasses many of the neighborhoods used in other papers. Given a solution $s=\left(R_{1}, \ldots, R_{p}, \ldots, R_{q}, \ldots, R_{m}\right)$ where $R_{t}$ are the routes of the solution the $\lambda$-interchange selects all pairs of routes ( $R_{p}, R_{q}$ ) and subsets of customers on the routes $S_{p} \subseteq R_{p}$ and $S_{q} \subseteq R_{q}$ with $\left|S_{p}\right| \leq \lambda$ and $\left|S_{q}\right| \leq \lambda$. The two sets of customers are exchanged and the routes are reoptimized. The $\lambda$-interchange neighborhood contains all solutions that can be constructed by selecting customer sets of the given size. The neighborhood quickly grows large and gets difficult to handle when larger lambdas are used. Using $\lambda=1$ contains the often used relocate neighborhood where a move consits of transfering a customer from one route to another and it also contains the exchange move that exchanges two customers.

Another class of neighborhoods changes focuses on changing edges in the solution (of course the $\lambda$-interchange can also be viewed as changing edges, but it's not the object that the neighborhood
focuses on). One example is the 2-opt* neighborhood proposed by Potving and Rousseau [1995] for the VRPTW, this neighborhood selects two routes $R_{p}$ and $R_{q}$, deletes an edge in each two route and reconnects the first part of $R_{p}$ with the last part of $R_{q}$ and vice versa.

### 3.2.3.2 Large and exponential sized neighborhoods

This section reviews af few large neighborhoods that has been proposed for vehicle routing problems. Most notably it gives a short introduction to the Large Neighborhood Search (LNS) that is used in Chapters 4 to 6 .

A precise definition of when a neighborhood is large or small, is not simple to give. One definition could be that a large neighborhood is exponential in the instance size, but that seems a little to restrictive. Ahuja et al. [2002] defines a large neighborhoods the exponential ones and the ones that are too large to search explicitely in practice. We will use this definition.

The LNS heurisitic forms the foundation of the heuristic presented in Chapters 4 to 6 . It was first presented as a heuristic framework by Shaw [1998]. The general neighborhood employed can be described in very few words: A move in the LNS consists removing up to $q$ customers and then reinserting these customers into the solution somehow. When implementing the heuristic one has a lot of freedom in determining the rules for chosing the customers to remove and for chosing methods for reinserting them. The remove/reinsert idea has occured before Shaw [1998] formalized it, Russell [1995] for example, proposed a VRPTW improvement heuristic that removes up to 5 customers and reinserts them using partial enumeration. A heuristic similar to LNS idea was also put forward by Schrimpf et al. [2000]. The heuristic proposed recently by Franceschi et al. [2005] can also be characterized as a LNS heuristic although the authors do not make this connection. In this heuristic the customers are reinserted by solving an IP problem to optimality.

The Adaptive Large Neighborhood Search Heuristic (ALNS) proposed in Chapters 4 to 6 extends the LNS by not only having one removal methods and one insertion methods, but a whole set of removal/insertion methods, which in practice are fast heuristics. The heuristic to use is selected using an adaptive method that uses statistics from the search so far to make the choice. The computational experiments in this thesis confirms that these two extensions, although simple, improves the performance of the heuristic.

The LNS pricinciple has also been used as a subcomponent in the $A G E S$ heuristic propoposed by Mester and Bräysy [2005] that currently is the best heuristic for the CVRP and competes with the ALNS heuristic for being the best heuristic for large VRPTW instances. Thus it seems like the neighborhood is very well suited for vehicle routing problems. Several other large neighborhoods have been proposed for vehicle routing problems, but none of them has been as succesful as the LNS.

Another large neighborhood for the VRP is the cyclic transfers proposed by Thompson and Orlin [1989]. The cyclic transfer performs a chain of customer relocations: A customer $i_{1}$ is moved from its route $r_{i_{1}}$ to route $r_{i_{2}}$ where a customer $i_{2}$ is removed, this customer is then moved to a new route and so on. At the end of the chain, customer $i_{p}$ is inserted into route $r_{i_{1}}$. If no route is allowed to be repeated on the chain then the problem of finding the best move in the neighborhood can be transformed to a graph problem, the so called subset disjoint minimum cost cycle problem (SDMCCP), that unfortunately is NP-hard. So the SDMCCP must in general be solved by heuristics, although Dumitrescu [2002] presents an exact algorithm for the SDMCCP that performs well in some important cases. The cyclic transfer can be extended to moving clusters of customers between routes or to handle chains where no customers are inserted on the route from which the first customer in the chain was taken from. Recently Agarwal et al. [2004] proposed a CVRP heuristic based on the ideas of cyclic transfers that allowed the operations in the chain to be more complex than just relocating a single customer. The heuristic could for example relocate a sequence of customers from one route to another.

The last large neighborhood for VRP we are going to discuss in this section has not received much attention. It was proposed by Hjorring [1995] and is based on the petal method [Ryan et al. [1993]]. The petal method is a construction heuristic proposed for the CVRP. Given an ordering of the customers $i_{1}, i_{2}, \ldots, i_{n}$ the heuristic creates candidates for routes by first considering customer
$i_{1}$. For customer $i_{1}$ the routes containing customers $\left\{i_{1}\right\},\left\{i_{1}, i_{2}\right\},\left\{i_{1}, i_{2}, i_{3}\right\}, \ldots,\left\{i_{1}, \ldots, i_{p}\right\}$ are created until a customer $i_{p^{\prime}}$ is met for which the route containing customers $\left\{i_{1}, \ldots, i_{p^{\prime}}\right\}$ would be infeasible. Then the heuristic goes on to create routes formed by considering customer $i_{2}$ and so on. The ordering is cyclic so, for example, the set containing two elements, generated by customer $i_{n}$ is $\left\{i_{n}, i_{1}\right\}$. When all the routes have been constructed the optimal selection of routes that serves all customers can be found in polynomial time by solving a series of shortest path problems. Hjorring creates a large CVRP neighborhood out of this procedure by making small pertubations in the ordering of the customers. This might be a small neighborhood in the solution space defined by permutations of customer but it is a large neighborhood in the CVRP solution space as each permutation potentially corresponds to an exponential number of CVRP solutions. A similar idea has later been used by Prins [2004] in a genetic algorithm where each solution in the population is encoded as a permutation of customers.

### 3.2.4 Metaheuristics

Metaheuristics has been a very popular research area in the last 20 years and very impressive results have been obtained using these heuristics. Several books and survey/tutorial papers have been written about the topic. Consequently, we are not going to present another introduction to metaheuristics, as it would be hard to bring anything new to the field. We assume that the reader is familiar with the topic, if not, the following references are recommended as starting points: Voß [2001], Blum and Roli [2003], Gendreau and Potvin [2005].

The metaheuristic used in this paper is simulated annealing - not so much because it is our favourite metaheuristic but because it seemed easy to integrate with the ALNS. Afterwards we have tried to combine the ALNS with tabu search and iterated local search but we have not been able to obtain a heuristic with the same quality as the original simulated annealing heuristic.

### 3.3 Trends in heuristic research for the VRP

This section outlines some of the trends in the research in heuristic methods for static vehicle routing problems and it contains some comments on the direction I foresee and/or hope the research will move in the coming years. The section is quite subjective in some paragraphs and other researchers in the VRP community may have different opinions or see different opportunities than I do.

The section first lists some possible research directions and then comments on the impact I believe these directions will have in the future.

- More complex and rich vehicle routing problems.
- Faster heuristics (disregarding increasing computer speeds) that still produces high quality solutions.
- Ability to handle larger instances.
- More precise heuristics - better solution quality without worrying overly about the time needed for the computation.
- Simpler heuristics.
- Heuristics using mathematical programming - combining ideas from exact optimization with heuristics.
- Parallel implementations.
- More realistic test instances.

More complex models. I believe that more complex and rich vehicle routing problems are going to be a subject that will receive significant attention in the near future, and it is a trend that already is present today. It is an important topic as real life problems contain more constraints than what is present in a standard CVRP or VRPTW.

It is a slightly "dangerous" and problematic research path as the result might be many case studies papers that apply heuristics to a certain, special problem arising in a given industry, possibly with constraints that are specific to a particular region or political system and not very general. Such studies are of course welcome, but in my opinion it can be hard to distill general knowledge from them and comparison between different models and heuristics can be difficult due to the lack of a common foundation. It is my hope that the research in more complex vehicle route problems is going to continue along the following paths

1. Identify certain structures and constraints occurring in real life problems and transfer these to the scientific community. Introduce the structure or constraint in a clear way that captures the essence of the problem. It is acceptable to leave some detail out of the new model in order to avoid an overly cluttered model.
An example of this approach is the combination of 2 D packing with the vehicle routing problem that recently has been proposed (Iori et al. [2004], Gendreau et al. [2004]). The packing component of the problem is occurring in practice, it has not been considered in the literature before, and it is modeled in a reasonably simple way, such that the model is clear and future researchers can continue working on the problem.
Note that introducing new constraints, just to introduce a new problem, is not to be recommended. The new constraints should be an interesting contribution in itself.
2. Identify heuristics that are robust and easily adaptable to a variety of problem types. The heuristic presented in Chapters 4 to 6 is an example of one such heuristic. Establishing that a heuristic is robust and adaptable can be done as in this thesis where the heuristic is tested on a number of different problem types, or it can be done by arguing how different problem types could be solved by the heuristic. Another heuristic that has been shown to be easily adaptable to many problem types is the unified tabu search by Cordeau, Laporte and coauthors [Cordeau et al. [1997, 2000], Cordeau and Laporte [2001]].
3. Identify models that are relatively easy to solve by existing heuristics but at the same time are able to express many problem variants. The rich PDPTW used in Chapters 4 to 6 is one such model, but even broader models could be envisioned.

Faster heuristics, larger instances. The quest for faster heuristics has been going on since the beginning of computerized solution of vehicle routing problems, but developments are still taking place and will continue to do so in the future. One of the most important benefits of faster heuristics is that it will allow us to solve larger instances, and this is surely needed in the real world - real world problems are often larger than the 1000 customer instances that typically are the largest instances considered by heuristic methods. Some recent research is worth pointing out, Toth and Vigo [2003] described a way to reduce the running time of tabu search, a method they called granular tabu search. The key idea in the granular tabu search is to restrict the neighborhood search by discarding the most unpromising moves. In practice this can be done by looking at the arc lengths and categorize an arc as either promising or unpromising, based on its length but also on other features like if it is incident to the depot or has been used in one of the best solutions encountered so far. When doing the neighborhood search, only moves that involve at least one promising arc are attempted. The approach was tested on CVRP instances with up to around 500 customers and showed that the heuristic was fast considering the computer used.

Another interesting development towards faster heuristics is the sequential search for vehicle routing problems, proposed by Irnich et al. [2005]. Sequential search uses techniques developed for local search methods for the TSP to speed up the search of VRP neighborhoods. As opposed to the granular neighborhoods discussed above, sequential search examines the entire neighborhood, but does so implicitly. It is out of the scope of this section to give a complete description of
how this is done, but the key idea is that for many standard neighborhoods for vehicle routing problems it is possible to decompose the moves of the neighborhood into so-called partial moves that are cost-independent. A decomposition is cost-independent if the gain (change in objective function) for the complete move is the sum of the gains of all the partial moves. This is used together with a theorem by Lin and Kernighan [1973] that states that if a sequence of numbers has a positive sum, there is a cyclic permutation of these numbers such that every partial sum is positive. This theorem makes it possible to discard many potential moves. The approach is tested on CVRP instances with between 250 to 2500 customers and dramatic improvements over standard implementations of the neighborhood search are obtained. Speedups range from a factor 5 to a factor 800 .

This approach is certainly going to be used in future metaheuristics for the CVRP and it will probably be attempted on more complex and constrained problem types like the VRPTW or the PDPTW. It is unknown how powerful the idea is going to be for the more constrained problem types - the computational results in (Irnich et al. [2005]) shows that the speedup decreases when instances become more constrained.

The last contribution toward faster heuristics mentioned here is proposed by Kytöjoki and Bräysy [2005]. They presented a metaheuristic for the CVRP based on variable neighborhood search and guided local search with several implementation tricks to speed up computation. The heuristic was tested on instances with up to 20,000 customers. An instance with 1040 customers could be solved in between 3.4 and 6.6 minutes depending on the heuristic used while the instance with 20000 customers took between 51 and 144 minutes depending on the heuristic. The solution quality seems good.

More precise heuristics. Heuristics that deliver solutions of high quality is a topic that received a lot of attention, especially since the arrival of metaheuristics. I do not think it is as important a research direction any more, as it has once been. It seems like the best of today's heuristics are consistently able to reach solutions whose cost is within $1-1.5 \%$ of the optimal or best known solution cost. For many applications of vehicle routing problems this is good enough, as the data that can be collected in real life will be influenced by errors or noise anyway. Consequently, the notion of an optimal solution is not that important when dealing with real life instances in most cases.

Heuristics that produce high quality solutions are nevertheless going to receive attention in the future - one reason is that there always will be a certain personal satisfaction in seeing your heuristic produce solutions better than the previously best known! Another reason is that solution quality is easy to measure and therefore an obvious way of comparing heuristics

Simpler heuristics. Focusing the research toward simpler heuristics was proposed by Gendreau et al. [2002]. The authors write: It is time to develop simpler methods capable of quickly providing good quality solutions. I certainly agree that a simple heuristic is preferable (by far) to a complicated one, but I do not feel that this is the way the research in general is moving and has been moving in the recent years. Occasionally we will see simple heuristics appear, and we will learn from those, perhaps more than from the complicated heuristics that are able to improve upon best known solutions. But I believe that the ideas from these simpler heuristics are going to be combined with other ideas to form more and more complicated heuristics due to the competitive nature of the field.

It is worthwhile to consider if the ALNS heuristic proposed in this thesis is a simple heuristic. I believe that the basic idea in the heuristic is simple and can be described in 1 page. The description of the heuristic gets complicated if the sub-heuristics that define its neighborhoods have to be explained, and the implementation of the heuristic itself is complicated. We have gone to some lengths to try not to make the heuristic overly complicated. For example, we have avoided trying to incorporate local searches based on more traditional neighborhoods even though this could have improved the results somewhat.

Mathematical programming based heuristics. A line of research that I believe is going to be studied more in the future is a combination of ideas from heuristics with exact optimization and mathematical programming. The best heuristics in terms of solution quality for the two most famous vehicle routing problems, the CVRP and VRPTW, typically contain very few
applications of theoretical results. These heuristics are usually based on a clever exploration of the neighborhood, that is, a good trade-off between intensification and diversification, and algorithmic techniques to speed up the evaluation of the neighborhood. Thus it seems likely that a more mathematic approach could provide some new insights and improvements. Heuristics based on mathematical models have been proposed recently, some examples are heuristic column generation [Xu et al. [2003], Sigurd et al. [2005]], neighborhood evaluation by transformation to a graph problem [Agarwal et al. [2004], Ergun et al. [2002]], neighborhood search through a polynomial solvable set-partitioning problem [Hjorring [1995]], clustering based on a Lagrangian lower bound [Toth and Vigo [1999]] and a removal and reinsertion based approach where insertion is done by solving a set-partitioning problem [Franceschi et al. [2005]]. The last is actually able to find some very high quality solutions to the CVRP if given a very good initial solution. The computation time is very large (A problem with 120 customers took more than a day to solve on a modern PC), but it nevertheless shows that there is some hope for using mathematical models within heuristics.

Parallel heuristics. The current trend in CPU architectures is that improvements in clock frequencies are beginning to stagnate and chip makers are placing multiple cores in their CPUs in order to improve performance. The top-level workstation CPUs from AMD and Intel today have two cores on the CPU and CPUs with even 4 or even 8 cores are on Intel's road map. In a few years single core CPUs might become obsolete. In order to get the full performance from these multi-core CPUs one needs to consider parallel programming. It is going to be interesting to see how big an impact this development is going to have on the heuristic community. A recent book about parallel metaheuristic is [Alba [2005]].

More realistic test instances. I hope that more test instances from the industry will become available to the scientific community. Most of the instances we test our heuristics on are generated by some random process, and it is uncertain how well these instances mimic real life instances. Unfortunately it is often hard to release real life instances to the public. Many companies, from which the data originates, considers such data as confidential. A step toward more realistic instances could be to generate data in a more clever manner. For example to get a more realistic geographic distribution of customers, one could look up the addresses of persons with a certain, common last name in a specified area and record their addresses. These addresses could be turned into coordinates (the process is known as geocoding). This would produce a geographic distribution that mimics that found in a delivery problem to private customers - customers would be clustered in urban areas. To make instances even more realistic, road network distances could be used instead of Euclidean distances - this should have a significant impact in an area like Denmark where there are many islands and fjords in certain parts of the country.

The lack of realistic instances is perhaps most evident when looking at the large scale instances used to compare heuristics for the CVRP. One set of instances for the CVRP contains 20 instances with the number of customers ranging between 240 and 483 has been proposed by Golden et al. [1998] and is accepted in the literature as a standard set for large CVRP problems. Another set, containing 12 instances with up to 1200 customers was proposed recently by Li et al. [2005]. This set has not been used much in the literature yet, but it will likely be used more in the future. The only papers I am aware of that use the instances are Li et al. [2005], Kytöjoki and Bräysy [2005] and Chapter 6 of this thesis.

All of these instances are highly symmetrical, an example from the second set is shown in Figure 3.2. The instances were created this way to make it easy to establish a good solution by hand, and this solution can be compared to the heuristic solution, but in my opinion it is problematic that all of the large scale instances that we test our CVRP heuristics on have this property. The instances, certainly do not look like the instances occurring in real life and we risk creating a generation of heuristics that are particular well suited at solving these symmetrical problems, but that might be less robust toward more general customer configurations. It is therefore my hope that another data set will appear for the CVRP and be used on equal terms with the existing data sets. One candidate for such a date set could be the one used by Irnich et al. [2005].

The unified heuristic presented in this thesis is only tested on the instances by Golden et al. [1998] and Li et al. [2005] as well as a classic data set by Christofides et al. [1979]. The instances by Irnich et al. [2005] were unknown to us at the time when the paper in Chapter 6 was submitted.



Figure 3.2: Large CVRP instance, 560 customers (instance named "21" in Li et al. [2005]) . The top figure shows the customers in the problem. Large circles have demand 30, small circles have demand 10. The capacity of the vehicles is 1200 . The bottom figure shows a solution found by the ALNS heuristic with cost 16224.81, the different point styles mark different routes. The best known solution has cost 16212.74.

### 3.3.1 Trends in heuristic research for the VRP - conclusion

The preceding section has outlined a number of research areas within the area of heuristics for vehicle routing problems that I believe are going to receive attention in the coming years.

With the enormous amount of literature on heuristics for the vehicle routing problem, a natural question is: is there really much left to do? My answer to that question is "yes". I believe that researchers will continue to be challenged to make even better, more general and robust heuristics for vehicle routing problems in the next decade, just as they have been in the last decade.

Designing and implementing heuristics for vehicle routing problems is a very popular topic in the operations research community, which not necessarily only is a good thing. The reasons for the popularity are probably the obvious applicability of the problem and the low barrier for entering the field: the problems are easy to understand, the benchmark instances are easy to obtain and the standard heuristics do not require much theoretical insight to understand. These are also some of the reasons why I entered the field.

The low barrier for entering implies that many heuristics are proposed - some of them have a quality that I believe is below what is acceptable. The many heuristics also creates a field that is hard to get an overview of - for example, I believe that only a few researchers in the community have thorough knowledge of all the heuristics that have been proposed for the VRPTW through the last 15 years.

I hope that the heuristic papers in this thesis show that it is not necessary to propose a new heuristic for every combination of the classic constraints that one can think of. It certainly is possible to design a heuristic that can handle a variety of combinations and still produce good results.

Chapter 4

# An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows 

# An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows 

Stefan Ropke, David Pisinger


#### Abstract

The pickup and delivery problem with time windows is the problem of serving a number of transportation requests using a limited amount of vehicles. Each request involves moving a number of goods from a pickup location to a delivery location. Our task is to construct routes that visit all locations such that corresponding pickups and deliveries are placed on the same route and such that a pickup is performed before the corresponding delivery. The routes must also satisfy time window and capacity constraints.

This paper presents a heuristic for the problem based on an extension of the Large Neighborhood Search heuristic previously suggested for solving the vehicle routing problem with time windows. The proposed heuristic is composed of a number of competing sub-heuristics which are used with a frequency corresponding to their historic performance. This general framework is denoted Adaptive Large Neighborhood Search.

The heuristic is tested on more than 350 benchmark instances with up to 500 requests. It is able to improve the best known solutions from the literature for more than $50 \%$ of the problems.

The computational experiments indicate that it is advantageous to use several competing sub-heuristics instead of just one. We believe that the proposed heuristic is very robust and is able to adapt to various instance characteristics.


#### Abstract

Keywords: Pickup and Delivery Problem with Time Windows, Large Neighborhood Search, Simulated Annealing, Metaheuristics


## Introduction

In the considered variant of the pickup and delivery problem with time windows (PDPTW), we are given a number of requests and vehicles. A request consists of picking up goods at one location and delivering these goods to another location. Two time windows are assigned to each request: a pickup time window that specifies when the goods can be picked up and a delivery time window that tells when the goods can be dropped off. Furthermore service times are associated with each pickup and delivery. The service times indicate how long it will take for the pickup or delivery to be performed. A vehicle is allowed to arrive at a location before the start of the time window of the location, but the vehicle must then wait until the start of the time window before initiating the operation. A vehicle may never arrive to a location after the end of the time window of the location.

Each request is assigned a set of feasible vehicles. This can for example be used to model situations where some vehicles cannot enter a certain location because of the dimensions of the vehicle.

Each vehicle have a limited capacity and it starts and ends its duty at given locations called start and end terminals. The start and end location do not need to be the same and two vehicles can have different start and end terminals. Furthermore each vehicle is assigned a start and end time. The start time indicates when the vehicle must leave its start location and the end time denotes the latest allowable arrival at its end location. Note that the vehicle leaves its depot at the specified start time even though this may introduce a waiting time at the first location visited.

Our task is to construct valid routes for the vehicles. A route is valid if time windows and capacity constraints are obeyed along the route, each pickup is served before the corresponding delivery, corresponding pickup and deliveries are served on the same route and the vehicle only serves requests it is allowed to serve. The routes should be constructed such that they minimize the cost function to be described below.

As the number of vehicles is limited, we might encounter situations where some requests cannot be assigned to a vehicle. These requests are placed in a virtual request bank. In a real world situation it is up to a human operator to decide what to do with such requests. The operator might for example decide to rent extra vehicles in order to serve the remaining requests.

The objective of the problem is to minimize a weighted sum consisting of the following three components: 1) the sum of the distance traveled by the vehicles, 2) the sum of the time spent by each vehicle. The time spent by a vehicle is defined as its arrival time at the end terminal minus its start time (which is given a priori), 3 ) the number of requests in the request bank. The three terms are weighted by the coefficients $\alpha, \beta$ and $\gamma$ respectively. Normally a high value is assigned to $\gamma$ in order to serve as many requests as possible. A mathematical model is presented in section 1 to define the problem precisely.

The problem was inspired from a real life vehicle routing problem related to transportation of raw materials and goods between production facilities of a major Danish food manufacturer. For confidentiality reasons, we are not able to present any data about the real life problem that motivated this research.

The problem is NP-hard as it contains the traveling salesman problem as a special case. The objective of this paper is to develop a method for finding good but not necessarily optimal solutions to the problem described above. The developed method should preferably be reasonably fast, robust and able to handle large problems. Thus it seems fair to turn to heuristic methods.

The next paragraphs survey recent work on the PDPTW. Although none of the references mentioned below consider exactly the same problem as ours, they all face the same core problem.

Nanry and Barnes [15] are among the first to present a metaheuristic for the PDPTW. Their approach is based on a Reactive Tabu Search algorithm that combines several standard neighborhoods. In order to test the heuristic, Nanry and Barnes create PDPTW instances from a set of standard VRPTW problems proposed by Solomon [26]. The heuristic is tested on instances with up to 50 requests. Li and Lim [11] use a hybrid metaheuristic to solve the problem. The heuristic combines Simulated Annealing and Tabu search. Their method is tested on the 9 largest instances from Nanry and Barnes [15] and they consider 56 new instances based on Solomon's VRPTW problems [26]. Lim, Lim and Rodrigues [12] apply "Squeaky wheel" optimization and local search to the PDPTW. Their heuristic is tested on the set of problems proposed by Li and Lim [11]. Lau and Liang [10] also apply Tabu search to PDPTW and they describe several construction heuristics for the problem. Special attention is given to how test problems can be constructed from VRPTW instances.

Recently, Bent and Van Hentenryck [2] proposed a heuristic for the PDPTW based on Large Neighborhood Search. The heuristic was tested on the problems proposed by Li and Lim [11]. The heuristic by Bent and Van Hentenryck is probably the most promising metaheuristic for the PDPTW proposed so far.

Gendreau et al. [9] consider a dynamic version of the problem. An ejection chain neighborhood is proposed and steepest descent and Tabu search heuristics based on the ejection chain neighborhood are tested. The tabu search is parallelized and the sequential and parallelized versions are compared.

Several column generation methods for PDPTW have been proposed. These methods both include exact and heuristic methods. Dumas et al. [8] were the first to use column generation for solving PDPTW. They propose a branch and bound method that is able to handle problems with up to 55 requests.

Xu et al. [29] consider a PDPTW with several extra real-life constraints, including multiple time windows, compatibility constraints and maximum driving time restrictions. The problem is solved using a column generation heuristic. The paper considers problem instances with up to 500 requests.

Sigurd et al. [24] solve a PDPTW problem related to transportation of livestock. This introduces some extra constraints, such as precedence relations among the requests, meaning that some requests must be served before others in order to avoid the spread of diseases. The problem is solved to optimality using column generation. The largest problems solved contain more than 200 requests.

A recent survey of pickup and delivery problem literature was made by Desaulniers et al. [7].
The work presented in this paper is based on the Masters Thesis of Ropke [19]. In the papers by Pisinger and Ropke [16], [20] it is shown how the heuristic presented in this paper can be extended to solve a variety of vehicle routing problems, for example the VRPTW, the Multi Depot Vehicle Routing Problem and the Vehicle Routing Problem with Backhauls.

The rest of this paper is organized as follows: Section 1 define the PDPTW problem formally, Section 2 describes the basic solution method in a general context; Section 3 describes how the solution method has been applied to PDPTW and extensions to the method are presented; Section 4 contains the results of the
computational tests. The computational test is focused on comparing the heuristic to existing metaheuristics and evaluating if the refinements presented in Section 3 improve the heuristic; Section 5 concludes the paper.

## 1 Mathematical model

This section presents a mathematical model of the problem, it is based on the model proposed by Desaulniers et al. [7]. The mathematical model serves as a formal description of the problem. As we solve the problem heuristically we do not attempt to write the model on integer-linear form.

A problem instance of the pickup and delivery problem contains $n$ requests and $m$ vehicles. The problem is defined on a graph, $P=\{1, \cdots, n\}$ is the set of pickup nodes, $D=\{n+1, \cdots, 2 n\}$ is the set of delivery nodes. Request $i$ is represented by nodes $i$ and $i+n$. $K$ is the set of all vehicles, $|K|=m$. One vehicle might not be able to serve all requests, as an example a request might require that the vehicle has a freezing compartment. $K_{i}$ is the set of vehicles that are able to serve request $i$ and $P_{k} \subseteq P$ and $D_{k} \subseteq D$ are the set of pickups and deliveries, respectively, that can be served by vehicle $k$, thus for all $i$ and $k: k \in K_{i} \Leftrightarrow i \in P_{k} \wedge i \in D_{k}$. Requests where $K_{i} \neq K$ are called special requests. Define $N=P \cup D$ and $N_{k}=P_{k} \cup D_{k}$. Let $\tau_{k}=2 n+k, k \in K$ and $\tau_{k}^{\prime}=2 n+m+k, k \in K$ be the nodes that represents the start and end terminal, respectively, of vehicle $k$. The graph $G=(V, A)$ consists of the nodes $V=N \cup\left\{\tau_{1}, \cdots, \tau_{m}\right\} \cup\left\{\tau_{1}^{\prime}, \cdots, \tau_{m}^{\prime}\right\}$ and the arcs $A=V \times V$. For each vehicle we have a subgraph $G_{k}=\left(V_{k}, A_{k}\right)$, where $V_{k}=N_{k} \cup\left\{\tau_{k}\right\} \cup\left\{\tau_{k}^{\prime}\right\}$ and $A_{k}=V_{k} \times V_{k}$. For each edge $(i, j) \in A$ we assign a distance $d_{i j} \geq 0$ and a travel time $t_{i j} \geq 0$. It is assumed that distances and times are nonnegative; $d_{i j} \geq 0, t_{i j} \geq 0$ and that the times satisfy the triangle inequality; $t_{i j} \leq t_{i l}+t_{l j}$ for all $i, j, l \in V$. For the sake of modeling we also assume that $t_{i, n+i}+s_{i}>0$, this makes elimination of sub tours and the pickup-before-delivery constraint easy to model.

Each node $i \in V$ has a service time $s_{i}$ and a time window $\left[a_{i}, b_{i}\right]$. The service time represents the time needed for loading and unloading and the time window indicates when the visit at the particular location must start; a visit to node $i$ can only take place between time $a_{i}$ and $b_{i}$. A vehicle is allowed to arrive to a location before the start of the time window but it has to wait until the start of the time window before the visit can be performed. For each node $i \in N, l_{i}$ is the amount of goods that must be loaded onto the vehicle at the particular node, $l_{i} \geq 0$ for $i \in P$ and $l_{i}=-l_{i-n}$ for $i \in D$. The capacity of vehicle $k \in K$ is denoted $C_{k}$.

Four types of decision variables are used in the mathematical model. $x_{i j k}, i, j \in V, k \in K$ is a binary variable which is one if the edge between node $i$ and node $j$ is used by vehicle $k$ and zero otherwise. $S_{i k}, i \in V, k \in K$ is a nonnegative integer that indicates when vehicle $k$ starts the service at location $i, L_{i k}, i \in V, k \in K$ is a nonnegative integer that is an upper bound on the amount of goods on vehicle $k$ after servicing node $i . S_{i k}$ and $L_{i k}$ are only well-defined when vehicle $k$ actually visits node $i$. Finally $z_{i}, i \in P$ is a binary variable that indicates if request $i$ is placed in the request bank. The variable is one if the request is placed in the request bank and zero otherwise.

A mathematical model is:

$$
\begin{equation*}
\min \alpha \sum_{k \in K} \sum_{(i, j) \in A} d_{i j} x_{i j k}+\beta \sum_{k \in K}\left(S_{\tau_{k}^{\prime}, k}-a_{\tau_{k}}\right)+\gamma \sum_{i \in P} z_{i} \tag{1}
\end{equation*}
$$

Subject to:

$$
\begin{align*}
\sum_{k \in K_{i}} \sum_{j \in N_{k}} x_{i j k}+z_{i} & =1 & & \forall i \in P  \tag{2}\\
\sum_{j \in V_{k}} x_{i j k}-\sum_{j \in V_{k}} x_{j, n+i, k} & =0 & & \forall k \in K, \forall i \in P_{k}  \tag{3}\\
\sum_{j \in P_{k} \cup\left\{\tau_{k}^{\prime}\right\}} x_{\tau_{k}, j, k} & =1 & & \forall k \in K  \tag{4}\\
\sum_{i \in D_{k} \cup\left\{\tau_{k}\right\}} x_{i, \tau_{k}^{\prime}, k} & =1 & & \forall k \in K  \tag{5}\\
\sum_{i \in V_{k}} x_{i j k}-\sum_{i \in V_{k}} x_{j i k} & =0 & & \forall k \in K, \forall j \in N_{k}  \tag{6}\\
x_{i j k}=1 \Rightarrow S_{i k}+s_{i}+t_{i j} & \leq S_{j k} & & \forall k \in K, \forall(i, j) \in A_{k}  \tag{7}\\
a_{i} \leq S_{i k} & \leq b_{i} & & \forall k \in K, \forall i \in V_{k}  \tag{8}\\
S_{i k} & \leq S_{n+i, k} & & \forall k \in K, \forall i \in P_{k}  \tag{9}\\
x_{i j k}=1 \Rightarrow L_{i k}+l_{j} & \leq L_{j k} & & \forall k \in K, \forall(i, j) \in A_{k}  \tag{10}\\
L_{i k} & \leq C_{k} & & \forall k \in K, \forall i \in V_{k}  \tag{11}\\
L_{\tau_{k} k}=L_{\tau_{k}^{\prime} k} & =0 & & \forall k \in K  \tag{12}\\
x_{i j k} & \in\{0,1\} & & \forall k \in K, \forall(i, j) \in A_{k}  \tag{13}\\
z_{i} & \in\{0,1\} & & \forall i \in P  \tag{14}\\
S_{i k} & \geq 0 & & \forall k \in K, \forall i \in V_{k}  \tag{15}\\
L_{i k} & \geq 0 & & \forall k \in K, \forall i \in V_{k} \tag{16}
\end{align*}
$$

The objective function minimizes the weighted sum of the distance traveled, the sum of the time spent by each vehicle, and the number of requests not scheduled.

Constraint (2) ensures that each pickup location is visited or that the corresponding request is placed in the request bank. Constraint (3) ensures that the delivery location is visited if the pickup location is visited and that the visit is performed by the same vehicle. Constraints (4) and (5) ensure that a vehicle leaves every start terminal and a vehicle enters every end terminal. Together with constraint (6) this ensures that consecutive paths between $\tau_{k}$ and $\tau_{k}^{\prime}$ are formed for each $k \in K$.

Constraints (7), (8) ensure that $S_{i k}$ is set correctly along the paths and that the time windows are obeyed. These constraints also make sub tours impossible. Constraint (9) ensures that each pickup occur before the corresponding delivery. Constraints (10),(11) and (12) ensure that the load variable is set correctly along the paths and that the capacity constraints of the vehicles are respected.

## 2 Solution method

Local search heuristics are often built on neighborhood moves that make small changes to the current solution, such as moving a request from one route to another or exchanging two requests as in Nanry and Barnes [15] and Li and Lim [11]. These kind of local search heuristics are able to investigate a huge number of solutions in a short time, but a solution is only changed very little in each iteration. It is our belief that such heuristics can have difficulties in moving from one promising area of the solution space to another, when faced with tightly constrained problems, even when embedded in metaheuristics.

One way of tackling this problem is by allowing the search to visit infeasible solutions by relaxing some constraints; see e.g. Cordeau et al. [5]. We take another approach — instead of using small "standard moves" we use very large moves that potentially can rearrange up to $30-40 \%$ of all requests in a single iteration. The price of doing this is that the computation time needed for performing and evaluating the moves becomes much larger compared to the smaller moves. The number of solutions evaluated by the proposed heuristic per time unit is only a fraction of the solutions that could be evaluated by a standard heuristic. Nevertheless very good performance is observed in the computational tests as demonstrated in Section 4.

The proposed heuristic is based on Large Neighborhood Search (LNS) introduced by Shaw [21]. The LNS heuristic has been applied to the VRPTW with good results (see Shaw[21], [22] and Bent and Van Hentenryck

```
Algorithm 1 LNS heuristic
    Function LNS ( \(s \in\{\) solutions \(\}, q \in \mathbb{N}\) )
        solution \(s_{b e s t}=s\);
        repeat
            \(s^{\prime}=s ;\)
            remove \(q\) requests from \(s^{\prime}\)
            reinsert removed requests into \(s^{\prime}\);
            if ( \(\mathrm{f}\left(s^{\prime}\right)<\mathrm{f}\left(s_{\text {best }}\right)\) ) then
                \(s_{\text {best }}=s^{\prime}\);
            if accept \(\left(s^{\prime}, s\right)\) then
                \(s=s^{\prime} ;\)
            until stop-criterion met
    return \(s_{\text {best }}\);
```

[4]). Recently the heuristic has been applied to the PDPTW as well (Bent and Van Hentenryck [2]). The LNS heuristic itself is similar to the ruin and recreate heuristic proposed by Schrimpf et al. [23].

The pseudo-code for a minimizing LNS heuristic is shown in Algorithm 1. The pseudo-code assumes that an initial solution $s$ already has been found, for example by a simple construction heuristic. The second parameter $q$ determines the scope of the search.

Lines 5 and 6 in the algorithm are the interesting part of the heuristic. In line 5, a number of requests are removed from the current solution $s^{\prime}$ and in line 6 the requests are reinserted into the current solution again. The performance and robustness of the overall heuristic is very dependent on the choice of removal and insertion procedures. In the previously proposed LNS heuristics for VRPTW or PDPTW (see for example Shaw [21] or Bent and Van Hentenryck [2]) near-optimal methods were used for the reinsert operation. This was achieved using a truncated branch and bound search. In this paper we take a different approach by using simple insertion heuristics for performing the insertions. Even though the insertion heuristics themselves usually deliver solutions of poor quality, the quality of the LNS heuristic is very good as the bad moves that are generated by the insertion heuristics lead to a fruitful diversification of the search process.

The rest of the code updates the so far best solution and determines if the new solution should be accepted. A simple accept criteria would be to accept all improving solutions. Such a criteria has been used in earlier LNS implementations (Shaw [21]). In this paper we use a simulated annealing accept criteria.

In line 11 we check if a stop criterion is met. In our implementation we stop when a certain number of iterations has been performed.

The parameter $q \in\{0, \cdots, n\}$ determines the size of the neighborhood. If $q$ is equal to zero then no search at all will take place as no requests are removed. On the other hand if $q$ is equal to $n$ then the problem is resolved from scratch in each iteration. In general, one can say that the larger $q$ is, the easier it is to move around in the solution space, but when $q$ gets larger each application of the insertion procedure is going to be slower. Furthermore if one uses a heuristic for inserting requests, then choosing $q$ too large might give bad results.

The LNS local search can be seen as an example of a very large scale neighborhood search as presented by Ahuja et al. in [1]. Ahuja et al. define very large scale neighborhoods as neighborhoods whose sizes grow exponentially as a function of the problem size, or neighborhoods that simply are too large to be searched explicitly in practice. The LNS local search fits into the last category, as we have a large number of possibilities for choosing the requests to remove and a large number of possible insertions. One important difference between the proposed heuristic and most of the heuristics described in [1] is that the latter heuristics typically examine a huge number of solutions, albeit implicitly, while the LNS heuristic proposed in this paper only examines a relatively low number of solutions.

Instead of viewing the LNS process as a sequence of remove-insert operations, it can also be viewed as a sequence of fix-optimize operations. In the fix operation a number of elements in the current solution are fixed. If for example the solution is represented as a vector of variables, the fix operation could fix a number of these variables at their current value. The optimize operation then re-optimizes the solution while respecting the fixation performed in the previous fix-operation. This way of viewing the heuristic might help us to apply the heuristic to problems where the remove-insert operations do not seem intuitive. In Section 3 we introduce the
term Adaptive Large Neighborhood Search (ALNS) to describe an algorithm using several large neighborhoods in an adaptive way. A more general presentation of the ALNS framework can be found in the subsequent paper [16].

## 3 LNS applied to PDPTW

This section describes how the LNS heuristic has been applied to the PDPTW. Compared to the LNS heuristic developed for the VRPTW and PDPTW by Shaw [21], [22] and Bent and Van Hentenryck [2], [4] the heuristic in this paper is different in several ways:

1. We are using several removal and insertion heuristics during the same search while the earlier LNS heuristics only used one method for removal and one method for insertions. The removal heuristics are described in Section 3.1 and the insertion heuristics are described in Section 3.2. The method for selecting which sub-heuristic to use is described in Section 3.3. The selection mechanism is guided by statistics gathered during the search, as described in Section 3.4. We are going to use the term Adaptive Large Neighborhood Search (ALNS) heuristic for a LNS heuristic that uses several competing removal and insertion heuristics and chooses between using statistics gathered during the search.
2. Simple and fast heuristics are used for the insertion of requests as opposed to the more complicated branch and bound methods proposed by Shaw [21], [22] and Bent and Van Hentenryck [2], [4].
3. The search is embedded in a simulated annealing metaheuristic where the earlier LNS heuristics used a simple descent approach. This is described in Section 3.5.

The present section also describes how the LNS heuristic can be used in a simple algorithm designed for minimizing the number of vehicles used to serve all requests. The vehicle minimization algorithm only works for homogeneous fleets without an upper bound on the number of vehicles available.

### 3.1 Request removal

This section describes three removal heuristics. All three heuristics take a solution and an integer $q$ as input. The output of the heuristic is a solution where $q$ requests have been removed. The heuristics Shaw removal and Worst removal furthermore have a parameter $p$ that determines the degree of randomization in the heuristic.

### 3.1.1 Shaw removal heuristic

This removal heuristic was proposed by Shaw in [21, 22]. In this section it is slightly modified to suit the PDPTW. The general idea is to remove requests that are somewhat similar, as we expect it to be reasonably easy to shuffle similar requests around and thereby create new, perhaps better solutions. If we choose to remove requests that are very different from each other then we might not gain anything when reinserting the requests as we might only be able to insert the requests at their original positions or in some bad positions. We define the similarity of two requests $i$ and $j$ using a relatedness measure $R(i, j)$. The lower $R(i, j)$ is, the more related are the two requests.

The relatedness measure used in this paper consists of four terms: a distance term, a time term, a capacity term and a term that considers the vehicles that can be used to serve the two requests. These terms are weighted using the weights $\varphi, \chi, \psi$ and $\omega$ respectively. The relatedness measure is given by:

$$
\begin{align*}
R(i, j)= & \varphi\left(d_{A(i), A(j)}+d_{B(i), B(j)}\right)+\chi\left(\left|T_{A(i)}-T_{A(j)}\right|+\left|T_{B(i)}-T_{B(j)}\right|\right)  \tag{17}\\
& +\psi\left|l_{i}-l_{j}\right|+\omega\left(1-\frac{\left|K_{i} \cap K_{j}\right|}{\min \left\{\left|K_{i}\right|,\left|K_{j}\right|\right\}}\right)
\end{align*}
$$

$A(i)$ and $B(i)$ denote the pickup and delivery locations of request $i$ and $T_{i}$ indicates the time when location $i$ is visited. $d_{i j}, l_{i}$ and $K_{i}$ are defined in Section 1. Using the decision variable $S_{i k}$ from Section 1, we can write $T_{i}$ as $T_{i}=\sum_{k \in K} \sum_{j \in V_{k}} S_{i k} x_{i j k}$. The term weighted by $\varphi$ measures distance, the term weighted by $\chi$ measures temporal

```
Algorithm 2 Shaw Removal
    Function ShawRemoval (s\in{solutions}, q\in\mathbb{N, }p\in\mp@subsup{\mathbb{R}}{+}{})
        request : r = a randomly selected request from S;
        set of requests : D={r};
        while |}||<q\mathrm{ do
            r a randomly selected request from D;
            Array : L = an array containing all request from s not in D;
            sort L such that i<j=>R(r,L[i])<R(r,L[j]);
            choose a random number y from the interval[0,1);
            D=D\bigcup{L[y p}|L|]}
        end while
    remove the requests in D from s;
```

```
Algorithm 3 Worst Removal
    Function WorstRemoval ( \(s \in\{\) solutions \(\}, q \in \mathbb{N}, p \in \mathbb{R}_{+}\))
        while \(q\) > 0 do
            Array : L = All planned requests \(i\), sorted by descending \(\operatorname{cost}(i, s)\);
            choose a random number \(y\) in the interval[0,1);
            request : \(r=L\left[y^{p}|L|\right]\);
            remove \(r\) from solution \(s\);
            \(q=q-1\);
        end while
```

connectedness, the term weighted by $\psi$ compares capacity demand of the requests and the term weighted by $\omega$ ensures that two requests get a high relatedness measure if only a few or no vehicles are able to serve both requests. It is assumed that $d_{i j}, T_{x}$ and $l_{i}$ are normalized such that $0 \leq R(i, j) \leq 2(\varphi+\chi)+\psi+\omega$. This is done by scaling $d_{i j}, T_{x}$ and $l_{i}$ such that they only take on values from $[0,1]$. Notice that we cannot calculate $R(i, j)$, if request $i$ or $j$ is placed in the request bank.

The relatedness is used to remove requests in the same way as described by Shaw [21]. The procedure for removing requests is shown in pseudo code in Algorithm 2. The procedure initially chooses a random request to remove and in the subsequent iterations it chooses requests that are similar to the already removed requests. A determinism parameter $p \geq 1$ introduces some randomness in the selection of the requests (a low value of $p$ corresponds to much randomness).

Notice that the sorting in line 7 can be avoided in an actual implementation of the algorithm, as it is sufficient to use a linear time selection algorithm [6] in line 9.

### 3.1.2 Random removal

The random removal algorithm simply selects $q$ requests at random and removes them from the solution. The random removal heuristic can be seen as a special case of the Shaw removal heuristic with $p=1$. We have implemented a separate random removal heuristic though, as it obviously can be implemented to run faster than the Shaw removal heuristic.

### 3.1.3 Worst removal

Given a request $i$ served by some vehicle in a solution $s$ we define the cost of the request as $\operatorname{cost}(i, s)=$ $f(s)-f_{-i}(s)$ where $f_{-i}(s)$ is the cost of the solution without request $i$ (the request is not moved to the request bank, but removed completely). It seems reasonable to try to remove requests with high cost and inserting them at another place in the solution to obtain a better solution value, therefore we propose a removal heuristic that removes requests with high $\operatorname{cost}(i, s)$.

The worst removal heuristic is shown in pseudo-code in Algorithm 3. It reuses some of the ideas from Section 3.1.1.

Notice that the removal is randomized, with the degree of randomization controlled by the parameter $p$ like in Section 3.1.1. This is done to avoid situations where the same requests are removed over and over again.

One can say that the Shaw removal heuristic and the worst removal heuristic belong to two different classes of removal heuristics. The Shaw heuristic is biased towards selecting requests that "easily" can be exchanged, while the worst-removal selects the requests that appear to be placed in the wrong position in the solution.

### 3.2 Inserting requests

Insertion heuristics for vehicle routing problems are typically divided into two categories: sequential and parallel insertion heuristics. The difference between the two classes is that sequential heuristics build one route at a time while parallel heuristics construct several routes at the same time. Parallel and sequential insertion heuristics are discussed in further detail in [17]. The heuristics presented in this paper are all parallel. The reader should observe that the insertion heuristic proposed here will be used in a setting where they are given a number of partial routes and a number of requests to insert - they seldom build the solution from scratch.

### 3.2.1 Basic greedy heuristic

The basic greedy heuristic is a simple construction heuristic. It performs at most $n$ iterations as it inserts one request in each iteration. Let $\Delta f_{i, k}$ denote the change in objective value incurred by inserting request $i$ into route $k$ at the position that increases the objective value the least. If we cannot insert request $i$ in route $k$, then we set $\Delta f_{i, k}=\infty$. We then define $c_{i}$ as $c_{i}=\min _{k \in K}\left\{\Delta f_{i, k}\right\}$. In other words, $c_{i}$ is the "cost" of inserting request $i$ at its best position overall. We denote this position by the minimum cost position. Finally we choose the request $i$ that minimizes

$$
\min _{i \in U} c_{i}
$$

and insert it at its minimum cost position. $U$ is the set of unplanned requests. This process continues until all requests have been inserted or no more requests can be inserted.

Observe that in each iteration we only change one route (the one we inserted into), and we do not have to recalculate insertion costs in all the other routes. This property is used in the concrete implementation to speed up the insertion heuristics.

An obvious problem with this heuristic is that it often postpones the placement of "hard" requests (requests which are expensive to insert, that is requests with large $c_{i}$ ) to the last iterations where we do not have many opportunities for inserting the requests as many of the routes are "full". The heuristic presented in the next section tries to circumvent this problem.

### 3.2.2 Regret heuristics

The regret heuristic tries to improve upon the basic greedy heuristic by incorporating a kind of look ahead information when selecting the request to insert. Let $x_{i k} \in\{1, \ldots, m\}$ be a variable that indicates the route for which request $i$ has the $k^{\prime}$ th lowest insertion cost, that is $\Delta f_{i, x_{i k}} \leq \Delta f_{i, x_{i k^{\prime}}}$ for $k \leq k^{\prime}$. Using this notation we can express $c_{i}$ from Section 3.2.1 as $c_{i}=\Delta f_{i, x_{i 1}}$. In the regret heuristic we define a regret value $c_{i}^{*}$ as $c_{i}^{*}=\Delta f_{i, x_{i 2}}-\Delta f_{i, x_{i 1}}$. In other words, the regret value is the difference in the cost of inserting the request in its best route and its second best route. In each iteration the regret heuristic chooses to insert the request $i$ that maximizes

$$
\max _{i \in U} c_{i}^{*}
$$

The request is inserted at its minimum cost position. Ties are broken by selecting the insertion with lowest cost. Informally speaking, we choose the insertion that we will regret most if it is not done now.

The heuristic can be extended in a natural way to define a class of regret heuristics: the regret-k heuristic is the construction heuristic that in each construction step chooses to insert the request $i$ that maximizes:

$$
\begin{equation*}
\max _{i \in U}\left\{\sum_{j=1}^{k}\left(\Delta f_{i, x_{i j}}-\Delta f_{i, x_{i 1}}\right)\right\} \tag{19}
\end{equation*}
$$

If some requests cannot be inserted in at least $m-k+1$ routes, then the request that can be inserted in the fewest number of routes (but still can be inserted in at least one route) is inserted. Ties are broken by selecting the request with best insertion cost. The request is inserted at its minimum cost position. The regret heuristic presented at the start of this section is a regret-2 heuristic and the basic insertion heuristic from Section 3.2.1 is a regret- 1 heuristic because of the tie-breaking rules. Informally speaking, heuristics with $k>2$ investigate the cost of inserting a request on the $k$ best routes and insert the request whose cost difference between inserting it into the best route and the $k-1$ best routes is largest. Compared to a regret- 2 heuristic, regret heuristics with large values of $k$ discover earlier that the possibilities for inserting a request become limited.

Regret heuristics have been used by Potvin and Rousseau [17] for the VRPTW. The heuristic in their paper can be categorized as a regret- $k$ heuristic with $k=m$, as all routes are considered in an expression similar to (19). The authors do not use the change in the objective value for evaluating the cost of an insertion, but use a special cost function. Regret heuristics can also be used for combinatorial optimization problems outside the vehicle routing domain, an example of an application to the Generalized Assignment Problem was described by Martello and Toth [13].

As in the previous section we use the fact that we only change one route in each iteration to speed up the regret heuristic.

### 3.3 Choosing a removal and an insertion heuristic

In Section 3.1 we defined three removal heuristics (shaw, random and worst removal), and in Section 3.2 we defined a class of insertion heuristics (basic insertion, regret-2, regret-3, etc.). One could select one removal and one insertion heuristic and use these throughout the search, but in this paper we propose to use all heuristics. The reason for doing this is that for example the regret-2 heuristic may be well suited for one type of instance while the regret-4 heuristic may be the best suited heuristic for another type of instance. We believe that alternating between the different removal and insertion heuristics gives us a more robust heuristic overall.

In order to select the heuristic to use, we assign weights to the different heuristics and use a roulette wheel selection principle. If we have $k$ heuristics with weights $w_{i}, i \in\{1,2, \cdots, k\}$, we select heuristic $j$ with probability

$$
\begin{equation*}
\frac{w_{j}}{\sum_{i=1}^{k} w_{i}} \tag{20}
\end{equation*}
$$

Notice that the insertion heuristic is selected independently of the removal heuristic (and vice versa). It is possible to set these weights by hand, but it can be a quite involved process if many removal and insertion heuristics are used. Instead an adaptive weight adjusting algorithm is proposed in Section 3.4.

### 3.4 Adaptive weight adjustment

This section describes how the weights $w_{j}$ introduced in Section 3.3 can be automatically adjusted using statistics from earlier iterations.

The basic idea is to keep track of a score for each heuristic, which measures how well the heuristic has performed recently. A high score corresponds to a successful heuristic. The entire search is divided into a number of segments. A segment is a number of iterations of the ALNS heuristic; here we define a segment as 100 iterations. The score of all heuristics is set to zero at the start of each segment. The score of a heuristic is increased by either $\sigma_{1}, \sigma_{2}$ or $\sigma_{3}$ in the following situations:

| Parameter | Description |
| :---: | :--- |
| $\sigma_{1}$ | The last remove-insert operation resulted in a new global best solution. |
| $\sigma_{2}$ | The last remove-insert operation resulted in a solution that has not been ac- <br> cepted before. The cost of the new solution is better than the cost of current <br> solution. |
| $\sigma_{3}$ | The last remove-insert operation resulted in a solution that has not been ac- <br> cepted before. The cost of the new solution is worse than the cost of current <br> solution, but the solution was accepted. |

The case for $\sigma_{1}$ is clear: if a heuristic is able to find a new overall best solution, then it has done well. Similarly if a heuristic has been able to find a solution that has not been visited before and it is accepted by the accept criteria in the ALNS search then the heuristic has been successful as it has brought the search forward. It seems sensible to distinguish between the two situations corresponding to parameters $\sigma_{2}$ and $\sigma_{3}$ because we prefer heuristics that can improve the solution, but we are also interested in heuristics that can diversify the search and these are rewarded by $\sigma_{3}$. It is important to note that we only reward unvisited solutions. This is to encourage heuristics that are able to explore new parts of the solution space. We keep track of visited solutions by assigning a hash key to each solution and storing the key in a hash table.

In each iteration we apply two heuristics: a removal heuristic and an insertion heuristic. The scores for both heuristics are updated by the same amount as we can not tell whether it was the removal or the insertion that was the reason for the "success".

At the end of each segment we calculate new weights using the recorded scores. Let $w_{i j}$ be the weight of heuristic $i$ used in segment $j$ as the weight used in formula (20). In the first segment we weight all heuristics equally. After we have finished segment $j$ we calculate the weight for all heuristics $i$ to be used in segment $j+1$ as follows:

$$
w_{i, j+1}=w_{i j}(1-r)+r \frac{\pi_{i}}{\theta_{i}}
$$

$\pi_{i}$ is the score of heuristic $i$ obtained during the last segment and $\theta_{i}$ is the number of times we have attempted to use heuristic $i$ during the last segment. The reaction factor $r$ controls how quickly the weight adjustment algorithm reacts to changes in the effectiveness of the heuristics. If $r$ is zero then we do not use the scores at all and stick to the initial weights. If $r$ is set to one then we let the score obtained in the last segment decide the weight.

Figure 1 shows an example of how the weights of the three removal heuristics progress over time for a certain problem instance. The plots are decreasing because of the simulated annealing acceptance criteria to be described in the next section. Towards the end of the search we only accept good moves and therefore it is harder for the heuristic to get high scores.

### 3.5 Acceptance and stopping criteria

As described in Section 2 a simple acceptance criteria would be to only accept solutions that are better than the current solution. This would give us a descent heuristic like the one proposed by Shaw [21]. However, such a heuristic has a tendency to get trapped in a local minimum so it seems sensible to, on occasion, accept solutions that are worse than the current solution. To do this, we use the acceptance criteria from simulated annealing. That is, we accept a solution $s^{\prime}$ given the current solution $s$ with probability $e^{-\frac{f\left(s^{\prime}\right)-f(s)}{T}}$ where $T>0$ is the temperature.

The temperature starts out at $T_{\text {start }}$ and is decreased every iteration using the expression $T=T \cdot c$, where $0<c<1$ is the cooling rate. A good choice of $T_{\text {start }}$ is dependent on the problem instance at hand, so instead of specifying $T_{\text {start }}$ as a parameter we calculate $T_{\text {start }}$ by inspecting our initial solution. First we calculate the cost $z^{\prime}$ of this solution using a modified objective function. In the modified objective function, $\gamma$ (cost of having requests in the request bank) is set to zero. The start temperature is now set such that a solution that is $w$ percent worse than the current solution is accepted with probability 0.5 . The reason for setting $\gamma$ to zero is that this parameter typically is large and could cause us to set the starting temperature to a too large number if the initial solution had some requests in the request bank. Now $w$ is a parameter that has to be set. We denote this parameter the start temperature control parameter.

The algorithm stops when a specified number of LNS iterations have passed.

### 3.6 Applying noise to the objective function

As the proposed insertion heuristics are quite myopic, we believe that it is worthwhile to randomize the insertion heuristics such that they do not always make the move that seems best locally. This is achieved by adding a noise term to the objective function. Every time we calculate the $\operatorname{cost} C$ of an insertion of a request into a route, we also calculate a random number noise in the interval $[-\max N, \max N]$ and calculate the modified insertion costs $C^{\prime}=\max \{0, C+$ noise $\}$. At each iteration we decide if we should use $C$ or $C^{\prime}$ to determine the insertions


Figure 1: The figure shows an example of how the weights for the three removal heuristics progressed during one application of the heuristic. The iteration number is shown along the $x$-axis and the weight is shown along the $y$-axis. The graph illustrates that for the particular problem, the random removal and the Shaw removal heuristics perform virtually equally well, while the worst heuristic performs worst. Consequently the worst heuristic is not used as often as the two other heuristics.
to perform. This decision is taken by the adaptive mechanism described earlier by keeping track of how often the noise applied insertions and the "clean" insertions are successful.

In order to make the amount of noise related to the properties of the problem instance, we calculate $\max N=$ $\eta \cdot \max _{i, j \in V}\left\{d_{i j}\right\}$, where $\eta$ is a parameter that controls the amount of noise. We have chosen to let maxN be dependent on the distances $d_{i j}$ as the distances are an important part of the objective in all of the problems we consider in this paper.

It might seem superfluous to add noise to the insertion heuristics as the heuristics are used in a simulated annealing framework that already contains randomization, however we believe that the noise applications are important as our neighborhood is searched by means of the insertion heuristics and not randomly sampled. Without the noise applications we do not get the full benefit of the simulated annealing metaheuristic. This conjecture is supported by the computational experiments reported in table 3 .

### 3.7 Minimizing the number of vehicles used

Minimization of the number of vehicles used to serve all requests is often considered as first priority in the vehicle routing literature. The heuristic proposed so far is not able to cope with such an objective, but by using a simple two stage algorithm that minimizes the number of vehicles in the first stage and then minimizes a secondary objective (typically traveled distance) in the second stage, we can handle such problems. The vehicle minimization algorithm only works for problems with a homogeneous fleet. We also assume that the number of vehicles available is unlimited, such that constructing an initial feasible solution always can be done.

A two-stage method was also used by Bent and Van Hentenryck [4], [2], but while they used two different neighborhoods and metaheuristics for the two stages, we use the same heuristic in both stages.

The vehicle minimization stage works as follows: first an initial feasible solution is created using a sequential insertion method that constructs one route at a time until all requests have been planned. The number of
vehicles used in this solution is the initial estimate on the number of vehicles necessary. Next step is to remove one route from our feasible solution. The requests on the removed route are placed in the request bank. The resulting problem is solved by our LNS heuristic. When the heuristic is run, a high value is assigned to $\gamma$ such that requests are moved out of the request bank if possible. If the heuristic is able to find a solution that serves all requests, a new candidate for the minimum number of vehicles has been found. When such a solution has been found, the LNS heuristic is immediately stopped, one more route is removed from the solution and the process is reiterated. If the LNS heuristic terminates without finding a solution where all requests are served, then the algorithm steps back to the last solution encountered in which all requests were served. This solution is used as a starting solution in the second stage of the algorithm, which simply consists of applying the normal LNS heuristic.

In order to keep the running time of the vehicle minimization stage down, this stage is only allowed to spend $\Phi$ LNS iterations all together such that if the first application of the LNS heuristic for example spends $a$ iterations to find a solution where all requests are planned, then the vehicle minimization stage is only allowed to perform $\Phi-a$ LNS iterations to minimize the number of vehicles further. Another way to keep the running time limited is to stop the LNS heuristic when it seems unlikely that a solution exists in which all requests are planned. In practice this is implemented by stopping the LNS heuristic if 5 or more requests are unplanned and no improvement in the number of unplanned requests has been found in the last $\tau$ LNS iterations. In the computational experiments $\Phi$ was set to 25000 and $\tau$ was set to 2000 .

### 3.8 Discussion

Using several removal and insertion heuristics during the search may be seen as using local search with several neighborhoods. To the best of our knowledge this idea has not been used in the LNS literature before. The related Variable Neighborhood Search (VNS) was proposed by Mladenović and Hansen [14]. VNS is a metaheuristic framework using a parameterized family of neighborhoods. The metaheuristic has received quite a lot of attention in the recent years and has provided impressive results for many problems. Where ALNS makes use of several unrelated neighborhoods, VNS typically is based on a single neighborhood which is searched with variable depth.

Several metaheuristics can be used at the top level of ALNS to help the heuristic escape a local minimum. We have chosen to use simulated annealing as the ALNS heuristic already contains the random sampling element. For a further discussion of metaheuristic frameworks used in connection with ALNS see the subsequent paper [16].

The request bank is an entity that makes sense for many real life applications. In the problems considered in Section 4 we do not accept solutions with unscheduled requests, but the request bank allows us to visit infeasible solutions in a transition stage, improving the overall search. The request bank is particularly important when minimizing the number of vehicles.

## 4 Computational experiments

In this section we describe our computational experiments. We first introduce a set of tuning instances in Section 4.1. In Section 4.2 we evaluate the performance of the proposed construction heuristics on the tuning instances. In Section 4.3 we describe how the parameters of the ALNS heuristic were tuned, and in Section 4.4 we present the results obtained by the ALNS heuristic and a simpler LNS heuristics.

### 4.1 Tuning instances

First a set of representative tuning instances is identified. The tuning instances must have a fairly limited size as we want to perform numerous experiments on the tuning problems and they should somehow be related to the problems our heuristic is targeted at. In the case at hand we want to solve some standard benchmark instances and a new set of randomly generated instances.

Our tuning set consists of 16 instances. The first four instances are LR1_2_1, LR202, LRC1_2_3, and LRC204 from Li and Lim's benchmark problems [11], containing between 50 and 100 requests. The number of available vehicles was set to one more than that reported by Li and Lim to make it easier for the heuristic to find solutions with no requests in the request bank. The last 12 instances are randomly generated instances.

These instances contain both single depot and multi depot problems and problems with requests that only can be served by a subset of the vehicle fleet. All randomly generated problems contain 50 requests.

### 4.2 Evaluation of construction heuristics

First we examine how the simple construction heuristics from Section 3.2 perform on the tuning problems, to see how well they work without the LNS framework. The construction heuristics regret-1, regret-2, regret3 , regret-4 and regret- $m$ have been implemented. Table 1 shows the results of the test. As the construction heuristics are deterministic, the results were produced by applying the heuristics to each of the 16 test problems once.

|  | Basic greedy | Regret-2 | Regret-3 | Regret-4 | Regret- $m$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Avg. gap (\%) | 40.7 | 30.3 | 26.3 | 26.0 | 27.7 |
| Fails | 3 | 3 | 3 | 2 | 0 |
| Time (s) | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |

Table 1: Performance of construction heuristics. Each column in the table corresponds to one of the construction heuristics. These simple heuristics were not always able to construct a solution where all requests are served, hence for each heuristic we report the number of times this happened in the fails row. The Avg. gap row shows the average relative difference between the found solution and the best known solution. Only solutions where all requests are served are included in the calculations of the average relative difference. The last row shows the average time (in seconds) needed for applying the heuristic to one problem, running on a 1.5 GHz Pentium IV.

The results show that the proposed construction heuristics are very fast, but also very imprecise. Basic greedy is the worst heuristic, while all the regret heuristics are comparable with respect to the solution quality. Regret- $m$ stands out though, as it is able to serve all requests in all problems. It would probably be possible to improve the results shown in Table 1 by introducing seed requests as proposed by e.g. Solomon [26]. However we are not going to report on such experiments in this paper. It might be surprising that these very imprecise heuristics can be used as the foundation of a much more precise local search heuristic, but as we are going to see in the following sections, this is indeed possible.

### 4.3 Parameter tuning

This part of the paper serves two purposes. First it describes how the parameters used for producing the results in Section 4.4 were found. Next, it tries to unveil which part of the heuristic contributes most to the solution quality.

### 4.3.1 Parameters

This section determines the parameters that need to be tuned. We first review the removal parameters. Shaw removal is controlled by five parameters: $\varphi, \chi, \psi, \omega$ and $p$, while the worst removal is controlled by one parameter $p_{\text {worst }}$. Random removal has no parameters. The insertion heuristics are parameter free when we have chosen the regret degree.

In order to control the acceptance criteria we use two parameters, $w$ and $c$. The weight adjustment algorithm is controlled by four parameters, $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and $r$. Finally we have to determine a noise rate $\eta$ and a parameter $\xi$ that controls how many requests we remove in each iteration. In each iteration, we chose a random number $\rho$ that satisfies $4 \leq \rho \leq \min (100, \xi n)$, and remove $\rho$ requests.

We stop the search after 25000 LNS iterations as this resulted in a fair trade-off between time and quality.

### 4.3.2 LNS parameter tuning

Despite the large number of parameters used in the LNS heuristic, it turns out that it is relatively easy to find a set of parameters that works well for a large range of problems. We use the following strategy for tuning the parameters: first a fair parameter setting is produced by an ad-hoc trial-and-error phase, this parameter setting was found while developing the heuristic. This parameter setting is improved in the second phase by allowing
one parameter to take a number of values, while the rest of the parameters are kept fixed. For each parameter setting we apply the heuristic on our set of test problems five times, and the setting that shows the best average behavior (in terms of average deviation from the best known solutions) is chosen. We now move on to the next parameter, using the values found so far and the values from the initial tuning for the parameters that have not been considered yet. This process continues until all parameters have been tuned. Although it would be possible to process the parameters once again using the new set of parameters as a starting point to further optimize the parameters, we stopped after one pass.

One of the experiments performed during the parameter tuning sought to determine the value of the parameter $\xi$ that controls how many requests we remove and insert in each iteration. This parameter should intuitively have a significant impact on the results our heuristic is able to produce. We tested the heuristic with $\xi$ ranging from 0.05 to 0.5 with a step size of 0.05 . Table 2 shows the influence of $\xi$. When $\xi$ is too low the heuristic is not able to move very far in each iteration, and it has a higher chance of being trapped in one suboptimal area of the search space. On the other hand, if $\xi$ is large then we can easily move around in the search space, but we are stretching the capabilities of our insertion heuristics. The insertion heuristics work fairly well when they must insert a limited number of requests into a partial solution, but they cannot build a good solution from scratch as seen in Section 4.2. The results in Table 2 shows that $\xi=0.4$ is a good choice. One must notice that the heuristic gets slower when $\xi$ increases because the removals and insertions take longer when more requests are involved, thus the comparison in Table 2 is not completely fair.

| $\xi$ | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Avg. gap (\%) | 1.75 | 1.65 | 1.21 | 0.97 | 0.81 | 0.71 | 0.81 | 0.49 | 0.57 | 0.57 |

Table 2: Parameter $\xi$ vs. solution quality. The first row shows the values of the parameter $\xi$ that were tested and the second row shows the gap between the average solution obtained and the best solutions produced in the experiment.

The complete parameter tuning resulted in the following parameter vector $\left(\varphi, \chi, \psi, \omega, p, p_{w o r s t}, w, c, \sigma_{1}\right.$, $\left.\sigma_{2}, \sigma_{3}, r, \eta, \xi\right)=(9,3,2,5,6,3,0.05,0.99975,33,9,13,0.1,0.025,0.4)$. Our experiments also indicated that it was possible to improve the performance of the vehicle minimization algorithm by setting $(w, c)=(0.35$, 0.9999 ) while searching for solutions that serve all requests. This corresponds to a higher start temperature and a slower cooling rate. This indicates that more diversification is needed when trying to minimize the number of vehicles, compared to the situation where one just minimizes the traveled distance.

In order to tune the parameters we start from an initial guess, and then tune one parameter at a time. When all parameters are tuned, the process is repeated. In this way the calibration order plays a minor order. Although the parameter tuning is quite time consuming, it could easily be automated. In our subsequent papers [20,16] where 11 variants of the vehicle routing problem are solved using the heuristic proposed in this paper we only re-tuned a few parameters and obtained very convincing results, so it seems that a complete tuning of the parameters only needs to be done once.

### 4.3.3 LNS configurations

This section evaluates how the different removal and insertion heuristics behave when used in a LNS heuristic. In most of the test cases a simple LNS heuristic was used that only involved one removal heuristic and one insertion heuristic. Table 3 shows a summary of this experiment.

The first six experiments aim at determining the influence of the removal heuristic. We see that Shaw removal performs best, the worst removal heuristic is second, and the random removal heuristic gives the worst performance. This is reassuring as it shows that the two slightly more complicated removal heuristics actually are better than the simplest removal heuristic. These results also illustrate that the removal heuristic can have a rather large impact on the solution quality obtained, thus experimenting with other removal heuristics would be interesting and could prove beneficial.

The next eight experiments show the performance of the insertion heuristics. Here we have chosen Shaw removal as removal heuristic because it performed best in the previous experiments. In these experiments we see that all insertion heuristics perform quite well, and they are quite hard to distinguish from each other. Regret-3 and Regret-4 coupled with noise addition are slightly better than the rest though. An observation that applies to all experiments is that application of noise seems to help the heuristic. It is interesting to note that the

|  | Conf. | Shaw | Rand | Worst | Reg-1 | Reg-2 | Reg-3 | Reg-4 | Reg-m | Noise | Avg. gap (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LNS | 1 |  |  | $\bullet$ |  | $\bullet$ |  |  |  |  | 2.7 |
|  | 2 |  |  | - |  | $\bullet$ |  |  |  | $\bullet$ | 2.6 |
|  | 3 |  | $\bullet$ |  |  | $\bullet$ |  |  |  |  | 5.4 |
|  | 4 |  | - |  |  | - |  |  |  | $\bullet$ | 3.2 |
|  | 5 | $\bullet$ |  |  |  | $\bullet$ |  |  |  |  | 2.0 |
|  | 6 | - |  |  |  | - |  |  |  | $\bullet$ | 1.6 |
|  | 7 | $\bullet$ |  |  | $\bullet$ |  |  |  |  |  | 2.2 |
|  | 8 | $\bullet$ |  |  | - |  |  |  |  | $\bullet$ | 1.6 |
|  | 9 | $\bullet$ |  |  |  |  | $\bullet$ |  |  |  | 1.8 |
|  | 10 | - |  |  |  |  | - |  |  | $\bullet$ | 1.3 |
|  | 11 | $\bullet$ |  |  | $\bullet$ |  |  |  |  | $\bullet$ | 2.0 |
|  | 12 |  |  |  | 1.3 |  |
|  | 13 | $\bullet$ |  |  |  |  |  |  |  | $\bullet$ |  |  |  |  |  | 1.8 |
|  | 14 | $\bullet$ |  |  |  |  |  |  | $\bullet$ | $\bullet$ | 1.7 |
| ALNS | 15 | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | - | $\bullet$ | $\bullet$ | 1.3 |

Table 3: Simple LNS heuristics compared to the full adaptive LNS with dynamic weight adjustment. The first column shows if the configuration must be considered as an LNS or an ALNS heuristic. The second column is the configuration number, columns three to five indicate which removal heuristics were used. Columns six to ten indicate which insertion heuristics were used. Column eleven states if noise was added to the objective function during insertion of requests (in this case noise was added to the objective function in $50 \%$ of the insertions for the simple configurations 1-14 while in configuration 15 the number of noise-insertions was controlled by the adaptive method). Column twelve shows the average performance of the different heuristics. As an example, in configuration four we used random removal together with the regret- 2 insertion heuristic and we applied noise to the objective value. This resulted in a set of solutions whose objective values on average were $3.2 \%$ above the best solutions found during the whole experiment.
basic insertion heuristic nearly performs as well as the regret heuristics when used in a LNS framework. This is surprising seen in the light of Table 1 where the basic insertion heuristic performed particularly badly. This observation may indicate that the LNS method is relatively robust with respect to the insertion method used.

The last row of the table shows the performance of ALNS. As one can see, it is on par with the two best simple approaches, but not better, which at first may seem disappointing. The results show though, that the adaptive mechanism is able to find a sensible set of weights, and it is our hypothesis that the ALNS heuristic is more robust than the simpler LNS heuristics. That is, the simple configuration may fail to produce good solutions on other types of problems, while the ALNS heuristic continues to perform well. One of the purposes of the experiments in Section 4.4 is to confirm or disprove this hypothesis.

### 4.4 Results

This section provides computational experiments conducted to test the performance of the heuristic. There are three major objectives for this section:

1. To compare the ALNS heuristic to a simple LNS heuristic that only contains one removal and one insertion heuristic.
2. To determine if certain problem properties influence the (A)LNS heuristics ability to find good solutions.
3. To compare the ALNS heuristic with state-of-the-art PDPTW heuristics from the literature.

In order to clarify if the ALNS heuristic is worthwhile compared to a simpler LNS heuristic we are going to show results for both the ALNS heuristic and the best simple LNS heuristic from Table 3. Configuration 12 was chosen as representative for the simple LNS heuristics as it performed slightly better than configuration 10. In the following sections we refer to the full and simple LNS heuristic as ALNS and LNS respectively.

All experiments were performed on a 1.5 GHz Pentium IV PC with 256 MB internal memory, running Linux. The implemented algorithm measures travel times and distances using double precision floating point numbers. The parameter setting found in Section 4.3.2 was used in all experiments unless otherwise stated.

### 4.4.1 Data sets

As the model considered in this paper is quite complicated, it is hard to find any benchmark instances that consider exactly the same model and objective function. The benchmark instances that come closest to the model considered in this paper are the instances constructed by Nanry and Barnes [15] and the instances constructed by Li and Lim [11]. Both data sets are single depot pickup and delivery problems with time windows, constructed from VRPTW problems. We are only reporting results on the data set proposed by Li and Lim , as the Nanry and Barnes instances are easy to solve due to their size.

The problem considered by Li and Lim were simpler than the one considered in this paper as: 1) it did not contain multiple depots; 2) all requests must be served; 3) all vehicles were assumed to be able to serve all requests. When solving the Li and Lim instances using the ALNS heuristic we set $\alpha$ to one and $\beta$ to zero in our objective function. In section 4.5 we minimize the number of vehicles as first priority while we in section 4.4.2 only minimize the distance driven.

In order to test all aspects of the model proposed in this paper, we also introduce some new, randomly generated instances. These instances are described in section 4.4.3.

### 4.4.2 Comparing ALNS and LNS using the Li \& Lim instances

This section compares the ALNS and LNS heuristics using the benchmark instances proposed by Li and Lim [11]. The data set contains 354 instances with between 100 and 1000 locations. The data set can be downloaded from [25].

In this section we use the distance driven as our objective even though vehicle minimization is the standard primary objective for these instances. The reason for this decision is that distance minimization makes comparison of the heuristics easier and distance minimization is the original objective of the proposed heuristic. The number of vehicles available for serving the requests is set to the minimum values reported by Li and Lim in [11] and on their web page which unfortunately no longer is on-line.

The heuristics were applied 10 times to each instance with 400 or less locations and 5 times to each instance with more than 400 locations. The experiments are summarized in Table 4.

|  |  | Best known solutions |  | Avg. gap (\%) |  | Average time (s) |  | Fails |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#locations | \#problems | ALNS | LNS | ALNS | LNS | ALNS | LNS | ALNS | LNS |
| 100 | 56 | 52 | 50 | 0.19 | 0.50 | 49 | 55 | 0 | 0 |
| 200 | 60 | 49 | 15 | 0.72 | 1.41 | 305 | 314 | 0 | 0 |
| 400 | 60 | 52 | 6 | 2.36 | 4.29 | 585 | 752 | 0 | 0 |
| 600 | 60 | 54 | 5 | 0.93 | 3.20 | 1069 | 1470 | 0 | 0 |
| 800 | 60 | 46 | 5 | 1.73 | 3.27 | 2025 | 3051 | 0 | 2 |
| 1000 | 58 | 47 | 4 | 2.26 | 4.22 | 2916 | 5252 | 0 | 1 |

Table 4: Summary of results obtained on Li and Lim instances [11]. The first column gives the problem size; the next column indicates the number of problems in the data set of the particular size. The rest of the table consists of four major columns, each divided into two sub columns, one for the ALNS and one for LNS. The column Best known solutions indicates for how many problems the best known solution was identified. The best known solution is either the solution reported by Li and Lim or the best solution identified by the (A)LNS heuristics depending on which is best. The next column indicates how far the average solution is from best known solution. This number is averaged over all problems of a particular size. The next column shows how long the heuristic on average spends to solve a problem. The last column shows the number of times the heuristic failed to find a solution where all request are served by the given number of vehicles in all the attempts to solve a particular problem.

The results show that the ALNS heuristic on all four terms performs better than the LNS heuristic. One also notices that the ALNS heuristic becomes even more attractive as the problem size increases. It may seem odd that the LNS heuristic spends more time compared to the ALNS heuristic when they both perform the same number of LNS iterations. The reason for this behavior is that the Shaw removal heuristic used by the LNS heuristic is more time consuming compared to the two other removal heuristics.

### 4.4.3 New instances

This section provides results on randomly generated PDPTW instances that contain features of the model that were not used in the Li and Lim benchmark problems considered in Section 4.4.2. These features are: multiple depots, routes with different start and end terminals and special requests that only can be served by a certain subset of the vehicles. When solving these instances we set $\alpha=\beta=1$ in the objective function so that distance and time are weighted equally in the objective function. We do not perform vehicle minimization as the vehicles are inhomogeneous.

Three types of geographical distributions of requests are considered: problems with locations distributed uniformly in the plane, problems with locations distributed in 10 clusters and problems with $50 \%$ of the locations are put in 10 clusters and $50 \%$ of the locations distributed uniformly. These three types of problems were inspired by Solomon's VRPTW benchmark problems [26], and the problems are similar to the R, the C and the RC Solomon problems respectively. We consider problems with 50, 100, 250 and 500 requests, all problems are multi depot problems. For each problem size we generated 12 problems as we tried every combination of the three problem features shown below:

- Route type: 1) A route starts and ends at the same location, 2) a route starts and ends at different locations.
- Request type: 1) All requests are normal requests, 2) $50 \%$ of the requests are special requests. The special requests can only be served by a subset of the vehicles. In the test problems each special request could only be served by between $30 \%$ to $60 \%$ of the vehicles.
- Geographical distributions: 1) Uniform, 2) Clustered, 3) Semi-clustered.

The instances can be downloaded from www.diku.dk/~sropke. The heuristics were tested by applying them to each of the 48 problems 10 times. Table 5 shows a summary of the results found. In the table we list for how many problems the two heuristics find the best known solution. The best known solution is simply the best solution found throughout this experiment.

We observe the same tendencies as in Table 4; ALNS is still superior to LNS, but one notices that the gap in solution quality between the two methods are smaller for this set of instances while the difference in running time is larger compared to the results on the Li and Lim instances. One also notices that it seems harder to solve small instances of this problem class compared to the Li and Lim instances.

|  |  | Best known solutions |  | Avg. gap (\%) |  | Average time (s) |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#requests | \#problems | ALNS | LNS | ALNS | LNS | ALNS | LNS |
| 50 | 12 | 8 | 5 | 1.44 | 1.86 | 23 | 34 |
| 100 | 12 | 11 | 1 | 1.54 | 2.18 | 83 | 142 |
| 250 | 12 | 7 | 5 | 1.39 | 1.62 | 577 | 1274 |
| 500 | 12 | 9 | 3 | 1.18 | 1.32 | 3805 | 8146 |
| Sum: | 48 | 35 | 14 | 5.55 | 6.98 | 4488 | 9596 |

Table 5: Summary of results obtained on new instances. The captions of the table should be interpreted as in Table 4. The last row sums each column. Notice that the size of the problems in this table is given as number of requests and not the number of locations.

Table 6 summarizes how the problem features influence the average solution quality. These results show that the clustered problems are the hardest to solve, while the uniformly distributed instances are the easiest. The results also indicate that special requests make the problem slightly harder to solve. The route type experiments compare the situation where routes start and end at the same location (the typical situation considered in the literature) to the situation where each route starts and ends at different locations. Here we expect the last case to be the easiest to solve, as we by having different start and end positions for our routes, gain information about the area the route most likely should cover. The results in Table 6 confirm these expectations.

In addition to investigate the question of how the model features influence the average solution quality obtained by the heuristics we also want to know if the presence of some features could make LNS behave better than ALNS. For the considered features the answer is negative.

| Feature | ALNS | LNS |
| :--- | :---: | ---: |
| Distribution: Uniform | $1.04 \%$ | $1.50 \%$ |
| Distribution: Clustered | $1.89 \%$ | $2.09 \%$ |
| Distribution: Semi-clustered | $1.23 \%$ | $1.64 \%$ |
| Normal Requests | $1.24 \%$ | $1.47 \%$ |
| Special Requests | $1.54 \%$ | $2.02 \%$ |
| Start of route $=$ end of route | $1.59 \%$ | $2.04 \%$ |
| Start of route $\neq$ end of route | $1.19 \%$ | $1.45 \%$ |

Table 6: Summary of the influence of certain problem features on the heuristic solutions. The two columns correspond to the two heuristic configurations. Each row shows the average solution quality for each feature. The average solution quality is defined as the average of the average gap for all instances with a specific feature. To be more precise, the solution quality is calculated using the formula: $q(h)=\frac{1}{\mid F} \sum_{i \in F}\left(\frac{1}{10} \sum_{j=1}^{10} \frac{c(i, j, h)-c^{\prime}(i)}{c^{\prime}(i)}\right)$ where $F$ is the set of instances with a specific feature, $c^{\prime}(i)$ is the cost of the best known solution to instance $i$ and $c(i, j, h)$ is the cost obtained in the $j$ th experiment on instance $i$ using heuristic $h$.

### 4.5 Comparison to existing heuristics

This section compares the ALNS heuristics to existing heuristics for the PDPTW. The comparison is performed using the benchmark instances proposed by Li and Lim [11] that also were used in Section 4.4.2. When PDPTW problems have been solved in the literature, the primary objective has been to minimize the number of vehicles used while the secondary objective has been to minimize the traveled distance. For this purpose we use the vehicle minimization algorithm described in Section 3.7. The ALNS heuristic was applied 10 times to each instance with 200 or less locations and 5 times to each instance with more than 200 locations. The experiments are summarized in Tables 7, 8 and 9. It should be noted that it was necessary to decrease the $w$ parameter and increase the $c$ parameter when the instances with 1000 locations were solved in order to get reasonable solution quality. Apart from that, the same parameter setting has been used for all instances.

In the literature, four heuristics have been applied to the benchmark problems: the heuristic by Li and Lim [11], the heuristic by Bent and Van Hentenryck [2] and two commercial heuristics; a heuristic developed by SINTEF and a heuristic developed by TetraSoft A/S. Detailed results for the two last heuristics are not available but some results obtained using these heuristics can be found on a web page maintained by SINTEF [25]. The heuristic that has obtained the best overall solution quality so far is probably the one by Bent and Van Hentenryck [2] (shortened BH heuristic in the following), therefore the ALNS heuristic is compared to this heuristic in Table 7. The complete results from the BH heuristic can be found in [3]. The results given for the BH heuristic are the best obtained among 10 experiments (though for the 100 location instances only 5 experiments were performed). The $A v g . T T B$ column shows the average time needed for the BH heuristic to obtain its best solution. For the ALNS heuristic we only list the time used in total as this heuristic - because of its simulated annealing component, the heuristic usually finds its best solution towards the end of the search. The BH heuristic was tested on a 1.2 GHz Athlon processor and the running times of the two heuristics should therefore be comparable (we believe that the Athlon processor is at most $20 \%$ slower than our computer). The results show that the ALNS heuristic overall dominates the BH heuristic, especially as the problem sizes increase. It is also clear that the ALNS heuristic is able to improve considerably on the previously best known solutions and that the vehicle minimization algorithm works very well despite its simplicity. The last two columns in Table 7 summarize the best results obtained using several experiments with different parameter settings, which show that the results obtained by ALNS actually can be improved even further.

Table 8 compares the results obtained by ALNS with the best known solutions from the literature. It can be seen that ALNS improves more than half of the solutions and achieves a solution that is at least as good as the previously best known solution for $80 \%$ of the problems.

The two afore mentioned tables only dealt with the best solutions found by the ALNS heuristic. Table 9 shows the average solution quality obtained by the heuristic. These numbers can be compared to those in Table 7. It is worth noticing that the average solution sometimes have a lower distance than the "best of 10 or 5 " solution in table 7 , this is the case in the last row. This is possible because the heuristic finds solutions that use more than the minimum number of vehicles and this usually makes solutions with shorter distances

| \#locations | Best known 2003 |  | BH best |  |  |  | ALNS best of 10 or 5 |  |  | ALNS best |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \#veh. | Dist | \#veh. | Dist | Avg. TTB | Avg. time | \#veh. | Dist | Avg. time | \#veh. | Dist |
| 100 | 402 | 58060 | 402 | 58062 | 68 | 3900 | 402 | 58060 | 66 | 402 | 56060 |
| 200 | 615 | 178380 | 614 | 180358 | 772 | 3900 | 606 | 180931 | 264 | 606 | 180419 |
| 400 | 1183 | 421215 | 1188 | 423636 | 2581 | 6000 | 1158 | 422201 | 881 | 1157 | 420396 |
| 600 | 1699 | 873850 | 1718 | 879940 | 3376 | 6000 | 1679 | 863442 | 2221 | 1664 | 860898 |
| 800 | 2213 | 1492200 | 2245 | 1480767 | 5878 | 8100 | 2208 | 1432078 | 3918 | 2181 | 1423063 |
| 1000 | 2698 | 2195755 | 2759 | 2225190 | 6174 | 8100 | 2652 | 2137034 | 5370 | 2646 | 2122922 |

Table 7: This table compares the ALNS heuristic to existing heuristics using the Li and Lim benchmark instances. Each row in the table corresponds to a set of problems with the same number of locations. Each of these problem sets contain between 56 and 60 instances (see Table 8). The first column indicates the number of locations in each problem; the next two columns give the total number of vehicles used and the total distance traveled in the previously best known solutions as listed on the SINTEF web page [25] in the summer of 2003. The next four columns show information about the solutions obtained by Bent and Van Hentenryck's heuristic [2]. The two columns Avg. TTB and Avg. time show the average time needed to reach the best solution and the average time spent on each instance, respectively. Both columns report the time needed to perform one experiment on one instance. The next three columns report the solutions obtained in the experiment with the ALNS heuristic where the heuristic was applied either 5 or 10 times to each problem. The last two columns report the best solutions obtained in several experiments with our ALNS heuristic and with various parameter settings. Note that Bent and Van Hentenryck in some cases have found slightly better results than reported on the SINTEF web page in 2003. This is the reason why the number of vehicles used by the BH heuristic for the 200 locations problems is smaller than in the best known solutions.
possible.
Overall, one can conclude that the ALNS heuristic must be considered as a state of the art heuristic for the PDPTW. The cost of the best solutions identified during the experiments are listed in Tables 10 to 15 .

### 4.6 Computational tests conclusion

In Section 4.4 we stated three objectives for our computational experiments. The tests fulfilled these objectives as we saw that: 1) the adaptive LNS heuristic that combines several removal and construction heuristics displays superior performance compared to the simple LNS heuristic that only uses one insertion heuristic and one removal heuristic; 2) certain problem characteristics influence the performance of the LNS heuristic but we did not find that any characteristics could make the LNS heuristic perform better than the ALNS heuristic; 3) the LNS heuristic indeed is able to find good quality solutions in a reasonable amount of time, and the heuristic outperforms previously proposed heuristics.

The experiments also illustrate the importance of testing heuristics on large sets of problem instances as the

|  |  | ALNS best of 10 or 5 |  | ALNS best |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| \#locations | \#problems | $<\mathrm{PB}$ | $\leq \mathrm{PB}$ | $<\mathrm{PB}$ | $\leq \mathrm{PB}$ |
| 100 | 56 | 0 | 54 | 0 | 55 |
| 200 | 60 | 22 | 42 | 27 | 57 |
| 400 | 60 | 40 | 47 | 41 | 55 |
| 600 | 60 | 41 | 45 | 51 | 57 |
| 800 | 60 | 37 | 42 | 48 | 53 |
| 1000 | 58 | 50 | 54 | 51 | 55 |

Table 8: Comparison of the ALNS heuristic to the previously best known solutions. The table is grouped by problem size. The first column shows the problem size, the next column shows the number of problems of that size. The next two columns give additional information about the experiment where the ALNS heuristic was applied 5 or 10 times to each instance. The columns $<P B$ report how many times the best solution found by the ALNS heuristic was strictly better than the previously best known solution. The columns $\leq P B$ show how many times the best solution found by ALNS was at least as good as the previously best known solution. The last two columns show information about the best solutions obtained during experimentation with different parameter settings.

| \#locations | Avg. \#veh. | Avg. Dist |
| ---: | ---: | ---: |
| 100 | 403 | 58249 |
| 200 | 608 | 181707 |
| 400 | 1168 | 425817 |
| 600 | 1686 | 867930 |
| 800 | 2223 | 1432321 |
| 1000 | 2677 | 2129032 |

Table 9: The ALNS heuristic was applied 10 times to each problem with 200 or less locations and 5 times to each problem with more than 200 locations. The best solutions reported in Table 7 and 8 were of course not obtained in all experiments. This table shows the average number of vehicles and average distance traveled obtained. These numbers can be compared to the figures in Table 7

|  | R1 |  | R2 |  | C1 |  | C2 |  | RC1 |  | RC2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 19 | 1650.80 | 4 | 1253.23 | 10 | 828.94 | 3 | 591.56 | 14 | 1708.80 | 4 | 1406.94 |
| 2 | 17 | 1487.57 | 3 | 1197.67 | 10 | 828.94 | 3 | 591.56 | 12 | 1558.07 | 3 | 1374.27 |
| 3 | 13 | 1292.68 | 3 | 949.40 | 9 | 1035.35 | 3 | 591.17 | 11 | 1258.74 | 3 | 1089.07 |
| 4 | 9 | 1013.39 | 2 | 849.05 | 9 | 860.01 | 3 | 590.60 | 10 | 1128.40 | 3 | 818.66 |
| 5 | 14 | 1377.11 | 3 | 1054.02 | 10 | 828.94 | 3 | 588.88 | 13 | 1637.62 | 4 | 1302.20 |
| 6 | 12 | 1252.62 | 3 | 931.63 | 10 | 828.94 | 3 | 588.49 | 11 | 1424.73 | 3 | 1159.03 |
| 7 | 10 | 1111.31 | 2 | 903.06 | 10 | 828.94 | 3 | 588.29 | 11 | 1230.14 | 3 | 1062.05 |
| 8 | 9 | 968.97 | 2 | 734.85 | 10 | 826.44 | 3 | 588.32 | 10 | 1147.43 | 3 | 852.76 |
| 9 | 11 | 1208.96 | 3 | 930.59 | 9 | 1000.60 |  |  |  |  |  |  |
| 10 | 10 | 1159.35 | 3 | 964.22 |  |  |  |  |  |  |  |  |
| 11 | 10 | 1108.90 |  | 911.52 |  |  |  |  |  |  |  |  |
| 12 | 9 | 1003.77 |  |  |  |  |  |  |  |  |  |  |

Table 10: Best results, 100 locations. The Li and Lim benchmark instances are divided into six sets: R1, R2, C1, C2, RC1 and RC2. Each of the major columns corresponds to one of these sets, the column at the left give the problem number. For each problem instance we report the number of vehicles and the distance traveled in the best solution obtained during experimentation. Bold numbers indicate best known solutions.

|  | R1 |  | R2 |  | C1 |  | C2 |  | RC1 |  | RC2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 20 | 4819.12 | 5 | 4073.10 | 20 | 2704.57 | 6 | 1931.44 | 19 | 3606.06 | 6 | 3605.40 |
| 2 | 17 | 4621.21 | 4 | 3796.00 | 19 | 2764.56 | 6 | 1881.40 | 15 | 3674.80 | 5 | 3327.18 |
| 3 | 15 | 3612.64 | 4 | 3098.36 | 17 | 3128.61 | 6 | 1844.33 | 13 | 3178.17 | 4 | 2938.28 |
| 4 | 10 | 3037.38 | 3 | 2486.14 | 17 | 2693.41 | 6 | 1767.12 | 10 | 2631.82 | 3 | 2887.97 |
| 5 | 16 | 4760.18 | 4 | 3438.39 | 20 | 2702.05 | 6 | 1891.21 | 16 | 3715.81 | 5 | 2776.93 |
| 6 | 14 | 4178.24 | 4 | 3201.54 | 20 | 2701.04 | 6 | 1857.78 | 17 | 3368.66 | 5 | 2707.96 |
| 7 | 12 | 3550.61 | 3 | 3135.05 | 20 | 2701.04 | 6 | 1850.13 | 14 | 3668.39 | 4 | 3056.09 |
| 8 | 9 | 2784.53 | 2 | 2555.40 | 20 | 2689.83 | 6 | 1824.34 | 13 | 3174.55 | 4 | 2399.95 |
| 9 | 14 | 4354.66 | 3 | 3930.49 | 18 | 2724.24 | 6 | 1854.21 | 13 | 3226.72 | 4 | 2208.49 |
| 10 | 11 | 3714.16 | 3 | 3344.08 | 17 | 2943.49 | 6 | 1817.45 | 12 | 2951.29 | 3 | 2550.56 |

Table 11: Best results, 200 locations.

|  | R1 |  | R2 |  | C1 |  | C2 |  | RC1 |  | RC2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 40 | 10639.75 | 8 | 9758.46 | 40 | 7152.06 | 12 | 4116.33 | 36 | 9127.15 | 12 | 7471.01 |
| 2 | 31 | 10015.85 | 7 | 9496.64 | 38 | 8012.43 | 12 | 4144.29 | 31 | 8346.06 | 11 | 6303.36 |
| 3 | 23 | 8840.46 | 6 | 8116.53 | 33 | 8308.94 | 12 | 4431.75 | 25 | 7387.40 | 9 | 5438.20 |
| 4 | 16 | 6744.33 | 4 | 6649.78 | 30 | 6878.00 | 12 | 4038.00 | 19 | 5838.58 | 5 | 5322.43 |
| 5 | 29 | 10599.54 | 7 | 8574.84 | 40 | 7150.00 | 12 | 4030.63 | 33 | 8773.75 | 11 | 6120.13 |
| 6 | 25 | 9525.45 | 6 | 7995.06 | 40 | 7154.02 | 12 | 3900.29 | 31 | 8177.90 | 9 | 6479.56 |
| 7 | 19 | 8200.37 | 5 | 6928.61 | 40 | 7149.43 | 12 | 3962.51 | 29 | 7992.08 | 8 | 6361.26 |
| 8 | 14 | 5946.44 | 4 | 5447.40 | 39 | 7111.16 | 12 | 3844.45 | 27 | 7613.43 | 7 | 5928.93 |
| 9 | 24 | 9886.14 | 6 | 8043.20 | 36 | 7452.21 | 12 | 4188.93 | 26 | 8013.48 | 7 | 5303.53 |
| 10 | 21 | 8016.62 | 5 | 7904.77 | 35 | 7387.13 | 12 | 3828.44 | 24 | 7065.73 | 6 | 5760.78 |

Table 12: Best results, 400 locations.

|  | R1 |  | R2 |  | C1 |  | C2 |  | RC1 |  | RC2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 59 | 22838.65 | 11 | 21945.30 | 60 | 14095.64 | 19 | 7977.98 | 53 | 17924.88 | 16 | 14817.72 |
| 2 | 45 | 20246.18 | 10 | 19666.59 | 58 | 14379.53 | 18 | 10277.23 | 44 | 16302.54 | 14 | 12758.77 |
| 3 | 37 | 18073.14 | 8 | 15609.96 | 50 | 14683.43 | 17 | 8728.30 | 36 | 14060.31 | 10 | 12812.67 |
| 4 | 28 | 13269.71 | 6 | 10819.45 | 47 | 13648.03 | 17 | 8041.97 | 25 | 10950.52 | 7 | 10574.87 |
| 5 | 38 | 22562.81 | 9 | 19567.41 | 60 | 14086.30 | 19 | 8047.37 | 47 | 16742.55 | 14 | 13009.52 |
| 6 | 32 | 20641.02 | 8 | 17262.96 | 60 | 14090.79 | 19 | 8094.11 | 44 | 16894.37 | 13 | 12643.98 |
| 7 | 25 | 17162.90 | 6 | 15812.42 | 60 | 14083.76 | 19 | 7998.18 | 39 | 15394.87 | 11 | 12007.65 |
| 8 | 19 | 11957.59 | 5 | 10950.90 | 59 | 14554.27 | 18 | 7579.93 | 36 | 15154.79 | 10 | 12163.43 |
| 9 | 32 | 21423.05 | 8 | 18799.36 | 54 | 14706.12 | 18 | 9501.00 | 35 | 15134.24 | 9 | 13768.01 |
| 10 | 27 | 18723.13 | 7 | 17034.63 | 53 | 14879.30 | 17 | 8019.94 | 31 | 13925.51 | 8 | 12016.94 |

Table 13: Best results, 600 locations.

|  | R1 |  | R2 |  | C1 |  | C2 |  | RC1 |  | RC2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 80 | 39315.92 | 15 | 33816.90 | 80 | 25184.38 | 24 | 11687.06 | 67 | 32268.95 | 20 | 23289.40 |
| 2 | 59 | 34370.37 | 12 | 32575.97 | 78 | 26062.17 | 24 | 14358.92 | 57 | 28395.39 | 18 | 21786.62 |
| 3 | 44 | 29718.09 | 10 | 25310.53 | 65 | 25918.45 | 24 | 13198.29 | 50 | 24354.36 | 16 | 16586.31 |
| 4 | 25 | 21197.65 | 7 | 19506.42 | 60 | 22970.88 | 23 | 13376.82 | 35 | 18241.91 | 12 | 14122.05 |
| 5 | 50 | 39046.06 | 12 | 32634.29 | 80 | 25211.22 | 25 | 12329.80 | 61 | 30995.48 | 18 | 20292.92 |
| 6 | 42 | 33659.50 | 10 | 27870.80 | 80 | 25164.25 | 24 | 12702.87 | 58 | 28568.61 | 16 | 21088.57 |
| 7 | 32 | 27294.19 | 8 | 25077.85 | 80 | 25158.38 | 25 | 11855.86 | 54 | 28164.41 | 15 | 19695.96 |
| 8 | 21 | 19570.21 | 5 | 19256.79 | 78 | 25348.45 | 24 | 11482.88 | 49 | 26150.65 | 13 | 19009.33 |
| 9 | 42 | 36126.69 | 10 | 30791.77 | 73 | 25541.94 | 24 | 11629.61 | 47 | 24930.70 | 12 | 19003.68 |
| 10 | 32 | 30200.86 | 9 | 28265.24 | 71 | 25712.12 | 24 | 11578.58 | 42 | 24271.52 | 10 | 19766.78 |

Table 14: Best results, 800 locations.

|  | R1 |  | R2 |  | C1 |  | C2 |  | RC1 |  | RC2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 100 | 56903.88 | 19 | 45422.58 | 100 | 42488.66 | 30 | 16879.24 | 85 | 48702.83 | 22 | 35073.70 |
| 2 | 80 | 49652.10 | 15 | 47824.44 | 95 | 43870.19 | 31 | 18980.98 | 73 | 45135.70 | 21 | 30932.74 |
| 3 | 54 | 42124.44 | 11 | 39894.32 | 82 | 42631.11 | 30 | 17772.49 | 55 | 35475.72 | 16 | 28403.51 |
| 4 | 28 | 32133.36 | 8 | 28314.95 | 74 | 39443.00 | 29 | 18089.93 | 40 | 27747.04 | 12 | 23083.20 |
| 5 | 61 | 59135.86 | 14 | 53209.98 | 100 | 42477.41 | 31 | 17137.53 | 76 | 49816.18 | 18 | 34713.96 |
| 6 | 50 | 48637.63 | 12 | 43792.11 | 101 | 42838.39 | 31 | 17198.01 | 69 | 44469.08 | 17 | 31485.26 |
| 7 | 37 | 38936.54 | 9 | 36728.20 | 100 | 42854.99 | 31 | 19117.67 | 64 | 41413.16 | 17 | 29639.63 |
| 8 | 26 | 29452.32 | 7 | 26278.09 | 98 | 42951.56 | 30 | 17018.63 | 60 | 40590.17 |  |  |
| 9 | 50 | 52223.15 | 13 | 48447.49 | 92 | 42391.98 | 31 | 17565.95 | 57 | 39587.85 | - | - |
| 10 | 40 | 46218.35 | 11 | 44155.66 | 90 | 42435.16 | 29 | 17425.55 | 52 | 36195.00 | 12 | 29402.90 |

Table 15: Best results, 1000 locations. Two entries are missing as the corresponding problem instances no longer exist.
difference between LNS and ALNS only really becomes apparent when we consider large instances. Note that the problems that need to be solved in the real world often have dimensions comparable to or greater than the biggest problems solved in this paper.

Finally the computational experiments performed in Section 4.3.3 indicated that a simple LNS heuristic seems to be more sensitive to the choices of removal heuristic compared to the choices of insertion heuristics. It would be interesting to see if this holds in general for other problems as well.

## 5 Conclusion

This paper presented an extension to the large neighborhood search and the ruin and recreate heuristic called adaptive LNS. The heuristic was tested on the pickup and delivery problem with time windows achieving good results in a reasonable amount of time. The idea of combining several sub heuristics in the same search proved to be successful.

As the proposed model is quite general would be interesting to examine if the model and heuristic can be used to solve other vehicle routing problems. We are currently working on this topic and the results are very promising as the heuristic has been able to discover new best solutions to standard benchmarks for vehicle routing problems with time windows and multi-depot vehicle routing problems and other vehicle routing problems [16], [20].

It would also be interesting to apply the ideas presented in this paper to other combinatorial optimization problems. The adaptive LNS framework is easily applicable to most problems, taking advantage of the numerous robust and fast construction heuristics designed during the last decades for various optimization problems.

## 6 Acknowledgments

The authors wish to thank Jakob Birkedal Nielsen for helpful discussions during the development of the heuristic presented in this paper and Emilie Danna for valuable criticism of the paper. Furthermore we would like to thank the three anonymous referees for valuable comments and corrections.

## 7 Appendix

Tables 16 to 21 show detailed information about the solutions found during the experiment described in Section 4.5.

## References

[1] R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen, A survey of Very Large Scale Neighborhood Search Techniques, Discrete Applied Mathematics 123 (2002), 75-102.
[2] R. Bent, P. Van Hentenryck, A Two-Stage Hybrid Algorithm for Pickup and Delivery Vehicle Routing Problems with Time Windows, Proceedings of the International Conference on Constraint Programming (CP-2003), Lecture Notes in Computer Science 2833, 123-137.
[3] R. Bent, P. Van Hentenryck, A Two-Stage Hybrid Algorithm for Pickup and Delivery Vehicle Routing Problems with Time Windows, Appendix, available at http://www.cs.brown.edu/people/rbent/pickupappendix.ps.
[4] R. Bent, P. Van Hentenryck, A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows, To appear in Transportation Science.
[5] J.-F. Cordeau, G. Laporte, A. Mercier, A Unified Tabu Search Heuristic for Vehicle Routing Problems with Time Windows, Journal of the Operational Research Society 52 (2001), 928-936.
[6] T.H. Cormen, C.E., Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, Second Edition, MIT Press, 2001.
[7] G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon, F. Soumis, The VRP with Pickup and Delivery, in P. Toth and D. Vigo (eds.): The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications 9 (2002), SIAM, Philadelphia, 225-242.
[8] Y. Dumas, J. Desrosiers, F. Soumis, The pickup and delivery problem with time windows, European Journal of Operational Research 54 (1991), 7-22.
[9] M. Gendreau, F. Guertin, J.-Y. Potvin, R. Séguin, Neighborhood Search Heuristics for a Dynamic Vehicle Dispatching Problem with Pick-ups and Deliveries, Tech. Rep. CRT-98-10, Centre de Recherche sur les Transport, Universite de Montreal.
[10] H. C. Lau, Z. Liang, Pickup and Delivery with Time Windows : Algorithms and Test Case Generation, The 13th IEEE Conference on Tools with Artificial Intelligence, ICTAI-2001, Dallas, USA, 333-340.
[11] H. Li, A. Lim, A Metaheuristic for the Pickup and Delivery Problem with Time Windows, The 13th IEEE Conference on Tools with Artificial Intelligence, ICTAI-2001, Dallas, USA, 160-170.
[12] H. Lim, A. Lim, B. Rodrigues, Solving the Pick up and Delivery Problem with Time Windows using "Squeaky Wheel" Optimization with Local Search, Technical Report 2002, Singapore Management University, Paper No. 7-2002
[13] S. Martello, P. Toth, An algorithm for the generalized assignment problem, Operational Research '81, J.P. Brans (editor), North-Holland, New York (1981).
[14] N. Mladenović, P. Hansen, Variable neighborhood search, Computers and Operations Research 24, No. 11 (1997), 1097-1100.
[15] W.P. Nanry, J.W. Barnes, Solving the pickup and delivery problem with time windows using reactive tabu search, Transportation Research Part B 34 (2000), 107-121.
[16] D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems, accepted for publication, Computers and Operations Research (2005).
[17] J.-Y. Potvin, J.-M. Rousseau, A parallel route building algorithm for the vehicle routing and scheduling problem with time windows, European Journal of Operational Research 66 (1993), 331-340.
[18] S. Ropke, D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows, Technical Report, Department of Computer Science, University of Copenhagen 2004.
[19] S. Ropke, Heuristics for the Multi-Vehicle Pickup and Delivery Problem with Time Windows, Masters Thesis 01-11-8, Department of Computer Science, Univerity of Copenhagen, 2002.
[20] S. Ropke, D. Pisinger, A Unified Heuristic for a Large Class of Vehicle Routing Problems with Backhauls, to appear in European Journal of Operational Research.
[21] P. Shaw, A new local search algorithm providing high quality solutions to vehicle routing problems, Technical report, Department of Computer Science, University of Strathclyde, Scotland, 1997.
[22] P. Shaw, Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems, Proceedings CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming), 1998.
[23] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck, Record Breaking Optimization Results Using the Ruin and Recreate Principle, Journal of Computational Physics 159 (2000), 139-171.
[24] M. Sigurd , D. Pisinger, M. Sig, The Pickup and Delivery Problem With Time Windows and Precedences, Transportation Science 38 (2004), 197-209.
[25] SINTEF, Vehicle Routing and Travelling Salesperson Problems, Web page: http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html
[26] M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations Research 35 (1987), 254-265.
[27] M.A Trick, A Linear Relaxation Heuristic for the Generalized Assignment Problem, Naval Research Logistics 39 (1992), 137-152.
[28] P. Toth, D. Vigo, An Overview of Vehicle Routing Problems, In P. Toth and D. Vigo (eds.): The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications 9 (2002), SIAM, Philadelphia, 1-26.
[29] H. Xu, Z.-L. Chen, S. Rajagopal, S. Arunapuram, Solving a Practical Pickup and Delivery Problem, Transportation Science 37 (2003), 347-364.

|  | Best known |  |  | FULL |  |  |  |  | LNS best known |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | best sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | avg. time <br> (s) | veh. | cost |
| LR101 | 19 | 1650.8 | LL | 1650.80 | 19.0 | 1650.80 | 19 | 40 | 19 | 1650.80 |
| LR102 | 17 | 1487.57 | LL | 1487.57 | 17.0 | 1487.57 | 17 | 47 | 17 | 1487.57 |
| LR103 | 13 | 1292.68 | LL | 1292.68 | 13.0 | 1292.68 | 13 | 45 | 13 | 1292.68 |
| LR104 | 9 | 1013.39 | LL | 1013.39 | 9.0 | 1013.39 | 9 | 26 | 9 | 1013.39 |
| LR105 | 14 | 1377.11 | LL | 1377.11 | 14.0 | 1377.11 | 14 | 40 | 14 | 1377.11 |
| LR106 | 12 | 1252.62 | LL | 1252.62 | 12.0 | 1252.62 | 12 | 41 | 12 | 1252.62 |
| LR107 | 10 | 1111.31 | LL | 1111.31 | 10.0 | 1111.31 | 10 | 44 | 10 | 1111.31 |
| LR108 | 9 | 968.97 | LL | 968.97 | 9.0 | 968.97 | 9 | 25 | 9 | 968.97 |
| LR109 | 11 | 1208.96 | SAM | 1208.96 | 11.0 | 1208.96 | 11 | 41 | 11 | 1208.96 |
| LR110 | 10 | 1159.35 | LL | 1159.35 | 10.0 | 1159.35 | 10 | 35 | 10 | 1159.35 |
| LR111 | 10 | 1108.9 | LL | 1108.90 | 10.0 | 1108.90 | 10 | 44 | 10 | 1108.90 |
| LR112 | 9 | 1003.77 | LL | 1003.77 | 9.0 | 1003.77 | 9 | 27 | 9 | 1003.77 |
| LC101 | 10 | 828.94 | LL | 828.94 | 10.0 | 828.94 | 10 | 43 | 10 | 828.94 |
| LC102 | 10 | 828.94 | LL | 828.94 | 10.0 | 828.94 | 10 | 44 | 10 | 828.94 |
| LC103 | 9 | 1035.35 | BH | 1037.77 | 9.0 | 1035.35 | 9 | 49 | 9 | 1035.35 |
| LC104 | 9 | 860.01 | SAM | 860.15 | 9.0 | 860.01 | 9 | 63 | 9 | 860.01 |
| LC105 | 10 | 828.94 | LL | 828.94 | 10.0 | 828.94 | 10 | 41 | 10 | 828.94 |
| LC106 | 10 | 828.94 | LL | 828.94 | 10.0 | 828.94 | 10 | 42 | 10 | 828.94 |
| LC107 | 10 | 828.94 | LL | 828.94 | 10.0 | 828.94 | 10 | 43 | 10 | 828.94 |
| LC108 | 10 | 826.44 | LL | 826.44 | 10.0 | 826.44 | 10 | 46 | 10 | 826.44 |
| LC109 | 9 | 1000.6 | BH | 1000.60 | 9.0 | 1000.60 | 9 | 35 | 9 | 1000.60 |
| LRC101 | 14 | 1708.8 | LL | 1708.80 | 14.0 | 1708.80 | 14 | 38 | 14 | 1708.80 |
| LRC102 | 12 | 1558.07 | SAM | 1558.07 | 12.0 | 1558.07 | 12 | 41 | 12 | 1558.07 |
| LRC103 | 11 | 1258.74 | LL | 1258.74 | 11.0 | 1258.74 | 11 | 43 | 11 | 1258.74 |
| LRC104 | 10 | 1128.4 | LL | 1128.40 | 10.0 | 1128.40 | 10 | 52 | 10 | 1128.40 |
| LRC105 | 13 | 1637.62 | LL | 1637.62 | 13.0 | 1637.62 | 13 | 42 | 13 | 1637.62 |
| LRC106 | 11 | 1424.73 | SAM | 1424.73 | 11.0 | 1424.73 | 11 | 42 | 11 | 1424.73 |
| LRC107 | 11 | 1230.15 | LL | 1230.14 | 11.0 | 1230.14 | 11 | 43 | 11 | 1230.14 |
| LRC108 | 10 | 1147.43 | SAM | 1147.43 | 10.0 | 1147.43 | 10 | 25 | 10 | 1147.43 |
| LR201 | 4 | 1253.23 | SAM | 1253.23 | 4.0 | 1253.23 | 4 | 69 | 4 | 1253.23 |
| LR202 | 3 | 1197.67 | LL | 1197.67 | 3.0 | 1197.67 | 3 | 60 | 3 | 1197.67 |
| LR203 | 3 | 949.4 | LL | 949.40 | 3.0 | 949.40 | 3 | 98 | 3 | 949.40 |
| LR204 | 2 | 849.05 | LL | 849.05 | 2.0 | 849.05 | 2 | 181 | 2 | 849.05 |
| LR205 | 3 | 1054.02 | LL | 1054.02 | 3.0 | 1054.02 | 3 | 58 | 3 | 1054.02 |
| LR206 | 3 | 931.63 | LL | 931.63 | 3.0 | 931.63 | 3 | 86 | 3 | 931.63 |
| LR207 | 2 | 903.06 | LL | 903.06 | 2.0 | 903.06 | 2 | 187 | 2 | 903.06 |
| LR208 | 2 | 734.85 | LL | 734.85 | 2.0 | 734.85 | 2 | 285 | 2 | 734.85 |
| LR209 | 3 | 930.59 | SAM | 930.59 | 3.0 | 930.59 | 3 | 73 | 3 | 930.59 |
| LR210 | 3 | 964.22 | LL | 964.22 | 3.0 | 964.22 | 3 | 77 | 3 | 964.22 |
| LR211 | 2 | 911.52 | SAM | 906.69 | 2.2 | 911.52 | 2 | 126 | 2 | 911.52 |
| LC201 | 3 | 591.56 | LL | 591.56 | 3.0 | 591.56 | 3 | 36 | 3 | 591.56 |
| LC202 | 3 | 591.56 | LL | 591.56 | 3.0 | 591.56 | 3 | 59 | 3 | 591.56 |
| LC203 | 3 | 585.56 | LL | 591.17 | 3.0 | 591.17 | 3 | 81 | 3 | 591.17 |
| LC204 | 3 | 590.6 | SAM | 590.60 | 3.0 | 590.60 | 3 | 141 | 3 | 590.60 |
| LC205 | 3 | 588.88 | LL | 588.88 | 3.0 | 588.88 | 3 | 48 | 3 | 588.88 |
| LC206 | 3 | 588.49 | LL | 588.49 | 3.0 | 588.49 | 3 | 60 | 3 | 588.49 |
| LC207 | 3 | 588.29 | LL | 588.29 | 3.0 | 588.29 | 3 | 62 | 3 | 588.29 |
| LC208 | 3 | 588.32 | LL | 588.32 | 3.0 | 588.32 | 3 | 69 | 3 | 588.32 |
| LRC201 | 4 | 1406.94 | SAM | 1406.94 | 4.0 | 1406.94 | 4 | 38 | 4 | 1406.94 |
| LRC202 | 3 | 1374.27 | LL | 1387.74 | 3.8 | 1374.79 |  | 82 | 3 | 1374.27 |
| LRC203 | 3 | 1089.07 | SAM | 1089.07 | 3.0 | 1089.07 | 3 | 69 | 3 | 1089.07 |
| LRC204 | 3 | 818.66 | SAM | 818.66 | 3.0 | 818.66 | 3 | 173 | 3 | 818.66 |
| LRC205 | 4 | 1302.2 | LL | 1302.20 | 4.0 | 1302.20 | 4 | 75 | 4 | 1302.20 |
| LRC206 | 3 | 1159.03 | SAM | 1337.75 | 3.0 | 1159.03 | 3 | 48 | 3 | 1159.03 |
| LRC207 | 3 | 1062.05 | SAM | 1062.05 | 3.0 | 1062.05 | 3 | 66 | 3 | 1062.05 |
| LRC208 | 3 | 852.76 | LL | 852.76 | 3.0 | 852.76 | 3 | 88 | 3 | 852.76 |
| Tot. Avg. | 402 | 58054 |  | 58249.42 | 403.00 | 58060.03 | 402 | $\begin{array}{r} 3680 \\ 66 \\ \hline \end{array}$ | 402 | 58059.50 |
| < PB |  |  |  |  |  | 1 |  |  |  | 1 |
| < PB |  |  |  |  |  | 54 |  |  |  | 55 |
| \#B |  | 55 |  |  |  | 54 |  |  |  | 55 |

Table 16: Results on 100-customer problems solved with vehicle minimization as primary objective. The first column contains the name of the problem, columns two to four show information about the previously best known solutions. Columns two and three give the number of vehicles in the solution and the total traveled distance. Column four refers to the method that first found the solution (LL: Li and Lim [11], BH: Bent and Van Hentenryck [2], SAM: SINTEF heuristic, TS: TetraSoft A/S heuristic). The next five columns show information about the solutions obtained by the ALNS LNS heuristic. The first two of these columns show the average distance traveled and the average number of vehicles (averaged over the 10 experiments performed). The two next column display the the best solution obtained in the 10 experiments. The column avg. time displays the average time needed to perform one experiment in seconds. The two last columns show the best results obtained during experimentation with various parameter settings. The last 5 columns provide some summary information. The Tot. and Avg. rows respectively sums and averages entries in the columns. The <PB row indicates how many solutions that are better than the previously best known solution and the $<=P B$ row indicates how many solution that are at least as good as the previously best known solution. \#B reports the number of overall best known solutions that were obtained. Best known solutions are marked with bold font.

|  | Best known |  |  | FULL |  |  |  |  | LNS best known |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | avg. <br> \#veh. | best sol. | best \#veh. | avg. time <br> (s) | veh. | cost |
| LR1_2_1 | 20 | 4819.12 | LL | 4819.12 | 20.0 | 4819.12 | 20 | 137 | 20 | 4819.12 |
| LR1_2_2 | 17 | 4666.09 | BH | 4625.99 | 17.0 | 4621.21 | 17 | 149 | 17 | 4621.21 |
| LR1_2_3 | 15 | 3612.64 | TS | 3626.13 | 15.0 | 3612.64 | 15 | 173 | 15 | 3612.64 |
| LR1_2_4 | 10 | 3146.06 | BH | 3088.07 | 10.0 | 3058.12 | 10 | 228 | 10 | 3037.38 |
| LR1_2_5 | 16 | 4760.18 | BH | 4852.41 | 16.0 | 4760.18 | 16 | 136 | 16 | 4760.18 |
| LR1_2_6 | 14 | 4175.16 | BH | 4261.23 | 14.0 | 4184.80 | 14 | 164 | 14 | 4178.24 |
| LR1_2_7 | 12 | 3851.36 | BH | 3580.94 | 12.0 | 3551.47 | 12 | 173 | 12 | 3550.61 |
| LR1_2_8 | 9 | 2871.67 | BH | 2823.91 | 9.0 | 2784.53 | 9 | 226 | 9 | 2784.53 |
| LR1_2_9 | 14 | 4411.54 | BH | 4438.36 | 14.0 | 4354.66 | 14 | 144 | 14 | 4354.66 |
| LR1_2_10 | 11 | 3744.95 | BH | 3787.23 | 11.0 | 3741.29 | 11 | 146 | 11 | 3714.16 |
| LRC1_2_1 | 19 | 3606.06 | SAM | 3606.06 | 19.0 | 3606.06 | 19 | 136 | 19 | 3606.06 |
| LRC1_2_2 | 15 | 3681.36 | BH | 3684.82 | 15.0 | 3674.80 | 15 | 143 | 15 | 3674.80 |
| LRC1_2_3 | 13 | 3161.75 | BH | 3211.85 | 13.0 | 3178.17 | 13 | 183 | 13 | 3178.17 |
| LRC1_2_4 | 10 | 2655.27 | BH | 2660.26 | 10.0 | 2641.67 | 10 | 284 | 10 | 2631.82 |
| LRC1_2_5 | 16 | 3715.81 | BH | 3718.57 | 16.0 | 3716.72 | 16 | 141 | 16 | 3715.81 |
| LRC1_2_6 | 17 | 3368.66 | SAM | 3372.68 | 17.0 | 3368.74 | 17 | 141 | 17 | 3368.66 |
| LRC1_2_7 | 15 | 3417.16 | BH | 3525.21 | 14.7 | 3668.39 | 14 | 140 | 14 | 3668.39 |
| LRC1_2_8 | 14 | 3087.62 | BH | 3220.69 | 13.2 | 3174.55 | 13 | 144 | 13 | 3174.55 |
| LRC1_2_9 | 14 | 3129.65 | BH | 3259.40 | 13.1 | 3226.72 | 13 | 140 | 13 | 3226.72 |
| LRC1_2_10 | 13 | 2833.85 | BH | 2968.69 | 12.1 | 2967.70 | 12 | 156 | 12 | 2951.29 |
| LC1_2_1 | 20 | 2704.57 | LL | 2704.57 | 20.0 | 2704.57 | 20 | 146 | 20 | 2704.57 |
| LC1_2_2 | 19 | 2764.56 | LL | 2764.56 | 19.0 | 2764.56 | 19 | 141 | 19 | 2764.56 |
| LC1_2_3 | 17 | 3134.08 | BH | 3142.99 | 17.0 | 3136.42 | 17 | 155 | 17 | 3128.61 |
| LC1_2_4 | 17 | 2698.73 | TS | 2711.42 | 17.0 | 2704.41 | 17 | 209 | 17 | 2693.41 |
| LC1_2_5 | 20 | 2702.05 | LL | 2702.05 | 20.0 | 2702.05 | 20 | 137 | 20 | 2702.05 |
| LC1_2_6 | 20 | 2701.04 | LL | 2701.04 | 20.0 | 2701.04 | 20 | 133 | 20 | 2701.04 |
| LC1_2_7 | 20 | 2701.04 | LL | 2701.04 | 20.0 | 2701.04 | 20 | 139 | 20 | 2701.04 |
| LC1_2_8 | 20 | 2689.83 | LL | 2689.83 | 20.0 | 2689.83 | 20 | 145 | 20 | 2689.83 |
| LC1_2_9 | 18 | 2724.24 | LL | 2724.24 | 18.0 | 2724.24 | 18 | 157 | 18 | 2724.24 |
| LC1_2_10 | 18 | 2741.56 | LL | 2967.24 | 17.0 | 2943.49 | 17 | 104 | 17 | 2943.49 |
| LR2_2_1 | 5 | 4073.1 | SAM | 4110.08 | 5.0 | 4073.10 | 5 | 230 | 5 | 4073.10 |
| LR2_2_2 | 4 | 3796 | SAM | 4194.32 | 4.0 | 4113.64 | 4 | 249 | 4 | 3796.00 |
| LR2_2_3 | 4 | 3098.36 | SAM | 3209.80 | 4.0 | 3098.36 | 4 | 696 | 4 | 3098.36 |
| LR2_2_4 | 3 | 2487.65 | TS | 2495.48 | 3.0 | 2491.87 | 3 | 1191 | 3 | 2486.14 |
| LR2_2_5 | 4 | 3438.39 | SAM | 3440.71 | 4.0 | 3439.40 | 4 | 207 | 4 | 3438.39 |
| LR2_2_6 | 4 | 3201.54 | LL | 3204.44 | 4.0 | 3201.86 | 4 | 499 | 4 | 3201.54 |
| LR2_2_7 | 3 | 3190.75 | LL | 3216.40 | 3.0 | 3135.05 | 3 | 521 | 3 | 3135.05 |
| LR2_2_8 | 3 | 2187.01 | TS | 2613.39 | 2.0 | 2559.70 | 2 | 1114 | 2 | 2555.40 |
| LR2_2_9 | 4 | 3198.44 | SAM | 3272.31 | 3.9 | 3930.49 | 3 | 425 | 3 | 3930.49 |
| LR2_2_10 | 3 | 3377.45 | SAM | 3387.47 | 3.0 | 3360.74 | 3 | 342 | 3 | 3344.08 |
| LRC2_2_1 | 6 | 3690.1 | BH | 3722.20 | 6.0 | 3622.11 | 6 | 117 | 6 | 3605.40 |
| LRC2_2_2 | 6 | 2666.01 | BH | 3403.75 | 5.0 | 3327.18 | 5 | 201 | 5 | 3327.18 |
| LRC2_2_3 | 4 | 3141.28 | SAM | 3138.84 | 4.0 | 2965.88 | 4 | 323 | 4 | 2938.28 |
| LRC2_2_4 | 4 | 2190.88 | TS | 3006.86 | 3.0 | 2891.10 | 3 | 993 | 3 | 2887.97 |
| LRC2_2_5 | 5 | 2776.93 | BH | 2786.49 | 5.0 | 2782.83 | 5 | 302 | 5 | 2776.93 |
| LRC2_2_6 | 5 | 2707.96 | SAM | 2713.57 | 5.0 | 2710.14 | 5 | 302 | 5 | 2707.96 |
| LRC2_2_7 | 4 | 3050.03 | BH | 3140.57 | 4.0 | 3056.09 | 4 | 217 | 4 | 3056.09 |
| LRC2_2_8 | 4 | 2401.84 | BH | 2409.16 | 4.0 | 2404.09 | 4 | 286 | 4 | 2399.95 |
| LRC2_2_9 | 4 | 2209.54 | SAM | 2214.37 | 4.0 | 2210.88 | 4 | 410 | 4 | 2208.49 |
| LRC2_2_10 | 3 | 2699.55 | BH | 2558.03 | 3.1 | 2551.67 | 3 | 467 | 3 | 2550.56 |
| LC2_2_1 | 6 | 1931.44 | SAM | 1931.44 | 6.0 | 1931.44 | 6 | 100 | 6 | 1931.44 |
| LC2_2_2 | 6 | 1881.4 | LL | 1881.40 | 6.0 | 1881.40 | 6 | 157 | 6 | 1881.40 |
| LC2_2_3 | 6 | 1844.33 | SAM | 1845.57 | 6.0 | 1844.66 | 6 | 234 | 6 | 1844.33 |
| LC2_2_4 | 6 | 1767.12 | LL | 1772.02 | 6.0 | 1768.22 | 6 | 427 | 6 | 1767.12 |
| LC2_2_5 | 6 | 1891.21 | LL | 1891.21 | 6.0 | 1891.21 | 6 | 121 | 6 | 1891.21 |
| LC2_2_6 | 6 | 1857.78 | SAM | 1857.93 | 6.0 | 1857.78 | 6 | 150 | 6 | 1857.78 |
| LC2_2_7 | 6 | 1850.13 | SAM | 1850.60 | 6.0 | 1850.13 | 6 | 151 | 6 | 1850.13 |
| LC2_2_8 | 6 | 1824.34 | LL | 1825.88 | 6.0 | 1824.73 | 6 | 193 | 6 | 1824.34 |
| LC2_2_9 | 6 | 1854.21 | SAM | 1854.43 | 6.0 | 1854.21 | 6 | 193 | 6 | 1854.21 |
| LC2_2_10 | 6 | 1817.45 | LL | 1818.04 | 6.0 | 1817.45 | 6 | 245 | 6 | 1817.45 |
| Tot. Avg. | 615 | 178380 |  | 181707.35 | 608.10 | 180930.62 | 606 | $\begin{array}{r} 15815 \\ 264 \end{array}$ | 606 | 180418.58 |
| < PB |  |  |  |  |  | 22 |  |  |  | 27 |
| < $=$ PB |  |  |  |  |  | 42 |  |  |  | 57 |
| \#B |  | 33 |  |  |  | 31 |  |  |  | 57 |

Table 17: Results on 200-customer problems

|  | Best known |  |  | FULL |  |  |  |  | LNS best known |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | avg. \#veh. | best sol. | best \#veh. | avg. time <br> (s) | veh. | cost |
| LR1_4_1 | 40 | 10639.75 | TS | 10652.59 | 40.0 | 10639.75 | 40 | 351 | 40 | 10639.75 |
| LR1_4_2 | 31 | 10533.33 | SAM | 10125.79 | 31.0 | 10015.85 | 31 | 554 | 31 | 10015.85 |
| LR1_4_3 | 24 | 8831.1 | SAM | 8846.24 | 23.3 | 8908.01 | 23 | 613 | 23 | 8840.46 |
| LR1_4_4 | 17 | 5551.47 | LL | 6974.01 | 16.0 | 6814.84 | 16 | 575 | 16 | 6744.33 |
| LR1_4_5 | 30 | 10233.59 | TS | 10606.32 | 29.1 | 10599.54 | 29 | 457 | 29 | 10599.54 |
| LR1_4_6 | 25 | 9456.68 | BH | 9686.93 | 25.0 | 9573.68 | 25 | 554 | 25 | 9525.45 |
| LR1_4_7 | 21 | 8012.3 | SAM | 8170.00 | 19.7 | 8200.37 | 19 | 610 | 19 | 8200.37 |
| LR1_4_8 | 15 | 6320.03 | SAM | 6093.04 | 14.1 | 6044.40 | 14 | 568 | 14 | 5946.44 |
| LR1_4_9 | 25 | 10313.6 | SAM | 9908.16 | 24.7 | 9886.14 | 24 | 480 | 24 | 9886.14 |
| LR1_4_10 | 22 | 8249.87 | SAM | 8233.16 | 21.0 | 8145.03 | 21 | 516 | 21 | 8016.62 |
| LR2_4_1 | 8 | 9726.88 | BH | 10243.45 | 8.0 | 9786.02 | 8 | 467 | 8 | 9758.46 |
| LR2_4_2 | 8 | 7971.09 | SAM | 9995.30 | 7.0 | 9717.03 | 7 | 761 | 7 | 9496.64 |
| LR2_4_3 | 6 | 9794.4 | SAM | 8586.52 | 6.0 | 8116.53 | 6 | 1451 | 6 | 8116.53 |
| LR2_4_4 | 5 | 5116.24 | LL | 6948.40 | 4.0 | 6695.51 | 4 | 3409 | 4 | 6649.78 |
| LR2_4_5 | 7 | 9314.23 | SAM | 8893.25 | 7.0 | 8642.63 | 7 | 1096 | 7 | 8574.84 |
| LR2_4_6 | 6 | 9439.98 | SAM | 8156.35 | 6.0 | 8089.75 | 6 | 1236 | 6 | 7995.06 |
| LR2_4_7 | 5 | 7935.54 | SAM | 7126.64 | 5.0 | 6928.61 | 5 | 2019 | 5 | 6928.61 |
| LR2_4_8 | 4 | 6043.41 | LL | 5591.83 | 4.0 | 5447.40 | 4 | 4603 | 4 | 5447.40 |
| LR2_4_9 | 6 | 8552.29 | SAM | 8613.50 | 6.0 | 8135.86 | 6 | 780 | 6 | 8043.20 |
| LR2_4_10 | 6 | 7449.9 | TS | 8008.78 | 5.2 | 7904.77 | 5 | 1385 | 5 | 7904.77 |
| LC1_4_1 | 40 | 7152.06 | SAM | 7152.06 | 40.0 | 7152.06 | 40 | 585 | 40 | 7152.06 |
| LC1_4_2 | 39 | 7326.93 | BH | 7395.61 | 38.9 | 8012.43 | 38 | 597 | 38 | 8012.43 |
| LC1_4_3 | 35 | 7896.36 | SAM | 8538.36 | 33.1 | 8308.94 | 33 | 628 | 33 | 8308.94 |
| LC1_4_4 | 30 | 6451.68 | LL | 7013.38 | 30.7 | 7021.92 | 30 | 558 | 30 | 6878.00 |
| LC1_4_5 | 40 | 7150 | SAM | 7150.00 | 40.0 | 7150.00 | 40 | 508 | 40 | 7150.00 |
| LC1_4_6 | 40 | 7154.02 | LL | 7154.02 | 40.0 | 7154.02 | 40 | 520 | 40 | 7154.02 |
| LC1_4_7 | 40 | 7149.43 | SAM | 7149.43 | 40.0 | 7149.43 | 40 | 529 | 40 | 7149.43 |
| LC1_4_8 | 39 | 7111.16 | LL | 7111.86 | 39.0 | 7111.16 | 39 | 542 | 39 | 7111.16 |
| LC1_4_9 | 36 | 7539.92 | SAM | 7471.34 | 36.1 | 7458.43 | 36 | 462 | 36 | 7452.21 |
| LC1_4_10 | 36 | 7181.05 | TS | 7278.25 | 35.8 | 7474.07 | 35 | 501 | 35 | 7387.13 |
| LC2_4_1 | 12 | 4116.33 | LL | 4116.33 | 12.0 | 4116.33 | 12 | 319 | 12 | 4116.33 |
| LC2_4_2 | 12 | 4144.29 | SAM | 4145.71 | 12.0 | 4144.49 | 12 | 455 | 12 | 4144.29 |
| LC2_4_3 | 12 | 4624.76 | SAM | 4533.47 | 12.0 | 4483.34 | 12 | 681 | 12 | 4431.75 |
| LC2_4_4 | 12 | 3743.95 | LL | 4123.21 | 12.0 | 4081.93 | 12 | 1169 | 12 | 4038.00 |
| LC2_4_5 | 12 | 4030.63 | TS | 4030.97 | 12.0 | 4030.64 | 12 | 366 | 12 | 4030.63 |
| LC2_4_6 | 12 | 3900.29 | SAM | 3905.41 | 12.0 | 3902.25 | 12 | 475 | 12 | 3900.29 |
| LC2_4_7 | 12 | 3962.51 | BH | 3976.03 | 12.0 | 3969.69 | 12 | 481 | 12 | 3962.51 |
| LC2_4_8 | 12 | 3844.45 | SAM | 3879.38 | 12.0 | 3867.31 | 12 | 549 | 12 | 3844.45 |
| LC2_4_9 | 12 | 4198.61 | SAM | 4229.42 | 12.0 | 4209.49 | 12 | 604 | 12 | 4188.93 |
| LC2_4_10 | 12 | 3828.44 | BH | 3846.45 | 12.0 | 3839.11 | 12 | 811 | 12 | 3828.44 |
| LRC1_4_1 | 37 | 8944.58 | TS | 9059.11 | 36.5 | 9127.15 | 36 | 498 | 36 | 9127.15 |
| LRC1_4_2 | 31 | 8642.74 | SAM | 8189.18 | 32.0 | 8404.51 | 31 | 550 | 31 | 8346.06 |
| LRC1_4_3 | 25 | 7307.09 | BH | 7413.29 | 25.7 | 7429.00 | 25 | 644 | 25 | 7387.40 |
| LRC1_4_4 | 19 | 5944.14 | TS | 5918.81 | 19.0 | 5901.86 | 19 | 909 | 19 | 5838.58 |
| LRC1_4_5 | 34 | 9133.11 | SAM | 8760.38 | 34.0 | 8715.74 | 34 | 487 | 33 | 8773.75 |
| LRC1_4_6 | 31 | 8817.39 | SAM | 8236.27 | 31.2 | 8198.96 | 31 | 475 | 31 | 8177.90 |
| LRC1_4_7 | 30 | 7869.45 | BH | 7969.23 | 29.8 | 7992.08 | 29 | 500 | 29 | 7992.08 |
| LRC1_4_8 | 28 | 7887.67 | SAM | 7625.79 | 27.9 | 7613.43 | 27 | 510 | 27 | 7613.43 |
| LRC1_4_9 | 27 | 8215.25 | SAM | 7942.38 | 26.8 | 8013.48 | 26 | 494 | 26 | 8013.48 |
| LRC1_4_10 | 24 | 7404.91 | SAM | 7190.05 | 24.0 | 7103.78 | 24 | 503 | 24 | 7065.73 |
| LRC2_4_1 | 13 | 6655.52 | SAM | 7750.57 | 12.0 | 7471.01 | 12 | 553 | 12 | 7471.01 |
| LRC2_4_2 | 11 | 7467.34 | SAM | 6385.15 | 11.0 | 6332.52 | 11 | 1102 | 11 | 6303.36 |
| LRC2_4_3 | 9 | 5480.25 | TS | 5485.05 | 9.0 | 5459.06 | 9 | 2126 | 9 | 5438.20 |
| LRC2_4_4 | 6 | 4279.05 | LL | 5446.01 | 5.0 | 5405.16 | 5 | 4032 | 5 | 5322.43 |
| LRC2_4_5 | 11 | 6120.13 | BH | 6147.77 | 11.0 | 6140.07 | 11 | 827 | 11 | 6120.13 |
| LRC2_4_6 | 10 | 6002.63 | SAM | 6540.83 | 9.1 | 6479.56 | 9 | 757 | 9 | 6479.56 |
| LRC2_4_7 | 9 | 5737.02 | SAM | 6497.14 | 8.0 | 6361.26 | 8 | 707 | 8 | 6361.26 |
| LRC2_4_8 | 8 | 5364.31 | SAM | 6004.71 | 7.1 | 5968.27 | 7 | 834 | 7 | 5928.93 |
| LRC2_4_9 | 7 | 6892.23 | SAM | 5469.65 | 7.0 | 5394.73 | 7 | 1275 | 7 | 5303.53 |
| LRC2_4_10 | 7 | 5057.81 | TS | 6124.51 | 6.0 | 5760.78 | 6 | 1243 | 6 | 5760.78 |
| Tot. Avg. | 1183 | 421215 |  | 425816.87 | 1167.80 | 422201.17 | 1158 | $\begin{array}{r} 52850 \\ 881 \\ \hline \end{array}$ | 1157 | 420395.99 |
| $\begin{aligned} & <\mathrm{PB} \\ & <=\mathrm{PB} \\ & \# \mathrm{~B} \end{aligned}$ |  | 19 |  |  |  | 40 47 25 |  |  |  | 41 55 55 |

Table 18: Results on 400-customer problems

|  | Best known |  |  | FULL |  |  |  |  | LNS best known |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | avg. \#veh. | best sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | avg. time <br> (s) | veh. | cost |
| LR1_6_1 | 59 | 22838.3 | BVH | 23070.74 | 59.0 | 22975.40 | 59 | 1443 | 59 | 22838.65 |
| LR1_6_2 | 45 | 20985.7 | BVH | 20714.68 | 45.0 | 20614.87 | 45 | 1438 | 45 | 20246.18 |
| LR1_6_3 | 37 | 18685.9 | BVH | 18619.94 | 37.0 | 18548.01 | 37 | 1620 | 37 | 18073.14 |
| LR1_6_4 | 28 | 13945.59 | TS | 13677.43 | 28.0 | 13604.92 | 28 | 2119 | 28 | 13269.71 |
| LR1_6_5 | 39 | 22985.63 | SAM | 21983.13 | 39.0 | 22562.81 | 38 | 1105 | 38 | 22562.81 |
| LR1_6_6 | 33 | 21427.75 | SAM | 20373.88 | 33.0 | 20060.42 | 33 | 1299 | 32 | 20641.02 |
| LR1_6_7 | 27 | 17070.51 | SAM | 16615.48 | 26.6 | 16746.97 | 26 | 1476 | 25 | 17162.90 |
| LR1_6_8 | 20 | 12669.88 | SAM | 12412.57 | 19.0 | 12302.45 | 19 | 1916 | 19 | 11957.59 |
| LR1_6_9 | 34 | 21273.3 | BVH | 20917.36 | 33.2 | 20765.52 | 33 | 1059 | 32 | 21423.05 |
| LR1_6_10 | 28 | 19337.5 | SAM | 18400.79 | 28.0 | 18233.75 | 28 | 989 | 27 | 18723.13 |
| LR2_6_1 | 12 | 18840.8 | BVH | 22245.55 | 11.0 | 22049.96 | 11 | 1245 | 11 | 21945.30 |
| LR2_6_2 | 11 | 17452.75 | TS | 20038.78 | 10.0 | 19666.59 | 10 | 2089 | 10 | 19666.59 |
| LR2_6_3 | 9 | 17598.73 | SAM | 16161.38 | 8.0 | 15897.51 | 8 | 3729 | 8 | 15609.96 |
| LR2_6_4 | 7 | 11771.45 | TS | 11627.85 | 6.0 | 10916.25 | 6 | 12849 | 6 | 10819.45 |
| LR2_6_5 | 10 | 19347.2 | SAM | 20529.74 | 9.0 | 20079.56 | 9 | 1300 | 9 | 19567.41 |
| LR2_6_6 | 9 | 19889.05 | SAM | 18788.90 | 8.0 | 17599.80 | 8 | 2238 | 8 | 17262.96 |
| LR2_6_7 | 7 | 16262 | BVH | 16052.41 | 6.0 | 15877.37 | 6 | 6915 | 6 | 15812.42 |
| LR2_6_8 | 6 | 11652.95 | TS | 11175.02 | 5.0 | 11026.09 | 5 | 10329 | 5 | 10950.90 |
| LR2_6_9 | 9 | 18853.4 | BVH | 19465.02 | 8.0 | 19180.31 | 8 | 2123 | 8 | 18799.36 |
| LR2_6_10 | 7 | 18449.18 | SAM | 17599.63 | 7.0 | 17261.53 | 7 | 1928 | 7 | 17034.63 |
| LC1_6_1 | 60 | 14095.6 | LL | 14095.64 | 60.0 | 14095.64 | 60 | 1453 | 60 | 14095.64 |
| LC1_6_2 | 58 | 14379.5 | BVH | 14383.04 | 58.0 | 14380.37 | 58 | 1440 | 58 | 14379.53 |
| LC1_6_3 | 51 | 14569.3 | BVH | 14676.36 | 50.8 | 15028.86 | 50 | 1153 | 50 | 14683.43 |
| LC1_6_4 | 48 | 13567.51 | LL | 13806.44 | 49.0 | 13750.06 | 49 | 1066 | 47 | 13648.03 |
| LC1_6_5 | 60 | 14086.3 | LL | 14086.30 | 60.0 | 14086.30 | 60 | 1201 | 60 | 14086.30 |
| LC1_6_6 | 60 | 14090.79 | SAM | 14090.79 | 60.0 | 14090.79 | 60 | 1198 | 60 | 14090.79 |
| LC1_6_7 | 60 | 14083.76 | SAM | 14083.76 | 60.0 | 14083.76 | 60 | 1203 | 60 | 14083.76 |
| LC1_6_8 | 59 | 14554.27 | SAM | 14557.89 | 59.0 | 14554.81 | 59 | 1263 | 59 | 14554.27 |
| LC1_6_9 | 55 | 14626.25 | TS | 14676.34 | 56.0 | 14596.57 | 56 | 1261 | 54 | 14706.12 |
| LC1_6_10 | 54 | 14627.2 | TS | 14918.57 | 55.6 | 14711.59 | 55 | 1329 | 53 | 14879.30 |
| LC2_6_1 | 19 | 7977.98 | SAM | 7977.98 | 19.0 | 7977.98 | 19 | 1137 | 19 | 7977.98 |
| LC2_6_2 | 19 | 8253.67 | SAM | 10612.70 | 18.0 | 10384.03 | 18 | 1277 | 18 | 10277.23 |
| LC2_6_3 | 18 | 7436.5 | BVH | 7781.67 | 17.8 | 9007.34 | 17 | 2033 | 17 | 8728.30 |
| LC2_6_4 | 18 | 8200.89 | TS | 8279.98 | 17.2 | 8281.94 | 17 | 2303 | 17 | 8041.97 |
| LC2_6_5 | 19 | 8047.37 | BVH | 8068.59 | 19.0 | 8061.74 | 19 | 1268 | 19 | 8047.37 |
| LC2_6_6 | 19 | 8169.95 | TS | 8149.37 | 19.0 | 8129.87 | 19 | 1016 | 19 | 8094.11 |
| LC2_6_7 | 19 | 8038.56 | BVH | 8108.38 | 19.0 | 8086.65 | 19 | 1133 | 19 | 7998.18 |
| LC2_6_8 | 18 | 7808.16 | SAM | 7632.38 | 18.0 | 7616.85 | 18 | 1067 | 18 | 7579.93 |
| LC2_6_9 | 19 | 8134.25 | SAM | 8173.11 | 19.0 | 8160.19 | 19 | 1225 | 18 | 9501.00 |
| LC2_6_10 | 18 | 7555.35 | TS | 7529.02 | 18.0 | 7511.89 | 18 | 1775 | 17 | 8019.94 |
| LRC1_6_1 | 53 | 17930 | BVH | 18017.12 | 53.0 | 17965.79 | 53 | 1342 | 53 | 17924.88 |
| LRC1_6_2 | 45 | 16040.3 | BVH | 16090.72 | 44.8 | 16302.54 | 44 | 1389 | 44 | 16302.54 |
| LRC1_6_3 | 36 | 14407.6 | BVH | 14395.28 | 36.0 | 14310.59 | 36 | 1725 | 36 | 14060.31 |
| LRC1_6_4 | 25 | 11308.6 | BVH | 11260.62 | 25.0 | 11097.51 | 25 | 2496 | 25 | 10950.52 |
| LRC1_6_5 | 47 | 16803.9 | BVH | 16837.12 | 47.8 | 16831.90 | 47 | 1256 | 47 | 16742.55 |
| LRC1_6_6 | 44 | 18205.25 | SAM | 17059.61 | 45.0 | 16994.01 | 45 | 1175 | 44 | 16894.37 |
| LRC1_6_7 | 39 | 16407.68 | SAM | 15582.48 | 39.6 | 15565.62 | 39 | 1135 | 39 | 15394.87 |
| LRC1_6_8 | 36 | 15352.6 | BVH | 15346.86 | 36.0 | 15174.29 | 36 | 1099 | 36 | 15154.79 |
| LRC1_6_9 | 36 | 15751.84 | SAM | 15092.82 | 36.2 | 15000.49 | 36 | 1141 | 35 | 15134.24 |
| LRC1_6_10 | 31 | 14304.37 | SAM | 14036.50 | 32.0 | 13940.77 | 32 | 1058 | 31 | 13925.51 |
| LRC2_6_1 | 17 | 13111.6 | BVH | 14989.05 | 16.0 | 14844.71 | 16 | 1194 | 16 | 14817.72 |
| LRC2_6_2 | 15 | 11463 | BVH | 12856.00 | 14.0 | 12801.40 | 14 | 2106 | 14 | 12758.77 |
| LRC2_6_3 | 11 | 15167.3 | BVH | 12413.60 | 10.6 | 12812.67 | 10 | 4830 | 10 | 12812.67 |
| LRC2_6_4 | 8 | 12512.5 | BVH | 10461.14 | 7.4 | 10574.87 | 7 | 13452 | 7 | 10574.87 |
| LRC2_6_5 | 14 | 15576.76 | SAM | 13287.40 | 14.0 | 13216.21 | 14 | 1827 | 14 | 13009.52 |
| LRC2_6_6 | 13 | 12655.11 | SAM | 12717.44 | 13.0 | 12709.04 | 13 | 1826 | 13 | 12643.98 |
| LRC2_6_7 | 11 | 13996.73 | SAM | 12109.64 | 11.0 | 12070.35 | 11 | 1397 | 11 | 12007.65 |
| LRC2_6_8 | 11 | 14572.07 | SAM | 12681.15 | 10.0 | 12565.94 | 10 | 2341 | 10 | 12163.43 |
| LRC2_6_9 | 10 | 12262.51 | TS | 14236.58 | 9.0 | 13966.61 | 9 | 2094 | 9 | 13768.01 |
| LRC2_6_10 | 9 | 12379.46 | TS | 12300.10 | 8.0 | 12129.35 | 8 | 2340 | 8 | 12016.94 |
| Tot. <br> Avg. | 1699 | 873850 |  | 867929.80 | 1686.60 | 863441.95 | 1679 | $\begin{array}{r} 133234 \\ 2221 \\ \hline \end{array}$ | 1664 | 860898.44 |
| $\begin{aligned} & <\mathrm{PB} \\ & <=\mathrm{PB} \\ & \# \mathrm{~B} \end{aligned}$ |  | 9 |  |  |  | 41 45 9 |  |  |  | 51 57 57 |

Table 19: Results on 600-customer problems

|  | Best known |  |  | FULL |  |  |  |  | LNS best known |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | avg. \#veh. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | best \#veh. | avg. time <br> (s) | veh. | cost |
| LR181 | 80 | 39374.4 | LL | 39847.80 | 80.0 | 39719.88 | 80 | 2867 | 80 | 39315.92 |
| LR182 | 59 | 36122.5 | BVH | 35197.46 | 59.0 | 34746.99 | 59 | 2719 | 59 | 34370.37 |
| LR183 | 45 | 31763 | BVH | 30506.10 | 44.0 | 30301.99 | 44 | 2984 | 44 | 29718.09 |
| LR184 | 26 | 23454.57 | SAM | 21738.05 | 25.6 | 21900.66 | 25 | 3458 | 25 | 21197.65 |
| LR185 | 52 | 39743.88 | SAM | 37834.13 | 52.4 | 37856.78 | 52 | 2051 | 50 | 39046.06 |
| LR186 | 42 | 35011.85 | SAM | 33815.72 | 42.6 | 34315.99 | 42 | 2250 | 42 | 33659.50 |
| LR187 | 34 | 28551.92 | SAM | 27347.55 | 32.8 | 28327.14 | 32 | 2720 | 32 | 27294.19 |
| LR188 | 24 | 21891.97 | SAM | 20182.46 | 21.2 | 20256.27 | 21 | 2982 | 21 | 19570.21 |
| LR189 | 44 | 36550.5 | SAM | 35693.92 | 43.0 | 35531.29 | 43 | 1890 | 42 | 36126.69 |
| LR1810 | 34 | 31443.25 | SAM | 29741.89 | 33.6 | 29587.53 | 33 | 1891 | 32 | 30200.86 |
| LR281 | 16 | 29961.22 | SAM | 34422.50 | 15.0 | 34124.11 | 15 | 2009 | 15 | 33816.90 |
| LR282 | 13 | 37565.81 | SAM | 30839.74 | 12.8 | 33326.43 | 12 | 4507 | 12 | 32575.97 |
| LR283 | 11 | 30046.47 | SAM | 26211.39 | 10.0 | 25446.52 | 10 | 8134 | 10 | 25310.53 |
| LR284 | 8 | 24925.57 | SAM | 20085.04 | 7.0 | 19506.42 | 7 | 24419 | 7 | 19506.42 |
| LR285 | 12 | 34256.18 | SAM | 34919.19 | 12.0 | 33961.98 | 12 | 2515 | 12 | 32634.29 |
| LR286 | 10 | 30688.6 | SAM | 29070.99 | 10.0 | 28629.45 | 10 | 5827 | 10 | 27870.80 |
| LR287 | 9 | 28524.9 | BVH | 25809.90 | 8.0 | 25077.85 | 8 | 7397 | 8 | 25077.85 |
| LR288 | 7 | 19878.42 | TS | 18168.34 | 6.0 | 17800.02 | 6 | 29265 | 5 | 19256.79 |
| LR289 | 11 | 34700.25 | SAM | 30325.20 | 10.8 | 31891.23 | 10 | 3025 | 10 | 30791.77 |
| LR2810 | 10 | 31906.16 | SAM | 29604.30 | 9.0 | 28941.03 | 9 | 3425 | 9 | 28265.24 |
| LC181 | 80 | 25184.38 | SAM | 25184.38 | 80.0 | 25184.38 | 80 | 2663 | 80 | 25184.38 |
| LC182 | 78 | 26056.2 | BVH | 26186.79 | 78.0 | 26131.65 | 78 | 2712 | 78 | 26062.17 |
| LC183 | 66 | 26700.6 | BVH | 26135.96 | 66.8 | 26308.88 | 66 | 2591 | 65 | 25918.45 |
| LC184 | 61 | 23427.2 | BVH | 23880.34 | 62.4 | 23786.46 | 62 | 1892 | 60 | 22970.88 |
| LC185 | 80 | 25211.22 | SAM | 25211.22 | 80.0 | 25211.22 | 80 | 2207 | 80 | 25211.22 |
| LC186 | 80 | 25164.25 | SAM | 25164.25 | 80.0 | 25164.25 | 80 | 2210 | 80 | 25164.25 |
| LC187 | 80 | 25158.38 | SAM | 25158.38 | 80.0 | 25158.38 | 80 | 2249 | 80 | 25158.38 |
| LC188 | 78 | 25427.1 | BVH | 25262.20 | 79.0 | 25255.06 | 79 | 2187 | 78 | 25348.45 |
| LC189 | 74 | 25536 | BVH | 26352.66 | 75.4 | 26363.13 | 74 | 2488 | 73 | 25541.94 |
| LC1810 | 72 | 26364.93 | TS | 26896.75 | 75.0 | 26522.79 | 74 | 2394 | 71 | 25712.12 |
| LC281 | 24 | 11687.06 | SAM | 11687.06 | 24.0 | 11687.06 | 24 | 1030 | 24 | 11687.06 |
| LC282 | 25 | 12575 | BVH | 12634.54 | 25.0 | 12614.42 | 25 | 2462 | 24 | 14358.92 |
| LC283 | 25 | 12500.5 | BVH | 13687.38 | 24.0 | 13551.68 | 24 | 2010 | 24 | 13198.29 |
| LC284 | 24 | 13438.1 | TS | 12662.06 | 24.0 | 12593.32 | 24 | 3046 | 23 | 13376.82 |
| LC285 | 25 | 12298.9 | BVH | 12357.15 | 25.0 | 12350.55 | 25 | 1237 | 25 | 12329.80 |
| LC286 | 25 | 12064.8 | BVH | 12112.84 | 25.0 | 12090.57 | 25 | 1713 | 24 | 12702.87 |
| LC287 | 25 | 11899.18 | TS | 11895.72 | 25.0 | 11878.10 | 25 | 1360 | 25 | 11855.86 |
| LC288 | 24 | 11724.46 | TS | 11649.71 | 24.0 | 11592.23 | 24 | 1520 | 24 | 11482.88 |
| LC289 | 24 | 11700.86 | TS | 11685.81 | 24.0 | 11673.27 | 24 | 1862 | 24 | 11629.61 |
| LC2810 | 24 | 12139.06 | TS | 11693.40 | 24.0 | 11615.76 | 24 | 1874 | 24 | 11578.58 |
| LRC181 | 67 | 32587.9 | BVH | 32275.83 | 67.6 | 32268.95 | 67 | 2206 | 67 | 32268.95 |
| LRC182 | 56 | 28843.1 | BVH | 28306.81 | 58.4 | 28180.05 | 58 | 2515 | 57 | 28395.39 |
| LRC183 | 49 | 24933.9 | BVH | 24672.74 | 51.0 | 24628.67 | 51 | 3207 | 50 | 24354.36 |
| LRC184 | 35 | 18768.4 | BVH | 18696.22 | 35.0 | 18666.34 | 35 | 4276 | 35 | 18241.91 |
| LRC185 | 60 | 32578.04 | SAM | 31439.49 | 63.2 | 31121.74 | 63 | 2218 | 61 | 30995.48 |
| LRC186 | 56 | 29971.97 | SAM | 29037.55 | 59.8 | 28934.95 | 59 | 2135 | 58 | 28568.61 |
| LRC187 | 53 | 29948.45 | SAM | 28696.11 | 55.8 | 28543.20 | 55 | 1944 | 54 | 28164.41 |
| LRC188 | 49 | 28160.88 | SAM | 26889.40 | 50.8 | 26971.48 | 50 | 2105 | 49 | 26150.65 |
| LRC189 | 47 | 26668.91 | SAM | 25538.12 | 48.6 | 25578.39 | 48 | 2016 | 47 | 24930.70 |
| LRC1810 | 43 | 25787.27 | SAM | 24424.49 | 44.2 | 24156.12 | 44 | 2004 | 42 | 24271.52 |
| LRC281 | 21 | 21486.1 | LL | 21905.03 | 20.8 | 23476.51 | 20 | 2217 | 20 | 23289.40 |
| LRC282 | 19 | 19127.96 | SAM | 20056.42 | 19.2 | 19930.17 | 19 | 3522 | 18 | 21786.62 |
| LRC283 | 17 | 18842.56 | TS | 16423.77 | 16.4 | 16846.85 | 16 | 6751 | 16 | 16586.31 |
| LRC284 | 13 | 17693.9 | BVH | 14406.39 | 12.0 | 14122.05 | 12 | 19037 | 12 | 14122.05 |
| LRC285 | 18 | 21626.63 | TS | 20541.12 | 18.0 | 20474.88 | 18 | 2725 | 18 | 20292.92 |
| LRC286 | 16 | 25106.28 | SAM | 21271.46 | 16.0 | 21209.60 | 16 | 2792 | 16 | 21088.57 |
| LRC287 | 15 | 23808.4 | SAM | 20402.90 | 15.0 | 19764.32 | 15 | 3187 | 15 | 19695.96 |
| LRC288 | 13 | 24260 | SAM | 19670.06 | 13.0 | 19423.27 | 13 | 3722 | 13 | 19009.33 |
| LRC289 | 13 | 19514 | BVH | 19548.71 | 12.0 | 19267.46 | 12 | 3702 | 12 | 19003.68 |
| LRC2810 | 12 | 19865.4 | BVH | 19257.95 | 10.8 | 20530.09 | 10 | 4736 | 10 | 19766.78 |
| $\begin{aligned} & \hline \text { Tot. } \\ & \text { Avg. } \\ & \hline \end{aligned}$ | 2213 | 1492200 |  | 1432320.80 | 2223.00 | 1432077.81 | 2208 | $\begin{array}{r} 235063 \\ 3918 \\ \hline \end{array}$ | 2181 | 1423062.65 |
| < PB $<=\mathrm{PB}$ \#B |  | 12 |  |  |  | 37 42 9 |  |  |  | $\begin{aligned} & 48 \\ & 53 \\ & 53 \\ & \hline \end{aligned}$ |

Table 20: Results on 800 -customer problems

|  | Best known |  |  | FULL, Both IA $=0.01$ |  |  |  |  | LNS best known |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | avg. \#veh. | best sol. | $\begin{array}{r} \text { best } \\ \text { \#veh. } \end{array}$ | avg. time <br> (s) | veh. | cost |
| LR1101 | 100 | 57977 | BVH | 57172.54 | 100.0 | 57016.58 | 100 | 4576 | 100 | 56903.88 |
| LR1102 | 80 | 52361.61 | SAM | 49937.45 | 80.0 | 49765.70 | 80 | 4495 | 80 | 49652.10 |
| LR1103 | 54 | 44890.55 | SAM | 42886.53 | 54.0 | 42681.33 | 54 | 4473 | 54 | 42124.44 |
| LR1104 | 31 | 32336.04 | SAM | 31450.33 | 29.0 | 32133.36 | 28 | 4522 | 28 | 32133.36 |
| LR1105 | 64 | 58260.68 | SAM | 58138.72 | 61.6 | 59135.86 | 61 | 3474 | 61 | 59135.86 |
| LR1106 | 51 | 49697.85 | SAM | 47333.63 | 51.8 | 48637.63 | 50 | 3673 | 50 | 48637.63 |
| LR1107 | 39 | 39861.97 | SAM | 38315.35 | 38.2 | 38936.54 | 37 | 3598 | 37 | 38936.54 |
| LR1108 | 29 | 31515.87 | SAM | 29674.35 | 26.4 | 29452.32 | 26 | 4892 | 26 | 29452.32 |
| LR1109 | 52 | 52282.36 | SAM | 51412.70 | 51.0 | 52223.15 | 50 | 3126 | 50 | 52223.15 |
| LR11010 | 42 | 45710.21 | SAM | 45873.80 | 41.0 | 46218.35 | 40 | 2841 | 40 | 46218.35 |
| LR2101 | 19 | 45835.55 | SAM | 47201.18 | 19.0 | 45493.36 | 19 | 3158 | 19 | 45422.58 |
| LR2102 | 16 | 48817.75 | SAM | 51094.71 | 15.4 | 50925.97 | 15 | 5324 | 15 | 47824.44 |
| LR2103 | 13 | 43094.14 | SAM | 38654.94 | 12.0 | 37778.15 | 12 | 12055 | 11 | 39894.32 |
| LR2104 | 10 | 32993.09 | SAM | 28821.03 | 8.6 | 29783.60 | 8 | 26496 | 8 | 28314.95 |
| LR2105 | 15 | 56010.62 | SAM | 53453.03 | 14.8 | 55497.90 | 14 | 4244 | 14 | 53209.98 |
| LR2106 | 13 | 48225.07 | SAM | 46388.49 | 12.4 | 46145.75 | 12 | 6565 | 12 | 43792.11 |
| LR2107 | 11 | 38336.76 | SAM | 36506.87 | 9.6 | 38322.91 | , | 14455 | 9 | 36728.20 |
| LR2108 | 8 | 32493.7 | SAM | 27137.04 | 7.0 | 26631.41 | 7 | 26592 | 7 | 26278.09 |
| LR2109 | 14 | 55587.14 | SAM | 52093.74 | 13.0 | 50990.04 | 13 | 3844 | 13 | 48447.49 |
| LR21010 | 12 | 47678.69 | SAM | 44815.46 | 11.6 | 46117.94 | 11 | 5945 | 11 | 44155.66 |
| LC1101 | 100 | 42488.66 | SAM | 42488.66 | 100.0 | 42488.66 | 100 | 4025 | 100 | 42488.66 |
| LC1102 | 96 | 43437.2 | BVH | 43417.56 | 95.8 | 43870.19 | 95 | 4008 | 95 | 43870.19 |
| LC1103 | 85 | 42483.61 | SAM | 42589.34 | 82.6 | 42631.11 | 82 | 4123 | 82 | 42631.11 |
| LC1104 | 76 | 39613.83 | SAM | 38950.40 | 74.8 | 39443.00 | 74 | 3617 | 74 | 39443.00 |
| LC1105 | 100 | 42477.4 | SAM | 42477.41 | 100.0 | 42477.41 | 100 | 3603 | 100 | 42477.41 |
| LC1106 | 101 | 42838.39 | SAM | 42838.39 | 101.0 | 42838.39 | 101 | 3714 | 101 | 42838.39 |
| LC1107 | 100 | 42854.99 | TS | 42855.17 | 100.0 | 42854.99 | 100 | 3556 | 100 | 42854.99 |
| LC1108 | 99 | 42711.7 | BVH | 42964.24 | 98.0 | 42954.34 | 98 | 3637 | 98 | 42951.56 |
| LC1109 | 93 | 42899.1 | BVH | 42614.87 | 92.2 | 42391.98 | 92 | 3508 | 92 | 42391.98 |
| LC11010 | 91 | 42243.4 | TS | 42715.95 | 90.2 | 42435.16 | 90 | 3582 | 90 | 42435.16 |
| LC2101 | 30 | 16879.24 | TS | 16879.24 | 30.0 | 16879.24 | 30 | 1502 | 30 | 16879.24 |
| LC2102 | 32 | 17598.6 | BVH | 19210.16 | 31.4 | 19116.33 | 31 | 2171 | 31 | 18980.98 |
| LC2103 | 30 | 19198.95 | SAM | 17503.99 | 30.8 | 17940.74 | 30 | 3651 | 30 | 17772.49 |
| LC2104 | 30 | 17726 | LL | 19076.31 | 30.2 | 18418.52 | 30 | 4120 | 29 | 18089.93 |
| LC2105 | 31 | 17466.42 | TS | 17149.07 | 31.0 | 17137.53 | 31 | 2561 | 31 | 17137.53 |
| LC2106 | 31 | 17352.7 | TS | 18276.39 | 31.0 | 17217.15 | 31 | 2012 | 31 | 17198.01 |
| LC2107 | 32 | 18131.36 | TS | 19306.15 | 32.0 | 17721.20 | 32 | 2796 | 31 | 19117.67 |
| LC2108 | 30 | 17974.2 | SAM | 17266.57 | 30.0 | 17035.24 | 30 | 2745 | 30 | 17018.63 |
| LC2109 | 31 | 17769.6 | BVH | 17825.02 | 31.2 | 17667.44 | 31 | 2809 | 31 | 17565.95 |
| LC21010 | 30 | 18249.85 | SAM | 18342.21 | 30.2 | 17266.19 | 30 | 3297 | 29 | 17425.55 |
| LRC1101 | 84 | 49315.3 | BVH | 48997.27 | 85.4 | 48934.66 | 85 | 3638 | 85 | 48702.83 |
| LRC1102 | 73 | 45679.5 | BVH | 45351.71 | 73.0 | 45272.96 | 73 | 3966 | 73 | 45135.70 |
| LRC1103 | 55 | 36570.5 | BVH | 35393.15 | 55.4 | 35475.72 | 55 | 4397 | 55 | 35475.72 |
| LRC1104 | 41 | 28979.2 | BVH | 28013.33 | 40.2 | 27930.03 | 40 | 6042 | 40 | 27747.04 |
| LRC1105 | 76 | 51455.4 | BVH | 50012.71 | 76.2 | 49816.18 | 76 | 3372 | 76 | 49816.18 |
| LRC1106 | 69 | 47014.55 | SAM | 44308.41 | 70.2 | 44469.08 | 69 | 3132 | 69 | 44469.08 |
| LRC1107 | 65 | 43321.51 | SAM | 41395.55 | 65.2 | 41413.16 | 64 | 3047 | 64 | 41413.16 |
| LRC1108 | 60 | 42968.34 | SAM | 40946.68 | 61.0 | 40590.17 | 60 | 3017 | 60 | 40590.17 |
| LRC1109 | 57 | 42549.12 | SAM | 39708.07 | 58.0 | 39587.85 | 57 | 2837 | 57 | 39587.85 |
| LRC11010 | 51 | 38274.02 | SAM | 36184.43 | 52.2 | 36195.00 | 52 | 2930 | 52 | 36195.00 |
| LRC2101 | 23 | 36894.98 | SAM | 32969.29 | 23.2 | 35073.70 | 22 | 2864 | 22 | 35073.70 |
| LRC2102 | 22 | 28019.7 | LL | 29945.79 | 22.2 | 31054.84 | 21 | 4749 | 21 | 30932.74 |
| LRC2103 | 19 | 30226.39 | SAM | 27201.83 | 17.8 | 28662.28 | 17 | 9528 | 16 | 28403.51 |
| LRC2104 | 14 | 25836.7 | BVH | 22976.06 | 12.8 | 23611.31 | 12 | 28075 | 12 | 23083.20 |
| LRC2105 | 19 | 39344.9 | SAM | 31946.46 | 18.8 | 34713.96 | 18 | 3945 | 18 | 34713.96 |
| LRC2106 | 18 | 29947.9 | SAM | 30362.74 | 18.0 | 29577.50 | 18 | 2356 | 17 | 31485.26 |
| LRC2107 | 18 | 31633.3 | BVH | 29915.31 | 17.2 | 29822.82 | 17 | 4432 | 17 | 29639.63 |
| LRC21010 | 13 | 31361.45 | SAM | 30293.97 | 12.2 | 30160.05 | 12 | 5729 | 12 | 29402.90 |
| Tot. Avg. | 2698 | 2195755 |  | 2129031.74 | 2677.80 | 2137033.93 | 2652 | $\begin{array}{r} 311441 \\ 5370 \\ \hline \end{array}$ | 2646 | 2122921.51 |
| < PB |  |  |  |  |  | 50 |  |  |  | 51 |
| < $=$ PB |  |  |  |  |  | 54 |  |  |  | 55 |
| \#B |  | 7 |  |  |  | 25 |  |  |  | 55 |

Table 21: Results on 1000-customer problems

Chapter 5
A unified heuristic for a large class of vehicle routing problems with backhauls

# A Unified Heuristic for a Large Class of Vehicle Routing Problems with Backhauls 

Stefan Ropke and David Pisinger *


#### Abstract

The Vehicle Routing Problem with Backhauls is a generalization of the ordinary capacitated vehicle routing problem where goods are delivered from the depot to the linehaul customers, and additional goods are brought back to the depot from the backhaul customers. Numerous ways of modeling the backhaul constraints have been proposed in the literature, each imposing different restrictions on the handling of backhaul customers. A survey of these models is presented, and a unified model is developed that is capable of handling most variants of the problem from the literature. The unified model can be seen as a Rich Pickup and Delivery Problem with Time Windows, which can be solved through an improved version of the large neighborhood search heuristic proposed by Ropke (2003). The results obtained in this way are comparable to or improve on similar results found by state of the art heuristics for the various variants of the problem. The heuristic has been tested on 338 problems from the literature and it has improved the best known solution for 227 of these. An additional benefit of the unified modeling and solution method is that it allows the dispatcher to mix various variants of the Vehicle Routing Problem with Backhauls for the individual customers or vehicles.


## Keywords: metaheuristics, vehicle routing problems, large neighborhood search

## 1 Introduction

In the classical Capacitated Vehicle Routing Problem (CVRP) we have to deliver goods from a depot to a set of customers, using a set of identical vehicles. Each customer demands a certain quantity of goods and the vehicles have a limited capacity. Our task is to construct routes starting and ending at the depot that minimize the total travel distance and that obey the capacity of the vehicles.

The problems that need to be solved in real life situations are usually much more complicated. One complication that arises in practice is that goods not only need to be brought from the depot to the customers, but also must be picked up at a number of customers and brought back to the depot. A simple way of handling such problems is to solve two independent CVRPs. One for the delivery (linehaul) customers and one for the pickup (backhaul) customers, such that some vehicles would be designated to linehaul customers and others to backhaul customers. This approach is not likely to create high quality solutions though - it seems more profitable to serve both pickup and delivery customers using the same vehicles. The Vehicle Routing Problem with Backhauls (VRPB) models problems with both pickup and delivery customers in the same route.

Applications of VRPB can be found in the distribution of groceries. Groceries are delivered to supermarkets and grocery stores from a central distribution center and groceries are picked up at production sites and brought to the distribution center. Another application is the handling of returnable bottles, where full bottles are brought to customers and empty bottles are brought back to breweries to be recycled. Such applications are likely to become more common in the future due to the increased awareness of environmental issues. It is important to develop fast and robust algorithms for real-life transportation problems, which are able to handle various side constraints that appear in practice.
*DIKU - Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark. Email: \{sropke, pisinger\} @diku.dk

The general trend in the transportation sector is that transportation companies are merging to larger units which can provide a large number of delivery services. In order to get the most possible benefit from the vehicle fleet, it can be attractive to service conceptually different transportation tasks by the same fleet, thus models are needed that can handle all additional constraints associated with a transportation task. Cordeau et al. [6] for example provide a unified approach for several Vehicle Routing Problems with Time Windows. The present paper considerably extends the expressibility of the model, by also allowing pickup and delivery requests, precedence constraints, etc. This allows us to formulate the six most common variants of vehicle routing problems with backhauls within the framework, and to find high quality heuristic solutions that are comparable to or improve on similar results for specialized algorithms.

The underlying problem of all of the problems we consider is the Pickup and Delivery Problem with Time Windows (PDPTW), which we will describe in Section 2. A survey of the six most common variants of vehicle routing problems with backhauls - and additional, less frequently used models - is given in Section 3. The subsequent sections present the heuristic algorithm proposed in this paper, which is outlined in Figure 1. Some of the problem types we wish to solve are illustrated at the top of the figure. To solve an instance of one of these problem types, we transform it to an instance of the Rich Pickup and Delivery Problem with Time Windows, as illustrated by the arrows from the top row to the next row. Transformations are discussed in Section 4. The PDPTW instance is solved by a heuristic which will be presented in Section 5; this produces a PDPTW solution that finally is interpreted as a solution to the original problem. This solution framework has been tested on 338 benchmarks problems proposed in the literature. The results of this computational test are reported in Section 6. The paper is finally concluded in Section 7.

## 2 The Pickup and delivery problem with time windows (PDPTW)

Before starting to discuss the various variants of the VRPB we introduce the Rich Pickup and Delivery Problem with Time Windows (Rich PDPTW). All considered variants of the VRPB can be seen as extensions of the PDPTW. IP models of the PDPTW can be found in Desaulniers et al. [8] and Sigurd et al. [34], for our purpose we will only give a verbal description of our problem which differs slightly from the problems in the afore-mentioned papers.

In the Rich PDPTW we have $n$ requests and $m$ vehicles. A request $i \in\{1, \ldots, n\}$ consists of picking up a quantity $l_{i}$ of goods at one location and delivering it to another location. With each request is associated a pickup time window, a delivery time window, and two service times $s_{i}^{p}$ and $s_{i}^{d}$ indicating how long the pickup and delivery operations take to perform. A vehicle is allowed to arrive at a location before the start of the time window, in which case it will have to wait before starting the corresponding operation. A vehicle may never arrive at a location after the end of the time window. Each request furthermore has an associated pickup precedence number, and a delivery precedence number. Each vehicle must visit the locations in nondecreasing order of precedence number (see e.g. Sigurd et al. [34] for various applications of precedence constraints).

Each request $i$ can only be served by a vehicle $k \in F_{i}$, where $F_{i}$ is the set of feasible vehicles corresponding to request $i$. Each vehicle $k \in\{1, \ldots, m\}$ has an associated capacity $C_{k}$, a start time $b_{k}$ and end time $e_{k}$, and an associated start terminal $B_{k}$ and end terminal $E_{k}$ where it starts and ends its duty respectively. The vehicle must leave its start terminal at time $b_{k}$ even though this might introduce waiting time at the first customer visited. The vehicle must return to the end terminal at time $e_{k}$ or before.

The problem can be defined on a directed graph where the locations are represented by a set of nodes $V=$ $\{1, \ldots, 2 n+2 m\}$, and for each edge $(i, j)$ we have an associated distance $d_{i j}$ and travel time $t_{i j}$, where we assume that travel times satisfy the triangle inequality while the only assumption on the distances is that they must be non-negative. The locations will often be referred to as visits.

The task is to construct a set of valid routes for a limited number of vehicles such that an associated objective function is minimized. The objective function is a weighted sum of 1) the sum of the distance traveled by the vehicles. 2) the number of requests not assigned to a vehicle. The two terms are weighted by the coefficients $\alpha$ and $\beta$. Notice that this objective function does not necessarily assign all requests to a vehicle. Requests not assigned to a vehicle are placed in a virtual request bank, which in a real world situation must be handled by a human dispatcher.


Figure 1: Solution framework: As described in Section 3 the algorithm accepts as input variants of the Vehicle Routing Problem with Backhauls, including: (VRPB), (MVRPB), (MDMVRPB), (VRPBTW), (MVRPBTW) and (VRPSDP). All of the problems are transformed to a Rich Pickup and Delivery Problem with Time Windows, which is solved heuristically through a Large Neighborhood Search algorithm. The last step of the algorithm transforms the obtained solution back to the original problem. The framework is not limited to backhaul models, but can be used to solve other types of vehicle routing problems, such as the vehicle routing problem with time windows or the capacitated vehicle routing problem.

Hence, normally a high value is assigned to the coefficient $\beta$ to stimulate that as many requests as possible are to be serviced. In the experiments performed in this paper, $\beta$ was chosen sufficiently high to avoid situations were some requests where left in the request bank upon termination.

## 3 Overview of vehicle routing problems with backhauls

This section gives an overview of the vehicle routing problems with backhauls proposed in the literature. We restrict ourselves to multi-vehicle problems. Single-vehicle problems have been studied by for example Gendreau et al. [14], Ghaziri and Osman [15] and Süral and Bookbinder [36].

### 3.1 The Vehicle Routing Problem with Backhauls (VRPB)

In the vehicle routing problem with backhauls (VRPB) we wish to minimize the total traveled distance and we are allowed to serve linehaul and backhaul customers on the same routes subject to the following limitations.
(A) If a route contains both linehaul and backhaul customers then the backhaul customers must be served after the linehaul customers.
(B) A route is not allowed to consist entirely of backhaul customers.
(C) The capacity of the vehicle should be obeyed, that is, neither the sum of the demands of the linehaul customers nor the sum of the demands of the backhaul customers served by a vehicle may exceed the vehicle capacity.
(D) The number of vehicles to use is given in advance. This means that even if it is possible to find better solutions using fewer or more vehicles, we must report the best solution we can find that uses the specified number of vehicles.
(E) All customers are serviced from a single depot.
(F) All vehicles have the same capacity.

Constraint (A) might seem artificial but it is justified by the fact that many vehicles are rear-loaded. This makes it problematic to try to load the vehicle with goods heading for the depot before we have delivered all goods to the customers as the pickup goods might block access to the delivery goods. The constraint is also justified by the fact that the linehaul customers frequently prefer early deliveries while backhaul customers prefer late pickups.

A recent survey of the VRPB was presented by Toth and Vigo [42]. Exact methods for the VRPB are proposed by Mingozzi et al. [26] and Toth and Vigo [41]. Heuristics have been developed by Anily [3], Casco et al. [5], Crispim and Brandao [7], Goetschalckx and Jacobs-Blecha [16], [22] and Toth and Vigo [40].

### 3.2 The Mixed Vehicle Routing Problem with Backhauls (MVRPB)

The Mixed Vehicle Routing Problem with Backhauls (MVRPB) is derived from the VRPB by relaxing limitations (A), (B) and (D). That is, we can mix linehaul and backhaul customers freely within a route and we are free to use as many vehicles as we want. We still have to obey the capacity limit of the vehicles. The capacity check is slightly more complicated in the MVRPB problem as the vehicle load fluctuates during the route. Furthermore, some MVRPB also have a duration limit that implies that routes should be completed within a certain time frame; for such problems the travel time between customers and the service time at the customers is given.

The name Vehicle Routing Problem with Pickups and Deliveries (VRPPD) is sometimes used instead of MVRPB. Heuristics for this problem are presented by Halse [19], Nagy and Salhi [27], [32] and Wade and Salhi [43], [44].

### 3.3 The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB)

The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB) is a generalization of the MVRPB. In the MDVRPB limitation (E) is relaxed such that we instead of just considering a single depot are faced with problems where several depots are present. At each depot a limited fleet of vehicles is available, and a


Figure 2: An example showing that simultaneous pickup and delivery at customers may increase the overall route lengths. The four customers have pickup/delivery requests of $2 / 2,1 / 2,1 / 2,2 / 0$ respectively. The vehicle has a capacity $C$ of 6 units, and normal Euclidean distances are used. In a MVRPB setting, the shortest route is D1, P2/D2, P4/D4, P3/D3, P1 of total length 7.66. If simultaneous pickup and deliveries are demanded, the shortest route becomes P3/P3, P2/D2, P4/D4, P1/D1 of total length 8.65.
vehicle should start and end its duty at the same depot. Heuristics for the problem are proposed by Nagy and Salhi [27], [32]. They denoted the problem the Multi Depot Vehicle Routing Problem with Pickup and Deliveries.

### 3.4 The Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW)

The Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW) extends VRPB by assigning a time window to each customer, by having travel times associated with each pair of locations, and by having service times associated with the customers. Visits at a customer should start within the time window. If the vehicle arrives too early at a customer it has to wait until the start of the time window. If the vehicle arrives too late the route is invalid. Limitations (B) and (D) from the VRPB are relaxed in the VRPBTW. The objective of VRPBTW is either to minimize the total traveled distance or to minimize the number of vehicles as the first priority and then minimize the total traveled distance as the second priority.

An exact algorithm for the VRPBTW based on column generation was proposed by Gelinas et al. [13], and heuristics were proposed by Duhamel et al. [12], Hasama et al. [20], Reimann et al. [30], Thangiah et al. [38] and Zhong and Cole [48].

### 3.5 The Mixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW)

The Mixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW) is derived from VRPBTW by relaxing limitation (A) saying that backhaul customers should be visited after linehaul customers. The objective that has been considered in the literature is to minimize the number of vehicles as the first priority and the distance traveled as the second priority. Two heuristics have been proposed in Kontoravdis and Bard [23] and Zhong and Cole [48].

### 3.6 The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP)

In the Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP) a subset of the customers simultaneously demand goods from-and supply goods to-the depot, and thus both a delivery and a pickup should occur at these customers. The pickup and delivery should be performed simultaneously such that each customer is visited only once by a vehicle. Unloading is obviously done before loading at these customers. The simultaneous pickup and delivery operation decreases the customers' expenses or inconvenience associated with handling vehicles, but may result in longer routes as illustrated in Figure 2.

This problem was first introduced by Min [25] in the context of transportation material between public libraries and a library administration center (acting as a depot). Halse [19] presented exact and heuristic methods for the
problem and Dethloff [9], [10] considered heuristic algorithms. Nagy and Salhi [32] used their MVRPB heuristic to solve the problem, but apparently the "simultaneous" constraint is not handled by the heuristic. This is discussed in further detail by Dethloff [10]. Two variants of the problem have been proposed recently. Nagy and Salhi [32] introduce a multi depot version of the problem, while Angelelli and Mansini [2] solve a version with time windows to optimality using column generation. The heuristic proposed in the present paper is not tested on the two last problem types although the underlying PDPTW model without modifications could handle these problem classes also.

### 3.7 Other backhauling problems

Wade and Salhi [45] introduce a problem that generalizes VRPB and MVRPB. In this problem one is not allowed to mix linehaul and backhaul customers on a route freely. A vehicle can only start to serve backhaul customers after a certain percentage of the linehaul load has been delivered. If this percentage is set to $0 \%$ then we get the MVRPB and if the percentage is set to $100 \%$ then we get the VRPB. Percentages in between $0 \%$ and $100 \%$ result in a blend between VRPB and MVRPB.

Halskau et al. [17] propose a backhauling problem with so called lasso tours. In their problem most customers require both a pickup and a delivery. At the first few customers visited on a route a delivery is performed to free up some room in the vehicle, at the customers in the middle of the route, the delivery and pickup operation is performed simultaneously. The tour is ended by visiting the first couple of customers again, this time in the reverse order to perform the omitted pickups. This creates a tour that looks like a lasso, as the first customers that are visited twice form the spoke of the lasso, while the customers that are visited once form the loop of the lasso.

These two problem variants cannot be solved by the heuristic presented in this paper in its present form. It would only require minor modifications to the heuristic and the underlying model to be able to solve these problems though.

## 4 Problem transformations

This section describes how each of the problems discussed in Section 3.1-3.6 can be transformed to a Rich PDPTW. The basic transformation is to represent a linehaul customer by a request with a pickup at the depot and a delivery at the linehaul customer. Backhaul customers are represented by a request with a pickup at the backhaul customer and a delivery at the depot. This transformation might seem sufficient to represent the MVRPB but it has the flaw that it allows a vehicle to go back to the depot for re-stocking or offloading and afterwards continue its duty. This is not allowed in a standard MVRPB. The problem is easily solved by assigning precedences to the different tasks: pickups at the depot get precedence 1, deliveries at linehaul customers and pickups at backhaul customers get precedence 2 and deliveries at the depot get precedence 3 .

The backhaul after linehaul constraint (A) found in VRPB is also easily modeled using precedences. Instead of giving linehaul and backhaul customers identical precedences, we assign precedence 2 to the linehaul deliveries, precedence 3 to the backhaul pickups and precedence 4 to the deliveries at the depot.

In the VRPB we have to use a specified number of vehicles as stated by constraint (D). Our model only allows us to set an upper bound on the number of vehicles, so we need to model a vehicle equality constraint. This is done by modifying the distance matrix by setting the distance from the start terminal to the end terminal of each vehicle to $M$, where $M$ is a sufficiently large number. This forces the heuristic towards solutions with at least one request on each route in order to avoid the penalty $M$.

The VRPB constraint (B) saying that no route can consist of backhauls only, is handled in a similar way. Here we add the penalty $M$ to the cost of each edge from a start terminal to one of the backhaul pickup locations. This drives the heuristic towards solutions where such edges are not used, which means that at least one linehaul customer is served before a backhaul customer.

The simultaneous delivery and pickup constraint in VRPSDP is also modeled using penalties. As before, the delivery to a customer is modeled by a request from the depot to the customer and a pickup at a customer is modeled as a request going from the customer to the depot. In order to ensure that the delivery and pickup occur
"simultaneously" we modify the distance matrix. The distance from a delivery visit to the simultaneous pickup visit is set to zero, while the distances from the pickup to all other visits are increased by the penalty term $M$. This forces the heuristic to visit the simultaneous pickup after a delivery. The situation is illustrated on Figure 3.


Figure 3: Modeling of simultaneous delivery and pickup. Request 1 is a delivery to a customer, request 2 represents the simultaneous pickup at the same customer and request 3 is another unrelated request. The names " $\mathrm{P} x$ " denotes "the pickup of request $x$ " and " $\mathrm{D} x$ " denotes "the delivery of request $x$ ". Edge weights are the distances $d_{i j}$. In order to ensure that D1 is followed by P2 we increase all other distances from D1 with $M$, while the distance from D1 to P2 is set to zero. In this way, the algorithm will first visit the pickup site of request 1 (the depot) and then travel to the delivery site of request 1 (the customer site). We might perform other visits along the dashed edges. After performing the delivery of request 1 , only one edge has cost less than $M$, hence we go to P 2 which is the simultaneous pickup.

The multiple depots in the MDMVRPB are harder to model even though the underlying PDPTW model already supports multiple depots. The problem is that we until now have modeled a linehaul customer by a pickup at the depot and a delivery at the customer, and vice-versa for the backhaul customers. In the multi depot problems we cannot assign a request to a given depot in advance as we do not know where the pickup of a linehaul request or the delivery of a backhaul request should occur. To model this kind of constraint we do the following. For each vehicle in the problem (remember that in the MDMVRPB a fixed number of vehicles is available in each depot) we create a dummy request with pickup and delivery locations at the depot of the vehicle. There is no demand associated with the dummy requests. A dummy request should only be served by the vehicle it is designed for, which is ensured by letting its feasible set of vehicles $F_{i}$ contain that one vehicle only. We still represent each linehaul customer by one request. All pickups of these linehaul requests take place at a virtual depot. All distances to and from the virtual depot are set to zero. Backhaul customers are represented in the same way - by a pickup at the backhaul customer and a delivery at the virtual depot. The idea is that linehaul requests should travel via the dummy pickup location and backhaul requests should travel via the dummy delivery location. This is ensured using precedences: Linehaul pickups get precedence 1, pickups of the dummy requests get precedence 2, linehaul deliveries and backhaul pickups get precedence 3, deliveries of the dummy requests get precedence 4 and linehaul deliveries get precedence 5 . This forces the dummy request to "surround" the linehaul deliveries and backhaul pickups such that the distance to and from the right depot is used. Figure 4 shows an example of a MDMVRPB route with two linehaul customers and one backhaul customer.

A remark should be made about penalty based modeling: If a feasible solution exists that does not violate any of the constraints, the optimal solution will not contain any of the penalty terms. However, since we use heuristics for solving the model, we may end up with a solution which still contains some penalties. This can easily be detected by inspecting the objective value and the heuristic can either be repeated (hoping that a second run will find a better solution) or some manual adjustment of the data may be needed, e.g. by increasing the number of vehicles or by removing some customers which cannot be handled. It should, however, be pointed out that the heuristic has never produced any infeasible solutions during the computational experiments performed in Section 6.

We made heavy use of precedences in the transformations described above. The precedences can also be used to speed up the heuristic when faced with the problem types described in this paper. Consider for example the MVRPB where several pickup and deliveries occur at the depot and all permutations of the pickups at the depot within a route are feasible and equally good as long as the deliveries stay fixed (and similarly for the backhaul deliveries). We can use precedences to create an ordering on the pickups and deliveries at the depot such that only one permutation is valid. We enumerate the request from 1 to $n$. If request $i$ involves a pickup at the depot, then this pickup gets precedence $i$, if request $i$ involves a delivery at the depot then this delivery gets precedence $i+n+2$. Pickups and deliveries that corresponds to visits at the customers gets precedence $n+1$. The same idea can be used for the five other problems as well.

## 5 Solution methods

Recent work on local search methods indicate that larger neighborhoods may be needed to solve some difficult optimization problems as shown by e.g. Ahuja et al. [1]. Due to the size of the neighborhoods, various heuristics are generally used to search the neighborhood in order to keep the time complexity at a reasonable level. This means, that the performance of a local search algorithm is limited by the quality of the heuristic that searches the neighborhood. To work around this bottleneck, Ropke [31] proposed to use several heuristics to search the neighborhood, where the frequency of using each heuristic is based on some empirical evidence from the search. An extended version of this heuristic is used to solve our PDPTW model.

The heuristic is based on Large Neighborhood Search (LNS) as proposed by Shaw [35] and it has similarities with the Ruin and Recreate (R\&R) framework proposed by Schrimpf et al. [33]. Our heuristic repeatedly runs through the following steps:

## LNS iteration

1 Choose a removal heuristic $R$ and an insertion heuristic $I$.
2 Remove a number $q$ of requests from the routes using heuristic $R$.
3 Insert the free requests into the existing routes using heuristic $I$.
4 Evaluate the objective function of the new solution.
5 If the objective function is improved, accept the new solution. Otherwise accept the new solution with a probability that depends on the increase of the objective function.

The heuristic differs from the ordinary LNS and R\&R methods by incorporating several large-neighborhood heuristics, which are applied with a variable frequency controlled by a learning layer. Each insertion or removal heuristic in the LNS heuristic may have various properties. Some heuristics are used to intensify the search while other heuristics mainly play the role of diversifying the search. In this way, the learning layer not only distributes CPUtime among the various heuristics involved, but also controls the intensification or diversification of the search based on empirical information. This can be seen as an extension of the tabu search methods described by Hertz et al. [21]. One may also see the LNS algorithm as a variant of Variable Neighborhood Search (VNS) described


Figure 4: An example of a MDMVRPB route with two linehaul customers and one backhaul customer. The linehaul customers are represented by request 1 and 2 and the backhaul customer is represented by request 3 . Request 4 is the dummy request. The start and end terminals are represented by squares, the visits of the normal requests are represented by circles and the visits of the dummy request are represented by hexagons. Pickups and deliveries at the depot are shown in grey and the precedence of the visits is displayed underneath the route. One can observe that the actual MDMVRPB route can be inspected by looking at the white visits; here the hexagons should be viewed as depot visits and the normal deliveries and pickups correspond to the linehaul and backhaul customers respectively.
by Hansen and Mladenovic [18], the main difference being that VNS operates on one type of neighborhood with variable depth, while LNS operates with structurally different neighborhoods.

In the PDPTW heuristic the removal heuristic $R$ removes up to $40 \%$ of the requests in each iteration. This enables the heuristic to make significant changes to the current solution in a single iteration. We use six different removal heuristics in our LNS heuristic; each removal heuristic has its own strategy for choosing the requests to remove. The heuristics are:

- Random removal: The requests are chosen at random.
- Shaw removal: Remove related requests, i.e. requests that are geographically close to each other (Shaw [35]).
- Worst request removal: Remove the request whose removal decreases the cost function the most.
- Cluster removal: Attempt to partition the nodes into subsets so that the nodes in each subset are somehow "close to each other". For a more detailed description of this removal heuristics see Section 5.3.
- History based removal: This heuristic makes use of historical information when removing requests. Two variants of this heuristic have been considered as will be described in Sections 5.4 and 5.5.

The first three removal heuristics have been used previously [31] while the three last are new.
In order to insert the requests we use the five insertion heuristics proposed by Ropke [31]. The heuristics can be divided into two classes:

- Basic insertion heuristics: which are similar to the insertion heuristic of Solomon [37]. In each iteration a request is inserted into the solution such that the cost function is increased the least possible.
- Regret insertion heuristics: which are similar to heuristics proposed by Potvin and Rousseau [29] and Tillman and Cain [39]. In each iteration of the standard version of the heuristic a request is inserted so as to maximize the gap in the cost function between inserting the request into its best route and its second best route.

The insertion heuristics are described in more details in [31].
In each step of the PDPTW heuristic one removal and one insertion heuristic are used. Computational experiments have shown that in order to reach high-quality solutions all removal and insertion heuristics are necessary, but their contribution to the solution process may vary during the search.

The monitoring and learning layer observes how often a given removal or insertion heuristic contributes to a new, accepted solution, and increases the probability of choosing the given heuristic according to its success. This is done using roulette wheel selection where each heuristic has a probability corresponding to its success-rate. In order to ensure that statistical information is collected for all heuristics throughout the search, each heuristic is used not less than a given lower limit.

The LNS algorithm is basically a local search algorithm, and hence it can be combined with most state-of-art local search paradigms. Using the simulated annealing paradigm, we evaluate the cost function after each LNS step. If the cost has decreased or is unchanged, the new solution is always accepted. If the cost has increased, the solution is randomly accepted with a probability exponentially decreasing with the increase of the cost.

### 5.1 Measuring the distance between two requests

In the removal heuristics we need a measure for the distance $d\left(r_{1}, r_{2}\right)$ between two requests $r_{1}$ and $r_{2}$. Ropke [31] used the following expression: $d\left(r_{1}, r_{2}\right)=d_{a_{1}, a_{2}}+d_{b_{1}, b_{2}}$ where $a_{1}$ and $a_{2}$ are the pickups of the requests and $b_{1}$ and $b_{2}$ are the deliveries. This works fine for the pure PDPTW problems but the definition is problematic for backhaul problems. Consider for example two requests corresponding to a linehaul and a backhaul customer located far from the depot. Using the old distance function, the distance between these two requests would be large even though the linehaul and backhaul customer are located close to each another. Instead we use $d\left(r_{1}, r_{2}\right)=$ $\frac{1}{4}\left(d_{a_{1}, a_{2}}+d_{a_{1}, b_{2}}+d_{b_{1}, a_{2}}+d_{b_{1}, b_{2}}\right)$. If a pickup or a delivery is located at the depot then the distances involving this visit are removed from the formula and the denominator is decremented accordingly.

### 5.2 Simplified Shaw removal

Shaw [35] defines a removal method that removes related requests. Ropke [31] defines the relatedness between two requests in terms of the distance between the two requests, their capacity demands, temporal information and information about which vehicles can serve the requests. In this paper we take a simpler approach as we define the relatedness between two requests solely by the distance $d\left(r_{1}, r_{2}\right)$ between the requests.

### 5.3 Cluster removal

Given a set of points in the plane we can ask to partition the set into $k \geq 2$ disjoint subsets such that the points within each subset are close together with respect to the distance $d\left(r_{1}, r_{2}\right)$. We say that we partition the points into $k$ clusters.

A heuristic for finding such a partition can be constructed by modifying Kruskal's algorithm [24] for the minimum spanning tree problem. Instead of running Kruskal's algorithm to the end, it can be stopped when $k$ connected components are left. These connected components are our approximation of the desired clusters.

The clustering algorithm is used in a removal heuristic as follows. First a route is selected at random. Then the requests on this route are partitioned into two clusters. One of these clusters is chosen at random and the requests from the chosen cluster are removed. If we need to remove more requests then we pick one of the removed requests and find a request that is close to the chosen request. The new request should come from a route that has not been touched by removals in the current iteration. The route of the new request is partitioned into two clusters and so the process continues until the desired number of requests has been removed. The motivation for the heuristic is to remove large chunks of related requests from a few routes instead of removing a few requests from each route. Figure 5 illustrates when the cluster removal heuristic can be useful.


Figure 5: Cluster Removal example: The circles mark the delivery locations, all pickups take place at the depot (marked by the square). In the figure to the left we have a suboptimal solution and we would like to move to the solution shown in the right part of the figure where requests $h-k$ are placed on the same route as requests $a-f$. To reach this solution we need to remove requests $h, i, j$ and $k$ at once. If just one of the requests $h, i, j$ or $k$ is left on route 2 then the insertion heuristics most likely are going to insert the rest of the requests back into route 2 . The removal heuristics presented so far may not be able to remove all of the requests at once, but the cluster removal heuristic does just that. The result of applying the clustering algorithm on route 2 would be the two clusters $g, l, m, n$ and $h, i, j, k$ and the last cluster would be removed with probability 0.5 .

### 5.4 Neighbor graph removal

None of the removal heuristics proposed so far have made any use of historical information when removing requests. The decision about which requests to remove has been made solely by using the information available in the current state.

The neighbor graph removal heuristic uses both historical information and the current state to select the requests to remove. The historical information is stored in a complete, directed, weighted graph called the neighbor graph.

The graph contains a node for each visit in the problem. The weight of all edges is initially set to plus infinity. The weight of an edge $(a, b)$ stores the cost of the best solution encountered so far in which the visit corresponding to $a$ is performed just before the visit corresponding to $b$. Each time a new solution is discovered during the search, the edge weights in the graph are updated if necessary.

The graph is used to remove requests that seem to be placed in an unsuitable place. When the removal heuristic is invoked it calculates a score for each request in the current solution. The score is calculated by summing the edge weights in the neighbor graph corresponding to the neighbor configuration in the current solution. The requests with high scores seem to be misplaced and are removed. Every time a request has been removed the scores of the surrounding requests are recalculated. Some randomness is introduced in the removal process in order to avoid removing the same requests over and over again. Specifically the randomness ensures that we sometimes do not remove the requests with the highest score but instead remove some with slightly lower scores.

### 5.5 Request graph removal

In the request graph removal heuristic we store historical information in a graph called the request graph. This graph is complete and undirected and each node in the graph corresponds to a request in the PDPTW problem. The weight of an edge $(a, b)$ denotes the number of times the two requests corresponding to $a$ and $b$ have been served by the same vehicle in the $t$ best unique solutions observed so far in the search. The weights of all edges are initially set to zero, and in all experiments the parameter $t$ was set to 100 .

This graph could be used in a similar fashion as the graph described in Section 5.4. That is, we could examine all planned requests $r$ and calculate the score

$$
\operatorname{score}(r)=\sum_{i \in R(r), i \neq r} w_{r i}
$$

where $R(r)$ is the set of requests in the route containing $r$ and $w_{r i}$ is the weight of the edge between $r$ and $i$ in the requests graph. A request with a low score is situated in an unsuitable route according to the request graph and should be removed. Our initial experiments indicated that this was an unpromising approach, probably because it strongly counteracts the diversification mechanisms in the LNS heuristic.

Instead, the graph is used to define the relatedness between two requests, such that two requests are considered to be related if the weight of the corresponding edge in the request graph is high. This relatedness measure is used as in the removal heuristic proposed by Shaw [35], mentioned in Section 5.2.

## 6 Computational experiments

### 6.1 Parameter tuning

Even though the proposed heuristic is controlled by quite a few parameters, we have tried to keep the parameter tuning to a minimum in this paper. This is achieved by using the same parameters that were found in the parameter tuning performed by Ropke [31], where applicable. The only parameters that have been tuned are the two parameters that control the simulated annealing: the cooling rate $c$ and the start temperature control parameter $w$. After each LNS iteration the temperature $T$ is updated using the recursion $T:=c T$. The parameter $w$ controls the start temperature $T_{0}$. In order to set the start temperature $T_{0}$ we use an estimate of the objective value of a reasonable solution to the problem. This estimate is found by obtaining an initial solution using one of our insertion heuristics and calculating the modified objective value $z^{\prime}$ of this solution. The modified objective value is obtained by setting the coefficient $\beta$ to zero, such that unplanned requests do not make the estimate of the objective value unreasonably high. Now the start temperature is set such that a solution that is $1+w$ times larger than $z^{\prime}$ is accepted with probability 0.5 when the current solution has objective $z^{\prime}$. We have tested the algorithm on 11 problems chosen from 5 of the 6 problem categories. The configuration $w=0.05$ and $c=0.9998$ proved to be the best among the 30 configurations tested. The same parameters were used for all problem types considered in the following sections.

### 6.2 Test strategy

The LNS heuristic is tested on 9 data sets proposed in the literature. The test serves two major purposes. The first purpose is to compare three configurations of the LNS heuristic against each other. The three configurations are:

- A configuration similar to the one used by Ropke [31]. This configuration benefits from the learning layer but is limited to the 3 "old" removal heuristics: The simplified Shaw removal, the worst removal and the random request removal. This configuration is denoted standard in the following.
- A configuration that uses all 6 removal heuristics but has disabled the learning layer. This implies that all removal and insertion heuristics are equally likely to be selected during the search. This configuration is denoted $6 R$ - no learning in the following (the " 6 R " indicates that 6 removal heuristics are in use).
- The last configuration is similar to the second, but in the third configuration the learning layer is activated again. The configuration is denoted $6 R$-normal learning.

These three configurations allow us to see if the new removal heuristics improve the quality of the heuristic and enable us to judge the effectiveness of the learning layer.

The second major purpose of the test is to compare the solution quality obtained by the unified heuristic to the results obtained by more specialized heuristics proposed for the various problem types. We want to know whether a general heuristic can be competitive with specialized heuristics.

The stopping criterion employed is to stop when the heuristic has performed 25000 remove-insert iterations. Each configuration of the heuristic is applied 10 times to each problem instance. The reported computation times are, however, for a single run of the algorithm.

All problems considered in the following are geometric problems where distances and travel times are defined by the Euclidean distance, hence the triangle inequality is satisfied for both parameters. When it has been necessary to calculate distances from a set of coordinates we have used double precision calculations unless otherwise stated. For many of the problem classes we only present a summary of the experiments performed. We refer the reader to the appendix for the full tables for these problems. All experiments were performed on a Linux based PC, equipped with 256 MB RAM and a 1.5 GHz Pentium IV processor. The heuristic was implemented in C++.

### 6.3 The Vehicle Routing Problem with Backhauls (VRPB)

The first problem type we study is the symmetric VRPB. This problem along with the VRPBTW is probably the most studied of the backhaul problems. Two data sets are proposed in the literature, the first was proposed by Goetschalckx and Jacobs-Blecha [16] and contains 62 instances with between 20 and 150 customers. The second data set was proposed by Toth and Vigo [40] and contains 33 instances with between 21 and 100 customers. We denote the two data sets the Goetschalckx and the Toth-Vigo data sets respectively.

Comparing results on the Goetschalckx data set are a little problematic as at least 3 different rounding conventions have been used for calculating the distances between the customers in the data sets. We report our results obtained using 2 of the 3 rounding conventions and refer to the appendix for a discussion about the third rounding convention and the results obtained using it.

Currently the two best heuristics for the VRPB are probably the heuristic proposed by Toth and Vigo [40] and the heuristic by Osman and Wassan [28]. The heuristic by Toth and Vigo finds good solutions in a short time while the heuristic proposed by Osman and Wassan spends more time but on the overall finds better solutions. We compare our heuristic with the results found by Osman and Wassan as the running time of our algorithm is comparable to that of Osman and Wassan's heuristic. In order to calculate the distance between two customers, Osman and Wassan used floating point arithmetic, hence we do the same (using double precision) in the tests reported in Table 1.

The tests show that the configurations using all 6 removal heuristics are better than the one using only three removal heuristics. This test also shows that the configuration that does not include the learning layer overall is slightly better than the configuration including the learning layer, which is a bit surprising. All configurations of
the LNS heuristics do better than Osman and Wassan's heuristic when looking at how many best known solutions the heuristics have found. It should be noted that the best solution found by Osman and Wassan's heuristic was found in 8 experiments, while we used 10 experiments for each LNS configuration. If one looks at the sum of the best solution costs identified by the heuristics, it is observed that the LNS heuristics overall only marginally improve the solutions found by Osman and Wassan's heuristic; for all LNS heuristics the improvement is within $0.1 \%$. All together the LNS heuristics improved the solution of 26 of the 62 problem instances. Finally we see that the average solution costs found by the LNS heuristics are quite good as they on average are less than $0.5 \%$ from the best known solution costs.

Generally it is hard to compare the running time of our heuristic to that of the heuristics proposed in the literature, as the computational experiments have been performed on different computers. According to the Linpack benchmarks reports [11], our computer has a TPP rating (Toward Peak Performance) of 1311 MFlops while Osman and Wassan's Computer has a TPP rating of 25 MFlops, implying that our computer is around 53 times faster. The average time for solving one problem was between 69 and 73 seconds for the LNS heuristics. Osman and Wassan tested two versions of their heuristic, the fastest version using around 2800 seconds to solve one problem and the slower version using 4000 seconds. This corresponds to 52 and 75 seconds on our computer, which is very comparable to the time used by our algorithm. Hence our general heuristic is on par with Osman and Wassan's specialized heuristic both with respect to solution quality and solution times.

The second way to calculate the distances is to round them to one decimal, and store them as an integers using a fixed point representation. The final result is rounded to an integer. This type of rounding is used in the exact methods developed by Toth and Vigo [41] and Mingozzi et al. [26]. 34 of the 62 instances have been solved to optimality and a good solution is provided for 13 more problems without proving optimality. Table 2 summarizes the results obtained by applying the heuristic to these 47 problems (problem Al-K4) using the same rounding conventions as the exact methods. These results also show that the configurations that use the new removal heuristics are better than the one that only uses the 3 old removal heuristics. This time the configurations with and without the learning layer are virtually equally good. All configurations find 28 optimal solutions out of the 34 optimal solutions reported by Toth and Vigo [41] and Mingozzi et al. [26]. Eight new best solutions were found in the tests.

The Toth-Vigo data set have been approached by the exact methods of Toth and Vigo [41] and Mingozzi et al. [26] and by the heuristics of Crispim and Brandao [7], Osman and Wassan [28] and Toth and Vigo [40]. Table 3 reports the results found by the LNS heuristic compared with the best known results from the literature. We see that the configuration with learning enabled provides the best solutions on the average; furthermore it is the only one which identifies all known optimal solutions. The configuration without learning overall finds slightly better solutions compared to the learning version when summing the best solution from the ten experiments. The LNS heuristics improve the best known solutions to 5 of the problems.

A class of asymmetric problem instances was proposed by Toth and Vigo [41], but we have not included this data set in our test even though our PDPTW model would be able to handle the asymmetric problems.

### 6.4 The Mixed Vehicle Routing Problem with Backhauls (MVRPB)

Two data sets have been proposed for the MVRPB. The first set is based on a relaxed version of the Goetschalckx problems, and it has been studied by Halse [19] and Wade and Salhi [43], [44]. The other data set, which was proposed by Nagy and Salhi [27], is constructed by transforming 14 well-known CVRP instances into MVRPB instances. Three MVRPB instances are constructed from each CVRP instance, having $10 \%, 25 \%$ and $50 \%$ of the customers transformed to backhaul customers. Heuristics are applied to the last data set by Dethloff [9] and Nagy and Salhi [27], [32]. We decided to test our heuristic on MVRPB by using the last data set.

The chosen data set contains 42 problems with 50 to 199 customers. Table 4 compares the solutions obtained by the LNS heuristics to the solutions obtained by Nagy and Salhi. Unfortunately it is not possible to include the results obtained by Dethloff [9] in the table as Dethloff only tested his algorithm on a subset of the problems. The heuristic named NS1 in the table is a construction algorithm and the heuristic named NS2 is a construction heuristic followed by an improvement algorithm. Both are much faster than the LNS heuristics. The comparison shows that

|  | Best known |  | Standard |  |  |  | 6R - no learning |  |  |  | 6 R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | cost | avg. sol. | best sol. | avg. <br> gap <br> (\%) | $\begin{array}{r} \hline \text { avg. } \\ \text { time } \\ (\mathrm{s}) \\ \hline \end{array}$ | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{aligned} & \hline \text { avg. } \\ & \text { gap } \\ & (\%) \\ & \hline \end{aligned}$ | avg. time (s) |
| A1 | 25 | 229885.65 | 229885.65 | 229885.65 | 0.00 | 7 | 229885.65 | 229885.65 | 0.00 | 7 | 229885.65 | 229885.65 | 0.00 | 7 |
| A2 | 25 | 180119.21 | 180119.21 | 180119.21 | 0.00 | 8 | 180119.21 | 180119.21 | 0.00 | 8 | 180119.21 | 180119.21 | 0.00 | 8 |
| A3 | 25 | 163405.38 | 163405.38 | 163405.38 | 0.00 | 9 | 163405.38 | 163405.38 | 0.00 | 10 | 163405.38 | 163405.38 | 0.00 | 9 |
| A4 | 25 | 155796.41 | 155796.41 | 155796.41 | 0.00 | 10 | 155796.41 | 155796.41 | 0.00 | 10 | 155796.41 | 155796.41 | 0.00 | 1 |
| B1 | 30 | 239080.15 | 239080.16 | 239080.16 | 0.00 | 9 | 239080.16 | 239080.16 | 0.00 | 9 | 239080.16 | 239080.16 | 0.00 | 9 |
| B2 | 30 | 198047.77 | 198047.77 | 198047.77 | 0.00 | 10 | 198047.77 | 198047.77 | 0.00 | 10 | 198047.77 | 198047.77 | 0.00 | 10 |
| B3 | 30 | 169372.29 | 169372.29 | 169372.29 | 0.00 | 13 | 169372.29 | 169372.29 | 0.00 | 14 | 169372.29 | 169372.29 | 0.00 | 14 |
| C1 | 40 | 250556.77 | 250846.82 | 250556.77 | 0.12 | 14 | 250560.15 | 250556.77 | 0.00 | 14 | 250556.77 | 250556.77 | 0.00 | 13 |
| C2 | 40 | 215020.23 | 215020.23 | 215020.23 | 0.00 | 16 | 215020.23 | 215020.23 | 0.00 | 16 | 215020.23 | 215020.23 | 0.00 | 16 |
| C3 | 40 | 199345.96 | 199345.96 | 199345.96 | 0.00 | 18 | 199345.96 | 199345.96 | 0.00 | 20 | 199345.96 | 199345.96 | 0.00 | 18 |
| C4 | 40 | 195366.63 | 195366.63 | 195366.63 | 0.00 | 19 | 195366.63 | 195366.63 | 0.00 | 19 | 195366.63 | 195366.63 | 0.00 | 19 |
| D1 | 38 | 322530.13 | 322530.13 | 322530.13 | 0.00 | 12 | 322530.13 | 322530.13 | 0.00 | 12 | 322530.13 | 322530.13 | 0.00 | 12 |
| D2 | 38 | 316708.86 | 316708.86 | 316708.86 | 0.00 | 11 | 316708.86 | 316708.86 | 0.00 | 12 | 316708.86 | 316708.86 | 0.00 | 12 |
| D3 | 38 | 239478.63 | 239478.63 | 239478.63 | 0.00 | 13 | 239478.63 | 239478.63 | 0.00 | 13 | 239478.63 | 239478.63 | 0.00 | 13 |
| D4 | 38 | 205831.94 | 205831.94 | 205831.94 | 0.00 | 16 | 205831.94 | 205831.94 | 0.00 | 16 | 205831.94 | 205831.94 | 0.00 | 15 |
| E1 | 45 | 238879.58 | 238879.58 | 238879.58 | 0.00 | 18 | 238879.58 | 238879.58 | 0.00 | 18 | 238879.58 | 238879.58 | 0.00 | 18 |
| E2 | 45 | 212263.11 | 212463.34 | 212263.11 | 0.09 | 23 | 212263.11 | 212263.11 | 0.00 | 23 | 212458.75 | 212263.11 | 0.09 | 22 |
| E3 | 45 | 206659.17 | 206710.33 | 206659.17 | 0.02 | 26 | 206697.72 | 206659.17 | 0.02 | 27 | 206761.96 | 206659.17 | 0.05 | 26 |
| F1 | 60 | 264299.6 | 268346.03 | 267060.43 | 1.53 | 31 | 268430.58 | 267060.43 | 1.56 | 30 | 268306.24 | 267060.43 | 1.52 | 29 |
| F2 | 60 | 265653.47 | 265214.16 | 265214.16 | 0.00 | 29 | 265214.16 | 265214.16 | 0.00 | 29 | 265214.16 | 265214.16 | 0.00 | 28 |
| F3 | 60 | 241120.77 | 241969.77 | 241969.77 | 0.35 | 37 | 241969.77 | 241969.77 | 0.35 | 36 | 241969.77 | 241969.77 | 0.35 | 35 |
| F4 | 60 | 233861.85 | 235175.20 | 235175.20 | 0.56 | 43 | 235528.13 | 235175.20 | 0.71 | 44 | 235449.66 | 235175.20 | 0.68 | 42 |
| G1 | 57 | 306305.4 | 306388.11 | 306305.40 | 0.03 | 23 | 306322.98 | 306305.40 | 0.01 | 23 | 306354.90 | 306305.40 | 0.02 | 22 |
| G2 | 57 | 245440.99 | 245529.35 | 245440.99 | 0.04 | 29 | 245440.99 | 245440.99 | 0.00 | 28 | 245440.99 | 245440.99 | 0.00 | 27 |
| G3 | 57 | 229507.48 | 229507.48 | 229507.48 | 0.00 | 33 | 230737.17 | 229507.48 | 0.54 | 32 | 230583.46 | 229507.48 | 0.47 | 30 |
| G4 | 57 | 235251.47 | 232913.81 | 232521.25 | 0.17 | 32 | 233006.36 | 232521.25 | 0.21 | 32 | 233263.98 | 232521.25 | 0.32 | 31 |
| G5 | 57 | 221730.35 | 221826.32 | 221730.35 | 0.04 | 35 | 222435.96 | 221730.35 | 0.32 | 36 | 222442.67 | 221730.35 | 0.32 | 35 |
| G6 | 57 | 213457.45 | 213541.70 | 213457.45 | 0.04 | 40 | 214090.55 | 213457.45 | 0.30 | 42 | 213457.45 | 213457.45 | 0.00 | 39 |
| H1 | 68 | 268933.06 | 269342.45 | 268933.06 | 0.15 | 41 | 269467.78 | 268933.06 | 0.20 | 42 | 269317.64 | 268933.06 | 0.14 | 39 |
| H2 | 68 | 253365.5 | 253423.34 | 253365.50 | 0.02 | 49 | 253462.09 | 253365.50 | 0.04 | 49 | 254194.18 | 253365.50 | 0.33 | 47 |
| H3 | 68 | 247449.04 | 247532.87 | 247449.04 | 0.03 | 56 | 247508.59 | 247449.04 | 0.02 | 55 | 247449.04 | 247449.04 | 0.00 | 53 |
| H4 | 68 | 250220.77 | 250317.37 | 250220.77 | 0.04 | 52 | 250269.07 | 250220.77 | 0.02 | 53 | 250269.07 | 250220.77 | 0.02 | 52 |
| H5 | 68 | 246121.31 | 246532.25 | 246121.31 | 0.17 | 58 | 246767.73 | 246121.31 | 0.26 | 58 | 246217.90 | 246121.31 | 0.04 | 55 |
| H6 | 68 | 249135.32 | 249294.67 | 249135.32 | 0.06 | 55 | 249231.92 | 249135.32 | 0.04 | 57 | 249206.96 | 249135.32 | 0.03 | 55 |
| I1 | 90 | 351606.91 | 350958.02 | 350258.81 | 0.20 | 55 | 350852.85 | 350245.28 | 0.17 | 54 | 350897.94 | 350247.61 | 0.19 | 52 |
| I2 | 90 | 309955.04 | 312489.95 | 309943.84 | 0.82 | 66 | 311016.93 | 309943.84 | 0.35 | 65 | 310434.77 | 309943.84 | 0.16 | 63 |
| I3 | 90 | 294507.38 | 295236.14 | 294507.38 | 0.25 | 86 | 294858.13 | 294507.38 | 0.12 | 83 | 294821.76 | 294507.38 | 0.11 | 81 |
| I4 | 90 | 295999.65 | 296820.65 | 295988.45 | 0.28 | 79 | 296159.12 | 295988.45 | 0.06 | 77 | 296401.46 | 295988.45 | 0.14 | 76 |
| 15 | 90 | 302524.33 | 302707.04 | 301236.01 | 0.49 | 76 | 301909.59 | 301236.01 | 0.22 | 75 | 301980.98 | 301236.01 | 0.25 | 74 |
| J1 | 95 | 335593.42 | 336680.78 | 335006.68 | 0.50 | 60 | 336522.31 | 335006.68 | 0.45 | 58 | 336789.92 | 335479.75 | 0.53 | 56 |
| J2 | 95 | 310800.53 | 312206.97 | 310417.21 | 0.58 | 71 | 312458.56 | 310417.21 | 0.66 | 67 | 311763.08 | 310417.21 | 0.43 | 65 |
| J3 | 95 | 279219.21 | 281807.92 | 279219.21 | 0.93 | 94 | 279423.74 | 279219.21 | 0.07 | 87 | 279729.03 | 279219.21 | 0.18 | 84 |
| J4 | 95 | 296773.38 | 298412.68 | 297232.88 | 0.63 | 77 | 297781.22 | 296533.16 | 0.42 | 74 | 297344.74 | 297086.58 | 0.27 | 72 |
| K1 | 113 | 395546.4 | 397774.56 | 394846.98 | 0.86 | 86 | 395993.78 | 394375.63 | 0.41 | 83 | 397076.46 | 395006.60 | 0.68 | 81 |
| K2 | 113 | 363214.24 | 365791.18 | 362656.70 | 1.01 | 100 | 362998.61 | 362130.00 | 0.24 | 97 | 363253.47 | 362130.00 | 0.31 | 96 |
| K3 | 113 | 366222.05 | 367806.64 | 365694.08 | 0.58 | 99 | 366218.02 | 365694.08 | 0.14 | 97 | 366388.14 | 365694.08 | 0.19 | 95 |
| K4 | 113 | 349038.84 | 351441.74 | 348949.39 | 0.71 | 113 | 349266.17 | 348949.39 | 0.09 | 111 | 349241.78 | 348949.39 | 0.08 | 108 |
| L1 | 150 | 426017.86 | 428037.41 | 426013.41 | 0.48 | 162 | 427658.80 | 426013.41 | 0.39 | 153 | 427641.03 | 426281.89 | 0.38 | 149 |
| L2 | 150 | 402245.17 | 402073.43 | 401466.27 | 0.21 | 192 | 401587.25 | 401228.80 | 0.09 | 181 | 401492.36 | 401247.70 | 0.07 | 176 |
| L3 | 150 | 403886.22 | 404784.84 | 402677.72 | 0.52 | 187 | 403029.19 | 402677.72 | 0.09 | 176 | 402860.67 | 402677.72 | 0.05 | 174 |
| L4 | 150 | 384844.01 | 387660.68 | 384636.33 | 0.79 | 220 | 385207.32 | 384636.33 | 0.15 | 207 | 385073.14 | 384636.33 | 0.11 | 205 |
| L5 | 150 | 388061.69 | 390091.24 | 387564.55 | 0.65 | 210 | 388677.62 | 387564.55 | 0.29 | 211 | 389778.12 | 387564.55 | 0.57 | 200 |
| M1 | 125 | 400860.79 | 402962.88 | 401006.99 | 1.02 | 108 | 401540.39 | 398913.70 | 0.66 | 104 | 401666.48 | 398913.70 | 0.69 | 102 |
| M2 | 125 | 398908.71 | 400924.09 | 399001.11 | 0.53 | 108 | 401724.68 | 399336.27 | 0.73 | 102 | 401347.29 | 398827.67 | 0.63 | 100 |
| M3 | 125 | 377352.81 | 379362.69 | 377411.62 | 0.85 | 122 | 378502.30 | 377212.23 | 0.62 | 115 | 378031.96 | 376159.13 | 0.50 | 114 |
| M4 | 125 | 348624.42 | 349984.33 | 348624.42 | 0.45 | 147 | 348663.06 | 348417.94 | 0.07 | 140 | 348905.97 | 348532.69 | 0.14 | 137 |
| N1 | 150 | 408926.4 | 414655.53 | 409210.18 | 1.40 | 162 | 414044.03 | 410789.32 | 1.25 | 156 | 414915.65 | 410419.05 | 1.46 | 155 |
| N2 | 150 | 409280.16 | 413434.54 | 410595.02 | 1.02 | 164 | 413124.59 | 409385.19 | 0.94 | 155 | 415985.72 | 411131.25 | 1.64 | 153 |
| N3 | 150 | 396167.85 | 402418.80 | 398841.27 | 2.05 | 181 | 399363.23 | 394337.86 | 1.27 | 177 | 400984.40 | 396827.00 | 1.69 | 170 |
| N4 | 150 | 397753.86 | 401362.13 | 397363.45 | 1.67 | 178 | 402131.56 | 398965.12 | 1.86 | 172 | 400553.31 | 394788.36 | 1.46 | 170 |
| N5 | 150 | 376431.84 | 380168.38 | 375895.96 | 1.79 | 222 | 377447.83 | 373476.30 | 1.06 | 214 | 378201.49 | 375201.45 | 1.27 | 210 |
| N6 | 150 | 377665.19 | 381099.86 | 377368.09 | 1.96 | 216 | 376612.61 | 373758.65 | 0.76 | 211 | 376966.15 | 373789.70 | 0.86 | 209 |
| Tot. |  | 18058230 | 18124900 | 18055590 |  | 4536 | 18093048 | 18042916 |  | 4405 | 18098312 | 18044860 |  | 4299 |
| Avg. |  |  |  |  | 0.43 | 73 |  |  | 0.29 | 71 |  |  | 0.31 | 69 |
| $\begin{array}{\|l\|} \hline \text { BTPI } \\ \# \mathrm{~B} \\ \hline \end{array}$ |  | 36 |  | $\begin{aligned} & 20 \\ & 43 \\ & \hline \end{aligned}$ |  |  |  | $\begin{aligned} & 24 \\ & 53 \\ & \hline \end{aligned}$ |  |  |  | $\begin{aligned} & 23 \\ & 46 \\ & \hline \end{aligned}$ |  |  |

Table 1: Goetschalckx problems. The table compares the results obtained by the three configurations of the LNS heuristics with the best results obtained by Osman and Wassan's heuristic [28]. The two first columns show the problem name and the number of customers in the problem. The third column displays the best solution found by Osman and Wassan's heuristic. The rest of the columns are divided into three sections, one for each configuration. These should be interpreted as follows: avg. sol. - the average of the solution costs obtained in the 10 experiments, best sol. - the cost of the best solution found in the 10 experiments, avg. gap (\%) - the gap between average and best known solution cost, avg. time (s) - the average time needed to perform one experiment (in seconds). The best solution for each problem instance is marked with bold. The row Tot. at the bottom of the table gives the sum of the given column and the row $A v g$. gives the average of the column. The row $B T P B$ reports the number of problem instances where a particular configuration found solutions that were better than the previous best known solution, the row $\# B$ contains the number of times the heuristic found the best known solution to a problem.

|  | Avg. gap (\%) | \#B | Avg. time (s) | Opt. | BTPB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Standard | 0.28 | 35 | 39 | 28 | 8 |
| 6R - no learning | 0.18 | 38 | 40 | 28 | 8 |
| 6R - normal learning | 0.17 | 36 | 40 | 28 | 8 |

Table 2: Summary of testing the 47 first Goetschalckx problems using distances rounded to one decimal. Each row in the table corresponds to one of the three LNS configurations. The columns Avg. gap (\%) and Avg. Time (s) should be interpreted like the corresponding entries in the $A v g$. row in Table 1. The rest of the columns are: $\# B$ - the number of problems where the best known solution was reached, Opt. the number of optimal solutions found (out of 34 known optimal solutions), $B T P B$ - the number of problems for which the heuristic improved the solutions found by the branch and bound methods. The improved solutions correspond to problems were the branch and bound algorithms did not reach optimality because they were stopped before optimality was proved.

|  | Best known |  |  |  | Standard |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | cost | opt | reference | $\begin{gathered} \hline \text { avg. } \\ \text { sol. } \end{gathered}$ | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| EIL22.50A | 21 | 371 | X | TV + EHP | 371 | 371 | 0.00 | 8 | 371 | 371 | 0.00 | 8 | 371 | 371 | 0.00 | 8 |
| EIL22.66A | 21 | 366 | X | TV + EHP | 366 | 366 | 0.00 | 7 | 366 | 366 | 0.00 | 8 | 366 | 366 | 0.00 | 7 |
| EIL22.80A | 21 | 375 | X | TV + EHP | 375 | 375 | 0.00 | 7 | 375 | 375 | 0.00 | 8 | 375 | 375 | 0.00 | 8 |
| EIL23.50A | 22 | 682 | X | TV + EHP | 709 | 682 | 3.94 | 13 | 682 | 682 | 0.00 | 12 | 682 | 682 | 0.00 | 12 |
| EIL23.66A | 22 | 649 | X | TV + EHP | 654 | 649 | 0.77 | 12 | 649 | 649 | 0.00 | 13 | 649 | 649 | 0.00 | 13 |
| EIL23.80A | 22 | 623 | X | $T V+E H P$ | 625 | 623 | 0.26 | 11 | 623 | 623 | 0.00 | 12 | 623 | 623 | 0.00 | 12 |
| EIL30.50A | 29 | 501 | X | TV + EHP | 501 | 501 | 0.00 | 17 | 501 | 501 | 0.00 | 19 | 501 | 501 | 0.00 | 18 |
| EIL30.66A | 29 | 537 | X | TV + EHP | 537 | 537 | 0.00 | 13 | 537 | 537 | 0.00 | 14 | 537 | 537 | 0.00 | 14 |
| EIL30.80A | 29 | 514 | X | TV + EHP | 514 | 514 | 0.00 | 13 | 514 | 514 | 0.00 | 14 | 514 | 514 | 0.00 | 14 |
| EIL33.50A | 32 | 738 | X | $T V+E H P$ | 738 | 738 | 0.00 | 17 | 738 | 738 | 0.00 | 20 | 738 | 738 | 0.00 | 20 |
| EIL33.66A | 32 | 750 | X | TV + EHP | 750 | 750 | 0.00 | 15 | 750 | 750 | 0.00 | 17 | 750 | 750 | 0.00 | 16 |
| EIL33.80A | 32 | 736 | X | TV + EHP | 737 | 736 | 0.18 | 15 | 736 | 736 | 0.05 | 15 | 736 | 736 | 0.05 | 15 |
| EIL51.50A | 50 | 559 | X | $T V+E H P$ | 561 | 559 | 0.41 | 35 | 559 | 559 | 0.00 | 39 | 559 | 559 | 0.00 | 36 |
| EIL51.66A | 50 | 548 | X | TV + EHP | 553 | 548 | 0.91 | 30 | 550 | 548 | 0.35 | 31 | 549 | 548 | 0.11 | 30 |
| EIL51.80A | 50 | 565 | X | TV + EHP | 569 | 565 | 0.65 | 28 | 571 | 565 | 1.12 | 29 | 570 | 565 | 0.80 | 28 |
| EILA76.50A | 75 | 739 | X | TV + EHP | 740 | 739 | 0.16 | 49 | 739 | 739 | 0.00 | 50 | 739 | 739 | 0.00 | 48 |
| EILA76.66A | 75 | 768 | X | $T V+E H P$ | 774 | 768 | 0.77 | 44 | 774 | 769 | 0.73 | 44 | 772 | 768 | 0.51 | 42 |
| EILA76.80A | 75 | 781 |  | TV + EHP | 794 | 783 | 1.63 | 41 | 794 | 783 | 1.72 | 40 | 791 | 783 | 1.22 | 39 |
| EILB76.50A | 75 | 801 | X | TV + EHP | 804 | 801 | 0.31 | 42 | 802 | 801 | 0.12 | 42 | 803 | 801 | 0.25 | 40 |
| EILB76.66A | 75 | 873 | X | $T V+E H P$ | 876 | 873 | 0.38 | 38 | 875 | 873 | 0.22 | 38 | 873 | 873 | 0.01 | 37 |
| EILB76.80A | 75 | 919 | X | TV + EHP | 927 | 919 | 0.90 | 36 | 924 | 919 | 0.58 | 38 | 922 | 919 | 0.37 | 37 |
| EILC76.50A | 75 | 713 | X | $T V+E H P$ | 715 | 713 | 0.21 | 60 | 713 | 713 | 0.04 | 61 | 713 | 713 | 0.00 | 59 |
| EILC76.66A | 75 | 734 | X | EHP | 740 | 735 | 0.75 | 51 | 739 | 734 | 0.69 | 51 | 736 | 734 | 0.23 | 50 |
| EILC76.80A | 75 | 733 |  | TV + EHP | 738 | 734 | 0.71 | 48 | 741 | 736 | 1.09 | 48 | 738 | 737 | 0.70 | 47 |
| EILD76.50A | 75 | 690 | X | TV + EHP | 702 | 690 | 1.77 | 71 | 696 | 690 | 0.81 | 75 | 691 | 690 | 0.20 | 71 |
| EILD76.66A | 75 | 715 |  | TV + EHP | 717 | 715 | 0.22 | 59 | 716 | 715 | 0.20 | 60 | 715 | 715 | 0.00 | 57 |
| EILD76.80A | 75 | 694 |  | EHP | 699 | 694 | 0.72 | 53 | 699 | 695 | 0.76 | 55 | 696 | 694 | 0.26 | 53 |
| EILA101.50A | 100 | 842 |  | OSMAN | 845 | 837 | 1.72 | 138 | 840 | 831 | 1.05 | 137 | 836 | 831 | 0.55 | 129 |
| EILA101.66A | 100 | 846 | X | TV + EHP | 852 | 846 | 0.67 | 99 | 848 | 846 | 0.21 | 100 | 846 | 846 | 0.05 | 99 |
| EILA101.80A | 100 | 875 |  | OSMAN | 872 | 862 | 1.77 | 91 | 869 | 857 | 1.41 | 87 | 866 | 861 | 1.03 | 86 |
| EILB101.50A | 100 | 933 |  | EHP | 930 | 925 | 0.54 | 82 | 928 | 925 | 0.31 | 79 | 929 | 925 | 0.38 | 77 |
| EILB101.66A | 100 | 998 |  | OSMAN | 1007 | 994 | 1.79 | 69 | 1010 | 989 | 2.13 | 66 | 1001 | 991 | 1.24 | 66 |
| EILB101.80A | 100 | 1021 |  | OSMAN | 1022 | 1018 | 1.43 | 63 | 1021 | 1010 | 1.26 | 61 | 1015 | 1008 | 0.65 | 61 |
| Tot. |  | 23189 |  |  | 23314 | 23160 |  | 1373 | 23251 | 23140 |  | 1394 | 23201 | 23142 |  | 1349 |
| Avg. |  |  |  |  |  |  | 0.71 | 42 |  |  | 0.45 | 42 |  |  | 0.26 | 41 |
| BTPB |  |  |  |  |  | 5 |  |  |  | 5 |  |  |  | 5 |  |  |
| \#B |  |  | 28 |  |  | 26 |  |  |  | 28 |  |  |  | 29 |  |  |

Table 3: Toth-Vigo data set. The column opt indicates if optimality is proven for the particular instance and the column reference points to the algorithm that found the solution in the best known column. TV refers to the exact method by Toth and Vigo [41], EHP refers to the exact algorithm by Mingozzi et al. [26] and OSMAN refers to the heuristic by Osman and Wassan [28].

|  | NS1 | NS2 | Standard | 6R - no learning | 6R - normal learning |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10 \%$ | 1011 | 995 | $956(3.9 \%)$ | $\mathbf{9 5 5}(\mathbf{4 . 0 \%})$ | $956(3.9 \%)$ |
| $25 \%$ | 1034 | 998 | $923(7.5 \%)$ | $923(7.5 \%)$ | $\mathbf{9 2 2}(\mathbf{7 . 6 \% )}$ |
| $50 \%$ | 1045 | 991 | $\mathbf{8 8 1}(\mathbf{1 1 . 1 \% )}$ | $\mathbf{8 8 1}(\mathbf{1 1 . 1 \%})$ | $\mathbf{8 8 1}(\mathbf{1 1 . 1 \%})$ |

Table 4: Summary of the 42 Nagy-Salhi MVRPB problem instances. This table compares the solutions obtained by the LNS heuristic to those obtained by Nagy and Salhi [27], [32]. Each row reports the average solution over 14 MVRPB instances with a particular percentage of backhaul customers ( $10 \%, 25 \%$ or $50 \%$ ). The columns NS1 and NS2 contain the best results reported by Nagy and Salhi in [32] and [27] respectively. The last three columns show the results obtained by the LNS heuristic. The numbers in parenthesis show how much better the LNS solutions are compared to the solutions reported by Nagy and Salhi.

|  | Standard |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Avg. } \\ \operatorname{gap}(\%) \end{gathered}$ |  | BTPB | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ | $\begin{gathered} \text { Avg. } \\ \operatorname{gap}(\%) \end{gathered}$ |  | $\overline{\text { BTPB }}$ | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Avg. } \\ \text { gap (\%) } \\ \hline \end{array}$ |  | BTPB | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ |
| 10\% | 0.51 | 10 | 13 | 129 | 0.43 | 11 | 13 | 133 | 0.37 | 11 | 13 | 133 |
| 25\% | 0.49 | 11 | 14 | 135 | 0.38 | 9 | 14 | 142 | 0.30 | 11 | 14 | 143 |
| 50\% | 0.71 | 7 | 13 | 164 | 0.45 | 10 | 14 | 178 | 0.41 | 12 | 13 | 178 |

Table 5: This table provides a comparison of the 3 LNS configurations when applied to the 42 Nagy-Salhi MVRPB instances. Each row summarizes 14 instances with the same percentage of backhaul customers. The meaning of the headings is as in Table 2.
great improvements can be achieved by using a more advanced heuristics such as the LNS heuristic proposed here, as we get results that are more than $10 \%$ better than those obtained by the simpler heuristics. We succeeded in improving the best known solution for 41 out of the 42 problems. On the last problem we matched the solution reported by Nagy and Salhi. Notice that the average solution cost decreases when more customers are turned into backhaul customers in the solutions provided by the LNS heuristic. This is expected as a greater percentage of backhaul customers leads to greater flexibility in the planning as long as the percentage of backhaul customers is not greater than $50 \%$. It is worth noting that Nagy and Salhi's results do not show this behavior.

Table 5 compares the three LNS configurations. The results show that the configurations with six removal heuristics overall are better than the one with three removal heuristics when one compares the gaps. The results also show that the configuration with the learning layer enabled is better than the one without the learning layer. One can also notice that the computation time increases as more customers are turned into backhaul customers. This behavior can most likely be explained by the fact that routes in general contain many customers when the percentage of backhauls customers is around $50 \%$. Long routes imply that more time is spent in the insertion heuristics.

### 6.5 The Multiple Depot Mixed Vehicle Routing Problem with Backhauls (MDMVRPB)

Only one data set has been proposed for the MDMVRPB. This data set was proposed by Nagy and Salhi [32] and is constructed from Gillett and Johnson's 11 multi depot vehicle routing problems. Each of the 11 problems are turned into three MDMVRPB problems by creating problems with $10 \%, 25 \%$ and $50 \%$ backhaul customers; thus the MDMVRPB data set contains 33 problems with between 50 and 249 customers. The only heuristics that have been applied to the problems so far are those by Nagy and Salhi which also were used for the MVRPB discussed in Section 6.4.

In Table 6 we compare the results obtained by the LNS heuristic with those obtained by the best heuristics of Nagy and Salhi [27], [32]. It has been necessary to reconstruct the problems from Gillett and Johnson's original problems following the description in [32], as the original problems no longer were available from the authors. We believe that the problems have been constructed properly. The reconstructed problems have been made available on the web [46] for future comparisons. Again, we observe that the LNS heuristic offers huge improvements over

|  | NS1 | NS2 | Standard | 6R - no learning | 6R - normal learning |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10 \%$ | 2008 | 1996 | $1798(9.9 \%)$ | $\mathbf{1 7 9 5}(\mathbf{1 0 . 1 \%})$ | $1799(9.9 \%)$ |
| $25 \%$ | 2050 | 2007 | $1671(16.7 \%)$ | $1663(17.1 \%)$ | $\mathbf{1 6 6 2}(\mathbf{1 7 . 2 \%})$ |
| $50 \%$ | 2088 | 1993 | $1512(24.1 \%)$ | $1510(24.2 \%)$ | $\mathbf{1 5 0 9}(\mathbf{2 4 . 3 \%})$ |

Table 6: Summary of results obtained on the 33 Nagy-Salhi MDMVRPB instances. The columns NS1 and NS2 contain the best results reported by Nagy and Salhi in [32] and [27] respectively.

|  | Standard |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|c\|} \hline \text { Avg. } \\ \text { gap (\%) } \\ \hline \end{array}$ |  | BTPB | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Avg. } \\ \text { gap (\%) } \\ \hline \end{array}$ |  | BTPB | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Avg. } \\ \operatorname{gap}(\%) \\ \hline \end{array}$ |  | $\overline{\text { BTPB }}$ | $\begin{gathered} \hline \text { Avg. } \\ \text { time (s) } \end{gathered}$ |
| 10\% | 0.93 | 7 | 11 | 204 | 0.63 | 10 | 11 | 217 | 0.61 | 6 | 11 | 216 |
| 25\% | 0.97 | 5 | 11 | 219 | 0.65 | 6 | 11 | 237 | 0.66 | 8 | 11 | 237 |
| 50\% | 0.88 | 8 | 11 | 258 | 0.71 | 6 | 11 | 288 | 0.66 | 7 | 11 | 288 |

Table 7: Nagy-Salhi MDMVRPB instances. Comparison of the performance of the three LNS configurations.
the simpler heuristics. This time the solution costs are decreased by up to $24 \%$ and the best known solutions to all problems were improved. As before we note that the heuristics proposed by Nagy and Salhi are faster than the LNS heuristic.

Table 7 compares the three LNS configurations with each other. The most interesting observation is that the multi depot problems seem to be the hardest problems considered so far, as the average solutions are farther from the best known solutions than before, but the results must anyway be considered as very promising.

### 6.6 The Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW)

The VRPBTW is another well-studied backhauling problem. The primary objective considered in the heuristics described in the literature is to minimize the number of vehicles used and the secondary objective is to minimize the traveled distance. These objectives are also used in our experiments. The vehicle minimization is done by solving the problem for a decreasing number of vehicles, as proposed by Ropke [31]. Gelinas et al. [13] proposed a data set containing 15 problems with 100 customers and Thangiah et al. [38] introduced a data set containing 24 large problems.

Our heuristics are tested on both data sets. The results obtained on Gelinas' data set are presented in Table 8. Five papers have reported results on this data set: Duhamel et al. [12], Hasama et al. [20], Reimann et al. [30], Thangiah et al. [38] and Zhong and Cole [48]. It should be noted that apparently there is no standard for how distances should be represented internally in the heuristic, which makes comparisons a bit problematic. We have chosen to represent the distances using doubles like Reimann et al. [30], as is standard in the literature about VRPTW heuristics. The tables reveal that we are able to improve 10 out of the 15 solutions and reduce the number of vehicles needed for 5 of the problems. Again the configurations using all removal heuristics turns out to be the best.

The only heuristic that has been applied to the large VRPBTW problems is the heuristic by Thangiah et al. [38]. Table 9 compares the results obtained by this algorithm to the results obtained by the LNS heuristic. We see that the LNS heuristic is able to decrease the necessary number of vehicles by a large amount and at the same time also decrease the traveled distance. The best known solutions to all 24 problems were improved by the LNS heuristic. Table 10 gives further information about the performance of the LNS heuristic, including the running time. The time increases with the problem size, but its growth is not alarming. Once again the configurations using 6 removal heuristics found the best solutions.

|  | Best known |  |  |  | Standard |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% BH | m | cost |  | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | best sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | avg. time <br> (s) | $\begin{aligned} & \text { avg. } \\ & \text { \#veh. } \end{aligned}$ | best sol. | best \#veh. | avg. time <br> (s) | avg. \#veh. | $\begin{gathered} \text { best } \\ \text { sol. } \end{gathered}$ | best \#veh. | avg. time <br> (s) |
| BHR101A | 10\% | 22 | 1831.68 | RDH | 22.0 | 1818.86 | 22 | 98 | 22.0 | 1818.86 | 22 | 107 | 22.0 | 1818.86 | 22 | 109 |
| BHR101B | 30\% | 23 | 1999.16 | RDH | 23.0 | 1959.86 | 23 | 94 | 23.0 | 1959.56 | 23 | 101 | 23.0 | 1959.56 | 23 | 103 |
| BHR101C | 50\% | 24 | 1909.84 | HKK | 24.0 | 1939.10 | 24 | 93 | 24.0 | 1939.10 | 24 | 100 | 24.0 | 1939.10 | 24 | 101 |
| BHR102A | 10\% | 19 | 1677.62 | RDH | 19.0 | 1653.19 | 19 | 110 | 19.0 | 1653.19 | 19 | 118 | 19.0 | 1653.19 | 19 | 121 |
| BHR102B | 30\% | 21 | 1764.3 | TPS | 22.0 | 1750.70 | 22 | 103 | 22.0 | 1750.70 | 22 | 111 | 22.0 | 1750.70 | 22 | 114 |
| BHR102C | 50\% | 21 | 1745.7 | TPS | 22.0 | 1775.76 | 22 | 103 | 22.0 | 1775.76 | 22 | 111 | 22.0 | 1775.76 | 22 | 113 |
| BHR103A | 10\% | 15 | 1371.6 | TPS | 15.0 | 1387.57 | 15 | 117 | 15.0 | 1387.57 | 15 | 123 | 15.0 | 1387.57 | 15 | 128 |
| BHR103B | 30\% | 16 | 1395.88 | RDH | 15.0 | 1390.33 | 15 | 108 | 15.0 | 1390.33 | 15 | 112 | 15.0 | 1390.33 | 15 | 115 |
| BHR103C | 50\% | 16 | 1486.56 | ZC | 17.0 | 1457.31 | 17 | 106 | 17.0 | 1456.48 | 17 | 113 | 17.0 | 1456.48 | 17 | 115 |
| BHR104A | 10\% | 11 | 1205.78 | RDH | 11.0 | 1084.22 | 11 | 127 | 11.0 | 1084.17 | 11 | 130 | 11.0 | 1084.17 | 11 | 132 |
| BHR104B | 30\% | 12 | 1128.3 | RDH | 11.0 | 1163.24 | 11 | 119 | 11.0 | 1154.84 | 11 | 121 | 11.0 | 1154.84 | 11 | 122 |
| BHR104C | 50\% | 12 | 1208.46 | RDH | 11.0 | 1191.41 | 11 | 117 | 11.0 | 1191.38 | 11 | 119 | 11.0 | 1191.38 | 11 | 119 |
| BHR105A | 10\% | 16 | 1544.81 | RDH | 15.5 | 1564.88 | 15 | 104 | 15.3 | 1561.28 | 15 | 110 | 15.4 | 1561.28 | 15 | 109 |
| BHR105B | 30\% | 16 | 1592.23 | RDH | 16.0 | 1583.30 | 16 | 97 | 16.0 | 1583.30 | 16 | 102 | 16.0 | 1583.30 | 16 | 102 |
| BHR105C | 50\% | 17 | 1633.01 | RDH | 16.6 | 1711.36 | 16 | 96 | 16.6 | 1710.75 | 16 | 100 | 16.5 | 1710.19 | 16 | 100 |
| Tot. |  | 261 | 23495 |  | 260.2 | 23432 | 259 | 1593 | 260.0 | 23418 | 259 | 1679 | 259.9 | 23417 | 259 | 1703 |
| Avg. |  |  |  |  |  |  |  | 106 |  |  |  | 112 |  |  |  | 114 |
| BTPB |  |  |  |  |  | 10 |  |  |  | 10 |  |  |  | 10 |  |  |
| \#B |  |  | 5 |  |  | 4 |  |  |  | 9 |  |  |  | 10 |  |  |

Table 8: The table shows the results obtained on the VRPBTW instances proposed by Gelinas et al. [13]. The first column shows the name of the problem, the next columns are: $\% B H$ - ratio of backhaul customers, $m$ - number of vehicles in best known solution, cost - distance traveled in best known solution, ref - HKK = Hasama et al. [20], RDH = Reimann et al. [30], TPS = Thangiah et al. [38] and ZC = Zhong and Cole [48], the result found by Zhong and Cole was listed in their technical report [47]. The rest of the columns report the solutions found by the LNS heuristics: avg. \#veh. - average number of vehicles best \#veh. - lowest number of vehicles found. The other columns should be interpreted as in Table 1. The original data files do not specify the latest return time to the depot and the maximum capacity of the vehicle. In our experiments these parameters have been set to the values they have in the original Solomon problems from which the Gelinas problems were created.

|  | TPS |  | Standard |  | 6R - no learning |  | 6R - normal learning |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \#veh. | cost | \#veh. | cost | \#veh. | cost | \#veh. | cost |
| 25 | 517 | 57509 | 449 | 54256 | 444 | 54711 | 445 | 54499 |
| 500 | 799 | 9414 | 677 | 83498 | 676 | 82946 | 675 | 827 |

Table 9: Large VRPBTW instances. This table compares the 3 LNS configurations to the heuristics by Thangiah et al. (TPS). The data set contains 12 problems containing 250 customers and 12 containing 500 customers. The best solutions found by the heuristics have been accumulated and the table shows the total number of vehicles needed and the total traveled distance for all instances of a particular size. The vehicle capacity was set to 200 for all problems and no latest arrival time was specified for the depot.

|  | Standard |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Customers | Avg. \#veh. | \#B | $\overline{\text { BTPB }}$ | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ | Avg. \#veh. | \#B | $\overline{\text { BTPB }}$ | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ | Avg. \#veh. |  | $\overline{\text { BTPB }}$ | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ |
| 250 | 37.5 | 1 | 12 | 489 | 37.3 | 6 | 12 | 492 | 37.4 | 5 | 12 | 504 |
| 500 | 57.1 | 0 | 12 | 1562 | 56.8 | 4 | 12 | 1651 | 56.7 | 8 | 12 | 1570 |

Table 10: Comparison of the three LNS configurations when faced with the large VRPBTW instances proposed by Thangiah. The Avg. \#veh column displays the average of the average number of vehicles needed to serve all customers.

|  | LB | KB |  | ZC |  | Standard |  | 6R - no learning |  | 6R - normal learning |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \#veh. | \#veh. | cost |
| MR2 | 4 | 4 | 1168.53 | 4 | 1016.66 | 4 | 904.55 | 4 | 902.73 | 4 | 903.00 |
| MC2 | 4 | 4 | 1094.94 | 4.625 | 903.56 | 4 | 731.38 | 4 | 732.38 | 4 | 732.13 |
| MRC2 | 4 | 4.5 | 1496.91 | 4.125 | 1330.31 | 4.125 | 1125.00 | 4.125 | 1129.25 | 4.125 | 1127.63 |

Table 11: Kontoravdis MVRPBTW problems. The table compares the results reported by Kontoravdis and Bard [23] (KB) and Zhong and Cole [48] (ZC) with the results obtained using the LNS heuristics. The primary objective in these problems is to minimize the number of vehicles needed to serve the customers. The data set is divided into three classes according to the geographical distribution of the customers in the problems: randomly distributed customers (MR2), clustered customers (MC2), and a mix between the two first categories (MRC2). The MRC2 and MC2 classes both contain 8 problems while the MR2 class contains 11 problems. Each row in the table summarizes the performance on each class. The column LB \#veh. shows the lower bound on the number of vehicles as given by Kontoravdis and Bard.

|  | Standard |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|c\|} \hline \text { Avg. } \\ \operatorname{gap}(\%) \\ \hline \end{array}$ |  | BTPB | $\begin{gathered} \text { Avg. } \\ \text { time (s) } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Avg. } \\ \text { gap (\%) } \\ \hline \end{array}$ |  | $\overline{\text { BTPB }}$ | $\begin{aligned} & \text { Avg. } \\ & \text { time (s) } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Avg. } \\ \text { gap (\%) } \\ \hline \end{array}$ |  | $\overline{\text { BTPB }}$ | $\begin{gathered} \hline \text { Avg. } \\ \text { time (s) } \end{gathered}$ |
| MR2 | 1.34 | 4 | 11 | 362 | 0.63 | 8 | 11 | 375 | 0.63 | 8 | 11 | 368 |
| MC2 | 0.62 | 6 | 8 | 162 | 0.60 | 5 | 8 | 165 | 0.65 | 5 | 8 | 163 |
| MRC2 | 2.83 | 5 | 8 | 183 | 1.99 | 1 | 8 | 183 | 1.76 | 4 | 8 | 180 |

Table 12: The table compares the three LNS configurations when applied to Kontoravdis' MVRPBTW problems. In all test runs the heuristics reached the same number of vehicles when applied to the same problem. This allows us to report the avg. gap, which doesn't make sense if the heuristics use a different number of vehicles to solve the same problem.

### 6.7 The Mixed Vehicle Routing Problem with Backhauls and Time Windows (MVRPBTW)

Two datasets have been proposed for the MVRPBTW. Hasama et al. [20] use Gelinas' data set by relaxing the linehaul-before-backhaul constraint while Kontoravdis and Bard [23] construct 27 new problems from Solomon's VRPTW problems. We test our heuristics using Kontoravdis and Bard's data set which also has been attempted by Zhong and Cole [48]. The LNS heuristic is compared to the previous heuristics in Table 11. Again the LNS heuristic is able to find solutions of better quality compared to the older heuristics. It is interesting to note that the LNS heuristic reaches the lower bound on the number of vehicles needed to solve the problems on all but one instance. The LNS heuristics improved all the previously best known solutions to the problem instances.

Table 12 provides the usual comparison of the three LNS configurations. It should be observed that the MRC2 problems turn out to be hard to solve, as indicated by the rather large gaps. This is not surprising as the MRC2 problems were constructed from Solomon's RC2 VRPTW problems, which are known to be hard to solve. One cannot expect that adding the extra complexity of backhaul customers should make the problems easier to solve.

### 6.8 The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP)

Allthough the VRPSDP is not the problem in the backhauling family that has received the most attention, there exist nevertheless quite a few data sets for the problem. The first data set was proposed by Min [25] and contained only one problem, which originated from a real life application. Halse [19] proposed a set containing 16 problems constructed from CVRP problems and Dethloff [10] proposed 40 new problems containing 50 customers each. Nagy and Salhi [32] constructed two classes of VRPSDP problems and two classes of multi depot VRPSDP problems. Finally Angelelli and Mansini [2] presented a class of VRPSDP problems with time windows.

As mentioned earlier we are not going to test our heuristic on the multi depot and time window variants of the VRPSDP. The problems we choose for our tests are Min's problem, Dethloff's problems and the first class of Nagy and Salhi's VRPSDP problems (the one denoted with an $X$ in [32]). The results are summarized in Tables 13 and 14. Again it must be stressed that the heuristics by Dethloff and Nagy and Salhi are simple construction heuristics

|  | Dethloff | NS1 | NS2 | Standard | 6R - no learning | 6R - normal learning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dethloff | 824 | - | - | $747(9.3 \%)$ | $746(9.5 \%)$ | $\mathbf{7 4 5}(\mathbf{9 . 6 \%})$ |
| NS-X | 1006 | 1096 | 991 | $927(6.5 \%)$ | $925(6.7 \%)$ | $\mathbf{9 1 9}(\mathbf{7 . 3 \%})$ |

Table 13: Summary of the results obtained on the VRPSDP instances. The table should be interpreted like Table 4. The row denoted Dethloff summarizes the results obtained on Dethloff's 40 instances [10] and the single instance provided by Min [25]. Each of Dethloff's instances contains 50 customers. The row marked NS-X summarizes Nagy and Salhi's 14 VRPSDP instances of class $X$ [32]. These problems contain between 50 and 200 customers. Results for these problems are reported by Dethloff [10] and Nagy and Salhi [32], [27]. The columns Dethloff, NS1 and NS2 summarize the best results reported in [10], [32] and [27] respectively.

|  | Standard |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{c}\text { Avg. } \\ \text { gap (\%) }\end{array}$ | \#B | BTPB | $\begin{array}{c}\text { Avg. } \\ \text { time (s) }\end{array}$ | $\begin{array}{c}\text { Avg. } \\ \text { gap (\%) }\end{array}$ | \#B | BTPB | Avg. | Avg. | \#B | BTPB | $\begin{array}{c}\text { Avg. } \\ \text { time (s) }\end{array}$ |
| gap (\%) |  |  |  |  |  |  |  |  |  |  |  |  |$]$

Table 14: The table compares the 3 LNS configurations when applied to VRPSDP instances.
that are substantially faster than the LNS heuristics.
The LNS heuristics find the optimal solution to Min's problem (the optimal solution was found by Halse [19]) and are able to improve all of the best known solutions to Dethloff's problems which were found using Dethloff's construction heuristic. The $6 R$ - normal learning configuration is able to improve the best known solutions by more than $9 \%$. Having said that, it should be noticed that the LNS heuristics are fairly slow when faced with this type of problems, because each order is represented by 2 requests and introduces significant overhead in the algorithm. This also suggests that this problem type would benefit greatly from a specialized version of the LNS heuristic where the overhead can be avoided. The LNS heuristic also experiences difficulties when faced with the larger problems from Nagy and Salhi's data set. Here the avg. gap increases to $2 \%$ for the best configuration, but the heuristic nevertheless improves 13 of the 14 best known solutions. The configuration with learning enabled and using all 6 removal heuristics clearly is the most robust configuration when faced with these hard problems.

### 6.9 Computational experiments conclusion

In Section 6.2 we raised a number of questions that the computational experiments should clarify. The first question was whether it is possible to design a unified heuristic for a large class of vehicle routing problems with backhauls that is able to provide solutions comparable to those obtained by specialized heuristics. We believe that the experiments conducted in this paper show that this indeed is possible. This is an interesting achievement, as it to a large extent allows practitioners to focus on a single heuristic and apply this to the problems they are faced with instead of "reinventing the wheel" each time a new problem type needs to be solved.

The second question asked to give an evaluation of the effect of the three new removal heuristics and the consequence of disabling the learning layer. Table 15 provides an overview of the experiments performed. The Avg. row displays the overall gaps between average solutions and best known solutions. This gap is an indication of the robustness of the heuristic. The Sum row contains the number of problems for which the particular LNS configuration found the best known solution. The table clearly shows the impact of adding the three new removal heuristics, as we see a great improvement in the quality of the heuristic from configuration 1 to configuration 3. The table also shows that disabling the learning layer decreases the overall quality of the results as expected. Although comparable results can be obtained without the learning layer for specific problem types, the learning layer apparently helps the algorithm to adapt to all the various problem types.

|  | \#prob | Standard |  | 6R - no learning |  | 6R - normal learning |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Avg. <br> gap (\%) | \#B | Avg. <br> gap (\%) | \#B | Avg. <br> gap (\%) | \#B |
| Goetschalckx 1 | 62 | 0.43 | 43 | 0.29 | 53 | 0.31 | 46 |
| Goetschalckx 2 | 47 | 0.28 | 35 | 0.17 | 38 | 0.17 | 36 |
| Toth-Vigo | 33 | 0.71 | 26 | 0.45 | 28 | 0.26 | 29 |
| MVRPB 50\% | 14 | 0.71 | 7 | 0.45 | 10 | 0.41 | 12 |
| MVRPB 25\% | 14 | 0.49 | 11 | 0.38 | 9 | 0.3 | 11 |
| MVRPB 10\% | 14 | 0.51 | 10 | 0.43 | 11 | 0.37 | 11 |
| MDMVRPB 50\% | 11 | 0.88 | 8 | 0.71 | 6 | 0.66 | 7 |
| MDMVRPB 25\% | 11 | 0.97 | 5 | 0.65 | 6 | 0.66 | 8 |
| MDMVRPB 10\% | 11 | 0.93 | 7 | 0.63 | 10 | 0.61 | 6 |
| VRPSDP 1 | 41 | 1.07 | 24 | 0.96 | 23 | 0.58 | 36 |
| VRPSDP 2 | 14 | 2.81 | 5 | 2.73 | 7 | 2.00 | 7 |
| MVRPBTW C | 8 | 0.63 | 6 | 0.6 | 5 | 0.65 | 5 |
| MVRPBTW R | 11 | 1.34 | 4 | 0.63 | 8 | 0.63 | 8 |
| MVRPBTW RC | 8 | 2.83 | 5 | 1.99 | 1 | 1.76 | 3 |
| VRPBTW 1 | 15 |  | 4 |  | 9 |  | 10 |
| VRPBTW 2 | 24 |  | 1 |  | 10 |  | 13 |
| Avg. | 338 | 0.81 |  | 0.62 |  | 0.50 |  |
| Sum |  | 201 |  | 234 |  | 248 |  |

Table 15: Summary of experiments. This table shows a summary of the tests performed in this paper. Each row in the table corresponds to a problem class. Most of the titles in the first row should be fairly self explanatory: Goetschalckx 1 Goetschalckx VRPB without rounding distances, Goetschalckx 2 - Goetschalckx VRPB where distances have been rounded to one decimal. VRPSDP 1 - Dethloff VRPSDP, VRPSDP 2 - Nagy-Salhi VRPSDP, VRPBTW 1 - Gelinas VRPBTW VRPBTW 2 - Thangiah VRPBTW. The column \#prob displays the number of problems in each class. The Avg. row shows the averages of the Avg. gap(\%) column. The numbers in the avg. row were calculated by summing the products of the numbers in the \#prob column with the numbers in the gap column and dividing the sum by the total number of problems. This was done to take into account that some data sets contains more problems than others. The missing entries in the VRPBTW rows have been left out because the primary objective of these problems is to minimize the number of vehicles and not all test runs resulted in the same number of vehicles. Reporting the gap for these runs could make the heuristic that could not reach the minimum number of vehicles look too good.

## 7 Conclusion

This paper is the first to present a unified heuristic for a large class of vehicle routing problems with backhauls. For this purpose we have introduced a Rich VRPTW model which extends the ordinary VRP model with time windows, pickup and delivery pairs, as well as precedence constraints. The model is very expressive, and it allows us to model all of the most common VRPB models within the framework, as well as other routing problems from the literature. The unified model has the additional benefit that it allows us to combine pickup and delivery request with a more clean VRPB or VRPSPD, as well as scheduling mixed transportation problems for a general fleet of vehicles.

For several of the VRPB problem types presented in this paper, we report the first applications of a metaheuristic to the problem. The results are very promising as we found a new best solution to $67 \%$ of the problems tested. Even faster and better performing heuristics could be constructed by specializing the proposed heuristic to just one of the problem types. We have chosen not to do this to maintain the generality of the solution approach.

The present experiments indicate that the combination of several neighborhoods makes it easier for the local search heuristic to explore the solution space, and hence to find solutions of high quality. This conforms to similar observations for simpler neighborhoods.

The monitoring and learning layer to control the choice of neighborhoods can be seen as a layer which maintains a proper balance between intensification and diversification. Several other approaches have been working with this balance, see e.g. Reactive Tabu Search [4]. In the proposed framework we do not explicitly care about which heuristics intensify or diversify the search. The layer steadily maintains a proper balance of the heuristics so that new, improved solutions are found. The computational results show that the learning layer overall is able to increase the robustness of the heuristic but also indicate that further refinements may be possible as the configuration without the learning layer occasionally outperformed the configuration that included the learning layer.

An interesting topic for further research would be to apply the framework proposed in this paper to combinatorial optimization problems outside the vehicle routing domain.

## 8 Acknowledgements

The authors wish to thank Jan Dethloff, George Kontoravdis, Marc Reimann, Sam R. Thangiah and Daniele Vigo for kindly providing us with the data sets used in this paper and for answering questions regarding the data sets. Furthermore we wish to thank Jakob Birkedal Nielsen for proposing the Cluster Removal heuristic and Gabor Nagy for sending us his working paper.

## 9 Appendix

This section contains additional information about the experiments performed in section 6 . Tables 16 to 31 list the individual solutions found to the many problem instances considered in this paper.

An important comment should be made about Table 17. The results in this table were obtained by rounding distances to the nearest integer when doing distance calculations. This gives results that look like the results reported in Table III in Osman and Wassan [28] and Table 1 in Toth and Vigo [40] but both author pairs state that results in these tables were found using a different rounding procedure. We have not been able to reproduce the results in the two mentioned tables from Toth and Vigo and Osman and Wassan papers using the rounding procedures described in the papers. Consequently, the objective values listed in the column Best known in table 17 should only be seen as a rough guideline of the obtainable solution quality, and the table should not be used to make a direct comparison between the LNS heuristic and the heuristics by Toth and Vigo and Osman and Wassan.

|  | Best known |  |  |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6 R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | cost | opt. | reference | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | best sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | best sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| A1 | 25 | 229886 | X | TV + EHP | 229886 | 229886 | 0.00 | 7 | 229886 | 229886 | 0.00 | 7 | 229886 | 229886 | 0.00 | 7 |
| A2 | 25 | 180119 | X | TV + EHP | 180119 | 180119 | 0.00 | 7 | 180119 | 180119 | 0.00 | 8 | 180119 | 180119 | 0.00 | 8 |
| A3 | 25 | 163405 | X | TV + EHP | 163405 | 163405 | 0.00 | 9 | 163405 | 163405 | 0.00 | 10 | 163405 | 163405 | 0.00 | 9 |
| A4 | 25 | 155796 | X | TV + EHP | 155796 | 155796 | 0.00 | 10 | 155796 | 155796 | 0.00 | 11 | 155796 | 155796 | 0.00 | 10 |
| B1 | 30 | 239080 | X | TV + EHP | 239080 | 239080 | 0.00 | 8 | 239080 | 239080 | 0.00 | 9 | 239080 | 239080 | 0.00 | 9 |
| B2 | 30 | 198048 | X | TV + EHP | 198048 | 198048 | 0.00 | 10 | 198048 | 198048 | 0.00 | 10 | 198048 | 198048 | 0.00 | 10 |
| B3 | 30 | 169372 | X | TV + EHP | 169372 | 169372 | 0.00 | 12 | 169372 | 169372 | 0.00 | 14 | 169372 | 169372 | 0.00 | 14 |
| C1 | 40 | 249449 | X | TV + EHP | 250899 | 250557 | 0.58 | 13 | 251037 | 250557 | 0.64 | 14 | 250557 | 250557 | 0.44 | 13 |
| C2 | 40 | 215020 | X | TV + EHP | 215020 | 215020 | 0.00 | 15 | 215020 | 215020 | 0.00 | 16 | 215020 | 215020 | 0.00 | 16 |
| C3 | 40 | 199346 | X | TV + EHP | 199346 | 199346 | 0.00 | 17 | 199346 | 199346 | 0.00 | 18 | 199346 | 199346 | 0.00 | 18 |
| C4 | 40 | 195366 | X | TV + EHP | 195366 | 195366 | 0.00 | 18 | 195366 | 195366 | 0.00 | 19 | 195366 | 195366 | 0.00 | 19 |
| D1 | 38 | 322530 | X | TV + EHP | 322530 | 322530 | 0.00 | 11 | 322530 | 322530 | 0.00 | 12 | 322530 | 322530 | 0.00 | 12 |
| D2 | 38 | 316709 | X | TV + EHP | 316709 | 316709 | 0.00 | 11 | 316709 | 316709 | 0.00 | 13 | 316709 | 316709 | 0.00 | 12 |
| D3 | 38 | 239479 | X | EHP | 239479 | 239479 | 0.00 | 12 | 239479 | 239479 | 0.00 | 13 | 239479 | 239479 | 0.00 | 12 |
| D4 | 38 | 205832 | X | EHP | 205832 | 205832 | 0.00 | 14 | 205832 | 205832 | 0.00 | 15 | 205832 | 205832 | 0.00 | 15 |
| E1 | 45 | 238880 | X | TV + EHP | 238880 | 238880 | 0.00 | 16 | 238880 | 238880 | 0.00 | 18 | 238880 | 238880 | 0.00 | 18 |
| E2 | 45 | 212263 | X | TV + EHP | 212547 | 212263 | 0.13 | 21 | 212263 | 212263 | 0.00 | 23 | 212505 | 212263 | 0.11 | 24 |
| E3 | 45 | 206659 | X | TV + EHP | 206698 | 206659 | 0.02 | 24 | 206698 | 206659 | 0.02 | 27 | 206711 | 206659 | 0.03 | 26 |
| F1 | 60 | 263173 | X | TV + EHP | 268334 | 267060 | 1.96 | 28 | 268463 | 267060 | 2.01 | 29 | 268321 | 267060 | 1.96 | 29 |
| F2 | 60 | 265213 | X | TV + EHP | 265213 | 265213 | 0.00 | 27 | 265213 | 265213 | 0.00 | 28 | 265213 | 265213 | 0.00 | 28 |
| F3 | 60 | 241120 | X | TV + EHP | 241969 | 241969 | 0.35 | 33 | 241969 | 241969 | 0.35 | 35 | 241969 | 241969 | 0.35 | 35 |
| F4 | 60 | 233861 | X | TV + EHP | 236547 | 235175 | 1.15 | 40 | 235258 | 235175 | 0.60 | 42 | 235449 | 235175 | 0.68 | 42 |
| G1 | 57 | 306305 | X | EHP | 306450 | 306306 | 0.05 | 21 | 306306 | 306306 | 0.00 | 22 | 306306 | 306306 | 0.00 | 22 |
| G2 | 57 | 245441 | X | EHP | 245441 | 245441 | 0.00 | 27 | 245441 | 245441 | 0.00 | 27 | 245441 | 245441 | 0.00 | 27 |
| G3 | 57 | 229507 | X | TV | 229536 | 229507 | 0.01 | 30 | 230430 | 229507 | 0.40 | 30 | 230003 | 229507 | 0.22 | 30 |
| G4 | 57 | 232521 | - | EHP | 232784 | 232521 | 0.11 | 29 | 233767 | 232521 | 0.54 | 31 | 233649 | 232521 | 0.48 | 31 |
| G5 | 57 | 221730 | X | TV | 221805 | 221730 | 0.03 | 33 | 221771 | 221730 | 0.02 | 35 | 221730 | 221730 | 0.00 | 36 |
| G6 | 57 | 213457 | X | TV | 213562 | 213457 | 0.05 | 38 | 213457 | 213457 | 0.00 | 41 | 214084 | 213457 | 0.29 | 39 |
| H1 | 68 | 268933 | X | TV | 269701 | 268933 | 0.29 | 38 | 269276 | 268933 | 0.13 | 40 | 269371 | 268933 | 0.16 | 40 |
| H2 | 68 | 253365 | X | TV + EHP | 253414 | 253365 | 0.02 | 45 | 253437 | 253365 | 0.03 | 48 | 253365 | 253365 | 0.00 | 47 |
| H3 | 68 | 247449 | X | TV + EHP | 247684 | 247449 | 0.10 | 51 | 247474 | 247449 | 0.01 | 53 | 247475 | 247449 | 0.01 | 54 |
| H4 | 68 | 250221 | X | TV + EHP | 250244 | 250221 | 0.01 | 49 | 250221 | 250221 | 0.00 | 52 | 250295 | 250221 | 0.03 | 51 |
| H5 | 68 | 246121 | X | TV + EHP | 247300 | 246121 | 0.48 | 56 | 246170 | 246121 | 0.02 | 57 | 246140 | 246121 | 0.01 | 55 |
| H6 | 68 | 249135 | X | TV + EHP | 249397 | 249135 | 0.11 | 53 | 249246 | 249135 | 0.04 | 54 | 249246 | 249135 | 0.04 | 55 |
| I1 | 90 | 353021 | - | EHP | 351106 | 350437 | 0.25 | 52 | 350951 | 350246 | 0.20 | 52 | 351069 | 350801 | 0.24 | 52 |
| I2 | 90 | 309943 | X | EHP | 311714 | 309944 | 0.57 | 63 | 310738 | 309944 | 0.26 | 63 | 310846 | 309944 | 0.29 | 63 |
| I3 | 90 | 294833 | - | EHP | 296221 | 294507 | 0.58 | 80 | 294728 | 294507 | 0.07 | 84 | 294950 | 294507 | 0.15 | 81 |
| I4 | 90 | 295988 | - | EHP | 296889 | 295988 | 0.30 | 75 | 296172 | 295988 | 0.06 | 75 | 296374 | 295988 | 0.13 | 76 |
| I5 | 90 | 301226 | - | EHP | 302666 | 301236 | 0.48 | 71 | 301619 | 301236 | 0.13 | 74 | 302066 | 301236 | 0.28 | 73 |
| J1 | 95 | 335006 | - | EHP | 336598 | 335007 | 0.48 | 57 | 336475 | 335480 | 0.44 | 58 | 336347 | 335007 | 0.40 | 57 |
| J2 | 95 | 315644 | - | EHP | 311853 | 310417 | 0.46 | 65 | 311440 | 310417 | 0.33 | 66 | 310964 | 310417 | 0.18 | 67 |
| J3 | 95 | 282447 | - | EHP | 282335 | 280401 | 1.12 | 83 | 279801 | 279219 | 0.21 | 86 | 279468 | 279219 | 0.09 | 84 |
| J4 | 95 | 300548 | - | EHP | 298004 | 296773 | 0.50 | 72 | 297529 | 296533 | 0.34 | 74 | 297249 | 296533 | 0.24 | 72 |
| K1 | 113 | 394637 | - | EHP | 398657 | 394376 | 1.09 | 82 | 397183 | 394376 | 0.71 | 83 | 395965 | 394517 | 0.40 | 82 |
| K2 | 113 | 362360 | - | EHP | 364447 | 362130 | 0.64 | 96 | 363103 | 362130 | 0.27 | 98 | 363258 | 362130 | 0.31 | 95 |
| K3 | 113 | 365693 | - | EHP | 367725 | 365694 | 0.56 | 95 | 366549 | 365694 | 0.23 | 97 | 366698 | 365694 | 0.27 | 96 |
| K4 | 113 | 358308 | - | EHP | 352064 | 348950 | 0.89 | 108 | 349775 | 348950 | 0.24 | 109 | 349483 | 348950 | 0.15 | 107 |
| Tot. |  | 12174445 |  |  | 12188672 | 12157811 |  | 1832 | 12172829 | 12156670 |  | 1902 | 12171434 | 12156893 |  | 1881 |
| Avg. |  |  |  |  |  |  | 0.28 | 39 |  |  | 0.18 | 40 |  |  | 0.17 | 40 |
| < PB $\# \mathrm{~B}$ |  |  | 39 |  |  | $\begin{gathered} \hline 8 \\ 35 \\ \hline \end{gathered}$ |  |  |  | $\begin{gathered} \hline 8 \\ 38 \\ \hline \end{gathered}$ |  |  |  | $\begin{gathered} \hline 8 \\ 36 \\ \hline \end{gathered}$ |  |  |

Table 16: Goetschalckx data set. The results have been produced by using distances rounded to one decimal and rounding the final result to an integer. This rounding scheme allows us to compare the LNS heuristics to the exact methods by Toth and Vigo [41] and Mingozzi et al. [26], we only report results on the instances that either Toth and Vigo or Mingozzi et al. attempted to solve. The table should be read like Table 3, notice that the row $<P B$ should be interpretted like the $B T P B$ row in Table 3.

|  | Best known |  |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | cost | reference | avg. sol. | best sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | $\begin{array}{r} \hline \text { avg. } \\ \text { time } \\ (\mathrm{s}) \end{array}$ | avg. sol. | best sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| A1 | 25 | 229884 | TV | 229884 | 229884 | 0.00 | 7 | 229884 | 229884 | 0.00 | 8 | 229884 | 229884 | 0.00 | 8 |
| A2 | 25 | 180117 | TV | 180117 | 180117 | 0.00 | 8 | 180117 | 180117 | 0.00 | 9 | 180117 | 180117 | 0.00 | 8 |
| A3 | 25 | 163403 | TV | 163403 | 163403 | 0.00 | 9 | 163403 | 163403 | 0.00 | 10 | 163403 | 163403 | 0.00 | 10 |
| A4 | 25 | 155795 | TV | 155795 | 155795 | 0.00 | 10 | 155795 | 155795 | 0.00 | 11 | 155795 | 155795 | 0.00 | 11 |
| B1 | 30 | 239077 | TV | 239077 | 239077 | 0.00 | 9 | 239077 | 239077 | 0.00 | 10 | 239077 | 239077 | 0.00 | 9 |
| B2 | 30 | 198045 | TV | 198045 | 198045 | 0.00 | 10 | 198045 | 198045 | 0.00 | 11 | 198045 | 198045 | 0.00 | 11 |
| B3 | 30 | 169368 | TV | 169368 | 169368 | 0.00 | 13 | 169368 | 169368 | 0.00 | 15 | 169368 | 169368 | 0.00 | 15 |
| C1 | 40 | 250557 | TV | 250557 | 250557 | 0.00 | 13 | 250557 | 250557 | 0.00 | 14 | 250557 | 250557 | 0.00 | 14 |
| C2 | 40 | 215019 | TV | 215019 | 215019 | 0.00 | 15 | 215019 | 215019 | 0.00 | 17 | 215019 | 215019 | 0.00 | 17 |
| C3 | 40 | 199344 | TV | 199344 | 199344 | 0.00 | 18 | 199344 | 199344 | 0.00 | 20 | 199344 | 199344 | 0.00 | 21 |
| C4 | 40 | 195365 | TV | 195365 | 195365 | 0.00 | 18 | 195365 | 195365 | 0.00 | 20 | 195365 | 195365 | 0.00 | 20 |
| D1 | 38 | 322533 | TV | 322533 | 322533 | 0.00 | 11 | 322533 | 322533 | 0.00 | 13 | 322533 | 322533 | 0.00 | 13 |
| D2 | 38 | 316711 | TV | 316711 | 316711 | 0.00 | 11 | 316711 | 316711 | 0.00 | 13 | 316711 | 316711 | 0.00 | 12 |
| D3 | 38 | 239482 | TV | 239482 | 239482 | 0.00 | 12 | 239482 | 239482 | 0.00 | 14 | 239482 | 239482 | 0.00 | 13 |
| D4 | 38 | 205834 | TV | 205834 | 205834 | 0.00 | 15 | 205834 | 205834 | 0.00 | 16 | 205834 | 205834 | 0.00 | 16 |
| E1 | 45 | 238880 | TV | 238880 | 238880 | 0.00 | 17 | 238880 | 238880 | 0.00 | 19 | 238880 | 238880 | 0.00 | 19 |
| E2 | 45 | 212262 | TV | 212262 | 212262 | 0.00 | 23 | 212262 | 212262 | 0.00 | 24 | 212262 | 212262 | 0.00 | 24 |
| E3 | 45 | 206658 | TV | 206734 | 206658 | 0.04 | 25 | 206709 | 206658 | 0.02 | 28 | 206722 | 206658 | 0.03 | 28 |
| F1 | 60 | 263175 | TV | 268435 | 267061 | 2.00 | 30 | 267941 | 267061 | 1.81 | 31 | 268242 | 267061 | 1.93 | 31 |
| F2 | 60 | 265214 | TV | 265230 | 265214 | 0.01 | 29 | 265214 | 265214 | 0.00 | 30 | 265214 | 265214 | 0.00 | 30 |
| F3 | 60 | 241121 | OW | 242014 | 241970 | 0.37 | 36 | 241970 | 241970 | 0.35 | 38 | 241970 | 241970 | 0.35 | 37 |
| F4 | 60 | 233861 | TV | 235912 | 235178 | 0.88 | 42 | 235261 | 235178 | 0.60 | 45 | 235204 | 235178 | 0.57 | 44 |
| G1 | 57 | 306304 | OW | 306455 | 306304 | 0.05 | 22 | 306336 | 306304 | 0.01 | 23 | 306304 | 306304 | 0.00 | 24 |
| G2 | 57 | 245441 | TV | 245533 | 245441 | 0.04 | 28 | 245441 | 245441 | 0.00 | 29 | 245441 | 245441 | 0.00 | 29 |
| G3 | 57 | 229506 | OW | 229963 | 229506 | 0.20 | 32 | 230421 | 229506 | 0.40 | 33 | 230414 | 229506 | 0.40 | 32 |
| G4 | 57 | 232646 | TV | 233142 | 232519 | 0.27 | 31 | 233951 | 232519 | 0.62 | 33 | 233705 | 232519 | 0.51 | 33 |
| G5 | 57 | 221731 | OW | 221823 | 221731 | 0.04 | 36 | 221858 | 221731 | 0.06 | 38 | 221800 | 221731 | 0.03 | 39 |
| G6 | 57 | 213457 | TV | 213605 | 213457 | 0.07 | 41 | 213457 | 213457 | 0.00 | 43 | 213516 | 213457 | 0.03 | 43 |
| H1 | 68 | 268933 | OW | 269630 | 268933 | 0.26 | 40 | 269460 | 268933 | 0.20 | 43 | 269226 | 268933 | 0.11 | 42 |
| H2 | 68 | 253366 | TV | 253513 | 253366 | 0.06 | 48 | 253463 | 253366 | 0.04 | 50 | 253414 | 253366 | 0.02 | 50 |
| H3 | 68 | 247449 | TV | 247803 | 247449 | 0.14 | 54 | 247594 | 247449 | 0.06 | 57 | 247472 | 247449 | 0.01 | 57 |
| H4 | 68 | 250221 | TV | 250449 | 250221 | 0.09 | 51 | 250269 | 250221 | 0.02 | 56 | 250269 | 250221 | 0.02 | 55 |
| H5 | 68 | 246121 | TV | 246367 | 246121 | 0.10 | 57 | 246265 | 246121 | 0.06 | 61 | 246339 | 246121 | 0.09 | 60 |
| H6 | 68 | 249136 | TV | 249280 | 249136 | 0.06 | 54 | 249284 | 249136 | 0.06 | 60 | 249187 | 249136 | 0.02 | 59 |
| I1 | 90 | 351609 | OW | 351136 | 350437 | 0.25 | 54 | 350902 | 350248 | 0.19 | 55 | 350992 | 350248 | 0.21 | 55 |
| I2 | 90 | 309957 | OW | 312017 | 309946 | 0.67 | 66 | 311039 | 309946 | 0.35 | 66 | 310739 | 309946 | 0.26 | 66 |
| I3 | 90 | 294509 | OW | 295043 | 294509 | 0.18 | 86 | 294788 | 294509 | 0.09 | 88 | 294773 | 294509 | 0.09 | 88 |
| I4 | 90 | 295988 | TV | 296414 | 295988 | 0.14 | 79 | 296370 | 295988 | 0.13 | 80 | 296254 | 295988 | 0.09 | 84 |
| I5 | 90 | 302525 | OW | 302482 | 301238 | 0.41 | 75 | 301916 | 301238 | 0.23 | 78 | 302225 | 301238 | 0.33 | 80 |
| J1 | 95 | 335590 | OW | 336867 | 335004 | 0.56 | 60 | 336418 | 335478 | 0.42 | 61 | 336243 | 335004 | 0.37 | 60 |
| J2 | 95 | 310798 | OW | 312248 | 310417 | 0.59 | 70 | 311378 | 310417 | 0.31 | 71 | 311662 | 310417 | 0.40 | 70 |
| J3 | 95 | 279220 | OW | 281860 | 279307 | 0.95 | 90 | 279830 | 279220 | 0.22 | 91 | 279889 | 279220 | 0.24 | 92 |
| J4 | 95 | 296774 | OW | 297926 | 296861 | 0.47 | 77 | 297487 | 296533 | 0.32 | 79 | 297436 | 296533 | 0.30 | 78 |
| K1 | 113 | 395544 | OW | 397824 | 394511 | 0.88 | 87 | 396806 | 394458 | 0.62 | 88 | 395328 | 394369 | 0.24 | 87 |
| K2 | 113 | 363213 | OW | 365244 | 362358 | 0.86 | 102 | 363938 | 362128 | 0.50 | 103 | 363350 | 362128 | 0.34 | 102 |
| K3 | 113 | 366222 | OW | 368228 | 365693 | 0.69 | 100 | 366593 | 365693 | 0.25 | 102 | 366420 | 365693 | 0.20 | 101 |
| K4 | 113 | 349037 | OW | 351283 | 348947 | 0.67 | 115 | 349713 | 348947 | 0.22 | 116 | 349191 | 348947 | 0.07 | 114 |
| L1 | 150 | 426021 | OW | 427532 | 426014 | 0.36 | 162 | 427786 | 426283 | 0.42 | 162 | 428031 | 426178 | 0.47 | 160 |
| L2 | 150 | 402246 | OW | 402643 | 401231 | 0.35 | 196 | 401917 | 401426 | 0.17 | 192 | 401720 | 401231 | 0.12 | 188 |
| L3 | 150 | 403886 | OW | 404400 | 402681 | 0.43 | 189 | 402829 | 402681 | 0.04 | 189 | 402681 | 402681 | 0.00 | 187 |
| L4 | 150 | 384843 | OW | 388152 | 384635 | 0.91 | 221 | 384962 | 384635 | 0.08 | 219 | 385656 | 384635 | 0.27 | 218 |
| L5 | 150 | 388060 | OW | 392003 | 387563 | 1.15 | 216 | 388986 | 387563 | 0.37 | 215 | 388398 | 387563 | 0.22 | 214 |
| M1 | 125 | 400858 | OW | 403542 | 400085 | 0.86 | 109 | 402393 | 400660 | 0.58 | 109 | 402158 | 401076 | 0.52 | 108 |
| M2 | 125 | 398902 | OW | 400668 | 398712 | 0.81 | 109 | 400842 | 399263 | 0.85 | 109 | 400262 | 397448 | 0.71 | 106 |
| M3 | 125 | 377352 | OW | 379724 | 377139 | 0.70 | 123 | 378814 | 377399 | 0.46 | 121 | 378548 | 377093 | 0.39 | 121 |
| M4 | 125 | 348624 | OW | 349623 | 348604 | 0.31 | 149 | 349083 | 348530 | 0.16 | 149 | 349331 | 348530 | 0.23 | 146 |
| N1 | 150 | 408921 | OW | 416448 | 409897 | 1.84 | 166 | 414350 | 410046 | 1.33 | 165 | 413239 | 409506 | 1.06 | 163 |
| N2 | 150 | 409275 | OW | 415947 | 410232 | 1.63 | 167 | 415411 | 410232 | 1.50 | 163 | 415049 | 410616 | 1.41 | 163 |
| N3 | 150 | 396162 | OW | 401857 | 396870 | 1.44 | 185 | 401359 | 396825 | 1.31 | 182 | 400977 | 397546 | 1.22 | 180 |
| N4 | 150 | 397748 | OW | 402257 | 398293 | 1.89 | 180 | 399558 | 394785 | 1.21 | 180 | 401012 | 398667 | 1.58 | 181 |
| N5 | 150 | 376426 | OW | 380571 | 377081 | 1.90 | 229 | 375915 | 373471 | 0.65 | 227 | 378486 | 374553 | 1.34 | 222 |
| N6 | 150 | 377660 | OW | 379159 | 375646 | 1.45 | 221 | 378089 | 373752 | 1.16 | 226 | 376755 | 375348 | 0.80 | 225 |
| Tot. |  | 18053986 |  | 18130660 | 18051840 |  | 4555 | 18096042 | 18044295 |  | 4629 | 18092915 | 18048852 |  | 4598 |
| Avg. |  |  |  |  |  | 0.45 | 73 |  |  | 0.30 | 75 |  |  | 0.28 | 74 |
| < PB |  |  |  |  | 20 |  |  |  | 20 |  |  |  | 20 |  |  |
| \#B |  | 39 |  |  | 45 |  |  |  | 49 |  |  |  | 51 |  |  |

Table 17: Goetschalckx data set. The results have been produced by using distances rounded to integers. The results in the best known columns were found by the heuristics proposed by Toth and Vigo (TV) [40] and Osman and Wassan (OW) [28]. Notice that the TV and OW heuristics might have used a different rounding procedure, and consequently this table cannot be used to compare the LNS heuristics to the two earlier heuristics (see the text in the appendix). The table is provided for future reference only.

|  | Best known |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | Reference | avg. sol. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | $\begin{array}{r} \hline \text { avg. } \\ \text { time } \\ (\mathrm{s}) \\ \hline \end{array}$ | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | $\begin{array}{r} \hline \text { avg. } \\ \text { time } \\ (\mathrm{s}) \\ \hline \hline \end{array}$ |
| CMT01T | 541 | NS | 520 | 520 | 0.00 | 32 | 520 | 520 | 0.00 | 34 | 520 | 520 | 0.00 | 34 |
| CMT02T | 839 | NS | 790 | 783 | 0.95 | 52 | 792 | 784 | 1.13 | 56 | 788 | 783 | 0.63 | 57 |
| CMT03T | 903 | NS | 805 | 801 | 0.83 | 104 | 804 | 801 | 0.72 | 110 | 803 | 798 | 0.65 | 109 |
| CMT04T | 1111 | NS | 1004 | 998 | 0.63 | 203 | 1004 | 998 | 0.61 | 213 | 1005 | 1000 | 0.73 | 212 |
| CMT05T | 1423 | NS | 1239 | 1231 | 0.97 | 323 | 1239 | 1232 | 0.95 | 334 | 1234 | 1227 | 0.57 | 333 |
| CMT06T | 571 | NS | 555 | 555 | 0.00 | 29 | 555 | 555 | 0.00 | 31 | 555 | 555 | 0.00 | 31 |
| CMT07T | - | - | 909 | 903 | 0.69 | 48 | 907 | 903 | 0.38 | 52 | 904 | 903 | 0.16 | 52 |
| CMT08T | 911 | NS | 869 | 866 | 0.43 | 91 | 868 | 866 | 0.33 | 94 | 866 | 866 | 0.10 | 95 |
| CMT09T | 1164 | NS | 1172 | 1166 | 0.75 | 173 | 1170 | 1164 | 0.56 | 179 | 1172 | 1164 | 0.67 | 178 |
| CMT10T | 1418 | NS | 1410 | 1398 | 1.09 | 285 | 1408 | 1395 | 0.93 | 291 | 1410 | 1402 | 1.05 | 291 |
| CMT11T | 1075 | NS | 1002 | 999 | 0.29 | 158 | 1001 | 999 | 0.24 | 163 | 1003 | 1000 | 0.39 | 164 |
| CMT12T | 827 | NS | 789 | 788 | 0.14 | 92 | 788 | 788 | 0.00 | 96 | 788 | 788 | 0.00 | 96 |
| CMT13T | 1600 | NS | 1550 | 1544 | 0.35 | 124 | 1548 | 1544 | 0.23 | 126 | 1547 | 1544 | 0.21 | 127 |
| CMT14T | 866 | NS | 827 | 827 | 0.06 | 84 | 827 | 827 | 0.00 | 86 | 827 | 827 | 0.00 | 86 |
| Tot. | 13249 |  | 13442 | 13378 |  | 1801 | 13430 | 13375 |  | 1864 | 13422 | 13376 |  | 1864 |
| Avg. |  |  |  |  | 0.51 | 129 |  |  | 0.43 | 133 |  |  | 0.37 | 133 |
| < PB |  |  |  | 13 |  |  |  | 13 |  |  |  | 13 |  |  |
| \#B |  | 1 |  | 10 |  |  |  | 11 |  |  |  | 11 |  |  |

Table 18: Nagy and Salhi MVRPB problems with $10 \%$ backhaul customers. The entries in the Best known columns are the best result reported by Nagy and Salhi (NS) [32] and Dethloff (D) [9]. It should be noted that Dethloff's heuristic only have been applied to half of the problems. No solution were given for problem 7 (this explains the dash in the table).

|  | Best known |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | Reference | avg. sol. | best sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | $\begin{gathered} \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | $\begin{gathered} \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| CMT01Q | 557 | NS | 490 | 490 | 0.02 | 35 | 490 | 490 | 0.00 | 40 | 490 | 490 | 0.00 | 41 |
| CMT02Q | 860 | NS | 737 | 732 | 0.62 | 57 | 736 | 733 | 0.54 | 64 | 737 | 733 | 0.64 | 65 |
| CMT03Q | 918 | NS | 752 | 747 | 0.68 | 119 | 751 | 747 | 0.58 | 126 | 749 | 747 | 0.23 | 128 |
| CMT04Q | 1164 | NS | 922 | 916 | 0.60 | 228 | 921 | 918 | 0.58 | 244 | 922 | 918 | 0.59 | 244 |
| CMT05Q | 1477 | NS | 1133 | 1124 | 1.35 | 358 | 1127 | 1118 | 0.83 | 382 | 1124 | 1119 | 0.52 | 381 |
| CMT06Q | 594 | NS | 555 | 555 | 0.00 | 28 | 555 | 555 | 0.00 | 30 | 555 | 555 | 0.00 | 30 |
| CMT07Q | - | - | 905 | 901 | 0.44 | 48 | 903 | 901 | 0.26 | 52 | 902 | 901 | 0.17 | 53 |
| CMT08Q | 918 | NS | 868 | 866 | 0.25 | 90 | 867 | 866 | 0.23 | 93 | 866 | 866 | 0.10 | 93 |
| CMT09Q | 1178 | NS | 1170 | 1162 | 0.69 | 167 | 1170 | 1164 | 0.69 | 170 | 1169 | 1162 | 0.62 | 171 |
| CMT10Q | 1477 | NS | 1404 | 1394 | 1.06 | 280 | 1405 | 1398 | 1.11 | 285 | 1402 | 1389 | 0.91 | 288 |
| CMT11Q | 1075 | NS | 941 | 939 | 0.22 | 183 | 941 | 939 | 0.23 | 195 | 941 | 939 | 0.12 | 196 |
| CMT12Q | 843 | NS | 731 | 729 | 0.28 | 100 | 731 | 729 | 0.21 | 107 | 730 | 729 | 0.17 | 108 |
| CMT13Q | 1613 | NS | 1554 | 1545 | 0.67 | 117 | 1546 | 1544 | 0.14 | 120 | 1546 | 1543 | 0.14 | 120 |
| CMT14Q | 873 | NS | 822 | 822 | 0.00 | 84 | 822 | 822 | 0.00 | 85 | 822 | 822 | 0.00 | 85 |
| Tot. | 13547 |  | 12983 | 12922 |  | 1896 | 12966 | 12924 |  | 1993 | 12954 | 12914 |  | 2003 |
| Avg. |  |  |  |  | 0.49 | 135 |  |  | 0.38 | 142 |  |  | 0.30 | 143 |
| < PB |  |  |  | 14 |  |  |  | 14 |  |  |  | 14 |  |  |
| \#B |  | 0 |  | 11 |  |  |  | 9 |  |  |  | 11 |  |  |

Table 19: Nagy Salhi MVRPB problems with $25 \%$ backhaul customers. See Table 18 for a decription.

|  | Best known |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | Reference | avg. sol. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | $\begin{gathered} \text { best } \\ \text { sol. } \end{gathered}$ | avg. gap $(\%)$ | avg. time <br> (s) | avg. sol. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| CMT01H | 536 | D | 468 | 466 | 0.63 | 44 | 465 | 465 | 0.08 | 50 | 466 | 465 | 0.19 | 51 |
| CMT02H | 801 | D | 666 | 663 | 0.47 | 69 | 664 | 663 | 0.21 | 76 | 664 | 663 | 0.21 | 78 |
| CMT03H | 850 | D | 705 | 701 | 0.62 | 165 | 702 | 701 | 0.14 | 183 | 702 | 701 | 0.11 | 186 |
| CMT04H | 1099 | D | 842 | 835 | 1.57 | 306 | 840 | 829 | 1.27 | 346 | 840 | 829 | 1.24 | 345 |
| CMT05H | 1329 | D | 996 | 986 | 1.36 | 461 | 994 | 986 | 1.12 | 514 | 991 | 983 | 0.78 | 514 |
| CMT06H | 595 | NS | 555 | 555 | 0.00 | 29 | 555 | 555 | 0.00 | 31 | 555 | 555 | 0.00 | 31 |
| CMT07H | - | - | 904 | 901 | 0.40 | 49 | 902 | 901 | 0.23 | 52 | 903 | 900 | 0.29 | 54 |
| CMT08H | 915 | NS | 866 | 866 | 0.08 | 92 | 867 | 866 | 0.14 | 94 | 868 | 866 | 0.26 | 95 |
| CMT09H | 1164 | NS | 1169 | 1164 | 0.72 | 172 | 1171 | 1161 | 0.86 | 176 | 1169 | 1166 | 0.69 | 177 |
| CMT10H | 1509 | NS | 1406 | 1389 | 1.24 | 290 | 1406 | 1396 | 1.23 | 295 | 1401 | 1393 | 0.92 | 296 |
| CMT11H | 961 | D | 829 | 818 | 1.37 | 271 | 820 | 818 | 0.26 | 315 | 818 | 818 | 0.04 | 303 |
| CMT12H | 765 | D | 636 | 630 | 1.00 | 135 | 633 | 629 | 0.65 | 146 | 635 | 629 | 0.86 | 150 |
| CMT13H | 1546 | NS | 1552 | 1544 | 0.54 | 120 | 1545 | 1544 | 0.13 | 123 | 1546 | 1543 | 0.18 | 125 |
| CMT14H | 866 | NS | 822 | 822 | 0.00 | 87 | 822 | 822 | 0.00 | 89 | 822 | 822 | 0.00 | 89 |
| Tot. | 12936 |  | 12416 | 12338 |  | 2291 | 12387 | 12335 |  | 2490 | 12379 | 12333 |  | 2493 |
| Avg. |  |  |  |  | 0.71 | 164 |  |  | 0.45 | 178 |  |  | 0.41 | 178 |
| < PB |  |  |  | 13 |  |  |  | 14 |  |  |  | 13 |  |  |
| \#B |  | 0 |  | 7 |  |  |  | 10 |  |  |  | 12 |  |  |

Table 20: Nagy Salhi MVRPB problems with $50 \%$ backhaul customers. See Table 18 for a decription.

|  | Best known |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | Reference | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| GJ01T | 614 | NS | 570 | 569 | 0.12 | 30 | 569 | 569 | 0.00 | 34 | 569 | 569 | 0.00 | 35 |
| GJ02T | 497 | NS | 464 | 464 | 0.04 | 34 | 464 | 464 | 0.04 | 37 | 464 | 464 | 0.00 | 38 |
| GJ03T | 662 | NS | 627 | 624 | 0.34 | 60 | 626 | 624 | 0.29 | 65 | 626 | 625 | 0.19 | 64 |
| GJ04T | 1055 | NS | 976 | 972 | 1.43 | 80 | 969 | 962 | 0.75 | 85 | 971 | 962 | 0.92 | 86 |
| GJ05T | 794 | NS | 739 | 735 | 0.85 | 114 | 738 | 733 | 0.62 | 118 | 738 | 733 | 0.61 | 119 |
| GJ06T | 914 | NS | 859 | 851 | 0.90 | 85 | 853 | 851 | 0.21 | 90 | 852 | 851 | 0.16 | 91 |
| GJ07T | 992 | NS | 864 | 854 | 1.23 | 82 | 862 | 855 | 1.04 | 88 | 859 | 854 | 0.59 | 87 |
| GJ08T | 4674 | NS | 4183 | 4134 | 1.17 | 417 | 4170 | 4134 | 0.86 | 431 | 4179 | 4152 | 1.08 | 435 |
| GJ09T | 4087 | NS | 3727 | 3684 | 1.39 | 452 | 3718 | 3677 | 1.12 | 492 | 3716 | 3678 | 1.06 | 485 |
| GJ10T | 4002 | NS | 3540 | 3502 | 1.58 | 444 | 3524 | 3485 | 1.11 | 472 | 3516 | 3492 | 0.88 | 467 |
| GJ11T | 3794 | NS | 3428 | 3390 | 1.12 | 445 | 3421 | 3390 | 0.92 | 469 | 3432 | 3409 | 1.23 | 464 |
| Tot. | 22085 |  | 19977 | 19780 |  | 2243 | 19915 | 19745 |  | 2382 | 19921 | 19789 |  | 2371 |
| Avg. | 2008 |  |  |  | 0.93 | 204 |  |  | 0.63 | 217 |  |  | 0.61 | 216 |
| < PB |  |  |  | 11 |  |  |  | 11 |  |  |  | 11 |  |  |
| \#B |  | 0 |  | 7 |  |  |  | 10 |  |  |  | 6 |  |  |

Table 21: Nagy Salhi MDMVRPB problems with $10 \%$ backhaul customers.

|  | Best known |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | Reference | avg. <br> sol. | best sol. | avg. <br> gap <br> (\%) | avg. time <br> (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \end{gathered}$ | $\begin{array}{r} \text { avg. } \\ \text { time } \\ (\mathrm{s}) \end{array}$ | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \end{gathered}$ | avg. time (s) |
| GJ01Q | 666 | NS | 529 | 528 | 0.04 | 32 | 528 | 528 | 0.00 | 36 | 528 | 528 | 0.00 | 38 |
| GJ02Q | 550 | NS | 451 | 450 | 0.34 | 38 | 451 | 450 | 0.27 | 43 | 451 | 450 | 0.39 | 44 |
| GJ03Q | 670 | NS | 607 | 605 | 0.26 | 64 | 608 | 605 | 0.40 | 71 | 607 | 605 | 0.36 | 72 |
| GJ04Q | 1168 | NS | 879 | 876 | 0.47 | 87 | 876 | 875 | 0.13 | 94 | 880 | 876 | 0.55 | 95 |
| GJ05Q | 828 | NS | 705 | 700 | 0.72 | 124 | 705 | 702 | 0.65 | 133 | 706 | 703 | 0.83 | 134 |
| GJ06Q | 978 | NS | 805 | 794 | 1.39 | 92 | 800 | 794 | 0.78 | 100 | 799 | 794 | 0.60 | 100 |
| GJ07Q | 940 | NS | 808 | 803 | 0.69 | 89 | 807 | 803 | 0.51 | 94 | 806 | 802 | 0.45 | 95 |
| GJ08Q | 4877 | NS | 3826 | 3799 | 1.72 | 449 | 3810 | 3774 | 1.29 | 479 | 3792 | 3762 | 0.80 | 478 |
| GJ09Q | 4087 | NS | 3433 | 3391 | 2.31 | 482 | 3393 | 3355 | 1.13 | 535 | 3394 | 3362 | 1.15 | 535 |
| GJ10Q | 3931 | NS | 3294 | 3259 | 1.61 | 477 | 3267 | 3245 | 0.79 | 513 | 3276 | 3242 | 1.04 | 510 |
| GJ11Q | 3840 | NS | 3191 | 3171 | 1.15 | 472 | 3192 | 3165 | 1.17 | 511 | 3189 | 3155 | 1.10 | 505 |
| Tot. | 22535 |  | 18528 | 18375 |  | 2407 | 18437 | 18296 |  | 2609 | 18428 | 18279 |  | 2608 |
| Avg. | 2049 |  |  |  | 0.97 | 219 |  |  | 0.65 | 237 |  |  | 0.66 | 237 |
| < PB |  |  |  | 11 |  |  |  | 11 |  |  |  | 11 |  |  |
| \#B |  | 0 |  | 5 |  |  |  | 6 |  |  |  | 8 |  |  |

Table 22: Nagy Salhi MDMVRPB problems with $25 \%$ backhaul customers.

|  | Best known |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | Reference | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| GJ01H | 619 | NS | 499 | 499 | 0.06 | 36 | 499 | 499 | 0.04 | 40 | 499 | 499 | 0.00 | 42 |
| GJ02H | 562 | NS | 440 | 440 | 0.00 | 44 | 440 | 440 | 0.00 | 51 | 440 | 440 | 0.00 | 53 |
| GJ03H | 662 | NS | 584 | 581 | 0.60 | 73 | 583 | 581 | 0.40 | 81 | 583 | 581 | 0.35 | 82 |
| GJ04H | 1055 | NS | 795 | 789 | 0.73 | 102 | 797 | 790 | 0.91 | 112 | 796 | 790 | 0.84 | 114 |
| GJ05H | 853 | NS | 681 | 678 | 0.50 | 154 | 680 | 678 | 0.28 | 168 | 680 | 678 | 0.27 | 171 |
| GJ06H | 1034 | NS | 753 | 748 | 1.06 | 106 | 751 | 747 | 0.80 | 116 | 751 | 745 | 0.91 | 118 |
| GJ07H | 932 | NS | 739 | 733 | 0.88 | 107 | 734 | 733 | 0.23 | 117 | 735 | 733 | 0.29 | 113 |
| GJ08H | 5188 | NS | 3391 | 3370 | 1.92 | 530 | 3373 | 3327 | 1.38 | 581 | 3371 | 3342 | 1.31 | 577 |
| GJ09H | 4087 | NS | 3043 | 3005 | 1.27 | 582 | 3028 | 3006 | 0.78 | 646 | 3027 | 3008 | 0.75 | 650 |
| GJ10H | 4041 | NS | 2961 | 2931 | 1.16 | 547 | 2963 | 2930 | 1.21 | 644 | 2962 | 2927 | 1.19 | 637 |
| GJ11H | 3933 | NS | 2898 | 2855 | 1.49 | 557 | 2905 | 2880 | 1.74 | 609 | 2893 | 2859 | 1.33 | 606 |
| Tot. | 22966 |  | 16785 | 16630 |  | 2841 | 16753 | 16611 |  | 3166 | 16738 | 16601 |  | 3163 |
| Avg. | 2088 |  |  |  | 0.88 | 258 |  |  | 0.71 | 288 |  |  | 0.66 | 288 |
| < PB |  |  |  | 11 |  |  |  | 11 |  |  |  | 11 |  |  |
| \#B |  | 0 |  | 8 |  |  |  | 6 |  |  |  | 7 |  |  |

Table 23: Nagy Salhi MDMVRPB problems with $50 \%$ backhaul customers.

|  | Best known |  |  |  |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% BH | n | m | cost |  | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | $\begin{aligned} & \hline \text { best } \\ & \text { sol. } \end{aligned}$ | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | avg. time <br> (s) | avg. \#veh. | best sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{array}{r} \hline \text { avg. } \\ \text { time } \\ (\mathrm{s}) \end{array}$ | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | $\begin{aligned} & \text { best } \\ & \text { sol. } \end{aligned}$ | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | avg. time <br> (s) |
| BHR1DO. 10 | 10\% | 250 | 49 | 5085 | TPS | 46.0 | 4848.2 | 46 | 556 | 46.0 | 4844.8 | 46 | 571 | 46.0 | 4843.9 | 46 | 586 |
| BHR1DO. 30 | 20\% | 250 | 48 | 5243 | TPS | 45.0 | 5074.2 | 45 | 502 | 45.0 | 5062.7 | 45 | 512 | 45.0 | 5066.9 | 45 | 528 |
| BHR1DO. 50 | 50\% | 250 | 52 | 5403.1 | TPS | 49.0 | 5122.6 | 49 | 508 | 49.0 | 5107.1 | 49 | 531 | 49.0 | 5113.7 | 49 | 541 |
| BHR1UP. 10 | 10\% | 250 | 39 | 4278.6 | TPS | 32.0 | 3942.3 | 32 | 514 | 31.8 | 4056.9 | 31 | 503 | 32.0 | 3943.1 | 32 | 530 |
| BHR1UP. 30 | 30\% | 250 | 41 | 4715.2 | TPS | 35.0 | 4448.9 | 35 | 475 | 35.0 | 4427.8 | 35 | 474 | 34.8 | 4549.7 | 34 | 488 |
| BHR1UP. 50 | 50\% | 250 | 43 | 4921.4 | TPS | 36.0 | 4443.7 | 36 | 465 | 35.6 | 4618.4 | 35 | 473 | 36.0 | 4442.2 | 36 | 476 |
| BHRC1DO. 10 | 10\% | 250 | 39 | 4613.4 | TPS | 33.0 | 4116.8 | 33 | 506 | 32.8 | 4310.4 | 32 | 500 | 32.6 | 4211.6 | 32 | 519 |
| BHRC1DO. 30 | 20\% | 250 | 41 | 4852.2 | TPS | 34.4 | 4506.3 | 34 | 466 | 34.2 | 4534.4 | 34 | 466 | 34.2 | 4526.2 | 34 | 478 |
| BHRC1DO. 50 | 50\% | 250 | 41 | 4329.4 | TPS | 35.0 | 4500.2 | 35 | 456 | 34.4 | 4513.9 | 34 | 458 | 34.6 | 4589.6 | 34 | 463 |
| BHRC1UP. 10 | 10\% | 250 | 40 | 4445.8 | TPS | 33.4 | 4160.9 | 33 | 497 | 33.0 | 4137.0 | 33 | 488 | 33.4 | 4105.3 | 33 | 506 |
| BHRCIUP. 30 | 30\% | 250 | 43 | 4722.4 | TPS | 36.0 | 4485.2 | 36 | 466 | 35.0 | 4538.0 | 35 | 459 | 35.4 | 4555.8 | 35 | 469 |
| BHRC1UP. 50 | 50\% | 250 | 41 | 4899.4 | TPS | 35.6 | 4605.8 | 35 | 455 | 35.6 | 4558.5 | 35 | 464 | 35.2 | 4550.2 | 35 | 464 |
| Tot. |  |  | 517 | 57509 |  | 450.4 | 54255.1 | 449 | 5868 | 447.4 | 54710.0 | 444 | 5899 | 448.2 | 54498.3 | 445 | 6050 |
| Avg. |  |  |  |  |  |  |  |  | 489 |  |  |  | 492 |  |  |  | 504 |
| < PB |  |  |  |  |  |  | 12 |  |  |  | 12 |  |  |  | 12 |  |  |
| \#B |  |  | 0 |  |  |  | 1 |  |  |  | 6 |  |  |  | 5 |  |  |

Table 24: Thangiah et al. 250 customer VRPBTW instances. The previously best known results have been found in [38] (TPS).

|  | Best known |  |  |  |  | Std. Removals |  |  |  | 6R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% BH | n | m | cost |  | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | best sol. | $\begin{gathered} \text { best } \\ \text { \#veh. } \end{gathered}$ | avg. time (s) | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | best sol. | $\begin{gathered} \text { best } \\ \text { \#veh. } \end{gathered}$ | avg. time <br> (s) | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | best sol. | best \#veh. | avg. time <br> (s) |
| BHR1DO. 10 | 10\% | 500 | 67 | 7620.4 | TPS | 58.4 | 6899.9 | 58 | 1726 | 58.0 | 6860.2 | 58 | 1691 | 58.0 | 6868.0 | 58 | 1763 |
| BHR1DO. 30 | 20\% | 500 | 69 | 9020.2 | TPS | 59.4 | 7320.8 | 59 | 1555 | 58.8 | 7337.2 | 58 | 1557 | 59.0 | 7262.3 | 59 | 1595 |
| BHR1DO. 50 | 50\% | 500 | 76 | 8376.5 | TPS | 61.8 | 7342.7 | 61 | 1554 | 61.0 | 7342.4 | 61 | 1575 | 60.8 | 7294.7 | 60 | 1584 |
| BHR1UP. 10 | 10\% | 500 | 64 | 7267.2 | TPS | 55.0 | 6776.6 | 54 | 1660 | 55.0 | 6702.7 | 54 | 1378 | 54.6 | 6784.7 | 54 | 1692 |
| BHR1UP. 30 | 30\% | 500 | 73 | 7926.6 | TPS | 57.8 | 7243.0 | 57 | 1533 | 57.8 | 7055.0 | 57 | 1679 | 57.6 | 6991.0 | 57 | 1566 |
| BHR1UP. 50 | 50\% | 500 | 68 | 8043.7 | TPS | 59.4 | 7119.1 | 59 | 1500 | 59.0 | 7126.2 | 59 | 1741 | 58.6 | 7217.3 | 58 | 1548 |
| BHRC1DO. 10 | 10\% | 500 | 61 | 7099.4 | TPS | 52.2 | 6362.6 | 52 | 1652 | 52.2 | 6346.8 | 52 | 1814 | 52.2 | 6313.3 | 52 | 1658 |
| BHRC1DO. 30 | 20\% | 500 | 63 | 7707.1 | TPS | 54.8 | 6959.3 | 54 | 1511 | 54.8 | 6889.0 | 54 | 1703 | 54.4 | 6813.6 | 54 | 1530 |
| BHRC1DO. 50 | 50\% | 500 | 65 | 7771.6 | TPS | 55.0 | 6983.7 | 54 | 1503 | 54.8 | 6914.5 | 54 | 1727 | 54.4 | 6896.5 | 54 | 1520 |
| BHRC1UP. 10 | 10\% | 500 | 63 | 7209.4 | TPS | 55.8 | 6493.5 | 55 | 1584 | 55.2 | 6483.4 | 55 | 1622 | 55.2 | 6464.1 | 55 | 1591 |
| BHRC1UP. 30 | 30\% | 500 | 63 | 7967.1 | TPS | 58.0 | 7030.2 | 57 | 1476 | 58.0 | 6918.8 | 58 | 1628 | 58.0 | 7028.3 | 57 | 1500 |
| BHRC1UP. 50 | 50\% | 500 | 67 | 8135.1 | TPS | 57.4 | 6965.8 | 57 | 1486 | 56.6 | 6969.6 | 56 | 1701 | 57.2 | 6862.3 | 57 | 1296 |
| Tot. |  |  | 799 | 94144 |  | 685.0 | 83497.3 | 677 | 18742 | 681.2 | 82945.7 | 676 | 19815 | 680.0 | 82796.0 | 675 | 18843 |
| Avg. |  |  |  |  |  |  |  |  | 1562 |  |  |  | 1651 |  |  |  | 1570 |
| < PB |  |  |  |  |  |  | 12 |  |  |  | 12 |  |  |  | 12 |  |  |
| \#B |  |  | 0 |  |  |  | 0 |  |  |  | 4 |  |  |  | 8 |  |  |

Table 25: Thangiah et al. 500 customer VRPBTW instances. The previously best known results are the solutions found by Thangiah et al. (TPS) [38].

|  | Best known |  |  | Std. Removals |  |  |  |  |  | 6R - no learning |  |  |  |  |  | 6R - normal learning |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | Reference | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. \#veh. | best sol. | best \#veh. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | $\begin{aligned} & \text { avg. } \\ & \text { sol. } \end{aligned}$ | $\begin{aligned} & \text { avg. } \\ & \text { \#veh. } \end{aligned}$ | best sol. | best \#veh. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | avg. \#veh. | best sol. | best \#veh. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| MC201 | 5 | 763.88 | ZC | 774.59 | 4.0 | 766.82 | 4 | 1.01 | 140 | 769.96 | 4.0 | 766.82 | 4 | 0.41 | 141 | 766.82 | 4.0 | 766.82 | 4 | 0.00 | 144 |
| MC202 | 4 | 1186.24 | ZC | 736.76 | 4.0 | 732.93 | 4 | 0.52 | 165 | 734.85 | 4.0 | 732.93 | 4 | 0.26 | 171 | 737.51 | 4.0 | 732.93 | 4 | 0.63 | 165 |
| MC203 | 4 | 1096.31 | ZC | 710.14 | 4.0 | 705.86 | 4 | 0.80 | 171 | 708.68 | 4.0 | 707.75 | 4 | 0.60 | 177 | 708.48 | 4.0 | 704.49 | 4 | 0.57 | 174 |
| MC204 | 4 | 885.73 | ZC | 677.75 | 4.0 | 676.18 | 4 | 0.23 | 188 | 679.06 | 4.0 | 676.18 | 4 | 0.43 | 193 | 678.54 | 4.0 | 676.18 | 4 | 0.35 | 189 |
| MC205 | 5 | 781.7 | ZC | 754.81 | 4.0 | 748.34 | 4 | 0.86 | 152 | 755.72 | 4.0 | 751.96 | 4 | 0.99 | 153 | 758.83 | 4.0 | 751.96 | 4 | 1.40 | 152 |
| MC206 | 5 | 860.74 | ZC | 750.16 | 4.0 | 748.17 | 4 | 0.41 | 157 | 748.33 | 4.0 | 747.08 | 4 | 0.17 | 158 | 748.09 | 4.0 | 747.08 | 4 | 0.14 | 157 |
| MC207 | 5 | 792.96 | ZC | 745.38 | 4.0 | 737.39 | 4 | 1.08 | 161 | 745.43 | 4.0 | 737.39 | 4 | 1.09 | 164 | 745.57 | 4.0 | 738.70 | 4 | 1.11 | 162 |
| MC208 | 5 | 859.92 | ZC | 736.19 | 4.0 | 735.17 | 4 | 0.14 | 161 | 741.69 | 4.0 | 738.70 | 4 | 0.89 | 164 | 742.76 | 4.0 | 738.70 | 4 | 1.03 | 162 |
| Tot. | 37 | 7227 |  | 5885.79 | 32.00 | 5850.87 | 32 |  | 1295 | 5883.72 | 32.00 | 5858.82 | 32 |  | 1320 | 5886.63 | 32.00 | 5856.87 | 32 |  | 1305 |
| Avg. | 5 |  |  |  |  |  |  | 0.63 | 162 |  |  |  |  | 0.60 | 165 |  |  |  |  | 0.65 | 163 |
| < PB |  |  |  |  |  | 8 |  |  |  |  |  | 8 |  |  |  |  |  | 8 |  |  |  |
| \#B |  | 0 |  |  |  | 6 |  |  |  |  |  | 5 |  |  |  |  |  | 5 |  |  |  |

Table 26: Kontoravdis and Bard's MVRPBTW instances. C-type problems. The previously best known results are the solutions found by Zhong and Cole (ZC) [48]. Kontoravdis and Bard [23] do not give detailed information about their solutions.

|  | Best known |  |  | Std. Removals |  |  |  |  |  | 6R - no learning |  |  |  |  |  | 6R - normal learning |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | Reference | avg. sol. | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | best | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | $\begin{array}{r} \hline \text { avg. } \\ \text { time } \\ (\mathrm{s}) \end{array}$ | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | best sol. | best \#veh. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | $\begin{array}{r} \hline \text { avg. } \\ \text { time } \\ (\mathrm{s}) \end{array}$ | avg. sol. | $\begin{aligned} & \text { avg. } \\ & \text { \#veh. } \end{aligned}$ | best sol. | $\begin{gathered} \text { best } \\ \text { \#veh. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| MR201 | 4 | 1388.73 | ZC | 1272.20 | 4.0 | 1260.48 | 4 | 1.27 | 157 | 1263.64 | 4.0 | 1256.31 | 4 | 0.58 | 165 | 1261.90 | 4.0 | 1256.31 | 4 | 0.45 | 160 |
| MR202 | 4 | 1198.99 | ZC | 1101.54 | 4.0 | 1092.01 | 4 | 1.39 | 359 | 1092.08 | 4.0 | 1086.46 | 4 | 0.52 | 371 | 1092.36 | 4.0 | 1086.46 | 4 | 0.54 | 362 |
| MR203 | 4 | 988.82 | ZC | 913.57 | 4.0 | 894.54 | 4 | 2.13 | 387 | 900.08 | 4.0 | 896.14 | 4 | 0.62 | 383 | 899.59 | 4.0 | 896.14 | 4 | 0.56 | 374 |
| MR204 | 4 | 858.32 | ZC | 739.43 | 4.0 | 737.51 | 4 | 0.36 | 419 | 737.87 | 4.0 | 737.51 | 4 | 0.15 | 436 | 738.63 | 4.0 | 736.75 | 4 | 0.25 | 432 |
| MR205 | 4 | 1172.53 | ZC | 994.25 | 4.0 | 974.26 | 4 | 2.05 | 351 | 994.86 | 4.0 | 974.26 | 4 | 2.11 | 367 | 989.36 | 4.0 | 974.26 | 4 | 1.55 | 353 |
| MR206 | 4 | 979.5 | ZC | 910.42 | 4.0 | 897.03 | 4 | 1.83 | 386 | 896.47 | 4.0 | 894.05 | 4 | 0.27 | 397 | 894.25 | 4.0 | 894.04 | 4 | 0.02 | 388 |
| MR207 | 4 | 912.69 | ZC | 811.92 | 4.0 | 800.79 | 4 | 1.39 | 421 | 800.79 | 4.0 | 800.79 | 4 | 0.00 | 426 | 800.79 | 4.0 | 800.79 | 4 | 0.00 | 422 |
| MR208 | 4 | 764.52 | ZC | 722.34 | 4.0 | 719.12 | 4 | 0.85 | 412 | 719.05 | 4.0 | 716.28 | 4 | 0.39 | 435 | 718.91 | 4.0 | 716.28 | 4 | 0.37 | 431 |
| MR209 | 4 | 978.82 | ZC | 894.18 | 4.0 | 879.63 | 4 | 1.65 | 354 | 886.97 | 4.0 | 879.63 | 4 | 0.83 | 371 | 893.49 | 4.0 | 881.60 | 4 | 1.58 | 361 |
| MR210 | 4 | 1061.36 | ZC | 936.45 | 4.0 | 930.92 | 4 | 1.29 | 361 | 929.49 | 4.0 | 924.56 | 4 | 0.53 | 377 | 928.71 | 4.0 | 924.56 | 4 | 0.45 | 369 |
| MR211 | 4 | 878.81 | ZC | 767.51 | 4.0 | 763.54 | 4 | 0.58 | 376 | 770.42 | 4.0 | 763.09 | 4 | 0.96 | 400 | 772.21 | 4.0 | 765.03 | 4 | 1.19 | 394 |
| Tot. | 44 | 11183 |  | 10063.80 | 44.00 | 9949.83 | 44 |  | 3983 | 9991.73 | 44.00 | 9929.07 | 44 |  | 4128 | 9990.20 | 44.00 | 9932.21 | 44 |  | 4046 |
| Avg. | 4 |  |  |  |  |  |  | 1.34 | 362 |  |  |  |  | 0.63 | 375 |  |  |  |  | 0.63 | 368 |
| < PB |  |  |  |  |  | 11 |  |  |  |  |  | 11 |  |  |  |  |  | 11 |  |  |  |
| \#B |  | 0 |  |  |  | 4 |  |  |  |  |  | 8 |  |  |  |  |  | 8 |  |  |  |

Table 27: Kontoravdis and Bard's MVRPBTW instances. R-type problems.

|  | Best known |  |  | Std. Removals |  |  |  |  |  | 6R - no learning |  |  |  |  |  | 6R - normal learning |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | Reference | avg. sol. | avg. \#veh. | best sol. | best \#veh. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | best sol. | best \#veh. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | $\begin{gathered} \text { avg. } \\ \text { \#veh. } \end{gathered}$ | best sol. | best | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \hline \end{gathered}$ | avg. time <br> (s) |
| MRC201 | 5 | 1498.9 | ZC | 1370.16 | 5.0 | 1346.30 | 5 | 1.77 | 234 | 1357.26 | 5.0 | 1355.42 | 5 | 0.81 | 238 | 1356.84 | 5.0 | 1355.63 | 5 | 0.78 | 236 |
| MRC202 | 4 | 1539.41 | ZC | 1263.92 | 4.0 | 1230.24 | 4 | 2.74 | 171 | 1261.06 | 4.0 | 1241.77 | 4 | 2.51 | 174 | 1250.88 | 4.0 | 1230.24 | 4 | 1.68 | 171 |
| MRC203 | 4 | 1303.48 | ZC | 1020.29 | 4.0 | 997.06 | 4 | 2.48 | 177 | 1004.33 | 4.0 | 995.63 | 4 | 0.87 | 175 | 999.79 | 4.0 | 995.63 | 4 | 0.42 | 176 |
| MRC204 | 4 | 932.48 | ZC | 843.99 | 4.0 | 833.60 | 4 | 1.25 | 187 | 844.08 | 4.0 | 835.13 | 4 | 1.26 | 188 | 846.01 | 4.0 | 836.89 | 4 | 1.49 | 187 |
| MRC205 | 4 | 1632.04 | ZC | 1461.20 | 4.0 | 1417.14 | 4 | 3.30 | 168 | 1449.27 | 4.0 | 1419.07 | 4 | 2.46 | 166 | 1452.19 | 4.0 | 1414.52 | 4 | 2.66 | 160 |
| MRC206 | 4 | 1433.43 | ZC | 1286.51 | 4.0 | 1231.52 | 4 | 4.47 | 168 | 1277.35 | 4.0 | 1249.48 | 4 | 3.72 | 170 | 1291.85 | 4.0 | 1254.51 | 4 | 4.90 | 166 |
| MRC207 | 4 | 1217.2 | ZC | 1119.23 | 4.0 | 1096.06 | 4 | 3.31 | 175 | 1109.06 | 4.0 | 1084.81 | 4 | 2.37 | 174 | 1101.21 | 4.0 | 1083.33 | 4 | 1.65 | 169 |
| MRC208 | 4 | 1085.57 | ZC | 875.86 | 4.0 | 847.46 | 4 | 3.35 | 180 | 863.90 | 4.0 | 852.25 | 4 | 1.94 | 182 | 851.50 | 4.0 | 849.30 | 4 | 0.48 | 175 |
| Tot. | 33 | 10643 |  | 9241.15 | 33.00 | 8999.36 | 33 |  | 1461 | 9166.31 | 33.00 | 9033.57 | 33 |  | 1467 | 9150.29 | 33.00 | 9020.05 | 33 |  | 1441 |
| Avg. | 4 |  |  |  |  |  |  | 2.83 | 183 |  |  |  |  | 1.99 | 183 |  |  |  |  | 1.76 | 180 |
| < PB |  |  |  |  |  | 8 |  |  |  |  |  | 8 |  |  |  |  |  | 8 |  |  |  |
| \#B |  | 0 |  |  |  | 5 |  |  |  |  |  | 1 |  |  |  |  |  | 4 |  |  |  |

Table 28: Kontoravdis and Bard's MVRPBTW instances. RC-type problems.

## References

[1] R.K. Ahuja, O. Ergun, J.B. Orlin, A.P Punnen A survey of very large scale neighborhood search techniques, Discrete Applied Mathematics 123 75-102 (2002).
[2] E.Angelelli, R. Mansini, The vehicle routing problem with time windows and simultaneous pick-up and delivery, in Quantitative Approaches to Distribution Logistics and Supply Chain Management, (edited by A. Klose, M. G. Speranza, L. N. Van Wassenhove), Springer-Verlag, 249-267 (2002)
[3] S. Anily, The vehicle-routing problem with delivery and back-haul options, Naval Research Logistics 43 415434 (1996).
[4] R. Battiti, G. Tecchiolli, The reactive tabu search, ORSA Journal of Computing 6 126-140 (1994).
[5] D.O. Casco, B.L. Golden, E.A. Wasil, Vehicle routing with backhauls: models, algorithms and case studies, in Vehicle Routing: Methods and Studies (Edited by B. Golden and A. Assad), North-Holland, Amsterdam 127-147 (1988).
[6] J.-F. Cordeau, G. Laporte, A. Mercier, A unified tabu search heuristic for vehicle routing problems with time windows, Journal of the Operational Research Society, 52 928-936 (2001).
[7] J. Crispim, J. Brandao, Reactive tabu search and variable neighbourhood descent applied to the vehicle routing problem with backhauls, MIC'2001 4th Metaheuristic International Conference, Porto, Portugal July 16-20 (2001).
[8] G. Desaulniers, J. Desrosiers, A. Ercmann, M.M. Solomon, F. Soumis, VRP with pickup and delivery, In P. Toth and D. Vigo (eds.): The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications 9, SIAM, Philadelphia, 225-242, (2002).

|  | Best known |  |  | Std. Removals |  |  |  | 6 R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | cost | reference | avg. <br> sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| Min | 22 | 88 | H | 88.3 | 88.0 | 0.34 | 37 | 88.5 | 88.0 | 0.57 | 44 | 88.5 | 88.0 | 0.57 | 50 |
| SCA3-0 | 50 | 689 | D | 640.6 | 640.5 | 0.71 | 173 | 641.1 | 640.5 | 0.79 | 173 | 638.3 | 636.1 | 0.35 | 232 |
| SCA3-1 | 50 | 765.6 | D | 698.4 | 697.8 | 0.08 | 170 | 698.8 | 697.8 | 0.14 | 173 | 697.8 | 697.8 | 0.00 | 218 |
| SCA3-2 | 50 | 742.8 | D | 659.3 | 659.3 | 0.00 | 161 | 660.2 | 659.3 | 0.14 | 160 | 659.3 | 659.3 | 0.00 | 203 |
| SCA3-3 | 50 | 737.2 | D | 681.4 | 680.6 | 0.12 | 182 | 682.7 | 681.3 | 0.31 | 179 | 681.4 | 680.6 | 0.11 | 241 |
| SCA3-4 | 50 | 747.1 | D | 691.2 | 690.5 | 0.11 | 160 | 693.1 | 690.5 | 0.38 | 166 | 691.0 | 690.5 | 0.08 | 208 |
| SCA3-5 | 50 | 784.4 | D | 662.2 | 659.9 | 0.34 | 178 | 660.5 | 659.9 | 0.10 | 179 | 659.9 | 659.9 | 0.00 | 226 |
| SCA3-6 | 50 | 720.4 | D | 651.3 | 651.1 | 0.04 | 179 | 652.1 | 651.1 | 0.15 | 171 | 651.3 | 651.1 | 0.04 | 233 |
| SCA3-7 | 50 | 707.9 | D | 667.9 | 666.1 | 0.27 | 169 | 667.0 | 666.1 | 0.13 | 162 | 667.0 | 666.1 | 0.13 | 206 |
| SCA3-8 | 50 | 807.2 | D | 721.3 | 719.5 | 0.26 | 167 | 719.5 | 719.5 | 0.00 | 157 | 719.5 | 719.5 | 0.00 | 190 |
| SCA3-9 | 50 | 764.1 | D | 681.0 | 681.0 | 0.01 | 171 | 681.0 | 681.0 | 0.01 | 167 | 681.0 | 681.0 | 0.00 | 220 |
| SCA8-0 | 50 | 1132.9 | D | 991.1 | 982.2 | 1.63 | 82 | 993.2 | 987.9 | 1.85 | 94 | 986.3 | 975.1 | 1.15 | 98 |
| SCA8-1 | 50 | 1150.9 | D | 1083.1 | 1072.8 | 2.92 | 82 | 1082.6 | 1068.8 | 2.87 | 94 | 1066.5 | 1052.4 | 1.35 | 95 |
| SCA8-2 | 50 | 1100.8 | D | 1046.3 | 1039.6 | 0.64 | 83 | 1049.9 | 1044.5 | 0.99 | 87 | 1049.2 | 1044.5 | 0.92 | 94 |
| SCA8-3 | 50 | 1115.6 | D | 1016.5 | 1007.8 | 2.49 | 85 | 1012.5 | 991.8 | 2.08 | 91 | 1006.3 | 999.1 | 1.45 | 94 |
| SCA8-4 | 50 | 1235.4 | D | 1067.4 | 1065.5 | 0.18 | 84 | 1067.0 | 1065.5 | 0.14 | 87 | 1065.6 | 1065.5 | 0.01 | 93 |
| SCA8-5 | 50 | 1231.6 | D | 1052.8 | 1039.6 | 2.50 | 84 | 1047.9 | 1040.4 | 2.02 | 89 | 1039.9 | 1027.1 | 1.24 | 96 |
| SCA8-6 | 50 | 1062.5 | D | 996.2 | 986.0 | 2.44 | 82 | 987.5 | 972.5 | 1.54 | 93 | 983.5 | 977.0 | 1.14 | 94 |
| SCA8-7 | 50 | 1217.4 | D | 1067.1 | 1062.2 | 0.57 | 82 | 1068.3 | 1063.2 | 0.69 | 88 | 1065.8 | 1061.0 | 0.45 | 92 |
| SCA8-8 | 50 | 1231.6 | D | 1086.4 | 1071.2 | 1.42 | 85 | 1084.3 | 1077.7 | 1.22 | 93 | 1078.8 | 1071.2 | 0.71 | 98 |
| SCA8-9 | 50 | 1185.6 | D | 1077.0 | 1067.3 | 1.55 | 82 | 1068.8 | 1060.5 | 0.79 | 86 | 1064.7 | 1060.5 | 0.40 | 92 |
| CON3-0 | 50 | 672.4 | D | 623.4 | 617.6 | 1.11 | 173 | 621.5 | 616.5 | 0.81 | 171 | 619.0 | 616.5 | 0.40 | 215 |
| CON3-1 | 50 | 570.6 | D | 558.1 | 554.5 | 0.65 | 190 | 555.5 | 554.5 | 0.18 | 190 | 554.5 | 554.5 | 0.00 | 245 |
| CON3-2 | 50 | 534.8 | D | 522.3 | 521.4 | 0.18 | 176 | 523.0 | 521.4 | 0.32 | 177 | 521.6 | 521.4 | 0.05 | 232 |
| CON3-3 | 50 | 656.9 | D | 591.2 | 591.2 | 0.00 | 185 | 591.2 | 591.2 | 0.00 | 177 | 591.2 | 591.2 | 0.00 | 231 |
| CON3-4 | 50 | 640.2 | D | 591.7 | 588.8 | 0.49 | 187 | 590.5 | 588.8 | 0.29 | 173 | 590.0 | 588.8 | 0.21 | 221 |
| CON3-5 | 50 | 604.7 | D | 566.3 | 563.7 | 0.47 | 181 | 567.3 | 563.7 | 0.64 | 179 | 564.4 | 563.7 | 0.12 | 209 |
| CON3-6 | 50 | 521.3 | D | 501.6 | 499.1 | 0.51 | 195 | 503.0 | 501.8 | 0.78 | 180 | 501.9 | 500.8 | 0.57 | 225 |
| CON3-7 | 50 | 602.8 | D | 579.7 | 577.5 | 0.56 | 178 | 584.1 | 578.4 | 1.32 | 181 | 579.5 | 576.5 | 0.53 | 227 |
| CON3-8 | 50 | 556.2 | D | 523.5 | 523.1 | 0.08 | 186 | 523.7 | 523.1 | 0.12 | 174 | 523.5 | 523.1 | 0.08 | 237 |
| CON3-9 | 50 | 612.8 | D | 585.9 | 578.2 | 1.32 | 175 | 587.4 | 578.2 | 1.58 | 163 | 588.2 | 586.4 | 1.71 | 207 |
| CON8-0 | 50 | 967.3 | D | 867.8 | 857.2 | 1.24 | 86 | 867.7 | 858.0 | 1.22 | 87 | 860.9 | 857.2 | 0.43 | 94 |
| CON8-1 | 50 | 828.7 | D | 761.0 | 740.9 | 2.72 | 85 | 754.2 | 741.7 | 1.81 | 92 | 750.5 | 740.9 | 1.30 | 94 |
| CON8-2 | 50 | 770.2 | D | 731.3 | 719.3 | 2.14 | 85 | 728.8 | 718.3 | 1.79 | 93 | 721.4 | 716.0 | 0.75 | 94 |
| CON8-3 | 50 | 906.7 | D | 827.9 | 822.9 | 2.07 | 88 | 816.7 | 811.1 | 0.69 | 91 | 813.7 | 811.1 | 0.33 | 98 |
| CON8-4 | 50 | 876.8 | D | 779.1 | 772.3 | 0.89 | 88 | 779.3 | 772.3 | 0.91 | 87 | 774.3 | 772.3 | 0.27 | 95 |
| CON8-5 | 50 | 866.9 | D | 773.9 | 763.1 | 2.41 | 85 | 772.2 | 763.1 | 2.19 | 92 | 766.5 | 755.7 | 1.44 | 94 |
| CON8-6 | 50 | 749.1 | D | 717.0 | 705.8 | 3.46 | 88 | 712.5 | 696.9 | 2.81 | 95 | 707.9 | 693.1 | 2.14 | 96 |
| CON8-7 | 50 | 929.8 | D | 844.8 | 831.5 | 3.69 | 86 | 843.1 | 818.0 | 3.48 | 94 | 833.1 | 814.8 | 2.24 | 94 |
| CON8-8 | 50 | 833.1 | D | 781.2 | 774.1 | 0.93 | 87 | 781.3 | 775.9 | 0.94 | 88 | 778.8 | 774.0 | 0.63 | 94 |
| CON8-9 | 50 | 877.3 | D | 813.3 | 812.0 | 0.49 | 86 | 814.5 | 812.0 | 0.64 | 91 | 813.0 | 809.3 | 0.46 | 92 |
| Tot. |  | 33797 |  | 30867.6 | 30642.7 |  | 5267 | 30823.9 | 30592.8 |  | 5308 | 30695.7 | 30530.3 |  | 6368 |
| Avg. |  | 824 |  |  |  | 1.07 | 128 |  |  | 0.96 | 129 |  |  | 0.58 | 155 |
| < PB |  |  |  |  | 40 |  |  |  | 40 |  |  |  | 40 |  |  |
| \#B |  | 1 |  |  | 24 |  |  |  | 23 |  |  |  | 36 |  |  |

Table 29: The first problem in the table is Min's 21 customer problem which was solved to optimality by Halse (H) [19]. The rest of the problems were proposed by Dethloff (D) [10].

|  | Best known |  |  | Std. Removals |  |  |  | 6 R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | cost | reference | avg. <br> sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | best sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| SN1X | 50 | 501 | D | 475 | 467 | 1.75 | 171 | 472 | 467 | 1.22 | 190 | 473 | 467 | 1.27 | 221 |
| SN2X | 75 | 782 | D | 718 | 702 | 2.40 | 255 | 722 | 709 | 2.84 | 271 | 719 | 704 | 2.46 | 294 |
| SN3X | 100 | 847 | D | 739 | 727 | 1.56 | 768 | 746 | 731 | 2.54 | 695 | 741 | 731 | 1.93 | 863 |
| SN4X | 150 | 1050 | D | 919 | 894 | 4.75 | 1345 | 903 | 877 | 2.95 | 1459 | 893 | 879 | 1.79 | 1676 |
| SN5X | 199 | 1348 | D | 1132 | 1108 | 2.13 | 2057 | 1162 | 1138 | 4.83 | 2217 | 1130 | 1108 | 1.99 | 2340 |
| SN6X | 50 | 584 | D | 559 | 559 | 0.08 | 97 | 559 | 559 | 0.08 | 98 | 559 | 559 | 0.08 | 113 |
| SN7X | 75 | 961 | D | 918 | 905 | 1.82 | 154 | 917 | 903 | 1.72 | 158 | 910 | 901 | 0.95 | 167 |
| SN8X | 100 | 923 | NS | 872 | 866 | 0.69 | 384 | 872 | 866 | 0.74 | 367 | 868 | 866 | 0.29 | 413 |
| SN9X | 150 | 1215 | NS | 1239 | 1221 | 3.54 | 703 | 1235 | 1197 | 3.17 | 726 | 1228 | 1205 | 2.57 | 765 |
| SN10X | 199 | 1571 | D | 1526 | 1494 | 4.42 | 1136 | 1522 | 1490 | 4.13 | 1214 | 1501 | 1462 | 2.71 | 1275 |
| SN11X | 120 | 959 | D | 907 | 875 | 8.33 | 1725 | 921 | 875 | 10.05 | 1410 | 901 | 837 | 7.70 | 1821 |
| SN12X | 100 | 804 | D | 698 | 688 | 2.11 | 628 | 692 | 683 | 1.32 | 574 | 692 | 685 | 1.29 | 684 |
| SN13X | 120 | 1576 | D | 1637 | 1595 | 3.90 | 494 | 1601 | 1591 | 1.57 | 539 | 1593 | 1578 | 1.09 | 563 |
| SN14X | 100 | 871 | D | 904 | 876 | 4.69 | 354 | 896 | 863 | 3.75 | 367 | 897 | 885 | 3.87 | 387 |
| Tot. |  | 13992 |  | 13242 | 12976 |  | 10270 | 13219 | 12947 |  | 10286 | 13105 | 12866 |  | 11585 |
| Avg. |  | 999 |  |  |  | 3.01 | 734 |  |  | 2.92 | 735 |  |  | 2.14 | 827 |
| < PB |  |  |  |  | 11 |  |  |  | 13 |  |  |  | 12 |  |  |
| \#B |  | 1 |  |  | 6 |  |  |  | 7 |  |  |  | 7 |  |  |

Table 30: Nagy and Salhi's VRPSDP instances. X-type problems.

|  | Best known |  |  | Std. Removals |  |  |  | 6 R - no learning |  |  |  | 6R - normal learning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | cost | reference | avg. sol. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | avg. gap (\%) | avg. time <br> (s) | avg. sol. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) | avg. sol. | $\begin{gathered} \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| SN1Y | 50 | 501 | D | 470 | 467 | 0.69 | 194 | 471 | 467 | 0.88 | 192 | 469 | 467 | 0.53 | 235 |
| SN2Y | 75 | 782 | D | 692 | 685 | 1.04 | 315 | 704 | 691 | 2.88 | 268 | 694 | 685 | 1.34 | 331 |
| SN3Y | 100 | 847 | D | 743 | 734 | 1.20 | 632 | 751 | 742 | 2.28 | 625 | 747 | 738 | 1.71 | 708 |
| SN4Y | 150 | 1050 | D | 868 | 854 | 1.57 | 1866 | 876 | 856 | 2.56 | 1487 | 881 | 876 | 3.08 | 1788 |
| SN5Y | 199 | 1348 | D | 1158 | 1131 | 2.37 | 2030 | 1186 | 1132 | 4.86 | 2106 | 1169 | 1146 | 3.31 | 2177 |
| SN6Y | 50 | 584 | D | 560 | 559 | 0.21 | 93 | 562 | 559 | 0.63 | 96 | 560 | 559 | 0.20 | 101 |
| SN7Y | 75 | 961 | D | 987 | 969 | 3.73 | 158 | 1008 | 979 | 5.92 | 163 | 993 | 952 | 4.38 | 166 |
| SN8Y | 100 | 923 | NS | 896 | 880 | 2.63 | 361 | 916 | 894 | 4.85 | 362 | 895 | 873 | 2.43 | 398 |
| SN9Y | 150 | 1215 | NS | 1282 | 1267 | 5.55 | 732 | 1286 | 1256 | 5.83 | 720 | 1288 | 1271 | 6.03 | 757 |
| SN10Y | 199 | 1527 | NS | 1597 | 1567 | 4.57 | 1207 | 1596 | 1573 | 4.54 | 1195 | 1591 | 1552 | 4.16 | 1255 |
| SN11Y | 120 | 1070 | D | 972 | 938 | 5.71 | 1193 | 980 | 956 | 6.54 | 1154 | 951 | 920 | 3.42 | 1376 |
| SN12Y | 100 | 825 | D | 683 | 673 | 1.58 | 531 | 689 | 686 | 2.39 | 506 | 684 | 675 | 1.65 | 539 |
| SN13Y | 120 | 1576 | D | 1771 | 1726 | 12.38 | 531 | 1629 | 1612 | 3.34 | 538 | 1613 | 1602 | 2.33 | 547 |
| Tot. |  | 13209 |  | 12680 | 12451 |  | 9844 | 12654 | 12403 |  | 9412 | 12534 | 12315 |  | 10378 |
| Avg. |  | 944 |  |  |  | 3.33 | 703 |  |  | 3.65 | 672 |  |  | 2.66 | 741 |
| < PB |  |  |  |  | 9 |  |  |  | 9 |  |  |  | 10 |  |  |
| \#B |  | 3 |  |  | 7 |  |  |  | 2 |  |  |  | 6 |  |  |

Table 31: Nagy and Salhi's VRPSDP instances. Y-type problems.
[9] J. Dethloff, Relation between vehicle routing problems: an insertion heuristic for the vehicle routing problem with simultaneous delivery and pick-up applied to the vehicle routing problem with backhauls, Journal of the Operational Research Society 53 115-118 (2002).
[10] J. Dethloff, Vehicle routing and reverse logistics: the vehicle routing problem with simultaneous delivery and pick-up, OR Spektrum 23 79-96 (2001).
[11] J.J. Dongarra, Performance of various computers using standard linear equation software, University of Tennessee Computer Science Technical Report, CS-89-85, (2004).
[12] C. Duhamel, J.-Y. Potvin, J.-M. Rousseau, A tabu search heuristic for the vehicle routing problem with backhauls and time windows, Transportation Science 31 49-59 (1997).
[13] S. Gelinas, M. Desrochers, J. Desrosiers, M.M. Solomon., A new branching strategy for time constrained routing problems with application to backhauling, Annals of Operations Research 61 91-109 (1995).
[14] M. Gendreau, G. Laporte, D. Vigo, Heuristics for the traveling salesman problem with pickup and delivery, Computers \& Operations Research 26, 699-714 (1999).
[15] H. Ghaziri, I.H. Osman, A neural network algorithm for the traveling salesman problem with backhauls, Computers \& Industrial Engineering 44, 267-281 (2003).
[16] M. Goetschalckx, C. Jacobs-Blecha, The vehicle routing problem with backhauls, European Journal of Operational Research 42 39-51 (1989).
[17] Ø. Halskau; I. Gribkovskaia; K.N.B. Myklebost. Models for pick-up and deliveries from depots with lasso solutions. Proceedings of the 13th Annual Conference on Logistics Research - NOFOMA 2001, Collaboration in logistics : Connecting Islands using Information Technology. Reykjavik, Iceland, 2001-06-14-2001-0615. Chalmers University of Technology, Göteborg, Sweden. 279-293 (2001).
[18] P. Hansen, N. Mladenovic, An introduction to variable neighborhood search, in: S. Voss et. al. (ed) MetaHeuristics, Advances and Trends in Local Search Paradigms for Optimization, Kluwer, Boston, 433-458 (1999).
[19] K. Halse, Modeling and solving complex vehicle routing problems, PhD thesis, Institute of Mathematical Statistics and Operations Research (IMSOR), Technical University of Denmark (1992).
[20] T. Hasama, H. Kokubugata, H. Kawashima, A heuristic approach based on the string model to solve vehicle routing problem with backhauls, Proceedings of the 5th World Congress on Intelligent Transport Systems (ITS), Seoul, 1998.
[21] A. Hertz, E.D. Taillard, D. de Werra A tutorial on tabu search, in: E.H.L. Aarts and J. K. Lenstra, Local search in combinatorial optimization, Wiley, 121-136 (1997)
[22] C. Jacobs-Blecha, M. Goetschalckx, The vehicle routing problem with backhauls: properties and solution algorithms, Technical Report, 1992-1998, Georgia Tech Research Corporation.
[23] G. Kontoravdis, J.F. Bard, A GRASP for the vehicle routing problem with time windows, ORSA Journal on Computing 7 10-23 (1995).
[24] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society 7 48-50 (1956).
[25] H. Min, The multiple vehicle routing problem with simultaneous delivery and pickup, Transportation Research Part A 23 377-386 (1989).
[26] A. Mingozzi, S. Giorgi, R. Baldacci, An exact method for the vehicle routing problem with backhauls, Transportation Science 33, 315-329 (1999).
[27] G. Nagy, S. Salhi, Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries, Working Paper no. 42, Canterbury Business School, 2003.
[28] I.H. Osman, N.A. Wassan, A reactive tabu search meta-heuristic for the vehicle routing problem with backhauls, Journal of Scheduling 5 263-285 (2002).
[29] J.Y. Potvin, J.-M. Rousseau, A parallel route building algorithm for the vehicle routing and scheduling problem with time windows, European Journal of Operational Research 66 331-340 (1993).
[30] M. Reimann, Doerner K., Hartl R.F., Insertion based ants for vehicle routing problems with backhauls and time windows, LNCS 2463 135-148 (2002).
[31] S. Ropke, A local Search heuristic for the pickup and delivery problem with time windows, Working paper, DIKU, University of Copenhagen (2003).
[32] S. Salhi, G. Nagy, A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling, Journal of the Operational Research Society (1999) 50, 1034-1042.
[33] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck, Record breaking optimization results - using the ruin \& recreate principle, J. Comp. Phys. 159, 139-171 (2000).
[34] M. Sigurd, D. Pisinger, M. Sig, The pickup and delivery problem with time windows and precendences, Transportation Science 38 197-209 (2004).
[35] P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems, Proceedings CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming) (1998).
[36] H. Süral, J.H. Bookbinder, The single-vehicle routing problem with unrestricted backhauls, Networks 41, 127-136 (2003).
[37] M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints Operations Research, 35 254-265, (1987).
[38] S.R. Thangiah, J.-Y. Potvin, Sun T., Heuristic approaches to vehicle routing with backhauls and time windows, Computers \& Operations Research 23 1043-1057 (1996).
[39] F.A. Tillman, T. M. Cain An upper bound algorithm for the single and multiple terminal delivery problem Management Science 18 664-682 (1972).
[40] P. Toth, D. Vigo, A heuristic algorithm for the symmetric and asymmetric vehicle routing problems with backhauls, European Journal of Operational Research 113 528-543 (1999).
[41] P. Toth, D. Vigo, An exact algorithm for the vehicle routing problem with backhauls, Transportation Science 31 372-285 (1997).
[42] P. Toth, D. Vigo, VRP with backhauls, In P. Toth and D. Vigo (eds.): The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications 9, SIAM, Philadelphia, 195-221, (2002).
[43] A. Wade, S. Salhi, An ant system algorithm for the mixed vehicle routing problem with backhauls, in M.G.C. Resende and J.P. de Sousa (eds.): Metaheuristics: Computer Decision-Making, Chapter 33, 699-719, Kluwer (2003).
[44] A. Wade, S. Salhi, An ant system algorithm for the vehicle routing problem with backhauls, MIC'2001-4th Metaheursistic International Conference.
[45] A.C. Wade, S. Salhi, An investigation into a new class of vehicle routing problem with backhauls, Omega 30 497-487 (2002).
[46] Web page: www.diku.dk/~sropke
[47] Y. Zhong, M.H. Cole, A simple approach to linehaul-backhaul problems: a guided local search approach for the vehicle routing problem, Technical Report, Department of Industrial Engineering, University of Arkansas, USA, 2001.
[48] Y. Zhong, M.H. Cole, A vehicle routing problem with backhauls and time windows: a guided local search solution, Transportation Research Part E, Article in press (2004).

Chapter 6
A general heuristic for vehicle routing problems

# A general heuristic for vehicle routing problems 

David Pisinger *<br>Stefan Ropke *


#### Abstract

We present a unified heuristic which is able to solve five different variants of the vehicle routing problem: the vehicle routing problem with time windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle routing problem (MDVRP), the site dependent vehicle routing problem (SDVRP) and the open vehicle routing problem (OVRP).

All problem variants are transformed into a rich pickup and delivery model and solved using the Adaptive Large Neighborhood Search (ALNS) framework presented in Ropke and Pisinger (2004). The ALNS framework is an extension of the Large Neighborhood Search framework by Shaw (1998) with an adaptive layer. This layer adaptively chooses among a number of insertion and removal heuristics to intensify and diversify the search. The presented approach has a number of advantages: it provides solutions of very high quality, the algorithm is robust, and to some extent self-calibrating. Moreover, the unified model allows the dispatcher to mix various variants of VRP problems for individual customers or vehicles.

As we believe that the ALNS framework can be applied to a large number of tightly constrained optimization problems, a general description of the framework is given, and it is discussed how the various components can be designed in a particular setting.

The paper is concluded with a computational study, in which the five different variants of the vehicle routing problem are considered on standard benchmark tests from the literature. The outcome of the tests is promising as the algorithm is able to improve 183 best known solutions out of 486 benchmark tests. The heuristic has also shown promising results for a large class of vehicle routing problems with backhauls as demonstrated in Ropke and Pisinger (2005).


## Keywords: metaheuristics, large neighborhood search, vehicle routing problem

## 1 Introduction

Most scientific papers in the area of heuristic solution methods for vehicle routing problems target a specific vehicle routing problem, e.g. vehicle routing problems with time windows (VRPTW). In such papers a heuristic is designed, implemented and fine-tuned to fit this particular problem type. Only a few papers (see e.g. Cordeau et al. $[17,19]$ ) consider heuristics that "out-of-the-box" can be used to solve several problem types. We believe that general vehicle routing heuristics are an important research area as such heuristics are needed for real life problems, in which the transportation needs of different companies often are different and thus call for various types of vehicle routing problems.

The heuristic in this paper is applied to five different problems: the vehicle routing problem with time windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle routing problem (MDVRP), the site dependent vehicle routing problem (SDVRP) and the open vehicle routing problem (OVRP). In the CVRP one has to deliver goods to a set of customers with known demands on minimum-cost vehicle routes originating and terminating at a depot. The vehicles are assumed to be homogeneous and having a certain capacity. In some versions of the CVRP one also has to obey a route duration constraint that limits the lengths of the feasible routes. The VRPTW extends the CVRP by associating

[^2]time windows with the customers. The time window defines an interval during which the customer must be visited. The OVRP is closely related to the CVRP, but contrary to the CVRP a route ends as soon as the last customer has been served as the vehicles do not need to return to the depot. The MDVRP extends the CVRP by allowing multiple depots. The SDVRP is another generalization of the CVRP in which one can specify that certain customers only can be served by a subset of the vehicles. Furthermore, vehicles do not need to have the same capacity in the SDVRP. In the CVRP, MDVRP and SDVRP one seeks to minimize the total traveled distance whereas in the OVRP and VRPTW, the first priority is to minimize the number of vehicles and minimizing the traveled distance is the second priority. The choice of objective is not an intrinsic feature of the problems, but just the tradition in the metaheuristic literature. Most exact methods and some metaheuristics for the VRPTW minimize total traveled distance instead of minimizing number of vehicles used.

All problem types are transformed to a rich pickup and delivery problem with time windows (RPDPTW) and are solved using the adaptive large neighborhood search (ALNS) framework introduced by [49, 50]. The heuristic presented in the two aforementioned papers has been reused, with some small improvements (summarized in section 5), to solve the five problem types considered in this paper.

In the RPDPTW we have a number of requests to be carried out by a given set of vehicles. Each request consists of picking up a quantity of goods at one location and delivering it to another location. The objective of the problem is to find a feasible set of routes for the vehicles so that all requests are serviced, and such that the overall travel distance is minimized. A feasible route of a vehicle must start at a given location, service a number of requests such that the capacity of the vehicle is not exceeded, and finally end at a given location. A pickup or delivery must take place within a given time window. Each request has an associated pickup precedence number, and a delivery precedence number. A vehicle must visit the locations in nondecreasing order of precedences (see e.g. Sigurd et al. [54] for various applications of precedence constraints). Since not all vehicles may be able to service all requests (e.g. due to their physical size or the absence of some cooling compartments) we need to ensure that every request is serviced by a given subset of vehicles. Between any two locations we have an associated, nonnegative distance and travel time. It is assumed that travel times satisfy the triangle inequality. This assumption implies that any removal of requests from a feasible route will keep the route feasible with respect to the imposed time windows.

The five vehicle routing problems considered in the present paper have all been intensively studied in the literature. The two best known problems are the VRPTW and the CVRP. The VRPTW has been the target of extensive research and almost any type of metaheuristic has been applied to the problem. For recent surveys on the state of the art in VRPTW research we recommend the survey by Cordeau et al [15] that describes both exact and heuristic methods, and the survey by Bräysy and Gendreau [8] that focuses on metaheuristics. It is hard to single out a few VRPTW metaheuristics as the number of proposed heuristics is huge, and no heuristic dominates all the other heuristics in all aspects. We would, however, like to mention the metaheuristic by Mester and Bräysy [42] as it has achieved outstanding results on larger VRPTW instances with between 200 and 1000 customers. For the smaller VRPTW instances like the Solomon data set, some of the best heuristics in terms of solution quality achieved are the Large Neighborhood Search by Bent and Van Hentenryck [2] and the Hybrid Genetic Algorithm by Homberger and Gehring [32].

Solving the VRPTW to optimality has also received much attention. The current state of the art exact methods are proposed by Kallehauge et al [35], Irnich and Villeneuve [34] and Chabrier [10], and all follow the branch-and-price framework. The two first mentioned approaches also strengthen the obtained lower bound by adding valid inequalities to the LP formulation. The size of the instances that consistently can be solved to optimality is rather limited as unsolved instances with 50 customers exist, but some large scale instances can be solved. For example, Kallehauge et al. [35] report that a 1000 customer instance has been solved. Solving problems of this size is only possible by current techniques if the instance has a certain structure and the time constraints are very tight. These observations justify the research into heuristics for the VRPTW as industrial routing problems demand robust algorithms for large-sized instances.

The CVRP literature is also vast. Classic heuristics for the problem have been surveyed by Laporte and Semet [38], and metaheuristics have been surveyed by Gendreau et al. [29] and more recently by Cordeau et al. [16]. CVRP heuristics have typically been tested on 14 instances containing between 50 and 199 customers. In the early '90s very good metaheuristics for the CVRP were developed such as parallel tabu search by Taillard [56]. Most of the solutions to the 14 classic instances found back then have still not been
improved. More recently, some larger instances have been introduced containing between 240 and 1200 customers (Golden et al. [30] and Li et al. [40]). These new instances seem to have spurred a new interest into metaheuristics for the CVRP as indicated in the survey by Cordeau et al. [16].

Until recently, exact methods for the CVRP were dominated by branch-and-cut methods. One of the best branch-and-cut algorithms for the CVRP was developed by Lysgaard et al. [41]. Recent research results indicate that branch-and-cut-and-price algorithms are a more promising approach as shown by Fukasawa et al. [26]. For the CVRP, the largest problem that has been solved to optimality contains 135 customers.

The OVRP is a variant of the CVRP that has received less attention. The problem appears in various distribution problems, in which the vehicle simply stops after the last delivery. The problem was introduced by Sariklis and Powell [51] and they proposed a two-phase cluster first-route second heuristic. Recently, tabu search heuristics were proposed by Fu et al. [25] and Brandão [6].

Tabu search heuristics for the MDVRP have been proposed by Renaud et al. [48] and Cordeau et al. [17]. The last paper deserves special attention as it describes a general heuristic that also solves periodic vehicle routing problems (PVRP) and periodic traveling salesman problems. Earlier, Chao et al. [11] proposed a record-to-record improvement heuristic for the MDVRP.

The SDVRP was first studied by Nag et al. [43] who developed several simple heuristics for the problem. Chao et al. [12] developed a more advanced heuristic and constructed several new test instances. Cordeau and Laporte [18] showed that the problem could be seen as a special case of the PVRP and they presented computational results obtained by solving the problem using their PVRP tabu search heuristic.

The main contribution of this paper is to describe a general ALNS heuristic that is able to solve all the above variants of the VRP problem. The computational results are promising as the ALNS, for the large scale VRPTW instances suggested by Gehring and Homberger [27], on average use less vehicles compared to competing heuristics, and the method becomes even more attractive compared to other heuristics as the problem size increases. For the OVRP, MDVRP and SDVRP we are able to improve a large number of best known solutions. The ALNS heuristic is comparable to most recently proposed heuristics for the CVRP, but it is surpassed by the very best heuristic for the problem type.

Due to the promising results of ALNS, we give a general description of the paradigm to make it easier to adapt the framework to other problem types. Various strategies for designing construction and removal heuristics are discussed.

In Section 2 we give a formal mathematical definition of the RPDPTW and in Section 3 we describe how the considered problem variants are transformed into the RPDPTW. In Section 4 we give a general presentation of the ALNS algorithm forming the core of our solution approach. Section 5 describes how the general framework has been adapted to solve the RPDPTW. Section 6 presents a number of computational experiments which document that the proposed heuristic does not perform worse than state-of-the-art heuristics specialized to solve each problem variant. The paper is concluded in Section 7.

## 2 Formal problem definition

We now present a mathematical formulation of the RPDPTW problem. The mathematical model is used to describe the heuristic in details in later sections and to describe how the considered VRP variants are transformed to the RPDPTW.

Following the terminology of Desaulniers et al. [22], a problem instance of the pickup and delivery problem contains $n$ requests and $m$ vehicles. The problem is defined on a graph where $P=\{1, \ldots, n\}$ is the set of pickup nodes, and $D=\{n+1, \ldots, 2 n\}$ is the set of delivery nodes. Request $i$ is represented by node $i$ and $i+n . K=\{1, \ldots, m\}$ is the set of all vehicles. Let $P_{k} \subseteq P$ and $D_{k} \subseteq D$ be the set of pickups and deliveries that can be served by vehicle $k$. Since a request is serviced by the same vehicle we may assume that $i \in P_{k} \Leftrightarrow i+n \in D_{k}$, i.e. that both the pickup and delivery can be serviced by vehicle $k$. Define $N=P \cup D$ and $N_{k}=P_{k} \cup D_{k}$. Let $\tau_{k}=2 n+k, k \in K$ and $\tau_{k}^{\prime}=2 n+m+k, k \in K$ be the nodes that represent the start and end terminals of vehicle $k$. The directed graph $G=(V, A)$ consists of the nodes $V=N \cup\left\{\tau_{1}, \ldots, \tau_{m}\right\} \cup\left\{\tau_{1}^{\prime}, \ldots, \tau_{m}^{\prime}\right\}$ and the $\operatorname{arcs} A=V \times V$. For each vehicle we have a subgraph $G_{k}=\left(V_{k}, A_{k}\right)$, where $V_{k}=N_{k} \cup\left\{\tau_{k}\right\} \cup\left\{\tau_{k}^{\prime}\right\}$ and $A_{k}=V_{k} \times V_{k}$. For each edge $(i, j) \in A$
we assign a distance $d_{i j} \geq 0$ and a travel time $t_{i j} \geq 0$. Again, it is assumed that the travel times satisfy the triangle inequality i.e. $t_{i j} \leq t_{i l}+t_{l j}$ for all $i, j, l \in V$. We assign a service time $s_{i}$ and a time window $\left[a_{i}, b_{i}\right]$ to each node $i \in V$. The service time represents the time needed for loading and unloading and the time window indicates when the visit at the particular site must start; a visit to node $i$ can only take place between time $a_{i}$ and $b_{i}$. A vehicle is allowed to arrive to a site before the start of the time window but it has to wait until the start of the time window before the visit can be performed. For each node $i \in N$ we define $l_{i}$ to be the amount of goods that should be loaded onto the vehicle at the particular node. We have that $l_{i} \geq 0$ for $i \in P$ and $l_{i}=-l_{i-n}$ for $i \in D$. Each vehicle $k \in K$ has a certain capacity $C_{k}$. Each node has assigned a precedence number $\Pi_{i}$. Nodes with low precedence must always be visited before nodes with higher precedence.

Each vehicle $k$ should follow a legal route from its start terminal $\tau_{k}$ to its destination terminal $\tau_{k}^{\prime}$. A legal route $\bar{r}$ is a simple (loop-free) path

$$
\begin{equation*}
\bar{r}=\left(\tau_{k}=v_{1}, v_{2}, \ldots, v_{h}=\tau_{k}^{\prime}\right) \tag{1}
\end{equation*}
$$

satisfying the precedences and time windows at the customers, the capacity of the vehicle, and ensuring that a pickup takes place before a delivery, and that only requests serviceable by vehicle $k$ are carried out.

More formally, we demand that a vehicle only visits nodes that can be serviced by the vehicle, i.e.

$$
\begin{equation*}
v_{i} \in N_{k}, \quad i=2, \ldots, h-1 \tag{2}
\end{equation*}
$$

A pickup-delivery pair must be served by the same vehicle, and the pickup must take place before the delivery, hence we have

$$
\begin{equation*}
i \leq j, \quad v_{i} \in P_{k}, v_{j} \in D_{k}, v_{j}=v_{i}+n \tag{3}
\end{equation*}
$$

Precedences should be obeyed along the route, this is ensured by the constraints

$$
\begin{equation*}
i \leq j, \quad \Pi_{v_{i}} \leq \Pi_{v_{j}} \tag{4}
\end{equation*}
$$

To ensure that time windows are satisfied, we introduce $S_{i} \in \mathbb{R}_{0}^{+}$to denote when the vehicle starts the service at site $v_{i}$. We then have the constraints

$$
\begin{array}{ll}
a_{v_{i}} \leq S_{i} \leq b_{v_{i}} & i=1, \ldots, h \\
S_{i+1} \geq S_{i}+s_{i}+t_{v_{i}, v_{i+1}} & i=1, \ldots, h-1 \\
a_{\tau_{k}} \leq S_{1} \leq b_{\tau_{k}} & \\
a_{\tau_{k}^{\prime}} \leq S_{h} \leq b_{\tau_{k}^{\prime}} & \tag{8}
\end{array}
$$

where $\left[a_{\tau_{k}}, b_{\tau_{k}}\right]$ is the time window of terminal $\tau_{k}$ and $\left[a_{\tau_{k}^{\prime}}, b_{\tau_{k}^{\prime}}\right]$ is the time window of terminal $\tau_{k}^{\prime}$. Finally, the capacity of the vehicle should be respected throughout the path. For this purpose we introduce $L_{i} \in \mathbb{R}_{0}^{+}$ to denote the load of the vehicle at node $i$ after serving node $i$. Then we have

$$
\begin{array}{ll}
L_{i} \leq C_{k} & i=1, \ldots, h \\
L_{i+1}=L_{i}+l_{i+1} & i=1, \ldots, h-1 \\
L_{1}=0 & \\
L_{h}=0 & \tag{12}
\end{array}
$$

The travel cost of a given route $\bar{r}$ is

$$
\begin{equation*}
c_{\bar{r}}=\sum_{i=1}^{h-1} d_{v_{i}, v_{i+1}} \tag{13}
\end{equation*}
$$

Situations may occur in which some requests cannot be serviced by the available vehicles. To model this situation we create $n$ dummy routes, consisting of a single request. These routes do not make use of any vehicles but they have a large cost, denoted $\Gamma$. Requests that are not served by a vehicle are said to be located in the request bank.

The whole problem can now be formulated as follows: let $R$ be the set of all feasible routes. The boolean matrix ( $\alpha_{j \bar{r}}$ ) for $\bar{r} \in R$ and $j=1, \ldots, n$ is used to indicate whether request $j$ is serviced using route $\bar{r}$. The boolean matrix $\left(\beta_{k \bar{r}}\right)$ for $\bar{r} \in R$ and $k=1, \ldots, m$ is used to indicate whether the route $\bar{r}$ is carried out by vehicle $k$. Using binary variables $x_{\bar{r}}$ to indicate whether route $\bar{r}$ is used in the solution we get the following model

$$
\begin{array}{lll}
\min & f(x)=\sum_{\bar{r} \in R} c_{\bar{r}} x_{\bar{r}} & \\
\text { s.t. } & \sum_{\bar{r} \in R} \alpha_{j \bar{r}} x_{\bar{r}}=1 & j=1, \ldots, n \\
& \sum_{\bar{r} \in R} \beta_{k \bar{r}} x_{\bar{r}}=1 & k=1, \ldots, m \\
& x_{\bar{r}} \in\{0,1\} & \bar{r} \in R \tag{17}
\end{array}
$$

Note that a dummy route is not assigned to any vehicle, that is, for any dummy route $\bar{r}$ we have that $\beta_{k \bar{r}}=0, \forall k=1, \ldots, m$.

## 3 Problem transformations

The heuristic in this paper is applied to five different problems - VRPTW, CVRP, OVRP, MDVRP, SDVRP - which all are transformed to a RPDPTW. The conversions which will be described in the following paragraphs are extensions of the transformations presented by Ropke and Pisinger [50] for solving VRP problems with backhauls.

### 3.1 Vehicle Routing Problem with Time Windows

In order to transform a VRPTW instance to a RPDPTW instance we map every customer in the VRPTW to a request in the RPDPTW. Such a request consists of a pick up at the depot and a delivery at the customer site. The amount of goods that should be carried by the requests is equal to the demand of the corresponding customer. The time window of the pickup is set to $\left[a_{d}, a_{d}\right]$ where $a_{d}$ is the start of the time window of the depot in the VRPTW and its service time is set to zero. The time window and service time of the delivery are copied from the corresponding customer in the VRPTW. In order to avoid routes that return to the depot for restocking we let all pickups and deliveries have precedence zero and one respectively. All vehicles in the RPDPTW have the same start and end terminals corresponding to the depot in the VRPTW. Distances and travel times in the RPDPTW are set in the natural way.

### 3.2 Capacitated Vehicle Routing Problem

A CVRP instance can easily be transformed to a VRPTW instance. This can for example be done by setting all travel and service times to zero and all time windows to [0,0]. If the CVRP contains a route duration constraint then travel times and durations should be set as in the CVRP. All time windows (including the ones at the end terminals) should be set to $[0, D]$ where $D$ is the route duration. The VRPTW is transformed to a RPDPTW as described in Section 3.1.

### 3.3 Site Dependent Vehicle Routing Problem

In the SDVRP a customer may only be serviced by a given subset of the vehicles, typically because the access paths to the node do not allow given vehicles to pass, or because specific facilities are demanded in the vehicle (e.g. a freezing compartment).

The SDVRP is easily modeled as a RPDPTW by using the transformation from CVRP to RPDPTW and noting that the RPDPTW allows us to specify the pickups $P_{k}$ and deliveries $D_{k}$ that can be carried out by vehicle $k$.

### 3.4 Open Vehicle Routing Problem

The OVRP is very close to the CVRP. The difference between the two problems is that in the OVRP the vehicles do not have to return to the depot. Thus an OVRP can be solved as an asymmetric CVRP by setting distances and travel times from every customer to the depot to zero.

The travel times in the resulting RPDPTW do not satisfy the triangle inequality, but our method is able to handle the problems anyway since $t_{i j} \leq t_{i l}+t_{l j}$ is only violated when $l$ is an end terminal. Our only reason for assuming that the triangle inequality is satisfied for the travel times is that we have to avoid situations in which the removal of one or more requests causes the travel time to increase. As the node sequence $i \rightarrow l \rightarrow j$ where $l \in\left\{\tau_{1}^{\prime}, \ldots, \tau_{m}^{\prime}\right\}$ never occurs in a valid route this violation of the triangle inequality does not cause any problems.

### 3.5 Multi-Depot Vehicle Routing Problem

In the MDVRP each customer may be serviced by a vehicle originating at any of the available depots. Even though our underlying RPDPTW model supports multiple depots, it requires that each request is assigned to a specific depot. In general this is a hard optimization problem of its own which needs to be handled together with the routing problem. Hence we use the following transformation:

Create a dummy base location where all routes start and end and where all ordinary requests are picked up. Also create a dummy request for each vehicle $k$ in the problem. The pickup and delivery locations of these requests are located at the depot of the corresponding vehicle. A dummy request has demand zero, it does not have any service time and it can be served at any time. The set $N_{k}$ of each vehicle $k$ contains all ordinary requests and the dummy request corresponding to the vehicle. In this way we ensure that each vehicle will carry precisely one dummy request.

The precedences $\Pi_{i}$ of a pickup and a delivery corresponding to an ordinary request are set to zero and two respectively. The precedence of the pickup and delivery of the dummy requests are set to one and three respectively. This ensures that all ordinary deliveries will be surrounded by the pickup and delivery of a dummy request. The distance and travel time between a pickup of an ordinary request and any other location is set to zero. All other distances and travel times are set as defined by the original MDVRP.

In a solution to the RPDPTW that serves all requests we know that each vehicle will begin at a start terminal located at the dummy base location, then perform a number of pickups and then go to the pickup of the dummy request. Next, the ordinary deliveries will be served and the vehicle will return to the delivery of the dummy request and then to the end terminal of the route. Before starting the pickup of the dummy request and after the delivery of it all travel times and distances will be zero. Furthermore travel times and distances are accumulated correctly while carrying the dummy request.

While solving MDVRP problems the cost of dummy routes $\Gamma$ must be set to a sufficiently large number such that it will never be profitable to leave a dummy request in the request bank.


Figure 1: Illustration of neighborhoods used by VNS and ALNS. VNS typically operates on one type of neighborhood with variable depth while ALNS operates on structurally different neighborhoods $N_{1}, \ldots, N_{k}$ defined by the corresponding search heuristics. All neighborhoods $N_{1}, \ldots, N_{k}$ in ALNS are a subset of the neighborhood $N^{*}$ defined by modifying $q$ variables.

## 4 Adaptive Large Neighborhood Search

We will now describe the Adaptive Large Neighborhood Search (ALNS) framework used in the present paper. We believe that ALNS can be applied to a large class of difficult optimization problems, hence in the following we consider an optimization problem in the general IP form:

$$
\begin{equation*}
\min \left\{f(x): A x \leq b, x \in \mathbb{Z}^{n}\right\} \tag{18}
\end{equation*}
$$

ALNS is a local search framework in which a number of simple algorithms compete to modify the current solution. In each iteration an algorithm is chosen to destroy the current solution, and an algorithm is chosen to repair the solution. The new solution is accepted if it satisfies some criteria defined by the local search framework applied at the master level.

To be more formal, we extend the domain of each variable $x_{i}$ to $\mathbb{Z} \cup\{\perp\}$, where $\perp$ means undefined. A destroy heuristic chooses at most $q$ variables which are assigned the value $\perp$. A repair heuristic assigns feasible values $x_{i} \in \mathbb{Z}$ to the $q$ variables.

The ALNS framework is an extension of the Large Neighborhood Search presented by Shaw [53], where a large collection of variables are modified in each iteration. In ALNS the neighborhoods are searched by simple and fast heuristics. ALNS is also based on the Ruin and Recreate paradigm presented by Schrimpf et al. [52], or the Ripup and Reroute paradigm applied in [21]. In each iteration the current solution is partially destroyed and then repaired using some heuristics. ALNS also has similarities with Very Large Neighborhood Search (VLNS) presented by Ahuja et al. [1]. In VLNS the algorithm operates on very large neighborhoods chosen in a way so that they can still be searched efficiently.

Variable Neighborhood Search (VNS) was presented by Hansen and Mladenovic [31]. VNS makes use of a parameterized family of neighborhoods, typically obtained by using a given neighborhood with variable depth. When the algorithm reaches a local minimum using one of the neighborhoods, it proceeds with a larger neighborhood from the parameterized family. When the VNS algorithm gets out of the local minimum it proceeds with the smaller neighborhood. On the contrary, ALNS operates on a predefined set of large neighborhoods corresponding to the destroy (removal) and repair (insertion) heuristics. The neighborhoods are not necessarily well-defined in a formal mathematical sense - they are rather defined by the corresponding heuristic algorithm. The difference between VNS and ALNS is illustrated in Figure 1. In the sections that follow, we will distinguish between a neighborhood and the heuristic searching it.

Instead of viewing the ALNS heuristic as a sequence of destroy and repair operations one can alternatively see it as a sequence of fix and optimize operations. The fix operation selects a number of variables that are fixed at their current value; the optimize operation seeks to find a near-optimal solution that respects the fixed variables, that is, only non-fixed variables can be changed. After the optimization operation, all variables are unlocked again. The fix operation is analogous to the destroy operation and the optimize operation is analogous to the repair operation. The fix/optimize view might be helpful when applying the heuristic to problems where the destroy and repair operations do not seem intuitive.

### 4.1 Outline of algorithm

ALNS can be based on any local search framework, e.g. simulated annealing, tabu search or guided local search. The general framework is outlined in Figure 2, where lines 2-8 form the main loop of the local search framework at the master level. Implementing a simulated annealing algorithm is straightforward as one solution is sampled in each iteration of the ALNS. A simple tabu search could for example be implemented by randomly sampling a number of candidate solutions and choosing the best non tabu solution.

In each iteration of the main loop we choose one destroy and one repair neighborhood (line 3). An adaptive layer stochastically controls which neighborhoods to choose according to their past performance (score). The more a neighborhood $N_{i}$ has contributed to the solution process, the larger score $\pi_{i}$ it obtains, and hence it has a larger probability of being chosen.

The adaptive layer uses roulette wheel selection for choosing a destroy and a repair neighborhood. If the past score of a neighborhood $i$ is denoted $\pi_{i}$ and we have $\omega$ neighborhoods, then we choose neighborhood $N_{j}$ with probability

$$
\frac{\pi_{j}}{\sum_{i=1}^{\omega} \pi_{i}}
$$

Adaptive Large Neighborhood Search

```
    Construct a feasible solution }x\mathrm{ ; set }\mp@subsup{x}{}{*}:=
    Repeat
    Choose a destroy neighborhood N- and a repair neighborhood
    N+
    obtained scores {\mp@subsup{\pi}{j}{}}
    Generate a new solution x' from x using the heuristics
    corresponding to the chosen destroy and repair neighborhoods
    If }\mp@subsup{x}{}{\prime}\mathrm{ can be accepted then set }x:=\mp@subsup{x}{}{\prime
    Update scores }\mp@subsup{\pi}{j}{}\mathrm{ of }\mp@subsup{N}{}{-}\mathrm{ and N+
    If }f(x)<f(\mp@subsup{x}{}{*})\mathrm{ set }\mp@subsup{x}{}{*}:=
    Until stop criteria is met
    Return x*
```

Figure 2: Outline of the ALNS framework

Notice that the destroy and repair neighborhoods are selected independently, and hence two separate roulette wheel selections are performed.

In most applications the neighborhoods are searched by fast heuristics, hence it is reasonable to assume that they are equally fast. But if some heuristics are significantly slower than others, one may normalize the score $\pi_{i}$ of a neighborhood with a measure of the time consumption $t_{i}$ of the corresponding heuristic. This ensures a proper trade-off between time consumption and solution quality.

In line 4 of the ALNS-algorithm, we first destroy the current solution $x$ using a heuristic searching the neighborhood $N^{-}$and then repair the solution using a heuristic corresponding to neighborhood $N^{+}$. It can be advantageous to use noising or randomization in the destroy and repair heuristics to obtain a proper diversification. In traditional local search heuristics the diversification is controlled implicitly by the local search paradigm (accept ratio, tabu list, etc.), but since we use large neighborhoods which are searched by simple heuristics, it is not sufficient to have a diversification operator at the master level. We also need a diversification operator at the sub-level to avoid stagnating search processes where the destroy and repair neighborhoods keep performing the same modifications to a solution.

Finally, in line 6 we update the scores $\pi_{i}$ of the neighborhoods. A number of criteria can be used to measure how much a neighborhood contributes to the solution process: new best solutions are obviously given a large score, but also not previously visited solutions are given a score. Depending on the local search framework used on the master level, one may also give specific scores to accepted solutions e.g. in a simulated annealing framework. Since each step of the ALNS heuristic involves two neighborhoods (a destroy and a repair neighborhood), the score obtained in a given iteration is divided equally between them.

Every $M$ iterations of the ALNS algorithm, the scores $\pi_{i}$ are reset, and the probabilities for choosing the neighborhoods are recalculated. Each neighborhood is assigned a minimum probability for being chosen to ensure that statistical information about its performance can be collected. The probabilities for choosing a neighborhood can also be a weighted sum of the score during the last $M$ iterations, and the overall score since the beginning of the algorithm.

### 4.2 Designing an ALNS algorithm

In order to design an ALNS algorithm for a given optimization problem one needs to

- Choose a number of fast construction heuristics which are able to construct a full solution given a partial solution (a solution where some variables are set to $\perp$ and some have a real value).
- Choose a number of destroy heuristics. It might be worthwhile to choose destroy heuristics that are expected to work well with the chosen construction heuristics, but it is not necessary.
- Choose a local search framework at the master level.

In each iteration the heuristic corresponding to a destroy neighborhood should remove a given number $q$ of variables. The destroy neighborhoods $\left(N^{-}\right)$should be a proper mix of neighborhoods which can intensify and diversify the search. To diversify the search, one may randomly choose $q$ decision variables, i.e. using a random removal neighborhood. To intensify the search one may try to remove $q$ "critical" variables, i.e. variables having a large cost or variables spoiling the current structure of the solution (e.g. edges crossing each other in a Euclidean traveling salesman problem). This is known as worst removal or critical removal. Concrete examples on random removal and worst removal neighborhoods in a VRP context are given in Sections 5.1.1-5.1.2.

One may also choose a number of related variables that are easy to interchange while maintaining feasibility of the solution. This related removal neighborhood was introduced by Shaw [53]. More formally we can measure the relatedness $r_{i j}$ of two variables $x_{i}$ and $x_{j}$ by the deviation of the corresponding coefficients in the constraint matrix $A$ in problem (18). The smaller $r_{i j}$ the more related are variables $x_{i}$ and $x_{j}$. How exactly $r_{i j}$ should be defined depends on the concrete problem at hand, and one may even have several simultaneous neighborhoods defined by various choices of the relatedness measure $\left(r_{i j}\right)$. In order to choose the $q$ most related variables, one needs to solve the NP-hard dispersion-sum problem given by

$$
\begin{align*}
\operatorname{minimize} & \sum_{i=1}^{n} \sum_{j=1}^{n} r_{i j} x_{i} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} x_{j}=q  \tag{19}\\
& x_{j} \in\{0,1\}, \quad j=1, \ldots, n
\end{align*}
$$

A greedy heuristic for this problem running in $O\left(n^{3}\right)$ was presented in [44] together with a more timeconsuming exact algorithm. If $n$ is large, it may be too time-consuming even to compute the whole matrix $\left(r_{i j}\right)$ and one will instead choose related variables according to some heuristics. Shaw [53] presented an algorithm running in $O(q n)$ time by initially selecting a variable at random, and then repeatedly selecting an already selected variable $i$ and finding a variable $j$ which minimizes $r_{i j}$ and adding $j$ to the set of chosen variables. An alternative heuristic is based on a modified Kruskal's algorithm for the minimum spanning tree problem, using $r_{i j}$ as edge weights, which stops when a connected component with $q$ or more elements has been constructed. The variables in this component are set to $\perp$. The worst-case running time of this algorithm is $O\left(n^{2} \log n\right)$ as we have $n^{2}$ edges in Kruskal's algorithm. Ropke and Pisinger [49] used a modified version of this algorithm in the VRP for splitting requests on a route into two strongly connected subsets. It should be noted that solving the dispersion sum problem (19) to optimality seldom would be a good idea even if it could be done in a very short time. If $r_{i j}$ is independent of the current solution the destroy neighborhood obtained by solving the dispersion sum problem to optimality would always assign $\perp$ to the same set of variables. Concrete examples on various related removal neighborhoods are given in Sections 5.1.3-5.1.5.

Following the same idea as in related removal one may choose a number of variables having small coefficients in the resource constraints in (18), as these generally are easy to interchange and loosely speaking can fill up unused resource constraints. We denote this strategy small removal.

Finally, one may use history based removal where the $q$ variables are chosen according to some historical information as presented in [49]. The historical information could for example count how often setting a given variable (or set of variables) to a specific value leads to a bad solution. One may then try to remove variables that currently are assigned an improper value, based on the historical information. Variants of the history based removal neighborhood are discussed in Sections 5.1.6-5.1.7.
repair neighborhoods $\left(N^{+}\right)$are typically based on concrete well-performing heuristics for the given problem. These heuristics can make use of variants of the greedy paradigm, e.g. performing the locally best choice in each step, or performing the least bad choice in each step. An alternative variant of the greedy paradigm is to set all variables to their upper bound in problem (18), and repeatedly decrease the most expensive variable until a feasible solution is obtained. The repair heuristics can also be based on approximation algorithms or exact algorithms which have been relaxed to obtain faster solution times at the cost of solution quality. Shaw [53] and Bent and Van Hentenryck [2] proposed more expensive algorithms
like searching $N^{+}$based on relaxed branch-and-bound methods. Although ALNS mainly is intended to use cheap heuristics, more expensive search methods can be used if the scores of the corresponding neighborhoods are normalized with respect to the time consumption. In the context of VRP problems, repair neighborhoods are considered in more detail in Section 5.2 discussing both simple greedy approaches and variants of regret heuristics.

Some optimization problems can be split into a number of sub-problems, where each sub-problem can be solved individually. Such problems include the Bin Packing Problem in which a number of bins are to be filled, or the Vehicle Routing Problem in which a number of routes are to be constructed. For such problems one should decide whether the subproblems should be solved one by one (sequential heuristics) or all subproblems should be solved at the same time (parallel heuristics). Sequential heuristics are easier to implement but may have the disadvantage that the last subproblem solved is left with variables that do not fit well together. This is to some extent avoided in parallel heuristics.

A natural extension to the ALNS framework is to have coupled neighborhoods. In principle one may, for each destroy neighborhood $N_{i}^{-}$, define a subset $K_{i} \subseteq\left\{N^{+}\right\}$of repair neighborhoods that can be used with $N_{i}^{-}$. The roulette wheel selection of repair neighborhoods will then only choose a neighborhood in $K_{i}$ if $N_{i}^{-}$was chosen.

As a special case, one may have $K_{i}=\emptyset$ meaning that the neighborhood $N_{i}^{-}$takes care of both the destroy and repair steps. One could use an ordinary local search heuristic to compete with the other destroy and repair neighborhoods, ensuring that a thorough investigation of the solution space close to the current solution is made from time to time.

For some problems it may be sufficient to have a number of destroy and repair heuristics that are selected randomly with equal probability, that is without the adaptive layer. We will denote such a heuristic a Large Multiple-Neighborhood Search (LMNS). The LMNS heuristics share the robustness of the ALNS heuristics, while having considerably fewer parameters to calibrate.

### 4.3 Properties of the ALNS framework

The ALNS framework has several advantages. For most optimization problems we already know a number of well-performing heuristics which can form the core of an ALNS algorithm. Due to the large neighborhoods and diversity of the neighborhoods, the ALNS algorithm will explore large parts of the solution space in a structured way. The resulting algorithm becomes very robust, as it is able to adapt to various characteristics of the individual instances, and seldom is trapped in a local minima.

ALNS is particularly well suited for tightly constrained problems, in which small neighborhoods are not sufficient to escape a local minima or certain areas of the solution space. In such problems, the large neighborhood search makes it possible to change many variables each time to reach new feasible solutions.

The calibration of the ALNS algorithm is quite limited as the adaptive layer automatically adjusts the influence of each neighborhood used. It is still necessary to calibrate the individual sub-heuristics used for searching the destroy and repair neighborhoods, but one may calibrate these individually or even use the parameters used in existing algorithms.

In the design of most local search algorithms the researcher has to choose between a number of possible neighborhoods. In ALNS the question is not "either-or" but rather "both-and". As a matter of fact, our experience is that the more (reasonable) neighborhoods the ALNS heuristic makes use of, the better it performs [49].

## 5 ALNS applied to the RPDPTW

We will now describe how the general ALNS framework has been adapted to the RPDPTW problem. The "variables" in the ALNS framework correspond to requests in the RPDPTW. A destroy neighborhood $N^{-}$ consists of removing $q$ requests from the existing routes and assigning them to the request bank.

The heuristic described in this section is almost identical to the heuristic used to solve a large class of vehicle routing problems with backhauls ([50]). One more destroy heuristic has been added (see section 5.1.5) and the formula determining the number of requests to remove has been changed (see section 6.1.1).

For completeness we will describe the various heuristics associated with the destroy neighborhoods in Section 5.1. A repair neighborhood $N^{+}$inserts requests from the request bank into one or more legal routes. The associated insertion heuristics are described in Section 5.2. The local search framework used at the master level is simulated annealing to be described in Section 5.3. Section 5.4 describes the noising method used to diversify the search of the heuristics. Finally, the scheme used for adjusting the weights in the roulette wheel selection is described in Section 5.5.

### 5.1 Request removal

The ALNS heuristic for the RPDPTW makes use of seven different removal heuristics, each searching a given removal neighborhood $N^{-}$. The heuristics take as input a given solution $x$ and outputs $q$ requests that have been removed from the routes.

### 5.1.1 Random removal

The simplest removal heuristic, random removal, selects $q$ requests at random and removes them from the solution. This obviously has the effect of diversifying the search.

### 5.1.2 Worst removal

The purpose of the worst removal heuristic is to choose a number of requests that are very expensive, or which somehow spoil the structure of the current solution. In the RPDPTW it seems reasonable to try to remove requests with high cost and insert them at another place in the solution to obtain a better solution value.

Given a request $i$ served by some vehicle in a solution $x$ we define the cost of the request $\Delta f_{-i}$ as the difference between the value of $f(x)$ and the cost of solution $x$ where request $i$ is removed completely from the problem.

The worst removal heuristic now repeatedly chooses a new request $i$, having the largest cost $\Delta f_{-i}$ until $q$ requests have been removed. The removal heuristic is randomized, the randomization is controlled by the parameter $p$. If $p$ is small, the most expensive request is selected, while less expensive requests may be chosen for larger values of $p$ with a probability that decreases with the cost $\Delta f_{-i}$. We refer to [49] for additional details.

### 5.1.3 Related removal

The purpose of the related removal heuristic is to remove a set of requests that in some sense are related and hence easy to interchange. For the RPDPTW we define the relatedness $r_{i j}$ of two orders $i$ and $j$ solely by the distance between the requests, as introduced by Ropke and Pisinger [49]. Since each request $i$ consists of a pickup node $i$ and a delivery node $i+n$ we get the expression

$$
\begin{equation*}
r_{i j}=\frac{1}{D}\left(d^{\prime}(i, j)+d^{\prime}(i, j+n)+d^{\prime}(i+n, j)+d^{\prime}(i+n, j+n)\right) \tag{20}
\end{equation*}
$$

where the distance measure $d^{\prime}(u, v)$ between two nodes in this context is defined as

$$
d^{\prime}(u, v)= \begin{cases}d_{u v} & \text { if } u \text { and } v \text { are not located at a terminal }  \tag{21}\\ 0 & \text { if } u \text { or } v \text { is located at a terminal }\end{cases}
$$

The motivation for neglecting the distance from a terminal is that the terminal is going to be visited in any case, and hence should not contribute to the relatedness measure of two requests.

The denominator $D$ is set to the number of nonzero terms in equation (20), i.e. the number of pickups and deliveries taking place at a site different from a terminal. Hence if all nodes are different from a terminal we set $D:=4$ while if both requests have a pickup at a terminal we set $D:=1$.

The relatedness measure is used to remove customers as described in Shaw [53]. The algorithm initially selects a request $i$ by random. Then it repeatedly chooses an already selected request $j$ and selects a new request which is most related to $j$. The algorithm stops when $q$ requests have been chosen. Like in the
worst removal heuristic (Section 5.1.2) the process is controlled by a randomization parameter $p$. If $p$ is zero, the most related request is always chosen in the inner loop. If $p>0$ a less related request may be chosen, where the probability of choosing a request decreases with the relatedness measure $r_{i j}$ and increases with $p$. The algorithm is described in more detail in [49].

### 5.1.4 Cluster removal

The cluster removal heuristic is a variant of the related removal heuristic in which we try to remove clusters of related requests from a few routes. As a motivation, consider a route where the requests are grouped into two geographical clusters. When removing requests from such a route it is often important to remove one of these clusters entirely as the insertion methods otherwise would be prone to insert the removed requests back into the route. The related removal heuristic from Section (5.1.3) has a tendency to leave requests from such a cluster on the original route so therefore we propose a heuristic that seeks to remove an entire cluster at once.

Although we could use the same algorithm as above for selecting related requests - just restricted to a single route - we have chosen to use a heuristic based on strongly connected components, as described in Section 4.2. We simply run Kruskal's algorithm for the minimum spanning tree problem (using $r_{i j}$ for the edge distances) and terminate the algorithm when two connected components remain. One of these clusters is chosen at random and the requests from the chosen cluster are removed. If less than $q$ requests have been selected, we randomly pick a removed request and choose a request from a different route, that is most related to the given request. The route of the new request is partitioned into two clusters and so the process continues until the desired number of requests has been removed. We refer the reader to Ropke and Pisinger [50] for more details.

### 5.1.5 Time-oriented removal

Thetime oriented removal is another variant of the related removal heuristic. In this heuristic we try to remove requests that are served at roughly the same time as we hope that these requests are easy to interchange.

The heuristic works as follows. A request $\tilde{r}$ is chosen at random and the $B$ requests that are closest to $\tilde{r}$ (according to the distance $r_{i j}$ defined in (20)) are marked. We define a time-oriented distance between two requests as

$$
\begin{equation*}
\Delta t_{i j}=\left|t_{p_{i}}-t_{p_{j}}\right|+\left|t_{d_{i}}-t_{d_{j}}\right| \tag{22}
\end{equation*}
$$

where $t_{p_{i}}$ and $t_{d_{i}}$ are the times of the pickup and the delivery of request $i$ in the current solution. Among the $B$ marked requests we select the $q-1$ that are closest to $\tilde{r}$ according to $\Delta t_{i j}$. The process is controlled by a randomization parameter $p$ like in the related removal heuristic described in Section 5.1.3. These requests are removed together with $\tilde{r}$.

Before running the removal heuristic we first select a subset of all requests that are geographically close to the chosen request, as we observed that this selection made the heuristic perform better on large instances. The reason for this is that if the heuristic only considered requests that are close to the chosen request time-wise, then only one or two requests would be removed from each route in the larger problems, and this makes it hard to make any major improvements to the solution.

### 5.1.6 Historical node-pair removal

It is well-known from several metaheuristics that using historical information in the local search (e.g. the long term memory or the aspiration level in tabu search) may improve the performance of a local search algorithm. In the present heuristic we look at the historical success of visiting two nodes right after each other in a route, while the heuristic in Section 5.1.7 looks at the historical success of servicing two requests by the same vehicle.

The historical node-pair removal heuristic (denoted the neighbor graph removal heuristic in [50]) makes use of both historical information and the present solution when removing the requests. With each pair of nodes $(u, v) \in A$ we associate a weight $f_{(u, v)}^{*}$ which indicates the best solution value found so far, in a solution which used edge $(u, v)$. Initially $f_{(u, v)}^{*}$ is set to infinity, and each time a new solution is
found, we update the weights $f_{(u, v)}^{*}$ of all edges used in the given solution, for which the edge weight can be improved.

We may use the edge weights $f_{(u, v)}^{*}$ to remove requests that seem to be misplaced. The removal heuristic simply calculates the cost of a request $(i, i+n)$ in the current solution by summing the weights of edges incident to $i$ and $i+n$. The most costly request is removed, and the process is repeated until $q$ requests have been extracted. To ensure some variation in the extracted requests, randomness is introduced in the removal process.

### 5.1.7 Historical request-pair removal

An alternative history-based removal heuristic can make use of the historical success of placing pairs of requests in the same route. We will call this approach historical request-pair removal (denoted request graph removal in [50]).

For this purpose we introduce the weight $h_{(a, b)}$ for each pair of requests $(a, b) \in\{1, \ldots, n\} \times$ $\{1, \ldots, n\}$. The weight $h_{(a, b)}$ denotes the number of times the two requests $a$ and $b$ have been served by the same vehicle in the $B$ best unique solutions observed so far in the search. Initially $h_{(a, b)}$ is set to zero, and each time a new unique top- $B$ solution is observed, the weights are incremented and decremented according to the solutions entering and leaving the top- $B$ solutions. An appropriate value for $B$ was experimentally found to be 100 .

The weights $h_{(a, b)}$ could be used in a similar way as in the historical node-pair removal heuristic described above, but initial experiments indicated that this was an unpromising approach. Instead, the graph is used to define the relatedness between two requests, such that two requests are considered to be related if the weight of the corresponding edge in the request graph is high. This relatedness measure is used as in the related removal heuristic described in Section 5.1.3.

### 5.2 Inserting requests

The considered insertion heuristics all construct a number of routes for the vehicles. As each route can be considered as an individual sub-problem the heuristics can build the routes sequentially or in parallel as discussed in Section 4.2. The sequential heuristics build one route at a time while parallel heuristics construct several routes at the same time. The heuristics presented in this paper are all parallel, as they are used in a context where a number of partial routes $k \in R$ are given, and a number of unplaced requests $U$ is inserted from the request bank.

### 5.2.1 Basic greedy heuristic

A simple greedy approach is to repeatedly insert a request in the cheapest possible route. More formally, let $\Delta f_{i, k}$ denote the change in the objective value incurred by inserting request $i$ at the cheapest position in route $k$. We set $\Delta f_{i, k}=\infty$ if request $i$ cannot be inserted in route $k$. Following the greedy approach we calculate

$$
\begin{equation*}
(i, k):=\arg \min _{i \in U, k \in R} \Delta f_{i, k} \tag{23}
\end{equation*}
$$

and insert request $i$ in route $k$ at its minimum cost position. This process continues until all requests have been inserted or no more requests are feasible. The time complexity of this basic greedy heuristic is decreased by tabulating all values of $\Delta f_{i, k}$ and noting that only one route is changed in each iteration.

### 5.2.2 Regret heuristics

An obvious problem with the basic greedy heuristic is that it often postpones the placement of difficult requests to the last iterations where we do not have much freedom of action. The regret heuristic tries to circumvent the problem by incorporating a kind of look-ahead information when selecting the request to insert. Regret heuristics have been used by Potvin and Rousseau [45] for the VRPTW and in the context of the Generalized Assignment Problem by Trick [59].

Let $\Delta f_{i}^{q}$ denote the change in the objective value incurred by inserting request $i$ into its best position in the $q$ th cheapest route for request $i$. For example $\Delta f_{i}^{2}$ denotes the change in the objective value by inserting request $i$ in the route where the request can be inserted second cheapest. In each iteration, the regret heuristic chooses to insert the request $i$ according to:

$$
\begin{equation*}
i:=\arg \max _{i \in U}\left(\Delta f_{i}^{2}-\Delta f_{i}^{1}\right) \tag{24}
\end{equation*}
$$

The request is inserted in the best possible route at the minimum cost position. In other words, we maximize the difference of cost of inserting the request $i$ in its best route and its second best route. We repeat the process until no more requests can be inserted.

The heuristic can be extended in a natural way to define a class of regret heuristics: the regret $-q$ heuristic is the construction heuristic that in each construction step chooses to insert request $i$ given by:

$$
\begin{equation*}
i:=\arg \max _{i \in U}\left(\sum_{h=2}^{q} \Delta f_{i}^{h}-\Delta f_{i}^{1}\right) \tag{25}
\end{equation*}
$$

Ties are broken by selecting the request with smallest insertion cost. The request $i$ is inserted at its minimum cost position, in its best route.

The regret heuristic based on criteria (24) is obviously a regret-2 heuristic and the basic greedy heuristic from Section 5.2 .1 is a regret-1 heuristic due to the tie-breaking rules. Informally speaking, heuristics with $q>2$ investigate the cost of inserting a request on the $q$ best routes and chooses to insert the request whose cost difference between inserting it into the best route and the $q-1$ best routes is largest. Compared to a regret-2 heuristic, regret $-q$ heuristics with large values of $q$ discover earlier when the possibilities for inserting a request at a favorable place becomes limited.

### 5.3 Master local search framework

At the master level we have chosen to use simulated annealing as our local search framework. Our acceptance criteria in Line 5 of the main algorithm depicted in Figure 2 thus becomes to accept a candidate solution $x^{\prime}$ given the current solution $x$ with probability

$$
\begin{equation*}
e^{-\frac{f\left(x^{\prime}\right)-f(x)}{T}}, \tag{26}
\end{equation*}
$$

where $T>0$ is the temperature. We use a standard exponential cooling rate, starting from the temperature $T_{\text {start }}$ and decreasing $T$ according to the expression $T=T \cdot c$, where $c$ is the cooling rate, $0<c<1$. We calculate $T_{\text {start }}$ by inspecting our initial solution. The following method was developed in [50] and works well when the number of requests in the problems to be solved is relatively constant. First the cost $z^{\prime}$ of the initial solution is calculated using a modified objective function. In the modified objective function, $\Gamma$ (cost of having requests in the request bank) is set to zero. The start temperature is now set such that a solution that is $w$ percent worse than the current solution is accepted with probability 0.5 . The reason for setting $\Gamma$ to zero is that typically this parameter is large and could cause us to set the starting temperature too high if the initial solution had some requests in the request bank. Now $w$ is a parameter that has to be set. We denote this parameter the start temperature control parameter. We have observed that this approach is better at coping with instances of different sizes if we divide the start temperature found by the number of requests in the instance.

### 5.4 Applying noise to the objective function

As mentioned in Section 4.1 it can be necessary to use noising or randomization in the destroy and repair heuristics, as a diversification operator at the master level is not sufficient.

For the RPDPTW problem we have chosen to add a noise term to the objective function of the insertion heuristics. Every time we calculate the cost $C$ of a request insertion into a route, we add some noise $\delta$ and calculate a modified insertion cost $C^{\prime}=\max \{0, C+\delta\}$. The noise $\delta$ is chosen as a random number in the interval [ $-N_{\max }, N_{\max }$ ], where $N_{\max }=\eta \cdot \max _{i, j \in V}\left\{d_{i j}\right\}$, and $\eta$ is a parameter that controls the amount
of noise. We use the maximum distance to make the noise level proportional to the objective value. The distances form part of the objective function in all problems considered, hence the noise level is somehow proportional to the objective function.

Every insertion heuristic is split into two heuristics - one using noise, and one using the original objective function only. After selecting which removal and insertion heuristic to use, it is decided if the clean or the noise imposed insertion heuristic should be used. This is again done using the roulette wheel selection principle as we keep track of how well the insertion heuristics with and without noise have been performing recently. Notice that we do not keep track of how well each individual insertion heuristic is performing with and without noise, but only the insertion heuristics in general.

### 5.5 Adaptive weights adjustment

The roulette wheel selection mechanism in the ALNS framework presented in Section 4.1 is based on the scores $\pi_{i}$ of the respective heuristics. A high score corresponds to a successful heuristic, and hence the heuristic should be chosen with larger probability.

The scores are collected during some small time segments, defined as 100 iterations. The observed score $\bar{\pi}_{i, j}$ of a heuristic $i$ in time segment $j$ is incremented with the following values depending on the new solution $x^{\prime}$ :
$\sigma_{1}$ The last remove-insert operation resulted in a new global best solution $x^{\prime}$.
$\sigma_{2}$ The last remove-insert operation resulted in a solution $x^{\prime}$ that has not been accepted before, and the cost of the new solution is better than the cost of current solution.
$\sigma_{3}$ The last remove-insert operation resulted in a solution $x^{\prime}$ that has not been accepted before. The cost of the new solution is worse than the cost of current solution, but the solution was accepted.

We distinguish between the two latter situations since we prefer heuristics that are able to improve on the solution, but we also want to reward heuristics that can diversify the search to some extent. We keep track of visited solutions by assigning a hash key to each solution and storing the key in a hash table.

At the end of each segment we calculate the smoothened scores to be used in the roulette wheel selection as

$$
\begin{equation*}
\pi_{i, j+1}=\rho \frac{\bar{\pi}_{i, j}}{a_{i}}+(1-\rho) \pi_{i, j} \tag{27}
\end{equation*}
$$

where $a_{i}$ is the number of times the heuristic has been called in the time segment. The reaction factor $\rho$ controls how quickly the weight adjustment algorithm reacts to changes in the scores. If $\rho=1$ then the roulette wheel selection is only based on the scores in the most recent segment, while if $\rho<1$ the scores of past segments is also taken into account. For an illustration of how the scores evolve during a search we refer the reader to [49].

### 5.6 Minimizing the number of vehicles used

The presented heuristic minimizes the travel costs, hence in order to minimize the number of vehicles also, we use a two-stage approach.

Starting from a heuristic solution which makes use of $m$ vehicles, we repeatedly remove one route and place the corresponding requests in the request bank. If the ALNS heuristic is able to find a solution that serves all requests we proceed with a lower number of routes. We assign a large cost $\Gamma$ to requests in the request bank to encourage solutions with all requests serviced.

If the ALNS heuristic fails to find a solution with all requests serviced, the algorithm steps back to the last feasible solution encountered and proceeds with the second stage of the algorithm which consists of the ordinary ALNS heuristic with the last found feasible solution as a starting point. For additional detail on the two-stage algorithm see [49].

A different two-stage approach was used by Bent and Van Hentenryck [2], in which two distinct neighborhoods and metaheuristics were used for the two stages.

### 5.7 Initial solution

The initial solution used in the local search is found by a regret- 2 heuristic. All requests are initially placed in the request bank, and the regret- 2 heuristic is run in parallel for all vehicles.

## 6 Computational experiments

### 6.1 Parameter tuning

In order to keep the parameter tuning to a minimum we have used almost the same parameter setting as determined in [49], with the exception of the cooling rate $c$ and the start temperature control parameter $w$. These were calibrated by selecting 5 reasonable values for each parameter and testing the 25 possible combinations on 8 VRPTW instances with between 100 and 1000 customers. This was done separately for both the vehicle minimizing ALNS and the ordinary distance minimizing ALNS, so different values for $c$ and $w$ are used when trying to find a feasible solution and when minimizing the distance.

### 6.1.1 Selecting the number of requests to remove

In our past work [49, 50] we have removed up to 100 requests in each iteration. Experiments indicated that we seldom accepted the moves resulting from such removals as the insertion heuristics are too weak. Consequently the maximum number of requests that can be removed in a single iteration has been reduced to 60 . It was also observed that moves resulting from removing a small number of requests often were accepted, but seldom lead to any major improvements of the solution. Therefore we now remove at least $0.1 n$ requests in each iteration. To be precise, the number of requests to remove is found as a random number between $\min \{0.1 n, 30\}$ and $\min \{0.4 n, 60\}$. That is, for small instances the number of requests to remove will be in the interval $[0.1 n, 0.4 n]$ while for larger instances the interval is $[30,60]$.

### 6.2 Analysis of typical search

In order to illustrate how the present ALNS heuristic works, we have produced a number of figures by running the heuristic on a 200 customer VRPTW instance minimizing the traveled distance. All figures are from the same search.

Figure 3 shows the cost of the accepted solutions and the best known solution as a function of the iteration count. The figure is very typical for a Simulated Annealing metaheuristic. Initially very poor moves are accepted and consequently the graph of accepted solutions is fluctuating wildly. As the temperature is decreased the fluctuations become smaller and they eventually nearly die out such that only improving solutions or very mildly deteriorating solutions are accepted.

The next sequence of figures all show the distance between selected solutions. We have chosen to define the distance between two solutions $x$ and $x^{\prime}$ as the Hamming distance between the corresponding binary edge-variables. Figure 4 (left) shows the distance between each new accepted solution and the previously accepted solution (the current solution). The figure illustrates that in the first half of the search the ALNS can make huge changes to the solution in a single move as discussed in Section 4.3. In the other half of the search only small moves are accepted. Figure 4 (right) depicts the difference between each proposed solution and the last accepted solution. The figure shows that large moves are proposed throughout the search process, but toward the end of the search these large moves are not accepted.

The above observations cause us to suggest some possible improvements to the algorithm: (1) To wards the end of the search it seems to be beneficial to reduce the number of requests $q$ that are removed in each iteration as the simulated annealing framework generally only will accept minor changes. This could speed up the algorithm or allow us to perform more iterations within the same amount of time. (2) Several moves have distance zero, meaning that no changes were made to the solution vector. Obviously, such moves should be avoided, possibly by incorporating a tabu-like principle in the insertion heuristics.

Figure 5 (top left) shows the Hamming distance between the accepted solutions and the previously best known solution. Every time the distance reaches zero we have most likely found a new best solution (or we have returned to the previously best known solution). It is interesting to see how quickly the search


Figure 3: Solution cost as function of iteration count. Along the $x$-axis we show the iteration count while the $y$-axis shows solution cost. The upper graph is the cost of the accepted solutions while the lower graph is the cost of the currently best known solution.
moves away from the currently best known solution. This behavior is contrary to some of the ideas behind the Variable Neighborhood metaheuristics and the Noising Method, where one tries to stick around the currently best known solution or return to it if the current search direction seems fruitless. Also notice that we move very far away from the best solutions. This can be seen as the number of edges in a solution is equal to $2 n+m$. The maximum Hamming distance between two solutions is therefore $2(2 n+m)$. In the instance studied in this section $n=200$ and $m=20$, thus the maximum hamming distance for this instance is 840 .

Figure 5 (top right) shows the Hamming distance from each accepted solution and the best solution found throughout the search. It is interesting to see that this plot is much more steady compared to the plot in Figure 5 (top left) and that even though we are moving very far away from the previously best known solution, the distance to the overall best solution (which of course is unknown early in the search) remains roughly stable.

Figure 5 (bottom) combines the two previous plots. The upper contours of the two plots fit each other surprisingly well. This indicates that the ALNS heuristic quickly moves away from the currently best known solution until the distance to the currently best known solution is roughly the same as the distance to the final best known solution. The search then visits solutions where the two distances are roughly the same until a new best solution is found. We believe that the Simulated Annealing framework is responsible for this behavior.

### 6.3 Application of the heuristic to standard benchmark problems

In this section we examine how the proposed heuristic performs on standard benchmark instances for the five problem types considered in this paper. In order to investigate how much influence the number of LNS iterations has on the solution quality, we have tested two configurations of our algorithm. One version (ALNS-25K) that does 25000 iterations while minimizing the total traveled distance and one that does 50000 iterations (ALNS-50K). Both configurations use up to 25000 iterations in the vehicle minimization stage. The cooling rate $c$ in the simulated annealing algorithm described in Section 5.3 was adjusted such that both configurations go through the same temperature span.

We have applied the heuristic to each instance 5 or 10 times, depending on the instance size. We report the best solution value out of the 5 or 10 experiments as well as the average solution value.

All experiments were performed on a 3 GHz Pentium 4 computer. Detailed results from the experiments can be found in the appendix. As mentioned before, the same parameter configuration has been used for all experiments.


Figure 4: Left: Difference between accepted solutions. The figure shows the Hamming distance between an accepted solution and the last accepted solution. Right: Difference between proposed solution and last accepted solution. The figure shows the Hamming distance between each proposed solution and the last accepted solution. The $x$-axis shows iteration count and the $y$-axis shows solution distance.


Figure 5: Top left: Hamming distance between accepted solutions and the currently best known solution.
Top right: Hamming distance between accepted solutions and the best solution found during the search. Bottom: The two plots showed in the same diagram. The $x$-axis shows iteration count and the $y$-axis shows Hamming distance.

### 6.3.1 Vehicle routing problems with time windows (VRPTW)

A large number of metaheuristics have been proposed for solving the VRPTW. Bräysy and Gendreau [8] have surveyed most of these approaches, and their survey contains 47 metaheuristics. Most of these metaheuristics have been applied to the Solomon data set [55]. The Solomon data set contains 56 VRPTW instances that all contain 100 customers. The instances contain a variety of customer and time window distributions and have proved to be a challenge for both heuristics and exact methods since their introduction. Most of the proposed metaheuristics use vehicle minimization as primary objective and travel distance minimization as secondary objective, we prioritize our objectives in the same way. In this section we compare the ALNS heuristic to the "best" of the previously proposed metaheuristics. It is hard to decide which of the previously proposed metaheuristics that are the best, as several criteria for comparing the heuristics could be used. In this paper we have selected the metaheuristics that have been able to reach the minimum number of total vehicles used for all of the instances in the Solomon data set, as these in a certain sense can be regarded as the best heuristics in terms of solution quality. Table 1 summarizes this comparison.

The table shows that the ALNS heuristic is able to compete with the best heuristics for the VRPTW when considering the moderately sized Solomon instances, even though it was not specifically designed for this problem type. The heuristics by Homberger and Gehring [32] and Bent and Van Hentenryck [2] obtain slightly better results compared to the best solutions obtained by ALNS-25K, but the papers do not state how many experiments that were performed to reach these results. On the other hand, ALNS-25K reaches slightly better solutions than the three remaining heuristics and the computational time is reasonable. The column showing the average performance of ALNS-25K indicates that a single run of the heuristic can be performed quite fast but then one should not expect to reach the minimum number of vehicles. It does not seem worthwhile to spend 50000 iteration instead of 25000 for these rather small problems. During the calibration of the algorithm we discovered a new best solution to problem R207. This solution can be found in the Appendix.

When the VRPTW has been solved by exact methods in the literature one has usually considered minimizing the traveled distance without putting any limits on the number of vehicles. Furthermore all distances are usually truncated to one decimal (see for example the work by Larsen [39]). In Table 2 we summarize the result of applying the ALNS-25K heuristic to the Solomon VRPTW instances using the same objective and rounding criteria as the exact methods. The heuristic has been applied to each instance 10 times and the table reports the best and average performances. The table shows that the heuristic is able to find solutions that are very close to the optimal solutions and in many cases the heuristic is able to identify the optimal solution in at least one of the test runs.

The optimal solutions have been collected from Chabrier [10], Cook and Rich [14], Danna and Le Pape [20], Feilet et al. [24], Irnich and Villeneuve [34], Kallehauge et al. [35], Kohl et al. [36] and Larsen [39].

Larger VRPTW instances have been proposed by Gehring and Homberger [27]. The Gehring/Homberger data set contains 300 instances with between 200 and 1000 customers. In Tables 3-7 we compare the ALNS heuristic to the best heuristics that have been applied to these problems. The two heuristics that reach the best solution quality is the heuristic by Mester and Bräysy [42] and the ALNS heuristic. Overall the ALNS heuristic is better at minimizing the number of vehicles which is the primary objective of these problems. The heuristic of Mester and Bräysy is very good at minimizing the traveled distance though. The experiments show that the time used by the ALNS heuristic scales quite well with the problem size when the number of iterations is kept fixed. The 50000 iteration ALNS configuration becomes worthwhile for the larger problems. For problems with 600 customers or more the difference in total traveled distance obtained by the ALNS-25K and ALNS-50K configurations become quite large, as the simulated annealing metaheuristic needs more iterations to obtain a good solution for large problems.

The ALNS heuristic has been able to improve the best known solution for 122 out of the 300 large scale VRPTW instances. The best solutions for the large VRPTW instances obtained by the ALNS-25K and ALNS-50K configurations are shown in Table 8.

### 6.3.2 Multi depot vehicle routing problem (MDVRP)

Table 9 shows the results obtained on 33 MDVRP instances used by Cordeau et al. [17]. Both ALNS configurations have been applied 10 times to each instance. The results obtained by the ALNS heuristic

|  | BBB | HG | B | BH IIKMUY | ALNS 25K | ALNS 50K |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| R1 | 11.92 | 11.92 | 11.92 | 11.92 | 11.92 | 11.92 | 12.03 | 11.92 | 12.03 |
|  | 1221.10 | 1212.73 | 1222.12 | $\mathbf{1 2 1 1 . 1 0}$ | 1217.40 | 1213.39 | 1216.93 | 1212.39 | 1215.16 |
| R2 | 2.73 | 2.73 | 2.73 | 2.73 | 2.73 | 2.73 | 2.75 | 2.73 | 2.75 |
|  | 975.43 | 955.03 | 975.12 | $\mathbf{9 5 4 . 2 7}$ | 959.11 | 958.60 | 968.01 | 957.72 | 965.94 |
| C1 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
|  | 828.48 | $\mathbf{8 2 8 . 3 8}$ |
| C2 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
|  | 589.93 | $\mathbf{5 8 9 . 8 6}$ |
| RC1 | 11.50 | 11.50 | 11.50 | 11.50 | 11.50 | 11.50 | 11.60 | 11.50 | 11.60 |
|  | 1389.89 | 1386.44 | 1389.58 | $\mathbf{1 3 8 4 . 1 7}$ | 1391.03 | 1385.39 | 1386.91 | 1385.78 | 1385.56 |
| RC2 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 |
|  | 1159.37 | $\mathbf{1 1 0 8 . 5 2}$ | 1128.38 | 1124.46 | 1122.79 | 1124.77 | 1140.06 | 1123.49 | 1135.46 |
| CNV | 405 | 405 | 405 | 405 | 405 | 405 | 407.5 | 405 | 407.5 |
| CTD | 57952 | $\mathbf{5 7 1 9 2}$ | 57710 | 57273 | 57444 | 57360 | 57641 | 57332 | 57550 |
| CPU | P-400 Mhz | P-400 Mhz | P-200Mhz | SU 10 | P3 1 Ghz | P4 3 Ghz | P4 3Ghz | P4 3Ghz | P4 3Ghz |
| T. (s) | 1800 | N/A | 4950 | 7200 | 15000 | 86 | 86 | 146 | 146 |
| Exp. | 3 | N/A | 1 | $>5$ | 1 | 10 | 1 | 10 | 1 |

Table 1: Solomon instances with 100 customers. The table compares the ALNS heuristic to the heuristics by Berger et al. (BBB) [4], Homberger and Gehring (HG) [32], Bräysy (B) [7], Bent and Van Hentenryck (BH) [2] and Ibaraki et al. (IIKMUY) [33]. The data set is divided into six groups: R1, R2, C1, C2, RC1, RC2. For each group we report two numbers per heuristic. The top number is the number of vehicles used and the bottom number is the distance traveled. These numbers have been averaged over all the instance in the given group. The rows named $C N V$ and $C T D$ show the cumulative number of vehicles and distances respectively. The row $C P U$ shows the computer used in the experiment and the row $T$. ( $s$ ) shows the number of CPU seconds used for finding the solutions. The last row shows the number of experiments that were performed in order to obtain the results presented in the table (if multiple experiments were performed, the table shows the best results obtained). The two columns for the ALNS heuristic show the results obtained with the 25000 iteration configuration and the 50000 iteration configuration. For each configuration we show two columns. The first column shows the best result out of ten experiments, and the second column show the average solution quality (averaged over the ten experiments). Bold entries mark the best solution quality obtained among the heuristics in the comparison.

| Customers | Instances | Solved to <br> optimality | Optimums <br> found | Avg. gap <br> all (\%) | Avg. gap <br> opt.(\%) | Avg. time <br> $(\mathrm{s})$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 25 | 56 | 56 | 56 | 0.02 | 0.02 | 5 |
| 50 | 56 | 53 | 48 | 0.19 | 0.13 | 15 |
| 100 | 56 | 37 | 27 | 0.36 | 0.26 | 47 |

Table 2: Comparison of ALNS to exact methods. The columns should be interpreted as follows: Customers - the number of customers in the test set, Instances - the number of instances in the test set, Solved to optimality - the number of instances that has been solved to optimality in the literature, Optimums found - the number of optimal solutions that were found by the heuristic, Avg. gap all (\%) - the average gap over all instances, Avg. gap opt. (\%) - the average gap over instances solved to optimality in the literature, Avg. time ( $s$ ) - the average time in seconds spent on performing one experiment.

|  | GH99 | GH01 | BH | LL | LC | BHD | MB | ALN | S 25K | ALN | 50K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1 | 18.2 | 18.2 | 18.2 | 18.3 | 18.2 | 18.2 | 18.2 | 18.2 | 18.20 | 18.2 | 18.20 |
|  | 3705.00 | 3855.03 | 3677.96 | 3736.20 | 3676.95 | 3718.30 | 3618.68 | 3635.94 | 3664.648 | 3631.226 | 3652.747 |
| R2 | 4.0 | 4.0 | 4.1 | 4.1 | 4.0 | 4.0 | 4.0 | 4.0 | 4.05 | 4.0 | 4.05 |
|  | 3055.00 | 3032.49 | 3023.62 | 3023.00 | 2986.01 | 3014.28 | 2942.92 | 2950.30 | 2950.04 | 2949.368 | 2942.594 |
| C1 | 18.9 | 18.9 | 18.9 | 19.1 | 18.9 | 18.9 | 18.8 | 18.9 | 18.90 | 18.9 | 18.90 |
|  | 2782.00 | 2842.08 | 2726.63 | 2728.60 | 2743.66 | 2749.83 | 2717.21 | 2723.10 | 2732.458 | 2721.522 | 2728.382 |
| C2 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.00 | 6.0 | 6.00 |
|  | 1846.00 | 1856.99 | 1860.17 | 1854.90 | 1836.10 | 1842.65 | 1833.57 | 1833.33 | 1836.4 | 1832.947 | 1834.675 |
| RC1 | 18.0 | 18.1 | 18.0 | 18.3 | 18.0 | 18.0 | 18.0 | 18.0 | 18.00 | 18.0 | 18.00 |
|  | 3555.00 | 3674.91 | 3279.99 | 3385.80 | 3449.71 | 3329.62 | 3221.34 | 3233.76 | 3282.989 | 3212.282 | 3257.168 |
| RC2 | 4.3 | 4.4 | 4.5 | 4.9 | 4.3 | 4.4 | 4.4 | 4.3 | 4.33 | 4.3 | 4.33 |
|  | 2675.00 | 2671.34 | 2603.08 | 2518.70 | 2613.75 | 2585.89 | 2519.79 | 2560.59 | 2592.39 | 2556.874 | 2578.575 |
| CNV | 694 | 696 | 697 | 707 | 694 | 695 | 694 | 694 | 694.8 | 694 | 694.8 |
| CTD | 176180 | 179328 | 171715 | 172472 | 173061 | 172406 | 168573 | 169370 | 170589 | 169042 | 169941 |
| $\begin{array}{r} \text { CPU } \\ \text { T. (min) } \end{array}$ | P-200Mhz | P-400Mhz | SU 10 | P-545Mhz | P-933Mhz | A-700Mhz | P4 2Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz |
|  | $4 \times 10$ | $4 \times 2.1$ | n/a | 182.1 | 5x10 | 2.4 | 8 | 4.3 | 4.3 | 7.7 | 7.7 |
| Exp. | 1 | 3 | n/a | 3 | 1 | 3 | 1 | 10 | 1 | 10 | 1 |

Table 3: Gehring/Homberger VRPTW instances with 200 customers. The table compares the ALNS heuristic to the heuristics by Gehring and Homberger (GH99) [27] and (GH01) [28], Bent and Van Hentenryck (BH) [2], Le Bouthillier and Cranic (LC) [5], Bräysy et al (BHD) [9] and Mester and Bräysy (MB) [42]. The table should be interpreted like Table 1. Notice that computing times are reported in minutes. Entries of the form $x \times y$ appearing in the $T$. (min) row indicate that the experiment was run for $y$ minutes on a parallel computer with $x$ processors.

|  | GH99 | GH01 | BH | LL | LC | BHD | MB | ALNS | 25K | ALN | 50K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1 | 36.4 | 36.4 | 36.4 | 36.6 | 36.5 | 36.4 | 36.3 | 36.4 | 36.40 | 36.4 | 36.40 |
|  | 8925.00 | 9478.22 | 8713.37 | 8912.40 | 8839.28 | 8692.17 | 8530.03 | 8609.38 | 8663.57 | 8540.04 | 8589.90 |
| R2 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.00 | 8.0 | 8.00 |
|  | 6502.00 | 6650.28 | 6959.75 | 6610.60 | 6437.68 | 6382.63 | 6209.94 | 6252.01 | 6309.84 | 6241.72 | 6277.07 |
| C1 | 38.0 | 38.0 | 38.0 | 38.7 | 37.9 | 37.9 | 37.9 | 37.6 | 37.62 | 37.6 | 37.62 |
|  | 7584.00 | 7855.82 | 7220.96 | 7181.40 | 7447.09 | 7230.48 | 7148.27 | 7369.88 | 7450.84 | 7290.16 | 7372.49 |
| C2 | 12.0 | 12.0 | 12.0 | 12.1 | 12.0 | 12.0 | 12.0 | 12.0 | 12.00 | 12.0 | 12.00 |
|  | 3935.00 | 3940.19 | 4154.40 | 4017.10 | 3940.87 | 3894.48 | 3840.85 | 3849.27 | 3884.44 | 3844.69 | 3875.95 |
| RC1 | 36.1 | 36.1 | 36.1 | 36.5 | 36.0 | 36.0 | 36.0 | 36.0 | 36.00 | 36.0 | 36.00 |
|  | 8763.00 | 9294.99 | 8330.98 | 8377.90 | 8652.01 | 8305.55 | 8066.44 | 8149.61 | 8240.28 | 8069.30 | 8148.81 |
| RC2 | 8.6 | 8.8 | 8.9 | 9.5 | 8.6 | 8.9 | 8.8 | 8.5 | 8.64 | 8.5 | 8.64 |
|  | 5518.00 | 5629.43 | 5631.70 | 5466.20 | 5511.22 | 5407.87 | 5243.06 | 5366.82 | 5388.76 | 5335.09 | 5351.56 |
| CNV | 1390 | 1392 | 1393 | 1414 | 1390 | 1391 | 1389 | 1385 | 1386.6 | 1385 | 1386.6 |
| CTD | 412270 | 428489 | 410112 | 405656 | 408281 | 399132 | 390386 | 395970 | 399377 | 393210 | 396158 |
| CPU | P-200Mhz | P-400Mhz | SU 10 | P-545Mhz | P-933Mhz | A-700Mhz | P4 2Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz |
| T. (min) | $4 \times 20$ | 4x7.1 | n/a | 359 | $5 \times 20$ | 7.9 | 17 | 9.7 | 9.7 | 15.8 | 15.8 |
| Exp. | 1 | 3 | n/a | 3 | 1 | 3 | 1 | 5 | 1 | 5 | 1 |

Table 4: Gehring/Homberger VRPTW instances with 400 customers

|  | GH99 | GH01 | BH | LL | LC | BHD | MB | ALN | 25K | ALN | 50K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1 | 54.5 | 54.5 | 55.0 | 55.2 | 54.8 | 54.5 | 54.5 | 54.5 | 54.50 | 54.5 | 54.50 |
|  | 20854.00 | 21864.47 | 19308.62 | 19744.80 | 19869.82 | 19081.18 | 18358.68 | 19370.04 | 19562.34 | 18888.52 | 19048.49 |
| R2 | 11.0 | 11.0 | 11.0 | 11.1 | 11.2 | 11.0 | 11.0 | 11.0 | 11.00 | 11.0 | 11.00 |
|  | 13335.00 | 13656.15 | 14855.43 | 13592.40 | 13093.97 | 13054.83 | 12703.52 | 12729.51 | 12826.39 | 12619.26 | 12721.32 |
| C1 | 57.9 | 57.7 | 57.8 | 58.2 | 57.9 | 57.8 | 57.8 | 57.5 | 57.56 | 57.5 | 57.56 |
|  | 14792.00 | 14817.25 | 14357.11 | 14267.30 | 14205.58 | 14165.90 | 14003.09 | 14125.94 | 14212.71 | 14065.89 | 14098.04 |
| C2 | 17.9 | 17.8 | 17.8 | 18.2 | 17.9 | 18.0 | 17.8 | 17.5 | 17.80 | 17.5 | 17.80 |
|  | 7787.00 | 7889.96 | 8259.04 | 8202.60 | 7743.92 | 7528.73 | 7455.83 | 7891.70 | 7834.72 | 7801.296 | 7682.61 |
| RC1 | 55.1 | 55.0 | 55.1 | 55.5 | 55.2 | 55.0 | 55.0 | 55.0 | 55.00 | 55.0 | 55.00 |
|  | 18411.00 | 19114.02 | 17035.91 | 17320.00 | 17678.13 | 16994.22 | 16418.63 | 16846.71 | 17006.94 | 16594.94 | 16722.51 |
| RC2 | 11.8 | 11.9 | 12.4 | 13.0 | 11.8 | 12.1 | 12.1 | 11.6 | 11.78 | 11.6 | 11.78 |
|  | 11522.00 | 11670.29 | 11987.89 | 11204.90 | 11034.71 | 11212.36 | 10677.46 | 10922.44 | 10938.30 | 10777.12 | 10828.45 |
| CNV | 2082 | 2079 | 2091 | 2112 | 2088 | 2084 | 2082 | 2071 | 2076.4 | 2071 | 2076.4 |
| CTD | 867010 | 890121 | 858040 | 843320 | 836261 | 820372 | 796172 | 818863 | 823814 | 807470 | 811014 |
| CPU | P-200Mhz | P-400Mhz | SU 10 | P-545Mhz | P-933Mhz | A-700Mhz | P4 2Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz |
| T. (min) | 4x30 | $4 \times 12.9$ | n/a | 399.8 | $5 \times 30$ | 16.2 | 40 | 10.5 | 10.5 | 18.3 | 18.3 |
| Exp. | 1 | 3 | n/a | 3 | 1 | 3 | 1 | 5 | 1 | 5 | 1 |

Table 5: Gehring/Homberger VRPTW instances with 600 customers.

|  | GH99 | GH01 | BH | LL | LC | BHD | MB | ALN | 25K | ALN | 50K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1 | 72.8 | 72.8 | 72.7 | 73.0 | 73.1 | 72.8 | 72.8 | 72.8 | 72.80 | 72.8 | 72.80 |
|  | 34586.00 | 34653.88 | 33337.91 | 33806.34 | 33552.40 | 32748.06 | 31918.47 | 32697.85 | 32905.52 | 32316.79 | 32528.76 |
| R2 | 15.0 | 15.0 | 15.0 | 15.1 | 15.0 | 15.0 | 15.0 | 15.0 | 15.00 | 15.0 | 15.00 |
|  | 21697.00 | 21672.85 | 24554.63 | 21709.39 | 21157.56 | 21170.15 | 20295.28 | 20477.77 | 20627.40 | 20353.51 | 20499.72 |
| C1 | 76.7 | 76.1 | 76.1 | 77.4 | 76.3 | 76.3 | 76.2 | 75.6 | 75.66 | 75.6 | 75.66 |
|  | 26528.00 | 26936.68 | 25391.67 | 25337.02 | 25668.82 | 25170.88 | 25132.27 | 25365.59 | 25547.82 | 25193.13 | 25269.64 |
| C2 | 24.0 | 23.7 | 24.4 | 24.4 | 24.1 | 24.2 | 23.7 | 23.7 | 23.98 | 23.7 | 23.94 |
|  | 12451.00 | 11847.92 | 14253.83 | 11956.60 | 11985.11 | 11648.92 | 11352.29 | 11985.80 | 11999.28 | 11725.46 | 11741.73 |
| RC1 | 72.4 | 72.3 | 73.0 | 73.2 | 72.3 | 73.0 | 73.0 | 73.0 | 73.00 | 73.0 | 73.00 |
|  | 38509.00 | 40532.35 | 30500.15 | 31282.54 | 37722.62 | 30005.95 | 30731.07 | 29864.06 | 30016.05 | 29478.3 | 29625.04 |
| RC2 | 16.1 | 16.1 | 16.6 | 17.1 | 15.8 | 16.3 | 15.8 | 15.7 | 15.82 | 15.7 | 15.82 |
|  | 17741.00 | 17941.23 | 18940.84 | 17561.22 | 17441.60 | 17686.65 | 16729.18 | 16870.87 | 17022.33 | 16761.95 | 16852.95 |
| $\begin{aligned} & \hline \text { CNV } \\ & \text { CTD } \end{aligned}$ | 2770 | 2760 | 2778 | 2802 | 2766 | 2776 | 2765 | 2758 | 2762.6 | 2758 | 2762.2 |
|  | 1515120 | 1535849 | 1469790 | 1416531 | 1475281 | 1384306 | 1361586 | 1372619 | 1381184 | 1358291 | 1365178 |
| CPU | P-200Mhz | P-400Mhz | SU 10 | P-545Mhz | P-933Mhz | A-700Mhz | P4-2Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz |
| T. (min) | $4 \times 40$ | $4 \times 23.2$ | n/a | 512.9 | 5x40 | 26.2 | 145 | 13.5 | 13.5 | 22.7 | 22.7 |
|  | 1 | 3 | n/a | 3 | 1 | 3 | 1 | 5 | 1 | 5 | 1 |

Table 6: Gehring/Homberger VRPTW instances with 800 customers

|  | GH99 | GH01 | BH | LL | LC | BHD | MB | ALN | 25K | ALN | 50K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1 | 91.9 | 91.9 | 92.8 | 92.7 | 92.2 | 92.1 | 92.1 | 92.2 | 92.30 | 92.2 | 92.30 |
|  | 57186.00 | 58069.61 | 51193.47 | 50990.80 | 55176.95 | 50025.64 | 49281.48 | 52131.96 | 51900.53 | 50751.25 | 50584.55 |
| R2 | 19.0 | 19.0 | 19.0 | 19.0 | 19.2 | 19.0 | 19.0 | 19.0 | 19.00 | 19.0 | 19.00 |
|  | 31930.00 | 31873.62 | 36736.97 | 31990.90 | 30919.77 | 31458.23 | 29860.32 | 30108.84 | 30327.34 | 29780.82 | 30016.08 |
| C1 | 96.0 | 95.4 | 95.1 | 96.3 | 95.3 | 95.8 | 95.1 | 94.6 | 94.72 | 94.6 | 94.72 |
|  | 43273.00 | 43392.59 | 42505.35 | 42428.50 | 43283.92 | 42086.77 | 41569.67 | 42123.87 | 42266.42 | 41877.00 | 42034.65 |
| C2 | 30.2 | 29.7 | 30.3 | 30.8 | 29.9 | 30.6 | 29.7 | 29.7 | 29.90 | 29.7 | 29.86 |
|  | 17570.00 | 17574.72 | 18546.13 | 17294.90 | 17443.50 | 17035.88 | 16639.54 | 17307.16 | 17589.70 | 16840.37 | 17052.62 |
| RC1 | 90.0 | 90.1 | 90.2 | 90.4 | 90.0 | 90.0 | 90.0 | 90.0 | 90.00 | 90.0 | 90.00 |
|  | 50668.00 | 50950.14 | 48634.15 | 48892.40 | 49711.36 | 46736.92 | 45396.41 | 47735.43 | 48168.74 | 46752.15 | 47081.64 |
| RC2 | 19.0 | 18.5 | 19.4 | 19.8 | 18.5 | 19.0 | 18.7 | 18.3 | 18.46 | 18.3 | 18.46 |
|  | 27012.00 | 27175.98 | 29079.78 | 26042.30 | 26001.11 | 25994.12 | 25063.51 | 25267.93 | 25466.13 | 25090.88 | 25185.45 |
| CNV | 3461 | 3446 | 3468 | 3490 | 3451 | 3465 | 3446 | 3438 | 3443.8 | 3438 | 3443.4 |
| CTD | 2276390 | 2290367 | 2266959 | 2176398 | 2225366 | 2133376 | 2078110 | 2146752 | 2157189 | 2110925 | 2119550 |
| $\begin{array}{r} \text { CPU } \\ \text { T. (min) } \end{array}$ | P-200Mhz | P-400Mhz | SU 10 | P-545Mhz | P-933Mhz | A-700Mhz | P4 2Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz | P4-3Ghz |
|  | 4x50 | $4 \times 30.1$ | n/a | 606.3 | 5x50 | 39.6 | 600 | 16 | 16 | 26.6 | 26.6 |
| Exp. | 1 | 3 | n/a | 3 | 1 | 3 | 1 | 5 | 1 | 5 | 1 |

Table 7: Gehring/Homberger VRPTW instances with 1000 customers.

|  | R1 |  | R2 |  | C1 |  | C2 |  | RC1 |  | RC2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Veh. | Dist. |
| 200 customers |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 20 | 4785.96 | 4 | 4563.55 | 20 | 2704.57 | 6 | 1931.44 | 18 | 3647.56 | 6 | 3126.03 |
| 2 | 18 | 4059.57 | 4 | 3650.54 | 18 | 2943.83 | 6 | 1863.16 | 18 | 3269.91 | 5 | 2828.39 |
| 3 | 18 | 3387.64 | 4 | 2892.07 | 18 | 2710.21 | 6 | 1776.96 | 18 | 3034.45 | 4 | 2613.12 |
| 4 | 18 | 3086.11 | 4 | 1981.30 | 18 | 2644.92 | 6 | 1713.46 | 18 | 2869.74 | 4 | 2052.74 |
| 5 | 18 | 4125.19 | 4 | 3377.18 | 20 | 2702.05 | 6 | 1878.85 | 18 | 3430.03 | 4 | 2912.13 |
| 6 | 18 | 3586.80 | 4 | 2929.72 | 20 | 2701.04 | 6 | 1857.35 | 18 | 3357.90 | 4 | 2975.13 |
| 7 | 18 | 3160.44 | 4 | 2456.71 | 20 | 2701.04 | 6 | 1849.46 | 18 | 3233.29 | 4 | 2539.85 |
| 8 | 18 | 2971.66 | 4 | 1849.87 | 19 | 2775.48 | 6 | 1820.53 | 18 | 3110.46 | 4 | 2314.61 |
| 9 | 18 | 3802.55 | 4 | 3113.74 | 18 | 2687.83 | 6 | 1830.05 | 18 | 3114.02 | 4 | 2175.98 |
| 10 | 18 | 3312.44 | 4 | 2666.10 | 18 | 2644.25 | 6 | 1808.21 | 18 | 3020.24 | 4 | 2015.61 |
| 400 customers |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 40 | 10432.30 | 8 | 9338.49 | 40 | 7152.06 | 12 | 4116.33 | 36 | 8813.43 | 11 | 6834.02 |
| 2 | 36 | 9115.68 | 8 | 7649.87 | 36 | 7733.55 | 12 | 3930.05 | 36 | 8118.43 | 9 | 6355.59 |
| 3 | 36 | 7988.22 | 8 | 5998.04 | 36 | 7082.13 | 12 | 3775.32 | 36 | 7663.73 | 8 | 5055.02 |
| 4 | 36 | 7415.81 | 8 | 4326.48 | 36 | 6816.17 | 12 | 3543.60 | 36 | 7368.47 | 8 | 3647.39 |
| 5 | 36 | 9479.10 | 8 | 7252.64 | 40 | 7152.06 | 12 | 3946.14 | 36 | 8426.57 | 9 | 6119.44 |
| 6 | 36 | 8556.38 | 8 | 6212.37 | 40 | 7153.45 | 12 | 3875.94 | 36 | 8390.24 | 8 | 5997.24 |
| 7 | 36 | 7725.97 | 8 | 5136.74 | 39 | 7546.78 | 12 | 3894.98 | 36 | 8223.65 | 8 | 5476.57 |
| 8 | 36 | 7390.76 | 8 | 4055.22 | 37 | 7546.32 | 12 | 3796.00 | 36 | 7922.67 | 8 | 4877.39 |
| 9 | 36 | 8970.98 | 8 | 6507.40 | 36 | 7573.18 | 12 | 3881.21 | 36 | 7953.20 | 8 | 4601.30 |
| 10 | 36 | 8325.16 | 8 | 5894.40 | 36 | 7145.92 | 12 | 3687.13 | 36 | 7774.83 | 8 | 4355.52 |
| 600 customers |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 59 | 21677.41 | 11 | 18837.28 | 60 | 14095.64 | 18 | 7780.84 | 55 | 17751.33 | 15 | 13163.03 |
| 2 | 54 | 20045.49 | 11 | 15069.24 | 56 | 14174.12 | 17 | 8799.38 | 55 | 16548.43 | 12 | 11853.72 |
| 3 | 54 | 17733.91 | 11 | 11291.52 | 56 | 13803.50 | 17 | 7604.00 | 55 | 15499.02 | 11 | 9863.35 |
| 4 | 54 | 16374.29 | 11 | 8163.24 | 56 | 13578.66 | 17 | 6993.77 | 55 | 15072.90 | 11 | 7231.64 |
| 5 | 54 | 21243.24 | 11 | 15418.00 | 60 | 14085.72 | 18 | 7578.12 | 55 | 17401.34 | 12 | 12560.43 |
| 6 | 54 | 18948.53 | 11 | 12936.28 | 60 | 14089.66 | 18 | 7554.61 | 55 | 17355.10 | 11 | 12282.52 |
| 7 | 54 | 17438.28 | 11 | 10269.96 | 58 | 15017.03 | 18 | 7520.34 | 55 | 17058.40 | 11 | 11052.49 |
| 8 | 54 | 16146.17 | 11 | 7752.78 | 57 | 14343.05 | 17 | 8696.15 | 55 | 16510.65 | 11 | 10488.75 |
| 9 | 54 | 20375.70 | 11 | 13885.52 | 56 | 13767.45 | 18 | 7356.19 | 55 | 16435.71 | 11 | 9882.71 |
| 10 | 54 | 18902.19 | 11 | 12568.79 | 56 | 13688.57 | 17 | 7938.94 | 55 | 16316.51 | 11 | 9340.06 |
| 800 customers |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 80 | 37492.04 | 15 | 28822.48 | 80 | 25184.38 | 24 | 11664.00 | 73 | 31275.38 | 19 | 20954.95 |
| 2 | 72 | 33816.69 | 15 | 23274.22 | 74 | 25536.76 | 24 | 11428.07 | 73 | 29172.08 | 17 | 18032.89 |
| 3 | 72 | 30317.49 | 15 | 18078.82 | 72 | 24629.86 | 24 | 11184.67 | 73 | 28164.66 | 15 | 14800.78 |
| 4 | 72 | 28568.78 | 15 | 13413.79 | 72 | 23938.33 | 23 | 10999.42 | 73 | 27201.39 | 15 | 11368.19 |
| 5 | 72 | 35503.63 | 15 | 25077.09 | 80 | 25166.28 | 24 | 11451.57 | 73 | 30548.23 | 16 | 19180.13 |
| 6 | 72 | 32360.07 | 15 | 20969.81 | 80 | 25160.85 | 24 | 11403.57 | 73 | 30511.07 | 15 | 19075.89 |
| 7 | 72 | 29979.63 | 15 | 16977.49 | 79 | 25425.92 | 24 | 11412.08 | 73 | 30007.82 | 15 | 17329.32 |
| 8 | 72 | 28341.21 | 15 | 12945.52 | 75 | 25450.99 | 23 | 13878.40 | 73 | 29547.96 | 15 | 16226.78 |
| 9 | 72 | 34218.41 | 15 | 22877.21 | 72 | 25737.46 | 24 | 11650.10 | 73 | 29360.93 | 15 | 15687.20 |
| 10 | 72 | 32569.97 | 15 | 21092.27 | 72 | 25697.68 | 23 | 12103.56 | 73 | 28993.52 | 15 | 14944.14 |
| 1000 customers |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 100 | 54720.19 | 19 | 43264.68 | 100 | 42478.95 | 30 | 16879.24 | 90 | 48933.68 | 21 | 30396.13 |
| 2 | 91 | 55428.79 | 19 | 34417.47 | 91 | 42249.60 | 29 | 17563.06 | 90 | 46165.33 | 18 | 27552.05 |
| 3 | 91 | 49634.84 | 19 | 25400.16 | 90 | 40376.43 | 30 | 16109.71 | 90 | 44014.81 | 18 | 20811.18 |
| 4 | 91 | 45303.47 | 19 | 18332.77 | 90 | 39980.07 | 29 | 16011.30 | 90 | 42607.34 | 18 | 16007.59 |
| 5 | 92 | 53089.15 | 19 | 37746.01 | 100 | 42469.18 | 30 | 16596.69 | 90 | 48934.53 | 18 | 28368.48 |
| 6 | 91 | 54555.32 | 19 | 30778.85 | 100 | 42471.29 | 30 | 16369.10 | 90 | 48766.98 | 18 | 28746.61 |
| 7 | 91 | 48141.47 | 19 | 23991.71 | 99 | 42673.51 | 31 | 16590.48 | 90 | 48005.94 | 18 | 26765.43 |
| 8 | 91 | 44853.70 | 19 | 17844.36 | 95 | 42359.27 | 29 | 18407.27 | 90 | 47122.61 | 18 | 24961.29 |
| 9 | 92 | 52015.72 | 19 | 34349.70 | 91 | 41482.00 | 30 | 16294.72 | 90 | 46889.79 | 18 | 24113.72 |
| 10 | 92 | 49769.85 | 19 | 31682.52 | 90 | 42214.60 | 29 | 17582.15 | 90 | 46080.51 | 18 | 23056.75 |

Table 8: The table shows the best solutions to large VRPTW instances identified by the ALNS heuristic. The first column shows the problem number. The columns veh. and dist. show the number of vehicles and total distance traveled in the best solution found. The table is grouped by instance type and instance size. Bold entries indicate a best solution (either a tie with one of the heuristics from the literature or a new best solution).
are compared to the best results obtained by heuristics proposed by Chao et al. [11], Renaud et al. [48] and Cordeau et al. [17]. The heuristic that previously has achieved the best solution quality is the one proposed by Cordeau et al. The cost of a solution is defined as the total distance traveled by the vehicles. The table shows that the ALNS heuristic has been able to improve upon the best solution for a considerable number of instances. Each configuration has found 14 new best solutions, but as most of these overlap, the total number of new best solutions is 15 . The individual improvements are typically rather small though. The table also shows that the ALNS heuristic is quite stable as the average gap from the best known solution never surpasses $2 \%$ and $1 \%$ in the ALNS-25K and ALNS-50K configurations, respectively. It should be mentioned that the ALNS heuristic is slower than the previously proposed heuristics. The ALNS-25K and ALNS-50K configurations use on average two and four minutes respectively to perform one experiment on a 3 GHz Pentium 4. The heuristic by Cordeau et al. on average used 11.7 minutes to perform one experiment on a Sun SPARCstation 10 which is considerably slower than our computer.

### 6.3.3 Site dependent vehicle routing problem (SDVRP)

The heuristic has been applied to the same test instances as used by [18]. The results obtained on the SDVRP instances are summarized in Table 10. The results are promising as the average solution quality of ALNS-25K overall is better than results previously published. Also the sum of the costs of the best known solutions found by the ALNS-50K configuration is more than $2 \%$ better than the previous best known solution and the best known solution was improved for 30 out of the 35 instances. The computational time needed for performing one experiment with the ALNS-25K configuration seems to be roughly comparable with the time needed for performing one experiment with the heuristic proposed by Cordeau and Laporte [18]. The ALNS-25K configuration spends on average 1.4 minutes to perform one experiment while the heuristic by Cordeau and Laporte spent around 12 minutes to perform the same task on a Sun Ultra 2, 300 MHz. It should be mentioned that the problem PR02 caused the ALNS heuristic some difficulties, as it was only able to find a feasible solution in one out of ten experiments for the ALNS-25K configuration and three out of ten experiments for the ALNS-50K configuration.

### 6.3.4 Capacitated vehicle routing problem (CVRP)

For the CVRP we have chosen to test the ALNS heuristic on three datasets. The first dataset was proposed by Christofides et al. [13] and contains instances with between 50 and 200 customers. The second dataset was proposed by Golden et al. [30] and contains instances with up to 483 customers. The last dataset was proposed by Li et al. [40] and contains instances with up to 1200 customers. These are the so-far largest instances that the ALNS heuristic has been applied to. Table 11 summarizes these experiments. Notice that we only compare the ALNS heuristic to a subset of all the CVRP heuristics that have been proposed in the literature. The heuristics used for benchmarking are the most recent heuristics that were surveyed by Cordeau et al. [16].

The table shows that the ALNS heuristic cannot compete with the well-performing heuristic by Mester and Bräysy [42], but its performance is comparable to the rest of the heuristics. For the last dataset, the heuristic proposed by Li et al. must be considered to be the best as it is very fast compared to the ALNS heuristic although the ALNS heuristic overall is able to reach better solutions. We discovered one new best solution for the Golden et al. dataset and three new best solutions for the Li et al. dataset.

### 6.3.5 Open vehicle routing problem (OVRP)

The results on the OVRP are summarized in Table 12. The heuristic was tested on the same 16 instances that were used by Brandão [6] and Fu et al. [25]. The primary objective considered was to minimize the number of vehicles used, while the secondary objective was to minimize the traveled distance. The solutions obtained by the ALNS heuristic are promising as the best known solution to 11 out of the 16 instances has been improved. The running time of the ALNS heuristic is comparable to the two other heuristics: The configuration of Brandão's heuristic that obtains the best results spends on average 9.6 minutes to solve an instance on a 500 MHz Pentium III. In the paper by Fu et al. two configurations of their heuristic are tested. These configurations spend on average 6.6 and 13.9 minutes respectively to solve an
instance on a 600 MHz Pentium II. The ALNS-25K and ALNS-50K configurations use 1.4 and 2.3 minutes respectively to solve an instance on a 3 GHz Pentium IV.

### 6.3.6 Computational results conclusion

The computational results presented in this section are very encouraging. The results show that the general ALNS heuristic is on par with the best specialized heuristics for the VRPTW and that the heuristic currently is the best when it comes to minimizing the number of vehicles in large VRPTW instances. One should keep in mind that numerous specialized heuristics have been proposed for the VRPTW making it difficult for a general heuristic to compete on these instances.

For the MDVRP, SDVRP and OVRP the ALNS heuristic has been able to find many new best solutions and the results on the SDVRP are especially promising. For the CVRP the proposed heuristic is able to compete with many of the most recent heuristics, but it is outperformed by a more specialized heuristic for this problem. Nevertheless, a couple of new best solutions were found for this problem type also. One should also keep in mind that the heuristic was not tuned for each problem type, but a general parameter setting was used for all experiments.

The comparison between the fast and the slow version of the ALNS heuristic showed that it did not pay off to use the ALNS-50K variant for the smaller instances, while for instances with around 400 to 600 or more customers it seemed worthwhile to use the ALNS-50K configuration. Consequently, it might be useful to use a variable number of iterations $I$ which depends on the number $n$ of requests. E.g. $I:=$ $20000+50 n$.

## 7 Conclusion

A new general heuristic framework, denoted Adaptive Large Neighborhood Search has been presented. The framework has been used to solve several variants of vehicle routing problems in the present paper as well as in $[49,50]$. This includes the vehicle routing problem with time windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle routing problem (MDVRP), the site dependent vehicle routing problem (SDVRP), the open vehicle routing problem (OVRP), the pickup and delivery problem with time windows (PDPTW), the vehicle routing problem with backhauls (VRPB), the mixed vehicle routing problem with backhauls (MVRPB), the multi-depot mixed vehicle routing problem with backhauls (MDMVRPB), the vehicle routing problem with backhauls and time windows (VRPBTW), the mixed vehicle routing problem with backhauls and time windows (MVRPBTW) and the vehicle routing problem with simultaneous deliveries and pickups (VRPSDP).

Due to the generality of the ALNS framework and the encouraging results demonstrated for a wide spectrum of VRP problems, we believe that ALNS should be considered as one of the standard frameworks for solving large-sized optimization problems.

Supply chain management is a research area getting increasing attention [37]. By co-ordinating activities in the supply chain, companies can rationalize the process resulting in mutual gains. If the involved companies co-ordinate their transportation activities we will see a need for solving mixed transportation problems, where the instances for example consist of a mixture of PDPTW, MDVRP and SDVRP problems. In order to handle future changes in the distribution structure, these algorithms need to be stable for various input types, and should not need to be tuned for particular problem characteristics. It should be clear that the ALNS framework is very promising for these such types.

In conclusion we may add an interesting observation: We have seen that a mixture of good and less good heuristics lead to better solutions than using good heuristics solely. It is however necessary to hierarchically control the search, such that well-performing heuristics are given most influence, but such that all heuristics participate in the solution process. Using this principle one gets a robust and well-performing solution approach.

## 8 Acknowledgments

The authors wish to thank the anonymous referee for valuable comments and corrections.

## 9 Appendix

New best solution to the Solomon R207 instance

| Route | Length | Visit sequence |
| ---: | ---: | :--- |
| 1 | 437.339 | 4292454636641162883020657198134787937628534028757 |
|  |  | 41227321727475564255554806877122658139737100989359 |
|  | 9594 |  |
| 2 | 453.269 | 27169503329243967231543144438861661918599966848827 |
|  | 484749191063903266355170315218831756089 |  |

Total length: 890.61

## Full VRPTW tables

The full tables documenting the VRPTW experiments described in section 6.3.1 can be found in Tables 13 - 18.

Tables 19 - 21 contain detailed result from the experiment comparing the ALNS heuristic to exact methods.

## Full CVRP tables

The detailed results for the CVRP experiments described in section 6.3.4 can be found in Tables $22-24$.

## References

[1] R. K. Ahuja, Ö. Ergun, J. b. Orlin, and A. P. Punnen. A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics, 123:72-102, 2002.
[2] R. Bent and P. V. Hentenryck. A two-stage hybrid local search for the vehicle routing problem with time windows, 2004. To appear in Transportation Science.
[3] J. Berger and M. Barkaoui. A new hybrid genetic algorithm for the capacitated vehicle routing problem. Journal of the Operational Research Society, 54:1254-1262, 2003.
[4] J. Berger, M. Barkaoui, and O. Bräysy. A route hybrid genetic approach for the vehicle routing problem with time windows. INFOR, 41(2), 2003.
[5] A. L. Bouthillier and T. G. Crainic. A cooperative parallel meta-heuristic for the vehicle routing problem with time windows. Computers and Operations Research, 2004. To appear.
[6] J. Brandão. A tabu search algorithm for the open vehicle routing problem. European Journal of Operational Research, 157(3):552-564, 2004.
[7] O. Bräysy. A reactive variable neighborhood search for the vehicle-routing problem with time windows. INFORMS Journal on Computing, 15(4):347-368, 2003.
[8] O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part ii: Metaheuristics. Transportation Science. To appear.
[9] O. Bräysy, G. Hasle, and W. Dullaert. A multi-start local search algorithm for the vehicle routing problem with time windows. European Journal of Operational Research, 2003. To appear.
[10] A. Chabrier. Vehicle routing problem with elementary shortest path based column generation, 2003. Working Paper, ILOG, Madrid, 2003.
[11] I. Chao, B. L. Golden, and E. Wasil. A new heuristic for the multi-depot vehicle routing problem that improves upon best-known solutions. Am. J. Math. Mgmt. Sci., 13:371-406, 1993.
[12] I.-M. Chao, B. Golden, and E. Wasil. A computational study of a new heuristic for the site-dependent vehicle routing problem. INFOR, 37(3):319-336, 1999.
[13] N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial Optimization, chapter 11, pages 315 - 338. John Wiley \& Sons, 1979.
[14] W. Cook and J. L. Rich. A parallel cutting-plane algorithm for the vehicle routing problem with time windows. Technical Report TR99-04, Departement of Computational and Applied Mathematics, Rice University, 1999.
[15] J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, and F. Soumis. Vrp with time windows. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 7, pages 157-193. SIAM, Philidelphia, 2002.
[16] J.-F. Cordeau, M. Gendreau, A. Hertz, G. Laporte, and J.-S. Sormany. New heuristics for the vehicle routing problem. Technical Report G-2004-33, GERAD, Montreal, Canada, 2004.
[17] J.-F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30:105-119, 1997.
[18] J.-F. Cordeau and G. Laporte. A tabu search algorithm for the site dependent vehicle routing problem with time windows. INFOR, 39:292-298, 2001.
[19] J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehicle routing problems with time windows. Journal of the Operational Research Society, 52:928-936, 2000.
[20] E. Danna and C. L. Pape. Accelerating branch-and-price with local search: A case study on the vehicle routing problem with time windows. Technical Report 03-006, ILOG, ILOG S.A, 9, rue de Verdun, F-94253 Gentilly Cédex, Septemper 2003.
[21] W. A. Dees, Jr. and P. G. Karger. Automated rip-up and reroute techniques. In Proceedings of the 19th conference on Design automation, pages 432-439. IEEE Press, 1982.
[22] G. Desaulniers, J. Desrosiers, A. Erdmann, M. M. Solomon, and F. Soumis. Vrp with pickup and delivery. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 9, pages 225-242. SIAM, Philidelphia, 2002.
[23] O. Ergun, J. B. Orlin, and A. Steele-Feldman. Creating very large scale neighborhoods out of smaller ones by compounding moves: a study on the vehicle routing problem, 2003. Working Paper, Massachusetts Institute of Technology.
[24] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3):216-229, 2004.
[25] Z. Fu, R. W. Eglese, and L. Li. A tabu search heuristic for the open vehicle routing problem. Technical Report 2003/042, Lancaster University Management School, Lancaster, United Kingdom, 2003.
[26] R. Fukasawa, J. Lysgaard, M. P. de Aragão, M. Reis, E. Uchoa, and R. F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem. In Proceedings of IPCO X. Columbia University, 2004.
[27] H. Gehring and J. Homberger. A parallel hybrid evolutionary metaheuristic for the vehicle routing problem with time windows. In K. Miettinen, M. Mäkelä, and J. Toivanen, editors, Proceedings of EUROGEN99 - Short Course on Evolutionary Algorithms in Engineering and Computer Science, pages 57-64. University of Jyväskylä, 1999.
[28] H. Gehring and J. Homberger. A parallel two-phase metaheuristic for routing problems with time windows. Asia-Pacific Journal of Operational Research, 18:35-47, 2001.
[29] M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the capacitated vrp. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 6, pages 129-154. SIAM, Philidelphia, 2002.
[30] B. L. Golden, E. A. Wasil, J. P. Kelly, and I.-M. Chao. Metaheuristics in vehicle routing. In T. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 33-56. Kluwer, Boston (MA), 1998.
[31] P. Hansen and N. Mladenovic. An introduction to variable neighborhood search. In S. V. et al., editor, Metaheuristics, Advances and Trends in Local Search Paradigms for Optimization, pages 433-458. Kluwer Academic Publishers, Dordrecht, 1999.
[32] J. Homberger and H. Gehring. A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. European Journal of Operational Research, 2004. To appear.
[33] T. Ibaraki, S. Imahori, T. Masuda, T. Uno, and M. Yagiura. A route hybrid genetic approach for the vehicle routing problem with time windows. Transportation Science. To appear.
[34] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and $k$-cycle elimination for $k \geq 3$. Technical Report G-2003-55, GERAD, Montreal, Canada, September 2003.
[35] B. Kallehauge, J. Larsen, and O. B. G. Madsen. Lagrangean duality applied on vehicle routing with time windows - experimental results. Technical Report IMM-REP-2000-8, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2001.
[36] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts for the vehicle routing problem with time windows. Transportation Science, 33(1):101-116, 1999.
[37] D. Lambert and M. Cooper. Issues in supply chain management. Marketing Management, 29:65-83, 2000.
[38] G. Laporte and F. Semet. Classical heuristics for the capacitated vrp. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 5, pages 109-128. SIAM, Philidelphia, 2002.
[39] J. Larsen. Parallellization of the Vehicle Routing Problem with Time Windows. Ph.D. thesis, Department of Mathematical Modelling, Technical University of Denmark, 1999. IMM-PHD-1999-62.
[40] F. Li, B. Golden, and E. Wasil. Very large-scale vehicle routing: new test problems, algorithms, and results. Computers and Operations Research, 2004. To appear.
[41] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, Ser. A, 100:423-445, 2004.
[42] D. Mester and O. Bräysy. Active guided evolution strategies for large-scale vehicle routing problems with time windows. Computers and Operations Research, 2004. To appear.
[43] B. Nag, B. L. Golden, and A. Assad. Vehicle routing with site dependencies. In B. Golden and A. Assad, editors, Vehicle Routing: Methods and Studies, pages 149-159. Elsevier Science Publishers B.V, 1988.
[44] D. Pisinger. Upper bounds and exact algorithms for $p$-dispersion problems. Computers and Operations Research, 2004. To appear.
[45] J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. European Journal of Operational Research, 66:331-340, 1993.
[46] C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers and Operations Research, 31:1985-2002, 2004.
[47] M. Reimann, K. Doerner, and R. Hartl. D-ants: Savings based ants divide and conquer the vrp. Computers and Operations Research, 31:563-591, 2004.
[48] J. Renaud, G. Laporte, and F. F. Boctor. A tabu search heuristic for the multi-depot vehicle routing problem. Computers and Operations Research, 23(3):229-235, 1996.
[49] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows, 2004. Submitted to Transportation Science.
[50] S. Ropke and D. Pisinger. A unified heuristic for a large class of vehicle routing problems with backhauls. European Journal of Operational Research, 2004. To appear.
[51] D. Sariklis and S. Powell. A heuristic method for the open vehicle routing problem. Journal of the Operational Research Society, 51:564-573, 2000.
[52] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking optimization results using the ruin and recreate principle. Journal of Computational Physics, 159(2):139-171, 2000.
[53] P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming), volume 1520 of Lecture Notes in Computer Science, pages 417-431. 1998.
[54] M. Sigurd, D. Pisinger, and M. Sig. The pickup and delivery problem with time windows and precedences. Transportation Science, 38:197-209, 2004.
[55] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2):254-265, 1987.
[56] E. Taillard. Parallel iterative search methods for vehicle routing problems. Networks, 23:661-673, 1993.
[57] C. Tarantilis and C. Kiranoudis. Boneroute: an adaptive memory-based method for effective fleet management. Annals of Operations Research, 115:227-241, 2002.
[58] P. Toth and D. Vigo. The granular tabu search and its application to the vehicle-routing problem. INFORMS Journal on Computing, 15(4):333-346, 2003.
[59] M. A. Trick. A linear relaxation heuristic for the generalized assigment problem. Naval Research Logistics, 39:137-152, 1992.

|  | Best known |  |  |  |  | ALNS 25K |  |  |  | ALNS 50K |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | t | type | cost | ref | $\begin{gathered} \hline \text { avg. } \\ \text { sol. } \end{gathered}$ | best <br> sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. <br> time <br> (s) |
| P01 | 50 | 4 | C | 576.87 | CGW | 576.87 | 576.87 | 0.00 | 14 | 576.87 | 576.87 | 0.00 | 29 |
| P02 | 50 | 4 | C | 473.53 | RLB | 473.53 | 473.53 | 0.00 | 14 | 473.53 | 473.53 | 0.00 | 28 |
| P03 | 75 | 2 | C | 641.19 | CGW | 641.19 | 641.19 | 0.00 | 32 | 641.19 | 641.19 | 0.00 | 64 |
| P04 | 100 | 2 | C | 1001.59 | CGL | 1008.49 | 1001.59 | 0.74 | 42 | 1006.09 | 1001.04 | 0.50 | 88 |
| P05 | 100 | 2 | C | 750.03 | CGL | 753.04 | 751.86 | 0.40 | 58 | 752.34 | 751.26 | 0.31 | 120 |
| P06 | 100 | 3 | C | 876.5 | RLB | 884.36 | 880.42 | 0.90 | 47 | 883.01 | 876.70 | 0.74 | 93 |
| P07 | 100 | 4 | C | 885.8 | CGL | 889.14 | 881.97 | 0.81 | 43 | 889.36 | 881.97 | 0.84 | 88 |
| P08 | 249 | 2 | CD | 4437.68 | CGL | 4426.86 | 4387.38 | 0.90 | 166 | 4421.03 | 4390.80 | 0.77 | 333 |
| P09 | 249 | 3 | CD | 3900.22 | CGL | 3902.18 | 3874.75 | 0.74 | 182 | 3892.50 | 3873.64 | 0.49 | 361 |
| P10 | 249 | 4 | CD | 3663.02 | CGL | 3676.93 | 3655.18 | 0.74 | 180 | 3666.85 | 3650.04 | 0.46 | 363 |
| P11 | 249 | 5 | CD | 3554.18 | CGL | 3592.82 | 3552.27 | 1.32 | 174 | 3573.23 | 3546.06 | 0.77 | 357 |
| P12 | 80 | 2 | C | 1318.95 | RLB | 1319.70 | 1318.95 | 0.06 | 38 | 1319.13 | 1318.95 | 0.01 | 75 |
| P13 | 80 | 2 | CD | 1318.95 | RLB | 1321.10 | 1318.95 | 0.16 | 30 | 1318.95 | 1318.95 | 0.00 | 60 |
| P14 | 80 | 2 | CD | 1360.12 | CGL | 1360.12 | 1360.12 | 0.00 | 29 | 1360.12 | 1360.12 | 0.00 | 58 |
| P15 | 160 | 4 | C | 2505.42 | CGL | 2517.96 | 2505.42 | 0.50 | 125 | 2519.64 | 2505.42 | 0.57 | 253 |
| P16 | 160 | 4 | CD | 2572.23 | RLB | 2577.28 | 2572.23 | 0.20 | 92 | 2573.95 | 2572.23 | 0.07 | 188 |
| P17 | 160 | 4 | CD | 2709.09 | CGL | 2709.65 | 2709.09 | 0.02 | 90 | 2709.09 | 2709.09 | 0.00 | 179 |
| P18 | 240 | 6 | C | 3702.85 | CGL | 3751.85 | 3727.58 | 1.32 | 209 | 3736.53 | 3702.85 | 0.91 | 419 |
| P19 | 240 | 6 | CD | 3827.06 | RLB | 3846.35 | 3839.36 | 0.50 | 158 | 3838.76 | 3827.06 | 0.31 | 315 |
| P20 | 240 | 6 | CD | 4058.07 | CGL | 4065.32 | 4058.07 | 0.18 | 151 | 4064.76 | 4058.07 | 0.16 | 300 |
| P21 | 360 | 9 | C | 5474.84 | CGL | 5576.82 | 5519.47 | 1.86 | 293 | 5501.58 | 5474.84 | 0.49 | 582 |
| P22 | 360 | 9 | CD | 5702.16 | CGL | 5731.10 | 5714.46 | 0.51 | 228 | 5722.19 | 5702.16 | 0.35 | 462 |
| P23 | 360 | 9 | CD | 6095.46 | CGL | 6107.84 | 6078.75 | 0.48 | 223 | 6092.66 | 6078.75 | 0.23 | 443 |
| PR01 | 48 | 4 | CD | 861.32 | CGL | 861.32 | 861.32 | 0.00 | 16 | 861.32 | 861.32 | 0.00 | 30 |
| PR02 | 96 | 4 | CD | 1307.61 | CGL | 1311.54 | 1307.34 | 0.32 | 52 | 1308.17 | 1307.34 | 0.06 | 103 |
| PR03 | 144 | 4 | CD | 1806.6 | CGL | 1810.90 | 1806.53 | 0.24 | 106 | 1810.66 | 1806.60 | 0.23 | 214 |
| PR04 | 192 | 4 | CD | 2072.52 | CGL | 2080.55 | 2066.64 | 0.95 | 146 | 2073.16 | 2060.93 | 0.59 | 296 |
| PR05 | 240 | 4 | CD | 2385.77 | CGL | 2352.59 | 2341.65 | 0.63 | 188 | 2350.31 | 2337.84 | 0.53 | 372 |
| PR06 | 288 | 4 | CD | 2723.27 | CGL | 2695.15 | 2685.35 | 0.36 | 232 | 2695.74 | 2687.60 | 0.39 | 465 |
| PR07 | 72 | 6 | CD | 1089.56 | CGL | 1089.56 | 1089.56 | 0.00 | 29 | 1089.56 | 1089.56 | 0.00 | 58 |
| PR08 | 144 | 6 | CD | 1666.6 | CGL | 1677.31 | 1665.80 | 0.75 | 105 | 1675.74 | 1664.85 | 0.65 | 207 |
| PR09 | 216 | 6 | CD | 2153.1 | CGL | 2148.85 | 2136.42 | 0.58 | 173 | 2144.84 | 2136.42 | 0.39 | 350 |
| PR10 | 288 | 6 | CD | 2921.85 | CGL | 2913.34 | 2889.49 | 0.83 | 228 | 2905.43 | 2889.82 | 0.55 | 455 |
| Tot. |  |  |  | 80394 |  | 80651.59 | 80249.57 |  | 3894 | 80448.26 | 80133.89 |  | 7809 |
| Avg. |  |  |  |  |  |  |  | 0.52 | 118 |  |  | 0.34 | 237 |
| < PB |  |  |  |  |  |  | 14 |  |  |  | 14 |  |  |
| \#B |  |  |  |  |  |  | 20 |  |  |  | 27 |  |  |

Table 9: Multi depot vehicle routing problems. The leftmost column shows the problem name, while the rest of the table is divided into three major columns that display the previously best known results and the results obtained by the ALNS-25K and ALNS-50K configurations. The sub columns should be interpreted like this: $n$ - number of customers, $t$ - number of depots, type - the type of the instance ( $C$ indicates that the instance is capacity constrained, while $D$ indicates that route duration constraints are present), cost - the cost of the previously best known solution (the cost is calculated as the total distance traveled), ref — where the solution was first reported. The following abbreviations are used: $C G W$ - Chao et al. [11], $R L B$ - Renaud et al. [48], CGL - Cordeau et al. [17]. The last 10 instances were introduced by Cordeau et al. [17] and the two other heuristics have not been applied to these instances. The columns best sol. and avg. sol. show the cost of the best solution and the average cost of the solutions obtained during 10 experiments. avg. gap shows how far the average solution cost is from the best known solution. avg. time shows how much time the heuristic spends in one experiment. The rows Tot. and Avg. sums and averages key columns. " $<P B$ " shows how many times the best solution found by the ALNS configuration was better than the previous best known solution and $\# B$ shows the number of best known solutions obtained. Entries written in bold indicate best known solutions.

|  | Best known |  |  |  | ALNS 25K |  |  |  | ALNS 50K |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | t | cost | ref | $\begin{gathered} \hline \text { avg. } \\ \text { sol. } \end{gathered}$ | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \hline \end{gathered}$ | avg. time (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \hline \end{gathered}$ | avg. time (s) |
| P01 | 50 | 3 | 642.66 | CL | 645.04 | 640.32 | 0.74 | 10 | 642.93 | 640.32 | 0.41 | 20 |
| P02 | 50 | 2 | 598.1 | CL | 599.40 | 598.10 | 0.22 | 10 | 598.82 | 598.10 | 0.12 | 19 |
| P03 | 75 | 3 | 959.36 | CL | 962.36 | 958.14 | 0.56 | 20 | 963.14 | 957.04 | 0.64 | 40 |
| P04 | 75 | 2 | 854.43 | CL | 858.05 | 854.43 | 0.42 | 18 | 856.22 | 854.43 | 0.21 | 36 |
| P05 | 100 | 3 | 1020.22 | CL | 1012.46 | 1007.51 | 0.89 | 34 | 1009.08 | 1003.57 | 0.55 | 68 |
| P06 | 100 | 2 | 1036.02 | CL | 1034.09 | 1028.70 | 0.54 | 35 | 1032.67 | 1028.52 | 0.40 | 69 |
| P07 | 27 | 3 | 391.3 | CGW | 391.30 | 391.30 | 0.00 | 4 | 391.30 | 391.30 | 0.00 | 8 |
| P08 | 54 | 3 | 664.46 | CGW | 664.46 | 664.46 | 0.00 | 12 | 664.46 | 664.46 | 0.00 | 24 |
| P09 | 81 | 3 | 948.23 | CGW | 958.69 | 948.23 | 1.10 | 24 | 961.36 | 948.23 | 1.38 | 47 |
| P10 | 108 | 3 | 1223.88 | CL | 1229.42 | 1218.75 | 0.88 | 38 | 1225.28 | 1218.75 | 0.54 | 76 |
| P11 | 135 | 3 | 1464.98 | CL | 1488.28 | 1468.38 | 1.70 | 58 | 1475.85 | 1463.33 | 0.86 | 116 |
| P12 | 162 | 3 | 1695.67 | CL | 1697.98 | 1690.56 | 1.17 | 78 | 1689.62 | 1678.40 | 0.67 | 157 |
| P13 | 54 | 3 | 1196.73 | CL | 1194.40 | 1194.18 | 0.02 | 12 | 1194.91 | 1194.18 | 0.06 | 24 |
| P14 | 108 | 3 | 1962.66 | CL | 1961.11 | 1960.62 | 0.02 | 36 | 1960.83 | 1960.62 | 0.01 | 72 |
| P15 | 162 | 3 | 2751.45 | CL | 2712.10 | 2695.22 | 1.01 | 77 | 2701.61 | 2685.09 | 0.61 | 152 |
| P16 | 216 | 3 | 3491.18 | CL | 3421.74 | 3402.94 | 0.75 | 109 | 3411.50 | 3396.36 | 0.45 | 213 |
| P17 | 270 | 3 | 4230.96 | CL | 4109.62 | 4084.92 | 0.60 | 146 | 4114.26 | 4085.61 | 0.72 | 291 |
| P18 | 324 | 3 | 4929.71 | CL | 4821.55 | 4775.35 | 1.39 | 177 | 4795.31 | 4755.50 | 0.84 | 346 |
| P19 | 100 | 3 | 850.39 | CL | 852.09 | 846.35 | 0.71 | 43 | 848.54 | 846.07 | 0.29 | 85 |
| P20 | 150 | 3 | 1046.14 | CL | 1048.75 | 1042.21 | 1.74 | 83 | 1042.10 | 1030.78 | 1.10 | 168 |
| P21 | 199 | 3 | 1337.83 | CL | 1281.58 | 1272.41 | 0.77 | 110 | 1283.03 | 1271.75 | 0.89 | 217 |
| P22 | 120 | 3 | 1012.17 | CL | 1010.30 | 1008.78 | 0.16 | 65 | 1008.81 | 1008.71 | 0.01 | 130 |
| P23 | 100 | 3 | 818.75 | CL | 807.67 | 803.29 | 0.55 | 37 | 807.00 | 803.29 | 0.46 | 73 |
| PR01 | 48 | 4 | 1384.15 | CL | 1387.37 | 1380.77 | 0.48 | 10 | 1393.85 | 1380.77 | 0.95 | 19 |
| PR02 | 96 | 4 | 2320.97 | CL | 2311.54 | 2311.54 | 0.00 | 32 | 2330.60 | 2311.54 | 0.82 | 63 |
| PR03 | 144 | 4 | 2623.31 | CL | 2608.31 | 2590.01 | 0.71 | 71 | 2607.66 | 2602.13 | 0.68 | 140 |
| PR04 | 192 | 4 | 3500.79 | CL | 3510.26 | 3481.44 | 1.04 | 98 | 3489.51 | 3474.01 | 0.45 | 191 |
| PR05 | 240 | 4 | 4479.34 | CL | 4430.28 | 4382.65 | 1.09 | 123 | 4431.16 | 4416.38 | 1.11 | 251 |
| PR06 | 288 | 4 | 4546.79 | CL | 4475.52 | 4452.93 | 0.70 | 159 | 4465.18 | 4444.52 | 0.47 | 314 |
| PR07 | 72 | 6 | 1955.11 | CL | 1926.52 | 1889.82 | 1.94 | 19 | 1916.50 | 1889.82 | 1.41 | 39 |
| PR08 | 144 | 6 | 3082.32 | CL | 3001.88 | 2976.76 | 0.84 | 66 | 3007.99 | 2977.50 | 1.05 | 135 |
| PR09 | 216 | 6 | 3664.22 | CL | 3581.58 | 3548.22 | 1.28 | 113 | 3567.15 | 3536.20 | 0.88 | 226 |
| PR10 | 288 | 6 | 4739.43 | CL | 4675.65 | 4646.96 | 0.62 | 162 | 4673.67 | 4648.76 | 0.57 | 322 |
| PR11 | 1008 | 4 | 13227.96 | CL | 12987.58 | 12888.47 | 2.11 | 433 | 12810.71 | 12719.65 | 0.72 | 847 |
| PR12 | 720 | 6 | 9621.99 | CL | 9510.37 | 9437.14 | 1.30 | 332 | 9437.56 | 9388.07 | 0.53 | 658 |
| Tot. |  |  | 90274 |  | 89169.30 | 88541.88 |  | 2853 | 88810.17 | 88273.77 |  | 5658 |
| Avg. |  |  |  |  |  |  | 0.80 | 81 |  |  | 0.60 | 162 |
| < PB |  |  |  |  |  | 29 |  |  |  | 30 |  |  |
| \#B |  |  | 5 |  |  | 18 |  |  |  | 30 |  |  |

Table 10: Site dependent vehicle routing problems. The table should be interpreted like Table 9 . Column $t$ shows the number of vehicle types. CL refers to the the heuristic by Cordeau and Laporte [18] and CGW refers to the heuristic by Chao et al [12]. The ALNS heuristic was applied 10 times for each problem.

| Heuristic | CPU | Christofides |  | Golden et al. |  | Li et al. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \% | Minutes | \% | Minutes | \% | Minutes |
| TV | P-200MHz | 0.64 | 3.84 | 2.88 | 17.55 | - | - |
| LGV | Athlon 1Ghz | - | - | 1.05 | - | 1.20 | 3.16 |
| CGLM | P4-2GHz | 0.56 | 24.62 | 1.46 | 56.11 | - | - |
| EOS | P3-733MHz | 0.24 | 30.95 | 3.77 | 137.95 | - | - |
| P | P3-1GHz | 0.24 | 5.19 | 0.92 | 66.90 | - | - |
| TK | $\mathrm{P} 2-400 \mathrm{MHz}$ | 0.23 | 5.22 | - | - | - | - |
| MB Best | $\mathrm{P} 4-2 \mathrm{GHz}$ | 0.03 | 7.72 | 0.01 | 72.94 | - | - |
| MB Fast | P4-2GHz | 0.07 | 0.27 | 0.94 | 0.63 | - | - |
| BB | $\mathrm{P}-400 \mathrm{MHz}$ | 0.49 | 21.25 | - | - | - | - |
| RDH | P-900Mhz | - | - | 0.67 | 49.33 | - | - |
| ALNS 25K Best of 10 | P4-3GHz | 0.15 | 9.33 | 0.67 | 53.00 | 0.88 | 243.17 |
| ALNS 25K Avg. | P4-3GHz | 0.39 | 0.93 | 1.25 | 5.30 | 2.40 | 24.32 |
| ALNS 50K Best of 10 | $\mathrm{P} 4-3 \mathrm{GHz}$ | 0.11 | 17.50 | 0.49 | 107.67 | 0.50 | 497.90 |
| ALNS 50K Avg. | $\mathrm{P} 4-3 \mathrm{GHz}$ | 0.31 | 1.75 | 1.02 | 10.77 | 1.90 | 49.79 |
|  |  |  | instances |  | instances |  | instances |
|  |  | 50-20 | ustomers | 240-4 | ustomers | 560-1 | ustomers |

Table 11: Capacitated vehicle routing problems. The table compares the ALNS heuristic to nine heuristics proposed in the literature recently. The first column indicates the heuristic considered. TV - granular tabu search by Toth and Vigo [58], LGV - variable-length neighbor list record-to-record travel heuristic by Li et al. [40], CGLM - unified tabu search by Cordeau et al. [17, 19], EOS - very large scale neighborhood search by Ergun et al [23], $P$ - evolutionary algorithm by Prins [46], $T K$ - bone route heuristic by Tarantilis and Kiranoudis [57], MB - AGES heuristic by Mester and Bräysy [42] (two configurations of this heuristic is included in the table), $B B$ - hybrid genetic algorithm by Berger and Barkaoui [3], $R D H$ - ants system algorithm by Reimann et al. [47]. The table contains four rows for the ALNS heuristic. For each of the configurations ALNS-25K and ALNS-50K we report the best solution quality in ten experiments and the average solution quality (averaged over the same ten experiments). The $C P U$ column lists the CPU used, $P$ is used as an abbreviation for Pentium. The rest of the table contains three major columns, one for each dataset. For each of the datasets we report the gap between the solution obtained by the heuristic and the best known solution and we report the time spend on average by the heuristic to solve one instance. When reporting solution times for finding the best solution of ten runs, the time of all runs has been included. The ALNS heuristic is the only heuristic that has been applied to all datasets, which explains the missing entries. It should be noted that some of the numbers reported in the table were obtained from the survey by Cordeau et al. [16].

|  | Best known |  |  | ALNS 25K |  |  |  |  |  | ALNS 50K |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n \#veh. | cost | References | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. \#veh. | best sol. | best \#veh. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | $\begin{gathered} \hline \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. \#veh. | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| P01 | $50 \quad 5$ | 408.5 | FEL | 416.67 | 5.0 | 416.06 | 5 | 2.00 | 12 | 416.45 | 5.0 | 416.06 | 5 | 1.95 | 23 |
| P02 | 7510 | 570.6 | FEL | 570.81 | 10.0 | 567.14 | 10 | 0.65 | 36 | 568.86 | 10.0 | 567.14 | 10 | 0.30 | 53 |
| P03 | 1008 | 617 | FEL | 642.93 | 8.0 | 641.76 | 8 | 4.20 | 85 | 642.32 | 8.0 | 641.76 | 8 | 4.10 | 128 |
| P04 | 15012 | 734.5 | FEL | 734.34 | 12.0 | 733.13 | 12 | 0.17 | 179 | 733.49 | 12.0 | 733.13 | 12 | 0.05 | 279 |
| P05 | 19916 | 953.4 | B | 912.54 | 16.0 | 897.93 | 16 | 1.84 | 124 | 907.03 | 16.0 | 896.08 | 16 | 1.22 | 237 |
| P06 | 506 | 400.6 | FEL | 412.96 | 6.0 | 412.96 | 6 | 3.08 | 20 | 412.96 | 6.0 | 412.96 | 6 | 3.08 | 31 |
| P07 | 7510 | 634.5 | B | 592.16 | 10.0 | 584.15 | 10 | 1.54 | 18 | 588.72 | 10.0 | 583.19 | 10 | 0.95 | 33 |
| P08 | 1009 | 638.2 | FEL | 646.23 | 9.0 | 645.31 | 9 | 1.26 | 73 | 646.28 | 9.0 | 645.16 | 9 | 1.27 | 114 |
| P09 | 15013 | 785.2 | B | 766.42 | 13.1 | 759.35 | 13 | 1.13 | 108 | 764.32 | 13.1 | 757.84 | 13 | 0.85 | 185 |
| P10 | 19917 | 884.6 | B | 882.33 | 17.0 | 875.67 | 17 | 0.76 | 120 | 878.42 | 17.0 | 875.67 | 17 | 0.31 | 224 |
| P11 | 1207 | 683.4 | B | 682.68 | 7.0 | 682.12 | 7 | 0.08 | 73 | 682.39 | 7.0 | 682.12 | 7 | 0.04 | 141 |
| P12 | 10010 | 534.8 | FEL | 534.81 | 10.0 | 534.24 | 10 | 0.11 | 80 | 534.44 | 10.0 | 534.24 | 10 | 0.04 | 118 |
| P13 | 12011 | 943.7 | B | 911.98 | 11.0 | 909.80 | 11 | 0.24 | 61 | 911.12 | 11.0 | 909.80 | 11 | 0.15 | 116 |
| P14 | 10011 | 597.3 | B | 591.87 | 11.0 | 591.87 | 11 | 0.00 | 40 | 591.89 | 11.0 | 591.87 | 11 | 0.00 | 75 |
| F11 | $71 \quad 4$ | 175 | FEL | 177.00 | 4.0 | 177.00 | 4 | 1.14 | 69 | 177.00 | 4.0 | 177.00 | 4 | 1.14 | 104 |
| F12 | 1347 | 778.5 | FEL | 770.59 | 7.0 | 770.17 | 7 | 0.06 | 237 | 770.31 | 7.0 | 770.17 | 7 | 0.02 | 359 |
| Tot. | 156 | 10340 |  | 10246.32 | 156.10 | 10198.67 | 156 |  | 1336 | 10225.99 | 156.10 | 10194.19 | 156 |  | 2222 |
| Avg. |  |  |  |  |  |  |  | 1.14 | 83 |  |  |  |  | 0.97 | 139 |
| < PB |  |  |  |  |  | 11 |  |  |  |  |  | 11 |  |  |  |
| \#B |  | 5 |  |  |  | 8 |  |  |  |  |  | 11 |  |  |  |

Table 12: Open vehicle routing problem instances. The table should be interpreted like Table 9. The abbreviations used in the References column are: $B$ - Brandao's heuristic [6], FEL - the heuristic by Fu et al. [25]. The column \#veh. indicates the number of vehicles used in the previous best solution, avg. \#veh. indicates the number of vehicles used on average by the particular ALNS configuration (averaged over ten experiments). The column best \#veh. indicates the number of vehicles used in the best found solution (out of 10 experiments).

|  | Best known |  |  | ALNS 25K |  |  |  |  |  | ALNS 50K |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | avg. \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | avg. gap (\%) | avg. time (s) | avg. sol. | avg. \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| R101 | 19 | 1645.79 | H (2000) | 1650.86 | 19.0 | 1650.80 | 19 | 0.31 | 55 | 1650.80 | 19.0 | 1650.80 | 19 | 0.30 | 85 |
| R102 | 17 | 1486.12 | RT (1995) | 1486.89 | 17.0 | 1486.12 | 17 | 0.05 | 62 | 1486.75 | 17.0 | 1486.12 | 17 | 0.04 | 94 |
| R103 | 13 | 1292.68 | LLH (2001) | 1294.89 | 13.0 | 1292.68 | 13 | 0.17 | 64 | 1294.04 | 13.0 | 1292.68 | 13 | 0.11 | 97 |
| R104 | 9 | 1007.24 | M (2002) | 987.85 | 9.8 | 1013.13 | 9 | -1.93 | 61 | 987.85 | 9.8 | 1013.13 | 9 | -1.93 | 96 |
| R105 | 14 | 1377.11 | RT (1995) | 1378.77 | 14.0 | 1377.11 | 14 | 0.12 | 56 | 1378.11 | 14.0 | 1377.11 | 14 | 0.07 | 85 |
| R106 | 12 | 1251.98 | M (2002) | 1258.40 | 12.0 | 1252.03 | 12 | 0.51 | 61 | 1255.52 | 12.0 | 1252.03 | 12 | 0.28 | 92 |
| R107 | 10 | 1104.55 | S97 (1997) | 1118.18 | 10.0 | 1113.70 | 10 | 1.23 | 52 | 1115.19 | 10.0 | 1104.76 | 10 | 0.96 | 85 |
| R108 | 9 | 960.88 | BBB (2001) | 969.37 | 9.0 | 963.91 | 9 | 0.88 | 40 | 965.36 | 9.0 | 960.88 | 9 | 0.47 | 75 |
| R109 | 11 | 1194.73 | HG (1999) | 1213.09 | 11.1 | 1194.73 | 11 | 1.54 | 47 | 1211.44 | 11.1 | 1194.73 | 11 | 1.40 | 77 |
| R110 | 10 | 1118.59 | M (2002) | 1149.56 | 10.0 | 1119.14 | 10 | 2.77 | 41 | 1148.92 | 10.0 | 1119.14 | 10 | 2.71 | 71 |
| R111 | 10 | 1096.72 | RGP (2001?) | 1112.14 | 10.0 | 1096.74 | 10 | 1.41 | 46 | 1105.36 | 10.0 | 1096.73 | 10 | 0.79 | 78 |
| R112 | 9 | 982.14 | GTA (1999) | 983.16 | 9.5 | 1000.60 | 9 | 0.10 | 58 | 982.62 | 9.5 | 1000.60 | 9 | 0.05 | 91 |
| C101 | 10 | 828.94 | RT (1995) | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 29 | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 57 |
| C102 | 10 | 828.94 | RT (1995) | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 59 | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 91 |
| C103 | 10 | 828.06 | RT (1995) | 828.06 | 10.0 | 828.06 | 10 | 0.00 | 65 | 828.06 | 10.0 | 828.06 | 10 | 0.00 | 99 |
| C104 | 10 | 824.78 | RT (1995) | 824.78 | 10.0 | 824.78 | 10 | 0.00 | 69 | 824.78 | 10.0 | 824.78 | 10 | 0.00 | 105 |
| C105 | 10 | 828.94 | RT (1995) | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 31 | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 59 |
| C106 | 10 | 828.94 | RT (1995) | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 32 | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 62 |
| C107 | 10 | 828.94 | RT (1995) | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 32 | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 62 |
| C108 | 10 | 828.94 | RT (1995) | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 61 | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 93 |
| C109 | 10 | 828.94 | RT (1995) | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 64 | 828.94 | 10.0 | 828.94 | 10 | 0.00 | 99 |
| RC101 | 14 | 1696.94 | TBGGP (1997) | 1688.35 | 14.2 | 1697.43 | 14 | -0.51 | 53 | 1688.17 | 14.2 | 1697.43 | 14 | -0.52 | 80 |
| RC102 | 12 | 1554.75 | TBGGP (1997) | 1547.04 | 12.1 | 1554.75 | 12 | -0.50 | 56 | 1555.06 | 12.1 | 1554.75 | 12 | 0.02 | 84 |
| RC103 | 11 | 1261.67 | S98 (1998) | 1270.78 | 11.0 | 1262.02 | 11 | 0.72 | 58 | 1268.53 | 11.0 | 1262.02 | 11 | 0.54 | 90 |
| RC104 | 10 | 1135.48 | CLM (2000) | 1135.80 | 10.0 | 1135.52 | 10 | 0.03 | 60 | 1135.89 | 10.0 | 1135.83 | 10 | 0.04 | 92 |
| RC105 | 13 | 1629.44 | BBB (2001) | 1640.18 | 13.0 | 1629.44 | 13 | 0.66 | 54 | 1640.92 | 13.0 | 1633.72 | 13 | 0.70 | 83 |
| RC106 | 11 | 1424.73 | BBB (2001) | 1413.07 | 11.5 | 1432.12 | 11 | -0.82 | 49 | 1411.92 | 11.5 | 1432.12 | 11 | -0.90 | 76 |
| RC107 | 11 | 1230.48 | S97 (1997) | 1232.48 | 11.0 | 1230.95 | 11 | 0.16 | 56 | 1231.65 | 11.0 | 1230.54 | 11 | 0.09 | 86 |
| RC108 | 10 | 1139.82 | TBGGP (1997) | 1167.55 | 10.0 | 1140.87 | 10 | 2.43 | 41 | 1152.30 | 10.0 | 1139.82 | 10 | 1.10 | 71 |
| R201 | 4 | 1252.37 | HG (1999) | 1253.23 | 4.0 | 1253.23 | 4 | 0.07 | 133 | 1253.23 | 4.0 | 1253.23 | 4 | 0.07 | 193 |
| R202 | 3 | 1191.7 | RGP (2001?) | 1229.81 | 3.0 | 1195.30 | 3 | 3.20 | 96 | 1223.62 | 3.0 | 1195.30 | 3 | 2.68 | 181 |
| R203 | 3 | 939.54 | M (2002) | 944.64 | 3.0 | 939.58 | 3 | 0.54 | 164 | 943.57 | 3.0 | 941.08 | 3 | 0.43 | 256 |
| R204 | 2 | 825.52 | BVH (2001) | 841.48 | 2.0 | 833.09 | 2 | 1.93 | 182 | 843.39 | 2.0 | 833.09 | 2 | 2.16 | 346 |
| R205 | 3 | 994.42 | RGP (2001?) | 1018.90 | 3.0 | 994.43 | 3 | 2.46 | 97 | 1010.43 | 3.0 | 994.43 | 3 | 1.61 | 186 |
| R206 | 3 | 906.14 | SSSD (2000) | 923.91 | 3.0 | 915.27 | 3 | 1.96 | 192 | 921.07 | 3.0 | 906.14 | 3 | 1.65 | 282 |
| R207 | 2 | 893.33 | BVH (2001) | 928.28 | 2.0 | 893.33 | 2 | 3.91 | 180 | 927.62 | 2.0 | 893.33 | 2 | 3.84 | 332 |
| R208 | 2 | 726.75 | M (2002) | 736.12 | 2.0 | 726.82 | 2 | 1.29 | 185 | 735.76 | 2.0 | 726.82 | 2 | 1.24 | 369 |
| R209 | 3 | 909.16 | H (2000) | 926.72 | 3.0 | 914.45 | 3 | 1.93 | 101 | 923.48 | 3.0 | 914.13 | 3 | 1.58 | 185 |
| R210 | 3 | 939.34 | M (2002) | 955.02 | 3.0 | 954.12 | 3 | 1.67 | 112 | 955.29 | 3.0 | 950.52 | 3 | 1.70 | 204 |
| R211 | 2 | 892.71 | BVH (2001) | 889.99 | 2.3 | 925.03 | 2 | -0.30 | 216 | 887.93 | 2.3 | 926.83 | 2 | -0.54 | 349 |
| C201 | 3 | 591.56 | RT (1995) | 591.56 | 3.0 | 591.56 | 3 | 0.00 | 78 | 591.56 | 3.0 | 591.56 | 3 | 0.00 | 147 |
| C202 | 3 | 591.56 | RT (1995) | 591.56 | 3.0 | 591.56 | 3 | 0.00 | 88 | 591.56 | 3.0 | 591.56 | 3 | 0.00 | 163 |
| C203 | 3 | 591.17 | RT (1995) | 591.17 | 3.0 | 591.17 | 3 | 0.00 | 96 | 591.17 | 3.0 | 591.17 | 3 | 0.00 | 181 |
| C204 | 3 | 590.6 | RT (1995) | 590.60 | 3.0 | 590.60 | 3 | 0.00 | 102 | 590.60 | 3.0 | 590.60 | 3 | 0.00 | 189 |
| C205 | 3 | 588.88 | RT (1995) | 588.88 | 3.0 | 588.88 | 3 | 0.00 | 81 | 588.88 | 3.0 | 588.88 | 3 | 0.00 | 155 |
| C206 | 3 | 588.49 | RT (1995) | 588.49 | 3.0 | 588.49 | 3 | 0.00 | 83 | 588.49 | 3.0 | 588.49 | 3 | 0.00 | 156 |
| C207 | 3 | 588.29 | RT (1995) | 588.29 | 3.0 | 588.29 | 3 | 0.00 | 84 | 588.29 | 3.0 | 588.29 | 3 | 0.00 | 167 |
| C208 | 3 | 588.32 | RT (1995) | 588.32 | 3.0 | 588.32 | 3 | 0.00 | 85 | 588.32 | 3.0 | 588.32 | 3 | 0.00 | 161 |
| RC201 | 4 | 1406.91 | M (2002) | 1417.80 | 4.0 | 1413.52 | 4 | 0.77 | 83 | 1414.69 | 4.0 | 1413.52 | 4 | 0.55 | 140 |
| RC202 | 3 | 1367.09 | CC (2002) | 1405.16 | 3.0 | 1368.04 | 3 | 2.78 | 96 | 1403.60 | 3.0 | 1367.09 | 3 | 2.67 | 177 |
| RC203 | 3 | 1049.62 | CC (2002) | 1075.51 | 3.0 | 1068.08 | 3 | 2.47 | 100 | 1072.57 | 3.0 | 1068.60 | 3 | 2.19 | 192 |
| RC204 | 3 | 798.41 | M (2002) | 818.00 | 3.0 | 799.27 | 3 | 2.45 | 228 | 806.81 | 3.0 | 798.46 | 3 | 1.05 | 320 |
| RC205 | 4 | 1297.19 | M (2002) | 1318.01 | 4.0 | 1302.42 | 4 | 1.60 | 134 | 1312.75 | 4.0 | 1302.42 | 4 | 1.20 | 194 |
| RC206 | 3 | 1146.32 | H (2000) | 1155.91 | 3.0 | 1146.32 | 3 | 0.84 | 87 | 1155.16 | 3.0 | 1146.32 | 3 | 0.77 | 166 |
| RC207 | 3 | 1061.14 | BVH (2001) | 1095.29 | 3.0 | 1070.85 | 3 | 3.22 | 96 | 1088.15 | 3.0 | 1061.84 | 3 | 2.55 | 182 |
| RC208 | 3 | 828.14 | IKMUY (2001) | 834.83 | 3.0 | 829.69 | 3 | 0.81 | 109 | 829.96 | 3.0 | 829.69 | 3 | 0.22 | 196 |
| Tot. | 405 | 57192 |  | 57641.28 | 407.50 | 57360.86 | 405 |  | 4800 | 57549.75 | 407.50 | 57332.03 | 405 |  | 8182 |
| Avg. |  |  |  |  |  |  |  | 0.77 | 86 |  |  |  |  | 0.61 | 146 |
| < PB |  |  |  |  |  | 0 |  |  |  |  |  | 0 |  |  |  |
| \#B |  |  | 56 |  |  | 25 |  |  |  |  |  | 28 |  |  |  |

Table 13: Solomon VRPTW instances. The table should be interpreted as table 12. The best known solutions were gathered from the web page: http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html. See this page for complete references to where the best known solutions first were identified.

|  | Best known |  |  | ALNS 25K |  |  |  |  |  | ALNS 50K |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | avg. \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | avg. <br> gap <br> (\%) | avg. time (s) | avg. sol. | avg. <br> \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \hline \end{gathered}$ | avg. <br> time <br> (s) |
| R1_2_1 | 19 | 5024.65 | B | 4809.44 | 20.0 | 4798.22 | 20 | -4.28 | 170 | 4798.77 | 20.0 | 4785.96 | 20 | -4.50 | 257 |
| R1_2_2 | 18 | 4054.44 | MB | 4091.46 | 18.0 | 4066.91 | 18 | 0.91 | 165 | 4079.18 | 18.0 | 4059.57 | 18 | 0.61 | 256 |
| R1_2_3 | 18 | 3164.41 | LC | 3414.89 | 18.0 | 3387.64 | 18 | 7.92 | 160 | 3407.48 | 18.0 | 3396.47 | 18 | 7.68 | 260 |
| R1_2_4 | 18 | 3067.93 | MB | 3104.90 | 18.0 | 3086.11 | 18 | 1.20 | 200 | 3100.94 | 18.0 | 3086.65 | 18 | 1.08 | 308 |
| R1_2_5 | 18 | 4112.88 | MB | 4184.89 | 18.0 | 4125.19 | 18 | 1.75 | 147 | 4157.28 | 18.0 | 4125.19 | 18 | 1.08 | 231 |
| R1_2_6 | 18 | 3599.84 | MB | 3643.10 | 18.0 | 3616.52 | 18 | 1.57 | 167 | 3631.74 | 18.0 | 3586.80 | 18 | 1.25 | 258 |
| R1_2_7 | 18 | 3151.42 | MB | 3187.56 | 18.0 | 3170.98 | 18 | 1.15 | 169 | 3186.04 | 18.0 | 3160.44 | 18 | 1.10 | 271 |
| R1_2_8 | 18 | 2963.9 | MB | 2992.96 | 18.0 | 2971.66 | 18 | 0.98 | 200 | 2989.62 | 18.0 | 2975.59 | 18 | 0.87 | 310 |
| R1_2_9 | 18 | 3784.33 | MB | 3853.46 | 18.0 | 3802.55 | 18 | 1.83 | 135 | 3840.07 | 18.0 | 3823.15 | 18 | 1.47 | 223 |
| R1_210 | 18 | 3307.78 | MB | 3363.82 | 18.0 | 3333.66 | 18 | 1.69 | 148 | 3336.35 | 18.0 | 3312.44 | 18 | 0.86 | 241 |
| C1_2_1 | 20 | 2704.57 | GH | 2704.57 | 20.0 | 2704.57 | 20 | 0.00 | 94 | 2704.57 | 20.0 | 2704.57 | 20 | 0.00 | 181 |
| C1_2_2 | 18 | 2917.89 | BVH | 2977.48 | 18.0 | 2948.73 | 18 | 2.04 | 152 | 2969.62 | 18.0 | 2943.83 | 18 | 1.77 | 242 |
| C1_2_3 | 18 | 2708.08 | MB | 2744.41 | 18.0 | 2719.62 | 18 | 1.34 | 145 | 2729.39 | 18.0 | 2710.21 | 18 | 0.79 | 245 |
| C1_2_4 | 18 | 2644.61 | MB | 2646.94 | 18.0 | 2645.60 | 18 | 0.09 | 146 | 2646.36 | 18.0 | 2644.92 | 18 | 0.07 | 253 |
| C1_2_5 | 20 | 2702.05 | GH | 2702.05 | 20.0 | 2702.05 | 20 | 0.00 | 96 | 2702.05 | 20.0 | 2702.05 | 20 | 0.00 | 186 |
| C1_2_6 | 20 | 2701.04 | GH | 2701.04 | 20.0 | 2701.04 | 20 | 0.00 | 101 | 2701.04 | 20.0 | 2701.04 | 20 | 0.00 | 193 |
| C1_2_7 | 20 | 2701.04 | GH | 2701.04 | 20.0 | 2701.04 | 20 | 0.00 | 184 | 2701.04 | 20.0 | 2701.04 | 20 | 0.00 | 281 |
| C1_2_8 | 18 | 2769.19 | MB | 2791.15 | 19.0 | 2775.48 | 19 | 0.79 | 157 | 2789.38 | 19.0 | 2775.48 | 19 | 0.73 | 250 |
| C1_2_9 | 18 | 2642.82 | MB | 2705.26 | 18.0 | 2687.83 | 18 | 2.36 | 104 | 2688.82 | 18.0 | 2687.83 | 18 | 1.74 | 196 |
| C1_210 | 18 | 2649.26 | MB | 2650.64 | 18.0 | 2645.08 | 18 | 0.24 | 117 | 2651.55 | 18.0 | 2644.25 | 18 | 0.28 | 214 |
| RC1_2_1 | 18 | 3691.99 | MB | 3812.41 | 18.0 | 3727.17 | 18 | 4.52 | 93 | 3731.52 | 18.0 | 3647.56 | 18 | 2.30 | 175 |
| RC1_2_2 | 18 | 3298.68 | MB | 3342.07 | 18.0 | 3269.91 | 18 | 2.21 | 96 | 3309.57 | 18.0 | 3276.88 | 18 | 1.21 | 185 |
| RC1_2_3 | 18 | 3025.9 | MB | 3053.11 | 18.0 | 3036.32 | 18 | 0.90 | 104 | 3051.91 | 18.0 | 3034.45 | 18 | 0.86 | 201 |
| RC1_2_4 | 18 | 2879.4 | MB | 2906.27 | 18.0 | 2869.74 | 18 | 1.27 | 109 | 2887.58 | 18.0 | 2873.54 | 18 | 0.62 | 215 |
| RC1_2_5 | 18 | 3419.81 | MB | 3509.40 | 18.0 | 3463.01 | 18 | 2.62 | 90 | 3500.46 | 18.0 | 3430.03 | 18 | 2.36 | 173 |
| RC1_2_6 | 18 | 3393.09 | MB | 3473.96 | 18.0 | 3398.67 | 18 | 3.46 | 91 | 3431.75 | 18.0 | 3357.90 | 18 | 2.20 | 174 |
| RC1_2_7 | 18 | 3266.48 | MB | 3353.23 | 18.0 | 3290.65 | 18 | 3.71 | 93 | 3302.54 | 18.0 | 3233.29 | 18 | 2.14 | 179 |
| RC1_2_8 | 18 | 3115.82 | MB | 3163.78 | 18.0 | 3147.87 | 18 | 1.71 | 95 | 3149.37 | 18.0 | 3110.46 | 18 | 1.25 | 183 |
| RC1_2_9 | 18 | 3083.41 | MB | 3152.09 | 18.0 | 3114.02 | 18 | 2.23 | 94 | 3150.15 | 18.0 | 3116.47 | 18 | 2.16 | 183 |
| RC1_210 | 18 | 3038.85 | MB | 3063.57 | 18.0 | 3020.24 | 18 | 1.43 | 98 | 3056.83 | 18.0 | 3042.24 | 18 | 1.21 | 190 |
| R2_2_1 | 4 | 4501.8 | MB | 4340.82 | 4.5 | 4563.55 | 4 | -3.58 | 527 | 4329.15 | 4.5 | 4571.67 | 4 | -3.84 | 821 |
| R2_2_2 | 4 | 3645.38 | MB | 3683.64 | 4.0 | 3666.72 | 4 | 1.05 | 416 | 3669.25 | 4.0 | 3650.54 | 4 | 0.65 | 795 |
| R2_2_3 | 4 | 2932.44 | MB | 2928.17 | 4.0 | 2892.07 | 4 | 1.25 | 458 | 2924.73 | 4.0 | 2892.07 | 4 | 1.13 | 890 |
| R2_2_4 | 4 | 1981.29 | MB | 1992.90 | 4.0 | 1981.30 | 4 | 0.59 | 482 | 1989.24 | 4.0 | 1981.30 | 4 | 0.40 | 910 |
| R2_2_5 | 4 | 3367.55 | SAM::OPT | 3431.26 | 4.0 | 3382.22 | 4 | 1.89 | 385 | 3417.75 | 4.0 | 3377.18 | 4 | 1.49 | 723 |
| R2_2_6 | 4 | 2914.56 | MB | 2957.14 | 4.0 | 2929.72 | 4 | 1.46 | 414 | 2947.20 | 4.0 | 2931.14 | 4 | 1.12 | 807 |
| R2_2_7 | 4 | 2453.62 | MB | 2461.82 | 4.0 | 2456.71 | 4 | 0.33 | 461 | 2465.00 | 4.0 | 2459.82 | 4 | 0.46 | 883 |
| R2_2_8 | 4 | 1849.87 | MB | 1874.00 | 4.0 | 1850.85 | 4 | 1.30 | 495 | 1866.03 | 4.0 | 1849.87 | 4 | 0.87 | 959 |
| R2_2_9 | 4 | 3111.41 | MB | 3134.41 | 4.0 | 3113.74 | 4 | 0.74 | 405 | 3126.66 | 4.0 | 3113.74 | 4 | 0.49 | 768 |
| R2_210 | 4 | 2657 | MB | 2696.24 | 4.0 | 2666.10 | 4 | 1.48 | 399 | 2690.93 | 4.0 | 2666.35 | 4 | 1.28 | 784 |
| C2_2_1 | 6 | 1931.44 | GH | 1931.44 | 6.0 | 1931.44 | 6 | 0.00 | 214 | 1931.44 | 6.0 | 1931.44 | 6 | 0.00 | 391 |
| C2_2_2 | 6 | 1863.16 | GH | 1863.16 | 6.0 | 1863.16 | 6 | 0.00 | 233 | 1863.16 | 6.0 | 1863.16 | 6 | 0.00 | 445 |
| C2_2_3 | 6 | 1775.11 | M | 1784.79 | 6.0 | 1776.96 | 6 | 0.55 | 263 | 1783.42 | 6.0 | 1776.96 | 6 | 0.47 | 497 |
| C2_2_4 | 6 | 1720.09 | MB | 1719.58 | 6.0 | 1713.46 | 6 | 0.36 | 275 | 1715.66 | 6.0 | 1713.46 | 6 | 0.13 | 527 |
| C2_2_5 | 6 | 1878.85 | BVH | 1881.87 | 6.0 | 1879.31 | 6 | 0.16 | 224 | 1879.27 | 6.0 | 1878.85 | 6 | 0.02 | 413 |
| C2_2_6 | 6 | 1857.35 | B | 1859.74 | 6.0 | 1857.35 | 6 | 0.13 | 224 | 1857.35 | 6.0 | 1857.35 | 6 | 0.00 | 425 |
| C2_2_7 | 6 | 1849.46 | GH | 1851.62 | 6.0 | 1849.46 | 6 | 0.12 | 231 | 1849.46 | 6.0 | 1849.46 | 6 | 0.00 | 431 |
| C2_2_8 | 6 | 1820.59 | MB | 1828.56 | 6.0 | 1823.88 | 6 | 0.44 | 233 | 1823.21 | 6.0 | 1820.53 | 6 | 0.15 | 442 |
| C2_2_9 | 6 | 1830.18 | SAM::OPT | 1833.78 | 6.0 | 1830.05 | 6 | 0.20 | 241 | 1834.31 | 6.0 | 1830.05 | 6 | 0.23 | 449 |
| C2_210 | 6 | 1806.6 | M | 1809.46 | 6.0 | 1808.21 | 6 | 0.16 | 249 | 1809.47 | 6.0 | 1808.21 | 6 | 0.16 | 466 |
| RC2_2_1 | 6 | 3103.48 | MB | 3146.36 | 6.0 | 3126.03 | 6 | 1.38 | 428 | 3143.65 | 6.0 | 3129.07 | 6 | 1.29 | 635 |
| RC2_2_2 | 5 | 2827.45 | M | 2870.43 | 5.0 | 2828.39 | 5 | 1.52 | 629 | 2856.08 | 5.0 | 2835.67 | 5 | 1.01 | 916 |
| RC2_2_3 | 4 | 2617.9 | MB | 2652.00 | 4.0 | 2620.87 | 4 | 1.49 | 444 | 2631.97 | 4.0 | 2613.12 | 4 | 0.72 | 849 |
| RC2_2_4 | 4 | 2055.97 | MB | 2080.99 | 4.0 | 2056.93 | 4 | 1.38 | 476 | 2063.32 | 4.0 | 2052.74 | 4 | 0.52 | 923 |
| RC2_2_5 | 4 | 2912.57 | MB | 3039.09 | 4.0 | 2913.21 | 4 | 4.36 | 433 | 3041.01 | 4.0 | 2912.13 | 4 | 4.43 | 803 |
| RC2_2_6 | 4 | 3086.76 | LC | 2920.37 | 4.3 | 2977.41 | 4 | -1.84 | 525 | 2900.85 | 4.3 | 2975.13 | 4 | -2.50 | 846 |
| RC2_2_7 | 4 | 2550.56 | M | 2609.93 | 4.0 | 2563.90 | 4 | 2.76 | 408 | 2572.96 | 4.0 | 2539.85 | 4 | 1.30 | 789 |
| RC2_2_8 | 4 | 2317.8 | MB | 2341.46 | 4.0 | 2322.52 | 4 | 1.16 | 413 | 2330.66 | 4.0 | 2314.61 | 4 | 0.69 | 788 |
| RC2_2_9 | 4 | 2175.61 | MB | 2216.32 | 4.0 | 2175.98 | 4 | 1.87 | 417 | 2214.61 | 4.0 | 2180.81 | 4 | 1.79 | 795 |
| RC2_210 | 4 | 2015.6 | MB | 2046.95 | 4.0 | 2020.68 | 4 | 1.56 | 424 | 2030.64 | 4.0 | 2015.61 | 4 | 0.75 | 808 |
| Tot. | 692 | 168997 |  | 170589.23 | 694.80 | 169370.28 | 694 |  | 15341 | 169941.42 | 694.80 | 169042.17 | 694 |  | 27688 |
| Avg. |  |  |  |  |  |  |  | 1.17 | 256 |  |  |  |  | 0.81 | 461 |
| < PB |  |  |  |  |  | 8 |  |  |  |  |  | 18 |  |  |  |
| \#B |  | 41 |  |  |  | 14 |  |  |  |  |  | 26 |  |  |  |

Table 14: Gehring/Homberger VRPTW instances, 200 customers.. The best known solutions were gathered from the web page: http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html in January 2005. This list of best known solutions was supplemented by the solutions found by Mester and Bräysy [42] (MB) and Le Bouthillier and Crainic [5] (LC). See the aforementioned web page for full references. The same sources were used for the best known solution columns in tables 4 to 7 .

|  | Best known |  |  | ALNS 25K |  |  |  |  |  | ALNS 50K |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | avg. sol. | avg. \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | $\begin{gathered} \hline \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. <br> \#veh. | best sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| R1_4_1 | 38 | 11084 | B | 10557.71 | 40.0 | 10502.22 | 40 | -4.75 | 368 | 10485.89 | 40.0 | 10432.30 | 40 | -5.40 | 554 |
| R1_4_2 | 36 | 9161.26 | MB | 9277.12 | 36.0 | 9239.87 | 36 | 1.77 | 224 | 9166.43 | 36.0 | 9115.68 | 36 | 0.56 | 401 |
| R1_4_3 | 36 | 7941.53 | MB | 8029.69 | 36.0 | 7996.33 | 36 | 1.11 | 269 | 8053.08 | 36.0 | 7988.22 | 36 | 1.40 | 464 |
| R1_4_4 | 36 | 7332.93 | MB | 7468.64 | 36.0 | 7449.60 | 36 | 1.85 | 227 | 7441.43 | 36.0 | 7415.81 | 36 | 1.48 | 439 |
| R1_4_5 | 36 | 9512.25 | MB | 9738.05 | 36.0 | 9588.45 | 36 | 2.73 | 182 | 9560.46 | 36.0 | 9479.10 | 36 | 0.86 | 347 |
| R1_4_6 | 36 | 8534.05 | MB | 8740.69 | 36.0 | 8677.13 | 36 | 2.42 | 227 | 8613.60 | 36.0 | 8556.38 | 36 | 0.93 | 407 |
| R1_4_7 | 36 | 7710.41 | MB | 7812.04 | 36.0 | 7769.68 | 36 | 1.32 | 245 | 7763.04 | 36.0 | 7725.97 | 36 | 0.68 | 439 |
| R1_4_8 | 36 | 7398.68 | MB | 7468.69 | 36.0 | 7425.43 | 36 | 1.05 | 231 | 7398.80 | 36.0 | 7390.76 | 36 | 0.11 | 444 |
| R1_4_9 | 36 | 8878.19 | MB | 9125.58 | 36.0 | 9058.30 | 36 | 2.79 | 217 | 9053.20 | 36.0 | 8970.98 | 36 | 1.97 | 386 |
| R1_410 | 36 | 8227.49 | MB | 8417.50 | 36.0 | 8386.75 | 36 | 2.31 | 194 | 8363.10 | 36.0 | 8325.16 | 36 | 1.65 | 377 |
| C1_4_1 | 40 | 7152.02 | M | 7152.06 | 40.0 | 7152.06 | 40 | 0.00 | 203 | 7152.06 | 40.0 | 7152.06 | 40 | 0.00 | 387 |
| C1_4_2 | 37 | 7357.45 | MB | 7815.71 | 36.2 | 7830.99 | 36 | 1.06 | 260 | 7759.63 | 36.2 | 7733.55 | 36 | 0.34 | 437 |
| C1_4_3 | 36 | 7151.17 | MB | 7208.25 | 36.0 | 7174.23 | 36 | 1.78 | 212 | 7104.35 | 36.0 | 7082.13 | 36 | 0.31 | 403 |
| C1_4_4 | 36 | 6822.18 | MB | 6909.71 | 36.0 | 6833.32 | 36 | 1.37 | 224 | 6861.13 | 36.0 | 6816.17 | 36 | 0.66 | 431 |
| C1_4_5 | 40 | 7152.02 | M | 7152.06 | 40.0 | 7152.06 | 40 | 0.00 | 215 | 7152.06 | 40.0 | 7152.06 | 40 | 0.00 | 404 |
| C1_4_6 | 40 | 7153.41 | M | 7153.45 | 40.0 | 7153.45 | 40 | 0.00 | 286 | 7153.45 | 40.0 | 7153.45 | 40 | 0.00 | 479 |
| C1_4_7 | 39 | 7668.33 | LC | 7643.60 | 39.0 | 7620.09 | 39 | 1.28 | 297 | 7621.62 | 39.0 | 7546.78 | 39 | 0.99 | 485 |
| C1_4_8 | 38 | 7113.4 | MB | 7814.18 | 37.0 | 7661.98 | 37 | 3.55 | 284 | 7794.27 | 37.0 | 7546.32 | 37 | 3.29 | 464 |
| C1_4_9 | 36 | 7524.32 | MB | 8042.29 | 36.0 | 7673.65 | 36 | 6.88 | 255 | 7800.59 | 36.0 | 7573.18 | 36 | 3.67 | 428 |
| C1_410 | 36 | 6907.26 | MB | 7617.12 | 36.0 | 7446.94 | 36 | 10.28 | 214 | 7325.70 | 36.0 | 7145.92 | 36 | 6.06 | 398 |
| RC1_4_1 | 36 | 8960.82 | MB | 9139.22 | 36.0 | 9044.65 | 36 | 3.70 | 207 | 8939.82 | 36.0 | 8813.43 | 36 | 1.43 | 371 |
| RC1_4_2 | 36 | 8174.27 | MB | 8287.21 | 36.0 | 8181.05 | 36 | 2.08 | 197 | 8176.96 | 36.0 | 8118.43 | 36 | 0.72 | 370 |
| RC1_4_3 | 36 | 7737.99 | MB | 7744.57 | 36.0 | 7668.27 | 36 | 1.05 | 214 | 7729.95 | 36.0 | 7663.73 | 36 | 0.86 | 403 |
| RC1_4_4 | 36 | 7411.02 | MB | 7497.41 | 36.0 | 7447.70 | 36 | 1.75 | 226 | 7433.65 | 36.0 | 7368.47 | 36 | 0.88 | 436 |
| RC1_4_5 | 36 | 8499.15 | MB | 8634.51 | 36.0 | 8503.19 | 36 | 2.47 | 190 | 8520.69 | 36.0 | 8426.57 | 36 | 1.12 | 356 |
| RC1_4_6 | 36 | 8304.99 | MB | 8640.29 | 36.0 | 8533.72 | 36 | 4.04 | 185 | 8445.05 | 36.0 | 8390.24 | 36 | 1.69 | 351 |
| RC1_4_7 | 36 | 8051.71 | MB | 8355.82 | 36.0 | 8223.65 | 36 | 3.78 | 192 | 8331.40 | 36.0 | 8227.10 | 36 | 3.47 | 360 |
| RC1_4_8 | 36 | 7917.68 | MB | 8174.94 | 36.0 | 8135.05 | 36 | 3.25 | 192 | 8070.47 | 36.0 | 7922.67 | 36 | 1.93 | 363 |
| RC1_4_9 | 36 | 7890.45 | MB | 8067.40 | 36.0 | 7953.20 | 36 | 2.24 | 194 | 8016.28 | 36.0 | 7987.55 | 36 | 1.59 | 370 |
| RC1_410 | 36 | 7716.32 | MB | 7861.40 | 36.0 | 7805.59 | 36 | 1.88 | 199 | 7823.83 | 36.0 | 7774.83 | 36 | 1.39 | 376 |
| R2_4_1 | 8 | 9257.92 | MB | 9513.88 | 8.0 | 9375.10 | 8 | 2.76 | 1002 | 9432.87 | 8.0 | 9338.49 | 8 | 1.89 | 1574 |
| R2_4_2 | 8 | 7674.9 | MB | 7762.67 | 8.0 | 7728.27 | 8 | 1.47 | 1313 | 7744.54 | 8.0 | 7649.87 | 8 | 1.24 | 1942 |
| R2_4_3 | 8 | 5988.02 | MB | 6078.27 | 8.0 | 5998.04 | 8 | 1.51 | 1426 | 6053.22 | 8.0 | 6034.08 | 8 | 1.09 | 2120 |
| R2_4_4 | 8 | 4331.07 | MB | 4356.73 | 8.0 | 4326.48 | 8 | 0.70 | 1565 | 4345.23 | 8.0 | 4327.61 | 8 | 0.43 | 2333 |
| R2_4_5 | 8 | 7143.55 | MB | 7305.24 | 8.0 | 7255.52 | 8 | 2.26 | 1207 | 7277.89 | 8.0 | 7252.64 | 8 | 1.88 | 1841 |
| R2_4_6 | 8 | 6163.81 | MB | 6284.34 | 8.0 | 6222.32 | 8 | 1.96 | 1326 | 6229.61 | 8.0 | 6212.37 | 8 | 1.07 | 1986 |
| R2_4_7 | 8 | 5082.1 | MB | 5182.15 | 8.0 | 5138.58 | 8 | 1.97 | 1441 | 5154.64 | 8.0 | 5136.74 | 8 | 1.43 | 2164 |
| R2_4_8 | 8 | 4068.97 | MB | 4090.90 | 8.0 | 4055.22 | 8 | 0.88 | 1587 | 4076.34 | 8.0 | 4060.51 | 8 | 0.52 | 2384 |
| R2_4_9 | 8 | 6493.13 | MB | 6565.87 | 8.0 | 6526.20 | 8 | 1.12 | 1222 | 6537.26 | 8.0 | 6507.40 | 8 | 0.68 | 1817 |
| R2_410 | 8 | 5895.93 | MB | 5958.31 | 8.0 | 5894.40 | 8 | 1.08 | 1283 | 5919.14 | 8.0 | 5897.46 | 8 | 0.42 | 1891 |
| C2_4_1 | 12 | 4116.05 | M | 4125.50 | 12.0 | 4116.33 | 12 | 0.23 | 403 | 4116.93 | 12.0 | 4116.33 | 12 | 0.02 | 753 |
| C2_4_2 | 12 | 3930.29 | MB | 3930.22 | 12.0 | 3930.05 | 12 | 0.00 | 477 | 3930.13 | 12.0 | 3930.05 | 12 | 0.00 | 858 |
| C2_4_3 | 12 | 3739.72 | GH | 3782.86 | 12.0 | 3775.32 | 12 | 1.15 | 525 | 3780.81 | 12.0 | 3775.54 | 12 | 1.10 | 952 |
| C2_4_4 | 12 | 3535.99 | MB | 3549.80 | 12.0 | 3546.66 | 12 | 0.39 | 520 | 3568.37 | 12.0 | 3543.60 | 12 | 0.92 | 965 |
| C2_4_5 | 12 | 3939.42 | MB | 3981.35 | 12.0 | 3946.94 | 12 | 1.06 | 434 | 3951.72 | 12.0 | 3946.14 | 12 | 0.31 | 783 |
| C2_4_6 | 12 | 3875.94 | MB | 3883.95 | 12.0 | 3875.94 | 12 | 0.21 | 457 | 3921.04 | 12.0 | 3875.94 | 12 | 1.16 | 811 |
| C2_4_7 | 12 | 3894.13 | M | 3937.44 | 12.0 | 3903.46 | 12 | 1.11 | 453 | 3960.36 | 12.0 | 3894.98 | 12 | 1.70 | 829 |
| C2_4_8 | 12 | 3787.08 | MB | 3863.49 | 12.0 | 3804.12 | 12 | 2.02 | 498 | 3850.01 | 12.0 | 3796.00 | 12 | 1.66 | 884 |
| C2_4_9 | 12 | 3876.1 | MB | 4025.46 | 12.0 | 3887.00 | 12 | 3.85 | 471 | 3964.79 | 12.0 | 3881.21 | 12 | 2.29 | 851 |
| C2_410 | 12 | 3684.89 | MB | 3764.34 | 12.0 | 3706.87 | 12 | 2.16 | 502 | 3715.36 | 12.0 | 3687.13 | 12 | 0.83 | 896 |
| RC2_4_1 | 11 | 7019.89 | GH | 6876.33 | 11.2 | 6834.02 | 11 | 0.62 | 786 | 6857.62 | 11.2 | 6840.51 | 11 | 0.35 | 1198 |
| RC2_4_2 | 10 | 5924.84 | MB | 6166.44 | 9.8 | 6356.23 | 9 | -2.98 | 1029 | 6125.49 | 9.8 | 6355.59 | 9 | -3.62 | 1553 |
| RC2_4_3 | 8 | 5114.76 | MB | 5139.79 | 8.0 | 5073.80 | 8 | 1.68 | 820 | 5109.29 | 8.0 | 5055.02 | 8 | 1.07 | 1503 |
| RC2_4_4 | 8 | 3648.64 | MB | 3737.66 | 8.0 | 3666.70 | 8 | 2.47 | 959 | 3692.45 | 8.0 | 3647.39 | 8 | 1.24 | 1694 |
| RC2_4_5 | 9 | 6063.46 | MB | 6107.39 | 9.4 | 6257.87 | 9 | 0.72 | 901 | 6019.04 | 9.4 | 6119.44 | 9 | -0.73 | 1416 |
| RC2_4_6 | 8 | 6054.21 | GH | 6093.66 | 8.0 | 5997.24 | 8 | 1.61 | 835 | 6092.17 | 8.0 | 6008.41 | 8 | 1.58 | 1425 |
| RC2_4_7 | 8 | 5519.25 | MB | 5664.90 | 8.0 | 5529.42 | 8 | 3.44 | 714 | 5623.09 | 8.0 | 5476.57 | 8 | 2.68 | 1324 |
| RC2_4_8 | 8 | 4854.16 | MB | 4949.32 | 8.0 | 4877.39 | 8 | 1.96 | 1284 | 4933.15 | 8.0 | 4891.18 | 8 | 1.63 | 1903 |
| RC2_4_9 | 8 | 4628.26 | MB | 4736.64 | 8.0 | 4674.88 | 8 | 2.94 | 1168 | 4662.33 | 8.0 | 4601.30 | 8 | 1.33 | 1779 |
| RC2_410 | 8 | 4316.36 | MB | 4415.46 | 8.0 | 4400.68 | 8 | 2.30 | 1290 | 4401.00 | 8.0 | 4355.52 | 8 | 1.96 | 1937 |
| Tot. | 1386 | 392070 |  | 399377.24 | 1386.60 | 395969.66 | 1385 |  | 34732 | 396157.93 | 1386.60 | 393210.00 | 1385 |  | 56699 |
| Avg. |  |  |  |  |  |  |  | 1.80 | 579 |  |  |  |  | 1.05 | 945 |
| < PB |  |  |  |  |  | 12 |  |  |  |  |  | 24 |  |  |  |
| \#B |  | 35 |  |  |  | 7 |  |  |  |  |  | 21 |  |  |  |

Table 15: Gehring/Homberger VRPTW instances, 400 customers..

|  | Best known |  |  | ALNS 25K |  |  |  |  |  | ALNS 50K |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. <br> \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. <br> \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| R1_6_1 | 59 | 21131.09 | MB | 21881.08 | 59.0 | 21767.25 | 59 | 3.55 | 514 | 21743.91 | 59.0 | 21677.41 | 59 | 2.90 | 763 |
| R1_6_2 | 54 | 19603.7 | MB | 20892.38 | 54.0 | 20719.50 | 54 | 6.57 | 276 | 20253.42 | 54.0 | 20045.49 | 54 | 3.31 | 504 |
| R1_6_3 | 54 | 17400.6 | MB | 18399.70 | 54.0 | 18154.60 | 54 | 5.74 | 289 | 17886.87 | 54.0 | 17733.91 | 54 | 2.79 | 535 |
| R1_6_4 | 54 | 15993.8 | MB | 16640.46 | 54.0 | 16550.00 | 54 | 4.04 | 300 | 16459.06 | 54.0 | 16374.29 | 54 | 2.91 | 569 |
| R1_6_5 | 54 | 20395 | MB | 22399.39 | 54.0 | 22051.85 | 54 | 9.83 | 359 | 21462.92 | 54.0 | 21243.24 | 54 | 5.24 | 577 |
| R1_6_6 | 54 | 18620.26 | MB | 19759.95 | 54.0 | 19610.14 | 54 | 6.12 | 263 | 19206.68 | 54.0 | 18948.53 | 54 | 3.15 | 494 |
| R1_6_7 | 54 | 17107.91 | MB | 17915.15 | 54.0 | 17773.37 | 54 | 4.72 | 279 | 17483.82 | 54.0 | 17438.28 | 54 | 2.20 | 527 |
| R1_6_8 | 54 | 15725.86 | MB | 16509.06 | 54.0 | 16436.50 | 54 | 4.98 | 295 | 16245.90 | 54.0 | 16146.17 | 54 | 3.31 | 560 |
| R1_6_9 | 54 | 19372.96 | MB | 21316.90 | 54.0 | 20860.58 | 54 | 10.03 | 276 | 20548.47 | 54.0 | 20375.70 | 54 | 6.07 | 494 |
| R1_610 | 54 | 18235.57 | MB | 19909.33 | 54.0 | 19776.64 | 54 | 9.18 | 258 | 19193.80 | 54.0 | 18902.19 | 54 | 5.25 | 485 |
| R2_6_1 | 11 | 18325.6 | MB | 19066.50 | 11.0 | 18865.57 | 11 | 4.04 | 872 | 18937.51 | 11.0 | 18837.28 | 11 | 3.34 | 1622 |
| R2_6_2 | 11 | 15346.42 | MB | 15318.18 | 11.0 | 15222.07 | 11 | 1.65 | 928 | 15187.30 | 11.0 | 15069.24 | 11 | 0.78 | 1727 |
| R2_6_3 | 11 | 11663.06 | MB | 11422.68 | 11.0 | 11395.17 | 11 | 1.16 | 1001 | 11386.17 | 11.0 | 11291.52 | 11 | 0.84 | 1903 |
| R2_6_4 | 11 | 8386.64 | MB | 8331.34 | 11.0 | 8264.60 | 11 | 2.06 | 1115 | 8251.65 | 11.0 | 8163.24 | 11 | 1.08 | 2021 |
| R2_6_5 | 11 | 15640.6 | MB | 15637.54 | 11.0 | 15430.80 | 11 | 1.42 | 862 | 15558.66 | 11.0 | 15418.00 | 11 | 0.91 | 1621 |
| R2_6_6 | 11 | 12937.47 | MB | 13133.25 | 11.0 | 13038.58 | 11 | 1.52 | 920 | 13026.65 | 11.0 | 12936.28 | 11 | 0.70 | 1766 |
| R2_6_7 | 11 | 10536.84 | MB | 10487.56 | 11.0 | 10437.39 | 11 | 2.12 | 1000 | 10352.03 | 11.0 | 10269.96 | 11 | 0.80 | 1904 |
| R2_6_8 | 11 | 8023.64 | MB | 7886.24 | 11.0 | 7849.32 | 11 | 1.72 | 1095 | 7805.77 | 11.0 | 7752.78 | 11 | 0.68 | 2086 |
| R2_6_9 | 11 | 13567.84 | MB | 14181.45 | 11.0 | 14016.38 | 11 | 4.52 | 876 | 14000.78 | 11.0 | 13885.52 | 11 | 3.19 | 1627 |
| R2_610 | 11 | 12607.09 | MB | 12799.15 | 11.0 | 12775.18 | 11 | 1.83 | 881 | 12706.72 | 11.0 | 12568.79 | 11 | 1.10 | 1690 |
| C1_6_1 | 60 | 14095.64 | GH | 14095.64 | 60.0 | 14095.64 | 60 | 0.00 | 286 | 14095.64 | 60.0 | 14095.64 | 60 | 0.00 | 540 |
| C1_6_2 | 56 | 14325.96 | MB | 14446.21 | 56.0 | 14179.06 | 56 | 1.92 | 495 | 14278.31 | 56.0 | 14174.12 | 56 | 0.74 | 737 |
| C1_6_3 | 56 | 13898.99 | MB | 13866.54 | 56.0 | 13842.83 | 56 | 0.46 | 509 | 13842.21 | 56.0 | 13803.50 | 56 | 0.28 | 767 |
| C1_6_4 | 56 | 13610.66 | MB | 13626.16 | 56.0 | 13615.92 | 56 | 0.35 | 538 | 13603.40 | 56.0 | 13578.66 | 56 | 0.18 | 812 |
| C1_6_5 | 60 | 14085.7 | BVH | 14085.72 | 60.0 | 14085.72 | 60 | 0.00 | 306 | 14085.72 | 60.0 | 14085.72 | 60 | 0.00 | 564 |
| C1_6_6 | 60 | 14089.7 | BVH | 14089.66 | 60.0 | 14089.66 | 60 | 0.00 | 413 | 14089.66 | 60.0 | 14089.66 | 60 | 0.00 | 674 |
| C1_6_7 | 59 | 14659.74 | GH | 14832.65 | 58.6 | 15017.03 | 58 | -1.23 | 473 | 14803.08 | 58.6 | 15032.51 | 58 | -1.42 | 726 |
| C1_6_8 | 57 | 14976.88 | GH | 14690.74 | 57.0 | 14409.78 | 57 | 2.42 | 433 | 14510.17 | 57.0 | 14343.05 | 57 | 1.17 | 675 |
| C1_6_9 | 56 | 13733.56 | MB | 14265.06 | 56.0 | 14017.73 | 56 | 3.87 | 483 | 13883.26 | 56.0 | 13767.45 | 56 | 1.09 | 723 |
| C1_610 | 56 | 13758.19 | MB | 14128.71 | 56.0 | 13906.05 | 56 | 3.22 | 492 | 13788.90 | 56.0 | 13688.57 | 56 | 0.73 | 742 |
| C2_6_1 | 18 | 7774.1 | MB | 7789.40 | 18.0 | 7780.84 | 18 | 0.20 | 553 | 7791.82 | 18.0 | 7786.86 | 18 | 0.23 | 987 |
| C2_6_2 | 18 | 7486.88 | MB | 7764.29 | 17.8 | 8800.94 | 17 | -11.76 | 727 | 7763.97 | 17.8 | 8799.38 | 17 | -11.77 | 1224 |
| C2_6_3 | 17 | 8371.07 | GH | 7676.89 | 17.6 | 7795.66 | 17 | 0.96 | 762 | 7613.00 | 17.6 | 7604.00 | 17 | 0.12 | 1275 |
| C2_6_4 | 17 | 7216.45 | MB | 7269.90 | 17.2 | 7054.65 | 17 | 3.95 | 722 | 7088.64 | 17.2 | 6993.77 | 17 | 1.36 | 1266 |
| C2_6_5 | 18 | 7576.35 | MB | 7694.89 | 18.0 | 7592.79 | 18 | 1.56 | 581 | 7606.34 | 18.0 | 7578.12 | 18 | 0.40 | 1007 |
| C2_6_6 | 18 | 7478.63 | MB | 8515.65 | 18.0 | 7984.40 | 18 | 13.87 | 635 | 7910.69 | 18.0 | 7554.61 | 18 | 5.78 | 1088 |
| C2_6_7 | 18 | 7560.53 | MB | 8474.41 | 18.0 | 7520.34 | 18 | 12.69 | 727 | 8234.69 | 18.0 | 7610.04 | 18 | 9.50 | 1190 |
| C2_6_8 | 18 | 7352.42 | MB | 7771.07 | 17.8 | 8696.15 | 17 | -10.64 | 672 | 7734.91 | 17.8 | 8782.31 | 17 | -11.05 | 1159 |
| C2_6_9 | 18 | 7350.94 | MB | 7609.44 | 18.0 | 7356.19 | 18 | 3.52 | 669 | 7384.14 | 18.0 | 7364.93 | 18 | 0.45 | 1148 |
| C2_610 | 17 | 7523.34 | MB | 7781.30 | 17.6 | 8334.99 | 17 | 3.43 | 656 | 7697.89 | 17.6 | 7938.94 | 17 | 2.32 | 1136 |
| RC1_6_1 | 55 | 17454.39 | MB | 18210.19 | 55.0 | 17987.59 | 55 | 4.33 | 275 | 17928.76 | 55.0 | 17751.33 | 55 | 2.72 | 494 |
| RC1_6_2 | 55 | 16208.24 | MB | 16883.37 | 55.0 | 16718.63 | 55 | 4.17 | 436 | 16686.63 | 55.0 | 16548.43 | 55 | 2.95 | 671 |
| RC1_6_3 | 55 | 15524.33 | MB | 15968.19 | 55.0 | 15907.78 | 55 | 3.03 | 333 | 15642.26 | 55.0 | 15499.02 | 55 | 0.92 | 584 |
| RC1_6_4 | 55 | 15180.72 | MB | 15295.11 | 55.0 | 15214.81 | 55 | 1.47 | 358 | 15192.70 | 55.0 | 15072.90 | 55 | 0.79 | 621 |
| RC1_6_5 | 55 | 17468.57 | MB | 17981.80 | 55.0 | 17879.49 | 55 | 3.34 | 329 | 17543.75 | 55.0 | 17401.34 | 55 | 0.82 | 551 |
| RC1_6_6 | 55 | 17248.87 | MB | 17913.64 | 55.0 | 17646.26 | 55 | 3.85 | 329 | 17466.21 | 55.0 | 17355.10 | 55 | 1.26 | 548 |
| RC1_6_7 | 55 | 16454.79 | MB | 17484.20 | 55.0 | 17159.31 | 55 | 6.26 | 410 | 17143.21 | 55.0 | 17058.40 | 55 | 4.18 | 636 |
| RC1_6_8 | 55 | 16462.49 | MB | 17043.31 | 55.0 | 16955.52 | 55 | 3.53 | 336 | 16705.09 | 55.0 | 16510.65 | 55 | 1.47 | 568 |
| RC1_6_9 | 55 | 16153 | MB | 16806.32 | 55.0 | 16609.24 | 55 | 4.04 | 378 | 16525.18 | 55.0 | 16435.71 | 55 | 2.30 | 604 |
| RC1_610 | 55 | 16030.86 | MB | 16483.29 | 55.0 | 16388.47 | 55 | 2.82 | 265 | 16391.34 | 55.0 | 16316.51 | 55 | 2.25 | 498 |
| RC2_6_1 | 15 | 13275.93 | GH | 13415.25 | 15.0 | 13314.03 | 15 | 1.92 | 1020 | 13322.77 | 15.0 | 13163.03 | 15 | 1.21 | 1573 |
| RC2_6_2 | 12 | 12071.4 | GH | 11652.71 | 12.8 | 12039.89 | 12 | -1.70 | 1250 | 11539.21 | 12.8 | 11853.72 | 12 | -2.65 | 1970 |
| RC2_6_3 | 11 | 9978.25 | MB | 10220.80 | 11.0 | 10032.99 | 11 | 3.62 | 1006 | 10066.43 | 11.0 | 9863.35 | 11 | 2.06 | 1889 |
| RC2_6_4 | 11 | 7349.88 | MB | 7409.35 | 11.0 | 7344.31 | 11 | 2.46 | 1069 | 7274.39 | 11.0 | 7231.64 | 11 | 0.59 | 1993 |
| RC2_6_5 | 13 | 11919.72 | MB | 12224.60 | 12.8 | 12560.43 | 12 | -2.67 | 1286 | 12188.40 | 12.8 | 12612.91 | 12 | -2.96 | 1954 |
| RC2_6_6 | 12 | 10700.42 | LC | 12498.61 | 11.2 | 12464.98 | 11 | 1.76 | 1242 | 12405.28 | 11.2 | 12282.52 | 11 | 1.00 | 1963 |
| RC2_6_7 | 11 | 11687.04 | MB | 11510.79 | 11.0 | 11347.57 | 11 | 4.15 | 927 | 11309.89 | 11.0 | 11052.49 | 11 | 2.33 | 1706 |
| RC2_6_8 | 11 | 10474.95 | MB | 10744.43 | 11.0 | 10627.04 | 11 | 2.57 | 894 | 10617.44 | 11.0 | 10488.75 | 11 | 1.36 | 1658 |
| RC2_6_9 | 11 | 10113.82 | MB | 10094.97 | 11.0 | 9982.66 | 11 | 2.15 | 895 | 10060.58 | 11.0 | 9882.71 | 11 | 1.80 | 1661 |
| RC2_610 | 11 | 9339.41 | MB | 9611.45 | 11.0 | 9510.51 | 11 | 2.91 | 900 | 9500.07 | 11.0 | 9340.06 | 11 | 1.72 | 1660 |
| Tot. Avg. | 2076 | 798645 |  | 823814.02 | 2076.40 | 818863.38 | 2071 | 2.83 | $\begin{array}{r} 37731 \\ 629 \end{array}$ | 811014.16 | 2076.40 | 807470.21 | 2071 | 1.28 | $\begin{array}{r} 65718 \\ 1095 \end{array}$ |
| $\begin{aligned} & \hline<\mathrm{PB} \\ & \# \mathrm{~B} \\ & \hline \end{aligned}$ |  | 29 |  |  |  | $\begin{gathered} 22 \\ 6 \end{gathered}$ |  |  |  |  |  | $\begin{aligned} & 30 \\ & 28 \end{aligned}$ |  |  |  |

Table 16: Gehring/Homberger VRPTW instances, 600 customers..

|  | Best known |  |  | ALNS 25K |  |  |  |  |  | ALNS 50K |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. <br> \#veh. | best sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| R1_8_1 | 79 | 39612.2 | BVH | 37859.00 | 80.0 | 37631.40 | 80 | -4.43 | 684 | 37756.07 | 80.0 | 37492.04 | 80 | -4.69 | 1010 |
| R1_8_2 | 72 | 33548.54 | MB | 34705.63 | 72.0 | 34435.01 | 72 | 3.45 | 613 | 34273.25 | 72.0 | 33816.69 | 72 | 2.16 | 917 |
| R1_8_3 | 72 | 30151.9 | MB | 31065.56 | 72.0 | 30746.68 | 72 | 3.03 | 645 | 30593.64 | 72.0 | 30317.49 | 72 | 1.47 | 969 |
| R1_8_4 | 72 | 26838.04 | MB | 29002.34 | 72.0 | 28831.80 | 72 | 8.06 | 678 | 28672.14 | 72.0 | 28568.78 | 72 | 6.83 | 1025 |
| R1_8_5 | 72 | 34741.53 | MB | 36198.65 | 72.0 | 36038.57 | 72 | 4.19 | 524 | 35739.41 | 72.0 | 35503.63 | 72 | 2.87 | 809 |
| R1_8_6 | 72 | 31737.47 | MB | 32820.77 | 72.0 | 32757.13 | 72 | 3.41 | 610 | 32487.44 | 72.0 | 32360.07 | 72 | 2.36 | 913 |
| R1_8_7 | 72 | 29538.4 | MB | 30493.16 | 72.0 | 30393.12 | 72 | 3.23 | 644 | 30089.26 | 72.0 | 29979.63 | 72 | 1.86 | 967 |
| R1_8_8 | 72 | 28342.64 | MB | 28803.77 | 72.0 | 28622.63 | 72 | 1.63 | 676 | 28509.27 | 72.0 | 28341.21 | 72 | 0.59 | 1020 |
| R1_8_9 | 72 | 34231.38 | MB | 34961.84 | 72.0 | 34856.18 | 72 | 2.17 | 576 | 34437.83 | 72.0 | 34218.41 | 72 | 0.64 | 864 |
| R1_810 | 72 | 31730.45 | MB | 33144.45 | 72.0 | 32665.95 | 72 | 4.46 | 586 | 32729.29 | 72.0 | 32569.97 | 72 | 3.15 | 879 |
| R2_8_1 | 15 | 28440.28 | MB | 29209.61 | 15.0 | 28923.27 | 15 | 2.71 | 951 | 29086.28 | 15.0 | 28822.48 | 15 | 2.27 | 1811 |
| R2_8_2 | 15 | 23335.67 | MB | 23655.16 | 15.0 | 23524.65 | 15 | 1.64 | 1070 | 23492.15 | 15.0 | 23274.22 | 15 | 0.94 | 1964 |
| R2_8_3 | 15 | 17992.25 | MB | 18188.06 | 15.0 | 18103.52 | 15 | 1.09 | 1127 | 18137.61 | 15.0 | 18078.82 | 15 | 0.81 | 2091 |
| R2_8_4 | 15 | 13625.25 | MB | 13658.48 | 15.0 | 13584.57 | 15 | 1.82 | 1213 | 13525.52 | 15.0 | 13413.79 | 15 | 0.83 | 2322 |
| R2_8_5 | 15 | 24611.39 | MB | 25479.70 | 15.0 | 25260.54 | 15 | 3.53 | 978 | 25255.01 | 15.0 | 25077.09 | 15 | 2.62 | 1803 |
| R2_8_6 | 15 | 20697.06 | MB | 21104.29 | 15.0 | 20969.81 | 15 | 1.97 | 1032 | 21014.57 | 15.0 | 20973.12 | 15 | 1.53 | 1962 |
| R2_8_7 | 15 | 17058.3 | MB | 17114.71 | 15.0 | 16977.49 | 15 | 0.81 | 1119 | 17128.01 | 15.0 | 16980.58 | 15 | 0.89 | 2134 |
| R2_8_8 | 15 | 13053.31 | MB | 13187.89 | 15.0 | 13054.95 | 15 | 1.87 | 1254 | 13063.15 | 15.0 | 12945.52 | 15 | 0.91 | 2365 |
| R2_8_9 | 15 | 22588.02 | MB | 23303.95 | 15.0 | 23138.51 | 15 | 3.17 | 982 | 23061.61 | 15.0 | 22877.21 | 15 | 2.10 | 1849 |
| R2_810 | 15 | 21551.26 | MB | 21372.15 | 15.0 | 21240.42 | 15 | 1.33 | 979 | 21233.28 | 15.0 | 21092.27 | 15 | 0.67 | 1841 |
| C1_8_1 | 80 | 25030.36 | M | 25184.38 | 80.0 | 25184.38 | 80 | 0.62 | 397 | 25184.38 | 80.0 | 25184.38 | 80 | 0.62 | 741 |
| C1_8_2 | 75 | 25518.17 | GH | 25711.25 | 74.2 | 25667.72 | 74 | 0.68 | 664 | 25634.80 | 74.2 | 25536.76 | 74 | 0.38 | 993 |
| C1_8_3 | 72 | 25438.6 | BVH | 25359.87 | 72.0 | 24756.97 | 72 | 2.96 | 373 | 24728.90 | 72.0 | 24629.86 | 72 | 0.40 | 682 |
| C1_8_4 | 72 | 24040.47 | MB | 24256.32 | 72.0 | 24118.80 | 72 | 1.33 | 378 | 24005.77 | 72.0 | 23938.33 | 72 | 0.28 | 706 |
| C1_8_5 | 80 | 25166.3 | BVH | 25166.28 | 80.0 | 25166.28 | 80 | 0.00 | 417 | 25166.28 | 80.0 | 25166.28 | 80 | 0.00 | 762 |
| C1_8_6 | 80 | 25160.9 | BVH | 25162.17 | 80.0 | 25160.85 | 80 | 0.01 | 560 | 25162.21 | 80.0 | 25160.85 | 80 | 0.01 | 913 |
| C1_8_7 | 79 | 25518.85 | GH | 25481.02 | 79.0 | 25425.92 | 79 | 0.22 | 623 | 25449.95 | 79.0 | 25428.67 | 79 | 0.09 | 972 |
| C1_8_8 | 76 | 25379.85 | MB | 25740.77 | 75.2 | 25622.69 | 75 | 1.14 | 608 | 25538.76 | 75.2 | 25450.99 | 75 | 0.34 | 930 |
| C1_8_9 | 73 | 24713.38 | MB | 26318.36 | 72.2 | 26169.29 | 72 | 2.26 | 575 | 25673.55 | 72.2 | 25737.46 | 72 | -0.25 | 868 |
| C1_810 | 72 | 29536.81 | GH | 27097.82 | 72.0 | 26382.98 | 72 | 5.45 | 473 | 26151.75 | 72.0 | 25697.68 | 72 | 1.77 | 770 |
| C2_8_1 | 24 | 11654.72 | MB | 11678.08 | 24.0 | 11665.21 | 24 | 0.20 | 730 | 11672.47 | 24.0 | 11664.00 | 24 | 0.15 | 1238 |
| C2_8_2 | 24 | 11422.34 | MB | 11456.70 | 24.0 | 11428.07 | 24 | 0.30 | 807 | 11440.98 | 24.0 | 11433.46 | 24 | 0.16 | 1397 |
| C2_8_3 | 23 | 11554.18 | MB | 11312.58 | 24.0 | 11184.67 | 24 | -2.09 | 839 | 11212.69 | 24.0 | 11188.30 | 24 | -2.96 | 1468 |
| C2_8_4 | 23 | 10963.49 | MB | 11511.87 | 23.2 | 11440.25 | 23 | 5.00 | 955 | 11180.00 | 23.2 | 10999.42 | 23 | 1.97 | 1627 |
| C2_8_5 | 24 | 11432.92 | MB | 12110.19 | 24.0 | 11902.99 | 24 | 5.92 | 896 | 11565.06 | 24.0 | 11451.57 | 24 | 1.16 | 1441 |
| C2_8_6 | 24 | 11357.86 | MB | 12282.80 | 24.4 | 12342.70 | 24 | 8.14 | 812 | 11909.95 | 24.2 | 11403.57 | 24 | 4.86 | 1360 |
| C2_8_7 | 24 | 11397.54 | MB | 12058.86 | 24.6 | 11540.25 | 24 | 5.80 | 881 | 11871.66 | 24.4 | 11412.08 | 24 | 4.16 | 1443 |
| C2_8_8 | 24 | 11206.32 | MB | 12728.62 | 23.8 | 13892.26 | 23 | -8.28 | 860 | 12371.35 | 23.8 | 13878.40 | 23 | -10.86 | 1414 |
| C2_8_9 | 24 | 11249 | MB | 13015.41 | 24.0 | 12358.05 | 24 | 15.70 | 897 | 12446.59 | 24.0 | 11650.10 | 24 | 10.65 | 1469 |
| C2_810 | 23 | 11284.46 | MB | 11837.70 | 23.8 | 12103.56 | 23 | 4.90 | 786 | 11746.59 | 23.8 | 12173.74 | 23 | 4.10 | 1358 |
| RC1_8_1 | 73 | 31590.23 | MB | 31990.65 | 73.0 | 31851.54 | 73 | 2.29 | 438 | 31396.64 | 73.0 | 31275.38 | 73 | 0.39 | 720 |
| RC1_8_2 | 72 | 39696.2 | GH | 29762.99 | 73.0 | 29537.14 | 73 | -25.02 | 608 | 29377.34 | 73.0 | 29172.08 | 73 | -25.99 | 912 |
| RC1_8_3 | 72 | 35577.87 | GH | 28634.08 | 73.0 | 28466.83 | 73 | -19.52 | 646 | 28301.03 | 73.0 | 28164.66 | 73 | -20.45 | 970 |
| RC1_8_4 | 72 | 32654.1 | GH | 27481.23 | 73.0 | 27393.06 | 73 | -15.84 | 685 | 27303.22 | 73.0 | 27201.39 | 73 | -16.39 | 1029 |
| RC1_8_5 | 73 | 30454.15 | MB | 31228.63 | 73.0 | 31067.35 | 73 | 2.54 | 578 | 30742.88 | 73.0 | 30548.23 | 73 | 0.95 | 865 |
| RC1_8_6 | 73 | 29674.68 | MB | 31019.63 | 73.0 | 30863.25 | 73 | 4.53 | 573 | 30749.36 | 73.0 | 30511.07 | 73 | 3.62 | 858 |
| RC1_8_7 | 72 | 43829.43 | GH | 30600.17 | 73.0 | 30455.56 | 73 | -30.18 | 575 | 30135.52 | 73.0 | 30007.82 | 73 | -31.24 | 868 |
| RC1_8_8 | 72 | 43694.6 | GH | 30006.93 | 73.0 | 29820.15 | 73 | -31.33 | 580 | 29603.68 | 73.0 | 29547.96 | 73 | -32.25 | 872 |
| RC1_8_9 | 72 | 41816.7 | GH | 29918.07 | 73.0 | 29812.35 | 73 | -28.45 | 581 | 29493.38 | 73.0 | 29360.93 | 73 | -29.47 | 871 |
| RC1_810 | 72 | 41182.44 | GH | 29518.16 | 73.0 | 29373.39 | 73 | -28.32 | 586 | 29147.32 | 73.0 | 28993.52 | 73 | -29.22 | 884 |
| RC2_8_1 | 20 | 19989.12 | MB | 20734.14 | 19.8 | 21005.11 | 19 | -1.05 | 1385 | 20605.53 | 19.8 | 20954.95 | 19 | -1.67 | 2046 |
| RC2_8_2 | 17 | 18099.68 | MB | 18369.12 | 17.0 | 18184.31 | 17 | 1.86 | 1728 | 18208.97 | 17.0 | 18032.89 | 17 | 0.98 | 2585 |
| RC2_8_3 | 15 | 15116.26 | MB | 15033.15 | 15.0 | 14800.78 | 15 | 1.57 | 1212 | 14920.27 | 15.0 | 14810.81 | 15 | 0.81 | 2172 |
| RC2_8_4 | 15 | 11392.25 | MB | 11592.05 | 15.0 | 11402.27 | 15 | 1.97 | 1196 | 11440.47 | 15.0 | 11368.19 | 15 | 0.64 | 2263 |
| RC2_8_5 | 16 | 19105.75 | MB | 19293.34 | 16.4 | 19214.57 | 16 | 0.98 | 1529 | 19181.34 | 16.4 | 19180.13 | 16 | 0.40 | 2328 |
| RC2_8_6 | 15 | 18882.3 | MB | 19560.50 | 15.0 | 19173.09 | 15 | 3.59 | 1063 | 19210.08 | 15.0 | 19075.89 | 15 | 1.74 | 1918 |
| RC2_8_7 | 15 | 17461.44 | MB | 17798.95 | 15.0 | 17519.63 | 15 | 2.71 | 990 | 17643.28 | 15.0 | 17329.32 | 15 | 1.81 | 1858 |
| RC2_8_8 | 15 | 16529.24 | MB | 16756.53 | 15.0 | 16485.06 | 15 | 3.26 | 994 | 16368.61 | 15.0 | 16226.78 | 15 | 0.87 | 1859 |
| RC2_8_9 | 15 | 15823.5 | MB | 16071.87 | 15.0 | 15979.71 | 15 | 2.45 | 989 | 15902.97 | 15.0 | 15687.20 | 15 | 1.38 | 1825 |
| RC2_810 | 15 | 14892.29 | MB | 15013.68 | 15.0 | 14944.14 | 15 | 0.82 | 1001 | 15048.01 | 15.0 | 14953.29 | 15 | 1.05 | 1873 |
| Tot. | 2754 | 1429914 |  | 1381184.08 | 2762.60 | 1372619.40 | 2758 |  | 48411 | 1365178.33 | 2762.20 | 1358291.43 | 2758 |  | 81648 |
| Avg. |  |  |  |  |  |  |  | -0.86 | 807 |  |  |  |  | -2.07 | 1361 |
| < PB |  |  |  |  |  | 15 |  |  |  |  |  | 25 |  |  |  |
| \#B |  | 35 |  |  |  | 5 |  |  |  |  |  | 22 |  |  |  |

Table 17: Gehring/Homberger VRPTW instances, 800 customers..

|  | Best known |  |  | ALNS 25K |  |  |  |  |  | ALNS 50K |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | veh. | cost | References | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. <br> \#veh. | best sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | avg. <br> \#veh. | best <br> sol. | $\begin{aligned} & \text { best } \\ & \text { \#veh. } \end{aligned}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| R110_1 | 100 | 54145.31 | MB | 55493.78 | 100.0 | 55108.89 | 100 | 2.49 | 825 | 55029.87 | 100.0 | 54720.19 | 100 | 1.63 | 1229 |
| R110_2 | 91 | 56367.45 | GH | 54167.93 | 91.6 | 57478.64 | 91 | -2.27 | 698 | 52844.31 | 91.6 | 55428.79 | 91 | -4.66 | 1066 |
| R110_3 | 91 | 46621.19 | MB | 52196.91 | 91.0 | 51840.30 | 91 | 11.96 | 435 | 50296.23 | 91.0 | 49634.84 | 91 | 7.88 | 807 |
| R110_4 | 91 | 43461.84 | MB | 46878.36 | 91.0 | 46645.90 | 91 | 7.86 | 435 | 45626.47 | 91.0 | 45303.47 | 91 | 4.98 | 829 |
| R110_5 | 91 | 70838.01 | GH | 54671.65 | 92.0 | 54270.08 | 92 | -22.82 | 705 | 53259.01 | 92.0 | 53089.15 | 92 | -24.82 | 1061 |
| R110_6 | 91 | 49059.8 | MB | 54109.35 | 91.4 | 55826.83 | 91 | 10.29 | 541 | 52485.80 | 91.4 | 54555.32 | 91 | 6.98 | 905 |
| R110_7 | 91 | 45847.84 | MB | 50656.58 | 91.0 | 49880.51 | 91 | 10.49 | 429 | 48869.74 | 91.0 | 48141.47 | 91 | 6.59 | 801 |
| R110_8 | 91 | 42767.77 | MB | 46752.56 | 91.0 | 46512.13 | 91 | 9.32 | 452 | 45286.98 | 91.0 | 44853.70 | 91 | 5.89 | 847 |
| R110_9 | 91 | 51391.8 | MB | 53216.59 | 92.0 | 53163.89 | 92 | 3.55 | 706 | 52139.44 | 92.0 | 52015.72 | 92 | 1.45 | 1067 |
| R11010 | 91 | 49348.36 | MB | 50861.54 | 92.0 | 50592.40 | 92 | 3.07 | 674 | 50007.62 | 92.0 | 49769.85 | 92 | 1.34 | 1038 |
| R210_1 | 19 | 42922.56 | BSJ | 44524.99 | 19.0 | 44213.65 | 19 | 3.73 | 1192 | 43904.40 | 19.0 | 43264.68 | 19 | 2.29 | 2083 |
| R210_2 | 19 | 34918.49 | BSJ | 34969.52 | 19.0 | 34698.44 | 19 | 1.60 | 1800 | 34564.64 | 19.0 | 34417.47 | 19 | 0.43 | 2795 |
| R210_3 | 19 | 25689.62 | BSJ | 26067.93 | 19.0 | 25964.09 | 19 | 2.63 | 2088 | 25807.15 | 19.0 | 25400.16 | 19 | 1.60 | 3230 |
| R210_4 | 19 | 18858.24 | BSJ | 18594.33 | 19.0 | 18425.77 | 19 | 1.43 | 2289 | 18477.00 | 19.0 | 18332.77 | 19 | 0.79 | 3480 |
| R210_5 | 19 | 37265.32 | BSJ | 38149.38 | 19.0 | 37773.72 | 19 | 2.37 | 1328 | 37833.57 | 19.0 | 37746.01 | 19 | 1.52 | 2247 |
| R210_6 | 19 | 30725.2 | BSJ | 31253.33 | 19.0 | 30975.00 | 19 | 1.72 | 1453 | 31007.89 | 19.0 | 30778.85 | 19 | 0.92 | 2500 |
| R210_7 | 19 | 24363.83 | BSJ | 24340.48 | 19.0 | 24243.39 | 19 | 1.45 | 1923 | 24228.74 | 19.0 | 23991.71 | 19 | 0.99 | 3009 |
| R210_8 | 19 | 18185.38 | BSJ | 18361.52 | 19.0 | 18139.74 | 19 | 2.90 | 2313 | 18037.86 | 19.0 | 17844.36 | 19 | 1.08 | 3540 |
| R210_9 | 19 | 33777.76 | BSJ | 35005.84 | 19.0 | 34872.05 | 19 | 3.64 | 1345 | 34496.05 | 19.0 | 34349.70 | 19 | 2.13 | 2265 |
| R21010 | 19 | 31599.84 | BSJ | 32006.08 | 19.0 | 31782.57 | 19 | 1.29 | 1645 | 31803.51 | 19.0 | 31682.52 | 19 | 0.64 | 2586 |
| C110_1 | 100 | 42478.95 | GH | 42478.95 | 100.0 | 42478.95 | 100 | 0.00 | 499 | 42478.95 | 100.0 | 42478.95 | 100 | 0.00 | 915 |
| C110_2 | 92 | 42920.7 | BVH | 42339.69 | 91.6 | 42667.84 | 91 | 0.21 | 798 | 42222.18 | 91.6 | 42249.60 | 91 | -0.06 | 1188 |
| C110_3 | 90 | 40934.87 | MB | 41395.50 | 90.0 | 40915.89 | 90 | 2.52 | 506 | 40904.59 | 90.0 | 40376.43 | 90 | 1.31 | 884 |
| C110_4 | 90 | 40410.58 | MB | 40681.78 | 90.0 | 40441.12 | 90 | 1.76 | 515 | 40222.27 | 90.0 | 39980.07 | 90 | 0.61 | 902 |
| C110_5 | 100 | 42469.2 | BVH | 42469.50 | 100.0 | 42469.18 | 100 | 0.00 | 542 | 42469.18 | 100.0 | 42469.18 | 100 | 0.00 | 968 |
| C110_6 | 100 | 42471.3 | BVH | 42472.69 | 100.0 | 42471.29 | 100 | 0.00 | 678 | 42471.57 | 100.0 | 42471.29 | 100 | 0.00 | 1103 |
| C110_7 | 99 | 42711.39 | GH | 42726.27 | 99.0 | 42673.51 | 99 | 0.12 | 739 | 42708.94 | 99.0 | 42688.64 | 99 | 0.08 | 1159 |
| C110_8 | 96 | 42170.31 | MB | 42641.48 | 95.4 | 42402.12 | 95 | 0.67 | 757 | 42539.98 | 95.4 | 42359.27 | 95 | 0.43 | 1150 |
| C110_9 | 91 | 45386.93 | GH | 42048.67 | 91.2 | 41586.54 | 91 | 1.37 | 645 | 41774.68 | 91.2 | 41482.00 | 91 | 0.71 | 1005 |
| C11010 | 90 | 40894.38 | MB | 43409.67 | 90.0 | 43132.22 | 90 | 6.15 | 612 | 42554.17 | 90.0 | 42214.60 | 90 | 4.06 | 962 |
| C210_1 | 30 | 16879.24 | LL | 16905.00 | 30.0 | 16879.24 | 30 | 0.15 | 888 | 16893.15 | 30.0 | 16879.24 | 30 | 0.08 | 1514 |
| C210_2 | 29 | 17228.82 | MB | 17446.99 | 29.4 | 17677.61 | 29 | 1.27 | 1066 | 17314.77 | 29.4 | 17563.06 | 29 | 0.50 | 1719 |
| C210_3 | 29 | 16367.59 | MB | 16938.59 | 30.0 | 16253.60 | 30 | 3.49 | 971 | 16446.58 | 30.0 | 16109.71 | 30 | 0.48 | 1690 |
| C210_4 | 29 | 17153.19 | MB | 16845.74 | 29.0 | 16712.08 | 29 | 5.21 | 1151 | 16063.32 | 29.0 | 16011.30 | 29 | 0.32 | 1905 |
| C210_5 | 30 | 16586.46 | GH | 17613.87 | 30.6 | 16825.34 | 30 | 6.19 | 964 | 16888.66 | 30.4 | 16596.69 | 30 | 1.82 | 1575 |
| C210_6 | 30 | 16371.65 | MB | 17393.97 | 30.4 | 17596.06 | 30 | 6.26 | 1070 | 16696.06 | 30.2 | 16369.10 | 30 | 2.00 | 1697 |
| C210_7 | 31 | 16578.42 | MB | 17348.99 | 31.0 | 16878.12 | 31 | 4.65 | 978 | 17057.54 | 31.0 | 16590.48 | 31 | 2.89 | 1617 |
| C210_8 | 29 | 17219.59 | LC | 18921.39 | 29.6 | 19122.58 | 29 | 9.88 | 1047 | 17790.97 | 29.6 | 18407.27 | 29 | 3.32 | 1700 |
| C210_9 | 30 | 16651.96 | MB | 17626.12 | 30.0 | 16679.15 | 30 | 8.17 | 1104 | 16999.89 | 30.0 | 16294.72 | 30 | 4.33 | 1771 |
| C21010 | 29 | 16178.26 | MB | 18856.35 | 29.0 | 18447.85 | 29 | 16.55 | 1103 | 18375.30 | 29.0 | 17582.15 | 29 | 13.58 | 1759 |
| RC110_1 | 90 | 47143.9 | MB | 51246.49 | 90.0 | 50976.00 | 90 | 8.70 | 517 | 49693.36 | 90.0 | 48933.68 | 90 | 5.41 | 863 |
| RC110_2 | 90 | 44906.58 | MB | 47283.88 | 90.0 | 46913.77 | 90 | 5.29 | 539 | 46647.41 | 90.0 | 46165.33 | 90 | 3.88 | 904 |
| RC110_3 | 90 | 43782.57 | MB | 45167.52 | 90.0 | 44833.81 | 90 | 3.16 | 562 | 44408.40 | 90.0 | 44014.81 | 90 | 1.43 | 938 |
| RC110_4 | 90 | 41917.14 | MB | 43355.81 | 90.0 | 43144.87 | 90 | 3.43 | 668 | 42844.52 | 90.0 | 42607.34 | 90 | 2.21 | 1071 |
| RC110_5 | 90 | 47632.31 | MB | 50533.91 | 90.0 | 50226.31 | 90 | 6.09 | 431 | 49082.31 | 90.0 | 48934.53 | 90 | 3.04 | 772 |
| RC110_6 | 90 | 46391.6 | MB | 50436.65 | 90.0 | 49703.43 | 90 | 8.72 | 402 | 49131.04 | 90.0 | 48766.98 | 90 | 5.91 | 745 |
| RC110_7 | 90 | 46157.71 | MB | 49716.92 | 90.0 | 49238.95 | 90 | 7.71 | 460 | 48308.95 | 90.0 | 48005.94 | 90 | 4.66 | 806 |
| RC110_8 | 90 | 45585.08 | MB | 48391.77 | 90.0 | 47670.50 | 90 | 6.16 | 396 | 47416.90 | 90.0 | 47122.61 | 90 | 4.02 | 743 |
| RC110_9 | 90 | 45405.54 | MB | 48343.65 | 90.0 | 47930.01 | 90 | 6.47 | 513 | 46998.60 | 90.0 | 46889.79 | 90 | 3.51 | 864 |
| RC11010 | 90 | 45041.64 | MB | 47210.76 | 90.0 | 46716.69 | 90 | 4.82 | 466 | 46284.90 | 90.0 | 46080.51 | 90 | 2.76 | 822 |
| RC210_1 | 22 | 30320.41 | BSJ | 30930.47 | 21.2 | 30478.44 | 21 | 1.76 | 1429 | 30618.08 | 21.2 | 30396.13 | 21 | 0.73 | 2316 |
| RC210_2 | 19 | 26592.4 | BSJ | 26301.14 | 19.4 | 27552.05 | 18 | -4.54 | 1955 | 26412.31 | 19.4 | 27681.62 | 18 | -4.14 | 2953 |
| RC210_3 | 18 | 20588.38 | BSJ | 21313.73 | 18.0 | 20983.66 | 18 | 3.52 | 1324 | 21060.93 | 18.0 | 20811.18 | 18 | 2.30 | 2443 |
| RC210_4 | 18 | 16480.17 | BSJ | 16617.79 | 18.0 | 16254.55 | 18 | 3.81 | 1345 | 16499.16 | 18.0 | 16007.59 | 18 | 3.07 | 2544 |
| RC210_5 | 18 | 29352.08 | LC | 29008.22 | 18.0 | 28647.57 | 18 | 2.26 | 1249 | 28610.45 | 18.0 | 28368.48 | 18 | 0.85 | 2198 |
| RC210_6 | 18 | 27003.3 | MB | 29267.17 | 18.0 | 28825.98 | 18 | 8.38 | 1136 | 29005.97 | 18.0 | 28746.61 | 18 | 7.42 | 2035 |
| RC210_7 | 18 | 26161.91 | BSJ | 27503.47 | 18.0 | 27110.84 | 18 | 5.13 | 1106 | 26958.52 | 18.0 | 26765.43 | 18 | 3.04 | 2067 |
| RC210_8 | 18 | 24995 | BSJ | 25445.17 | 18.0 | 25211.63 | 18 | 1.94 | 1103 | 25128.20 | 18.0 | 24961.29 | 18 | 0.67 | 2097 |
| RC210_9 | 18 | 23582.89 | MB | 24729.65 | 18.0 | 24420.99 | 18 | 4.86 | 1129 | 24417.63 | 18.0 | 24113.72 | 18 | 3.54 | 2079 |
| RC21010 | 18 | 22481.03 | BSJ | 23544.52 | 18.0 | 23193.63 | 18 | 4.73 | 1101 | 23143.27 | 18.0 | 23056.75 | 18 | 2.95 | 2066 |
| Tot. | 3438 | 2099741 |  | 2157188.54 | 3443.80 | 2146751.97 | 3438 |  | 57741 | 2119549.93 | 3443.40 | 2110924.81 | 3438 |  | 95895 |
| Avg. |  |  |  |  |  |  |  | 3.73 | 962 |  |  |  |  | 1.89 | 1598 |
| < PB |  |  |  |  |  | 16 |  |  |  |  |  | 22 |  |  |  |
| \#B |  | 38 |  |  |  | 6 |  |  |  |  |  | 22 |  |  |  |

Table 18: Gehring/Homberger VRPTW instances, 1000 customers..

|  | Optimal |  | ALNS 25K |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | ref | avg. sol. | best <br> sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| R101***25 | 617.1 | KDMSS99 | 617.1 | 617.1 | 0.00 | 3 |
| R102***25 | 547.1 | KDMSS99 | 547.1 | 547.1 | 0.00 | 3 |
| $\mathrm{R} 103 * * * 25$ | 454.6 | KDMSS99 | 454.6 | 454.6 | 0.00 | 4 |
| R104***25 | 416.9 | KDMSS99 | 416.9 | 416.9 | 0.00 | 4 |
| R105***25 | 530.5 | KDMSS99 | 530.5 | 530.5 | 0.00 | 3 |
| R106***25 | 465.4 | KDMSS99 | 465.4 | 465.4 | 0.00 | 3 |
| R107***25 | 424.3 | KDMSS99 | 424.3 | 424.3 | 0.00 | 4 |
| R108***25 | 397.3 | KDMSS99 | 397.3 | 397.3 | 0.00 | 4 |
| R109***25 | 441.3 | KDMSS99 | 441.3 | 441.3 | 0.00 | 3 |
| R110***25 | 444.1 | KDMSS99 | 444.1 | 444.1 | 0.00 | 4 |
| R 111 ***25 | 428.8 | KDMSS99 | 428.8 | 428.8 | 0.00 | 4 |
| R 112 ***25 | 393 | KDMSS99 | 393.0 | 393.0 | 0.00 | 4 |
| C101***25 | 191.3 | KDMSS99 | 191.3 | 191.3 | 0.00 | 4 |
| C102***25 | 190.3 | KDMSS99 | 190.3 | 190.3 | 0.00 | 4 |
| C103***25 | 190.3 | KDMSS99 | 190.3 | 190.3 | 0.00 | 4 |
| C104***25 | 186.9 | KDMSS99 | 186.9 | 186.9 | 0.00 | 4 |
| C105***25 | 191.3 | KDMSS99 | 191.3 | 191.3 | 0.00 | 4 |
| C106***25 | 191.3 | KDMSS99 | 191.3 | 191.3 | 0.00 | 4 |
| C107***25 | 191.3 | KDMSS99 | 191.3 | 191.3 | 0.00 | 4 |
| C108***25 | 191.3 | KDMSS99 | 191.3 | 191.3 | 0.00 | 5 |
| C109***25 | 191.3 | KDMSS99 | 191.3 | 191.3 | 0.00 | 4 |
| $\mathrm{RC101***25}$ | 461.1 | KDMSS99 | 461.1 | 461.1 | 0.00 | 4 |
| RC102***25 | 351.8 | KDMSS99 | 351.8 | 351.8 | 0.00 | 4 |
| RC103***25 | 332.8 | KDMSS99 | 332.8 | 332.8 | 0.00 | 4 |
| $\mathrm{RC104***25}$ | 306.6 | KDMSS99 | 306.6 | 306.6 | 0.00 | 4 |
| $\mathrm{RC105***25}$ | 411.3 | KDMSS99 | 411.3 | 411.3 | 0.00 | 4 |
| RC106***25 | 345.5 | KDMSS99 | 345.5 | 345.5 | 0.00 | 4 |
| RC107***25 | 298.3 | KDMSS99 | 298.3 | 298.3 | 0.00 | 4 |
| RC108***25 | 294.5 | KDMSS99 | 294.5 | 294.5 | 0.00 | 4 |
| R201***25 | 463.3 | L99 | 463.3 | 463.3 | 0.00 | 4 |
| R202***25 | 410.5 | L99 | 410.5 | 410.5 | 0.00 | 4 |
| R203***25 | 391.4 | L99 | 391.4 | 391.4 | 0.00 | 4 |
| R204***25 | 355 | C03 | 355.2 | 355.0 | 0.06 | 6 |
| R205***25 | 393 | L99 | 393.0 | 393.0 | 0.00 | 5 |
| R206***25 | 374.4 | CR99 | 374.4 | 374.4 | 0.00 | 5 |
| R207***25 | 361.6 | KLM01 | 361.6 | 361.6 | 0.00 | 5 |
| R208***25 | 328.2 | FDGG04 | 328.2 | 328.2 | 0.00 | 11 |
| R209***25 | 370.7 | KLM01 | 371.5 | 370.7 | 0.21 | 6 |
| R 210 ***25 | 404.6 | CR99 | 404.6 | 404.6 | 0.00 | 5 |
| R 211 ***25 | 350.9 | KLM01 | 350.9 | 350.9 | 0.00 | 6 |
| C201***25 | 214.7 | L99 | 214.7 | 214.7 | 0.00 | 7 |
| C202***25 | 214.7 | L99 | 214.7 | 214.7 | 0.00 | 8 |
| C203***25 | 214.7 | L99 | 214.7 | 214.7 | 0.00 | 8 |
| C204***25 | 213.1 | CR99 | 214.4 | 213.1 | 0.59 | 8 |
| C205***25 | 214.7 | L99 | 214.7 | 214.7 | 0.00 | 8 |
| C206***25 | 214.7 | L99 | 214.7 | 214.7 | 0.00 | 7 |
| C207***25 | 214.5 | L99 | 214.5 | 214.5 | 0.00 | 9 |
| C208***25 | 214.5 | L99 | 214.5 | 214.5 | 0.00 | 7 |
| $\mathrm{RC} 201 * * * 25$ | 360.2 | L99 | 360.2 | 360.2 | 0.00 | 4 |
| RC202***25 | 338 | CR99 | 338.0 | 338.0 | 0.00 | 4 |
| RC203***25 | 326.9 | FDGG04 | 326.9 | 326.9 | 0.00 | 4 |
| RC204***25 | 299.7 | FDGG04 | 299.7 | 299.7 | 0.00 | 5 |
| RC205***25 | 338 | L99 | 338.0 | 338.0 | 0.00 | 4 |
| RC206***25 | 324 | KLM01 | 324.0 | 324.0 | 0.00 | 4 |
| RC207***25 | 298.3 | KLM01 | 298.3 | 298.3 | 0.00 | 5 |
| RC208***25 | 269.1 | C03 | 269.1 | 269.1 | 0.00 | 6 |
| Tot. | 18551.0 |  | 18553.2 | 18551.0 |  | 276 |
| Avg. |  |  |  |  | 0.02 | 5 |
| < PB |  |  |  | 0 |  |  |
| \#B |  | 56 |  | 56 |  |  |

Table 19: Solomon VRPTW instances with 25 customers, comparison to exact solutions (distances and travel times are truncated to one decimal and traveled distance is minimized). The table should be read as the preceding tables. The abbreviations in the ref column refers to the following papers: C03 - Chabrier [10], CR99 - Cook and Rich [14], DP03 - Danna and Le Pape [20], FDGG04 - Feillet [24], IV03 - Irnich and Villeneuve [34], KLM01 - Kallehauge et al. [35], KDMSS99 - Kohl et al. [36] and L99 - Larsen [39].

|  | Optimal |  | ALNS 25K |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | ref | avg. <br> sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time <br> (s) |
| R101***50 | 1044 | KDMSS99 | 1044.0 | 1044.0 | 0.00 | 9 |
| R102***50 | 909 | KDMSS99 | 909.0 | 909.0 | 0.00 | 10 |
| R103***50 | 772.9 | KDMSS99 | 772.9 | 772.9 | 0.00 | 10 |
| R104***50 | 625.4 | KDMSS99 | 626.1 | 625.4 | 0.12 | 11 |
| R105***50 | 899.3 | KDMSS99 | 899.8 | 899.3 | 0.05 | 9 |
| R106***50 | 793 | KDMSS99 | 793.0 | 793.0 | 0.00 | 10 |
| R107***50 | 711.1 | KDMSS99 | 711.1 | 711.1 | 0.00 | 10 |
| R108***50 | 617.7 | CR99 | 617.7 | 617.7 | 0.00 | 11 |
| R109***50 | 786.8 | KDMSS99 | 786.8 | 786.8 | 0.00 | 10 |
| R110***50 | 697 | KDMSS99 | 697.0 | 697.0 | 0.00 | 10 |
| R111***50 | 707.2 | L99 | 707.2 | 707.2 | 0.00 | 10 |
| R112***50 | 630.2 | L99 | 635.1 | 635.0 | 0.77 | 11 |
| C101***50 | 362.4 | KDMSS99 | 362.4 | 362.4 | 0.00 | 9 |
| C102***50 | 361.4 | KDMSS99 | 361.4 | 361.4 | 0.00 | 11 |
| C103***50 | 361.4 | KDMSS99 | 361.4 | 361.4 | 0.00 | 11 |
| C104***50 | 358 | KDMSS99 | 358.0 | 358.0 | 0.00 | 12 |
| C105***50 | 362.4 | KDMSS99 | 362.4 | 362.4 | 0.00 | 10 |
| C106***50 | 362.4 | KDMSS99 | 362.4 | 362.4 | 0.00 | 10 |
| C107***50 | 362.4 | KDMSS99 | 362.4 | 362.4 | 0.00 | 10 |
| C108***50 | 362.4 | KDMSS99 | 362.4 | 362.4 | 0.00 | 11 |
| C109***50 | 362.4 | KDMSS99 | 362.4 | 362.4 | 0.00 | 12 |
| RC101***50 | 944 | KDMSS99 | 944.0 | 944.0 | 0.00 | 9 |
| RC102***50 | 822.5 | KDMSS99 | 822.8 | 822.5 | 0.04 | 10 |
| RC103***50 | 710.9 | KDMSS99 | 710.9 | 710.9 | 0.00 | 10 |
| RC104***50 | 545.8 | KDMSS99 | 545.8 | 545.8 | 0.00 | 10 |
| RC105***50 | 855.3 | KDMSS99 | 855.3 | 855.3 | 0.00 | 10 |
| RC106***50 | 723.2 | KDMSS99 | 723.2 | 723.2 | 0.00 | 9 |
| RC107***50 | 642.7 | KDMSS99 | 643.7 | 642.7 | 0.16 | 10 |
| RC108***50 | 598.1 | KDMSS99 | 598.1 | 598.1 | 0.00 | 10 |
| R201***50 | 791.9 | L99 | 795.8 | 791.9 | 0.49 | 13 |
| R202***50 | 698.5 | L99 | 698.5 | 698.5 | 0.00 | 14 |
| R203***50 | 605.3 | C03 | 608.2 | 605.9 | 0.49 | 15 |
| R204***50 | 506.4 | IV03 | 506.4 | 506.4 | 0.00 | 24 |
| R205***50 | 690.1 | C03 | 698.2 | 696.7 | 1.17 | 15 |
| R206***50 | 632.4 | C03 | 634.0 | 632.4 | 0.25 | 16 |
| R207***50 |  |  | 576.1 | 576.1 | 0.01 | 22 |
| R208***50 |  |  | 489.6 | 487.7 | 0.39 | 29 |
| R209***50 | 600.6 | C03 | 602.5 | 600.6 | 0.32 | 15 |
| R 210 ***50 | 645.6 | C 03 | 648.3 | 645.6 | 0.42 | 16 |
| R211***50 | 535.5 | IV03 | 549.8 | 543.3 | 2.67 | 25 |
| C201***50 | 360.2 | L99 | 360.2 | 360.2 | 0.00 | 25 |
| C202***50 | 360.2 | CR99 | 360.2 | 360.2 | 0.00 | 27 |
| C203***50 | 359.8 | CR99 | 359.8 | 359.8 | 0.00 | 27 |
| C204***50 | 350.1 | KLM01 | 350.1 | 350.1 | 0.00 | 29 |
| C205***50 | 359.8 | CR99 | 359.8 | 359.8 | 0.00 | 30 |
| C206***50 | 359.8 | CR99 | 359.8 | 359.8 | 0.00 | 26 |
| C207***50 | 359.6 | CR99 | 359.6 | 359.6 | 0.00 | 27 |
| C208***50 | 350.5 | CR99 | 350.5 | 350.5 | 0.00 | 28 |
| RC201***50 | 684.4 | L99 | 684.8 | 684.8 | 0.06 | 12 |
| RC202***50 | 613.6 | FDGG04 | 613.6 | 613.6 | 0.00 | 12 |
| RC203***50 | 555.3 | C03 | 555.3 | 555.3 | 0.00 | 15 |
| RC204***50 | 444.2 | DP03 | 444.2 | 444.2 | 0.00 | 19 |
| RC205***50 | 630.2 | FDGG04 | 630.2 | 630.2 | 0.00 | 12 |
| RC206***50 | 610 | FDGG04 | 610.3 | 610.0 | 0.05 | 13 |
| RC207***50 | 558.6 | FDGG04 | 558.6 | 558.6 | 0.00 | 16 |
| RC208***50 | - | - | 497.9 | 481.8 | 3.33 | 24 |
| Tot. |  |  | 32560.9 | 32519.7 |  | 841 |
| Avg. |  |  |  |  | 0.19 | 15 |

Table 20: Solomon VRPTW instances with 50 customers, comparison to exact solutions .

|  | Optimal |  | ALNS 25K |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | cost | ref | $\begin{gathered} \text { avg. } \\ \text { sol. } \end{gathered}$ | best <br> sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | avg. time (s) |
| R101 | 1637.7 | KDMSS99 | 1638.6 | 1637.7 | 0.05 | 30 |
| R102 | 1466.6 | KDMSS99 | 1467.7 | 1467.6 | 0.08 | 33 |
| R103 | 1208.7 | CR99 | 1208.9 | 1208.7 | 0.01 | 34 |
| R104 | 971.5 | IV03 | 977.1 | 976.0 | 0.58 | 34 |
| R105 | 1355.3 | KDMSS99 | 1355.8 | 1355.3 | 0.03 | 31 |
| R106 | 1234.6 | L99 | 1234.6 | 1234.6 | 0.00 | 33 |
| R107 | 1064.6 | L99 | 1068.2 | 1064.6 | 0.34 | 33 |
| R108 | - | - | 943.5 | 933.7 | 1.05 | 36 |
| R109 | 1146.9 | CR99 | 1150.2 | 1146.9 | 0.29 | 31 |
| R110 | 1068 | CR99 | 1083.1 | 1075.6 | 1.41 | 33 |
| R111 | 1048.7 | CR99 | 1049.2 | 1048.7 | 0.05 | 33 |
| R112 | - | - | 952.2 | 948.6 | 0.38 | 35 |
| C101 | 827.3 | KDMSS99 | 827.3 | 827.3 | 0.00 | 29 |
| C102 | 827.3 | KDMSS99 | 827.3 | 827.3 | 0.00 | 32 |
| C103 | 826.3 | KDMSS99 | 826.3 | 826.3 | 0.00 | 34 |
| C104 | 822.9 | KDMSS99 | 822.9 | 822.9 | 0.00 | 36 |
| C105 | 827.3 | KDMSS99 | 827.3 | 827.3 | 0.00 | 30 |
| C106 | 827.3 | KDMSS99 | 827.3 | 827.3 | 0.00 | 31 |
| C107 | 827.3 | KDMSS99 | 827.3 | 827.3 | 0.00 | 31 |
| C108 | 827.3 | KDMSS99 | 827.3 | 827.3 | 0.00 | 32 |
| C109 | 827.3 | KDMSS99 | 827.3 | 827.3 | 0.00 | 34 |
| RC101 | 1619.8 | KDMSS99 | 1629.8 | 1619.8 | 0.61 | 28 |
| RC102 | 1457.4 | CR99 | 1475.1 | 1463.5 | 1.22 | 30 |
| RC103 | 1258 | CR99 | 1272.2 | 1267.0 | 1.13 | 31 |
| RC104 | - | - | 1132.8 | 1132.6 | 0.01 | 33 |
| RC105 | 1513.7 | KDMSS99 | 1514.2 | 1513.8 | 0.04 | 30 |
| RC106 | - | - | 1376.1 | 1373.9 | 0.16 | 29 |
| RC107 | 1207.8 | IV03 | 1213.0 | 1209.3 | 0.43 | 30 |
| RC108 | 1114.2 | IV03 | 1124.6 | 1114.2 | 0.94 | 31 |
| R201 | 1143.2 | KLM01 | 1153.9 | 1148.5 | 0.94 | 45 |
| R202 | - | - | 1041.0 | 1036.9 | 0.40 | 54 |
| R203 | - | - | 876.5 | 872.4 | 0.47 | 60 |
| R204 | - | - | 731.5 | 731.3 | 0.03 | 67 |
| R205 | - | - | 952.4 | 949.8 | 0.27 | 58 |
| R206 | - | - | 880.6 | 880.6 | 0.00 | 61 |
| R207 | - | - | 796.4 | 794.0 | 0.30 | 72 |
| R208 | - | - | 703.1 | 701.2 | 0.27 | 86 |
| R209 | - | - | 860.2 | 855.8 | 0.52 | 60 |
| R210 | - | - | 914.0 | 908.4 | 0.61 | 59 |
| R211 | - | - | 758.3 | 752.3 | 0.80 | 67 |
| C201 | 589.1 | CR99 | 589.1 | 589.1 | 0.00 | 69 |
| C202 | 589.1 | CR99 | 589.1 | 589.1 | 0.00 | 74 |
| C203 | 588.7 | KLM01 | 588.7 | 588.7 | 0.00 | 80 |
| C204 | 588.1 | IV03 | 588.1 | 588.1 | 0.00 | 84 |
| C205 | 586.4 | CR99 | 586.4 | 586.4 | 0.00 | 76 |
| C206 | 586 | CR99 | 586.0 | 586.0 | 0.00 | 72 |
| C207 | 585.8 | CR99 | 585.8 | 585.8 | 0.00 | 74 |
| C208 | 585.8 | KLM01 | 585.8 | 585.8 | 0.00 | 74 |
| RC201 | 1261.8 | KLM01 | 1272.3 | 1262.6 | 0.84 | 42 |
| RC202 | 1092.3 | C03 | 1097.4 | 1095.8 | 0.47 | 46 |
| RC203 | - | - | 937.6 | 923.7 | 1.50 | 56 |
| RC204 | - | - | 788.1 | 785.8 | 0.29 | 68 |
| RC205 | 1154 | C03 | 1154.0 | 1154.0 | 0.00 | 45 |
| RC206 | - | - | 1062.5 | 1051.1 | 1.08 | 52 |
| RC207 | - | - | 976.2 | 966.6 | 0.99 | 55 |
| RC208 | - | - | 790.5 | 777.3 | 1.70 | 65 |
| Tot. |  |  | 54752.7 | 54579.5 |  | 2649 |
| Avg. |  |  |  |  | 0.36 | 47 |

Table 21: Solomon VRPTW instances with 100 customers, comparison to exact solutions .

|  | Best known |  |  | ALNS 25K |  |  |  |  | ALNS 50K |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | type | cost | $\begin{gathered} \hline \text { avg. } \\ \text { sol. } \end{gathered}$ | best <br> sol. | $\begin{gathered} \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | best above B.K | avg. time <br> (s) | avg. sol. | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | $\begin{array}{r} \text { best } \\ \text { above } \\ \text { B.K } \end{array}$ | avg. time <br> (s) |
| P01 | 50 | C | 524.61 | 524.61 | 524.61 | 0.00 | 0.00 | 12 | 524.61 | 524.61 | 0.00 | 0.00 | 21 |
| P02 | 75 | C | 835.26 | 841.81 | 838.87 | 0.78 | 0.43 | 20 | 839.62 | 835.26 | 0.52 | 0.00 | 38 |
| P03 | 100 | C | 826.14 | 828.18 | 826.14 | 0.25 | 0.00 | 46 | 826.99 | 826.14 | 0.10 | 0.00 | 85 |
| P04 | 150 | C | 1028.42 | 1037.43 | 1031.23 | 0.88 | 0.27 | 96 | 1034.20 | 1029.56 | 0.56 | 0.11 | 176 |
| P05 | 199 | C | 1291.29 | 1309.36 | 1298.92 | 1.40 | 0.59 | 124 | 1306.63 | 1297.12 | 1.19 | 0.45 | 233 |
| P06 | 50 | CD | 555.43 | 555.43 | 555.43 | 0.00 | 0.00 | 12 | 555.43 | 555.43 | 0.00 | 0.00 | 21 |
| P07 | 75 | CD | 909.68 | 913.03 | 909.68 | 0.37 | 0.00 | 19 | 911.78 | 909.68 | 0.23 | 0.00 | 36 |
| P08 | 100 | CD | 865.94 | 867.65 | 865.94 | 0.20 | 0.00 | 42 | 866.97 | 865.94 | 0.12 | 0.00 | 78 |
| P09 | 150 | CD | 1162.55 | 1169.06 | 1164.24 | 0.56 | 0.15 | 86 | 1167.68 | 1163.68 | 0.44 | 0.10 | 160 |
| P10 | 199 | CD | 1395.85 | 1408.19 | 1404.17 | 0.88 | 0.60 | 116 | 1410.27 | 1405.88 | 1.03 | 0.72 | 219 |
| P11 | 120 | C | 1042.11 | 1042.37 | 1042.12 | 0.03 | 0.00 | 73 | 1042.46 | 1042.12 | 0.03 | 0.00 | 132 |
| P12 | 100 | C | 819.56 | 819.56 | 819.56 | 0.00 | 0.00 | 43 | 819.56 | 819.56 | 0.00 | 0.00 | 79 |
| P13 | 120 | CD | 1541.14 | 1543.77 | 1542.86 | 0.17 | 0.11 | 61 | 1543.54 | 1542.86 | 0.16 | 0.11 | 113 |
| P14 | 150 | CD | 866.37 | 866.37 | 866.37 | 0.00 | 0.00 | 40 | 866.37 | 866.37 | 0.00 | 0.00 | 73 |
| Tot. |  |  | 13664 | 13726.83 | 13690.13 |  |  | 789 | 13716.09 | 13684.21 |  |  | 1464 |
| Avg. |  |  |  |  |  | 0.39 | 0.15 | 56 |  |  | 0.31 | 0.11 | 105 |
| < PB | 14 |  |  | 0 |  |  |  |  | 8 |  |  |  |  |
| \#B |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 22: Christofides et al. CVRP problems [13]. The column type indicates if the problem is capacity constrained ( $C$ ) or both capacity and duration constrained ( $C D$ ). The column best above $B . K$ indicates how much the best solution found differs from the best known solution from the literature (in percent). The best known solutions where obtained from Cordeau et al. [16].


Table 23: Golden et al. CVRP problems ([30]). The best known solutions where obtained from Cordeau et al. [16], $M B$ refers to the heuristic by Mester and Bräysy [42] (the results are not given in [42], but can be found in [16]), $T K$ refers to the heuristic by Tarantilis and Kiranoudis [57].

|  | Best known |  |  | ALNS 25K |  |  |  |  | ALNS 50K |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | cost | ref | $\begin{gathered} \hline \text { avg. } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { best } \\ \text { sol. } \end{gathered}$ | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \end{gathered}$ | $\begin{array}{r} \text { best } \\ \text { above } \\ \text { B.K } \end{array}$ | avg. time | $\begin{gathered} \hline \text { avg. } \\ \text { sol. } \end{gathered}$ | best sol. | $\begin{gathered} \hline \text { avg. } \\ \text { gap } \\ (\%) \\ \hline \end{gathered}$ | $\begin{array}{r} \text { best } \\ \text { above } \\ \text { B.K } \end{array}$ | avg. time <br> (s) |
| CVRP_L_21 | 560 | 16212.83 | EST | 16488.67 | 16296.21 | 1.70 | 0.51 | 869 | 16391.23 | 16224.81 | 1.10 | 0.07 | 1735 |
| CVRP_L_22 | 600 | 14641.64 | ORTR | 14737.97 | 14638.37 | 0.73 | -0.02 | 569 | 14644.06 | 14631.08 | 0.09 | -0.07 | 1168 |
| CVRP_L_23 | 640 | 18801.13 | EST | 19155.50 | 18925.36 | 1.88 | 0.66 | 1097 | 19112.56 | 18837.49 | 1.66 | 0.19 | 2268 |
| CVRP_L_24 | 720 | 21389.43 | EST | 22024.22 | 21652.78 | 2.97 | 1.23 | 1259 | 21913.83 | 21522.48 | 2.45 | 0.62 | 2739 |
| CVRP_L_25 | 760 | 17053.26 | EST | 17170.49 | 17082.81 | 1.59 | 0.17 | 650 | 17115.78 | 16902.16 | 1.26 | -0.89 | 1320 |
| CVRP_L_26 | 800 | 23977.74 | EST | 24577.43 | 24084.92 | 2.50 | 0.45 | 1425 | 24405.05 | 24014.09 | 1.78 | 0.15 | 3081 |
| CVRP_L_27 | 840 | 17651.6 | ORTR | 17833.67 | 17749.35 | 1.25 | 0.55 | 723 | 17769.75 | 17613.22 | 0.89 | -0.22 | 1504 |
| CVRP_L_28 | 880 | 26566.04 | EST | 27315.94 | 26651.15 | 2.82 | 0.32 | 1692 | 27172.63 | 26791.72 | 2.28 | 0.85 | 3441 |
| CVRP_L_29 | 960 | 29154.34 | EST | 30117.04 | 29487.26 | 3.30 | 1.14 | 1887 | 29976.86 | 29405.60 | 2.82 | 0.86 | 3921 |
| CVRP_L_30 | 1040 | 31742.64 | EST | 32828.86 | 32133.28 | 3.42 | 1.23 | 2192 | 32607.06 | 31968.33 | 2.72 | 0.71 | 4348 |
| CVRP_L_31 | 1120 | 34330.94 | EST | 35617.70 | 34962.16 | 3.75 | 1.84 | 2395 | 35472.51 | 34770.34 | 3.33 | 1.28 | 5003 |
| CVRP_L_32 | 1200 | 36919.24 | EST | 37989.05 | 37401.49 | 2.90 | 1.31 | 2750 | 37818.65 | 37377.35 | 2.44 | 1.24 | 5321 |
| Tot. |  | 288441 |  | 295856.55 | 291065.13 |  |  | 17509 | 294399.98 | 290058.65 |  |  | 35849 |
| Avg. |  |  |  |  |  | 2.40 | 0.78 | 1459 |  |  | 1.90 | 0.40 | 2987 |
| < PB |  |  |  |  | 1 |  |  |  |  | 3 |  |  |  |
| \#B |  | 9 |  |  | 0 |  |  |  |  | 3 |  |  |  |

Table 24: Li et al. CVRP problems [40]. EST refers to a solution found by hand by Li et al [40] (the instances are highly symmetrical which makes it easy to construct good solutions by hand). ORTR refers to a solution found by a heuristic by Li et al. [40].

## Part III

## Exact methods

## Chapter 7

## Introduction to exact methods

### 7.1 Introduction

Solving NP-hard optimization problems to optimality is a topic, that has challenged researchers almost since the beginning of computer history (long before the concept of NP-hardness was discovered). Significant progress has been made in the recent decades, but for many problem types only fairly small instances can be solved. Vehicle routing problems belong to a class of problems that has proved to be difficult to solve. Only moderately sized problems can be solved to optimality consistently.

The topic of this chapter and the following is quite different from that studied in part II and so is the goal of the methods developed. In part II we studied heuristics, and an objective that always was kept in mind in this part of the thesis was the applicability of the heuristics to real life problems.

In this part of the thesis, we are not concerned about the methods we develop should be applicable to real life problems. The purposes of the work presented in this part is mainly to

- Enhance our knowledge about the PDPTW. This include investigating which formulations of the problem that appear to be best suited for solving the problem to optimality and finding new valid inequalities for the problem.
- Provide the research community with knowledge about optimal solutions for the PDPTW. This can be used to evaluate the performance of heuristics for the problem.

In this chapter we review some of the methods used for solving NP-hard optimization problems to optimality. We review the methods that has been used in Chapter 8 and 9, namely branch-and-cut ( BAC ) and branch-and-price ( BAP ) and their combination branch-cut-and-price (BCP). It is assumed that the reader is familiar with the branch-and-bound paradigm, if not, for example Wolsey [1998] gives an introduction to the subject.

### 7.2 Linear programming based lower bounds

The structure of this section is to a certain degree inspired from Ralphs and Galati [2005] and the notation has been taken from same paper.

In what follows we assume that a integer linear program (ILP) is to be solved and we assume that the problem is a minimization problem. We can write the problem as:

$$
z_{I P}=\min _{x \in \mathbb{Z}^{n}}\left\{c^{T} x \mid A x \geq b\right\}
$$

where $c \in \mathbb{Q}^{n}, A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^{m}$. Such a problem is often solved using a branch-and-bound method.

When solving NP-hard optimization problems exactly, one often resort to branch-and-bound methods. In order to construct a branch-and-bound algorithm for solving $z_{I P}$, one needs a lower bound to $z_{I P}$ - preferably one that can computed efficiently. One way to obtain a lower bound is to solve the linear relaxation of $z_{I P}$

$$
\begin{equation*}
z_{L P}=\min _{x \in \mathbb{R}^{n}}\left\{c^{T} x \mid A x \geq b\right\} \tag{7.1}
\end{equation*}
$$

as $z_{L P}$ is minimizing over a superset $\mathbb{Z}^{n}$, it is clearly a valid lower bound to $z_{I P}$. Let $\mathcal{Q}=$ $\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$ be the polyhedron of feasible solutions to $z_{L P}$. We can express the set of feasible solutions to $z_{I P}$ as $\mathcal{F}=\mathcal{Q} \cap \mathbb{Z}^{n}$. Now let $\operatorname{conv}(\cdot)$ denote the convex hull. From Wolsey [1998], proposition 1.1 and 1.2 we know that $\operatorname{conv}(\mathcal{F})$ is a polyhedron and that the extreme points of $\operatorname{conv}(X)$ always lie in $X$, this gives us the the second equality sign in

$$
z_{I P}=\min _{x \in \mathbb{Z}^{n}}\left\{c^{T} x \mid A x \geq b\right\}=\min _{x \in \mathcal{F}}\left\{c^{T} x\right\}=\min _{x \in \operatorname{conv}(\mathcal{F})}\left\{c^{T} x\right\}
$$

The fact that $\mathcal{P}=\operatorname{conv}(\mathcal{F})$ is a polyhedron means that $Z_{I P}$ in theory can be solved as linear program - in practice, this does not give us a way to solve $Z_{I P}$ though, as we for interesting problems do not know the inequalities defining $\mathcal{P}$ and even if we knew the set of inequalities it could be of exponential size. We can try to approximate $\mathcal{P}$ though. This is what is being done in a branch-and-cut algorithm in order to get better lower bounds, we will return to this a little later.

To illustrate the concepts, consider the following ILP

$$
\min -2 x_{1}+3 x_{2}
$$

subject to

$$
\begin{align*}
2 x_{1}+x_{2} & \geq 8  \tag{7.2}\\
-3 x_{1}+x_{2} & \geq-12  \tag{7.3}\\
x_{1}-4 x_{2} & \geq-20  \tag{7.4}\\
-x_{1}+2 x_{2} & \geq-1  \tag{7.5}\\
x_{1}, x_{2} & \in \mathbb{Z} \tag{7.6}
\end{align*}
$$

The polyhedron $\mathcal{Q}$ is in this case defined by equation (7.2)-(7.5) and

$$
\begin{equation*}
x_{1}, x_{2} \in \mathbb{R} \tag{7.7}
\end{equation*}
$$

The polyhedron $\mathcal{Q}$ is illustrated in Figure 7.1 (upper left). We find that $z_{L P}=-3.8$ and the optimal point in $\mathcal{Q}$ is $\left(x_{1}^{*}, x_{2}^{*}\right)=(4.6,1.8)$ (see Figure 7.1, lower right). The set $\mathcal{F}=\mathcal{Q} \cap \mathbb{Z}^{2}$ and the polyhedron $\operatorname{conv}(\mathcal{F})$ are easily obtained in this simple case and is illustrated in Figure 7.1 (upper right and lower left). We find that $z_{I P}=-2$ and the optimal point in $\mathcal{F}$ is $\left(x_{1}^{*}, x_{2}^{*}\right)=(4,2)$. We note that $z_{L P}$ indeed is a lower bound to $z_{I P}$.

It is possible to use the lower bound $z_{L P}$ in a branch and bound algorithm, but often a tighter bound is desirable. As we saw above it is possible to close the gap between $z_{L P}$ and $z_{I P}$ completely by adding all the inequalities from $\operatorname{conv}(\mathcal{F})$ to the linear programming problem. This leads to the term valid inequality. The definition of a valid inequality (from definition 8.1 in Wolsey [1998]) is

Definition: An inequality $\pi x \geq \pi_{0}$ is a valid inequality for $\mathcal{F} \subseteq \mathbb{R}^{n}$ if $\pi x \geq \pi_{0}$ for all $x \in \mathcal{F}$.
In other words, a valid inequality should not cut away any feasible integer points. We are of course interested in inequalities that do cut away fractional solutions. Given an optimal solution $x^{*}$ to the LP relaxation that is fractional we want to find a valid inequality that cuts away $x^{*}$. The problem of finding such an inequality is called a separation problem as we want to find an inequality that separates $x^{*}$ from $\mathcal{F}$. An algorithm that finds such an inequality is called a separation algorithm.


Figure 7.1: Polyhedrons. The upper left figure illustrates the polyhedron $\mathcal{Q}$ defined by equations (7.2)-(7.5) and (7.7). The upper right figure illustrates $\mathcal{F}=\mathcal{Q} \cap \mathbb{Z}^{2}$, the elements of $\mathcal{F}$ are the black dots. The figure at the bottom left illustrates the convex hull of $\mathcal{F}$. The figure in the bottom right illustrates both $\mathcal{Q}, \mathcal{F}$ and $\operatorname{conv}(\mathcal{F})$, the figure also show the objective (the dotted line) and the optimal LP and IP solutions (grey rectangles).

In Figure 7.2 (left) we have added the valid inequality

$$
\begin{equation*}
-2 x_{1}+x_{2} \geq-7 \tag{7.8}
\end{equation*}
$$

Adding this inequalities separates the old optimal LP solution $x^{*}=(4.6,1.8)$ from $\mathcal{F}$. The new optimal LP solution is $x^{*}=\left(4 \frac{1}{3}, 1 \frac{2}{3}\right)$ with objective $-3 \frac{2}{3}$, which is a slightly better lower bound. Adding the inequalities

$$
\begin{align*}
-x_{1}+x_{2} & \geq-2  \tag{7.9}\\
x_{2} & \geq 2 \tag{7.10}
\end{align*}
$$

once again separates $x^{*}$ from $\mathcal{F}$ and the LP relaxation now gives the optimal solution to the integer problem, $x^{*}=(4,2), z_{I P}=z_{L P}=-2$, this is illustrated in Figure 7.2 (right). This example shows that it is not necessary to have a complete description of the convex hull of $\mathcal{F}$ to get the IP optimal solution using the LP relaxation. A description of the convex hull around the IP optimal point is enough. In this case the inequalities (7.9) and (7.10) are enough. We also see that the inequality (7.8) is redundant because of inequalities (7.9) and (7.3). Inequalities (7.9) and (7.10) are examples of the so called facet defining inequalities of the polyhedron $\operatorname{conv}(\mathcal{F})$ while (7.8) is defining a face of the polyhedron $\operatorname{conv}(\mathcal{F})$. The facet defining inequalities are the strongest valid inequalities. The proper definition of facets and faces are given in Definition 9.5 in Wolsey [1998]

## Definition

1. $F$ defines a face of the polyhedron $P$ if $F=\left\{x \in P: \pi x=\pi_{0}\right\}$ for some valid inequality $\pi x \geq \pi_{0}$ of $P$.
2. $F$ is a facet of $P$ if $F$ is a face of $P$ and $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.
3. If $F$ is a face of $P$ with $F=\left\{x \in P: \pi x=\pi_{0}\right\}$, the valid inequality $\pi x \geq \pi_{0}$ is said to represent or define the face.

To give a more intuitive sense of faces and facets we can say, that for a 2-dimensional polyhedron like the one in our figure, the faces are lines and extreme points of the polyhedron while the facets are the lines defining the polyhedron. For a 3-dimensional polyhedron the faces are the planes plus the extreme lines and extreme points of the polyhedron, facets are the planes of the polyhedron.

### 7.2.1 Cutting plane algorithm

Valid inequalities give us a an algorithmic framework for solving IP problems. Our starting point is the linear relaxation (7.1). By using the definition of $\mathcal{Q}$ from section 7.2 we can write it as

$$
\begin{equation*}
z_{L P}=\min \left\{c^{T} x \mid x \in \mathcal{Q}\right\} \tag{7.11}
\end{equation*}
$$

the cutting plane algorithm works by iteratively adding valid inequalities to $\mathcal{Q}$ to make it approximate $\operatorname{conv}(F)$ better and better. The algorithm follows the following steps (assuming that the IP has a feasible solution)

1. set $t=0, \mathcal{Q}^{t}=\mathcal{Q}$
2. solve the linear program

$$
z^{t}=\min \left\{c^{T} x \mid x \in \mathcal{Q}^{t}\right\}
$$

3. let $x^{*}$ be the corresponding optimal solution.
4. if $x^{*}$ is integer then we have found the optimal solution to the IP problem - STOP.
5. Find an inequality $\pi^{t} x \geq \pi_{0}^{t}$ that separates $x^{*}$ from $\mathcal{F}$.


Figure 7.2: Valid inequalities. In the left figure the inequality (7.8) has been added to (7.2)-(7.5), yielding a better lower bound. The LP optimal solution is marked with a square while the old LP optimal solution is marked with a star. In the right figure the inequalities (7.9) and (7.10) have been added and the LP relaxation now gives the IP optimal solution, the star marks the old LP optimal solution.
6. Set $\mathcal{Q}^{t+1}=\mathcal{Q}^{t} \cap\left\{x \in \mathbb{R}^{n} \mid \pi^{t} x \geq \pi_{0}^{t}\right\}$, set $t=t+1$
7. Goto step 2

Step 5 is of course the most complex part of the algorithm, but Gomory's fractional cutting plane algorithm (GFCPA) provides a way of generating a violated valid inequality and it can be proved that the GFCPA finds the IP optimal solution in a finite number of steps (see [Nemhauser and Wolsey, 1988, Theorem 3.8]). The convergence of the GFCPA is very slow though and the algorithm is not really useful in practice.

Instead one can separate inequalities from a family of inequalities, known to be useful for the particular IP problem (e.g. one could use the comb inequalities if solving the TSP). When no more violated inequalities can be found the algorithm must stop and the problem is instead solved by branch and bound using the tighter lower bound provided by $z_{L P}=\min \left\{c^{T} x \mid x \in \mathcal{Q}^{t}\right\}$ instead of $z_{L P}=\min \left\{c^{T} x \mid x \in \mathcal{Q}\right\}$.

### 7.2.2 Branch-and-cut

Branch-and-cut extends on the cutting plane algorithm idea from the preceding section. The idea in branch-and-cut is simply to generate valid, violated inequalities throughout the branch and bound tree and not only in the root node. The valid inequalities are typically chosen from some preselected families of valid inequalities and in each node there is a trade off between improving the lower bound as much as possible versus processing the node as fast as possible. Thus one will often stop generating valid inequalities in a node if the improvements of the lower bound has been small for a number of iterations. In that case it may be better to branch and then try to generate more valid inequalities in the child nodes. It is important to note that some cuts are globally valid - they can be used throughout the branch and bound tree, even if detected in a child node deep in the tree, while other cuts are locally valid - they can only be used in the node where they were discovered and in its child nodes. In the branch-and-cut algorithm presented in this paper only globally valid cuts are used.

The branch and cut paradigm has been successful for many problem types, most notable is probably the development in TSP branch-and-cut methods Applegate et al. [2003].

### 7.3 Introduction to branch-and-price

The preceding section introduced one technique for getting strong lower bounds and shortly discussed how to use these lower bounds in a branch and bound framework. This section introduces the Dantzig-Wolfe decomposition technique for integer programs and investigates how it can be used within a branch-and-bound method. Dantzig Wolfe decomposition was originally introduced for linear programs by Dantzig and Wolfe [1960].

The branch-and-price paradigm relies on two concepts. The first concept is decomposition that transforms the original or compact formulation into a model that contains many columns, but typically fewer rows than the original formulation. The new formulation is often denoted an extensive formulation.

The second concept is column generation. In order to solve the linear relaxation of the extensive formulation one does not generate the entire model as it typically is very large - the number of variables often grow exponentially in the size of the original problem. Instead columns are generated dynamically using a technique known as column generation. When the lower bound within a branch-and-bound framework is solved using dynamic column generation the resulting branch and bound algorithm is called branch-and-price or IP column generation. Adding a branch and bound search on top of a linear programming relaxation based on column generation might seem straightforward, but the approach has some pitfalls. An example of such a pittfall is how to create the subproblems when branching such that they doesn't change the structure of the pricing problem.

This section only gives a short introduction to column generation and branch-and-price, more information can be found in Wolsey [1998], Desrosiers and Lübbecke [2005], Ralphs and Galati [2005], Sigurd [2004], Vanderbeck [2000]. The description given in this chapter follows that of Wolsey [1998] and Sigurd [2004].

### 7.3.1 Decomposition

Consider an integer programming problem of the form (compact formulation)

$$
\begin{equation*}
\min c^{T} x \tag{7.12}
\end{equation*}
$$

subject to

$$
\begin{align*}
A x & \geq b  \tag{7.13}\\
D x & \geq d  \tag{7.14}\\
x & \in \mathbb{N}_{0}^{n} \tag{7.15}
\end{align*}
$$

Where $A$ is an $m_{A} \times n$ matrix and $D$ is an $m_{D} \times n$ matrix and all elements are assumed to be rationals, $b \in \mathbb{Q}^{m_{A}}$ and $d \in \mathbb{Q}^{m_{D}}$ are vectors. Assume that the polyhedron $\left\{x \in \mathbb{R}_{+}^{n}: D x \geq d\right\}$ is bounded (see Sigurd [2004] for the unbounded case). Then the set $X=\left\{x \in \mathbb{N}_{0}^{n}: D x \geq d\right\}$ contains a finite number of elements $\left\{p_{\omega}\right\}_{\omega \in \Omega}$ and we can write the set $X$ as

$$
X=\left\{x \in \mathbb{R}_{+}^{n}: x=\sum_{\omega \in \Omega} \lambda_{\omega} p_{\omega}, \sum_{\omega \in \Omega} \lambda_{\omega}=1, \lambda_{\omega} \in\{0,1\}, \forall \omega \in \Omega\right\}
$$

Substituting for $x$ in the compact formulation (7.12)-(7.15) leads to the extensive formulation

$$
\begin{equation*}
\min c^{T}\left(\sum_{w \in \Omega} \lambda_{\omega} p_{\omega}\right) \tag{7.16}
\end{equation*}
$$

subject to

$$
\begin{align*}
A\left(\sum_{w \in \Omega} \lambda_{\omega} p_{\omega}\right) & \geq b  \tag{7.17}\\
\sum_{\omega \in \Omega} \lambda_{\omega} & =1  \tag{7.18}\\
\lambda_{\omega} & \in\{0,1\} \quad \forall \omega \in \Omega \tag{7.19}
\end{align*}
$$

Defining $c_{\omega}=c^{T} p_{\omega}$ and $a_{\omega}=A p_{\omega}$ for $\omega \in \Omega$ we get

$$
\begin{equation*}
\min \sum_{w \in \Omega} c_{\omega} \lambda_{\omega} \tag{7.20}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{\omega \in \Omega} a_{\omega} \lambda_{\omega} & \geq \quad b  \tag{7.21}\\
\sum_{\omega \in \Omega} \lambda_{\omega} & =1  \tag{7.22}\\
\lambda_{\omega} & \in\{0,1\} \quad \forall \omega \in \Omega \tag{7.23}
\end{align*}
$$

The extensive formulation contains fewer rows (inequalities) than the compact formulation but it typically contains many more columns (variables). The real benefit of the extensive formulation is that its LP relaxation often is better (tighter) than the LP relaxation of the compact formulation. To see this consider the two polyhedra $\mathcal{Q}_{c}=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq b, D x \geq d\right\}$ and $\mathcal{Q}_{e}=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq d, x \in \operatorname{conv}(X)\right\} . \mathcal{Q}_{c}$ is the polyhedron that the linear relaxation of the compact formulation optimizes over, while $\mathcal{Q}_{e}$ is the polyhedron that the linear relaxation of the extensive formulation optimizes over. It is clear that $\mathcal{Q}_{e} \subseteq \mathcal{Q}_{c}$ as

$$
\operatorname{conv}(X)=\operatorname{conv}\left(\left\{x \in \mathbb{N}_{0}^{+}: D x \geq d\right\}\right) \subseteq\left\{x \in \mathbb{R}_{+}^{n}: D x \geq d\right\}
$$

If $\operatorname{conv}(X)=\left\{x \in \mathbb{R}_{+}^{n}: D x \geq d\right\}$ then the extensive and the compact formulation give the same lower bound. This is the case when all the extreme points of $\left\{x \in \mathbb{R}_{+}^{n}: D x \geq d\right\}$ are integer and the polyhedron is said to have the integrality property.

The price one has to pay for getting a tighter lower bound is that the set $X$ must be known. In Section 7.3 .2 we show that it is not necessary to have an explicit definition of $X$ in the the model.

The decomposition described above is in particular useful if the matrix $D$ has a block diagonal structure, that is

$$
D=\left(\begin{array}{ccc}
D^{1} & & \\
& \ddots & \\
& & D^{\Delta}
\end{array}\right)
$$

The matrices $D^{\delta}, \delta=1, \ldots, \Delta$ are $m_{\delta} \times n_{\delta}$ matrices and the $d=\left(d^{1}, \ldots, d^{\Delta}\right)$ where $d^{\delta} \in \mathbb{Q}^{m_{\delta}}$. In that case we can consider the smaller, independent polyhedrons $X^{\delta}=\left\{x \in \mathbb{N}_{0}^{n_{\delta}}: D^{\delta} x \geq d^{\delta}\right\}$ that are bounded if $X$ is and therefore contains a finite number of elements $\left\{p_{\omega}^{\delta}\right\}_{\omega \in \Omega^{\delta}}$. We can write $X^{\delta}$ as

$$
X^{\delta}=\left\{x \in \mathbb{R}_{+}^{n_{\delta}}: x=\sum_{\omega \in \Omega^{\delta}} \lambda_{\omega}^{\delta} p_{\omega}^{\delta}, \sum_{\omega \in \Omega^{\delta}} \lambda_{\omega}^{\delta}=1, \lambda_{\omega}^{\delta} \in\{0,1\}, \forall \omega \in \Omega^{\delta}\right\}
$$

Let $p^{\prime}{ }_{\omega}^{\delta}=\left(0, \ldots, 0,\left(p_{\omega}^{\delta}\right)^{T}, 0, \ldots, 0\right)^{T}$ where there are $\sum_{i=1}^{\delta-1} n^{i}$ leading zeros and $\sum_{i=\delta+1}^{\Delta} n^{i}$ trailing zeros. The polyhedron $X$ can be written as $X=X^{1} \times \ldots \times X^{\Delta}$ and we can express any point
$x$ in $X$ as

$$
x=\sum_{\delta=1}^{\Delta}\left(\sum_{\omega \in \Omega^{\delta}} \lambda_{\omega}^{\delta} p_{\omega}^{\prime \delta}\right)
$$

substituting into (7.12)-(7.15) yields

$$
\begin{equation*}
\min c^{T}\left(\sum_{\delta=1}^{\Delta}\left(\sum_{\omega \in \Omega^{\delta}} \lambda_{\omega}^{\delta} p_{\omega}^{\prime}\right)\right) \tag{7.24}
\end{equation*}
$$

subject to

$$
\begin{align*}
A\left(\sum_{\delta=1}^{\Delta}\left(\sum_{\omega \in \Omega^{\delta}} \lambda_{\omega}^{\delta} p_{\omega}^{\prime \delta}\right)\right) & \geq &  \tag{7.25}\\
\sum_{\omega \in \Omega^{\delta}} \lambda_{\omega}^{\delta} & =1 & \forall \delta \in\{1, \ldots \Delta\}  \tag{7.26}\\
\lambda_{\omega}^{\delta} & \in\{0,1\} & \forall \delta \in\{1, \ldots \Delta\}, \forall \omega \in \Omega^{\delta} \tag{7.27}
\end{align*}
$$

Defining $c_{\omega}^{\delta}=c^{T} p^{\prime}{ }_{\omega}^{\delta}$ and $a_{\omega}^{\delta}=A p^{\prime}{ }_{\omega}^{\delta}$ this simplifies to

$$
\begin{equation*}
\min \sum_{\delta=1}^{\Delta} \sum_{\omega \in \Omega^{\delta}} c_{\omega}^{\delta} \lambda_{\omega}^{\delta} \tag{7.28}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{\delta=1}^{\Delta} \sum_{\omega \in \Omega^{\delta}} a_{\omega}^{\delta} \lambda_{\omega}^{\delta} & \geq b  \tag{7.29}\\
\sum_{\omega \in \Omega^{\delta}} \lambda_{\omega}^{\delta} & =1 \quad \forall \delta \in\{1, \ldots \Delta\}  \tag{7.30}\\
\lambda_{\omega}^{\delta} & \in\{0,1\} \quad \forall \delta \in\{1, \ldots \Delta\}, \forall \omega \in \Omega^{\delta} \tag{7.31}
\end{align*}
$$

The model (7.28)-(7.31) has fewer variables than model (7.20)-(7.23) that did not take advantage of the block diagonal structure (see for example Sigurd [2004]).

If all the blocks in the diagonal block matrix are identical, then by selecting $\Omega^{1}$ as representative of the points in the $X^{\delta}$ sets, the model can be simplified to

$$
\begin{equation*}
\min \sum_{\omega \in \Omega^{1}} c_{\omega}^{1} \lambda_{\omega}^{1} \tag{7.32}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{\omega \in \Omega^{1}} a_{\omega}^{1} \lambda_{\omega}^{1} & \geq b  \tag{7.33}\\
\sum_{\omega \in \Omega^{1}} \lambda_{\omega}^{1} & =\Delta  \tag{7.34}\\
\lambda_{\omega}^{1} & \in \mathbb{N}_{0} \quad \forall \omega \in \Omega^{1} \tag{7.35}
\end{align*}
$$

### 7.3.2 Column generation

Column generation is a technique for solving large scale linear programming problems. When using column generation we are not using all variables explicitly in the model we are solving, but only a subset. Variables are generated dynamically when necessary by using the properties of the
simplex algorithm. Column generation can be used for any linear programming problem, but it is particularly useful for linear programs with a huge number of variables as the ones arising from the extensive models obtained in section 7.3.1. In this section we are going to see how column generation works for the linear relaxation of (7.20)-(7.23), we refer to Sigurd [2004] for a more throughout exposition.

The linear relaxation of (7.20)-(7.23) is:

$$
\begin{equation*}
\min \sum_{w \in \Omega} c_{\omega} \lambda_{\omega} \tag{7.36}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \sum_{\omega \in \Omega} a_{\omega} \lambda_{\omega} \geq b  \tag{7.37}\\
& \sum_{\omega \in \Omega} \lambda_{\omega}=1  \tag{7.38}\\
& 0 \leq \lambda_{\omega} \leq 1 \quad \forall \omega \in \Omega \tag{7.39}
\end{align*}
$$

Thus the linear relaxion considers a linear combination of the elements from $X$. Consider looking at a reduced set of columns $\bar{\Omega} \subseteq \Omega$ such that $|\bar{\Omega}|$ is much smaller that $|\Omega| . \bar{\Omega}$ must be chosen such that the linear program

$$
\begin{equation*}
\min \sum_{w \in \bar{\Omega}} c_{\omega} \lambda_{\omega} \tag{7.40}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \sum_{\omega \in \bar{\Omega}} a_{\omega} \lambda_{\omega} \geq b  \tag{7.41}\\
& \sum_{\omega \in \bar{\Omega}} \lambda_{\omega}=1  \tag{7.42}\\
& 0 \leq \lambda_{\omega} \leq 1 \quad \forall \omega \in \bar{\Omega} \tag{7.43}
\end{align*}
$$

has a feasible solution. If it is difficult to select a subset of columns such that the linear program has a feasible solution, then one can generate one or more dummy columns that has very high cost, but constitute a feasible solution. In order to proceed one first need to consider how the simplex algorithm solves a linear program like

$$
\begin{equation*}
\min c^{T} x \tag{7.44}
\end{equation*}
$$

subject to

$$
\begin{align*}
A x & \geq b  \tag{7.45}\\
x & \in \mathbb{R}_{+}^{n} \tag{7.46}
\end{align*}
$$

The simplex algorithm maintains a basic feasible solution that as the name implies is a feasible solution to the LP, but not necessarily optimal. In each iteration of the simplex algorithm a new column is chosen to enter the basis. If the new column should have a chance of improving the basic feasible solution, it must have negative reduced cost $c_{i}^{\pi}$

$$
c_{i}^{\pi}=c_{i}-\pi A_{i}
$$

where $\pi$ is the current dual variables associated with the constraints (7.45) and $A_{i}$ is the $i$ th column in $A$. The typical approach is to select the column with minimum reduced cost, that is, the column

$$
\arg \min _{i \in\{1, \ldots, n\}}\left\{c_{i}-\pi A_{i}\right\}
$$

when no column with negative reduced cost is found, then the simplex algorithm has reached the optimal solution to (7.44)-(7.46).

Returning to column generation for the relaxed, decomposed problem (7.36)-(7.39), it is now clear, that after solving the reduced problem (7.40)-(7.43) we can use the dual vector $\pi$ to see if more columns should be added to $\bar{\Omega}$. We simply have to calculate the reduced costs of all the columns in $\Omega \backslash \bar{\Omega}$. If one of these columns has negative reduced cost then it is added to $\bar{\Omega}$ and (7.40)-(7.43) is resolved. Frequently one will add the column with the most negative reduced cost. If no column in $\Omega \backslash \bar{\Omega}$ has negative reduced cost then the solution to (7.40)-(7.43) is optimal for (7.36)-(7.39) as well.

The above description require us to know column $A_{\omega}$ for all $\omega \in \Omega$ or at least to have a function that can generate all these columns on demand. This is impractical for most problems. Instead we need an oracle that given the dual vector $\pi$ can return a column with negative reduced cost or tell if such a column does not exist. The oracle solves the following problem

$$
\begin{equation*}
\min c^{T} x-\pi A x \tag{7.47}
\end{equation*}
$$

subject to

$$
\begin{equation*}
x \in X \tag{7.48}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
\min c^{T} x-\pi A x \tag{7.49}
\end{equation*}
$$

subject to

$$
\begin{align*}
D x & \geq d  \tag{7.50}\\
x & \in \mathbb{N}_{0}^{n} \tag{7.51}
\end{align*}
$$

The problem (7.49)-(7.51) is called the pricing problem while the problem (7.40)-(7.43) is called the master problem. The pricing problem is often a hard problem in itself.

One decomposition of the VRPTW decomposes the problem into a master problem that is a set-partitioning problem and a pricing problem that is a elementary shortest path problem with time windows and capacity constraints which is a NP-hard problem. In Chapter 9 several decompositions of the PDPTW is considered.

### 7.3.3 Branch-and-price

Section 7.3.2 showed how an LP lower bound for the extensive formulation of an integer program could be obtained. Sometimes the LP solution happens to be integer and the original IP is solved. But in general the LP solution will be fractional. The paradigm branch-and-price or IP column generation deals with how to obtain an integer solution when the LP relaxation is fractional.

The obvious approach is to use branch and bound, where branching is performed on the $\lambda_{\omega}$ variables, that is, if $\lambda_{\omega}$ is fractional for some $\omega \in \Omega$ then two branches are created, one where $\lambda_{w}=1$ and one where $\lambda_{\omega}=0$. One problem with this approach is that it creates highly unbalanced branch-and-bound trees as the $\lambda_{\omega}=0$ branch most often does not change the problem much we are excluding one column out of millions of columns. The second problem with the branching rule is that it can create difficulties for the pricing problem. The first case is generally easy to handle while the second case is problematic - it changes the structure of the pricing problem when imposing $\lambda_{\omega}=0$ the pricing problem is no longer allowed to generate column $\omega$. Depending on the pricing problem this can make it much harder to solve.

To avoid these problems one prefers a branching scheme that is compatible with the pricing problem. This can often be obtained by branching on the variables of the compact formulation. For the VRPTW Dumas et al. [1991] for example proposed to branch on the arcs in the compact formulation, this information was easily transfered to the subproblem.

The topic of branching in IP column generation is discussed further in the literature mentioned in section 7.3 and in Chapter 9 it is discussed how branching can be done for an IP column generation algorithm for the PDPTW.

### 7.3.4 Branch-and-cut-and-price

It is possible to combine the branch-and-cut and branch-and-price paradigms to obtain even stronger lower bounds. For problems of the vehicle routing family this has been proposed by Kohl [1995], Desaulniers et al. [1998], Kohl et al. [1999]. The approach described by Kohl [1995], Kohl et al. [1999] allows us to generate cuts based on the $x$-variables in the compact formulation (7.12)-(7.15). Such a cut can be expressed as $\alpha x \geq \beta$ where $\beta \in \mathbb{Q}$ and $\alpha^{T} \in \mathbb{Q}^{n}$. The $x$ vector corresponding to the current solution of the master problem is simple to obtain as $x=\sum_{\omega \in \bar{\Omega}} \lambda_{\omega} p_{\omega}$. When a cut in the original variables has been identified, it can be added to the master problem by substituting for $x$. The cut in the $\lambda$ variables is: $\alpha \sum_{\omega \in \Omega} \lambda_{\omega} p_{\omega} \geq \beta$ or alternatively $\sum_{w \in \Omega} \alpha_{\omega} \lambda_{\omega} \geq \beta$ where $\alpha_{\omega}=\alpha p_{\omega}$. Adding this row to the master problem changes the objective of the pricing problem to

$$
\begin{equation*}
\min c^{T} x-\pi A x-\nu \alpha x \tag{7.52}
\end{equation*}
$$

while the equations (7.50)-(7.51) remains the same. $\nu$ is the dual variable corresponding to the new row. What happens with the pricing problem is that some of coefficients of the variables in the objective function are changed. This usually means that the pricing problem occurring when adding cuts can be solved by the same pricing algorithm as was used to solve the pricing problem when no cuts were added. Such a cut is called robust in the terminology introduced by Poggi de Aragão and Uchoa [2003]. As we are going to see in Chapter 9 it is not always the case that the change in objective is harmless to the pricing problem.

Poggi de Aragão and Uchoa [2003] present a different way of handling cuts expressed in the variables of the original formulation. In their decomposition they keep the original variables $x$ and can introduce cuts in a direct way. The drawback of this approach is that larger linear programs must be solved compared to the approach outlined above.

Jepsen et al. [2005] experiments with some classes of cuts derived from the clique inequality for the set-partitioning problem, that operate directly on the $\lambda$ variables. This changes the structure of the pricing problem and makes them harder to solve, but has a significant impact on the lower bounds. Computational tests on the VRPTW are promising.

### 7.3.5 Further topics

This section gives pointers to the literature for further topics within column generation.

- Alternative decomposition. An alternative way of decomposing the compact formulation is proposed by Desrosiers et al. [1995]. This decomposition is done as in linear programming, using Minkowski's Theorem by decomposing by conv $(X)$. Vanderbeck [2000] compares this approach to the decomposition presented in section 7.3.1. The two decompositions give the same lower bounds.
- Relation to Lagrangian relaxation. It has long been known that performing Lagrangian relaxation on the compact formulation (7.12)-(7.15) by relaxing the constraints $A x \geq b$ gives the same lower bound as performing Dantzig-Wolfe decomposition where the constraints $A x \geq b$ is kept in the master problem. This was shown by Geoffrion [1974]. Research have been carried in the recent years to combine the two approaches. This topic is considered by Huisman et al. [2005] while Kallehauge et al. [2006] compares a Lagrangian relaxation approach to a column generation approach.
- Stabilization. It has been observed that the convergence of column generation algorithms can be very slow. The observation made is that dual variable initially fluctuates violently and their initial values seem almost random. This implies that worthless columns are generated early on in the process. The fluctuation in dual variables only slowly dies out, and it is typically only towards the end of the column generation process that useful columns (the ones ending up in the optimal LP solution) are generated. To alleviate this problem, stabilized column generation has been proposed. Stabilized column generation works by limiting how much the dual variables can change. This can be done by selecting a current "guess" of the
dual variables. Setting the dual variable to a value far from the guess is penalized, typically by a piecewise linear function. This causes the dual variables to stay close to the guess. At times the guesses are updated, moving them toward the current value of the dual in question, and the penalty functions can be modified as well. A different approach is suggested by Rousseau et al. [2003]. Given an optimal primal solution they consider the polydron $\mathcal{D}$ containing all optimal dual solutions. They show how to find a set of different extreme points of $\mathcal{D}$ (each point corresponds to a feasible, optimal dual solution) and produces an interior point in $\mathcal{D}$ by a creating a convex combination of the set of extreme points. This interior point is more stable than the extreme point of $\mathcal{D}$ returned by the LP when using an unstabilized approach and the computational experiments suggest that method is comparable to the approach based on penalties functions while requiring fewer parameters.
Some references to literature about stabilization in column generation are du Merle et al. [1999], Sigurd and Ryan [2003], Rousseau et al. [2003], Amor et al. [2004] and Oukil et al. [2004]. Significant speed ups are reported when using stabilization.
- Implementation tricks. Many implementation tricks for speeding up column generation algorithms have been proposed. Some of these are: solving the pricing problem heuristically, adding more than one column in each iteration, only keeping a limited set of the columns generated in the linear programming model. These and many more tricks are described in Desaulniers et al. [2001] and Lübbecke and Desrosiers [2005].

Chapter 8
Models and a Branch-and-Cut Algorithm for Pickup and Delivery Problems with Time Windows

# Models and Branch-and-Cut Algorithms for Pickup and Delivery Problems with Time Windows 

STEFAN ROPKE* ${ }^{*}$<br>JEAN-FRANÇOIS CORDEAU ${ }^{\dagger}$<br>GILBERT LAPORTE ${ }^{\dagger}$

June 29, 2006


#### Abstract

In the pickup and delivery problem with time windows (PDPTW), capacitated vehicles must be routed to satisfy a set of transportation requests between given origins and destinations. In addition to capacity and time window constraints, vehicle routes must also satisfy pairing and precedence constraints on pickups and deliveries. This paper introduces two new formulations for the PDPTW and the closely related dial-a-ride problem (DARP) in which a limit is imposed on the elapsed time between the pickup and the delivery of a request. Several families of valid inequalities are introduced to strengthen these two formulations. These inequalities are used within branch-and-cut algorithms which have been tested on several sets of instances for both the PDPTW and the DARP. Instances with up to eight vehicles and 96 requests (192 nodes) have been solved to optimality.


Keywords: pickup and delivery; time windows; valid inequalities; branch-and-cut.

[^3]
## 1 Introduction

In the Pickup and Delivery Problem (PDP), capacitated vehicles must be routed to satisfy a set of transportation requests between given origins and destinations. Each route must start and finish at a common depot and satisfy pairing and precedence constraints: for each request, the origin must precede the destination, and both locations must be visited by the same vehicle. The PDP arises naturally in several contexts such as urban courier services and door-to-door transportation systems for the elderly and the disabled. In most applications, time windows restrict the time at which each pickup and delivery location may be visited by a vehicle. This gives rise to the PDP with Time Windows (PDPTW). In the case of passenger transportation, additional constraints may also be present to reduce customer dissatisfaction. In particular, ride time constraints are often imposed to limit the time spent by a passenger in the vehicle. The resulting problem is called the Dial-a-Ride Problem (DARP).

Both the PDP and PDPTW are generalizations of the classical Vehicle Routing Problem (VRP) and are thus $\mathcal{N} \mathcal{P}$-hard. As a result, the development of solution methods for these problems has focused on heuristics (see, e.g., Desaulniers et al., 2002; Cordeau et al., 2006). Nevertheless, when the problem is sufficiently constrained, it is possible to obtain optimal solutions within reasonable computation time. For instance, dynamic programming has been used successfully to solve the single-vehicle PDP with or without time windows (Psaraftis, 1980, 1983; Desrosiers et al., 1986). For the multiple-vehicle case, column generation approaches have been proposed. The first such method was introduced by Dumas et al. (1991) who addressed the PDPTW. Their set-partitioning formulation is solved by a branch-and-price method in which columns of negative reduced-cost are generated by a dynamic programming algorithm similar to that of Desrosiers et al. (1986) for the single-vehicle case. The method has been successful in solving instances with tight capacity constraints and a small number of requests per route. Several arc elimination rules have also been proposed to reduce the size of the problem. A similar approach was later developed by Savelsbergh and Sol (1998) who used a column management mechanism to reduce the size of the master problem, and construction and improvement heuristics to accelerate the solution of the pricing subproblem.

Another solution methodology that has proven successful for solving the PDP is branch-andcut. The single-vehicle case without time windows was first studied by Ruland and Rodin (1997) who introduced several families of valid inequalities that are also valid for the PDPTW and will thus be described in more detail in Section 3. Branch-and-cut has also been used to solve the more general Precedence-Constrained Asymmetric Traveling Salesman Problem (PCATSP) in which each node may have multiple predecessors. Valid inequalities and a branch-and-cut algorithm for this problem have been developed, respectively, by Balas et al. (1995) and Ascheuer et al. (2000b). A branch-and-cut algorithm for the capacitated multiple-vehicle PDP and PDPTW was later described by Lu and Dessouky (2004). Their formulation contains a polynomial number of constraints and uses two-index flow variables, but relies on extra variables to impose pairing and precedence constraints. Instances with up to five vehicles and 25 requests were solved optimally with this approach. More recently,

Cordeau (2006) has developed a branch-and-cut algorithm for the DARP. It is based on a three-index formulation with a polynomial number of constraints. It uses several families of valid inequalities that are either adaptations of existing inequalities for the TSP and the VRP, or new inequalities which take advantage of the structure of the problem. Most of these inequalities are valid for the PDPTW and will also be described in Section 3. This approach was capable of solving instances with up to four vehicles and 32 requests.

In this paper, we introduce new branch-and-cut algorithms for the classical version of the PDPTW, as defined in Desaulniers et al. (2002), and the closely related DARP. We make three contributions. First, we propose two new formulations for the PDPTW which, unlike the formulation of Cordeau (2006), have an exponential number of constraints, but lead to more efficient solution algorithms because they contain fewer variables and provide tighter bounds. Second, we introduce new valid inequalities combining the pickup and delivery structure of the problem with either the vehicle capacity constraints or the time window constraints. Third, we report computational experiments on several sets of test instances and show that our approach is capable of solving some instances with up to eight vehicles and 96 requests.

The remainder of the paper is organized as follows. Section 2 formally defines the PDPTW and introduces two formulations of the problem. Section 3 describes the valid inequalities used in the branch-and-cut algorithms which are then introduced in Section 4. Computational results are reported in Section 5, followed by conclusions in the last section.

## 2 Formulations of the PDPTW

Let $n$ denote the number of requests to satisfy. The PDPTW can be defined on a directed graph $G=(N, A)$ with node set $N=\{0, \ldots, 2 n+1\}$ and arc set $A$. Nodes 0 and $2 n+1$ represent the origin and destination depots (which may have the same location) while subsets $P=\{1, \ldots, n\}$ and $D=\{n+1, \ldots, 2 n\}$ represent pickup and delivery nodes, respectively. With each request $i$ are thus associated a pickup node $i$ and a delivery node $n+i$. With each node $i \in N$ are associated a load $q_{i}$ and a non-negative service duration $d_{i}$ satisfying $d_{0}=d_{2 n+1}=0, q_{0}=q_{2 n+1}=0$, and for $i=1, \ldots, n, q_{i} \geq 0$ and $q_{n+i}=-q_{i}$. An unlimited fleet of identical vehicles with capacity $Q$ is available to serve the requests. With each arc $(i, j) \in A$ are associated a routing cost $c_{i j}$ and a travel time $t_{i j}$. A time window $\left[e_{i}, l_{i}\right]$ is also associated with every node $i \in P \cup D$, where $e_{i}$ and $l_{i}$ represent the earliest and latest time, respectively, at which service may start at node $i$. The depot nodes may also have time windows $\left[e_{0}, l_{0}\right]$ and $\left[e_{2 n+1}, l_{2 n+1}\right]$ representing the earliest and latest times, respectively, at which the vehicles may leave from and return to the depot. We assume that the triangle inequality holds both for routing costs and travel times. For any node subset $S \subseteq N$, define its complement $\bar{S}=N \backslash S$. Finally, to impose pairing and precedence constraints, it is convenient to define the set $\mathcal{S}$ of all node subsets $S \subseteq N$ such that $0 \in S, 2 n+1 \notin S$ and there is at least one request $i$ for which $i \notin S$ and $n+i \in S$.

For each $\operatorname{arc}(i, j) \in A$ let $x_{i j}$ be a binary variable equal to 1 if and only if a vehicle travels directly from node $i$ to node $j$. For each node $i \in P \cup D$ let $B_{i}$ be the time at which service
begins at node $i$, and $Q_{i}$ be the vehicle load upon leaving node $i$.
The PDPTW can be formulated as the following mixed-integer program:

$$
\begin{equation*}
\text { (PDPTW1) Minimize } \sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{rlrl}
\sum_{i \in N} x_{i j} & =1 & & \forall j \in P \cup D \\
\sum_{j \in N} x_{i j} & =1 & & \forall i \in P \cup D \\
\sum_{i, j \in S} x_{i j} \leq|S|-2 & & \forall S \in \mathcal{S} \\
B_{j} \geq\left(B_{i}+d_{i}+t_{i j}\right) x_{i j} & & \forall i \in N, j \in N \\
Q_{j} \geq\left(Q_{i}+q_{j}\right) x_{i j} & & \forall i \in N, j \in N \\
e_{i} \leq B_{i} \leq l_{i} & & \forall i \in N \\
\max \left\{0, q_{i}\right\} \leq Q_{i} \leq \min \left\{Q, Q+q_{i}\right\} & & \forall i \in N \\
x_{i j} & \in\{0,1\} & & \forall i \in N, j \in N . \tag{9}
\end{array}
$$

The objective function (1) minimizes the total routing cost. Constraints (2) and (3) require each node to be visited exactly once. Consistency of the time and load variables is ensured through constraints (5) and (6). The respect of time windows and vehicle capacity is then ensured through constraints (7) and (8). Under the assumption that $d_{i}+t_{i, n+i}>0$ for every request $i$, constraints (5) and (7) also ensure that no subtours exist in the solution.

Finally, inequalities (4) are precedence constraints (see Ruland and Rodin, 1997) which guarantee that for each user $i$, node $n+i$ is visited after node $i$ and both nodes are visited by the same vehicle. These constraints were originally proposed in a single-vehicle context but they apply directly to the multi-vehicle case because route feasibility conditions are the same in both cases. In multi-vehicle problems constraints (4) do not only enforce precedence relations but, because of the definition of $S$, they also ensure that the two nodes of the same request are on the same route. Indeed, suppose that a feasible integer solution contains a path $\left(0, k_{1}, \ldots, k_{r}, n+i\right)$ where $k_{j} \neq i, \forall j$, i.e., a path connects the origin depot to node $n+i$ without visiting node $i$. In this case, the set $S=\left\{0, k_{1}, \ldots, k_{r}, n+i\right\}$ clearly belongs to $\mathcal{S}$ and leads to a violation of the associated inequality (4). It is also worth pointing out that because $x(S)=|S|-1-x\left(\delta^{-}(S)\right.$ ), inequality (4) can be written equivalently as $x\left(\delta^{-}(S)\right) \geq 1$.

By introducing variables $L_{i}$ representing the ride time of each user $i$, and denoting by $L$ the maximum ride time, the DARP can be modeled by introducing the following constraints:

$$
\begin{align*}
L_{i} & =B_{n+i}-\left(B_{i}+d_{i}\right) & & \forall i \in P  \tag{10}\\
t_{i, n+i} \leq L_{i} & \leq L & & \forall i \in P . \tag{11}
\end{align*}
$$

Formulation (1)-(9) is non-linear because of constraints (5) and (6). Introducing constants $M_{i j}$ and $W_{i j}$, these constraints can, however, be linearized as follows:

$$
\begin{array}{ll}
B_{j} \geq B_{i}+d_{i}+t_{i j}-M_{i j}\left(1-x_{i j}\right) & \forall i \in N, j \in N \\
Q_{j} \geq Q_{i}+q_{j}-W_{i j}\left(1-x_{i j}\right) & \forall i \in N, j \in N . \tag{13}
\end{array}
$$

The validity of these constraints is ensured by setting $M_{i j} \geq \max \left\{0, l_{i}+d_{i}+t_{i j}-e_{j}\right\}$ and $W_{i j} \geq \min \left\{Q, Q+q_{i}\right\}$. As shown by Desrochers and Laporte (1991), constraints (12) and (13), for a given pair $i, j \in N$, can be lifted as follows by taking the reverse arc $(j, i)$ into account:

$$
\begin{array}{r}
B_{j} \geq B_{i}+d_{i}+t_{i j}-M_{i j}\left(1-x_{i j}\right)+\left(M_{i j}-d_{i}-t_{i j}-\max \left\{d_{j}+t_{j i}, e_{i}-l_{j}\right\}\right) x_{j i} \\
Q_{j} \geq Q_{i}+q_{j}-W_{i j}\left(1-x_{i j}\right)+\left(W_{i j}-q_{i}-q_{j}\right) x_{j i} . \tag{15}
\end{array}
$$

In the case of the DARP, lifting (14) is, however, invalid because of constraints (10) and (11) which put additional restrictions on the time variables $B_{i}$.

As suggested by Desrochers and Laporte, bounds on the time variables can also be strengthened as follows:

$$
\begin{align*}
B_{i} & \geq e_{i}+\sum_{j \in N \backslash\{i\}} \max \left\{0, e_{j}-e_{i}+d_{j}+t_{i j}\right\} x_{j i}  \tag{16}\\
B_{i} & \leq l_{i}-\sum_{j \in N \backslash\{i\}} \max \left\{0, l_{i}-l_{j}+d_{i}+t_{i j}\right\} x_{i j} . \tag{17}
\end{align*}
$$

Similarly, bounds on load variables $Q_{i}$ can be strengthened as follows:

$$
\begin{align*}
& Q_{i} \geq \max \left\{0, q_{i}\right\}+\sum_{j \in N \backslash\{i\}} \max \left\{0, q_{j}\right\} x_{j i}  \tag{18}\\
& Q_{i} \leq \min \left\{Q, Q+q_{i}\right\}-\left(Q-\max _{j \in N \backslash\{i\}}\left\{q_{j}\right\}-q_{i}\right) x_{0 i}-\sum_{j \in N \backslash\{i\}} \max \left\{0, q_{j}\right\} x_{i j} . \tag{19}
\end{align*}
$$

A formulation with fewer variables can be obtained by replacing constraints (5)-(8) with rounded capacity inequalities (see, e.g., Naddef and Rinaldi, 2002) and infeasible path elimination constraints (see, e.g., Ascheuer et al., 2000a). For any subset $S \subseteq P \cup D$, define $q(S)=\sum_{i \in S} q_{i}$. A lower bound on the number of times vehicles must enter and leave $S$ in order to visit all nodes in the set is then provided by $\lceil|q(S)| / Q\rceil$. Denote by $\mathcal{R}$ the set of infeasible paths with respect to time windows, and for each path $R \in \mathcal{R}$, let $A(R) \subset A$ be the set of arcs in this path. With these definitions, the PDPTW can be reformulated as follows:

$$
\begin{equation*}
\text { (PDPTW2) Minimize } \sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j} \tag{20}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{i \in N} x_{i j} & =1 & & \forall j \in P \cup D  \tag{21}\\
\sum_{j \in N} x_{i j} & =1 & & \forall i \in P \cup D \\
\sum_{i, j \in S} x_{i j} & \leq|S|-2 & & \forall S \in \mathcal{S}  \tag{22}\\
\sum_{i, j \in S} x_{i j} & \leq|S|-\max \left\{1, \frac{\lceil|q(S)|\rceil}{Q}\right\} & & \forall S \subseteq N \backslash\{0,2 n+1\},|S| \geq 2 \\
\sum_{(i, j) \in A(R)} x_{i j} & \leq|A(R)|-1 & & \forall R \in \mathcal{R}  \tag{23}\\
x_{i j} & \in\{0,1\} & & \forall i \in N, j \in N . \tag{24}
\end{align*}
$$

With formulation (PDPTW2), the DARP can be modeled by simply introducing in set $\mathcal{R}$ the paths violating the ride time constraints.
Constraints (25) can in fact be strengthened into so-called tournament constraints (see, e.g., Ascheuer et al., 2000a) as follows. If $R=\left(k_{1}, \ldots, k_{r}\right)$ is an infeasible path, then the following inequality is valid:

$$
\begin{equation*}
\sum_{i=1}^{r-1} \sum_{j=i+1}^{r} x_{k_{i}, k_{j}} \leq|A(R)|-1 \tag{27}
\end{equation*}
$$

Infeasible path constraints can also be strengthened when they link a node pair $i, n+i$. Consider a path $R=\left(i, k_{1}, \ldots, k_{r}, n+i\right)$. If $R$ is infeasible because of time windows or ride time constraints (and the triangle inequality holds), then the following inequality is valid (see Cordeau, 2006):

$$
\begin{equation*}
x_{i, k_{1}}+\sum_{h=1}^{r-1} x_{k_{h}, k_{h+1}}+x_{k_{r}, n+i} \leq|A(R)|-2 . \tag{28}
\end{equation*}
$$

Finally, if both the path $R=\left(k_{1}, \ldots k_{r}\right)$ and the reverse path $R^{\prime}=\left(k_{r}, \ldots, k_{1}\right)$ are infeasible, then the following symmetric inequality is clearly valid:

$$
\begin{equation*}
\sum_{i=1}^{r-1}\left(x_{k_{i}, k_{i+1}}+x_{k_{i+1}, k_{i}}\right) \leq r-1 . \tag{29}
\end{equation*}
$$

Although formulations (PDPTW1) and (PDPTW2) assume identical vehicles, vehicles of different capacities can be handled through the introduction of dummy requests. Suppose that $m$ vehicles of capacity $Q^{1}, Q^{2}, \ldots, Q^{m}$ are available and let $Q=\max _{1 \leq i \leq m}\left\{Q^{i}\right\}$. One can then define $m$ dummy requests $i=1, \ldots, m$ with $d_{i}=d_{n+i}=0$ and $q_{i}=-q_{n+i}=Q-Q^{i}$.

Each dummy pickup node should be reachable only from the origin depot while each dummy delivery node should connect only to the destination depot (both with cost and travel time equal to 0 ). The arc from a dummy pickup node to a normal pickup node $j$ should have a cost $c_{0 j}$ and a travel time $t_{0 j}$ while the arc from a normal delivery node $n+j$ to a dummy delivery node should have a cost $c_{n+j, 2 n+1}$ and a travel time $t_{n+j, 2 n+1}$. Finally, the corresponding values should be zero for all arcs between dummy pickup and delivery nodes.

Finally note that, as observed by Ascheuer et al. (2001) in the context of the TSP with time windows, model (PDPTW1) is more flexible than model (PDPTW2) in the sense that it can accomodate a more general objective function involving time and load variables. For example, one could minimize the makespan or a weighted sum of waiting times.

## 3 Valid Inequalities

We now describe several families of valid inequalities for the PDPTW. These inequalities can be used to strengthen both (PDPTW1) and (PDPTW2). The first two families, subtour elimination constrains and generalized order constraints are borrowed from Cordeau (2006). The next three families, strengthened capacity constraints, strengthened infeasible path constraints, and fork constraints, are new. The reachability constraints are adapted from existing inequalities for the VRPTW (Lysgatard, 2004).
Throughout the remainder of the paper, let $x(S)=\sum_{i, j \in S} x_{i j}$ and $x(S: T)=\sum_{i \in S} \sum_{j \in T} x_{i j}$, where $S, T \subseteq N$. For any node subset $S$, define also $\delta(S)=\delta^{+}(S) \cup \delta^{-}(S)$ where $\delta^{+}(S)=$ $\{(i, j) \in A \mid i \in S, j \notin S\}$ and $\delta^{-}(S)=\{(i, j) \in A \mid i \notin S, j \in S\}$.

### 3.1 Subtour elimination constraints

Consider the simple subtour elimination constraint $x(S) \leq|S|-1$ for $S \subseteq P \cup D$. In the case of the PDPTW, this inequality can be lifted in many different ways by taking into account the fact that for each request $i$, node $i$ must be visited before node $n+i$. For any set $S \subseteq P \cup D$, let $\pi(S)=\{i \in P \mid n+i \in S\}$ and $\sigma(S)=\{n+i \in D \mid i \in S\}$ denote the sets of predecessors and successors of $S$, respectively. Balas et al. (1995) have proposed two families of inequalities for the PCATSP which also apply to the PDPTW because each node $i \in P \cup D$ is either the predecessor or the successor of exactly one other node. For $S \subseteq P \cup D$, the following predecessor and successor inequalities are valid for the PDPTW:

$$
\begin{align*}
& x(S)+\sum_{i \in S} \sum_{j \in \bar{S} \cap \pi(S)} x_{i j}+\sum_{i \in S \cap \pi(S)} \sum_{j \in \bar{S} \backslash \pi(S)} x_{i j} \leq|S|-1  \tag{30}\\
& x(S)+\sum_{i \in \bar{S} \cap \sigma(S)} \sum_{j \in S} x_{i j}+\sum_{i \in \bar{S} \backslash \sigma(S)} \sum_{j \in S \cap \sigma(S)} x_{i j} \leq|S|-1 . \tag{31}
\end{align*}
$$

As shown by Cordeau (2006), the $D_{k}^{-}$and $D_{k}^{+}$inequalities introduced by Grötschel and Padberg (1985) for the asymmetric TSP can also be lifted by taking precedence relation-
ships into account. Let $S=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq P \cup D$ be an ordered set of nodes with $k \geq 3$. The following inequalities are then valid for the PDPTW:

$$
\begin{align*}
& \sum_{j=1}^{k-1} x_{i_{j}, i_{j+1}}+x_{i_{k}, i_{1}}+2 \sum_{j=3}^{k} x_{i_{1}, i_{j}}+\sum_{j=4}^{k} \sum_{l=3}^{j-1} x_{i_{j}, i_{l}}+\sum_{h \in \bar{S} \cap \pi(S)} x_{i_{1}, h} \leq k-1  \tag{32}\\
& \sum_{j=1}^{k-1} x_{i_{j}, i_{j+1}}+x_{i_{k}, i_{1}}+2 \sum_{j=2}^{k-1} x_{i_{j}, i_{1}}+\sum_{j=3}^{k-1} \sum_{l=2}^{j-1} x_{i_{j}, i_{l}}+\sum_{h \in \bar{S} \cap \sigma(S)} x_{h, i_{1}} \leq k-1 . \tag{33}
\end{align*}
$$

### 3.2 Generalized order constraints

Let $U_{1}, \ldots, U_{s} \subset N$ be mutually disjoint subsets and let $i_{1}, \ldots, i_{s} \in P$ be requests such that $0,2 n+1 \notin U_{l}$ and $i_{l}, n+i_{l+1} \in U_{l}$ for $l=1, \ldots, s$ (where $i_{s+1}=i_{1}$ ). The following inequality, introduced by Ruland and Rodin (1997), is also valid for the PDPTW:

$$
\begin{equation*}
\sum_{l=1}^{s} x\left(U_{l}\right) \leq \sum_{l=1}^{s}\left|U_{l}\right|-s-1 . \tag{34}
\end{equation*}
$$

Similar inequalities, called precedence cycle breaking inequalities, have also been proposed by Balas et al. (1995) for the PCATSP. In the case of a directed formulation, Cordeau (2006) has shown that generalized order constraints can be lifted in two different ways as follows:

$$
\begin{align*}
\sum_{l=1}^{s} x\left(U_{l}\right)+\sum_{l=2}^{s-1} x_{i_{1}, i_{l}}+\sum_{l=3}^{s} x_{i_{1}, n+i_{l}} & \leq \sum_{l=1}^{s}\left|U_{l}\right|-s-1  \tag{35}\\
\sum_{l=1}^{s} x\left(U_{l}\right)+\sum_{l=2}^{s-2} x_{n+i_{1}, i_{l}}+\sum_{l=2}^{s-1} x_{n+i_{1}, n+i_{l}} & \leq \sum_{l=1}^{s}\left|U_{l}\right|-s-1 . \tag{36}
\end{align*}
$$

### 3.3 Strengthened capacity constraints

Capacity constraints can be strengthened by considering node pairs $(k, n+k)$ such that the pickup node $k$ is visited before entering set $S$ while the delivery node $n+k$ is visited after leaving this set. In this case, the number of vehicles visiting set $S$ increases to accommodate the demand of all such node pairs. This yields the following result.
Proposition 1. Let $S, T \subset P \cup D$ be two disjoint sets such that $q(S)>0$. Also define $U=\pi(T) \backslash(S \cup T)$. The following inequality is then valid for the PDPTW:

$$
\begin{equation*}
x(S)+x(T)+x(S: T) \leq|S|+|T|-\left\lceil\frac{q(S)+q(U)}{Q}\right\rceil . \tag{37}
\end{equation*}
$$

Proof. Because $q(S)>0$ and $q(U) \geq 0, x\left(\delta^{+}(S)\right) \geq\lceil q(S) / Q\rceil$ and $x\left(\delta^{-}(T)\right) \geq\lceil q(U) / Q\rceil$. If a path uses an arc from the set $(S: T)$ and reaches a node $n+k \in T$ with $k \in U$, without
leaving set $T$, then node $k$ must have been visited by that path before entering set $S$. Hence,

$$
x\left(\delta^{+}(S)\right)+x\left(\delta^{-}(T)\right)-x(S: T) \geq\left\lceil\frac{q(S)+q(U)}{Q}\right\rceil
$$

Because $x(S)+x\left(\delta^{-}(S)\right)=x(S)+x\left(\delta^{+}(S)\right)=|S|$, this is equivalent to

$$
|S|-x(S)+|T|-x(T)-x(S: T) \geq\left\lceil\frac{q(S)+q(U)}{Q}\right\rceil
$$

which yields the desired result after properly rearranging the terms. $\square$
One may observe that inequalities (37) constitute a strengthening of the rounded capacity inequalities. From the inequalities

$$
x(s) \leq|S|-\left\lceil\frac{q(S)}{Q}\right\rceil
$$

and

$$
x(T)+X(S: T) \leq x(T)+\delta^{-}(T)=|T|
$$

one obtains

$$
x(S)+x(T)+x(S: T) \leq|S|+|T|-\left\lceil\frac{q(S)}{Q}\right\rceil
$$

which is weaker than (37) if $q(U)>0$.
Figure 1 depicts an example for which at most two arcs can be used if $q_{i}=q_{j}=q_{k}=q_{l}=1$ and the vehicle capacity is $Q=2$. Arcs in the figure are those on the left-hand-side of (37).


Figure 1: Strengthened capacity constraint where $S=\{i, j\}, T=\{n+k, n+l\}$ and $U=\pi(T) \backslash(S \cup T)=\{k, l\}$.

### 3.4 Strengthened infeasible path constraints

Paths that satisfy time windows can sometimes be eliminated by taking precedence relationships into account. Consider for instance the path $R=(i, n+j, k)$. Obviously, node $j$ must be visited before $R$, while nodes $n+i$ and $n+k$ must be visited after $R$. Hence, if both
$(j, i, n+j, k, n+i, n+k)$ and $(j, i, n+j, k, n+k, n+i)$ are infeasible, then $R$ cannot belong to a feasible solution. More generally, let $\phi(S)$ denote the set of all permutations of nodes in $S$. For any path $R$, denote by $N(R) \subseteq N$ the set of nodes visited by that path. If $R$ is a feasible path in $G$ but $\left(\phi_{p}, R, \phi_{d}\right)$ is infeasible for all $\phi_{p} \in \phi(\pi(R) \backslash N(R))$ and $\phi_{d} \in \phi(\sigma(R) \backslash N(R))$ then $R$ cannot belong to a feasible solution and it can thus be eliminated by (27).

### 3.5 Fork constraints

Infeasible paths can also be eliminated in a different way by considering groups of infeasible paths sharing some common arcs. For instance, if the path $R=\left(k_{1}, \ldots, k_{r}\right)$ is feasible, but the path $(i, R, j)$ is infeasible for every $i \in S$ and $j \in T$ with $S, T \subset N$, then the following inequality is clearly valid:

$$
\begin{equation*}
\sum_{i \in S} x_{i, k_{1}}+\sum_{h=1}^{r-1} x_{k_{h}, k_{h+1}}+\sum_{j \in T} x_{k_{r}, j} \leq r . \tag{38}
\end{equation*}
$$

This inequality can be strengthened by associating to each intermediate node $k_{2}, \ldots, k_{r-1}$ a set of nodes leading to infeasible paths. This results in the following outfork inequality.
Proposition 2. Let $R=\left(k_{1}, \ldots, k_{r}\right)$ be a feasible path in $G$ and $S, T_{1}, \ldots, T_{r} \subset(P \cup D) \backslash$ $N(R)$ be subsets such that for any integer $h \leq r$ and any node pair $i \in S, j \in T_{h}$, the path $\left(i, k_{1}, \ldots, k_{h}, j\right)$ is infeasible. The following inequality is then valid for the PDPTW:

$$
\begin{equation*}
\sum_{i \in S} x_{i, k_{1}}+\sum_{h=1}^{r-1} x_{k_{h}, k_{h+1}}+\sum_{h=1}^{r} \sum_{j \in T_{h}} x_{k_{h}, j} \leq r . \tag{39}
\end{equation*}
$$

Proof. Assume that the inequality is violated in a feasible integer solution. Then, among the arcs belonging to the inequality, $r+1$ must have been selected. Because of the degree constraints, there must be one arc from $S$ to $k_{1}$, one outgoing arc from each node $k_{1}, \ldots, k_{r-1}$, and one arc from $k_{r}$ to $T_{r}$. As a result, the path originating in $S$ reaches one of the nodes in the sets $T_{h}, 1 \leq h \leq r$, and must thus be infeasible. $\square$

The outfork inequality is illustrated in Figure 2 for the case $r=3$. Similar inequalities, called infork inequalities and illustrated in Figure 3 for the case $r=3$, are obtained by reversing the orientation of the arcs reaching path $R$. These lead to the following proposition.

Proposition 3. Let $R=\left(k_{1}, \ldots, k_{r}\right)$ be a feasible path in $G$ and $S_{1}, \ldots, S_{r}, T \subset(P \cup D) \backslash$ $N(R)$ be subsets such that for any integer $h \leq r$ and any node pair $i \in S_{h}, j \in T$, the path $\left(i, k_{h}, \ldots, k_{r}, j\right)$ is infeasible. The following inequality is then valid for the PDPTW:

$$
\begin{equation*}
\sum_{h=1}^{r} \sum_{i \in S_{h}} x_{i, k_{h}}+\sum_{h=1}^{r-1} x_{k_{h}, k_{h+1}}+\sum_{j \in T} x_{k_{r}, j} \leq r . \tag{40}
\end{equation*}
$$

It is worth pointing out that fork constraints can be used in any routing problem where the concept of infeasible paths is well defined, for instance the vehicle routing problem with time windows.


Figure 2: Outfork constraint with $r=3$


Figure 3: Infork constraint with $r=3$

### 3.6 Reachability constraints

For any node $i \in N$, let $A_{i}^{-} \subset A$ be the minimum arc set such that any feasible path from the origin depot 0 to node $i$ uses only arcs from $A_{i}^{-}$. Let also $A_{i}^{+}$be the minimum arc set such that any feasible path from $i$ to the destination depot $2 n+1$ uses only arcs in $A_{i}^{+}$. Consider a node set $T$ such that each node in $T$ must be visited by a different vehicle. This set is said to be conflicting. For any conflicting node set $T$, define the reaching arc set $A_{T}^{-}=\cup_{i \in T} A_{i}^{-}$ and the reachable arc set $A_{T}^{+}=\cup_{i \in T} A_{i}^{+}$. For any node set $S \subseteq P \cup D$ and any conflicting node set $T \subseteq S$, the following two valid inequalities were introduced by LysGaARD (2004) for the VRP with time windows:

$$
\begin{align*}
& x\left(\delta^{-}(S) \cap A_{T}^{-}\right) \geq|T|  \tag{41}\\
& x\left(\delta^{+}(S) \cap A_{T}^{+}\right) \geq|T| . \tag{42}
\end{align*}
$$

These inequalities are obviously also valid for the PDPTW. In this problem, however, nodes can be conflicting not only because of time windows but also because of the precedence relationships and the capacity constraints. In the case of the DARP, the ride time constraints should also be taken into account when checking whether a pair of requests is conflicting.

## 4 Branch-and-Cut Algorithms

We have implemented two branch-and-cut algorithms for the PDPTW: one with formulation (PDPTW1) and one with formulation (PDPTW2). In both algorithms, an attempt is made to generate violated valid inequalities at each node of the search tree. With formulation (PDPTW1), precedence inequalities (4) must be generated to ensure feasibility. With formulation (PDPTW2), feasibility is ensured by generating not only the precedence inequalities (23), but also the capacity inequalities (24) and infeasible path inequalities (25). In both formulations, the additional inequalities described in the previous section can be used to improve the LP relaxation obtained at each node of the branch-and-bound tree. In addition, inequalities (24) and (25) can be used to strengthen formulation (PDPTW1) although these are not required to ensure feasiblity.
Taking into account the precedence relationships, time windows and ride time constraints, several arc elimination rules can be used in a preprocessing step to reduce the size of the problem. In addition, time windows can often be tightened. Details on these preprocessing steps can be found in the papers of Dumas et al. (1991) and Cordeau (2006).
In both branch-and-cut algorithms, the LP relaxations are solved by the simplex algorithm. Branching is performed on the $x_{i j}$ variables by choosing, at each node of the enumeration tree, the variable whose value is the farthest from the nearest integer. The search is performed by applying the best-bound strategy. Prior to solving the problem, an upper bound is computed by using either the adaptive large neighbourhood search algorithm of Ropke and Pisinger (2004) for the PDPTW or the tabu search heuristic of Cordeau and Laporte (2003) for the DARP.

We now describe the separation procedures used to generate the precedence, capacity and infeasible path inequalities. We then describe procedures for the additional inequalities introduced in Section 3.

### 4.1 Precedence constraints

Violated precedence constraints (4) and (23) can be identified in polynomial time by solving a series of maximum flow problems: for each request $i$, one can compute the maximum flow from nodes $i$ and $2 n+1$ to nodes 0 and $n+i$ in $G$, with arc capacities given by the values of the $x_{i j}$ variables. If the value of this flow is less than 1 , then a precedence constraint is violated for a set $S$ such that $0, n+i \in S$ and $i, 2 n+1 \notin S$. The set $S$ corresponds to one of the shores of the corresponding minimum cut. We have implemented this procedure by using the Ford-Fulkerson algorithm described by Cormen et al. (1990).

### 4.2 Capacity constraints

Two heuristics are used for the identification of violated capacity constraints. The first one is a randomized construction heuristic which starts from a given node $i \in P \cup D$ and
gradually adds nodes to $S$ by considering, at each iteration, the nodes connected to $S$ with some flow. The choice of the node being added to $S$ from the set of potential nodes is done randomly (with each node having a probability of being selected proportional to the flow on the corresponding arc). The procedure is repeated several times for each start node. If a capacity constraint is violated in an integer solution, the violation will clearly be detected by this procedure since it will add, at each iteration, the only node connected to the previously added node. At some point during the process, the set $S$ will thus satisfy $q(S)>Q$.

The second heuristic is a simple tabu search heuristic described by Cordeau (2006) and inspired by that originally proposed by Augerat et al. (1999). This heuristic starts with either a random subset $S \subseteq P$ or a random subset $S \subseteq D$. At each iteration, a node is either removed or added to $S$ so as to minimize the value of $x(\delta(S))$ while satisfying $q(S)>Q$.

### 4.3 Subtour elimination constraints

It is well known that the separation problem for subtour elimination constraints is solvable in polynomial time by computing the maximum flow between each node $i$ and all other nodes $j \in N \backslash\{i\}$. This procedure, however, does not take into account the various liftings proposed in inequalities (30)-(33). Hence, we resort here to a simple tabu search heuristic very similar to the one used for capacity constraints and also described in more detail by Cordeau (2006).

### 4.4 Generalized order constraints

We use two simple heuristics for the lifted generalized order constraints (35) and (36). These heuristics consider the case where $m=3$ and $\left|U_{1}\right|=\left|U_{2}\right|=\left|U_{3}\right|=2$. The first heuristic identifies, for each user $i$, a user $j$ maximizing $x_{i, n+j}+x_{n+j, i}+x_{i j}$. It then finds a user $k$ such that the left-hand side of (35) is maximized. The second heuristic identifies, for each user $i$, a user $j$ maximizing $x_{i, n+j}+x_{n+j, i}+x_{n+i, n+j}$ and then a user $k$ maximizing the left-hand side of (36).

### 4.5 Strengthened capacity constraints

To identify sets $S$ and $T$ for which the strengthened capacity constraint is violated, we use a construction heuristic similar to that used for the capacity constraints. This procedure starts from a set $S$ containing a single pickup node and gradually augments this set by adding one node at a time. Before augmenting the set, the procedure determines

$$
b_{p} \in \arg \max _{i \in P \backslash S}\{x(S: i)+x(i: S)\}
$$

and

$$
b_{d} \in \arg \max _{i \in D \backslash S}\{x(S: i)+x(i: S)\}
$$

which we consider to be the best pickup (resp. delivery) node to add to the set. We prefer to add a pickup node to $S$ in order to increase $q(S)$ on the right-hand side of inequality (37). Node $b_{d}$ is only added if $x\left(S: b_{p}\right)+x\left(b_{p}: S\right)<x\left(S: b_{d}\right)+x\left(b_{d}: S\right), q\left(S \cup\left\{b_{d}\right\}\right)>0$ and either $x\left(S: b_{d}\right)+x\left(b_{d}: S\right) \geq 1$ or $x(S: i)+x(i: S)=0$ for all $i \in P \backslash S$. Each time a node is added to $S$, the set $T$ is reconstructed by using a similar construction heuristic where the roles of pickups and deliveries are interchanged. Only nodes from $N \backslash S$ are added to $T$.

At the root node of the search tree we use a modified version of this heuristic where a random perturbation $\epsilon \sim[0,0.5]$ is added to the evaluation of $x(S: i)+x(i: S)$ and the heuristic is restarted several times from each pickup node.

### 4.6 Strengthened infeasible path constraints

To identify infeasible paths violating constraints (25), we use an enumerative procedure similar to that of Ascheuer et al. (2001). In this procedure, every node $i \in P \cup D$ is in turn considered as a start node from which a tree of paths with positive flow is constructed. Each path is extended as long as a violation along this path is still possible (i.e., as long as the total flow on the arcs in path $R$ is strictly greater than $|A(R)|-1$ and the path has not reached node $2 n+1$ ). Each time an infeasible path is identified, the corresponding tournament constraint (27) is generated.
A very similar procedure is used to identify violated strengthened infeasible path constraints for the DARP. In this case, however, each node $i \in P$ is considered as a start node and the extension of a path also stops if it reaches node $n+i$, at which point it is checked for feasibility with respect to the time windows and the ride time constraint for user $i$.

### 4.7 Fork constraints

A partial enumeration procedure is used to separate the fork constraints with $r=1$. This procedure first enumerates the set $H$ of all infeasible paths containing three nodes. To identify violated outfork constraints, it starts from an arc $(i, j)$ and constructs the set $S$ by identifying all paths of the form $(h, i, j)$ belonging to $H$. Finally, the set $T_{1}$ is constructed by identifying all nodes $k$ such that $(h, i, k) \in H$ for every node $h \in S$. This procedure is repeated for every arc $(i, j)$ for which $x_{i j}>0$ in the current solution. To identify violated infork constraints, a similar procedure starts from an arc $(i, j)$ and constructs a set $T$ containing all nodes $k$ such that $(i, j, k) \in H$. The set $S_{1}$ is then constructed by identifying all nodes $h$ such that $(h, j, k) \in H$ for every node $k \in T$.

For $r \geq 2$ a different heuristic is used. The heuristic iteratively uses every node $k_{0} \in P \cup D$ as a seed node. From $k_{0}$, feasible paths ( $k_{0}, k_{1}, \ldots, k_{l}$ ) are gradually constructed by extending existing paths along arcs with positive flow. For every path, one then checks if a violated fork constraint can be found with the path as a backbone. First, the set $T$ is constructed such that $\left(k_{0}, k_{1}, \ldots, k_{l}, j\right)$ is infeasible for all $j \in T$. Then, the set $S \ni k_{0}$ is constructed such that all paths $\left(i, k_{1}, \ldots, k_{l}, j\right), i \in S, j \in T$ are infeasible. The two sets $S$ and $T$ and the
path $\left(k_{1}, \ldots, k_{l}\right)$ define a simple fork inequality (38). If this inequality is not violated, the procedure attempts to lift it into an outfork or an infork inequality. To lift the inequality into an outfork inequality, one adds as many nodes as possible to the sets $T_{1}, \ldots, T_{l}$. A similar approach is used to lift the inequality into an infork. In order to keep running times low, only paths containing at most six nodes are considered. Checking whether a path is infeasible can be time consuming as many permutations have to be examined as described in section 3.4. To alleviate this problem the feasibility of a path is only checked once, and the result of the query is stored in a hash table from which it can be quickly retrieved.

### 4.8 Reachability constraints

Our procedure first computes, for each node $i \in P \cup D$, the sets $A_{i}^{+}$and $A_{i}^{-}$. When doing this, precedence relationships must be taken into account. For example, when checking whether an arc $(i, n+j)$ belongs to the set $A_{n+k}^{-}$, one must check the existence of a path containing this arc and such that $k$ is visited before $n+k, j$ is visited before $n+j$, and $n+i$ is visited after $i$ in this path. The procedure then identifies, by complete enumeration, all sets of conflicting requests with a cardinality smaller than or equal to a given threshold. Each set of conflicting requests gives rise to several sets of conflicting nodes. For a set of $k$ conflicting requests, $2^{k}$ sets of conflicting nodes exist. When $k$ is greater than a parameter $\tau$ we do not generate all conflicting node sets, but only those two consisting of either the pickups or the deliveries of the conflicting requests. For a fractional solution, one then considers each conflicting node set $T$ and solves a maximum flow problem between the node 0 and the set $T$ by considering only the arcs in $A_{T}^{-}$. If the capacity of the corresponding minimum cut is smaller than $|T|$, then a violation of a reachability cut has been found. The same is done by considering $A_{T}^{+}$and solving a maximum flow problem between set $T$ and the destination depot $2 n+1$.

## 5 Computational Experiments

The two branch-and-cut algorithms were implemented in C++ by using ILOG Concert 1.3 and CPLEX 9.0. All experiments were performed on a AMD Opteron 250 computer $(2.4 \mathrm{GHz})$. Several sets of instances for the PDPTW and the DARP were used for testing. All instances are available on http://www.hec.ca/chairedistributique/data.

### 5.1 Results for the PDPTW

We first generated some PDPTW instances as suggested by Savelsbergh and Sol (1998). In these instances, the coordinates of each pickup and delivery location are chosen randomly according to a uniform distribution over the $[0,200] \times[0,200]$ square. The load $q_{i}$ of request $i$ is selected randomly from the interval $[5, Q]$, where $Q$ is the vehicle capacity. A planning horizon of length $H=600$ is considered and each time window has width $W$. The time
windows for request $i$ are constructed by first randomly selecting $e_{i}$ in the interval [ $0, H-$ $\left.t_{i, n+i}\right]$ and then setting $l_{i}=e_{i}+W, e_{n+i}=e_{i}+t_{i, n+i}$ and $l_{n+i}=e_{n+i}+W$. In all instances, the primary objective consists of minimizing the number of vehicles, and a fixed cost of $10^{4}$ is thus imposed on each outgoing arc from the depot. Four classes of instances are obtained by varying the values of $Q$ and $W$, as indicated in the following table.

Table 1: Characteristics of the Savelsbergh and Sol PDPTW instances

| Class | $Q$ | W |
| :---: | :---: | :---: |
| A | 15 | 60 |
| B | 20 | 60 |
| C | 15 | 120 |
| D | 20 | 120 |

In the test instances generated by Savelsbergh and Sol (1998), each vehicle has a different depot whose location is also chosen randomly over the $[0,200] \times[0,200]$ square. Because our formulations cannot handle multiple depots directly, we have instead used a single depot located in the middle of the square.

As is apparent from the results reported by Savelsbergh and Sol (1998), using the $[0,200] \times[0,200]$ square with $H=600$ yields instances in which it is difficult to serve more than two or three requests in the same route. In addition, the long travel times make it difficult to stop at an intermediate location between the pickup of a request and its delivery. As a result, all instances generated in this way could be solved at the root node by our algorithms. To obtain harder instances, we have decreased the size of the square from which the locations are chosen. By choosing coordinates from the set $[0,50] \times[0,50]$, travel times become smaller and it is then possible to serve more requests in each route. Furthermore, it becomes easier to produce a sequence of several successive pickups followed by the corresponding deliveries. In each of the four problem classes, we have generated ten instances by considering values of $n$ between 30 and 75. The name of each instance (e.g., A50) indicates the class to which it belongs and the number of requests it contains.

We first present in Table 2 the solution values and computing times (in minutes) of the Ropke and Pisinger (2004) adaptive large neighbourhood search heuristic for the PDPTW. The table also shows the graph density after preprocesing, calculated as

$$
100 \times \frac{\text { number of arcs }}{(2 n+2)^{2}}
$$

To evaluate the strength of formulations (PDPTW1) and (PDPTW2), we have first solved the LP relaxation of both formulations by considering the minimal sets of inequalities required for feasibility. Hence, violated precedence constraints were generated for (PDPTW1), while for (PDPTW2) we have also generated violated capacity constraints and infeasible path constraints. These results are reported in Table 3. For each instance, we indicate in columns LP1 and LP2 the value of the lower bound computed at the root node as a percentage of

Table 2: Solution values and computing times for the heuristic

| Instance | UB <br> heuristic | Time <br> heuristic | Graph <br> density $(\%)$ |
| :---: | ---: | ---: | ---: |
| A30 | $51,317.40$ | 0.45 | 14.9 |
| A35 | $51,343.53$ | 0.55 | 18.4 |
| A40 | $61,609.44$ | 0.69 | 15.9 |
| A45 | $61,693.01$ | 0.83 | 25.2 |
| A50 | $71,932.03$ | 0.98 | 17.5 |
| A55 | $82,185.31$ | 1.07 | 19.2 |
| A60 | $92,366.70$ | 1.28 | 16.9 |
| A65 | $82,331.12$ | 1.46 | 17.3 |
| A70 | $112,458.28$ | 1.64 | 16.3 |
| A75 | $92,529.42$ | 1.88 | 20.6 |
| B30 | $51,193.62$ | 0.47 | 21.9 |
| B35 | $61,400.07$ | 0.54 | 20.4 |
| B40 | $51,421.35$ | 0.74 | 20.4 |
| B45 | $61,787.28$ | 0.82 | 21.5 |
| B50 | $71,889.75$ | 0.98 | 20.9 |
| B55 | $82,080.73$ | 1.07 | 18.6 |
| B60 | $102,323.77$ | 1.23 | 14.7 |
| B65 | $82,623.98$ | 1.42 | 19.7 |
| B70 | $92,647.75$ | 1.68 | 18.9 |
| B75 | $92,476.30$ | 1.88 | 20.1 |
| C30 | $51,145.18$ | 0.47 | 14.4 |
| C35 | $51,235.64$ | 0.57 | 17.6 |
| C40 | $61,473.91$ | 0.72 | 18.6 |
| C45 | $81,408.89$ | 0.83 | 21.1 |
| C50 | $61,936.27$ | 1.06 | 20.1 |
| C55 | $61,930.55$ | 1.19 | 20.9 |
| C60 | $72,104.00$ | 1.38 | 18.0 |
| C65 | $82,326.62$ | 1.50 | 24.0 |
| C70 | $92,613.68$ | 1.70 | 19.0 |
| C75 | $92,711.74$ | 1.88 | 21.4 |
| D30 | $61,040.10$ | 0.46 | 22.9 |
| D35 | $71,308.04$ | 0.56 | 25.6 |
| D40 | $61,531.68$ | 0.72 | 25.5 |
| D45 | $81,601.63$ | 0.80 | 17.7 |
| D50 | $71,761.23$ | 1.00 | 20.9 |
| D55 | $72,051.95$ | 1.15 | 21.7 |
| D60 | $82,308.08$ | 1.31 | 18.0 |
| D65 | $82,200.77$ | 1.50 | 24.9 |
| D70 | $82,631.56$ | 1.70 | 19.2 |
| D75 | $92,970.84$ | 1.83 | 21.6 |
|  |  |  |  |

the upper bound indicated in the rightmost column of the table. This upper bound is either the optimal value of the problem, if the instance could be solved to optimality, or an upper
bound computed by a heuristic, otherwise. One can see that for most instances (PDPTW2) provides a tighter lower bound, with an average of 72.33 for (PDPTW2) compared to 69.90 for (PDPTW1). In Tables 3 and 4, the number of vehicles in the solution is equal to $\left\lfloor U / 10^{4}\right\rfloor$ where $U$ is the upper bound.

To measure the strength of each type of inequality introduced in Section 3, we then solved the LP relaxation of (PDPTW2) by separately considering each type of inequality: subtour elimination constraints (SEC), strengthened capacity constraints (SCC), generalized order constraints (GOC), fork constraints (FC) and reachability constraints (RC). Finally, column "Full" reports the lower bound obtained with (PDPTW2) when considering all families of valid inequalities. Again, all lower bounds are expressed as a percentage of the upper bound reported in the last column of the table. These results show that fork constraints and reachability constraints have the largest impact, with all other types of inequalities playing only a minor role in the improvement of the lower bound. It is worth pointing out that for some instances (e.g., B55), the lower bound obtained with one type of inequality is sometimes worse than that obtained with just the basic formulation (column LP2). This is explained by the fact that we use a heuristic separation procedure for capacity constraints, which may lead to the generation of a different set of inequalities.

In Table 4, we report the results obtained by considering both formulations with all types of valid inequalities. For each instance that was solved to optimality, we indicate the CPU time in minutes (including the preprocessing time) needed to prove optimality, the number of nodes explored in the search tree and the total number of cuts generated during the search. When an instance could not be solved to optimality within the maximum CPU time (two hours), we report the value of the current lower bound at the end of the computation (i.e., the lower bound associated with the best pending node). These results show that formulation (PDPTW2) provides a slightly better performance: it solved five more instances to optimality and for those instances that were solved by both formulations, (PDPTW2) required on average less CPU time, fewer nodes and fewer cuts. Finally, when neither model could reach an optimal solution, the latter usually provided a higher lower bound.

### 5.2 Results for the DARP

We have then tested our approach on two sets of randomly generated Euclidean DARP instances comprising up to 96 requests. These instances have narrow time windows of 15 minutes. In the first set ('a' instances), $q_{i}=1$ for every request $i$ and the vehicle capacity is $Q=3$. In the second set ('b' instances), $q_{i}$ belongs to the interval $[1,6]$ and $Q=6$. These data are described in detail in Cordeau (2006) and their main characteristics are summarized in Table 5. In this table, columns $|K|$ and $H$ indicate, respectively, the number of available vehicles and the length of the planning horizon in which time windows are generated. The constraint on the number of vehicles is easily imposed in our formulations as a bound on the total outgoing flow from the origin depot. Finally, $L$ denotes the maximum ride time.

We present in Table 6 the solution values and computing times for the Cordeau and

Table 3: Lower bounds obtained in the root node as a percentage of the upper bound

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 99.95 | 99.98 | 99.98 | 99.98 | 99.98 | 100.00 | 99.99 | 100.00 |  |
|  | 99.68 | 99.8 | 99.8 | 99.8 | 99.8 | 00.00 | 99.9 | 100.0 |  |
|  | 97.4 | 99.85 | 99.85 | 99.86 | 99.8 | 100.00 | 100.00 | 100.00 |  |
|  | 83.21 | 83.35 | 83.35 | 83.3 | 83.35 | 83.90 | 83.83 | .99 | . 01 |
|  | 78.09 | 72. | 72.2 | 74. | 72.20 | 3.13 | 9.99 | 100.00 |  |
|  | 71.49 | 88.50 | 88.50 | 88.5 | 88.17 | 93.8 | 9.91 | 9.9 | 31 |
|  | 83.70 | 2.1 | 92.1 | 92.2 | 92.19 | 100.00 | 100.0 | 00.0 |  |
|  | 89 | 89.23 | 89.2 | 89.24 | 89.23 | 99.99 | 99.97 | 100.0 | 12 |
|  | 82.0 | 91.00 | 1.0 | 91.0 | 1.0 | 3.93 | 3.98 | 95.60 | 112,458.28 |
| A75 | 57.29 | 70.27 | 70.27 | 70.30 | 70.27 | 78.44 | 99.89 | 9.97 | 92,525.46 |
| B30 | 85.21 | .3 | 4.3 | 84.36 | 84.3 | 99.99 | 99.99 | 99.99 |  |
|  | 67. | . 74 | . 7 | 72.8 | 70.7 | 9.2 | . 9 | 1.9 | . 7 |
|  | 64.9 | 65.45 | 65.45 | 65.48 | 65.4 | 89.55 | 0.8 | 85.72 |  |
|  | 67.29 | 67.51 | 67.5 | 69.7 | 67.51 | 9.9 | 9.9 | 9.9 | . 28 |
| B50 | 51.32 | 66.52 | 66.5 | 66.5 | 66.5 | 87.90 | 99.95 | 9.98 |  |
| B55 | 63.3 | 58.88 | 58.8 | 59.8 | 58.89 | 9.98 | 9.97 | 9.99 | 82,080.73 |
| B60 | 80.3 | 80.43 | 80.4 | 80.4 | 80.43 | 0.58 | 9.9 | 100.0 | 02,323.77 |
| B65 | 85.8 | 75.3 | 75.3 | 75.4 | 75.39 | 4.41 | 99.89 | 9.93 | 22 |
| B70 | 61.03 | 67.32 | 67.32 | 67.3 | 67.32 | 4.5 | 99.92 | 9.96 |  |
| B75 | 5.32 | 8.6 | 60.10 | 59.05 | 58.9 | 85.4 | 89.23 | 9.35 | 92,476.30 |
|  | 90.17 | 90.28 | 90.28 | 90.28 | 90.28 | 0.0 | 99.99 | 100.00 |  |
|  | 80.24 | 0.3 | 0.3 | 80.35 | 80.33 | 0.7 | 9.9 | 9.9 |  |
|  | 67.20 | 67.32 | 67.3 | 67.3 | 67.32 | 3.8 | 3.7 | 83.8 |  |
|  | 50 | 75.51 | 75.58 | 75 | 75.6 | 87.76 | 9. | 100.00 |  |
|  | 99. | 99.52 | 99.5 | 99.53 | 99.52 | 9.9 | 99.8 | 9.9 |  |
|  | 67 | 67.20 | 67.21 | 67.23 | 67.20 | 91.90 | 99,81 | 9.92 |  |
|  | 57 | . 07 | 8.0 | 68.1 | 68.0 | 9.8 | 9.8 | 9.8 |  |
|  | 53 | 54.84 | 54.8 | 54.86 | 54.8 | 76.57 | 99.70 | 9.79 |  |
| C70 | 56.3 | 56.47 | 56.4 | 56.4 | 56.4 | 84.96 | 99.1 | 9. |  |
| C | 56.17 | 7.03 | 7.04 | 7.06 | 67.03 | 78.33 | 9.71 | 9.82 | 92,711.74 |
|  | 64 | 67.16 | 67.16 | 67.1 | 67.1 | 8. | 9.9 | 9. |  |
|  | 46.3 | 7.20 | . 1 | 47.21 | 7.2 | 8.0 | 9.8 | 9.9 |  |
|  | 67. | 67.11 | 67.12 | 67.15 | 67.11 | 99.8 | 9. | 9.8 | 1,531.68 |
| D45 | 87.76 | 87.5 | 87.5 | 87.56 | 87.5 | 9.98 | 9.9 | 9.9 | 1,601.52 |
| D50 | 54.6 | 57.99 | 57.9 | 58. | 57.99 | 86. | 9.92 | 9.9 | 1,761.23 |
| D55 | 52.59 | 57.95 | 57.9 | 58.00 | 57.9 | 6.0 | 9.8 | 9.9 | . 95 |
| D60 | 75.36 | 75.4 | 75.4 | 75.4 | 75. | 9.97 | 9.91 | 9.98 | 6.47 |
| D | 49.05 | 38.71 | 38.72 | 38.7 | 38.73 | 3.7 | 99.72 | 9.85 | 82,200.77 |
| D70 | 55.52 | 51.12 | 51.13 | 51.14 | 51.12 | 9.3 | 99.73 | 9.83 | 82,631.56 |
| D75 | 38.78 | 34.84 | 34.84 | 34.89 | 37.51 | 63.49 | 99.62 | 99.76 | 2, |
| avg. | 69.90 | 72.33 | 72.37 | 72.55 | 72.40 | 90.20 | 97.73 | 97.95 |  |

LAPORTE (2003) tabu search heuristic for the DARP. The table also shows the graph density after preprocesing.

Table 4: Computational results for PDPTW instances

| Instance | U. Bound | (PDPTW1) |  |  |  | (PDPTW2) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Time | Nodes | Cuts | L. Bound | Time | Nodes | Cuts | L. Bound |
| A30 | 51,317.40 | 0.05 | 0 | 78 |  | 0.05 | 0 | 140 |  |
| A35 | 51,343.53 | 0.11 | 0 | 407 |  | 0.10 | 0 | 602 |  |
| A40 | 61,609.44 | 0.16 | 0 | 382 |  | 0.16 | 0 | 510 |  |
| A45 | 61,693.01 |  |  |  | 51,824.39 |  |  |  | 51,842.89 |
| A50 | 71,932.03 | 0.52 | 0 | 838 |  | 0.41 | 0 | 988 |  |
| A55 | 82,185.31 | 18.30 | 855 | 3877 |  | 4.75 | 91 | 3704 |  |
| A60 | 92,366.70 | 0.86 | 0 | 766 |  | 0.81 | 0 | 1071 |  |
| A65 | 82,331.12 | 2.15 | 2 | 1325 |  | 1.75 | 0 | 1423 |  |
| A70 | 112,458.28 |  |  |  | 109,244.57 | 4.74 | 11 | 2492 |  |
| A75 | 92,525.46 |  |  |  | 92,503.50 | 36.82 | 438 | 6414 |  |
| B30 | 51,193.62 | 0.10 | 2 | 426 |  | 0.10 | 7 | 549 |  |
| B35 | 61,400.07 | 0.18 | 2 | 462 |  | 0.15 | 2 | 743 |  |
| B40 | 51,421.35 | 1.26 | 70 | 1638 |  | 0.52 | 17 | 1134 |  |
| B45 | 61,787.28 | 1.53 | 98 | 1636 |  | 0.87 | 31 | 1814 |  |
| B50 | 71,889.75 | 6.19 | 603 | 2134 |  | 1.32 | 8 | 2441 |  |
| B55 | 82,080.73 | 1.06 | 2 | 1138 |  | 1.07 | 2 | 1684 |  |
| B60 | 102,323.77 | 2.26 | 4 | 1891 |  | 2.17 | 6 | 1975 |  |
| B65 | 82,617.22 |  |  |  | 82,573.37 | 77.00 | 1884 | 10505 |  |
| B70 | 92,641.67 | 109.08 | 3012 | 5777 |  | 13.97 | 158 | 4578 |  |
| B75 | 92,476.30 |  |  |  | 82,649.55 |  |  |  | 84,105.71 |
| C30 | 51,145.18 | 0.06 | 0 | 103 |  | 0.06 | 0 | 158 |  |
| C35 | 51,235.64 | 0.32 | 5 | 920 |  | 0.26 | 6 | 1059 |  |
| C40 | 61,473.91 |  |  |  | 51,565.97 |  |  |  | 51,628.73 |
| C45 | 81,405.96 | 0.94 | 4 | 1515 |  | 0.69 | 6 | 1994 |  |
| C50 | 61,933.09 | 40.64 | 1541 | 5637 |  | 7.49 | 228 | 3989 |  |
| C55 | 61,930.55 | 96.36 | 2529 | 8311 |  | 19.32 | 345 | 6188 |  |
| C60 | 72,100.68 |  |  |  | 72,053.40 | 76.54 | 3294 | 10498 |  |
| C65 | 82,326.62 |  |  |  | 82,159.87 |  |  |  | 82,163.46 |
| C70 | 92,613.68 |  |  |  | 82,666.21 |  |  |  | 86,645.63 |
| C75 | 92,711.74 |  |  |  | 92,555.04 |  |  |  | 92,554.26 |
| D30 | 61,040.10 | 0.30 | 12 | 896 |  | 0.23 | 18 | 1166 |  |
| D35 | 71,308.04 |  |  |  | 71,299.29 | 33.07 | 3155 | 8618 |  |
| D40 | 61,531.68 |  |  |  | 61,463.09 |  |  |  | 61,493.63 |
| D45 | 81,601.52 | 1.16 | 34 | 1167 |  | 0.82 | 27 | 1270 |  |
| D50 | 71,761.23 | 4.22 | 204 | 2100 |  | 1.61 | 16 | 2216 |  |
| D55 | 72,051.95 |  |  |  | 72,001.09 |  |  |  | 72,034.13 |
| D60 | 82,306.47 | 5.36 | 144 | 2098 |  | 3.25 | 51 | 2589 |  |
| D65 | 82,200.77 |  |  |  | 82,091.05 |  |  |  | 82,122.81 |
| D70 | 82,631.56 |  |  |  | 82,493.27 |  |  |  | 82,514.97 |
| D75 | 92,970.84 |  |  |  | 92,751.85 |  |  |  | 92,751.63 |

Table 5: Characteristics of DARP instances

| Instance | $\|K\|$ | $n$ | $H$ | $Q$ | $L$ | Instance | $\|K\|$ | $n$ | $H$ | $Q$ | $L$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{a} 2-16$ | 2 | 16 | 480 | 3 | 30 | $\mathrm{~b} 2-16$ | 2 | 16 | 480 | 6 | 45 |
| $\mathrm{a} 2-20$ | 2 | 20 | 600 | 3 | 30 | $\mathrm{~b} 2-20$ | 2 | 20 | 600 | 6 | 45 |
| $\mathrm{a} 2-24$ | 2 | 24 | 720 | 3 | 30 | b 24 | 24 | 2 | 24 | 720 | 6 |
| 45 |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{a} 3-24$ | 3 | 24 | 480 | 3 | 30 | $\mathrm{~b} 3-24$ | 3 | 24 | 480 | 6 | 45 |
| $\mathrm{a} 3-30$ | 3 | 30 | 600 | 3 | 30 | $\mathrm{~b} 3-30$ | 3 | 30 | 600 | 6 | 45 |
| $\mathrm{a}-36$ | 3 | 36 | 720 | 3 | 30 | $\mathrm{~b} 3-36$ | 3 | 36 | 720 | 6 | 45 |
| $\mathrm{a} 4-32$ | 4 | 32 | 480 | 3 | 30 | $\mathrm{~b} 4-32$ | 4 | 32 | 480 | 6 | 45 |
| $\mathrm{a} 4-40$ | 4 | 40 | 600 | 3 | 30 | $\mathrm{~b} 4-40$ | 4 | 40 | 600 | 6 | 45 |
| $\mathrm{a} 4-48$ | 4 | 48 | 720 | 3 | 30 | $\mathrm{~b} 4-48$ | 4 | 48 | 720 | 6 | 45 |
| $\mathrm{a} 5-40$ | 5 | 40 | 480 | 3 | 30 | $\mathrm{~b} 5-40$ | 5 | 40 | 480 | 6 | 45 |
| $\mathrm{a} 5-50$ | 5 | 50 | 600 | 3 | 30 | $\mathrm{~b} 5-50$ | 5 | 50 | 600 | 6 | 45 |
| $\mathrm{a}-60$ | 5 | 60 | 720 | 3 | 30 | $\mathrm{~b} 5-60$ | 5 | 60 | 720 | 6 | 45 |
| $\mathrm{a} 6-48$ | 6 | 48 | 480 | 3 | 30 | $\mathrm{~b} 6-48$ | 6 | 48 | 480 | 6 | 45 |
| $\mathrm{a} 6-60$ | 6 | 60 | 600 | 3 | 30 | $\mathrm{~b} 6-60$ | 6 | 60 | 600 | 6 | 45 |
| $\mathrm{a} 6-72$ | 6 | 72 | 720 | 3 | 30 | $\mathrm{~b} 6-72$ | 6 | 72 | 720 | 6 | 45 |
| $\mathrm{a} 7-56$ | 7 | 56 | 480 | 3 | 30 | $\mathrm{~b} 7-56$ | 7 | 56 | 480 | 6 | 45 |
| $\mathrm{a}-70$ | 7 | 70 | 600 | 3 | 30 | $\mathrm{~b} 7-70$ | 7 | 70 | 600 | 6 | 45 |
| $\mathrm{a} 7-84$ | 7 | 84 | 720 | 3 | 30 | $\mathrm{~b} 7-84$ | 7 | 84 | 720 | 6 | 45 |
| $\mathrm{a} 8-64$ | 8 | 64 | 480 | 3 | 30 | $\mathrm{~b} 8-64$ | 8 | 64 | 480 | 6 | 45 |
| $\mathrm{a} 8-80$ | 8 | 80 | 600 | 3 | 30 | $\mathrm{~b} 8-80$ | 8 | 80 | 600 | 6 | 45 |
| $\mathrm{a} 8-96$ | 8 | 96 | 720 | 3 | 30 | $\mathrm{~b} 8-96$ | 8 | 96 | 720 | 6 | 45 |

Tables 7 and 8 show the strength of the lower bounds obtained with the different types of valid inequalities. These tables can be interpreted in the same way as Table 3. This time, however, we also indicate in column LP0 the lower bound obtained with the three-index formulation of Cordeau (2006). Again, formulation (PDPTW2) provides better bounds than (PDPTW1) while fork constraints and reachability constraints are the most useful. One can also see that both (PDPTW1) and (PDPTW2) do much better than the threeindex formulation in terms of the initial lower bound.

Finally, Tables 9 and 10 report the computational statistics collected when solving each instance to optimality with both (PDPTW1) and (PDPTW2), again using all types of inequalities. In column (DARP), we also indicate comparable statistics for the three-index DARP fomulation of Cordeau (2006). For the latter formulation, only a small subset of all instances could be solved to optimality. As in Table 4, one can see that formulation (PDPTW2) usually requires less computation time and a smaller number of branch-andbound nodes than (PDPTW1). The largest CPU time for (PDPTW1) is 1210.56 minutes compared to 120.09 minutes for (PDPTW2). Comparisons with the three-index DARP formulation show that the latter is totally dominated by the two new formulations. For example, instance b4-32 required more than one hour of CPU time with the DARP formulation (and 44877 branch-and-cut nodes) while it was solved in the root node with both (PDPTW1) and (PDPTW2). This dramatic improvement results from the improved lower bound provided by the tighter (PDPTW1) and (PDPTW2) formulations, and from the new

Table 6: Solution values and computing times (in minutes) for the DARP instances

| Instance | U. Bound heuristic | Time heuristic | Graph density (\%) | Instance | U. Bound heuristic | Time heuristic | Graph density (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a2-16 | 294.25 | 0.05 | 31.2 | b2-16 | 309.61 | 0.05 | 28.1 |
| a2-20 | 344.83 | 0.12 | 32.1 | b2-20 | 334.93 | 0.10 | 18.9 |
| a2-24 | 431.12 | 0.21 | 32.6 | b2-24 | 445.11 | 0.21 | 23.2 |
| a3-24 | 344.83 | 0.12 | 35.2 | b3-24 | 394.57 | 0.11 | 23.3 |
| a3-30 | 496.52 | 0.24 | 31.6 | b3-30 | 536.04 | 0.24 | 23.5 |
| a3-36 | 600.75 | 0.48 | 31.2 | b3-36 | 611.79 | 0.46 | 21.8 |
| a4-32 | 486.57 | 0.20 | 32.9 | b4-32 | 500.92 | 0.17 | 20.8 |
| a4-40 | 571.07 | 0.38 | 32.3 | b4-40 | 662.91 | 0.38 | 20.2 |
| a4-48 | 680.99 | 0.75 | 34.8 | b4-48 | 685.46 | 0.77 | 27.0 |
| a5-40 | 507.59 | 0.28 | 33.5 | b5-40 | 619.09 | 0.26 | 27.2 |
| a5-50 | 699.86 | 0.58 | 34.8 | b5-50 | 777.20 | 0.55 | 23.5 |
| a5-60 | 825.57 | 1.20 | 32.8 | b5-60 | 923.07 | 1.08 | 27.6 |
| a6-48 | 618.00 | 0.37 | 34.2 | b6-48 | 727.06 | 0.31 | 21.7 |
| a6-60 | 847.19 | 0.75 | 33.1 | b6-60 | 888.28 | 0.77 | 23.3 |
| a6-72 | 946.41 | 1.50 | 33.8 | b6-72 | 1007.99 | 1.44 | 24.3 |
| a7-56 | 745.08 | 0.52 | 32.3 | b7-56 | 844.54 | 0.45 | 24.0 |
| a7-70 | 936.96 | 1.00 | 33.4 | b7-70 | 939.10 | 0.89 | 21.7 |
| a7-84 | 1069.77 | 1.87 | 33.6 | b7-84 | 1255.10 | 1.78 | 25.3 |
| a8-64 | 770.52 | 0.69 | 33.9 | b8-64 | 865.65 | 0.54 | 23.7 |
| a8-80 | 992.52 | 1.22 | 35.0 | b8-80 | 1085.91 | 1.33 | 21.3 |
| a8-96 | 1289.59 | 2.55 | 33.5 | b8-96 | 1236.42 | 2.36 | 26.0 |

inequalities introduced in this paper.

## 6 Conclusion

By using appropriate inequalities, we have introduced two new formulations for the PDPTW which do not require the use of a vehicle index to impose pairing and precedence constraints, as is the case in three-index formulations. In addition to adapting infeasible path constraints and reachability constraints to take advantage of the structure of the problem, we have also introduced two new families of inequalities: strenghtened capacity constraints and fork constraints. Computational experiments performed on PDPTW and DARP instances show that both formulations are competitive although the more compact one (in terms of variables) has a slight advantage. In the case of the DARP, comparisons with a previously introduced three-index formulation show that the two new formulations are able to solve much larger instances. The largest instance solved to optimality contains 192 nodes. Given the current state of the art for the exact solution of vehicle routing problems with time windows, it seems fair to say that these are large instances.

Table 7: Impact of valid inequalities for first set of DARP instances

|  | LP0 | LP1 | LP2 | SEC | SCC | GOC | FC | RC | FULL | U. Bound |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| a2-16 | 98.42 | 99.14 | 99.93 | 99.93 | 99.93 | 99.93 | 100.00 | 100.00 | 100.00 | 294.25 |
| a2-20 | 93.38 | 95.49 | 99.31 | 99.47 | 99.31 | 99.31 | 100.00 | 100.00 | 100.00 | 344.83 |
| a2-24 | 87.51 | 95.25 | 98.81 | 99.03 | 98.81 | 98.81 | 99.80 | 99.51 | 99.80 | 431.12 |
| a3-24 | 81.07 | 88.58 | 95.62 | 95.63 | 95.63 | 95.62 | 100.00 | 99.92 | 100.00 | 344.83 |
| a3-30 | 79.16 | 88.84 | 94.55 | 94.55 | 94.55 | 94.52 | 100.00 | 100.00 | 100.00 | 494.85 |
| a3-36 | 87.67 | 92.21 | 96.85 | 96.85 | 96.85 | 96.85 | 99.29 | 98.92 | 99.29 | 583.19 |
| a4-32 | 78.12 | 85.69 | 92.23 | 92.23 | 92.32 | 92.23 | 100.00 | 100.00 | 100.00 | 485.50 |
| a4-40 | 76.36 | 92.00 | 95.64 | 95.67 | 95.64 | 95.64 | 99.22 | 99.15 | 99.32 | 557.69 |
| a4-48 | 64.63 | 86.12 | 91.96 | 91.96 | 91.97 | 91.96 | 99.38 | 98.75 | 99.62 | 668.82 |
| a5-40 | 65.25 | 84.89 | 93.10 | 93.16 | 93.10 | 93.10 | 100.00 | 99.14 | 100.00 | 498.41 |
| a5-50 | 59.92 | 78.87 | 88.40 | 88.44 | 88.41 | 88.40 | 98.79 | 97.71 | 99.04 | 686.62 |
| a5-60 | 59.68 | 75.39 | 87.18 | 87.22 | 87.28 | 87.18 | 99.43 | 98.03 | 99.48 | 808.42 |
| a6-48 | 63.57 | 79.95 | 88.25 | 88.31 | 88.26 | 88.26 | 99.97 | 98.75 | 100.00 | 604.12 |
| a6-60 | 60.11 | 75.74 | 86.22 | 86.29 | 86.27 | 86.22 | 99.37 | 98.89 | 99.61 | 819.25 |
| a6-72 | 65.42 | 79.88 | 89.08 | 89.27 | 89.22 | 89.09 | 99.14 | 98.18 | 99.36 | 916.05 |
| a7-56 | 64.08 | 81.07 | 88.12 | 88.27 | 88.15 | 88.12 | 99.02 | 98.15 | 99.21 | 724.04 |
| a7-70 | 62.66 | 77.81 | 85.74 | 85.76 | 85.87 | 85.74 | 99.57 | 98.78 | 99.75 | 889.12 |
| a7-84 | 55.81 | 71.45 | 82.27 | 82.35 | 82.53 | 82.28 | 99.05 | 97.66 | 99.20 | 1033.37 |
| a8-64 | 66.86 | 74.63 | 85.40 | 85.65 | 85.40 | 85.41 | 99.09 | 98.13 | 99.51 | 747.46 |
| a8-80 | 58.29 | 69.87 | 81.10 | 81.10 | 81.19 | 81.10 | 99.04 | 96.17 | 99.18 | 945.73 |
| a8-96 | 53.83 | 66.81 | 78.57 | 78.60 | 78.67 | 78.57 | 97.85 | 95.03 | 98.49 | 1232.61 |
| Avg. | 70.56 | 82.84 | 90.40 | 90.46 | 90.45 | 90.40 | 99.43 | 98.61 | 99.56 |  |

## Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada under grants 227837-04 and OGP0039682. This support is gratefully acknowledged.

## References

N. Ascheuer, M. Fischetti and M. Grötschel. "A Polyhedral Study of the

Asymmetric Traveling Salesman Problem with Time Windows." Networks, 36:69-79 (2000a).
N. Ascheuer, M. Fischetti and M. Grötschel. "Solving the Asymmetric Travelling

Salesman Problem with Time Windows by Branch-and-Cut." Mathematical
Programming, 90:475-506 (2001).
N. Ascheuer, M. Jünger and G. Reinelt. "A Branch \& Cut Algorithm for the

Asymmetric Traveling Salesman Problem with Precedence Constraints." Computational Optimization and Applications, 17:61-84 (2000b).

Table 8: Impact of valid inequalities for second set of DARP instances

|  | LP0 | LP1 | LP2 | SEC | SCC | GOC | FC | RC | FULL | U. Bound |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| b2-16 | 91.76 | 97.19 | 99.52 | 99.53 | 99.52 | 99.52 | 99.59 | 99.53 | 99.59 | 309.41 |
| b2-20 | 99.90 | 98.61 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 332.64 |
| b2-24 | 89.30 | 96.42 | 99.24 | 99.24 | 99.35 | 99.24 | 99.96 | 99.96 | 99.96 | 444.71 |
| b3-24 | 89.65 | 92.21 | 95.08 | 95.08 | 95.08 | 95.06 | 99.33 | 98.65 | 99.60 | 394.51 |
| b3-30 | 87.91 | 98.86 | 99.91 | 99.91 | 99.91 | 99.91 | 100.00 | 100.00 | 100.00 | 531.44 |
| b3-36 | 87.72 | 97.93 | 99.23 | 99.23 | 99.23 | 99.23 | 100.00 | 100.00 | 100.00 | 603.79 |
| b4-32 | 83.82 | 99.34 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 494.82 |
| b4-40 | 81.25 | 96.20 | 98.14 | 98.14 | 98.14 | 98.14 | 100.00 | 99.55 | 100.00 | 656.63 |
| b4-48 | 81.75 | 88.92 | 95.84 | 95.82 | 95.94 | 95.84 | 99.67 | 98.87 | 99.70 | 673.81 |
| b5-40 | 70.43 | 83.15 | 91.80 | 91.67 | 92.06 | 91.80 | 98.99 | 97.19 | 99.57 | 613.72 |
| b5-50 | 70.78 | 88.19 | 92.57 | 92.44 | 93.07 | 92.49 | 99.20 | 98.48 | 99.30 | 761.40 |
| b5-60 | 70.75 | 86.55 | 91.48 | 91.52 | 91.97 | 91.49 | 98.88 | 97.54 | 99.10 | 902.04 |
| b6-48 | 75.90 | 95.05 | 98.85 | 98.82 | 99.10 | 98.83 | 100.00 | 99.88 | 100.00 | 714.83 |
| b6-60 | 68.75 | 88.48 | 94.74 | 94.75 | 95.29 | 94.73 | 100.00 | 99.65 | 100.00 | 860.07 |
| b6-72 | 69.99 | 83.97 | 90.31 | 90.36 | 90.71 | 90.41 | 97.76 | 96.90 | 98.41 | 978.47 |
| b7-56 | 64.54 | 85.32 | 90.66 | 90.67 | 91.31 | 90.67 | 97.56 | 96.10 | 98.09 | 823.97 |
| b7-70 | 68.25 | 89.43 | 94.16 | 94.24 | 94.41 | 94.17 | 99.44 | 98.27 | 99.43 | 912.62 |
| b7-84 | 61.59 | 77.54 | 86.33 | 86.47 | 87.10 | 86.31 | 98.78 | 96.99 | 99.19 | 1203.37 |
| b8-64 | 66.98 | 84.62 | 90.83 | 90.81 | 91.06 | 90.86 | 99.08 | 98.15 | 99.44 | 839.89 |
| b8-80 | 65.85 | 88.46 | 92.18 | 92.24 | 92.43 | 92.20 | 99.61 | 98.87 | 99.63 | 1036.34 |
| b8-96 | 59.73 | 77.36 | 84.71 | 84.75 | 85.30 | 84.79 | 97.56 | 94.36 | 98.30 | 1185.55 |
| Avg. | 76.50 | 90.18 | 94.55 | 94.56 | 94.81 | 94.56 | 99.30 | 98.52 | 99.49 |  |

P. Augerat, J.M. Belenguer, E. Benavent, A. Corberán and D. Naddef. "Separating Capacity Inequalities in the CVRP Using Tabu Search." European Journal of Operational Research, 106:546-557 (1999).
E. Balas, M. Fischetti and W.R. Pulleyblank. "The Precedence-Constrained Asymmetric Traveling Salesman Polytope." Mathematical Programming, 68:241-265 (1995).
J.-F. Cordeau. "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem." Operations Research (2006). Forthcoming.
J.-F. Cordeau and G. Laporte. "A Tabu Search Heuristic for the Static Multi-Vehicle Dial-a-Ride Problem." Transportation Research B, 37:579-594 (2003).
J.-F. Cordeau, G. Laporte, J.-Y. Potvin and M.W.P. Savelsbergh.
"Transportation on demand." In C. Barnhart and G. Laporte, editors, Transportation, Handbooks in Operations Research and Management Science. Elsevier, Amsterdam, 2006. Forthcoming.
T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, Mass., 1990.

Table 9: Results on first set of DARP instances

| Instance | Cost | (DARP) |  |  | (PDPTW1) |  |  | (PDPTW2) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Time | Nodes | Cuts | Time | Nodes | Cuts | Time | Nodes | Cuts |
| a2-16 | 294.25 | 0.01 | 11 | 39 | 0.01 | 0 | 35 | 0.01 | 0 | 99 |
| a2-20 | 344.83 | 0.05 | 203 | 91 | 0.02 | 0 | 84 | 0.02 | 0 | 183 |
| a2-24 | 431.12 | 0.12 | 412 | 131 | 0.05 | 3 | 165 | 0.04 | 3 | 315 |
| a3-24 | 344.83 | 1.31 | 3090 | 279 | 0.04 | 0 | 233 | 0.03 | 0 | 330 |
| a3-30 | 494.85 | 15.48 | 22250 | 369 | 0.08 | 0 | 275 | 0.08 | 0 | 564 |
| a3-36 | 583.19 | 8.13 | 8178 | 415 | 0.18 | 5 | 273 | 0.18 | 9 | 604 |
| a4-32 | 485.50 |  |  |  | 0.12 | 0 | 482 | 0.09 | 0 | 759 |
| a4-40 | 557.69 |  |  |  | 0.51 | 6 | 729 | 0.32 | 8 | 896 |
| a4-48 | 668.82 |  |  |  | 1.01 | 12 | 1120 | 0.56 | 4 | 1848 |
| a5-40 | 498.41 |  |  |  | 0.24 | 0 | 612 | 0.17 | 0 | 937 |
| a5-50 | 686.62 |  |  |  | 2.67 | 209 | 1520 | 1.04 | 59 | 1875 |
| a5-60 | 808.42 |  |  |  | 2.59 | 15 | 1648 | 1.55 | 9 | 2203 |
| a6-48 | 604.12 |  |  |  | 0.90 | 0 | 1379 | 0.44 | 0 | 1893 |
| a6-60 | 819.25 |  |  |  | 3.94 | 86 | 1913 | 1.69 | 13 | 2793 |
| a6-72 | 916.05 |  |  |  | 8.16 | 143 | 2360 | 3.31 | 25 | 3144 |
| a7-56 | 724.04 |  |  |  | 5.36 | 141 | 2194 | 1.72 | 67 | 2338 |
| a7-70 | 889.12 |  |  |  | 6.13 | 15 | 2516 | 3.49 | 20 | 3655 |
| a7-84 | 1033.37 |  |  |  | 29.43 | 315 | 3625 | 8.23 | 48 | 3970 |
| a8-64 | 747.46 |  |  |  | 6.48 | 70 | 2443 | 3.61 | 86 | 2995 |
| a8-80 | 945.73 |  |  |  | 26.14 | 305 | 3519 | 13.22 | 308 | 4360 |
| a8-96 | 1232.61 |  |  |  | 1210.56 | 7758 | 9336 | 70.55 | 1652 | 7436 |

G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon and F. Soumis. "VRP with Pickup and Delivery." In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, pages 225-242. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 2002.
M. Desrochers and G. Laporte. "Improvements and Extensions to the Miller-Tucker-Zemlin Subtour Elimination Constraints." Operations Research Letters, 10:27-36 (1991).
J. Desrosiers, Y. Dumas and F. Soumis. "A Dynamic Programming Solution of the Large-Scale Single-Vehicle Dial-a-Ride Problem with Time Windows." American Journal of Mathematical and Management Sciences, 6:301-325 (1986).
Y. Dumas, J. Desrosiers and F. Soumis. "The Pickup and Delivery Problem with Time Windows." European Journal of Operational Research, 54:7-22 (1991).
M. Grötschel and M.W. Padberg. "Polyhedral Theory." In E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, editors, The Traveling Salesman Problem, pages 251-305. Wiley, New York, 1985.

Table 10: Results on second set of DARP instances

| Instance | Cost | (DARP) |  |  | (PDPTW1) |  |  | (PDPTW2) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Time | Nodes | Cuts | Time | Nodes | Cuts | Time | Nodes | Cuts |
| b2-16 | 309.41 | 0.04 | 296 | 109 | 0.01 | 3 | 101 | 0.01 | 4 | 170 |
| b2-20 | 332.64 | 0.01 | 0 | 30 | 0.01 | 0 | 12 | 0.01 | 0 | 80 |
| b2-24 | 444.71 | 0.06 | 263 | 107 | 0.03 | 2 | 120 | 0.03 | 1 | 225 |
| b3-24 | 394.51 | 0.55 | 2372 | 165 | 0.04 | 2 | 147 | 0.03 | 3 | 291 |
| b3-30 | 531.44 | 3.20 | 6267 | 253 | 0.05 | 0 | 150 | 0.05 | 0 | 313 |
| b3-36 | 603.79 | 37.57 | 44881 | 246 | 0.08 | 0 | 125 | 0.08 | 0 | 341 |
| b4-32 | 494.82 | 75.42 | 44877 | 313 | 0.05 | 0 | 136 | 0.05 | 0 | 253 |
| b4-40 | 656.63 |  |  |  | 0.15 | 0 | 315 | 0.14 | 0 | 609 |
| b4-48 | 673.81 |  |  |  | 0.63 | 9 | 802 | 0.50 | 15 | 1072 |
| b5-40 | 613.72 |  |  |  | 0.59 | 25 | 1064 | 0.28 | 8 | 1243 |
| b5-50 | 761.40 |  |  |  | 0.92 | 28 | 1064 | 0.66 | 18 | 1326 |
| b5-60 | 902.04 |  |  |  | 1.96 | 37 | 1404 | 1.81 | 97 | 1913 |
| b6-48 | 714.83 |  |  |  | 0.27 | 0 | 478 | 0.24 | 0 | 613 |
| b6-60 | 860.07 |  |  |  | 0.86 | 0 | 962 | 0.68 | 0 | 1237 |
| b6-72 | 978.47 |  |  |  | 127.71 | 4769 | 4864 | 17.07 | 989 | 4278 |
| b7-56 | 823.97 |  |  |  | 56.65 | 1959 | 7741 | 13.46 | 1120 | 5148 |
| b7-70 | 912.62 |  |  |  | 4.66 | 157 | 1463 | 2.12 | 17 | 1892 |
| b7-84 | 1203.37 |  |  |  | 11.51 | 77 | 3036 | 6.61 | 58 | 3463 |
| b8-64 | 839.89 |  |  |  | 8.11 | 405 | 2155 | 2.50 | 66 | 2165 |
| b8-80 | 1036.34 |  |  |  | 4.04 | 8 | 1455 | 3.05 | 8 | 1994 |
| b8-96 | 1185.55 |  |  |  | 847.41 | 8246 | 10171 | 120.09 | 2746 | 8431 |

Q. Lu and M. Dessouky. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem." Transportation Science, 38:503-514 (2004).
J. Lysgaard. "Reachability Cuts for the Vehicle Routing Problem with Time Windows." Technical Report L-2004-01, Aarhus School of Business, Denmark, 2004.
D. Naddef and G. Rinaldi. "Branch-and-Cut Algorithms for the Capacitated VRP." In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, pages 53-84. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 2002.
H.N. Psaraftis. "A Dynamic Programming Approach to the Single-Vehicle, Many-to-Many Immediate Request Dial-a-Ride Problem." Transportation Science, 14:130-154 (1980).
H.N. Psaraftis. "An Exact Algorithm for the Single-Vehicle Many-to-Many Dial-a-Ride Problem with Time Windows." Transportation Science, 17:351-357 (1983).
S. Ropke and D. Pisinger. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows." Technical Report 2004-13, DIKU, University of Copenhagen, 2004.
K.S. Ruland and E.Y. Rodin. "The Pickup and Delivery Problem: Faces and Branch-and-Cut Algorithm." Computers and Mathematics with Applications, 33:1-13 (1997).
M.W.P. Savelsbergh and M. Sol. "DRIVE: Dynamic Routing of Independant Vehicles." Operations Research, 46:474-490 (1998).

Chapter 9

# Branch-and-Cut-and-Price for the Pickup and Delivery Problem with Time Windows 

# Branch-and-Cut-and-Price for the Pickup and Delivery Problem with Time Windows 

Stefan Ropke<br>DIKU, University of Copenhagen, Denmark<br>sropke@diku.dk<br>Jean-François Cordeau<br>Canada Research Chair in Distribution Management, HEC Montréal<br>3000, chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7 Canada<br>jean-francois.cordeau@hec.ca


#### Abstract

In the pickup and delivery problem with time windows (PDPTW), vehicle routes must be designed to satisfy a set of transportation requests, each involving a pickup and a delivery location, under capacity, time window and precedence constraints. This paper introduces a branch-and-cut-and-price algorithm in which lower bounds are computed by solving the linear programming relaxation of a set-partitioning formulation. This relaxation is solved by a column generation scheme with an elementary shortest path pricing problem. Various relaxations, yielding different pricing problems, are also investigated, and valid inequalities are proposed to strengthen some of these relaxations. The strength of the different relaxations is investigated through extensive computational experiments. These experiments also show that the proposed method outperforms a recent branch-and-cut algorithm. The largest problem instance solved contains 500 requests.


Keywords: pickup and delivery; time windows; branch-and-cut-and-price.

## 1 Introduction

In the classical Vehicle Routing Problem (VRP), a fleet of vehicles based at a common depot must be routed to visit exactly once a set of customers with known demand. Each vehicle route must start and finish at the depot and the total demand of the customers visited by the route must not exceed the vehicle capacity. In the VRP with Time Windows (VRPTW), a time window is associated with each customer and the vehicle visiting a given customer cannot arrive after the end of the time window. The Pickup and Delivery Problem with Time Windows (PDPTW) is a further generalization of the VRP in which each customer request is associated with two locations: an origin location where a certain demand must be picked up and a destination where this demand must be delivered. Each route must also satisfy pairing and precedence constraints: for each request, the origin must precede the destination, and both locations must be visited by the same vehicle. The VRPTW can be
seen as a special case of the PDPTW in which all requests have a common origin which corresponds to the depot.

The PDPTW has applications in various contexts such as urban courier services, less-than-truckload transportation, and door-to-door transportation services for the elderly and the disabled. In the latter case, narrow time windows are often considered and ride time constraints are imposed to control the time spent by a passenger in the vehicle. The resulting problem is called the Dial-a-Ride Problem (DARP) and will also be addressed in this paper.

The VRP and VRPTW are well known combinatorial optimization problems which have received a lot of attention (see, e.g., Toth and Vigo, 2002). Since it generalizes the VRPTW, the PDPTW is clearly $\mathcal{N} \mathcal{P}$-hard. Over the last few decades, several heuristics have been proposed for both the PDPTW and the closely-related DARP. However, because of the difficulty of these problems, work on exact methods has been somewhat limited.

Two main approaches have been used to solve the PDPTW exactly: branch-and-price and branch-and-cut. Branch-and-price methods (see, e.g., Barnhart et al., 1998; Desaulniers et al., 1998) use a branch-and-bound scheme in which lower bounds are computed by column generation. The first branch-and-price algorithm for the PDPTW was proposed by Dumas et al. (1991) who considered a set-partitioning formulation of the problem in which each each column corresponds to a feasible vehicle route and each constraint is associated to a request that must be satisfied exactly once. The resulting pricing subproblem is a shortest path problem with time window, capacity, pairing and precedence constraints. This problem is solvable by dynamic programming and the authors use an algorithm similar to the one developed by Desrosiers et al. (1986) for the single-vehicle pickup and delivery problem with time windows. Several label elimination methods are proposed to accelerate the dynamic programming algorithm, and arc elimination rules are used to reduce the size of the problem. The authors point out that their approach works well when the demand of each customer is large with respect to vehicle capacity. The largest instance solved with their approach contains 55 requests.

Another branch-and-price approach for the PDPTW was later described by Savelsbergh and Sol (1998). Their approach differs from that of Desrosiers et al. in several respects: i) whenever possible, they use construction and improvement heuristics to solve the pricing subproblem; ii) a sophisticated column management mechanism is used to keep the column generation master problem as small as possible; iii) columns are selected with a bias toward increasing the likelihood of identifying feasible integer solutions during the solution of the master problem; iv) branching decisions are made on additional variables representing the fraction of a request that is served by a given vehicle; and $v$ ) a primal heuristic is used at each node of the search tree to compute upper bounds.

Column generation was also used recently by Xu et al. (2003) and Sigurd et al. (2004) to address variants of the PDPTW arising in long-haul transportation planning and in the transportation of live animals, respectively.

The second family of exact approaches for the PDPTW is branch-and-cut. In branch-and-cut, valid inequalities (i.e., cuts) are added to the formulation at each node of the branch-and-bound tree to strengthen the relaxations which are usually solved by the simplex algorithm. Relying on the previous work of Balas et al. (1995) and Ruland and Rodin (1997) on the Precedence-Constrained Traveling Salesman Problem (PCTSP) and the TSP with Pickup and Delivery (TSPPD), Cordeau (2005) developed a branch-and-cut algorithm for the DARP based on a three-index formulation of the problem. This algorithm was able to solve
instances with four vehicles and 32 requests. It was later improved by Ropke et al. (2005) who compared different formulations of the DARP and PDPTW, and introduced two new families of inequalities for these problems. One is an adaptation of the reachability cuts introduced by Lysgaard (2005) for the VRPTW, while the other is called fork inequalities. Both families can also be used in the context of column generation and will be described in Section 4. Using these inequalities, Ropke et al. were able to solve instances with eight vehicles and 96 requests. Another branch-and-cut approach, based on a two-index formulation was proposed by Lu and Dessouky (2004). This formulation contains a polynomial number of constraints, but relies on extra variables to impose pairing and precedence constraints. Instances with up to five vehicles and 25 requests were solved optimally with this approach.

For reviews on pickup and delivery problems, the reader is referred to the works of Savelsbergh and Sol (1995), Desaulniers et al. (2002) and Cordeau et al. (2005).

In this paper, we introduce a new branch-and-cut-and-price algorithm for the PDPTW and the DARP. It is well known that set partitioning formulations of vehicle routing problems tend to provide stronger lower bounds than formulations based on arc (flow) variables (see Bramel and Simchi-Levi, 2002). Unfortunately, the column generation pricing subproblem used with this formulation is often an elementary resource-constrained shortest path problem which is $\mathcal{N} \mathcal{P}$-hard. Our aim is to investigate various relaxations of the pricing subproblem. These relaxations are still NP-hard but in practice they can be easier to solve to optimality.

The contributions of the paper are threefold. First, we analyze the different relaxations in terms of lower bound quality and computational difficulty. Second, we show that valid inequalities can be introduced in the formulation to improve the quality of some of the lower bounds. Third, we report extensive computational experiments on several sets of test instances from the literature and introduce new large-scale instances.

The remainder of the paper is organized as follows. Section 2 defines the PDPTW and introduces mathematical formulations of the problem. Section 3 discusses possible pricing subproblems that can be used within a branch-and-price algorithm, while Section 4 describes valid inequalities that can be added to the formulation. The resulting branch-and-cut-andprice algorithm is then described in Section 5. Finally, computational results are reported in Section 6, followed by conclusions in the last section.

## 2 Mathematical Formulation

In this section, we introduce the notation that is used throughout the paper. We then present a classical three-index model of the problem, followed by a set-partitioning formulation.

### 2.1 Notation

Let $n$ denote the number of requests to satisfy. We define the PDPTW on a directed graph $G=(N, A)$ with node set $N=\{0, \ldots, 2 n+1\}$ and arc set $A$. Nodes 0 and $2 n+1$ represent the origin and destination depots while subsets $P=\{1, \ldots, n\}$ and $D=\{n+1, \ldots, 2 n\}$ represent pickup and delivery nodes, respectively. With each request $i$ are thus associated a pickup node $i$ and a delivery node $n+i$.

With each node $i \in N$ are associated a load $q_{i}$ and a non-negative service duration $d_{i}$ satisfying $q_{0}=q_{2 n+1}=0, q_{i}=-q_{n+i}(i=1, \ldots, n)$ and $d_{0}=d_{2 n+1}=0$. A time window $\left[a_{i}, b_{i}\right]$ is also associated with every node $i \in P \cup D$, where $a_{i}$ and $b_{i}$ represent the earliest
and latest time, respectively, at which service may start at node $i$. The depot nodes may also have time windows $\left[a_{0}, b_{0}\right]$ and $\left[a_{2 n+1}, b_{2 n+1}\right]$ representing the earliest and latest times, respectively, at which the vehicles may leave from and return to the depot. Let $K$ denote the set of vehicles. We assume that vehicles are identical and have capacity $Q$. With each $\operatorname{arc}(i, j) \in A$ are associated a routing cost $c_{i j}$ and a travel time $t_{i j}$. In the remainder of the paper, we assume that the travel time $t_{i j}$ includes the service time $d_{i}$ at node $i$. We also assume that the triangle inequality holds both for routing costs and travel times.

### 2.2 Three-index formulation of the PDPTW

For each arc $(i, j) \in A$ and each vehicle $k \in K$, let $x_{i j}^{k}$ be a binary variable equal to 1 if and only if vehicle $k$ travels directly from node $i$ to node $j$. For each node $i \in N$ and each vehicle $k \in K$, let $B_{i}^{k}$ be the time at which vehicle $k$ begins service at node $i$, and $Q_{i}^{k}$ be the load of vehicle $k$ immediately after visiting node $i$. Using these variables, the PDPTW can be formulated as the following mixed-integer program:

$$
\begin{equation*}
\operatorname{Min} \sum_{k \in K} \sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j}^{k} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{rlrl}
\sum_{k \in K} \sum_{j \in N} x_{i j}^{k} & =1 & & \forall i \in P \\
\sum_{j \in N} x_{i j}^{k}-\sum_{j \in N} x_{n+i, j}^{k} & =0 & & \forall i \in P, k \in K \\
\sum_{j \in N} x_{0 j}^{k} & =1 & & \forall k \in K \\
\sum_{j \in N} x_{j i}^{k}-\sum_{j \in N} x_{i j}^{k} & =0 & & \forall i \in P \cup D, k \in K \\
\sum_{i \in N} x_{i, 2 n+1}^{k} & =1 & & \forall k \in K \\
B_{j}^{k} & \geq\left(B_{i}^{k}+t_{i j}\right) x_{i j}^{k} & & \forall i \in N, j \in N, k \in K \\
Q_{j}^{k} & \geq\left(Q_{i}^{k}+q_{j}\right) x_{i j}^{k} & & \forall i \in N, j \in N, k \in K \\
B_{i}^{k}+t_{i, n+i} \leq B_{n+i}^{k} & & \forall i \in P \\
a_{i} \leq B_{i}^{k} \leq b_{i} & & \forall i \in N, k \in K \\
\max \left\{0, q_{i}\right\} \leq Q_{i}^{k} \leq \min \left\{Q, Q+q_{i}\right\} & & \forall i \in N, k \in K \\
x_{i j}^{k} & \in\{0,1\} & & \forall i \in N, j \in N, k \in K . \tag{12}
\end{array}
$$

The objective function (1) minimizes the total routing cost. Constraints (2) and (3) ensure that each request is served exactly once and that the pickup and delivery nodes are visited by the same vehicle. Constraints (4)-(6) guarantee that the route of each vehicle $k$ starts at the origin depot and ends at the destination depot. Consistency of the time and load variables is ensured by constraints (7) and (8). Constraints (9) ensure that for each request $i$, the pickup node is visited before the delivery node. Finally, inequalities (10) and (11) impose time windows and capacity constraints, respectively.

### 2.3 Set partitioning formulation of the PDPTW

To formulate the problem as a set partitioning problem, let $\Omega$ denote the set of all feasible routes satisfying constraints (3)-(12), dropping index $k$ (as all vehicles are identical). Alternatively the routes should satisfy (3)-(12) for a particular $k \in K$. For each route $r \in \Omega$, let $\tilde{c}_{r}$ be the cost of the route and let $a_{i r}$ be a constant indicating the number of times node $i \in P$ is visited by $r$. Let also $y_{r}$ be a binary variable equal to 1 if and only if route $r \in \Omega$ is used in the solution. The PDPTW can then be formulated as the following set partitioning problem:

$$
\begin{equation*}
\operatorname{Min} \sum_{r \in \Omega} \tilde{c}_{r} y_{r} \tag{13}
\end{equation*}
$$

subject to

$$
\begin{array}{rlrl}
\sum_{r \in \Omega} a_{i r} y_{r} & =1 & \forall i \in P \\
y_{r} & \in\{0,1\} & & \forall r \in \Omega . \tag{15}
\end{array}
$$

The objective function (13) minimizes the cost of the chosen routes while constraints (14) ensure that every request is served once. A lower bound on the optimal value of (13)-(15) can be obtained by solving the linear programming (LP) relaxation which is obtained by replacing (15) with the simple bound constraints $0 \leq y_{r} \leq 1 \forall r \in \Omega$.

Because of the large size of set $\Omega$, it is usually very difficult to solve or even to represent model (13)-(15) explicitly. Instead its LP relaxation is solved using column generation. In a column generation approach, a restricted master problem is obtained by considering a subset $\bar{\Omega} \subseteq \Omega$ of routes. Additional columns of negative reduced-cost are generated by solving a pricing subproblem. Following Wolsey (1998), we call the problem defined by (13)-(15) the integer programming master problem (IPM) and its LP relaxation the linear programming master problem (LPM). The pricing problem for the PDPTW is

$$
\begin{equation*}
\operatorname{Min} \sum d_{i j} x_{i j} \tag{16}
\end{equation*}
$$

subject to constraints (3)-(12) (dropping index $k$ ), where $d_{i j}$ is defined as

$$
d_{i j}= \begin{cases}c_{i j}-\pi_{i} & \forall i \in P, j \in N  \tag{17}\\ c_{i j} & \forall i \in N \backslash P, j \in N,\end{cases}
$$

and $\pi_{i}$ is the dual variable associated with the set partitioning constraint (14) for node $i$.
The definition of $d_{i j}$ in equation (17) ensures that $d_{i j}+d_{j k} \geq d_{i k}$ if $j$ is a delivery node. As will be shown in Section 3 this is computationally convenient. We denote this problem as SP1. The problem defined by objective (16) and constraints (3)-(12) is a constrained shortest path problem called the Elementary Shortest Path Problem with Time Windows, Capacity, and Pickup and Delivery (ESPPTWCPD). In Section 3 we explain how this and related problems can be solved using label setting algorithms.

Instead of solving the shortest path problem SP1 one can solve relaxed versions of this problem. A relaxed shortest path problem implies that a set of routes $\Omega^{\prime}$ is implicitly considered, where $\Omega \subseteq \Omega^{\prime}$. If $\Omega^{\prime}$ satisfies the property that none of the columns from the set
$\Omega^{\prime} \backslash \Omega$ can be used in a feasible integer solution to IPM then the set partitioning problem solved on the set $\Omega^{\prime}$ will have the same set of optimal solutions as the one solved on $\Omega$. Obviously, the lower bound obtained by solving the LP relaxation on $\Omega^{\prime}$ may, however, be weaker. An example of a relaxation of the shortest path problem that satisfies this property consists of allowing cycles in the path. In this case, some requests may be served more than once. Paths containing cycles cannot, however, appear in a feasible integer solution because of constraints (14). This relaxation was used by Dumas et al. (1991) and it is described in more detail in Section 3.3.

Relaxations inducing sets $\Omega^{\prime}$ for which one cannot ensure that no column from $\Omega^{\prime} \backslash \Omega$ can belong to a feasible integer solution to IPM can also be used. In this case, however, valid inequalities must be added to the master problem to render such solutions infeasible.

Valid inequalities expressed in terms of the $x_{i j}^{k}$ variables from the three-index formulation (1)-(12) can be added to the master problem following the approach proposed by Kohl et al. (1999) for the VRPTW. We first observe that such inequalities can be expressed in terms of $x_{i j}$ variables as all vehicles are identical $\left(x_{i j}=\sum_{k \in K} x_{i j}^{k}\right)$. The inequalities can be written in the form

$$
\sum_{i=0}^{2 n+1} \sum_{j=0}^{2 n+1} \alpha_{i j} x_{i j} \geq \beta
$$

where $\alpha_{i j} \in \mathbb{R}$ is the coefficient of $\operatorname{arc}(i, j) \in A$ and $\beta \in \mathbb{R}$ is a constant. This inequality is transfered to the master problem as

$$
\sum_{r \in \Omega} \phi_{r} y_{r} \geq \beta,
$$

where $\phi_{r}=\sum_{(i, j) \in r} \alpha_{i j}$. The notation $(i, j) \in r$ means that $\operatorname{arc}(i, j) \in A$ is used in route $r$. It is easy to see that the introduction of a valid inequality in the master problem modifies the pricing problem. Indeed, the arc costs $d_{i j}$ are now defined as follows:

$$
d_{i j}= \begin{cases}c_{i j}-\pi_{i}-\alpha_{i j} \mu & \forall i \in P, j \in N  \tag{18}\\ c_{i j}-\alpha_{i j} \mu & \forall i \in N \backslash P, j \in N\end{cases}
$$

where $\mu$ is the dual variable associated with the added inequality. Any number of inequalities can be added in this way. Notice that this definition of $d_{i j}$ does not guarantee $d_{i j}+d_{j k} \geq d_{i k}$ when $j$ is a delivery node, as it was the case with definition (17).

## 3 Constrained Shortest Path Problems

Resource constrained shortest path problems arising in column generation approaches for vehicle routing problems are typically solved using dynamic programming techniques called labeling algorithms. Notice that the term "shortest path" should be interpreted carefully: given a cost function which can itself be viewed as a resource, one wishes to find the least-cost feasible path from the source node to the sink node. An overview of constrained shortest path problems and of appropriate labeling algorithms for their solution is given by Irnich and Desaulniers (2005).

In this section we will show how the ESPPTWCPD introduced in section 2.3 can be solved using a labeling algorithm. Three relaxations of the problem is considered in sub-section 3.3 - 3.5 .

### 3.1 Label setting shortest path algorithms

Consider a weighted directed graph $G=(V, A)$ where $V$ is the set of nodes, $A$ is the set of arcs, $s$ is the source node and $t$ is the sink node. We assume that no arc enters node $s$ and no arc leave node $t$. Let $\gamma$ be the number of resources in the problem. Traversing arcs "consumes" resources. Let $f_{i j}^{p} \in \mathbb{Q}$ denote the consumption of resource $p \in\{1, \ldots, \gamma\}$ for $\operatorname{arc}(i, j) \in A$. For every node $i \in V$ lower bounds $l_{i}^{p} \in \mathbb{Q}$ and upper bounds $u_{i}^{p} \in \mathbb{Q}$ on the resource variables $p \in\{1, \ldots, \gamma\}$ are given.

In label setting shortest path algorithms, a label consists of three elements: a node, the cumulated resource consumption at that node, and a pointer to its parent label. A label $L=(i, R, p)$ corresponds to a path starting at node $s$ and ending at node $i$ with a certain resource consumption characterized by the vector $R \in \mathbb{Q}^{\gamma}$. The parent label $p$ is necessary to reconstruct the path between $s$ and $i$. Resource constrained shortest path problems can be solved using an algorithm based on the pseudo-code presented in Algorithm 1.

```
Algorithm 1 Pseudo code for labeling algorithm
    Input: graph \(G=(V, A)\), source node \(s\), sink node \(t\)
    \(U=\left\{\left(s,\left(l_{s}^{1}, \ldots, l_{s}^{\gamma}\right), n i l\right)\right\}\)
    while \(U \neq \emptyset\) do
        \(L\) = removefirst( \(U\) )
        \(i=\operatorname{node}(L)\)
        if no label in \(\mathcal{L}_{i}\) dominates \(L\) then
            \(\mathcal{L}_{i}=\mathcal{L}_{i} \cup\{L\}\)
            extend \(L\) along all arcs \((i, j)\) leaving node \(i\)
            add all feasible extensions to \(U\)
    return path corresponding to best label in \(\mathcal{L}_{t}\)
```

In line 2 of the algorithm, an initial label $\left(s,\left(l_{s}^{1}, \ldots, l_{s}^{\gamma}\right)\right.$, nil) corresponding to the source node $s$ is created. In this label, the resource consumption is set according to the lower bounds for node $s$. Here, $U$ designates the set of unprocessed labels and $\mathcal{L}_{i}$ is the set of processed labels at node $i$ (paths ending at node $i$ ). Lines 4 to 8 are repeated as long as there are unprocessed labels. In line 4 a new unprocessed label is selected using the removefirst function (the function removes the label from $U$ ). In line 5 the node of the label is retrieved and line 6 checks whether the label can be discarded (this is explained in more detail below). If the label cannot be discarded then it it is stored in the set of processed labels for node $i$ in line 7. In line 8, new labels are created by extending label $L$. Extending a label $L=(i, R, p)$ along arc $(i, j)$ results in the label $\left(j, R^{\prime}, L\right)$ where the $k$ th component $R_{k}^{\prime}$ of $R^{\prime}$ is given by either $R_{k}^{\prime}=\max \left(l_{j}^{k}, R_{k}+f_{i j}^{k}\right)$ or $R_{k}^{\prime}=R_{k}+f_{i j}^{k}$ depending on the type of resource. The new label is feasible if all resource variables are within their lower and upper bounds for node $j$. All labels corresponding to feasible extensions of label $L$ is added to $U$ in line 9 . In line 10 , the label with the least cost at the sink node is returned.

To guarantee the termination of the algorithm it is sufficient to assume the following: ${ }^{i}$ ) it should be possible to define an ordering of all labels such that given two distinct labels, one should be strictly greater than the other according to the chosen ordering; $i i$ ) the process of extending a label (line 7) should result in a greater label according to the ordering; and iii) there should exist a maximal label such that all other labels are smaller than or equal
to that label. If the function removefirst returns the smallest label in $U$ according to the ordering then the algorithm will terminate. First, we will never process a label twice as we choose the smallest unprocessed label and extending it yields greater labels. Second, because we have an upper bound on the possible labels and because each extension results in a greater label, the process will terminate as it will eventually reach the upper bound.

Without the test in line 6 the algorithm is a brute-force approach that enumerates all feasible paths. The test in line 6 removes unpromising labels based on a so called dominance criterion. We say that label $L_{1}$ dominates label $L_{2}$, written $L_{1} \preceq_{\operatorname{dom}} L_{2}$ if and only if they are assigned to the same node and no feasible extension of the path corresponding to $L_{2}$ with a path to $t$ has a lower cost than the best (with respect to cost) feasible extension of the path corresponding to $L_{1}$ with a path to $t$. If $L_{1} \preceq_{\text {dom }} L_{2}$ then there is no need to consider $L_{2}$, and we need only examine extensions of $L_{1}$.

Given two labels it can be difficult to determine whether one label dominates the other as we potentially have to examine all possible augumentations of the corresponding paths to node $t$. Consequently we use simpler criteria which for some pairs of labels ( $L_{1}, L_{2}$ ) cannot determine whether one of the labels dominates the other. In section 3.2 and 3.3 we describe examples of such criteria.

### 3.2 ESPPTWCPD - SP1

The ESPPTWCPD, denoted SP1, is the natural pricing problem for the PDPTW and the one that provides the best lower bounds. In the context of the PDPTW, it was first used by Sol (1994) and later by Sigurd et al. (2004) for a PDPTW with additional precedence constraints. Sigurd et al. (2004) described a general labeling algorithm for the ESPPTWCPD and a more efficient one that takes advantage of the additional precedence constraints.

In this section we present a new labeling algorithm for the ESPPTWCPD which contains a better dominance criteria compared to the algorithm proposed by Sol (1994) and the general one described by Sigurd et al. (2004).

In what follows we assume that the source and sink nodes are, respectively, 0 and $2 n+1$, as is the case in the shortest path problems that must be solved as pricing problems in our column generation algorithm.

### 3.2.1 Label management

Table 1 summarizes the data that are stored for each label (the parent label is omitted in this table). Thus, $t, l, c, \mathcal{V}$ and $\mathcal{O}$ are resources. The notation $t(L)$ is used to refer to the arrival time in label $L$ and similar notation is used for the rest of the resources. The notation $\mathcal{P}(L)$ represents the path corresponding to $L$ and $\left(p_{1}, p_{2}\right)$ represents the path obtained by concatenating path $p_{2}$ on path $p_{1}$.

When extending a label $L$ along an $\operatorname{arc}(\eta(L), j)$, the extension is legal only if

$$
\begin{align*}
t(L)+t_{\eta(L), j} & \leq b_{j}  \tag{19}\\
l(L)+q_{j} & \leq Q . \tag{20}
\end{align*}
$$

Inequality (19) ensures time window feasibility while inequality (20) ensures capacity

Table 1: Resources used in SP1

| $\eta$ | The node of the label |
| :---: | :--- |
| $t$ | The arrival time at the node |
| $l$ | The current load |
| $c$ | The current cost |
| $\mathcal{V}$ | $\mathcal{V} \subseteq\{1, \ldots, n\}$ is the set of requests that have been <br> started on the path (and possibly finished). |
| $\mathcal{O}$ | $\mathcal{O} \subseteq\{1, \ldots, n\}$ is the set of requests that have been <br> started but not finished, i.e., the pickup has been served <br> but not the delivery. The requests in $\mathcal{O}$ are said to be <br> open. |

feasibility. Furthermore, $L$ and $j$ must satisfy one of the following three conditions:

$$
\begin{align*}
0<j \leq n & \wedge \mathcal{V}(L) \cap\{j\}=\emptyset  \tag{21}\\
n<j \leq 2 n & \wedge j \in \mathcal{O}(L)  \tag{22}\\
j=2 n+1 & \wedge \mathcal{O}(L)=\emptyset \tag{23}
\end{align*}
$$

Condition (21) ensures that if $j$ is a pickup node then that node must not have been visited before on the path. This is to ensure that the the algorithm finds an elementary path. Condition (22) ensures that if $j$ is a delivery node then the path must have already visited the corresponding pickup node, i.e., the precedence relationship between pickups and deliveries is satisfied. Finally, condition (23) ensures that if $j$ is the sink node then all requests that have been started have also been finished. This condition enforces the pairing constraint: the pickup and delivery from any given request must be served on the same path. In the presence of (22), condition (21) is sufficient to ensure that only elementary paths are considered.

If extension along the arc $(\eta(L), j)$ is feasible then a new label $L^{\prime}$ is created at node $j$. The information in label $L^{\prime}$ is set as follows:

$$
\begin{align*}
\eta\left(L^{\prime}\right) & =j  \tag{24}\\
t\left(L^{\prime}\right) & =\max \left\{a_{j}, t(L)+t_{\eta(L), j}\right\}  \tag{25}\\
l\left(L^{\prime}\right) & =l(L)+q_{j}  \tag{26}\\
c\left(L^{\prime}\right) & =c(L)+d_{\eta(L), j}  \tag{27}\\
\mathcal{V}\left(L^{\prime}\right) & = \begin{cases}\mathcal{V}(L) \cup\{j\} & \text { if } j \in P \\
\mathcal{V}(L) & \text { if } j \in D\end{cases}  \tag{28}\\
\mathcal{O}\left(L^{\prime}\right) & = \begin{cases}\mathcal{O}(L) \cup\{j\} & \text { if } j \in P \\
\mathcal{O}(L) \backslash\{j-n\} & \text { if } j \in D .\end{cases} \tag{29}
\end{align*}
$$

Equations (24)-(27) set the current node, the time, the load and the cost of the new label, respectively. Equation (28) updates the set of visited requests. Node $j$ is only added if it is a pickup node. Equation (29) updates the set of open requests. If a pickup (resp. delivery) node is visited, the corresponding request is added to (resp. removed from) the set to indicate that the request has been started (resp. completed).

### 3.2.2 Dominance criterion

The dominance criterion employed in this section is the following: a label $L_{1}$ dominates a label $L_{2}$ if

$$
\eta\left(L_{1}\right)=\eta\left(L_{2}\right), \quad t\left(L_{1}\right) \leq t\left(L_{2}\right), \quad c\left(L_{1}\right) \leq c\left(L_{2}\right), \quad \mathcal{V}\left(L_{1}\right) \subseteq \mathcal{V}\left(L_{2}\right), \quad \mathcal{O}\left(L_{1}\right) \subseteq \mathcal{O}\left(L_{2}\right) .
$$

We denote this criterion (DOM1).
Proposition 1. DOM1 is a valid dominance criterion when considering the definition of $d_{i j}$ from equation (17).

Proof. The proof follows from that of Proposition 4 in Dumas et al. (1991). Let $p$ be an optimal (with respect to cost) and feasible path extending the path of $L_{2}$ to $2 n+1$. If such a path does not exist then clearly one can remove label $L_{2}$. Let $p^{\prime}$ be the path obtained from $p$ by removing the deliveries corresponding to the requests in $\mathcal{O}\left(L_{2}\right) \backslash \mathcal{O}\left(L_{1}\right)$. As ( $\left.\mathcal{P}\left(L_{1}\right), p\right)$ is feasible, then so is $\left(\mathcal{P}\left(L_{2}\right), p^{\prime}\right)$. Indeed, it is easy to see that it is feasible with respect to time windows because travel times satisfy the triangle inequality. The capacity is not violated on ( $\left.\mathcal{P}\left(L_{2}\right), p^{\prime}\right)$ as it was not violated on $\left(\mathcal{P}\left(L_{1}\right), p\right)$ and $\mathcal{P}\left(L_{2}\right)$ does not visit the pickups corresponding to the deliveries removed from $p$. It is also easy to see that $\left(\mathcal{P}\left(L_{2}\right), p^{\prime}\right)$ is elementary and satisfies pairing constraints. The cost of $\left(\mathcal{P}\left(L_{2}\right), p^{\prime}\right)$ is less than or equal to the cost of $\left(\mathcal{P}\left(L_{1}\right), p\right)$ because $c\left(L_{1}\right) \leq c\left(L_{2}\right)$ and the cost of $p^{\prime}$ is less than or equal to the cost of $p$ because removing deliveries cannot increase the cost of a path due to the definition of $d_{i j}$ in equation (17) and the triangle inequality on $c_{i j}$. As a result, the best (with respect to cost) extension of label $L_{1}$ to $2 n+1$ will always be better than the best extension of $L_{2}$ to $2 n+1$. Hence, label $L_{1}$ dominates label $L_{2}$. $\square$

Notice that it is not necessary to consider the load of a label in the dominance criterion. Indeed, since $\mathcal{O}\left(L_{1}\right) \subseteq \mathcal{O}\left(L_{2}\right)$ then the load of label $L_{1}$ must be smaller than that of $L_{2}$.

In the labeling algorithm of Sol (1994), labels contain the cost $c$, the arrival time $t$, and the sets $S^{+} \subseteq\{1, \ldots, n\}$ and $S^{-} \subseteq\{1, \ldots, n\}$. Here, $S^{+}$is the set of requests that have been picked up and $S^{-}$is the set of requests that have been delivered. With respect to the sets $\mathcal{V}$ and $\mathcal{O}$, one obtains $S^{+}=\mathcal{V}$ and $S^{-}=\mathcal{V} \backslash \mathcal{O}$. In terms of $S^{+}$and $S^{-}$the dominance criterion proposed in this paper is the following: label $L_{1}$ dominates label $L_{2}$ if

$$
\begin{gathered}
\eta\left(L_{1}\right)=\eta\left(L_{2}\right), \quad t\left(L_{1}\right) \leq t\left(L_{2}\right), \quad c\left(L_{1}\right) \leq c\left(L_{2}\right), \\
S^{+}\left(L_{1}\right) \subseteq S^{+}\left(L_{2}\right), \quad\left(S^{+}\left(L_{1}\right) \backslash S^{-}\left(L_{1}\right)\right) \subseteq\left(S^{+}\left(L_{2}\right) \backslash S^{-}\left(L_{2}\right)\right)
\end{gathered}
$$

Sol (1994) used the following criterion:

$$
\begin{gathered}
\eta\left(L_{1}\right)=\eta\left(L_{2}\right), \quad t\left(L_{1}\right) \leq t\left(L_{2}\right), \quad c\left(L_{1}\right) \leq c\left(L_{2}\right) \\
S^{+}\left(L_{1}\right)=S^{+}\left(L_{2}\right), \quad S^{-}\left(L_{1}\right)=S^{-}\left(L_{2}\right)
\end{gathered}
$$

If label $L_{1}$ dominates label $L_{2}$ according to the criterion used by $\operatorname{Sol}$ (1994) then it also dominates $L_{2}$ using the criterion proposed in this paper, but the converse is not true. Our new criterion is therefore stronger than the one used by Sol.

Given a label $L$, let $U(L)$ be the set of unreachable requests from $\mathcal{P}(L)$. This set is defined as follows: $U(L)=\mathcal{V}(L) \cup\left\{i \in\{1, \ldots, n\}: t(L)+t_{\eta(L), i}>b_{i}\right\}$.

By replacing $\mathcal{V}(L)$ with $U(L)$ in (DOM1) and in equation (21) and (28), one obtains a stronger dominance criterion (DOM1'). This new dominance criterion is stronger for the
following reason: if a label $L_{1}$ dominates a label $L_{2}$ according to (DOM1) it also dominates $L_{2}$ according to the new criterion (DOM1'), but the converse is not true. In order to prove the validity of the new dominance criterion one has to consider the case where a label $L_{1}$ dominates a label $L_{2}$ according to the new criterion, but not according to (DOM1). That is when $U\left(L_{1}\right) \subseteq U\left(L_{2}\right)$ but $\mathcal{V}\left(L_{1}\right) \nsubseteq \mathcal{V}\left(L_{2}\right)$. Define $W=\mathcal{V}\left(L_{1}\right) \backslash \mathcal{V}\left(L_{2}\right)$. Any extension of $\mathcal{P}\left(L_{1}\right)$ cannot visit the requests in $W$. Hence, if an extension of $\mathcal{P}\left(L_{2}\right)$ could visit one request $i \in W$ then there could be an extension of $\mathcal{P}\left(L_{2}\right)$ that would be better than any extension of $\mathcal{P}\left(L_{1}\right)$ if $\pi_{i}$ is large. To see that no extension of $\mathcal{P}\left(L_{2}\right)$ can visit requests in $W$ observe that $W \subseteq U\left(L_{2}\right)$ since $W \subseteq \mathcal{V}\left(L_{1}\right) \subseteq U\left(L_{1}\right) \subseteq U\left(L_{2}\right)$. As a result, any extension of $\mathcal{P}\left(L_{2}\right)$ that visits a node from $W$ is violating a time window because of the definition of $U(L)$ and the assumption that $t_{i j}$ satisfies the triangle inequality.

The idea of considering $U(L)$ instead of $\mathcal{V}(L)$ was proposed by Feillet et al. (2004) in the context of the pricing problem for the VRPTW.

The dominance criteria (DOM1) and (DOM1') are strong, but they give rise to strict requirements on the cost structure of the underlying network. The definition of $d_{i j}$ from equation (18) cannot be used together with (DOM1) and (DOM1'). Indeed, one cannot ensure that the removal of a delivery node from a sub path will reduce the cost, and this property is used in the proof of Proposition 1. Consequently, the dominance criterion cannot be used directly in the presence of additional valid inequalities. Another drawback of these dominance criteria is that the removing of arcs from the network must be performed very carefully. An arc $(i, j)$ cannot be removed if the sub path $i, k, j$ is valid for some delivery $k$. In this case one cannot argue that removing deliveries from a path will yield a path with lower cost since removing the deliveries will result in an invalid route. Arc elimination is often useful within a branch-and-bound scheme that branches on the arcs in the original formulation (1)-(12).

As a consequence of the above discussion, we define an alternative dominance criterion (DOM1 $\dagger$ ) as follows: a label $L_{1}$ dominates a label $L_{2}$ if

$$
\eta\left(L_{1}\right)=\eta\left(L_{2}\right), \quad t\left(L_{1}\right) \leq t\left(L_{2}\right), \quad c\left(L_{1}\right) \leq c\left(L_{2}\right), \quad U\left(L_{1}\right) \subseteq U\left(L_{2}\right), \quad \mathcal{O}\left(L_{1}\right)=\mathcal{O}\left(L_{2}\right)
$$

This criterion is not as strong as (DOM1'), but it is easier to use, as it does not rely on any specific assumption regarding the cost structure of the network.

### 3.2.3 Label elimination

Dumas et al. (1991) proposed rules for eliminating labels that cannot be extended to node $2 n+1$. The key observation is that given a label $L$ one can examine the deliveries of the open requests in $\mathcal{O}(L)$. If it is impossible to create a path from $\eta(L)$ through the deliveries of $\mathcal{O}(L)$ to node $2 n+1$ that satisfies all time windows, then label $L$ can be discarded because of the triangle inequality on $t_{i j}$. Determining whether such a path exists can be done by solving a traveling salesman problem with time windows which is $\mathcal{N} \mathcal{P}$-hard. Consequently, Dumas et al. (1991) proposed to consider only subsets of $\mathcal{O}(L)$ of cardinality one and two. We are going to use the same approach. Furthermore we also test a single subset containing three deliveries. The first delivery $i_{1}$ in this subset is the one farthest from $\eta(L)$, the next delivery $i_{2}$ is the one farthest from $\eta(L)$ and $i_{1}$ and the last delivery is the one farthest from $\eta(L), i_{1}$ and $i_{2}$.

### 3.3 SPPTWCPD - SP2

We now consider the Shortest Path Problem with Time Windows, Capacity, and Pickup and Delivery (SPPTWCPD), denoted SP2, which relaxes SP1 by not requiring paths to be elementary. In this problem we do, however, impose two conditions which help prevent cycles: i) after performing a pickup, the same pickup cannot be performed again before the corresponding delivery has been performed, and ii) a delivery cannot be performed before the corresponding pickup has been performed. These conditions ensure that any cycle in a path will contain at least four nodes. The shortest cycle is of the form $i \rightarrow n+i \rightarrow j \rightarrow i$. One cannot go from $n+i$ to $i$ as the corresponding arc does not exist in our graph (see Section 5.2 for details on preprocessing). If time windows are tight, such cycles are unlikely to arise and the SPPTWCPD should yield good lower bounds. This shortest path problem was used as a pricing problem by Dumas et al. (1991).

### 3.3.1 Label management

For SP2, we store for each label the data summarized in Table 2.

Table 2: Resources used in SP2

| $\eta$ | The node of the label |
| :---: | :--- |
| $t$ | The arrival time at the node |
| $l$ | The current load |
| $c$ | The current cost |
| $\mathcal{O}$ | $\mathcal{O} \subseteq\{1, \ldots, n\}$ is the set of requests that have been <br> started but not finished. |

Determining if an extension of a label is feasible and creating new labels is done in a similar way as for SP1. We do not, however, maintain the set $\mathcal{V}$. Hence, equation (28) is not used and equation (21) is replaced with

$$
\begin{equation*}
0<j \leq n \wedge \mathcal{O}(L) \cap\{j\}=\emptyset . \tag{30}
\end{equation*}
$$

Replacing equation (21) with (30) implies that non elementary paths can be generated. When the delivery of request $i$ has been performed, $i$ is removed from $\mathcal{O}$ according to equation (29) and the path may then visit the pickup node of request $i$ once again.

### 3.3.2 Dominance criterion

The dominance criterion employed, denoted (DOM2) is the following: a label $L_{1}$ dominates a label $L_{2}$ if

$$
\eta\left(L_{1}\right)=\eta\left(L_{2}\right), \quad t\left(L_{1}\right) \leq t\left(L_{2}\right), \quad c\left(L_{1}\right) \leq c\left(L_{2}\right), \quad \mathcal{O}\left(L_{1}\right) \subseteq \mathcal{O}\left(L_{2}\right)
$$

Dumas et al. (1991) showed that this dominance criterion is valid.
Criterion (DOM2) has the same weaknesses as (DOM1) and (DOM1'), i.e., it can only be used on a network that satisfies certain assumptions on the cost structure, and therefore
cannot be used directly in a branch-and-cut-and-price algorithm. As a result, we again resort to a weaker criterion that allows arbitrary cost structures:

$$
\eta\left(L_{1}\right)=\eta\left(L_{2}\right), \quad t\left(L_{1}\right) \leq t\left(L_{2}\right), \quad c\left(L_{1}\right) \leq c\left(L_{2}\right), \quad \mathcal{O}\left(L_{1}\right)=\mathcal{O}\left(L_{2}\right)
$$

We denote this dominance criterion (DOM2 $\dagger$ ).
The label elimination rules described in Section 3.2.3 can be used for the SPPTWCPD as well. It is actually in this context that they were first introduced by Dumas et al.

### 3.4 ESPPTW - SP3

The Elementary Shortest Path Problem with Time Windows (ESPPTW), denoted as SP3, relaxes SP1 by removing the capacity, precedence and pairing constraints. As a result, the shortest path may visit the pickup node of a given request without visiting the corresponding delivery node, and vice-versa. In addition, if both the pickup and delivery nodes of a request are visited then the pickup node may be visited after the delivery node.

This problem is also a relaxation of the Elementary Shortest Path Problem with Time Windows and Capacity (ESPPTWC) which was recently used with success as a pricing problem for the VRPTW (Chabrier, 2003; Feillet et al., 2004).

If SP3 is used as a pricing subproblem for the PDPTW, the set partitioning formulation (13)-(15) must be modified to include one constraint for each node in $P \cup D$ (instead of only one constraint for each pickup node).

### 3.4.1 Label management

We store for each label the data summarized in Table 3.

Table 3: Resources used in SP3

| $\eta$ | The node of the label |
| :---: | :--- |
| $t$ | The arrival time at the node |
| $c$ | The current cost |
| $\mathcal{V}$ | $\mathcal{V} \subseteq\{1, \ldots, 2 n\}$ <br> the path. |

A label $L$ can be extended to a node $j$ if

$$
\begin{align*}
t(L)+t_{\eta(L), j} & \leq b_{j}  \tag{31}\\
\mathcal{V}(L) \cap\{j\} & =\emptyset . \tag{32}
\end{align*}
$$

Inequality (31) ensures time window feasibility while inequality (32) ensures that the path is elementary.

If extension along the $\operatorname{arc}(\eta(L), j)$ is feasible then a new label $L^{\prime}$ is created at node $j$. The information in label $L^{\prime}$ is set as follows:

$$
\begin{align*}
\eta\left(L^{\prime}\right) & =j  \tag{33}\\
t\left(L^{\prime}\right) & =\max \left\{a_{j}, t(L)+t_{\eta(L), j}\right\}  \tag{34}\\
c\left(L^{\prime}\right) & =c(L)+d_{\eta(L), j}  \tag{35}\\
\mathcal{V}\left(L^{\prime}\right) & =\mathcal{V}(L) \cup\{j\} . \tag{36}
\end{align*}
$$

Equation (33) sets the node of the new label, equation (34) sets the start time at the new label, equation (35) sets the cost of the new label, and equation (36) updates the set of visited nodes.

### 3.4.2 Dominance criterion

The following dominance criterion is used: a label $L_{1}$ dominates a label $L_{2}$ if

$$
\eta\left(L_{1}\right)=\eta\left(L_{2}\right), \quad t\left(L_{1}\right) \leq t\left(L_{2}\right), \quad c\left(L_{1}\right) \leq c\left(L_{2}\right), \quad \mathcal{V}\left(L_{1}\right) \subseteq \mathcal{V}\left(L_{2}\right)
$$

By defining $U(L)=\mathcal{V}(L) \cup\left\{i \in\{1, \ldots, 2 n\}: t(L)+t_{\eta(L), i}>b_{i}\right\}$ be the set of unreachable nodes, the dominance criterion can be improved to

$$
\eta\left(L_{1}\right)=\eta\left(L_{2}\right), \quad t\left(L_{1}\right) \leq t\left(L_{2}\right), \quad c\left(L_{1}\right) \leq c\left(L_{2}\right), \quad U\left(L_{1}\right) \subseteq U\left(L_{2}\right)
$$

This idea was proposed by Feillet et al. (2004) and is similar to the improvement for the ESPPTWCPD described in Section 3.2.2.

We should point out that in the PDPTW, the load of a vehicle is not monotonous increasing or decreasing along a path as is the case for the VRP and VRPTW. As a result, including capacity constraints makes the pricing subproblem much harder to solve. This is why we have chosen to consider the ESPPTW instead of the ESPPTWC which was considered by Chabrier (2003) and Feillet et al. (2004).

### 3.5 ESPPTWP - SP4

The Elementary Shortest Path Problem with Time Windows and Precedence Constraints (ESPPTWP), denoted SP4, relaxes SP1 by removing the capacity and pairing constraints. In this relaxation, a path may visit the pickup node of a given vertex without visiting the corresponding delivery node, and vice-versa. However, if both nodes are visited, then the pickup node must be visited before the delivery node.

This shortest path algorithm is easily obtained from the algorithm for SP3 that uses the set $U$ of unreachable nodes instead of $\mathcal{V}$. The definition of $U$ in SP4 is:

$$
U(L)=\mathcal{V}(L) \cup\left\{i \in\{1, \ldots, 2 n\}: t(L)+t_{\eta(L), i}>b_{i} \vee i \notin \bigcap_{j \in \mathcal{V}(L)} \mathcal{S}_{j}\right\}
$$

where $\mathcal{S}_{j}$ is the set of possible successors to node $j$. The basic definition of $\mathcal{S}_{j}$ is

$$
\mathcal{S}_{j}= \begin{cases}(P \backslash\{j\}) \cup D \cup\{2 n+1\} & \text { if } j \in P \\ (P \backslash\{j-n\}) \cup(D \backslash\{j\}) \cup\{2 n+1\} & \text { if } j \in D\end{cases}
$$

If $j$ is a delivery node then $j-n$ clearly is not a valid successor. It is possible to reduce the sets $\mathcal{S}_{j}$ even more. For example, nodes that cannot be visited after node $j$ because of conflicting time windows can be removed from the set. This will not, however, have any impact on the lower bound obtained from the LPM.

One may instead use the pairing and precedence constraints from the PDPTW to further reduce the set $\mathcal{S}_{j}$. For example, if $j$ and $i$ are two pickup nodes for which time windows and capacity constraints make it impossible to visit both $i, n+i$ and $n+j$ after $j$, then $i$ and $n+i$ can be removed from $\mathcal{S}_{j}$ even though it may be possible to visit either $i$ or $n+i$ after $j$ if they are considered as individual nodes. These reductions may improve the lower bound obtained from the LPM because they transfer some of the pairing and precedence structure from the PDPTW to the ESPPTW.

### 3.6 Implementation issues

When implementing the labeling algorithms, one can store the sets $\mathcal{V}$ and $\mathcal{O}$ as binary vectors encoded as vectors of integers. In this representation, the $i$-th bit indicates whether the $i$-th request is part of the set. Consider for example a computer with 32 -bit integers. If $n=50$ then $\left\lceil\frac{50}{32}\right\rceil=2$ integers are necessary to store each set. The labeling algorithms must perform a large number of dominance checks and each check requires that a set inclusion test be carried out twice (in case of SP1). The set inclusion test can be implemented using bitwise operations on the integers such that $w$ bits can be processed in parallel, where $w$ is the size of a machine word. To compare two words $x$ and $y$ one perform the operation $x \& y$, where \& performs bitwise "and". If $x-(x \& y)=0$ then the set corresponding to $x$ is included in the set corresponding to $y$. The other inclusion can be tested in the same way. If both $x-(x \& y) \neq 0$ and $y-(x \& y) \neq 0$ then neither set is a subset of the other. To test for inclusion when the sets contain more than $w$ items the operation is repeated for each word in the vector. This approach yields a significant speed improvement when compared to testing each bit separately. It has likely been used before but we are not aware of it having been described in the shortest path literature.

### 3.7 Strength of lower bounds using various pricing algorithms

Figure 3.7 shows the relative strength of the LP relaxation obtained using the different pricing algorithms. An arrow from $X$ to $Y$ indicates that the LP relaxation obtained by using pricing problem $Y$ is tighter than the one obtained with pricing problem $X$.


### 3.8 Possible improvements

Irnich and Villeneuve (2003) have proposed a labeling algorithm that solves non-elementary shortest path problems while ensuring that cycles of length $k$ or smaller do not occur. Their approach could be used to strengthen the lower bound of the LPM when using SP2 as a pricing problem since SP2 allows cycles containing more than two arcs. However, the computational results presented in section 6 show that the lower bound obtained with SP2
already are quite close to the lower bounds obtained with SP1, so it is not clear if the effort involved with forbidding longer cycles is worthwhile.

On a different note, Righini and Salani (2004) have proposed a bi-directional approach to shortest path problems with resource constraints. Instead of starting the label extension only from the source node, they simultaneously extend labels both from the source and the sink nodes. The two searches eventually meet at a point where the paths from the source are merged with paths from the sink. This approach has shown great potential for reducing the running time of the shortest path algorithm. It is out of the scope of the current paper to apply this technique to the shortest path problems considered, but it would be a promising area for future research.

## 4 Valid Inequalities

This section describes families of valid inequalities that can be used to strengthen the linear relaxation of the set partitioning formulation of the problem. To describe these inequalities, it is convenient to introduce new notation. For any node subset $S \subseteq V$, let $\delta^{+}(S)=\{(i, j) \in$ $A \mid i \in S, j \notin S\}$. We also use $\delta^{+}(i)$ to designate the set $\delta^{+}(\{i\})$. Finally, let $x_{i j}=\sum_{k \in K} x_{i j}^{k}$.

### 4.1 Infeasible path inequalities

Cordeau (2005) and Ropke et al. (2005) discussed infeasible path inequalities and various strengthenings for the PDPTW. In this paper we will use two types of infeasible path inequalities. Consider an infeasible path $R=\left(k_{1}, \ldots, k_{r}\right)$, then the inequality

$$
\begin{equation*}
\sum_{i=1}^{r-1} x_{k_{i}, k_{i+1}} \leq r-2 \tag{37}
\end{equation*}
$$

is valid. In this paper the inequality is used as a simple way of handling ride time constraints, it is not believed to be very strong. Cordeau (2005) observed that the inequality can be strengthened if $k_{1}=i$ and $k_{r}=n+i$ for some $i \in P$ and the path is infeasible because of time windows or ride time constraints. In that case the inequality can be strengthened to

$$
\begin{equation*}
\sum_{i=1}^{r-1} x_{k_{i}, k_{i+1}} \leq r-3 \tag{38}
\end{equation*}
$$

### 4.2 Fork inequalities

Let $R=\left(k_{1}, \ldots, k_{r}\right)$ be a feasible path in $G$ and $S, T_{1}, \ldots, T_{r} \subset(P \cup D) \backslash R$ be subsets such that for any integer $h \leq r$ and any node pair $i \in S, j \in T_{h}$, the path $\left(i, k_{1}, \ldots, k_{h}, j\right)$ is infeasible. The following inequality is then valid for the PDPTW:

$$
\begin{equation*}
\sum_{i \in S} x_{i, k_{1}}+\sum_{h=1}^{r-1} x_{k_{h}, k_{h+1}}+\sum_{h=1}^{r} \sum_{j \in T_{h}} x_{k_{h}, j} \leq r . \tag{39}
\end{equation*}
$$

Similarly, if $R=\left(k_{1}, \ldots, k_{r}\right)$ is a feasible path in $G$ and $S_{1}, \ldots, S_{r}, T \subset(P \cup D) \backslash R$ are subsets such that for any integer $h \leq r$ and any node pair $i \in S_{h}, j \in T$, the path
$\left(i, k_{h}, \ldots, k_{r}, j\right)$ is infeasible, then the following inequality is valid for the PDPTW:

$$
\begin{equation*}
\sum_{h=1}^{r} \sum_{i \in S_{h}} x_{i, k_{h}}+\sum_{h=1}^{r-1} x_{k_{h}, k_{h+1}}+\sum_{j \in T} x_{k_{r}, j} \leq r . \tag{40}
\end{equation*}
$$

Inequalities (39) and (40) were introduced by Ropke et al. (2005) and are called outfork and infork inequalities, respectively.

### 4.3 Reachability inequalities

For any node $i \in N$, let $A_{i}^{-} \subset A$ be the minimum arc set such that any feasible path from the origin depot 0 to node $i$ uses only arcs from $A_{i}^{-}$. Let also $A_{i}^{+}$be the minimum arc set such that any feasible path from $i$ to the destination depot $2 n+1$ uses only arcs in $A_{i}^{+}$. Consider a node set $T$ such that each node in $T$ must be visited by a different vehicle. This set is said to be conflicting. For any conflicting node set $T$, define the reaching arc set $A_{T}^{-}=\cup_{i \in T} A_{i}^{-}$ and the reachable arc set $A_{T}^{+}=\cup_{i \in T} A_{i}^{+}$. For any node set $S \subseteq P \cup D$ and any conflicting node set $T \subseteq S$, the following two valid inequalities were introduced by Lysgaard (2005) for the VRP with time windows:

$$
\begin{align*}
x\left(\delta^{-}(S) \cap A_{T}^{-}\right) & \geq|T|  \tag{41}\\
x\left(\delta^{+}(S) \cap A_{T}^{+}\right) & \geq|T| . \tag{42}
\end{align*}
$$

These inequalities are obviously also valid for the PDPTW. In this problem, however, nodes can be conflicting not only because of time windows but also because of the precedence relationships and the capacity constraints. In the case of the DARP, the ride time constraints should also be taken into account when checking whether a pair of requests is conflicting.

### 4.4 Rounded capacity inequalities

Rounded capacity inequalities often used in the context of the vehicle routing problem (see, e.g., Naddef and Rinaldi, 2002) can also be used for the PDPTW. For any node subset $S \subseteq V \backslash(\{0,2 n+1\})$, the following inequality is valid:

$$
\sum_{i \in S} \sum_{j \in V \backslash S} x_{i j} \geq\left\lceil\frac{\left|\sum_{i \in S} q_{i}\right|}{Q}\right\rceil
$$

### 4.5 Precedence inequalities

Let $S$ be a subset of $V \backslash(\{0,2 n+1\})$ such that $i \in S$ and $n+i \notin S$ for some $i \in P$. Then the following inequality is valid:

$$
\sum_{i \in S} \sum_{j \in V \backslash S} x_{i j} \geq 1
$$

Precedence inequalities were introduced by Ruland and Rodin (1997) in the context of the TSP with pickup and delivery.

### 4.6 Strengthened precedence cuts

Using ideas from the reachability inequalities, the precedence inequalities can be strengthened as follows. Let $A_{i}$ be the set of arcs that can be used in a feasible path from $i$ to $n+i$. Furthermore let $S$ be a subset of $V \backslash(\{0,2 n+1\})$ such that $i \in S$ and $n+i \notin S$ for some $i \in P$. Then the following inequality is clearly valid for the PDPTW:

$$
\sum_{(i, j) \in\left(\delta^{+}(S) \cap A_{i}\right)} x_{i j} \geq 1
$$

## 5 Branch-and-Cut-and-Price Algorithm

### 5.1 Overview

Branch-and-cut is a well-known solution paradigm which has proved to very efficient for the solution of several families of combinatorial problems. In particular, this approach has been successful in solving the TSP and the VRP. In branch-and-cut algorithms, some constraints are relaxed and introduced dynamically in the model when they are violated by the solution to the relaxation solved in a node of the branch-and-bound tree. This is accomplished by solving a separation problem to identify violated inequalities. Branch-and-cut-and-price is a variant of branch-and-cut in which the linear programming relaxations obtained at each node of the branch-and-bound tree are solved by column generation.

It is well known that the running time of branch-and-price algorithms can be improved by using heuristic algorithms for the pricing problem. As long as the heuristic algorithms are able to find columns with negative reduced-cost one can add those columns to the LPM and solve the problem again. If the heuristics fail to identify columns with a negative reduced-cost, one then has to apply an exact pricing algorithm to verify whether no negative reduced-cost columns exist, or to find one or more columns that can be added to the LPM.

Ideally it should be necessary to call the exact pricing algorithm only once for each node in the branch-and-bound tree to verify that no reduced-cost column exists. In fact, this is not even necessary if the relaxation value associated with a node is lower than the current upper bound. In this case, the lower bound will not be used to fathom the node and it is not necessary to find the optimal relaxation value for this node. To use this strategy, however, one needs good pricing heuristics to avoid branching on incorrect data.

Every time the LPM has been solved we are faced with a choice of either trying to generate more variables (columns) or valid inequalities (rows). Adding both at the same time does not seem to make sense as the inclusion of more violated valid inequalities probably implies that other variables are needed compared to the ones we need with the current model. The simplest approach would be to add variables until no more variables with negative reduced cost exists and then try to generate violated inequalities.

We take a very similar approach: variables are generated as long as the heuristics are able to identify promising variables. When the heuristics fail, the cut generation routines take over unless the lower bound is above the upper bound or if cut generation has been tried before without success in the current branch and bound node. If cut generation is tried and identifies violated inequalities, then they are added to the model and the pricing heuristics are allowed to try to find variables with negative reduced costs again. If the cut generation
is unsuccessful or if it is not tried because of the reasons listed above then the exact pricing algorithm is called.

In the following sections, we first describe preprocessing techniques to reduce the size of the problem and strengthen some of its parameters. We then explain the branching strategy used to explore the enumeration tree, and the separation procedures for the identification of violated valid inequalities. We finally describe several heuristics which can be used to solve the pricing problem.

### 5.2 Preprocessing

Several preprocessing rules for tightening time windows in the PDPTW and the DARP have been described in Dumas et al. (1991) and Cordeau (2005). All these rules have been implemented here. In addition, Desrochers et al. (1992) propose the following four rules for tightening time windows in the VRPTW:

1. Minimal arrival time from predecessors

$$
a_{k}=\max \left\{a_{k}, \min \left\{b_{k}, \min _{(i, k) \in A^{\prime}}\left\{a_{i}+t_{i k}\right\}\right\}\right\}
$$

2. Minimal arrival time to successors

$$
a_{k}=\max \left\{a_{k}, \min \left\{b_{k}, \min _{(k, j) \in A^{\prime}}\left\{a_{j}-t_{k j}\right\}\right\}\right\}
$$

3. Maximal departure time from predecessors

$$
b_{k}=\min \left\{b_{k}, \max \left\{a_{k}, \max _{(i, k) \in A^{\prime}}\left\{b_{i}+t_{i k}\right\}\right\}\right\}
$$

4. Maximal departure time to successors

$$
b_{k}=\min \left\{b_{k}, \max \left\{a_{k}, \max _{(k, j) \in A^{\prime}}\left\{b_{j}-t_{k j}\right\}\right\}\right\}
$$

In these rules, the set $A^{\prime}$ is the set of feasible arcs for the problem. Cordeau (2005) describes how to compute this set from $A$. The four rules are applied to each node in a cyclic fashion. In combination with the rules described in Dumas et al. (1991) and Cordeau (2005) one actually need only apply rules 2 and 3 .

In the case of the DARP, however, care must be taken when applying these time window tightening rules. Indeed, one cannot tighten the start of the time window of a delivery node or the end of the time window of a pickup node as this may then lead to an increase of the ride time associated to the corresponding request.

### 5.3 Branching strategy

When the solution of the LPM is fractional and no violated inequality can be identified, one has to resort to branching. Branching in a column generation algorithm should be done with care as the branching strategy should preferably be compatible with the algorithm used for solving the pricing problem, i.e., the same type of pricing problem should be solved in the child nodes as in the parent node. This implies that branching decisions should be easily transferred to the subproblem and should not change its structure.

Three branching strategies have been implemented which are compatible with the pricing problems considered in this paper except for solving SP1 and SP2 using dominance criteria (DOM1') and (DOM2).

The first strategy branches on the arc variables $x_{i j}$. The procedure for doing this is described in detail by Desrochers et al. (1992). Our implementation branches on the arc with a flow closest to 0.5 .

The second strategy branches on the outflow of a set of nodes as proposed for VRP by Naddef and Rinaldi (2002). A set of nodes $S$ is first selected such that $x\left(\delta^{+}(S)\right)$ is as fractional as possible. Two branches are then created: $x\left(\delta^{+}(S)\right) \leq\left\lfloor x\left(\delta^{+}(S)\right)\right\rfloor$ and $x\left(\delta^{+}(S)\right) \geq\left\lceil x\left(\delta^{+}(S)\right)\right\rceil$. In our implementation, the set $S$ is found using a simple greedy heuristic.

The last strategy calculates $x\left(\delta^{+}(0)\right)$. If $x\left(\delta^{+}(0)\right)$ is fractional then the two branches $x\left(\delta^{+}(0)\right) \leq\left\lfloor x\left(\delta^{+}(0)\right)\right\rfloor$ and $x\left(\delta^{+}(0)\right) \geq\left\lceil x\left(\delta^{+}(0)\right)\right\rceil$ are created. If $x\left(\delta^{+}(0)\right)$ is integer then one of the two previous branching strategies is used. This rule was proposed by Desrochers et al. (1992). This branching strategy is often called branching on the number of vehicles.

In our branch-and-cut-and-price algorithm, the enumeration tree is explored in a depthfirst fashion. This choice is motivated by the availability of high-quality heuristics for the PDPTW which generally provide tight upper bounds.

### 5.4 Separation routines

We refer the reader to Ropke et al. (2005) for a description of the separation procedures for the fork, capacity, reachability and precedence inequalities. An exact, polynomial-time separation procedure for the strengthened precedence inequality is described below.

### 5.4.1 Strengthened precedence inequality

Before starting the branch-and-bound procedure the sets $A_{i}$ are calculated for every request $i$. If the sets $A_{i}^{-}$and $A_{i}^{+}$are known then one can use the fact that $A_{i} \subseteq A_{n+i}^{-} \cap A_{i}^{+}$to speed up the calculation of $A_{i}$. In order to separate the inequality the following procedure is applied for every request $i$ :

1. Construct a graph with nodes $\{1, \ldots, 2 n\}$ and $\operatorname{arcs} A_{i}$.
2. Set the the weight of each $\operatorname{arc}(i, j)$ equal to $\tilde{x}_{i j}$ where $\tilde{x}_{i j}$ is the total flow on $\operatorname{arc}(i, j)$ in the current solution to LPM.
3. Solve a minimum cut problem on the graph with node $i$ as source and node $n+i$ as sink, yielding a set $S \ni i$.

If the flow across the minimum cut is less than 1 , then one has identified a violated inequality $\sum_{(i, j) \in\left(\delta^{+}(S) \cap A_{i}\right)} x_{i j} \geq 1$.

### 5.4.2 Cut pool management

Every time the LPM is solved the algorithm determines which of the valid inequalities previously generated are satisfied at equality by the current solution. If an inequality has not been binding for ten consecutive iterations, it is removed from the problem and inserted in a cut pool. Every time the LPM is solved, the cut pool is checked for violated inequalities. If a violated inequality is found in the cut pool, it is then added to the linear relaxation and the problem is solved again. Once an inequality has been identified by one of the separation procedures it will always stay in the program, either explicitly in the model, or implicitly in the cut pool. In computational experiments, a significant performance boost was observed when using this approach compared to keeping all inequalities in the formulation.

### 5.5 Pricing problem heuristics

We first present in Section 5.5.1 two general heuristics which are valid for all the pricing problems described in section 3. They both work by truncating the labeling algorithms. In Section 5.5.2 and 5.5.3 we then introduce more specialized heuristics that work by the classic construction and improvement principle.

### 5.5.1 Label heuristics

It has previously been proposed to turn exact labeling algorithms into heuristics by limiting the number of labels created in different ways. For example, Dumas et al. (1991) proposed to reduce the network before running the pricing algorithm. They created networks with between $30 \%$ and $50 \%$ of the best arcs. Irnich and Villeneuve (2003) used a variant of this idea by creating reduced networks $G_{l}$ where each node is connected to its $l$ nearest neighbors.

In this paper we let the reduced network $G_{l}$ consist of the shortest arcs with respect to $d_{i j}$. Each node $i \in\{1, \ldots, 2 n\}$ is incident with at most $l$ outgoing arcs reaching a pickup node and $l$ outgoing arcs reaching a delivery node. After construction, all feasible arcs $(i, n+i),(0, i),(n+i, 2 n+1), i \in\{0, \ldots, n\}$ which are not already in $G_{l}$ are added to $G_{l}$. The arcs are grouped into pickup/delivery arcs to keep the network balanced. The current implementation uses two reduced networks $G_{5}$ and $G_{10}$. If the search using network $G_{5}$ does not find any negative paths then it switches to network $G_{10}$. The corresponding heuristics is denoted $H 1$.

Dumitrescu (2002) proposed to limit the number of unprocessed labels at any time. For our purpose this corresponds to putting a limit on $U(|U| \leq \mu)$ in Algorithm 1. Only the $\mu$ best (with respect to the reduced cost) labels are kept, the worst labels being discarded. This heuristic is used in a three-phase fashion. First a limit $\mu=500$ is used. If the heuristic does not find any negative cost paths then $\mu=1000$, and finally $\mu=2000$ is tried. This heuristic is denoted $H 2$.

If $H 2$ does not return any negative cost paths then, it can in some cases be proved that no negative cost paths exists. This happens if one has never discarded labels because of the limit on unprocessed labels. However, this is only likely to happens for easy problem
instances. A similar property was observed by Jepsen et al. (2005) when creating a heuristic by limiting the total number of labels processed.

For both of the heuristics and the exact algorithms based on the labeling algorithm we generate more than one negative cost column, but stop the algorithm if 100 different negative reduced-cost columns have been generated. All negative reduced cost columns are added to the LPM.

### 5.5.2 Construction heuristic

Heuristics that do not use the label setting algorithm have been implemented to determine whether another heuristic paradigm could provide the same or better solution quality as the heuristics based on labeling algorithms which are the most popular in column generation algorithms.

Sol (1994) proposed to use a cheapest insertion heuristic to solve the ESPPTWCPD. A similar approach is implemented in this paper. Starting from a route containing only request $i$ we add the request that increases the least the reduced-cost of the path. During insertions we keep track of the best route observed. The process is repeated with every request as a starting point. This algorithm is denoted H3.

A straightforward way to improve this heuristic is by randomizing it. This can be done by performing insertions that are not the most promising: the possible insertions are ranked by insertion cost and a request is chosen by a random process that tends to select insertions with low cost. When using the randomized insertion it is worthwhile to try to construct a route starting from the same initial route containing request $i$ several times. This algorithm is denoted $H 4$.

### 5.5.3 LNS heuristic

It is well known that improvement or steepest descent heuristics often produce high quality solutions in little time. This has been used by Savelsbergh and Sol (1998) (see also Sol (1994)) to propose improvement heuristics for the pricing problem. As an initial solution, routes from the current LPM with reduced cost 0 were used. Their neighborhood move consisted of removing one node and inserting another. Notice that this move never changes the length of the initial path.

In this section we describe a different improvement heuristic which is based on the Large Neighborhood Search (LNS) introduced by Shaw (1998). Ropke and Pisinger (2004) showed that the LNS can be easily implemented by using simple construction heuristics, an idea that will be used here. The LNS algorithm attempts to improve an initial path by alternating between removing requests from the path and inserting requests into the path. The requests to remove are chosen randomly and requests are inserted using the randomized insertion algorithm outlined in section 5.5.2.

The pseudo-code for the LNS is shown in Algorithm 2. The algorithm takes a path $p$ and an integer $\sigma$ as input. The parameter $\sigma$ determines how many times the removal/insertion iterations should be performed without improving the path.

In line 3 we set $f$, the cost of the currently best solution. Line 4 makes the algorithm continue as long as an improvement is found. In line 6 nodes are removed from the path. The function removeNodes $(p)$ returns a path where up to $50 \%$ of the nodes from $p$ have been removed, $p$ itself is not changed. In line 7 nodes are inserted into the path again, the

```
Algorithm 2 LNS pseudo code.
    Input: Path \(p\), integer \(\sigma\)
    for \(i=1, \ldots, \sigma\)
        \(f=\infty\);
        while \((c(p)<f)\)
            \(f=c(p) ;\)
            \(p^{\prime}=\) removeNodes \((p)\);
            \(p^{\prime}=\) randomizedInsert ( \(p^{\prime}\) );
            if \(c\left(p^{\prime}\right)<f\)
                \(p=p^{\prime} ;\)
    return \(p\);
```

insertion is randomized but good insertions are favored. Any unplanned node can be inserted. In line 8 and 9 the current solution is updated if an improvement was found. The functions removeNodes and randomizedInsert are dependent on the shortest path problem that is solved (e.g. they take into account whether the path must satisfy the pairing constraint).

The improvement heuristic is used in two contexts: In heuristic H5, LNS is used to improve the paths that are selected $\left(y_{r}>0\right)$ in the current LP solution, in H5, $\sigma$ is set to 20. In heuristic H6, LNS is used to improve the paths generated by the randomized insertion heuristic described in Section 5.5.2. The LNS heuristic is applied to paths with reduced cost greater than or equal to zero to try to bring the reduced-cost below 0 . In $\mathrm{H} 6, \sigma$ is set to 5 as many paths are given to the improvement heuristic.

## 6 Computational experiments

This section describes the computational experiments that we have performed on several sets of test instances for both the PDPTW and the DARP. The algorithm was implemented in C++ and all experiments were carried out on an AMD Opteron 250 computer ( 2.4 GHz ) running Linux. CPLEX 9.0 was used as LP solver and the COIN-OR Open Solver Interface (OSI, http://www.coin-or.org/index.html) was used as an interface to the LP solver. In all experiments, a limit of two hours of CPU time was used unless otherwise indicated.

For the PDPTW, we have used two main sets of instances. The first one was introduced by Li and Lim (2001) and is based on the well-known Solomon test problems for the VRPTW.

The second set of instances was introduced by Ropke et al. (2005) and is based on a generator initially proposed by Savelsbergh and Sol (1998). As explained by Ropke et al., the generator was modified to obtain harder instances by reducing the ratio between the travel times and the length of the planning horizon. In addition, the new generator considers a single depot located at the middle of a square instead of a different depot for each vehicle.

In all instances, the coordinates of each pickup and delivery location are chosen randomly according to a uniform distribution over the $[0,50] \times[0,50]$ square. The load $q_{i}$ of request $i$ is selected randomly from the interval $[5, Q]$, where $Q$ is the vehicle capacity. A planning horizon of length $T=600$ is considered and each time window has width $W$. The time windows for request $i$ are constructed by first randomly selecting $e_{i}$ in the interval $\left[0, T-t_{i, n+i}\right]$ and then setting $l_{i}=e_{i}+W, e_{n+i}=e_{i}+t_{i, n+i}$ and $l_{n+i}=e_{n+i}+W$. In all instances, the
primary objective consists of minimizing the number of vehicles, and a fixed cost of $10^{4}$ is thus imposed on each outgoing arc from the depot.

Five groups of instances were generated by considering different values of $Q$ and $W$. The characteristics of these groups are summarized in Table 4. Ropke et al. (2005) considered ten instances with $30 \leq n \leq 75$ in each of the first four groups. Here, we introduce larger instances with $100 \leq n \leq 200$ as well as a new group of instances (group E) with $Q=30$. This yields a total of 75 instances. The name of each instance (e.g., A50) indicates the class to which it belongs and the number of requests it contains.

Table 4: Characteristics of the new PDPTW instances

| Class | $Q$ | W |
| :---: | :---: | :---: |
| A | 15 | 60 |
| B | 20 | 60 |
| C | 15 | 120 |
| D | 20 | 120 |
| E | 30 | 120 |

The third set of instances that we have used for testing was introduced by Cordeau (2005) for the DARP. These consist of randomly generated Euclidean DARP instances comprising up to 96 requests. They all have narrow time windows of 15 minutes. In the first subset ('a' instances), $q_{i}=1$ for every request $i$ and the vehicle capacity is $Q=3$. In the second set ('b' instances), $q_{i}$ belongs to the interval $[1,6]$ and $Q=6$. These data are described in detail in Cordeau (2005) and are available on the following web site: http://www.hec.ca/chairedistributique/data/darp. Their main characteristics are summarized in Table 5. In this table, columns $|K|$ and $T$ indicate, respectively, the number of available vehicles and the length of the planning horizon in which time windows are generated. The constraint on the number of vehicles is easily imposed in our formulations as a bound on the total outgoing flow from the origin depot.

The pricing algorithms operate on travel times with a fixed number of decimals. Thus for the DARP and Li and Lim instances distances and travel times have been truncated (rounded down) to four decimals. For the PDPTW instances similar to the ones proposed by Savelsbergh and Sol, distances and travel times have been rounded up to two decimals. We have less precision for these instances to avoid numerical problems due to the fixed costs on vehicles that results in high route costs. Travel times are rounded up to ensure that the travel times satisfy the triangle inequality. For the DARP and Li and Lim instances this is not a problem as a service time is associated with each request.

Our computational experiments focus on four aspects. First, we wished to investigate the impact of the various subproblems described in Section 3. Second, we wanted to measure the impact of the valid inequalities described in Section 4 on the performance of the branch-andprice algorithm. Third, we wanted to compare the performance of our branch-and-cut-andprice algorithm to the branch-and-cut algorithm of Ropke et al. (2005). Fourth, we wanted to measure the impact of the pricing heuristics.

Table 5: Characteristics of DARP instances

| Instance | $\|K\|$ | $n$ | $T$ | $Q$ | $L$ | Instance | $\|K\|$ | $n$ | $T$ | $Q$ | $L$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{a} 2-16$ | 2 | 16 | 480 | 3 | 30 | $\mathrm{~b} 2-16$ | 2 | 16 | 480 | 6 | 45 |
| $\mathrm{a} 2-20$ | 2 | 20 | 600 | 3 | 30 | $\mathrm{~b} 2-20$ | 2 | 20 | 600 | 6 | 45 |
| $\mathrm{a} 2-24$ | 2 | 24 | 720 | 3 | 30 | $\mathrm{~b} 2-24$ | 2 | 24 | 720 | 6 | 45 |
| $\mathrm{a} 3-24$ | 3 | 24 | 480 | 3 | 30 | $\mathrm{~b} 3-24$ | 3 | 24 | 480 | 6 | 45 |
| $\mathrm{a} 3-30$ | 3 | 30 | 600 | 3 | 30 | $\mathrm{~b} 3-30$ | 3 | 30 | 600 | 6 | 45 |
| $\mathrm{a} 3-36$ | 3 | 36 | 720 | 3 | 30 | $\mathrm{~b} 3-36$ | 3 | 36 | 720 | 6 | 45 |
| $\mathrm{a} 4-32$ | 4 | 32 | 480 | 3 | 30 | $\mathrm{~b} 4-32$ | 4 | 32 | 480 | 6 | 45 |
| $\mathrm{a} 4-40$ | 4 | 40 | 600 | 3 | 30 | $\mathrm{~b} 4-40$ | 4 | 40 | 600 | 6 | 45 |
| $\mathrm{a} 4-48$ | 4 | 48 | 720 | 3 | 30 | $\mathrm{~b} 4-48$ | 4 | 48 | 720 | 6 | 45 |
| $\mathrm{a} 5-40$ | 5 | 40 | 480 | 3 | 30 | $\mathrm{~b} 5-40$ | 5 | 40 | 480 | 6 | 45 |
| $\mathrm{a} 5-50$ | 5 | 50 | 600 | 3 | 30 | $\mathrm{~b} 5-50$ | 5 | 50 | 600 | 6 | 45 |
| $\mathrm{a} 5-60$ | 5 | 60 | 720 | 3 | 30 | $\mathrm{~b} 5-60$ | 5 | 60 | 720 | 6 | 45 |
| $\mathrm{a} 6-48$ | 6 | 48 | 480 | 3 | 30 | $\mathrm{~b} 6-48$ | 6 | 48 | 480 | 6 | 45 |
| $\mathrm{a} 6-60$ | 6 | 60 | 600 | 3 | 30 | $\mathrm{~b} 6-60$ | 6 | 60 | 600 | 6 | 45 |
| $\mathrm{a} 6-72$ | 6 | 72 | 720 | 3 | 30 | $\mathrm{~b} 6-72$ | 6 | 72 | 720 | 6 | 45 |
| $\mathrm{a} 7-56$ | 7 | 56 | 480 | 3 | 30 | $\mathrm{~b} 7-56$ | 7 | 56 | 480 | 6 | 45 |
| $\mathrm{a} 7-70$ | 7 | 70 | 600 | 3 | 30 | $\mathrm{~b} 7-70$ | 7 | 70 | 600 | 6 | 45 |
| $\mathrm{a} 7-84$ | 7 | 84 | 720 | 3 | 30 | $\mathrm{~b} 7-84$ | 7 | 84 | 720 | 6 | 45 |
| $\mathrm{a} 8-64$ | 8 | 64 | 480 | 3 | 30 | $\mathrm{~b} 8-64$ | 8 | 64 | 480 | 6 | 45 |
| $\mathrm{a} 8-80$ | 8 | 80 | 600 | 3 | 30 | $\mathrm{~b} 8-80$ | 8 | 80 | 600 | 6 | 45 |
| $\mathrm{a} 8-96$ | 8 | 96 | 720 | 3 | 30 | $\mathrm{~b} 8-96$ | 8 | 96 | 720 | 6 | 45 |

### 6.1 Pricing algorithms

Six different pricing algorithms will be used in the rest of this section. The SP1 pricing problem is solved using two algorithms. The algorithm denoted SP1* uses the algorithm based on the (DOM1') dominance criterion, while the algorithm denoted SP1 uses the algorithm based on the (DOM1 $\dagger$ ) dominance criterion. Similarly SP2 uses the (DOM2 $\dagger$ ) criterion while SP2* uses the (DOM2) criterion. The (DOM1') and (DOM2) criteria are stronger than the (DOM1 $\dagger$ ) and DOM2 $\dagger$ ) criteria, but they are not compatible with our branching scheme and cutting planes (see Sections 3.2 and 3.3) so the SP1* and SP2* algorithms are only used to calculate a lower bound.

For the SP3 and SP4 pricing problems we only have one pricing algorithm for each problem.

Notice that SP1 and SP2 are used to denote both a PDPTW relaxation and an algorithm. The meaning should be clear from the context.

### 6.2 Pricing heuristics

In this section, we report the results of experiments performed with the pricing heuristics introduced in Section 5.5. The heuristics have been tested on series 1 of the 50 request test set proposed by Li and Lim (2001) as these instances turn out to produce hard pricing problems.

To limit the number of tables, we only report results for relaxation SP1. We propose
a number of configurations of the pricing heuristic and test how long it takes to prove the lower bound for each instance when using the particular heuristic configuration together with either exact algorithm SP1* or SP1. Results for SP1* are shown in Table 7 while results for SP1 are shown in Table 8.

Nine combinations (A2-A10) of the heuristics were tested and the algorithm was also tested without any heuristic (A1). Table 6 gives an overview of these configurations. The left column shows the configuration name and the right one shows the heuristics used in the configuration. The sequence of the heuristics shows their calling sequence. As an example, in configuration A3, heuristic H3 is tried first and if this fails to find paths with negative reduced cost then heuristic H 1 is tried. If this also fails then the algorithm resorts to the exact shortest path algorithm.

Only the construction heuristic (H3) was tested alone (configuration A2). The rest of the heuristics were tested together with the construction heuristic as it quickly can produce some routess early in the column generation process. Configurations A3 to A7 test one heuristic together with the construction heuristic. Configuration A8 tests the two heuristics based on the label setting algorithm together. Configuration A9 tests the randomized insertion together with the LNS heuristics and configuration A10 includes all heuristics.

| Configuration <br> name | Heuristics and <br> sequence |
| ---: | ---: |
| A 1 | None |
| A 2 | H 3 |
| A 3 | $\mathrm{H} 3-\mathrm{H} 1$ |
| A 4 | $\mathrm{H} 3-\mathrm{H} 2$ |
| A 5 | $\mathrm{H} 3-\mathrm{H} 4$ |
| A 6 | $\mathrm{H} 3-\mathrm{H} 5$ |
| A 7 | $\mathrm{H} 3-\mathrm{H} 6$ |
| A 8 | $\mathrm{H} 3-\mathrm{H} 2-\mathrm{H} 1$ |
| A 9 | $\mathrm{H} 3-\mathrm{H} 4-\mathrm{H} 5-\mathrm{H} 6$ |
| A 10 | $\mathrm{H} 3-\mathrm{H} 4-\mathrm{H} 5-\mathrm{H} 6-\mathrm{H} 2-\mathrm{H} 1$ |

Table 6: Overview of pricing heuristic configurations.
Table 7 and 8 show the results of the tests. For every heuristic configuration the table contains three columns: ok - indicates if the lower bound in the root node was proved within the time limit (2 hours), time (s) - the total time needed to prove the lower bound in the root node (in seconds). \#ex - number of calls to the exact pricing algorithm needed to prove the lower bound. Blank entries indicate that a time out occurred. The row Sum sums each column (in case of the ok column it counts the number of proved lower bounds) while the Sum' column sums over the instances that could be solved by all configurations.

The results clearly show the importance of using good pricing heuristics. For the SP1* algorithm we can observe speedups by more than a factor 250 between having no pricing heuristic and using the heuristics given by configuration A10 (see instance lr104), for the SP1 algorithm the highest speedup factor is 60 (instance $\operatorname{lrc} 104$, A1 vs. A10). Using even the simplest construction heuristic helps significantly as the first pricing problems are especially hard to solve using the exact algorithm as many negative cycles exists.

It can be seen that the configurations that use the LNS pricing heuristics (heuristics H 5 and H6, configurations A6, A7, A9 and A10) are performing well, so using more advanced local search heuristics to solve pricing problems is a worthwhile research path. For the SP1 algorithm it can be seen that the configurations that are able to prove the lower bound of lc109 all use heuristic H1, so the more traditional pricing heuristics are still useful. It is clear that configuration A10 that uses all heuristics is the most powerful. If one looks at the number of calls to the exact pricing algorithm when using A10 one sees that the heuristic is close to reducing the number of calls to 1 which is what we can hope for (the exact pricing algorithm is called at the end to prove that no negative cost paths exist). Notice that entries where 0 calls to the exact algorithm were carried out are the ones where optimality is proved by heuristic H2 (see Section 5.5.1).

It is also interesting to note that reducing the number of calls to the exact pricing algorithm from 10 down to 2 (for example) often will result in a speed up larger than 5 , as the pricing problem tends to get easier towards the end of the column generation process. The two tables also show that SP1* is much more powerful than SP1. This finding will be confirmed in the following tests.

Configuration A10 will be used in the following tests unless otherwise noted.

|  |  |  | $\begin{gathered} \mathrm{A} 1 \\ \text { time (s) } \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \mathrm{A} 2 \\ \mathrm{x} \text { time }(\mathrm{s}) \neq \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \mathrm{A} 3 \\ \text { time (s) } \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \mathrm{A} 4 \\ \mathrm{k} \text { time (s) } \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \mathrm{A} 5 \\ \mathrm{k} \text { time }(\mathrm{s}) \neq \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \text { A6 } \\ \mathrm{k} \text { time (s) } \end{gathered}$ |  |  | $\begin{gathered} \mathrm{A} 7 \\ \mathrm{x} \text { time }(\mathrm{s}) \neq \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \text { A8 } \\ \mathrm{k} \text { time ( } \mathrm{s} \text { ) } \\ \hline \end{gathered}$ | \#ex |  | $\begin{gathered} \text { A9 } \\ \text { time (s) } \\ \hline \end{gathered}$ | \#ex |  | $\begin{gathered} \text { A10 } \\ \text { time (s) } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 lr 101 | X | 0.3 | 16 | X | 0.2 |  | X | 0.2 |  |  | - 0.2 | 0 | X | 0.2 |  | X | - 0.2 |  | X | 0.3 |  | X | - 0.2 | 0 | X | 0.3 | 1 | X | 0.3 |  |
|  | 1 l 102 | X | 2.3 | 28 | X | 0.3 | 3 | x | 0.3 | 2 | X | 0.6 | 1 | x | 0.3 | 1 | X | $\mathrm{X} \quad 0.3$ | 1 | X | 0.4 | 1 | X | 0.7 | 1 | X | 0.5 | 1 | X | 0.8 | 1 |
|  | lr103 | x | 74.3 | 34 | x | 1.2 | 4 | x | 0.7 | 1 | x | 1.8 | 2 | x | 1.4 | 4 | x | X 1.4 | 4 | x | 1.8 | 4 | x | 1.8 | 1 | X | 2.0 | 4 | x | 2.4 | 1 |
|  | 1 l 104 | x | 2479.6 | 39 | x | 60.2 | 10 | x | 30.3 | 5 | X | 101.4 | 11 | x | 64.4 | 8 | x | X 34.5 | 8 | X | 19.9 | 3 | x | 41.0 | 5 | x | 10.3 | 2 | X | 8.6 | 1 |
|  | lr 105 | X | 0.3 | 22 | X | 0.1 | 2 | x | 0.2 | 1 | X | 0.1 | 0 | x | 0.2 | 1 | X | X 0.2 | 1 | X | 0.3 | 1 | x | 0.1 | 0 | X | 0.3 | 1 | x | 0.2 | 0 |
|  | $\operatorname{lr} 106$ | X | 1.1 | 27 | X | 0.2 | 3 | X | 0.3 | 2 | X | 0.5 | 1 | X | 0.4 | 3 | X | X 0.3 | 2 | X | 0.5 | 2 | X | 0.5 | 1 | X | 0.5 | 1 | X | 0.8 | 1 |
|  | 1 l 107 | x | 930.8 | 40 | X | 15.2 | 11 | x | 2.8 | 3 | x | 8.2 | 6 | x | 16.4 | 6 | X | 9.7 | 6 | X | 3.3 | 2 | x | 6.2 | 2 | X | 9.2 | 3 | X | 9.1 | 2 |
|  | 1 l 108 |  |  |  | X | 5390.4 | 14 | x | 1004.2 | 4 | x | 1843.2 | 16 | x | 1236.3 | 16 | x | X 525.3 | 11 | x | 282.3 | 4 | x | 303.0 | 5 | X | 196.0 | 5 | x | 94.4 | 2 |
|  | $\operatorname{lr} 109$ | X | 3.5 | 41 | X | 1.0 | 9 | X | 0.8 | 2 | X | 1.7 | , | X | 1.2 |  | X | X 0.8 | 6 | X | 0.8 | 1 | X | 1.9 | 1 | X | 1.2 | 1 | X | 1.6 | 1 |
|  | $1 r 110$ | x | 35.9 | 37 | X | 7.1 | 9 | X | 5.4 | 4 | X | 10.7 | 10 | X | 4.5 | 5 | X | X 4.0 | 4 | X | 3.3 |  | X | 6.5 | 2 | X | 1.9 | 1 | X | 2.6 | 1 |
|  | $1 r 111$ | X | 47.5 | 35 | X | 3.1 |  | X | 2.2 |  | X | 5.4 |  | X | 1.8 |  | X | 1.5 |  | X | 2.5 |  | X | 6.5 | 3 | X | 2.9 |  | X | 3.0 |  |
|  | 1 l 112 |  |  |  | X | 4163.6 | 18 | x | 1072.1 | 6 | X | X 3285.0 | 15 | x | 2535.1 | 12 | x | 965.0 | 6 | X | 681.6 | 3 | X | 1107.2 | 6 | X | 330.6 | 2 | X | 350.0 | 2 |
|  | lc101 | x | 0.4 | 35 | X | 0.1 | 1 | X | 0.1 | 1 | X | - 0.1 | 0 | x | 0.2 | 1 | x | 0.1 | 1 | X | 0.3 | 1 | X | 0.1 | 0 | X | 0.3 | 1 | x | 0.2 | 0 |
|  | lc102 | X | 27.9 | 33 | X | 0.3 | 3 | X | 0.3 | 1 | X | 0.7 |  | X | 0.5 | 2 | X | X 0.3 | 1 | X | 0.7 | 1 | X | 0.7 | 1 | X | 0.7 | 1 | X | 1.1 |  |
|  | lc103 |  |  |  | X | 8.7 | 8 | X | 7.2 | 5 | x | 15.6 | 5 | X | 7.3 | 6 | X | X 3.3 | 3 | X | 7.4 | 5 | X | 19.1 | 4 | x | 3.5 | 1 | x | 4.8 | 1 |
| N | lc104 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | x | 6763.7 |  |
| $\stackrel{\sim}{\sim}$ | lc105 | x | 1.2 | 33 | X | 0.1 | 1 | X | 0.1 | 1 | x | 0.2 | 0 | x | 0.2 | 1 | x | 0.1 | 1 | X | 0.3 | 1 | X | 0.2 | 0 | X | 0.4 |  | X | 0.3 | 0 |
|  | lc106 | x | 2.8 | 32 | X | 0.3 | 4 | x | 0.3 | 1 | x | 0.8 | 1 | x | 0.5 | 3 | x | X 0.4 | 4 | X | 0.8 | 2 | x | 0.8 | 1 | x | 1.3 | 2 | x | 1.6 | 1 |
|  | lc107 | X | 3.9 | 36 | X | 0.3 | 3 | X | 0.4 | ${ }_{2}^{2}$ | X | X 0.5 | 1 | X | 0.4 | 1 | X | X 0.4 | 3 | X | 0.8 | 1 | X | 0.6 | 1 | X | 0.8 | 1 | X | 1.1 | 1 |
|  | lc108 | X | 28.7 | 44 | X | 1.1 | 9 | X | 1.1 | 3 | X | X 3.8 | 2 | X | 3.3 |  | X | X 0.8 | 3 | X | 2.8 | 4 | X | 4.0 | 1 | X | 4.3 | 3 | X | 4.9 | 1 |
|  | lc109 | X | 224.6 | 47 | X | 5.4 | 13 | X | 3.4 |  | X | X $\quad 9.6$ |  | x | 6.5 | 10 | X | X 3.6 | 6 | X | 5.5 | 3 | X | 11.7 | 4 | X | 7.8 | 4 | X | 9.8 | 1 |
|  | Irc101 | x | 0.3 | 18 | X | 0.2 | 2 | x | 0.2 | 1 | x | 0.2 | 0 | x | 0.2 |  | x | X 0.2 | 1 | X | 0.3 | 1 | x | 0.2 | 0 | X | 0.3 | 1 | x | 0.2 | 0 |
|  | Irc102 | x | 2.4 | 28 | X | 0.4 | 4 | X | 0.5 | 2 | X | 0.9 | 1 | x | 0.5 | 2 | X | X 0.4 | 2 | X | 0.4 | 1 | x | 1.0 | 1 | X | 0.7 | 1 | x | 1.0 | 1 |
|  | $1 \mathrm{Irc103}$ | X | 8.8 | 34 | X | 2.4 | 12 | X | 1.5 | ${ }_{2}^{2}$ | X | X 3.0 | 3 | X | 2.4 | 9 | x | X $\quad 1.0$ l | 4 | X | 2.0 | 3 | X | 3.0 | 1 | X | 2.7 | 3 | X | 2.9 | 1 |
|  | Irc104 | X | 3055.3 | 47 | X | 434.6 | 11 | X | 379.4 | 3 | X | X 448.8 | 11 | x | 318.5 | 10 | X | X 233.6 | 6 | X | 257.5 | 4 | X | 445.1 | 3 | X | 174.7 | 4 | X | 102.1 | 2 |
|  | Irc105 | X | 0.8 | 29 | X | 0.3 |  | X | 0.4 | 2 | X | X 0.4 |  | x | 0.4 |  | X | X 0.3 | 4 | X | 0.5 | 1 | X | 0.4 | 0 | X | 0.7 | 1 | X | 0.7 | 0 |
|  | Irc106 | X | 1.5 | 33 | X | 0.5 | 8 | X | 0.6 | 2 | X | 1.0 |  | x | 0.4 |  | X | X 0.4 | 4 | X | 0.6 | 1 | X | 1.1 | 1 | X | 0.7 | 2 | X | 0.9 | 1 |
|  | Irc107 | X | 9.7 | 33 | X | 3.1 | 10 | X | 3.2 |  | X | $\mathrm{X} \quad 4.3$ | 5 | X | 2.9 | , | X | X 1.6 |  | X | 2.5 | 4 | X | 4.7 | 1 | X | 2.9 | 5 | X | 2.8 | 1 |
|  | Irc108 | X | 81.1 | 37 | X | 35.8 | 14 | X | 31.1 |  | x | X 40.3 | 14 | x | 28.4 | 10 | X | X 13.6 | 6 | X | 20.2 | 7 | X | 21.3 | , | X | 16.9 | 6 | X | 13.2 | 2 |
|  | Sum | 25 | 7024.5 | 838 | 28 | 10136.1 | 202 | 28 | 2549.2 | 73 | 28 | $8 \quad 5788.9$ | 120 | 28 | 4234.6 | 142 | 28 | $8 \quad 1803.3$ | 107 | 28 | 1299.5 | 68 | 28 | 1989.3 | 49 | 28 | 774.5 | 63 | 29 | 7385.1 | 30 |
|  | Sum' |  | 7024.5 | 838 |  | 573.5 | 162 |  | 465.7 | 58 |  | 645.1 | 84 |  | 456.0 | 108 |  | 309.7 | 87 |  | 328.2 | 56 |  | 560.1 | 34 |  | 244.4 | 55 |  | 172.2 | 22 |

Table 7: Pricing problem heuristics used with exact pricing algorithm SP1*.
215

|  |  | $\begin{gathered} \text { A1 } \\ \text { time (s) } \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \text { A2 } \\ \text { time (s) } \end{gathered}$ |  |  | $\begin{gathered} \text { A3 } \\ \text { v time }(\mathrm{s}) \neq \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \mathrm{A} 4 \\ \mathrm{k} \text { time (s) } \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \mathrm{A} 5 \\ \mathrm{k} \text { time }(\mathrm{s}) \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \mathrm{A} 6 \\ \mathrm{k} \text { time }(\mathrm{s}) \neq \end{gathered}$ |  |  | $\begin{gathered} \text { A7 } \\ \text { time (s) } \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \text { A8 } \\ \text { time (s) } \\ \hline \end{gathered}$ |  |  | $\begin{array}{r} \mathrm{A} 9 \\ \text { time }(\mathrm{s}) \\ \hline \end{array}$ |  | ok | $\begin{gathered} \text { A10 } \\ \text { ime (s) } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 l 101 | X | 0.5 | 20 | X | 0.2 |  | X | 0.3 |  | X | 0.2 |  |  | - 0.3 |  | X | 0.3 |  | X | 0.3 |  | X | 0.2 | 0 | X | 0.3 |  | X | 0.3 | 0 |
| 1r102 | x | 11.5 | 25 | x | 1.3 | 2 | x | 0.8 | 1 | x | 1.2 | 1 | x | 0.8 | 1 | x | 0.7 | 1 | x | 0.9 | 1 | x | 1.3 | 1 | x | 1.0 | 1 | x | 1.5 | 1 |
| 1r103 | x | 139.1 | 32 | X | 35.3 | 10 | x | 13.1 | 3 | x | X 13.3 | 3 | X | 28.2 | 8 | X | 14.2 | 4 | x | 11.3 | 3 | X | 6.9 | 1 | x | 8.5 | 2 | x | 6.2 | 1 |
| 1r104 |  |  |  | X | 4725.1 | 12 | x | 2543.5 | 7 | x | 3784.9 | 10 | X | 2015.6 | 6 | X | 2614.8 | 6 | x | 704.1 | 2 | X | 3195.8 | 7 | x | 684.6 | 2 | x | 769.3 | 2 |
| 1r105 | x | 0.6 | 22 | x | 0.3 | 2 | x | 0.3 | 1 | x | 0.3 | 0 | X | 0.4 | 1 | X | 0.3 | 1 | x | 0.5 | 1 | x | 0.3 | 0 | x | 0.5 | 1 | x | 0.4 | 0 |
| 1r106 | x | 3.7 | 27 | x | 1.1 | 7 | x | 0.8 | 1 | X | 1.3 | 1 | x | 0.9 | 3 | x | 0.9 | 2 | x | 0.9 | 1 | X | 1.5 | 1 | X | 0.9 | 1 | x | 1.3 | 1 |
| 1r107 | x | 1814.8 | 40 | x | 502.9 | 11 | x | 188.5 | 4 | x | 551.1 | 11 | x | 320.9 | 7 | X | 326.4 | 7 | x | 180.6 | 4 | x | 144.3 | 3 | x | 46.9 | 1 | x | 53.7 | 1 |
| 1r108 |  |  |  | X | 2578.1 | 17 | x | 1466.3 | 7 | x | X 2400.5 | 14 | x | 1879.0 | 14 | X | 1452.0 | 10 | X | 977.5 | 5 | X | 715.7 | 6 | x | 870.6 | 5 | x | 499.9 | 2 |
| $\operatorname{lr} 109$ | X | 5.7 | 36 | X | 2.0 | 9 | X | 1.2 | 1 | x | 2.1 |  | X | 2.0 |  | X | 1.4 |  | X | 1.7 | 2 | X | 1.9 | 1 | X | 1.4 | 1 | X | 1.8 | 1 |
| $\operatorname{lr} 110$ | x | 72.0 | 33 | x | 24.9 | 11 | x | 16.5 | 6 | x | 16.7 | 6 | X | 7.5 | 3 | X | 7.3 | 3 | x | 5.7 | 2 | X | 11.7 | 3 | X | 3.5 | 1 | x | 4.5 | 1 |
| 1r111 | X | 599.3 | 38 | X | 100.5 | 8 | X | 27.3 | 2 | X | 43.7 | 3 | X | 111.8 |  | X | 64.5 | 5 | X | 62.7 | 5 | X | 32.2 | 2 | X | 51.2 | 4 | X | 18.3 | 1 |
| 1r112 |  |  |  | x | 6730.5 | 18 | x | 3288.2 | 9 |  |  | 18 | X | 5104.1 | 13 | X | 2741.3 | 7 | x | 1434.4 | 4 | x | 2549.3 | 6 | x | 724.8 | 2 | x | 803.5 | 2 |
| lc101 | X | 1.7 | 36 | X | 0.8 | 2 | X | 0.5 | 1 | X | 0.5 | 0 | X | 0.5 | 1 | X | 0.8 | 2 | X | 0.6 | 1 | X | 0.5 | 0 | X | 0.7 | 1 | X | 0.6 | 0 |
| lc102 |  |  |  | X | 1020.7 | 3 | X | 348.8 | 1 | X | 374.8 | 1 | X | 670.8 | 2 | X | 1012.6 | 3 | X | 337.4 | 1 | X | 370.2 | 1 | X | 337.9 | 1 | x | 344.5 | 1 |
| lc103 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1c104 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ic105 | X | 5.8 | 41 | X | 0.9 | 1 | X | 0.7 | 1 | X | X <br> C <br> 0.9 | 1 | X | 0.7 | 1 | X | 0.6 | 1 | X | 0.8 | 1 | X | 1.0 | 1 | X | 0.9 | 1 | X | 1.3 | 1 |
| lc106 | X | 165.7 | 33 | X | 34.6 | 6 | X | 14.0 | 2 | X | X 14.4 | 2 | X | 37.0 | 6 | X | 30.5 | 5 | X | 18.4 | 3 | X | 8.9 | 1 | x | 13.7 | 2 | X | 9.4 | 1 |
| 1c107 | X | 119.6 | 37 | X | 13.5 | 4 | X | 4.9 | 1 | X | 5.1 |  |  | 4.1 |  | X | 10.6 |  | X | 4.3 | 1 | X | 5.9 | 1 | X | 4.2 | 1 | X | 5.5 | 1 |
| lc108 |  |  |  | X | 2379.3 | 9 | X | 1326.7 | 5 | X | 869.4 | 3 |  | X 1962.5 | 7 | X | 1920.3 | 7 | X | 518.9 | 2 | X | 890.0 |  | X | 520.0 | 2 | X | 265.5 | 1 |
| lc109 |  |  |  |  |  |  | x | 3514.7 | 2 |  |  |  |  |  |  |  |  |  |  |  |  | x | 5813.0 | 3 |  |  |  | x | 1898.7 | 1 |
| lrc101 | x | 0.7 | 20 | x | 0.5 | 3 | x | 0.3 | 1 | x | 0.3 | 0 | x | 0.6 | 2 | x | 0.6 | 2 | x | 0.5 | 1 | x | 0.3 | 0 | x | 0.5 | 1 | x | 0.5 | 0 |
| lrc102 | X | 6.0 | 32 | X | 1.4 | 5 | X | 0.7 | 1 | X | X <br> X | 3 | X | 1.4 | 3 | X | 1.2 | 3 | X | 1.2 | 2 | X | 1.9 | 1 | X | 1.5 | 2 | X | 1.5 | 1 |
| $\operatorname{lrc103}$ | X | 22.0 | 26 | X | 9.3 | 12 | X | 2.6 | 1 | x | 7.0 |  | X | 4.6 | 5 | X | 3.5 | 4 | X | 4.2 | 4 | X | 5.2 | 1 | X | 2.9 | 2 | X | 3.4 | 1 |
| lrc104 | X | 2737.6 | 47 | X | 588.9 | 13 | X | 227.1 | 4 | X | 716.0 | 13 | X | 296.0 | 7 | x | 468.6 | 9 | X | 137.5 | 3 | X | 430.3 | 6 | X | 80.1 | 2 | X | 45.6 | 1 |
| lrc105 | x | 1.8 | 32 | x | 0.8 | 6 | x | 0.9 | 2 | x | 0.7 | 1 | x | 0.9 | 2 | X | 0.8 | 4 | X | 0.6 | 1 | x | 0.7 | 1 | X | 0.7 | 1 | X | 1.0 | 1 |
| lrc106 | x | 2.2 | 29 | x | 0.9 | 5 | X | 1.1 | 3 | x | X 0.9 | 1 | x | 1.0 | 3 | X | 0.9 | 3 | X | 1.2 | 2 | x | 1.0 | 1 | x | 1.0 | 1 | x | 1.3 | 1 |
| lrc107 | X | 18.3 | 31 | X | 5.8 | 9 | X | 5.2 | 4 | X | 5.4 | 4 | X | 5.5 | 7 | x | 3.8 | 5 | X | 3.4 | 3 | X | 5.5 | 3 | X | 3.5 | 3 | X | 3.3 | 1 |
| $\underline{1 r c 108}$ | X | 178.4 | 42 | X | 62.8 | 13 | X | 42.2 | 6 | X | X 64.7 | 12 | X | - 43.0 | 8 | X | 23.6 | 5 | X | 21.3 | 4 | X | 39.3 | 5 | X | 21.9 | 4 | X | 11.8 | 1 |
| Sum | 21 | 5906.9 | 679 | 26 | 18822.4 | 199 | 27 | 13037.1 | 78 | 25 | 58877.9 | 116 | 26 | 612499.7 | 127 | 26 | 10702.4 | 107 | 26 | 4430.7 | 60 | 27 | 14234.9 | 59 | 26 | 3383.6 | 46 | 27 | 4754.5 | 26 |
| Sum' |  | 5906.9 | 679 |  | 1388.8 | 140 |  | 549.0 | 47 |  | 1448.2 | 70 |  | 867.7 | 85 |  | 961.5 | 74 |  | 458.6 | 46 |  | 700.8 | 33 |  | 245.8 | 34 |  | 173.1 | 17 |

Table 8: Pricing problem heuristics used with exact pricing algorithm SP1.

### 6.3 Label elimination

In Section 3.2.3 methods for eliminating labels were discussed. The basic idea is to select a subset $D^{\prime}$ of deliveries of $\mathcal{O}(L)$ and test if it is possible to find a time window feasible tour from $\eta(L)$ through all the nodes in $D^{\prime}$ and ending in $2 n+1$. As explained in Section 3.2.3 we use subsets $D^{\prime}$ of cardinality 1,2 and 3 . The resulting label elimination rules are denoted Label elim. 1, 2 and 3, respectively, in the computational results below. The three elimination rules are tested on the same set of instances as considered in Section 6.2, the results are shown in Table 9. The table contains three major columns, one for each label elimination rule (the rules are applied incrementally, that is, the last column contains the results where all three elimination rules are used). The columns denoted time reports the time in seconds needed to solve the problem to optimality and the columns speedup reports the speedup relative to only using label eliminate rule 1 . Blank entries in the time column indicate that the algorithm did not finish within the time limit. The tests show that the label elimination rules certainly are worthwhile, especially for hard instances. Furthermore, they seem to come "for free" - the running time did not increase for any of the instances as one might have feared. It is also clear that the simple extension of the label elimination rule presented in this paper (considering a single subset of deliveries of $\mathcal{O}(L)$ containing three elements) is able to speed up the pricing algorithm considerably. For hard instances the new elimination rule often gives a speedup of at least two, compared to the elimination criterion proposed by Dumas et al. (1991).

|  | Label elim. 1 <br> time | Label elim. 1+2 <br> time |  | Label elim. $1+2+3$ <br> time |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | speedup | speedup |  |  |  |
| lr101 | 0.3 | 0.3 | 1.0 | 0.3 | 1.0 |
| lr102 | 2.8 | 1.5 | 1.8 | 1.5 | 1.9 |
| lr103 | 65.9 | 8.1 | 8.2 | 5.9 | 11.1 |
| lr104 |  | 2584.1 |  | 887.9 |  |
| lr105 | 0.5 | 0.4 | 1.0 | 0.4 | 1.0 |
| lr106 | 1.4 | 1.3 | 1.1 | 1.3 | 1.1 |
| lr107 | 2521.0 | 124.4 | 20.3 | 49.2 | 51.3 |
| lr108 |  | 1390.4 |  | 448.2 | 0.0 |
| lr109 | 2.0 | 1.8 | 1.1 | 1.8 | 1.1 |
| lr110 | 75.1 | 22.3 | 3.4 | 17.1 | 4.4 |
| lr111 | 156.7 | 26.4 | 5.9 | 17.1 | 9.2 |
| lr112 |  | 1378.0 | 0.0 | 749.6 | 0.0 |
| lc101 | 0.9 | 0.9 | 1.0 | 0.6 | 1.5 |
| lc102 | 2064.8 | 604.2 | 3.4 | 339.2 | 6.1 |
| lc103 |  |  |  |  |  |
| lc104 |  |  |  |  |  |
| lc105 | 1.5 | 1.3 | 1.1 | 1.3 | 1.1 |
| lc106 | 53.3 | 11.8 | 4.5 | 9.3 | 5.7 |
| lc107 | 63.4 | 8.4 | 7.6 | 5.4 | 11.7 |
| lc108 | 2329.5 | 378.1 | 6.2 | 266.0 | 8.8 |
| lc109 |  | 3882.0 |  | 2481.5 |  |
| lrc101 | 0.9 | 0.9 | 1.0 | 0.9 | 1.0 |
| lrc102 | 1.9 | 1.6 | 1.2 | 1.5 | 1.2 |
| lrc103 | 6.6 | 3.6 | 1.8 | 3.4 | 1.9 |
| lrc104 | 2157.9 | 116.2 | 18.6 | 47.6 | 45.3 |
| lrc105 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| lrc106 | 1.3 | 1.3 | 1.0 | 1.3 | 1.0 |
| lrc107 | 5.0 | 3.4 | 1.5 | 3.3 | 1.5 |
| lrc108 | 40.7 | 14.0 | 2.9 | 12.5 | 3.3 |
| Sum | 9554.1 | 10567.6 |  | 5354.9 |  |
| Average |  |  | 4.0 |  | 6.9 |

Table 9: Label elimination rules.

### 6.4 Branching rule

In Section 5.3 three different branching strategies were presented. In this section the effect of these strategies is tested. Four configurations are tested, these are described in Table 10. In

| Strategy name | Description |
| ---: | ---: |
| B1 | branch on edges |
| B2 | branch on vehicles + edges |
| B3 | branch on outflow |
| B4 | branch on vehicles + outflow |

Table 10: Branching strategies
strategy $B 2$ and $B 4$ the algorithm first tries to branch on vehicles and if this is not possible then the algorithm selects the alternative branching rule.

The branching rules were tested on 14 instances where the LPM was known to yield a fractional solution in the root node. Instances from all three problem classes were tested. The results are shown in Table 11. The first column shows the name of the instance, the next five show information about the instance: $n$ - number of requests, Alg. - relaxation/pricing problem used, $R L B$ - lower bound in root node, $U B$ - upper bound (optimal solution), $R L B / U B$ - the ratio between lower and upper bound. For each branching strategy three columns are shown: Opt - indicates if the optimal solution was reached within the time limit, \#nodes - the number of nodes explored (if the algorithm timed out, this column shows the number of nodes explored within the time limit), time - the total running time in seconds.

The results show that branching on vehicles is useful as all problems can be solved when using this rule. For instance B75, which is one of the PDPTW instances with a fixed cost of 10000 per vehicle, the branching rule that branch on edges does not do very well, while the branching rule that branch on vehicles solves the instance quite quickly. This is easy to explain. The fractional solution uses a fractional number of vehicles, less than 9 . When branching on vehicles, two branches are created, one where at most 8 vehicles can be used and one where at lest 9 vehicles must be used. The first branch is discarded as infeasible and the other branch improves the lower bound significantly.

Altogether B4 comes out as the best strategy and it will be used in the following sections.

| name | n | Alg. | RLB | UB | RLB/UB | B1 |  |  | B2 |  |  | B3 |  |  | B4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Opt | \#nodes | time |
| lrc101 | 53 | SP3 | 1697.8 | 1703.2 | 99.684\% | X | 7 | 67.9 | X | 7 | 70.8 | X | 9 | 74.0 | X | 7 | 69.6 |
| lrc108 | 52 | SP4 | 1141.1 | 1147.4 | 99.446\% | X | 37 | 1335.0 | X | 35 | 1410.1 | X | 43 | 1422.5 | X | 23 | 1117.2 |
| LR1_2_5 | 106 | SP3 | 4217.6 | 4221.6 | 99.904\% | X | 7 | 2290.1 | X | 7 | 2176.6 | X | 17 | 2967.3 | X | 17 | 2917.4 |
| LC1_2_8 | 105 | SP4 | 2682.7 | 2689.8 | 99.734\% |  | 77 |  | X | 3 | 898.2 |  | 116 |  | X | 3 | 896.6 |
| LRC1_2_1 | 106 | SP3 | 3593.3 | 3606.1 | 99.647\% | X | 21 | 4909.6 | X | 5 | 2167.5 | X | 19 | 5211.3 | X | 7 | 2323.7 |
| LR1_4_5 | 206 | SP1 | 9509.6 | 9517 | 99.922\% | X | 39 | 3678.0 | X | 21 | 1964.7 | X | 5 | 489.8 | X | 11 | 1167.5 |
| B65 | 65 | SP1 | 82615.2 | 82618 | 99.997\% | X | 9 | 63.7 | X | 9 | 63.7 | X | 23 | 126.9 | X | 23 | 126.8 |
| D40 | 40 | SP1 | 61515.8 | 61528 | 99.981\% | X | 37 | 55.9 | X | 37 | 55.9 | X | 35 | 63.5 | X | 35 | 63.1 |
| B75 | 75 | SP2 | 87514.1 | 92473 | 94.638\% |  | 1732 |  | X | 31 | 576.9 |  | 180 |  | X | 33 | 572.8 |
| D35 | 35 | SP2 | 71305.3 | 71308 | 99.996\% | X | 15 | 19.4 | X | 15 | 19.4 | X | 9 | 14.9 | X | 9 | 14.9 |
| a5-50 | 50 | SP2 | 680.8 | 686.62 | 99.149\% |  | 279 |  | X | 187 | 5743.6 | X | 129 | 5517.6 | X | 103 | 5016.2 |
| a6-60 | 60 | SP1 | 819.1 | 819.24 | 99.981\% | X | 3 | 584.1 | X | 3 | 586.4 | X | 3 | 560.6 | X | 3 | 557.6 |
| b5-60 | 60 | SP1 | 898.3 | 902.03 | 99.583\% | X | 75 | 3167.9 | X | 75 | 3177.3 | X | 23 | 1367.7 | X | 23 | 1360.3 |
| b8-64 | 64 | SP2 | 836.6 | 839.88 | 99.610\% | X | 63 | 1318.8 | X | 63 | 1322.0 | X | 25 | 808.0 | X | 25 | 807.0 |
|  |  |  |  |  | Sum | 11 | 2401 | 17490.3 | 14 | 498 | 20233.1 | 12 | 636 | 18624.0 | 14 | 322 | 17010.7 |

Table 11: Effect of branching rules.

### 6.5 Cuts

This section investigates the effect of adding valid inequalities to the PDPTW relaxations SP1 - SP4. A test set consisting of 12 instances, 4 from each problem class was chosen for the experiments. Tables $12-15$ show the quality of the lower bounds obtained using cuts and the different relaxations. The left most column gives the name of the instance, the next 8 columns show $\frac{L B}{U B} * 100$ where $L B$ is the root lower bound and $U B$ is the upper bound. The columns indicate the classes of cuts added: No cuts - no cuts added, IPC - infeasible paths, $C C$ - capacity constraints, $F C$ - fork constraints, $R C$ - reachability constraints, $P C$ - precedence constraints, $S P C$ - strengthened precedence constraints. The column U.Bound shows the upper bound on the solution cost. The row $A v g$. reports the average lower bound quality and the row Tot \#cuts shows the total number of cuts added in for all the 12 instances.

Looking at Table 12 that uses relaxation SP1 it can be seen that the lower bound obtained from this relaxation has a very high quality and adding cuts does not have a big impact. The 8 first instances are pure PDPTW instances while the 4 last are DARP instances. The cuts have the biggest impact on the DARP instances as the cuts enforce the ride time constraint that is not handled by the pricing problem. For the PDPTW instances it is only the infeasible path and the capacity cuts that have an effect. It is the strengthened infeasible paths of the type shown in equation (38) that are able to improve the lower bound. It is hard to see that the rounded capacity inequalities have an effect on the lower bound, but they do raise the lower bound on instance B30 from 51193.11 to 51193.95 , and it was observed to have an impact on other instances from this class as well (but not the ones in this test). The fork, reachability, precedence and strengthened precedence inequalities did not improve the lower bound when solving pure PDPTW instances, and we have never seen these inequalities impact the lower bound when using the SP1 relaxation to solve other PDPTW instances. It seems like they all are implied by the relaxation, but we have not made any attempts to prove or disprove this. It is worth noting that Lysgaard (2005) proved that the reachability cuts for the VRPTW are redundant for a VRPTW set-partitioning relaxation based on the ESPPTWC. The FC, RC, PC and SPC inequalities have been disabled in the rest of the testing on the SP1 relaxation in the subsequent sections.

Table 13 shows that the SP2 relaxation is very close to the SP1 relaxation. For the SP2 relaxation all of the inequalities IPC, $\mathrm{CC}, \mathrm{FC}$ and RC were found to have an impact when solving pure PDPTW problems while PC and SPC inequalities did not have an effect, and we have never observed these inequalities to have an effect on other pure PDPTW instances either. It seems like the PC and SPC inequalities are implied by the SP2 relaxation when solving pure PDPTW problems.

Tables 14 and 15 show that the lower bounds obtained by using the plain SP3 and SP4 relaxations are much worse than the SP1 and SP2 relaxations. It is also clear that the valid inequalities have a large impact on these relaxations as they can bring the lower bounds close to the ones for the SP1 and SP2. One notices that SP4 really is better than SP3 as predicted in Section 3.7. This is especially visible in the results where no cuts are applied. The tables also show that the strengthened precedence inequality introduced in this paper is a worthwhile contribution even though it does not seem to improve the SP1 and SP2 relaxation. Looking at Table 14 we see that SPC lower bound dominates the FC lower bound in 5 out of 12 cases and the RC lower bound in 8 out of 12 cases. The SPC inequality

|  | No cuts | IPC | CC | FC | RC | PC | SPC | Full | U.Bound |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LR1_2_1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 4819.1 |
| LR1_2_9 | 99.34 | 99.36 | 99.34 | 99.34 | 99.34 | 99.34 | 99.34 | 99.36 | 3953.5 |
| LC1_2_8 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 2689.8 |
| LRC1_2_5 | 99.84 | 99.86 | 99.84 | 99.84 | 99.84 | 99.84 | 99.84 | 99.86 | 3715.9 |
| A60 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 92367.4 |
| B30 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 51194.0 |
| C30 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 51145.5 |
| D30 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 61040.4 |
| a3-36 | 98.11 | 98.77 | 98.11 | 99.29 | 98.89 | 98.11 | 98.89 | 99.29 | 583.2 |
| a5-40 | 99.68 | 99.79 | 99.68 | 100.00 | 99.68 | 99.68 | 99.68 | 100.00 | 498.4 |
| b3-36 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 603.8 |
| b6-48 | 99.86 | 99.99 | 99.86 | 100.00 | 99.86 | 99.86 | 99.86 | 100.00 | 714.8 |
| Avg. | 99.74 | 99.81 | 99.74 | 99.87 | 99.80 | 99.74 | 99.80 | 99.88 |  |
| Tot \#cuts | 0 | 13 | 4 | 50 | 51 | 0 | 6 | 62 |  |

Table 12: Impact of valid inequalities on SP1.

|  | No cuts | IPC | CC | FC | RC | PC | SPC | Full | U.Bound |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LR1_2_1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 4819.1 |
| LR1_2_9 | 99.34 | 99.36 | 99.34 | 99.34 | 99.34 | 99.34 | 99.34 | 99.36 | 3953.5 |
| LC1_2_8 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 2689.8 |
| LRC1_2_5 | 99.61 | 99.66 | 99.61 | 99.62 | 99.63 | 99.61 | 99.61 | 99.68 | 3715.9 |
| A60 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 92367.4 |
| B30 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 51194.0 |
| C30 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 51145.5 |
| D30 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 61040.4 |
| a3-36 | 98.11 | 98.77 | 98.11 | 99.29 | 98.89 | 98.11 | 98.89 | 99.29 | 583.2 |
| a5-40 | 99.68 | 99.79 | 99.68 | 100.00 | 99.68 | 99.68 | 99.68 | 100.00 | 498.4 |
| b3-36 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 603.8 |
| b6-48 | 99.86 | 99.99 | 99.86 | 100.00 | 99.86 | 99.86 | 99.86 | 100.00 | 714.8 |
| Avg. | 99.72 | 99.80 | 99.72 | 99.85 | 99.78 | 99.72 | 99.78 | 99.86 |  |
| Tot \#cuts | 0 | 13 | 4 | 59 | 163 | 0 | 6 | 172 |  |

Table 13: Impact of valid inequalities on SP2.
would most likely improve the branch-and-cut algorithms presented by Cordeau (2005) and Ropke et al. (2005).

Tables 16 and 17 show the time used on separating inequalities in order to calculate the lower bound with the 6 different valid inequalities. Table 16 shows the time used separating inequalities when using relaxation SP1. Table 17 shows the time used separating inequalities when using relaxation SP3. It is clear that more time is spent when using SP3 as more inequalities can be added and we are going through more cut separation iterations. Compared to the overall time spend on proving the lower bound (see below) the algorithm do not spend a great deal of time on separating inequalities. The tables show that the reachability inequalities have the most time consuming separation procedure.

Tables 18 and 19 show the total time needed to prove the lower bound for the SP1 and SP3 relaxation respectively (dominance criterion (DOM1 $\dagger$ ) is used when solving the SP1 pricing problem). It is clear that the SP3 lower bound is more time consuming to obtain for these instances (except for LC1_2_8). The reason for the high running times for SP3 will be explained in Section 6.6.2.

### 6.6 Comparison of relaxations

This section compares the four set-partitioning relaxations to each other as well as to the branch-and-cut algorithm proposed by Ropke et al. (2005). We also test the limits of the algorithms - how large instances can be solved, how many instances from each problem class can be solved?

|  | No cuts | IPC | CC | FC | RC | PC | SPC | Full | U.Bound |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LR1_2_1 | 98.58 | 100.00 | 98.58 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 4819.1 |
| LR1_2_9 | 91.75 | 92.79 | 91.75 | 95.78 | 96.45 | 94.84 | 96.85 | 97.71 | 3953.5 |
| LC1_2_8 | 98.92 | 99.04 | 98.92 | 99.46 | 99.21 | 99.43 | 99.70 | 99.74 | 2689.8 |
| LRC1_2_5 | 85.51 | 86.77 | 85.51 | 91.65 | 96.31 | 92.07 | 96.66 | 97.27 | 3715.9 |
| A60 | 92.53 | 92.58 | 96.20 | 100.00 | 99.91 | 92.66 | 96.45 | 100.00 | 92367.4 |
| B30 | 99.67 | 99.76 | 99.79 | 99.99 | 99.97 | 99.81 | 99.99 | 99.99 | 51194.0 |
| C30 | 99.90 | 99.93 | 99.99 | 100.00 | 99.97 | 99.91 | 100.00 | 100.00 | 51145.5 |
| D30 | 66.95 | 67.00 | 83.46 | 89.10 | 99.93 | 67.00 | 90.51 | 100.00 | 61040.4 |
| a3-36 | 92.38 | 95.27 | 92.49 | 99.29 | 98.23 | 96.02 | 98.03 | 99.29 | 583.2 |
| a5-40 | 80.23 | 87.99 | 80.27 | 100.00 | 98.85 | 98.26 | 99.62 | 100.00 | 498.4 |
| b3-36 | 93.82 | 97.85 | 97.98 | 99.97 | 98.61 | 99.01 | 100.00 | 100.00 | 603.8 |
| b6-48 | 92.77 | 95.53 | 95.54 | 100.00 | 98.99 | 97.04 | 99.73 | 100.00 | 714.8 |
| Avg. | 91.08 | 92.88 | 93.37 | 97.94 | 98.87 | 94.67 | 98.13 | 99.50 |  |
| Tot \#cuts | 0 | 741 | 2243 | 3347 | 10226 | 3131 | 1689 | 5362 |  |

Table 14: Impact of valid inequalities on SP3.

|  | No cuts | IPC | CC | FC | RC | PC | SPC | Full | U.Bound |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LR1_2_1 | 99.60 | 100.00 | 99.60 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 4819.1 |
| LR1_2_9 | 93.38 | 94.13 | 93.38 | 96.40 | 96.92 | 95.89 | 97.39 | 98.06 | 3953.5 |
| LC1_2_8 | 98.92 | 99.04 | 98.92 | 99.45 | 99.21 | 99.43 | 99.70 | 99.74 | 2689.8 |
| LRC1_2_5 | 92.05 | 92.45 | 92.05 | 95.70 | 96.82 | 95.63 | 97.42 | 97.63 | 3715.9 |
| A60 | 92.53 | 92.58 | 96.20 | 100.00 | 99.91 | 92.65 | 96.45 | 100.00 | 92367.4 |
| B30 | 99.67 | 99.76 | 99.79 | 99.99 | 99.97 | 99.81 | 99.98 | 99.99 | 51194.0 |
| C30 | 99.90 | 99.93 | 99.99 | 100.00 | 99.97 | 99.91 | 100.00 | 100.00 | 51145.5 |
| D30 | 66.95 | 67.00 | 83.46 | 89.10 | 99.93 | 67.00 | 90.51 | 100.00 | 61040.4 |
| a3-36 | 94.41 | 97.03 | 94.47 | 99.29 | 98.23 | 97.73 | 98.89 | 99.29 | 583.2 |
| a5-40 | 81.00 | 88.74 | 81.28 | 100.00 | 98.85 | 98.38 | 99.62 | 100.00 | 498.4 |
| b3-36 | 93.82 | 97.85 | 98.19 | 99.97 | 98.61 | 99.01 | 100.00 | 100.00 | 603.8 |
| b6-48 | 92.77 | 95.56 | 95.55 | 100.00 | 98.99 | 97.02 | 99.73 | 100.00 | 714.8 |
| Avg. | 92.08 | 93.67 | 94.41 | 98.32 | 98.95 | 95.21 | 98.31 | 99.56 |  |
| Tot \#cuts | 0 | 616 | 2423 | 2892 | 8079 | 562 | 1268 | 4349 |  |

Table 15: Impact of valid inequalities on SP4.

|  | No cuts IPC CC FC | RC PC SPC | Full |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LR1_2_1 | 0.0 | 1.7 | 0.5 | 0.0 | 78.9 | 0.0 | 0.1 | 80.7 |
| LR1_2_9 | 0.0 | 3.7 | 0.8 | 0.0 | 31.7 | 0.1 | 0.1 | 36.7 |
| LC1_2_8 | 0.0 | 3.3 | 1.0 | 0.0 | 4.8 | 0.1 | 0.1 | 9.5 |
| LRC1_2_5 | 0.0 | 7.3 | 0.8 | 0.0 | 49.8 | 0.1 | 0.1 | 80.0 |
| A60 | 0.0 | 0.2 | 0.2 | 0.0 | 0.8 | 0.0 | 0.0 | 1.1 |
| B30 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 |
| C30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
| D30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
| a3-36 | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.3 |
| a5-40 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 |
| b3-36 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 |
| b6-48 | 0.0 | 0.2 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.4 |
| Avg. | 0.0 | 1.4 | 0.3 | 0.0 | 13.9 | 0.0 | 0.0 | 17.5 |

Table 16: Time spent separating valid inequalities using relaxation SP1.

|  | No cuts IPC CC | FC | RC PC SPC | Full |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LR1_2_1 | 0.0 | 13.6 | 0.5 | 1.6 | 83.3 | 0.4 | 0.2 | 82.3 |
| LR1_2_9 | 0.0 | 12.0 | 0.4 | 10.9 | 237.3 | 4.8 | 2.2 | 402.1 |
| LC1_2_8 | 0.0 | 9.1 | 0.4 | 4.1 | 21.2 | 0.5 | 0.5 | 14.1 |
| LRC1_2_5 | 0.0 | 12.5 | 0.6 | 16.5 | 584.0 | 3.9 | 3.4 | 549.5 |
| A60 | 0.0 | 1.9 | 0.8 | 1.4 | 11.2 | 0.5 | 0.3 | 2.2 |
| B30 | 0.0 | 0.3 | 0.2 | 0.3 | 0.8 | 0.0 | 0.0 | 0.7 |
| C30 | 0.0 | 0.1 | 0.3 | 0.1 | 0.2 | 0.0 | 0.0 | 0.2 |
| D30 | 0.0 | 0.2 | 0.3 | 0.6 | 1.4 | 0.1 | 0.1 | 1.1 |
| a3-36 | 0.0 | 0.4 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.4 |
| a5-40 | 0.0 | 0.5 | 0.3 | 0.5 | 0.2 | 0.1 | 0.0 | 0.6 |
| b3-36 | 0.0 | 0.3 | 0.4 | 0.2 | 0.1 | 0.1 | 0.0 | 0.3 |
| b6-48 | 0.0 | 1.0 | 0.7 | 0.7 | 1.4 | 0.2 | 0.1 | 0.9 |
| Avg. | 0.0 | 4.3 | 0.4 | 3.1 | 78.4 | 0.9 | 0.6 | 87.9 |

Table 17: Time spent separating valid inequalities using relaxation SP3.

|  | No cuts | IPC | CC | FC | RC | PC | SPC | Full |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LR1_2_1 | 1.9 | 3.6 | 2.4 | 2.0 | 110.8 | 2.0 | 32.3 | 112.9 |
| LR1_2_9 | 127.9 | 69.2 | 129.1 | 130.6 | 192.2 | 113.2 | 173.2 | 149.9 |
| LC1_2_8 | 1802.1 | 1832.1 | 1838.4 | 1815.3 | 1885.4 | 1801.6 | 1888.2 | 1905.9 |
| LRC1_2_5 | 612.0 | 814.7 | 614.1 | 607.6 | 713.3 | 762.9 | 661.0 | 937.0 |
| A60 | 1.9 | 2.0 | 2.0 | 1.9 | 13.0 | 1.9 | 12.3 | 13.4 |
| B30 | 0.2 | 0.2 | 0.3 | 0.2 | 1.5 | 0.2 | 1.5 | 1.7 |
| C30 | 0.2 | 0.2 | 0.2 | 0.2 | 2.1 | 0.2 | 2.1 | 2.2 |
| D30 | 0.2 | 0.3 | 0.3 | 0.3 | 2.4 | 0.3 | 2.4 | 2.5 |
| a3-36 | 2.2 | 3.8 | 2.3 | 4.5 | 6.6 | 2.2 | 6.3 | 7.5 |
| a5-40 | 2.2 | 2.7 | 2.2 | 2.6 | 5.2 | 2.2 | 5.2 | 5.8 |
| b3-36 | 1.9 | 1.9 | 1.9 | 1.9 | 3.7 | 1.8 | 3.7 | 4.0 |
| b6-48 | 1.6 | 1.9 | 1.7 | 1.7 | 6.5 | 1.6 | 6.5 | 7.1 |
| Avg. | 212.9 | 227.7 | 216.2 | 214.0 | 245.2 | 224.2 | 232.9 | 262.5 |

Table 18: Time for obtaining lower bound using valid inequalities and SP1.

|  | No cuts | IPC | CC | FC | RC | PC | SPC | Full |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LR1_2_1 | 228.6 | 344.2 | 228.8 | 298.8 | 443.0 | 373.5 | 349.4 | 411.2 |
| LR1_2_9 | 652.0 | 1297.3 | 669.9 | 2826.3 | 9152.7 | 4495.2 | 4457.3 | 9021.7 |
| LC1_2_8 | 349.9 | 490.1 | 349.6 | 511.4 | 814.8 | 647.4 | 687.7 | 663.6 |
| LRC1_2_5 | 569.4 | 1101.2 | 567.8 | 4250.8 | 14229.2 | 5479.1 | 9255.7 | 6244.8 |
| A60 | 568.0 | 705.5 | 942.3 | 2948.0 | 4667.7 | 2822.6 | 9947.1 | 2447.6 |
| B30 | 10.9 | 22.2 | 39.8 | 216.8 | 220.1 | 55.8 | 148.2 | 239.8 |
| C30 | 2.4 | 3.6 | 20.4 | 22.2 | 9.0 | 3.7 | 13.1 | 14.0 |
| D30 | 23.7 | 59.3 | 329.9 | 1549.5 | 1834.8 | 81.9 | 2683.7 | 6560.0 |
| a3-36 | 21.6 | 83.2 | 23.0 | 218.7 | 137.0 | 69.8 | 122.8 | 223.5 |
| a5-40 | 32.1 | 98.1 | 34.2 | 1192.2 | 508.7 | 1454.8 | 1497.3 | 1198.1 |
| b3-36 | 46.9 | 105.1 | 119.5 | 159.2 | 113.5 | 162.1 | 122.9 | 136.3 |
| b6-48 | 101.7 | 187.7 | 370.8 | 690.6 | 580.4 | 661.3 | 507.4 | 602.0 |
| Avg. | 217.3 | 374.8 | 308.0 | 1240.4 | 2725.9 | 1358.9 | 2482.7 | 3146.9 |

Table 19: Time for obtaining lower bound using valid inequalities and SP3.

### 6.6.1 PDPTW results

The first problem class we consider is the instances proposed by Li and Lim (2001), produced from the Solomon instances for the VRPTW. In their paper, instances with approximately 50 requests were presented and larger instances were made available on the Internet. For each instance size the set is divided into two classes: series 1 and series 2 . Time windows and capacities in series 2 are constructed such that much longer routes are possible compared to series 1 . When solving these instances we solely minimize distance, there are no fixed cost on using vehicles and no limit on the number of vehicles available.

Table 20 shows results for series 1 of the 50 request instances. The two first columns show the instance name and the upper bound for the instance. The remaining columns show Opt - if the problem was solved to optimality within the time limit, $R L B$ - lower bound in root node after adding cuts, time - total amount of time used (in seconds), $L B$ - if the bound was proved (this is interesting as the pricing problem often is so hard that getting a lower bound is very time consuming), nodes - the number of nodes in the branch and bound tree, Cuts - the number of cuts added. Notice that results for two algorithms for each of SP1 and SP2 are shown in the table (see Section 6.1). For SP1* and SP2* we only solve the root node and do not add cuts, so these algorithms only solve the problem to optimality if the LPM happens to return an integer solution, which does occur quite often.

The row Sum sums the number of times that optimally was reached and the number of times a lower bound was established. For the branch-and-cut algorithm a lower bound is always proved. The row $A v g$. averages the total time used (only for the instances solved to optimality) and the average number of cuts added. The entries in the $R L B$ column show the root lower bound quality relative to the upper bound. Blank entries in any column indicate that the problem was not solved within the time limit.

Several comments can be made for this table. One will first notice that SP1* is much
faster than SP1 and the same comment is true for SP2* vs. SP2. Therefore it would definitely be profitable to develop a branching strategy compatible with the dominance criteria within these algorithms, or to make the algorithms compatible with adding valid inequalities. Secondly it can be seen that the lower bounds obtained by relaxation SP1 and SP2 are very similar and perhaps even more surprisingly that the pricing problems for the two relaxations seem comparably hard to solve, judging from the time used. For these instances the SP3 and SP4 relaxations are slightly inferior to the SP1 and SP2 relaxations, although the difference is rather small. SP4 appears better than SP3, but the difference in lower bound is very small after cuts have been added. Looking at the cuts added for the weakest set-partitioning formulation, SP3, one sees that instances lr102, lr106, lc101 and lc 106 are very easy as no cuts have to be added. This means that the precedence and pairing constraints are not binding in these instances or they are handled by the time window tightening presented in Section 5.2.

The branch-and-cut algorithm is clearly inferior to all the set-partitioning approaches for these instances as only 18 instances were solved to optimality.

All instances in the set was solved to optimality by at least one approach so no unsolved instances in this set remain.

Table 21 shows the results on the series 2 instances, and here we see a completely different picture. The most striking observation is that the cut-compatible pricing algorithms for SP1 and SP2 are not even able to prove a lower bound for any of the instances - the pricing problems are too hard. The algorithms using the stronger dominance criterion do a little better as 7 instances are solved to optimality and a tight lower bound was proven for one more instance. The SP3 and SP4 relaxations appear to be better for these instances as they are able to prove a lower bound. The overall winner for these instances, however, is the branch and cut algorithm. 17 instances remain unsolved in this data set.

Table 22 shows results for larger instances, containing around 100 requests. This set of instances also contains two series. We only show results for series 1 , as we judged series 2 to be too hard. The best algorithms in this test are SP1* and SP4. Once again we see that SP1* and SP2* are looking promising and more instances could be solved to optimality with a compatible branch and bound algorithm. The branch-and-cut algorithm is performing worst in this test, at least in terms of number of instances solved to optimality, but it is not very far behind. Overall, 12 instances were solved to optimality while 18 remain unsolved.

Table 23 contains results for instances with between 200 and 500 requests. 238 of such instances exist in the dataset provided by Li and Lim (2001), but here we chose the 24 instances that we expected to be easiest to solve. We selected the instances with the tightest time windows. We did not test the branch and cut code on these instances as it is not tuned towards such large instances. We also had to turn off the reachability and strengthened precedence inequalities as the preprocessing method for calculating $A_{i}^{+}, A_{i}^{-}$and $A_{i}$ took up a large fraction of the running time.

The results are quite encouraging as the SP1* and SP2* algorithms were able to obtain a lower bound for all instances and the SP1 and SP2 algorithms solved half of the instances to optimality. Note that two instances with 500 requests were solved to optimality. We believe that these are the largest PDPTW instances solved to optimality in the literature. The SP3 and SP4 relaxations did not do well in these tests. This is not so much because the pricing problem is hard to solve or the lower bounds are too poor, but more because the set partitioning formulations turned out to contain many columns and many cuts. We
investigate this problem further for another class of problems in Section 6.6.2. 12 instances remain unsolved in this class of instances.

The last set of PDPTW instances were proposed in Ropke et al. (2005) and are similar to the ones proposed by Savelsbergh and Sol (1998). One special feature about these instances is that each vehicle has a fixed cost equal to 10000 . The results for these instances are shown in Tables 24 and 25 . The pricing problems for most of these instances are relatively easy, so algorithm SP1* and SP2* were not applied to these instances. Some preliminary testing showed that using pricing heuristic configuration A8 was faster than A10, so this heuristic configuration has been used for producing these results and the DARP results in Section 6.6.2. Both SP1 and SP2 produce very good results for these instances and clearly outperform the branch-and-cut algorithm - the set-partitioning formulation using SP1 and SP2 is much better at getting the number of vehicles right in the LP relaxation. The SP3 and SP4 relaxations do not do very well though. For most of the instances they fail to find a lower bound. We again refer to Section 6.6.2 for an explanation.

Even though the SP1 and SP2 relaxations do very well, they fail to solve the largest instances and the E class proves to be difficult as well. 17 out of the 75 instances are unsolved.

|  |  |  | ranch \& | Cut |  |  | SP1* |  |  |  | SP2* |  |  |  |  | SP1 |  |  |  |  |  |  | SP2 |  |  |  |  |  | SP3 |  |  |  |  | SP4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | name UB | Opt | RLB | time | Opt | LB | RLB | time | Opt L | LB | RLB | time |  | t LB | RLB | time |  | cuts |  | pt LB |  | RLB | time | des C | Cuts | Opt |  | RLB | 3 time | des | Cuts | Opt |  | RLB time | des C | Cuts |
|  | $\operatorname{lr} 1011650.8$ | X | 1650.8 | 19.5 | X | X | 1650.8 | 0.1 | X | X | 1650.8 | 0.1 | X |  | 1650.8 | 0.3 |  |  |  |  | X 16 | 1650.8 | 10.9 | 1 |  | X |  | 1650. | 16.8 | 1 | 16 | X |  | 1650.813 .6 |  |  |
|  | lr102 1487.6 | X | 1487.6 | 55.7 | x | x | 1487.6 | 0.7 | x | x | 1487.6 | 0.8 | x | x | 1487.6 | 1.5 |  | 10 |  | x x | X 148 | 1487.6 | 12.4 | 1 | 0 | x | x | 1487.6 | 29.5 | 1 | 0 | x | x | 1487.620 .9 | 1 |  |
|  | lr103 1292.7 | X | 1292.7 | 49.5 | x | x | 1292.7 | 2.2 | x | x | 1292.7 | 2.2 | x | X | 1292.7 | 5.9 |  | 10 |  | x X | X 12 | 1292.7 | 18.0 | 1 | 0 | X | X | 1292.7 | 88.8 | 1 | 65 | X | x | 1292.736 .7 | 1 |  |
|  | lr104 1013.4 | - | 964.4 |  | X | X | 1013.4 | 7.1 | X | X | 1013.4 | 5.6 | X | X | 1013.4 | 690.9 | 1 | 10 |  | x X | X 10 | 1013.4 | 445.9 | 1 | 0 | X | x | 1013.4 | 297.5 | 1 | 301 | x | X | 1013.4197 .2 | 1 | 62 |
|  | lr105 1377.2 | X | 1377.1 | 26.6 | X | X | 1377.1 | 0.2 | X | X | 1377.1 | 0.2 | X | x | 1377.1 | 0.5 |  | 10 |  | X X | X 13 | 1377.1 | 7.1 | 1 | 0 | X | x | 1377.1 | 19.2 | 1 | 4 | x | x | 1377.115 .9 | 1 |  |
|  | lr106 1252.6 | X | 1252.6 | 36.1 | X | X | 1252.6 | 0.8 | X | X | 1252.6 | 0.7 | X |  | 1252.6 | 1.3 |  | 10 |  | X X | X 12 | 1252.6 | 9.2 | 1 |  | X |  | 1252.6 | 20.1 | 1 |  | x | x | 1252.6 14.0 | 1 |  |
|  | lr107 1111.3 | X | 1108.3 | 151.8 | x | x | 1111.3 | 5.5 | x | x | 1111.3 | 3.3 | X | x | 1111.3 | 49.3 | 1 | 10 |  | x X | X 11 | 1111.3 | 64.9 | 1 | 0 | X | X | 1111.3 | 43.0 | 1 | 5 | x | x | 1111.335 .1 | 1 |  |
|  | 1r108 969.0 | - | 863.6 |  | X | x | 969.0 | 44.0 | x | x | 969.0 | 15.3 | X | X | 969.0 | 452.0 | 1 | 0 |  | x X | X | 969.0 | 389.2 | 1 | 0 | X |  | 969.0 | 169.8 | 1 | 181 | x | x | 969.0181 .5 | 1 | 110 |
|  | lr109 1209.0 |  | 1162.1 |  | X | X | 1209.0 | 1.3 | X | X | 1209.0 | 1.7 | X | X | 1209.0 | 1.8 | 1 | 0 |  | X X | X 12 | 1209.0 | 11.0 | 1 | 0 | x |  | 1207.9 | 74.4 | 3 | 207 | x | X | 1208.285 .3 | 3 |  |
|  | 1r110 1159.3 |  | 966.8 |  | - | x | 1157.7 | 2.1 | - | x | 1157.5 | 3.0 | x | x | 1157.7 | 100.1 | 27 |  |  | x X | X 11 | 1157.5 | 192.5 | 45 | 0 |  | X | 1136.1 |  | 211 | 1335 |  | x | 1135.9 | 2471 | 1259 |
|  | 1r111 1108.9 | - | 1045.7 |  | X | x | 1108.9 | 4.5 | x | x | 1108.9 | 3.1 | X | x | 1108.9 | 17.2 |  |  |  | X X | X 11 | 1108.9 | 34.0 | 1 |  | x |  | 1106.7 | 337.4 | 5 | 367 | X |  | 1107.0253 .0 | 5 | 386 |
|  | $1 \mathrm{lr1121003.8}$ | - | 739.8 |  | X | X | 1003.8 | 50.5 | x | X | 1003.8 | 29.2 | X | x | 1003.8 | 755.6 |  | 0 |  | x X | X 10 | 1003.8 | 518.1 | 1 | 0 |  | X | 974.3 |  | 34 | 544 |  | x | 975.6 | 45 | 541 |
|  | lc101 828.9 | x | 828.9 | 14.8 | X | x | 828.9 | 0.3 | x | X | 828.9 | 0.2 | x | x | 828.9 | 0.6 |  | 0 |  | x X | x | 828.9 | 7.2 | 1 | 0 | X | X | 828.9 | 24.4 | 1 |  | x | x | 828.913 .9 | 1 |  |
|  | lc102 828.9 | X | 828.9 | 43.5 | X | X | 828.9 | 1.3 | X | X | 828.9 | 1.7 | X | X | 828.9 | 343.6 |  | 0 |  | X X | X | 828.9 | 480.7 | 1 | 0 | X | X | 828. | 56.8 | 1 | 85 | x | X | 828.975. | 1 |  |
|  | lc103 827.9 | X | 824.3 | 125.4 | X | X | 827.9 | 5.8 | X | X | 827.9 | 4.8 |  |  |  |  |  |  |  |  |  |  |  |  |  | X | X | 827.9 | 116.6 | 1 | 36 | X | X | 827.999 .5 | 1 | 31 |
|  | lc104 818.6 |  | 709.9 |  | X | X | 818.69 | 943.4 | X | X | 818.6 | 177.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 816.1 |  | 13 | 133 |  |  | 816.8 |  |  |
| N | lc105 828.9 | X | 828.9 | 15.1 | X | X | 828.9 | 0.4 | x | X | 828.9 | 0.3 | x | x | 828.9 | 1.3 | 1 | 0 |  | x X | x | 828.9 | 8.2 | 1 | 0 | x | X | 828.9 | 39.9 | 1 | 19 | x | x | 828.939 .2 | 1 | 19 |
|  | lc106 828.9 | X | 828.9 | 26.3 | X | x | 828.9 | 2.0 | X | X | 828.9 | 1.1 | x | x | 828.9 | 9.3 | 1 | 0 |  | x x | x | 828.9 | 15.8 | 1 | 0 | x | X | 828.9 | 34.4 | 1 |  | x | x | 828.955 .8 | 1 |  |
|  | lc107 828.9 | X | 828.9 | 16.2 | X | X | 828.9 | 1.2 | X | X | 828.9 | 1.0 | X | X | 828.9 | 5.5 |  | 0 |  | x x | X | 828.9 | 13.7 | 1 | 0 | X | X | 828.9 | 80.0 | 1 | 20 | X | X | 828.9113 .7 | 1 | 20 |
|  | lc108 826.4 | x | 807.4 | 60.2 | x | X | 826.4 | 4.0 | x | x | 826.4 | 3.7 | x | x | 826.4 | 264.9 | 1 | 0 |  | x X | x | 826.4 | 378.6 | 1 | 0 | x | X | 826.4 | 41.0 | 1 | 22 | x | x | 826.477 .8 | 1 | 22 |
|  | lc109 827.8 |  | 751.2 |  | X | X | 827.8 | 13.0 | X | X | 827.8 | 8.5 | X | X | 827.8 | 1907.7 |  |  |  |  | X | 827.8 | 2178.8 | 1 |  |  |  | 827.8 | 81.1 | 1 | 31 | x | X | 827.8111 .1 | 1 | 31 |
|  | Irc101 1703.2 | X | 1694.1 | 56.6 | - | X | 1701.9 | 0.3 | - | x | 1701.9 | 0.2 | X | x | 1701.9 | 0.9 | 3 | 0 |  | x X | X 17 | 1701.9 | 11.9 | 3 | 0 | x | X | 1698.2 | 268.8 | 7 | 411 | X | x | 1699.840 .6 | 7 | 277 |
|  | \|rc102 1558.1 | X | 1541.7 | 184.2 | X | X | 1558.1 | 1.1 | x | X | 1558.1 | 1.0 | x | x | 1558.1 | 1.5 | 1 | 0 |  | x X | X 15 | 1558.1 | 9.3 | 1 | 0 | X | X | 1558.1 | 45.7 | 1 | 329 | x | x | 1558.121 .6 | 1 | 30 |
|  | Irc103 1258.7 | x | 1220.1 | 456.0 | x | x | 1258.7 | 2.2 | X | X | 1258.7 | 7 3.3 | X | x | 1258.7 | 3.4 | , | 0 |  | x X | X 12 | 1258.7 | 15.0 | 1 | 0 |  | X | 1258.5 |  | 3 | 76 | x | x | 1258.6262 .6 | 3 | 40 |
|  | Irc104 1128.4 | - | 998.5 |  | x | X | 1128.4 | 8.4 | X | X | 1128.4 | 410.1 | X | x | 1128.4 | 45.6 | 1 | 0 |  | x X | X 11 | 1128.4 | 143.0 | 1 | 0 |  | X | 1127.9 |  | 5 | 404 | X | x | 1128.2406 .9 | 3 | 99 |
|  | $\mid \mathrm{Irc105} 1637.6$ | X | 1632.3 | 61.5 | X | X | 1637.6 | 0.4 | X | X | 1637.6 | 0.7 | X | X | 1637.6 | 1.0 |  |  |  | X X | X 16 | 1637.6 | 9.4 | 1 |  | x |  | 1637.6 | 34.2 |  | 126 | x | X | 1637.623 .4 | 1 | 39 |
|  | Irc106 1424.7 | X | 1369.61 | 1059.4 | X | X | 1424.7 | 1.0 | X | X | 1424.7 | 1.1 | X | X | 1424.7 | 1.3 |  | 0 |  | X X | X 14 | 1424.7 | 8.0 | 1 | 0 | X | X | 1424.7 | 764.5 | 1 | 308 | X | x | 1424.752 .1 | 1 | 328 |
|  | \|rc107 1230.1 | - | 1094.3 |  | X | X | 1230.1 | 2.5 | X | X | 1230.1 | 12.9 | X | X | 1230.1 | 3.3 | 1 | 0 |  | X X | X 12 | 1230.1 | 14.1 | 1 | 0 | X | X | 1230.1 | 193.8 | 1 | 149 | X | x | 1230.189 .6 | 1 | 133 |
|  | Irc108 1147.4 | - | 928.6 |  | X | x | 1147.4 | 6.6 | - | x | 1145.4 | $4 \quad 6.5$ | X | x | 1147.4 | 11.8 | 1 | 0 |  | X X | X 11 | 1146.1 | 70.6 | 5 | 9 | x | X | 1141.0 | 1021.2 | 17 | 292 | x | x | 1141.2937 .5 | 23 | 282 |
|  | Sum | 18 |  |  | 27 | 29 |  |  | 26 | 29 |  |  | 27 | 27 |  |  |  |  |  | 2727 |  |  |  |  |  | 24 | 29 |  |  |  |  | 26 | 29 |  |  |  |
|  | Avg. |  | 95.03\% 1 | 136.57 |  |  | 99.99\% | 41.1 |  |  | 99.99\% | 10.8 |  |  | 99.99\% | 173.3 |  | 0.0 |  |  |  | 9.99\% | 188.0 |  | 0.3 |  |  | 99.78\% | \% 120.8 |  | 123.9 |  |  | $99.79 \% 125.9$ |  | 85.0 |

Table 20: Li and Lim instances, series 1. Each instance contains approximately 50 request.


Table 21: Li and Lim instances, series 2. Each instance contains approximately 50 request.

|  | Branch \& Cut |  | SP1* |  |  | SP2* |  |  | SP1 |  |  |  |  |  | SP2 |  |  |  |  |  | SP3 |  |  |  |  | SP4 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name UB | Opt | RLB time | Opt LB RLB time |  |  | Opt LB RLB time |  |  | Opt LB |  | RLB time nodes Cuts |  |  |  | Opt LB |  | RLB time nodes Cuts |  |  |  | Opt LB |  | RLB time nodes |  | Cuts | Opt LB |  | RLB time nodes Cuts |  |  |  |
| LR1_2_1 4819.1 | X | 4819.1298 | X | X | 4819.1 | X | X | 4819.1 | 2 X | X | 4819.1 | 1 | 1 |  |  | X X | 4819.1 | 111 | 1 |  | X | X | 4819.1407 |  |  |  | X | 4819.1 |  |  |  |
| LR1_2_2 4093.0 | - | 4067.4 |  | X | 4093.081 |  | x X | 4093.078 | 8 |  |  |  |  |  |  |  |  |  |  |  | X | X | 4093.03147 | 1 | 564 | X | X | 4093.0 |  |  |  |
| LR1_2_3 3486.9 |  | 3312.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |
| LR1_2-4 2830.7 | - | 2452.8 |  | x |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  | - | - |  |  |  | - | - |  |  |  |  |
| LR1_2-5 4221.6 | X | 4215.01123 |  | X | 4220.73 |  | X | 4220.74 | 4 X |  | 4221.6 | 611 | 1 |  |  | X X | 4221.6 | 129 | 1 |  | X | x | 4218.72888 | 17 | 602 | X | X | 4219.8 | 292 |  |  |
| LR1_2_6 3763.0 |  | 3482.1 |  |  |  |  | X | 3762.45766 | - |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  | - |  |  |  |  |  |
| LR1_2-7 3112.9 | - | 2773.2 |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LR1_2-8 2650.0 | - | 2149.3 |  | - |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  | - |  |  |  |  |  |
| LR1_2_9 3953.5 | - | 3815.1 |  | X | 3927.516 |  | X | 3927.519 | - |  | 3928.1 |  | 101 |  |  | - X | 3928.1 |  |  | 109 | - |  |  |  |  | - | x | 3876.8 |  |  | 1110 |
| LR1_2_10 3391.6 | X | $\begin{array}{ll}2879.5 & \\ 2704.6 & 179\end{array}$ |  | - | 2704.6 |  | - $\overline{\text { x }}$ | $2704.6 \quad 1$ | - | - | 2704.6 | 6 |  |  |  | x - | 2704.6 | 114 | 1 |  | - | - | 2704.6272 | 1 |  | X | X |  |  |  |  |
| LC1_2_2 2764.5 | X | 2753.85030 |  | X | 2764.5 18 | X | x X | 2764.512 |  |  |  |  |  |  |  |  |  |  |  |  | X | x | 2763.51488 | 3 | 354 | X | x | 2763.7 | 219 |  |  |
| LC1_2_3 2772.2 | - | 2561.2 |  | X | 2772.21232 |  | x X | 2772.2308 | - | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |
| LC1_2_4 2661.4 | - | 1944.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LC1_2_5 2702.0 | x | 2702.0226 |  | X | 2702.03 | x | X X | 2702.0 | x | X | 2702.0 | . | 1 |  |  |  | 2702.0 | 82 | 1 |  | x | x | 2702.0428 | 1 | 15 | x | X | 2702.0 |  |  |  |
| LC1_2_6 2701.0 | X | 2701.0596 |  | X | 2701.0 |  | X X | 2701.0 | X | X | 2701.0 | 32 | 1 |  |  |  | 2701.0 | 96 | 1 |  | X | X | 2701.0496 | 1 | 17 | X | X | 2701.0 | 505 |  |  |
| LC1_2_7 2701.0 | X | 2701.0433 |  | X | 2701.0 | X | X X | 2701.0 | X | X | 2701.0 | 52 | 1 |  |  | X X | 2701.0 | 121 | 1 |  | X | X | 2701.0402 | 1 | 12 | X | X | 2701.0 | 516 |  |  |
| LC1_2_8 2689.8 | - | 2316.8 |  | X | 2689.832 | X | x X | 2689.827 | X | X | 2689.8 | 1880 | 1 |  |  | x X | 2689.8 | 1878 | 1 |  | X | X | 2682.9876 | 3 | 182 | X | X | 2682.8 | 894 |  |  |
| LC1_2_9 2724.3 | - | 1966.8 |  | X | 2714.2201 |  | X | 2711.895 |  |  |  |  |  |  |  |  |  |  |  |  | - | X | 2707.1 | 23 | 664 | - | X | 2707.2 |  |  | 656 |
| LC1_2_10 2741.6 | - | 1493.7 |  | X | 2734.1957 |  |  | 2730.7936 |  |  |  |  |  |  |  |  |  |  |  |  |  | X | 2670.3 | 2 | 836 |  | X | 2671.6 |  |  | 850 |
| LRC1_2_1 3606.1 | X | 3569.12535 |  | X | 3603.2 6 |  | - x | 3603.2 9 | X |  | 3603.6 | 625 | 3 |  |  |  | 3603.6 | 221 | 3 |  | X | X | 3593.32316 | 7 | 607 | X | X | 3594.2 | 938 |  | 164 |
| LRC1_2_2 3292.5 | - | 3026.6 |  | X | 3264.2637 |  | X | 3264.21887 |  |  |  |  |  |  |  | - - |  |  |  |  | - |  |  |  |  | - | x | 3221.1 |  |  | 1982 |
| LRC1_2_3 3079.6 | - | 2529.8 | - |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |
| LRC1_2-4 2535.8 | - | 2103.1 |  | X |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LRC1_2_5 3715.8 | - | 3333.6 |  | X | 3709.996 | - |  | 3701.565 | - |  | 3710.7 |  | 17 |  |  |  | 3703.8 |  |  |  |  |  |  |  |  | - | X | 3627.7 |  |  | 1379 |
| LRC1_2_6 3360.8 | - | 3072.7 | X | X | $3360.8 \quad 25$ |  |  | $3360.7 \quad 26$ | X |  | 3360.8 | 38 | 1 |  | X |  | 3360.7 | 195 |  |  | - | X | 3265.9 |  | 1044 |  | X | 3280.1 |  |  | 1346 |
| LRC1-2 73317.8 | - | 2720.4 |  | X | 3294.9745 |  | X | 3280.7453 | - | X | 3294.9 |  |  |  |  | X | 3286.4 |  |  | 254 | - |  |  |  |  | - |  |  |  |  |  |
| LRC1_2_8 3097.0 | - | 2441.6 |  | X | 3024.34533 |  |  |  |  |  |  |  |  |  |  | - - |  |  |  |  | - |  |  |  |  | - |  |  |  |  |  |
| LRC1_2_9 3058.6 | - | 2261.3 2074.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - | - |  |  |  |  |
|  | 8 |  | 10 | 19 |  | 9 |  |  | 9 |  |  |  |  |  | 9 |  |  |  |  |  | 10 |  |  |  |  | 10 | 16 |  |  |  |  |
| Avg. |  | $88.26 \% 1303$ |  |  | $99.71 \% \quad 141$ |  |  | $99.79 \% \quad 49$ |  |  | 99.87\% | 228 |  | 0.2 |  |  | 99.83\% | 327 |  | 0.2 |  |  | $99.48 \% 1272$ |  | 245.3 |  |  | 99.20\% | 746 |  | 74.7 |

Table 22: Li \& Lim instances. Each instance contains approximately 100 requests, series 1.


Table 23: Large scale Li \& Lim instances. 200-500 requests.

|  |  |  |  | Branch \& | Cut |  |  |  | S1 |  |  |  |  |  | SP2 |  |  |  |  |  | P3 |  |  |  |  |  | S4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | name | UB | Opt | RLB | time | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts |
|  | A30 | 51317.7 | X | 51317.7 | 3.1 | X | X | 51317.7 | 0.2 | 1 | 0 | X | X | 51317.7 | 1.6 | 1 | 0 | X | X | 51317.7 | 12.0 | 1 | 61 | X | X | 51317.7 | 13.9 | 1 | 61 |
|  | A35 | 51343.9 | X | 51343.9 | 5.9 | x | X | 51343.9 | 0.5 | 1 | 0 | x | x | 51343.9 | 2.7 | 1 | 0 | X | X | 51343.9 | 406.7 | 1 | 214 | x | X | 51343.9 | 409.2 | 1 | 214 |
|  | A40 | 61609.9 | X | 61609.9 | 8.3 | x | X | 61609.9 | 0.6 | 1 | 4 | X | X | 61609.9 | 4.2 | 1 | 4 | x | X | 61609.9 | 410.1 | 1 | 231 | X | X | 61609.9 | 397.9 | 1 | 231 |
|  | A45 | 61693.5 | - | 51814.1 |  | X | X | 52716.1 | 5.5 | 3 | 2 | X | X | 52716.1 | 10.1 | 3 | 3 | - |  |  |  |  |  |  | - |  |  |  |  |
|  | A50 | 71932.6 | X | 71932.6 | 24.6 | X | X | 71932.6 | 1.4 | 1 | 0 | X | X | 71932.6 | 7.7 | 1 | 0 | X | X | 71932.6 | 5841.7 | 1 | 501 |  | - |  |  |  |  |
|  | A55 | 82185.9 | X | 82143.0 | 214.6 | x | x | 82185.9 | 3.2 | 1 | 15 | X | X | 82185.9 | 13.4 | 1 | 17 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A60 | 92367.4 | X | 92367.4 | 41.4 | X | X | 92367.4 | 2.2 | 1 | 0 | X | X | 92367.4 | 13.7 | 1 | 0 | x | X | 92367.4 | 2498.5 | 1 | 270 | x | X | 92367.4 | 2965.1 | 1 | 270 |
|  | A65 | 82331.8 | X | 82331.8 | 77.0 | x | X | 82331.8 | 4.5 | 1 | 0 | x | X | 82331.8 | 18.7 | 1 | 0 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | A 70 | 112459.0 | X | 107528.1 | 202.7 | X | X | 107488.7 | 7.6 | 3 | 4 | X | X | 107488.7 | 27.8 | 3 | , | - |  |  |  |  |  |  |  |  |  |  |  |
|  | A75 | 92526.3 | X | 92494.0 | 990.9 | X | X | 92526.3 | 12.8 | 1 | 0 | X | X | 92526.3 | 31.8 | 1 | 0 |  | - |  |  |  |  |  |  |  |  |  |  |
|  | A100 | 123515.5 |  | 123435.2 |  | X | X | 123512.3 | 100.8 | 7 | 9 | X | X | 123512.3 | 219.4 | 9 | 23 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | A125 | 134297.7 |  | 134214.4 |  | x | X | 134293.2 | 714.1 | 47 | 32 | x | x | 134293.2 | 1634.7 | 37 | 30 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | A150 | 135062.5 | - | 124890.2 |  | - | X | 135056.3 |  | 222 | 60 | x | x | 135056.3 | 5224.6 | 49 | 39 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | A175 | 176052.7 |  | 165851.1 |  | - | X | 176013.1 |  | 199 | 69 |  |  | 176013.1 |  | 19 | 33 | - | - |  |  |  |  | - |  |  |  |  |  |
|  | A200 | 206856.7 | - | 166033.6 |  | - | X | 206801.8 |  | 133 | 78 | - | X | 206801.8 |  | 9 | 11 | - | - |  |  |  |  |  | - |  |  |  |  |
|  | B30 | 51194.0 | X | 51191.1 | 4.8 | X | X | 51194.0 | 0.3 | 1 | 4 | X | X | 51194.0 | 1.7 | 1 | 4 | X | X | 51191.1 | 401.7 | 3 | 273 | X | X | 51190.6 | 353.2 | 5 | 241 |
|  | B35 | 61400.4 | X | 56446.9 | 8.2 | x | X | 56448.2 | 0.6 | 3 | 0 | x | X | 56448.2 | 2.8 | 3 | 0 | x | x | 56448.2 | 1160.5 | 3 | 348 | X | X | 56448.2 | 867.6 | 3 | 360 |
|  | B40 | 51421.8 | X | 44077.0 | 33.8 | X | X | 46481.8 | 1.9 | 3 | 3 | X | X | 46481.8 | 5.3 | 3 | 3 | - |  |  |  |  |  |  | - |  |  |  |  |
|  | B45 | 61787.8 | X | 61767.5 | 38.2 | x | X | 61780.8 | 4.4 | 11 | 13 | x | X | 61780.8 | 8.8 | 5 | 12 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | B50 | 71890.3 | X | 71873.7 | 56.2 | x | X | 71889.1 | 4.3 | 7 | 13 | x | X | 71889.1 | 11.9 | 7 | 14 | - |  |  |  |  |  | - | - |  |  |  |  |
|  | B55 | 82081.3 | X | 82077.5 | 46.0 | x | X | 82081.3 | 2.3 | 1 | , | x | X | 82081.3 | 11.0 | 1 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | B60 | 102324.5 | X | 102322.1 | 74.6 | X | X | 102324.5 | 2.0 | 1 | 0 | X | X | 102324.5 | 14.2 | 1 | 0 | x | x | 102324.5 | 6922.8 | 3 | 981 | x | x | 102324.5 | 6837.9 | 3 | 1001 |
|  | B65 | 82618.0 | X | 82559.7 | 5748.3 | X | X | 82615.2 | 23.2 | 19 | 0 | X | X | 82615.2 | 37.1 | 13 | 0 | - |  |  |  |  |  | - | - |  |  |  |  |
|  | B70 | 92642.4 | X | 92605.4 | 462.9 | X | X | 92640.9 | 23.0 | 11 | 16 | X | X | 92640.9 | 37.3 | 5 | 14 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | B75 | 92472.7 | - | 82626.8 |  | X | X | 87514.2 | 51.7 | 15 | 10 | x | X | 87512.9 | 83.4 | 13 | 9 | - | - |  |  |  |  | - | - |  |  |  |  |
| $\infty$ | B100 | 113564.9 | - | 103757.2 |  | X | X | 108590.6 | 242.4 | 33 | 37 | X | X | 108589.5 | 259.0 | 9 | 17 | - |  |  |  |  |  |  |  |  |  |  |  |
|  | B125 | 134514.9 | - | 134369.3 |  | X | X | 134512.5 | 3212.5 | 353 | 32 | X | X | 134512.5 | 1108.7 | 25 | 14 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | B150 | 144663.4 | - | 136401.0 |  | x | X | 141417.4 | 2042.2 | 27 | 32 | X | X | 141418.1 | 1818.8 | 9 | 12 | - |  |  |  |  |  |  |  |  |  |  |  |
|  | B175 | 165996.6 |  | 142472.2 |  |  | X | 161000.6 |  | 77 | 178 |  |  | 161000.7 |  | 17 | 64 | - |  |  |  |  |  |  |  |  |  |  |  |
|  | B200 | 206642.6 | - | 154459.4 |  | - | X | 206593.6 |  | 73 | 47 | - | X | 206593.6 |  | 7 | 13 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | C30 | 51145.5 | X | 51145.5 | 3.3 | X | X | 51145.5 | 0.2 | 1 | 0 | X | X | 51145.5 | 2.2 | 1 | 0 | X | X | 51145.5 | 14.5 | 1 | 84 | X | X | 51145.5 | 15.9 | 1 | 84 |
|  | C35 | 51236.0 | X | 51226.3 | 16.0 | X | X | 51235.2 | 0.8 | 3 | 1 | X | X | 51233.5 | 4.1 | 3 | 0 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C40 | 61474.3 | - | 51534.1 |  | X | X | 54048.2 | 1.7 | 3 | 0 | X | X | 54048.2 | 6.7 | 3 | 0 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C45 | 81406.4 | X | 81406.4 | 30.5 | X | X | 81406.4 | 1.3 | 1 | 0 | x | X | 81406.4 | 7.4 | 1 | 0 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C50 | 61933.6 | X | 61893.7 | 265.2 | X | X | 61933.2 | 7.2 | 3 | , | X | X | 61933.2 | 14.1 | 3 | 4 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C55 | 61931.2 | X | 61880.2 | 1274.5 | x | X | 61931.2 | 10.0 | 1 | 0 | x | X | 61931.2 | 20.2 | 1 | 0 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C60 | 72101.3 | X | 72022.7 | 6982.1 | X | X | 72101.3 | 6.6 | 1 | 0 | X | X | 72101.3 | 22.4 | 1 | 0 | - |  |  |  |  |  |  |  |  |  |  |  |
|  | C65 | 82319.7 | - | 82152.7 |  | X | X | 82316.5 | 76.8 | 15 | 3 | X | X | 82316.5 | 81.4 | 13 | 3 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C70 | 92612.3 | - | 82630.5 |  | X | X | 87683.4 | 34.9 | 5 | 19 | X | X | 87684.0 | 70.6 | 7 | 25 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C75 | 92712.5 | - | 92546.0 |  | x | X | 92708.7 | 81.7 | 13 | 㖪 | X | X | 92708.7 | 111.1 | 13 | 2 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C100 | 113373.2 | - | 103186.0 |  | x | X | 105477.2 |  | 795 | 99 | - | X | 105477.4 |  | 449 | 73 | - |  |  |  |  |  |  |  |  |  |  |  |
|  | C125 | 153862.8 |  | 143650.3 |  | X | X | 148890.1 | 1076.4 | 41 | 12 | X |  | 148890.1 | 1078.1 | 19 | 4 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C150 | 174895.8 | - | 174571.8 |  | - | X | 174880.8 |  | 283 | 60 | - | X | 174880.8 |  | 62 | 12 | - |  |  |  |  |  |  |  |  |  |  |  |
|  | C175 | 175876.5 | - | 175410.6 |  | - | X | 175794.0 |  | 103 | 3 | - | X | 175794.0 |  | 20 | 0 | - |  |  |  |  |  | - |  |  |  |  |  |
|  | C200 | 196432.4 |  | 185722.7 |  | - | X | 196314.7 |  | 40 | 40 | - | X | 196314.9 |  | 6 | 14 | - | - |  |  |  |  | - | - |  |  |  |  |
|  |  | $\begin{array}{l\|} \hline \text { sum } \\ \text { avo } \end{array}$ | 24 |  | $\begin{array}{\|r\|} \hline 16613.0 \\ 692.2 \end{array}$ | 36 | 45 |  | $\begin{array}{r} 7761.6 \\ 215.6 \end{array}$ |  | 273 8 | 37 | 45 |  | $\begin{array}{r} 12028.3 \\ 325.1 \end{array}$ |  | 257 7 | ${ }^{9}$ | 9 |  | $\begin{array}{r} 17668.3 \\ 1963.1 \end{array}$ |  | $\begin{array}{r} 2963 \\ 329 \end{array}$ | 8 | 8 |  | $\begin{array}{r} 11860.6 \\ 1482.6 \end{array}$ |  | $\begin{array}{r} 2462 \\ 308 \end{array}$ |

Table 24: Instances proposed by Ropke, Cordeau and Laporte Ropke et al. (2005). Class A, B and C

|  |  | Branch \& Cut |  |  | SP1 |  |  |  |  |  | SP2 |  |  |  |  |  | SP3 |  |  |  |  |  | SP4 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name | UB | Opt | RLB | time | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts |
| D30 | 61040.4 | X | 61032.9 | 11.0 | X | X | 61040.4 | 0.3 | 1 | 0 | X | X | 61040.4 | 2.5 | 1 | 0 | X | X | 61040.4 | 6504.9 | 1 | 822 | X | X | 61040.4 | 6751.6 | 1 | 822 |
| D35 | 71308.4 | X | 71256.1 | 2078.8 | x | X | 71305.3 | 3.2 | 9 | 0 | x | X | 71305.3 | 5.7 | 9 | 0 | - |  |  |  |  |  |  |  |  |  |  |  |
| D40 | 61527.5 | - | 61451.3 |  | X | x | 61515.8 | 16.1 | 29 | 9 | x | X | 61515.8 | 17.8 | 25 | 5 |  |  |  |  |  |  |  |  |  |  |  |  |
| D45 | 81602.0 | x | 81597.3 | 31.8 | X | X | 81600.6 | 3.4 | 11 | 0 | x | X | 81600.6 | 10.6 | 11 | 0 | X | x | 81600.5 | 6171.1 | 3 | 641 |  | X | 81600.6 |  | 5 | 630 |
| D50 | 71761.8 | X | 71750.5 | 68.6 | X | X | 71761.8 | 4.6 | 1 | 0 | X | X | 71761.8 | 13.7 | 1 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| D55 | 72052.5 |  | 71982 |  | X | X | 72052.5 | 10.9 | 1 | 0 | X | X | 72052.5 | 18.5 | 1 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| D60 | 82307.1 | X | 82291.3 | 144.0 | X | X | 82307.1 | 4.0 | 1 | 0 | x | X | 82307.1 | 20.1 | 1 | 0 | - |  |  |  |  |  |  | - |  |  |  |  |
| D65 | 82201.5 | - | 82076.9 |  | X | X | 82201.5 | 19.0 | 1 | 0 | x | X | 82201.5 | 30.1 | 1 | 0 | - |  |  |  |  |  | - |  |  |  |  |  |
| D70 | 82624.2 | - | 82489.5 |  | X | x | 82623.9 | 44.7 | 5 | 0 | x | X | 82623.9 | 62.2 | 3 | , | - | - |  |  |  |  |  |  |  |  |  |  |
| D75 | 92971.7 | - | 92751.1 |  | X | X | 92971.7 | 42.5 | 1 | 4 | X | X | 92971.7 | 71.4 | 1 | 3 | - |  |  |  |  |  |  |  |  |  |  |  |
| D100 | 103449.2 | - | 103065.3 |  | X | X | 103449.1 | 310.9 | 3 | 2 | X | X | 103449.1 | 296.3 | 3 | 2 | - |  |  |  |  |  |  |  |  |  |  |  |
| D125 | 174237.6 | - | 173986.2 |  | - | X | 174205.0 |  | 696 | 63 |  | X | 174205.0 |  | 130 | 25 | - |  |  |  |  |  |  |  |  |  |  |  |
| D150 | 154832.8 | - | 70675.2 |  | - | X | 148352.3 |  | 41 | 33 | - | X | 148352.3 |  | 22 | 46 | - |  |  |  |  |  | - |  |  |  |  |  |
| D175 | 175708.2 | - | 98833.8 |  | - | x | 165802.9 |  | 4 | 21 | - | x | 165802.9 |  | 4 | 17 | - | - |  |  |  |  |  | - |  |  |  |  |
| D200 | 176370.0 | - | 140779.5 |  | - | X | 176198.5 |  | 10 | 14 | - | X | 176198.5 |  | 4 | 10 | - | - |  |  |  |  | - | - |  |  |  |  |
| E30 | 41258.0 | X | 41247.4 | 11.6 | X | X | 41258.0 | 0.4 | 1 | 0 | X | X | 41258.0 | 2.2 | 1 | 0 | - | X | 41251.2 |  | 13 | 513 | - |  | 41249.9 |  | 12 | 528 |
| E35 | 71312.6 | - | 61309.2 |  | x | x | 66333.0 | 0.7 | 3 | 0 | x | x | 66333.0 | 4.2 | 3 | 0 | - |  |  |  |  |  | - |  |  |  |  |  |
| E40 | 61512.4 | X | 61461.9 | 1677.6 | X | X | 61511.9 | 2.8 | 3 | 2 | X | X | 61511.9 | 6.9 | 3 | 2 | - |  |  |  |  |  | - |  |  |  |  |  |
| E45 | 61472.7 | X | 61424.0 | 2842.9 | X | X | 61472.7 | 4.9 | 1 | 0 | X | X | 61472.7 | 10.4 | 1 | 0 | - |  |  |  |  |  | - |  |  |  |  |  |
| E50 | 81784.3 | X | 81734.9 | 2621.3 | X | X | 81780.3 | 48.3 | 45 | 9 | X | X | 81780.3 | 64.5 | 51 | 6 | - |  |  |  |  |  |  |  |  |  |  |  |
| E55 | 91920.7 | - | 91795.4 |  | X | X | 91915.8 | 92.7 | 63 | 21 | X | X | 91915.8 | 176.0 | 109 | 26 | - | - |  |  |  |  | - |  |  |  |  |  |
| E60 | 71998.8 | - | 71872.4 |  | X | x | 71990.7 | 904.2 | 245 | 32 | x | X | 71990.7 | 783.1 | 241 | 51 | - |  |  |  |  |  |  |  |  |  |  |  |
| E65 | 62315.7 | - | 62009.8 |  | X | X | 62315.0 | 82.3 | 5 | 7 | X | X | 62315.0 | 133.7 | 7 | 12 | - |  |  |  |  |  | - |  |  |  |  |  |
| E70 | 82590.6 | - | 82364.9 |  | X | X | 82577.2 | 241.8 | 13 | 7 | X | X | 82577.2 | 249.9 | 19 | 5 | - | - |  |  |  |  | - |  |  |  |  |  |
| E75 | 112464.8 |  | 102290.2 |  | X | X | 107486.6 | 229.0 | 5 | 33 | X | X | 107486.5 | 194.7 | 5 | 34 | - | - |  |  |  |  | - |  |  |  |  |  |
| E100 | 103367.3 | - | 92862.7 |  | - | X | 93621.8 |  | 9 | 7 | - | X | 93621.8 |  | 11 | 17 | - | - |  |  |  |  | - |  |  |  |  |  |
| E125 | 133937.7 |  | 133419.4 |  | - | X | 133898.1 |  | 23 | 21 | - |  | 133898.1 |  | 28 | 13 | - |  |  |  |  |  | - |  |  |  |  |  |
| E150 | 134704.3 |  | 133735.8 |  | - |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  | - |  |  |  |  |  |
| E175 | 165800.6 | - | 164939.9 |  | - |  |  |  |  |  | - |  |  |  |  |  | - | - |  |  |  |  | - |  |  |  |  |  |
| E200 | 156202.0 | - | 71105.9 |  | - | - |  |  |  |  | - | - |  |  |  |  | - | - |  |  |  |  | - | - |  |  |  |  |
|  | sum avg. | 9 |  | $\begin{aligned} & 9487.4 \\ & 1054.2 \end{aligned}$ | 21 | 27 |  | $\begin{array}{r} 2066.7 \\ 98.4 \end{array}$ |  | 127 6 | 21 | 27 |  | $\begin{array}{r} \hline 2174.2 \\ 103.5 \end{array}$ |  | $\begin{array}{r} 146 \\ 7 \end{array}$ | 2 | 3 |  | $\begin{array}{r} 12676.1 \\ 6338.0 \end{array}$ |  | $\begin{array}{r} 1463 \\ 732 \end{array}$ | 1 | 3 |  | 6751.6 |  | $\begin{aligned} & 822 \\ & 822 \end{aligned}$ |

Table 25: Instances proposed by Ropke, Cordeau and Laporte Ropke et al. (2005). Class D, E

### 6.6.2 DARP results

Tables 26 and 27 shows the results of applying the column generation algorithm to the DARP instances.

The ride time constraints are not handled in any of the pricing algorithms proposed in this paper. Instead, these must be handled by dynamically added inequalities. Using the SP1 or SP2 pricing problems one only needs to add infeasible path inequalities to obtain feasible DARP solutions, but the other inequalities can improve the quality of the lower bound as well.

The pricing problems for the DARP instances are easy to solve so the pricing algorithms SP1* and SP2* have not been applied to these problems. Inspecting the tables one first notices that many more cuts can be added to the SP1 and SP2 models compared to when solving pure PDPTW instances. The reason is obviously that the cuts ensure that ride time constraints are satisfied. One also notices that the lower bounds obtained with SP2 virtually are as good as the ones obtained with SP1. In three cases SP1 is better than SP2 (a4-48, a6-72, b8-96), but SP2 is better than SP1 in three other cases (a8-64, a8-80, 8-64). The cases where SP2 is better than SP1 occur because heuristic separation routines are used for fork and capacity inequalities.

The SP3 and SP4 formulations perform quite poorly on the DARP instances - for more than half of the instances they do not even establish a lower bound within the time limit. Table 28 contains detailed statistics for the solution of a typical instance (a6-48). This table reveals why SP3 and SP4 perform so badly. The table contains a line for each of the four lower bounds. All of the lower bounds solve the problem in the root node. The columns should be interpreted as follows cols - number of columns generated, iter - number of column generation iterations, cuts - number of cuts added, time total time to solve the root node (in seconds). The next five columns show how time is distributed among the major components of the algorithm: preprocessing - time spent doing preprocessing (finding $A_{i}^{-}$ and $A_{i}^{+}$, performing time window reductions, etc.), $L P$ - time spent in LP solver, pricing heur - time spent in the pricing heuristics, pricing exact - time spent in exact pricing algorithm, cut generation - time spent separating valid inequalities, other - time spent on bookkeeping and updating the model with new columns and rows.

It is clear that SP3 and SP4 perform many column generation iterations and generate numerous columns and consequently spend almost all of their time in the LP solver. There are several ways to improve on this. The simplest improvement would be to implement a column management routine that removes unpromising columns from the LP formulation. This is not done currently, so all generated variables are present in the LP. Savelsbergh and Sol (1998) describe one way of managing columns.

In order to reduce the number of column generation iterations, two approaches can be taken. One is to try to fine tune the choice between generating variables and cuts. It might be beneficial to generate cuts earlier compared to what is being done now. A more promising, but possibly more complicated improvement would be to use stabilized column generation (see du Merle et al. (1999)).

Compared to the branch-and-cut (BAC) algorithm presented in Ropke et al. (2005) one can see that the BAC algorithm performs better than the branch-and-cut-and-price (BCP) algorithm as all instances were solved by BAC while two are unsolved using BCP. It should be noted that the BAC algorithm was allowed to spend longer time on a8-96 than the BCP
algorithm. One should also note that the BCP algorithm often obtains significantly better lower bounds than the BAC.

|  |  |  |  | ranch \& | Cut |  |  |  | SP1 |  |  |  |  |  | SP2 |  |  |  |  |  | SP3 |  |  |  |  |  | SP4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | name | UB | Opt | RLB | time | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts | Opt | LB | RLB | time | nodes | Cuts |
|  | a2-16 | 294.2 |  | 294.2 | 0.6 | X | X | 294.2 | 0.3 | 1 | 13 | X | X | 294.2 | 0.3 | 1 | 13 | X | X | 294.2 | 1.5 | 1 | 23 | X | X | 294.2 | 1.7 | 1 | 23 |
|  | a2-20 | 344.8 | X | 344.8 | 1.1 | X | X | 344.8 | 0.8 | 1 | 27 | X | X | 344.8 | 0.9 | 1 | 27 | X | x | 344.8 | 14.8 | 1 | 54 | X | x | 344.8 | 11.1 | 1 | 53 |
|  | a2-24 | 431.1 | x | 430.3 | 2.6 | X | X | 430.4 | 2.2 | 3 | 21 | X | X | 430.4 | 3.0 | 3 | 21 | X | X | 430.3 | 200.5 | 7 | 81 | X | X | 430.3 | 164.2 | 5 | 71 |
|  | a3-24 | 344.8 | X | 344.8 | 2.1 | X | X | 344.8 | 1.6 | 1 | 52 | X | X | 344.8 | 1.3 | 1 | 52 | X | X | 344.8 | 36.5 | 1 | 115 | X | X | 344.8 | 49.3 | 1 | 113 |
|  | a3-30 | 494.8 | X | 494.8 | 4.7 | X | X | 494.8 | 2.6 | 1 | 24 | X | X | 494.8 | 3.0 | 1 | 24 | X | X | 494.8 | 208.7 | 1 | 133 | X | X | 494.8 | 80.1 | 1 | 114 |
|  | a3-36 | 583.2 | X | 579.0 | 9.5 | X | X | 579.0 | 13.1 | 7 | 58 | X | X | 579.0 | 12.3 | 7 | 64 | x | X | 579.0 | 645.8 | 5 | 181 | X | X | 579.0 | 557.5 | 7 | 134 |
|  | a4-32 | 485.5 | X | 485.5 | 5.3 | X | X | 485.5 | 3.7 | 1 | 73 | X | x | 485.5 | 3.8 | 1 | 73 | X | X | 485.5 | 789.0 | 1 | 280 | X | X | 485.5 | 378.6 | 1 | 283 |
|  | a4-40 | 557.7 | x | 553.9 | 17.6 | X | x | 556.7 | 10.9 | 3 | 78 | X | x | 556.6 | 12.2 | 3 | 77 |  | X | 554.9 |  | 5 | 231 | X | X | 554.9 | 5863.0 | 5 | 261 |
|  | a4-48 | 668.8 | X | 666.5 | 35.8 | X | X | 668.1 | 40.9 | 3 | 85 | X | X | 668.1 | 45.7 | 5 | 85 |  | - |  |  |  |  |  |  |  |  |  |  |
|  | a5-40 | 498.4 | X | 498.4 | 11.0 | X | X | 498.4 | 5.6 | 1 | 3 | X | X | 498.4 | 6.4 | 1 | 3 | x | X | 498.4 | 1274.6 | 1 | 225 | x | x | 498.4 | 740.0 | 1 | 255 |
|  | a5-50 | 686.6 | X | 680.0 | 50.4 | X | X | 680.8 | 623.0 | 113 | 241 | X | X | 680.8 | 544.9 | 101 | 250 | - | - |  |  |  |  | - |  |  |  |  |  |
|  | a5-60 | 808.4 | X | 804.1 | 102.5 | X | x | 808.4 | 60.4 | 1 | 103 | X | X | 808.4 | 63.4 | 1 | 102 | - | - |  |  |  |  | - | - |  |  |  |  |
| N | a6-48 | 604.1 | X | 604.1 | 28.3 | X | X | 604.1 | 18.3 | 1 | 121 | X | X | 604.1 | 17.4 | 1 | 121 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | a6-60 | 819.2 | X | 816.2 | 106.6 | X | X | 819.1 | 58.4 | 3 | 110 | X | X | 819.1 | 54.9 | 3 | 110 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | a6-72 | 916.0 | X | 910.1 | 210.9 | X | X | 914.4 | 1646.2 | 33 | 320 | X | X | 913.6 | 1721.6 | 31 | 337 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | a7-56 | 724.0 | X | 718.5 | 103.7 | X | X | 720.9 | 70.1 | 23 | 145 | X | X | 720.9 | 63.0 | 17 | 186 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | a7-70 | 889.1 | x | 886.7 | 201.0 | X | X | 888.8 | 146.9 | 7 | 146 | X | X | 888.8 | 135.1 | 7 | 137 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | a7-84 | 1033.4 | X | 1025.2 | 547.9 | X | X | 1028.6 | 2468.5 | 85 | 367 | X | X | 1028.6 | 1436.5 | 57 | 374 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | a8-64 | 747.5 | X | 743.7 | 233.2 | X | X | 747.1 | 58.3 | 3 | 122 | X | X | 747.3 | 53.2 | 3 | 146 |  | - |  |  |  |  | - | - |  |  |  |  |
|  | a8-80 | 945.7 | X | 938.1 | 589.7 | - | X | 940.1 |  | 201 | 534 |  | X | 940.3 |  | 270 | 495 | - | - |  |  |  |  | - | - |  |  |  |  |
|  | a8-96 | 1232.6 | X | 1213.4 | 11585.4 | - | X | 1224.5 |  | 37 | 831 | - | X | 1224.5 |  | 31 | 780 | - | - |  |  |  |  | - | - |  |  |  |  |
|  |  | Sum Avg. | 21 | 99.56\% | 659.5 | 19 | 21 | 99.79\% | 275.4 |  | 111.0 | 19 | 21 | 99.79\% | 219.9 |  | 115.9 | 8 | 9 | 99.84\% | 396.4 |  | 136.5 | 9 | 9 | 99.84\% | 871.7 |  | 145.2 |

Table 26: DARP instances, type A.


Table 27: DARP instances, type B.

|  | cols | iter | cuts | time | time distribution |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | pre- |  | pricing | pricing | cut |  |
|  |  |  |  |  | processing | LP | heur. | Exact | generation | other |
| SP1 | 2096 | 383 | 85 | 18.3 | 27.9\% | 11.2\% | $52.1 \%$ | 0.0\% | 5.4\% | 3.4\% |
| SP2 | 2060 | 347 | 85 | 17.4 | 29.1\% | 10.4\% | 51.7\% | 0.0\% | 5.5\% | 3.3\% |
| SP3 | 80584 | 8613 | 704 | 27884.9 | 0.0\% | 95.4\% | 1.0\% | 0.0\% | 0.0\% | 3.6\% |
| SP4 | 75078 | 9148 | 592 | 22696.5 | 0.0\% | 95.8\% | 1.8\% | 0.0\% | 0.0\% | $2.3 \%$ |

Table 28: Statistics for DARP instance a6-48.

## 7 Conclusion

In the beginning of the paper we raised the question: How do the four relaxations presented in this paper compare to each other and how do they compare to a pure branch and cut approach? Can one approach be recommended as "the best"?

The computational tests bring us closer to answering these questions. Table 29 gives an overview of the number of instances solved to optimality for the different relaxations and instance classes. Each line in the table corresponds to a class of instances, thus LL50-1 and LL50-2 correspond to Tables 20 and 21. LL100 and LL200-500 correspond to Tables 22 and 23 while SaSo correspond to Tables 24 and 25 and DARP correspond to Tables 26 and 27 . For the SP1 relaxations we have reported the union of solutions found by SP1 and SP1* algorithms. This seems fair as we could run the SP1* first and switch to SP1 if the solution to the LPM in the root is fractional. The same has been done for SP2. We see that SP1 and SP2 come out as winners of this test.

This leads to an interesting observation: the SP1 and SP2 lower bounds are very close and their pricing problems are roughly equally difficult with the algorithms available for solving shortest path problems. That their lower bounds were going to be close was already hinted by the fact that the cycles that can occur in the solutions to the SPPTWCPD contain at least four nodes, but there are also results in the literature that suggest that SP1 should be much stronger than SP2. Sol (1994), page 73 showed that the SP2 relaxation can be half the value of the SP 1 relaxation.

At first sight it seems like the ESPPTWCPD should be much harder to solve compared to the SPPTWCPD due to the many extra resources. This does not turn out to be the case. The best explanation is probably, that although the domination check is weaker for the ESPPTWCPD than for the SPPTWCPD, the ESPPTWCPD has another advantage: the SPPTWCPD algorithm has to loop around in negative cycles - this implies that it has to store and extend sets of labels whose corresponding paths only differ by how many times a certain negative cycle has been traversed, while the ESPPTWCPD algorithm never does such looping.

The branch-and-cut algorithm is worthwhile for some problem classes, but overall SP1 and SP2 are preferable. The SP4 relaxation has the advantage in a few cases but it is not really competitive. However, it does seem like further programming efforts would be able to improve on the SP4 performance. Overall the SP4 relaxation is preferable to the SP3 relaxation. The SP4 relaxation is interesting as it often is easier to solve its pricing problem than solving the SP1 pricing problem but its resulting lower bound is of poorer quality. It is better than solving the 2 -index model proposed in Ropke et al. (2005) or the 3 -index model proposed in Cordeau (2005) though. It can be seen as a relaxation in between the two lower bounds.

The experiments with pricing heuristics demonstrated that it is useful to consider more

|  | BAC | SP1 | SP2 | SP3 | SP4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| LL50-1 | 18 | 29 | 29 | 24 | 26 |
| LL50-2 | 10 | 7 | 6 | 7 | 7 |
| LL100 | 8 | 12 | 11 | 10 | 10 |
| LL200-500 | - | 12 | 12 | 2 | 7 |
| SaSo | 31 | 57 | 58 | 11 | 9 |
| DARP | 42 | 40 | 40 | 17 | 19 |
| Sum | 109 | 157 | 156 | 71 | 78 |

Table 29: Overview of number of optimal solutions
advanced pricing heuristics - significant speed ups can be obtained. More research could be done in this field though. It seems like an automatic selection of the heuristic to use to solve the pricing problem would be helpful - some pricing problems are easier than others.

There are ample opportunities for further research. The most obvious line of research is to find a branching rule compatible with the (DOM1') and (DOM2) dominance criteria or to find a way to perturb the costs $d_{i j}$ such that the dominance criteria can be used with valid inequalities. Dumas et al. (1991) proposed a branching rule, but it creates $n_{r}+2$ branches where $n_{r}$ is the number of requests served in the route that is chosen for branching. Thus the branch and bound tree may grow very rapidly. A better approach might be to branch on time windows as proposed for the vehicle routing problem with time windows and backhauls by Gélinas et al. (1995).

The valid inequalities improve the SP3 and SP4 lower bounds significantly, but none of the inequalities used in this paper are able to influence the SP1 lower bound much. One candidate is the 2-path cuts for the VRPTW proposed by Kohl et al. (1999). It is possible to strengthen the cut when used for the PDPTW so it appears to be promising.

Improving the performance of the SP3 and SP4 relaxations as described in Section 6.6.2 would be interesting. It is also possible to deduce new, tighter relaxations from SP4. For example the pricing problem ESPPTWP could be constrained even more by demanding that an even number of nodes must be visited on every path or even stronger: that the number of pickup and delivery nodes must be equal on every path.

Proving or disproving theorems about the relationships between classes of valid inequalities and relaxations obtained by set-partitioning, put forward in Section 6.5, would be an interesting contribution.

We can conclude that several large-scale instances can be solved with the current approach and that many of the proposed test instances can be solved to optimality. We hope that the unsolved instances will challenge future researchers in the years to come.

## References

E. Balas, M. Fischetti, and W.R. Pulleyblank. The precedence-constrained asymmetric traveling salesman polytope. Mathematical Programming, 68:241-265, 1995.
C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance. Branch-
and-price: Column generation for solving integer programs. Operations Research, 46: 316-329, 1998.
J. Bramel and D. Simchi-Levi. Set-covering-based algorithms for the capacitated VRP. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 9, pages 85-108. SIAM, Philadelphia, 2002.
A. Chabrier. Vehicle routing problem with elementary shortest path based column generation. Working Paper, ILOG, Madrid, 2003, 2003.
J.-F. Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 2005. Forthcoming.
J.-F. Cordeau, G. Laporte, J.-Y. Potvin, and M.W.P. Savelsbergh. Transportation on demand. In C. Barnhart and G. Laporte, editors, Transportation, Handbooks in Operations Research and Management Science. Elsevier, Amsterdam, 2005. Forthcoming.
G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon, and F. Soumis. VRP with pickup and delivery. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 9, pages 225-242. SIAM, Philadelphia, 2002.
G. Desaulniers, J. Desrosiers, I. Ioachim, M.M. Solomon, F. Soumis, and D. Villeneuve. A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In T.G. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 57-93. Kluwer, Norwell, MA, 1998.
M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the vehicle routing problem with time windows. Operations Research, 40(2):342-354, 1992.
J. Desrosiers, Y. Dumas, and F. Soumis. A dynamic programming solution of the large-scale single-vehicle dial-a-ride problem with time windows. American Journal of Mathematical and Management Sciences, 6:301-325, 1986.
O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation. Discrete Mathematics, 194:229-237, 1999.
Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time windows. European Journal of Operational Research, 54:7-22, 1991.
I. Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, Department of Mathematics and Statistics, The University of Melbourne, May 2002.
D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3):216-229, 2004.
S. Gélinas, M. Desrochers, J. Desrosiers, and M.M. Solomon. A new branching strategy for time constrained routing problems with application to backhauling. Annals of Operations Research, 61:91-109, 1995.
S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, chapter 2, pages 33-65. Springer, 2005.
S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and $k$ cycle elimination for $k \geq 3$. Technical Report G-2003-55, GERAD, Montreal, Canada, September 2003.
M. Jepsen, S. Spoorendonk, and B. Petersen. A branch-and-cut-and-price framework for VRP applied on CVRP and VRPTW. Master's thesis, DIKU Department of Computer Science, University of Copenhagen, August 2005.
N. Kohl, J. Desrosiers, O. B. G. Madsen, M.M. Solomon, and F. Soumis. 2-path cuts for the vehicle routing problem with time windows. Transportation Science, 33(1):101 - 116, 1999.
H. Li and A. Lim. A metaheuristic for the pickup and delivery problem with time windows. In The 13th IEEE International Conference on Tools with Artificial Intelligence, ICTAI2001, Dallas, USA, 2001.
Q. Lu and M. Dessouky. An exact algorithm for the multiple vehicle pickup and delivery problem. Transportation Science, 38:503-514, 2004.
J. Lysgaard. Reachability cuts for the vehicle routing problem with time windows. European Journal of Operational Research, 2005. To appear.
D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated VRP. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 3, pages 53-84. SIAM, Philadelphia, 2002.
G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Technical report, Note del polo - Ricerca N.66, October 2004.
S. Ropke, J.-F. Cordeau, and G. Laporte. Models and a branch-and-cut algorithm for pickup and delivery problems with time windows. Technical report, CRT-2005-25, 2005.
S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows, 2004. Submitted to Transportation Science.
K.S. Ruland and E.Y Rodin. The pickup and delivery problem: Faces and branch-and-cut algorithm. Computers and Mathematics with Applications, 33(12):1-13, 1997.
M.W.P. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation Science, 29:17-29, 1995.
M.W.P. Savelsbergh and M. Sol. DRIVE: Dynamic routing of independant vehicles. Operations Research, 46:474-490, 1998.
P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming), volume 1520 of Lecture Notes in Computer Science, pages 417-431, 1998.
M. Sigurd, D. Pisinger, and M. Sig. Scheduling transportation of live animals to avoid the spread of diseases. Transportation Science, 38:197-209, 2004.
M. Sol. Column generation techniques for pickup and delivery problems. PhD thesis, Technische Universitet Eindhoven, 1994.
P. Toth and D. Vigo. The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, 2002.
L. A. Wolsey. Integer Programming. Wiley-Interscience series in discrete mathematics. Wiley-Interscience publication, 1998.
H. Xu, Z.-L. Chen, S. Rajagopal, and S. Arunapuram. Solving a practical pickup and delivery problem. Transportation Science, 37:347-364, 2003.

## Part IV

## Conclusion

## Chapter 10

## Conclusion

This thesis has touched many subjects within vehicle routing problems but the core problem, in the methods developed in the five papers, has always been a pickup and delivery problem with time windows (PDPTW). It is my hope that this thesis significantly has increased our knowledge about the PDPTW. The thesis has also moved the bounderies for which PDPTW/DARP instances that are solvable with exact methods and improved the quality of heuristics for the PDPTW. In the thesis

- We showed how the PDPTW can be used to model many other vehicle routing problems. This insight has allowed us to design a single heuristic that can solve many variants of vehicle routing problem, obtaining just as good solutions as specialized heuristics without the need for any retuning or customization of the heurisitic.
- We compared different models for the PDPTW in order to solve the problem to optimality.
- Several new valid inequalities and corresponding separation algorithms for the problem PDPTW and dial-a-ride problems (DARP) was proposed. We have not performed any polyhedral analysis, but computational experiments show that the valid inequalities are able to improve the lower bounds of the LP relaxations significantly.
- We saw that the models proposed in Chapter 8 combined with the new valid inequalities allowed us to solve some DARP instances up to 1000 times faster than in a recent study Cordeau [2006].
- We saw that the set partitioning formulations presented in Chapter 9 solved through column generation allowed us to solve larger PDPTW instances than was reported by Savelsbergh and Sol [1998].

The Adaptive Large Neighborhood search (ALNS) presented in Chapters 4 to 6 proved to be a worthwhile extension of the Large Neighborhood Search (LNS) heuristic proposed by Shaw [1998]. Using multiple, fast neighborhoods turned out to help the heuristic a great deal, and the adaptive mechanism was able to select a good weighting of the subheuristics. We believe that the heuristic can be applied to problems outside the vehicle routing domain as well. We expect it to be particularly well suited for tightly constrained problems where smaller neighborhoods can have trouble getting from one area of the solution space to another. We still need to substantiate this hypothesis by computational tests. Some implementation for the graph coloring problem is underway - even though this problem hardly can be considered as tightly constrained.

It would be interesting to combine the ALNS heuristic for the PDPTW with the exact methods to produce new heuristics. We could use the lower bound and exact methods for both the removal and insertion phase. To insert a set $S$ of requests into a partial solution $s$ using the exact methods one can follow this procedure

1. Create a graph $G$ with nodes corresponding to the nodes of the PDPTW instance.
2. Add the edges occuring in the partial solution $s$.
3. Add all edges among nodes corresponding to requests in $S$
4. Add all edges to/from nodes in $s$ from/to nodes corresponding to requests in $S$.
5. Perform preprocessing based on $G$, reducing time windows and removing infeasible arcs from $G$.
6. Solve the PDPTW on the graph $G$ using one of the exact methods. The exact method can be truncated in different ways to speed up the solution time.

This would give optimal insertions if step 6 is solved to optimality, but it would also be quite time consuming, so it should be used rarely. It is similar to the approach presented by Franceschi et al. [2005] for the CVRP, but it can use any optimization method developed for the routing problem in step 6 , and is not solving a general ILP, this could potentially mean quicker computations. The method could also be applied to insert edges instead of nodes.

The lower bounds developed could be used in a removal heuristic in the ALNS. In Chapter 4 we proposed the worst removal. This method defines a cost function $\operatorname{cost}(i, s)$ for each request $i$ in solution $s$ and removes requests with high cost. The function $\operatorname{cost}(i, s)$ could be redifined to the lower bound obtained when the edges adjacent to request $i$ are fixed as they are in the solution $s$.

A third posibility is to use the exact methods as a postprocesing step after running the ALNS. While the ALNS is running a number of good, unique, solutions (e.g. 10) are stored. When the ALNS terminates a graph is created by taking the union of the edges used in the stored solution. The PDPTW is then solved to optimality on this graph and thus computes the optimal combination of the selected solutions. When the graph is sparse it should be reasonably fast to solve the problem through column generation. A similar strategy has been proposed and tested for the TSP by Cook and Seymour [2003] with worthwhile improvements in solution quality.

Some ideas for further improvements of the exact methods for the PDPTW based on setpartitioning formulations are given in the preface and in Chapter 9. Implementing (some of) these are my short term plans for the development of exact methods for the PDPTW, but the development possibilities certainly does not stop there. One project I personally would find intersting is to develop a pricing algorithm for the DARP that takes the ride time constraints into account. This would most like improve the branch-and-price results for the DARP instances if the pricing problem can be solved reasonably fast.

On a longer term horizon I hope to study exact methods for the VRPTW and/or CVRP. These are clearly the vehicle routing problems that are most "mature" when it comes to exact methods. I believe that there nevertheless still are room for improvements of the exact algorithms for both of the problems.

## Chapter 11

## Summary (in Danish)

Rutelægningsproblemer (eng. vehicle routing problems) er en vigtig klasse af optimeringsproblemer. I det grundlæggende problem er vi givet en række kunder med forskellige behov der skal forsynes med varer fra et depot. Til at forsyne kunderne har vi en flåde af køretøjer (typisk lastbiler) der hver har en begrænset laste kapacitet. Problemet består nu i at fremstille ruter der starter og slutter i depotet så hver kunde bliver besøgt præcist en gang og således af lastkapaciteten af lastbilen der betjener i ruten ikke overskrides - målet er at minimere omkostningen ved transporten. Omkostningen ved transporten udmåles ofte som den samlede distance kørt eller antallet af køretøjer der skal bruges til transporten.

En lang række varianter af problemet findes, f.eks. udvider nogle varianter problemet så hver kunde har et tidsvindue hvori betjeningen skal foregå og andre varianter definerer at varer skal samles op hos nogle kunder og returneres til depotet.

En vigtig variant af problemet er afhentnings og leveringsproblemet med tidsvinduer (eng. pickup and delivery problem with time windows - PDPTW). I dette problem er vi givet en række transportopgaver. Hver opgave består i at samle varer op på lokalitet A og bringe disse varer til lokalitet B. Der er knyttet et tidsvindue til både afhentningen og leveringen. Køretøjerne der benyttes til transporten starter og slutter deres rute på en terminal men de pålæsser og aflæsser ikke nødvendigvis varer her.

Rutelægningsproblemer er en vigtig klasse af problemer inden for både forskningen i operationsanalyse og i den virkelige verden. Inden for forskningen i operationsanalyse har rutelægningsproblemer udgjort en af de hyppigste problemtyper som nye varianter af metaheuristikker er blevet testet og sammenlignet på. Desuden, og måske mere vigtigt, er det at problemstillingen har været drivende for udviklingen af branch-and-price paradigmet.

Det er oplagt at problemet er anvendeligt i praksis. En lang række virksomheder bruger store summer på transport af varer vha. lastbiler. Hvis antallet af kørte kilometer kan bringes ned vil det give en besparelse på brandstofudgifterne og på udgifterne til vedligeholdelse af køretøjerne. Tilsvarende vil en reduktion i antallet af nødvendige køretøjer også give en besparelse. Toth and Vigo [2002b] skønner at brugen af computerbaserede løsningsmetoder til optimering af transportplanlægningsproblemer i industrien fører til besparelser på mellem 5\% og $20 \%$ af transportomkostningerne, hvilket må forventes at være en betydelig sum i mange større virksomheder. En lang række virksomheder i Danmark bruger da også computerbaserede løsningsmetoder til den daglige planlægning af transportopgaver. Nogle eksempler er Arla, Statoil og Unicon (betonkørsel).

Hovedbidraget i afhandlingen er 5 artikler. Den første artikel beskriver en robust heuristik for en udvidet udgave af PDPTW. Heuristikken afprøves på en række standardproblemer fra litteraturen og denne test viser at heuristikken kan forbedre mange tidligere bedst kendte løsninger til standardproblemerne og heuristikken må betragtes som den bedste heuristik til PDPTW for tiden.

De næste to artikler foreslår en række forbedringer til heuristikken og viser hvordan en række standard ruteplanlægningsproblemer kan transformeres til et udvidet PDPTW og dermed løses ved hjælp af den allerede udviklede heuristik. Resultaterne er meget lovende idet heuristikken ofte løser disse problemer ligeså godt eller bedre end mere specialiserede heuristikker. Vi forbedrer igen en lang række løsninger til standard testproblemer for varianter af rutelægningsproblemet. På grund af disse positive erfaringer udleder vi essensen af heuristikken så den kan anvendes på optimeringsproblemer generelt.

De to sidste artikler omhandler også PDPTW, men denne gang anvendes eksakte optimeringsmetoder. Dvs. den løsning som returneres fra metoden er beviseligt den bedste der findes, givet de kriterier der optimeres efter. Da PDPTW er NP-hårdt er det beregningsmæssigt meget tungt at løse problemet eksakt, og for probleminstanser af selv moderat størrelse kan det være umuligt at finde den optimale løsning indenfor en overskuelig tidsperiode med en given løsningsmetode. De to artikler anvender to relaterede paradigmer til løsning af problemet (på engelsk branch-and-cut og branch-and-cut-and-price). De eksperimentelle resultater viser at løsningsmetoderne flytter grænserne for hvilke problemstørrelser der er mulige at løse til optimalitet. F.eks. ser vi i den ene artikel at løsningstiden for en probleminstans forbedres med mere end en faktor 1000 i forhold til en for nyligt offentliggjort løsningsmetode.

Udover de 5 artikler indeholder afhandling introducerende kapitler der beskriver vigtige rutelægningsproblemer, heuristikker og eksakte metoder.

## Bibliography

R. Agarwal, R.K. Ahuja, G. Laporte, and Z.J. Shen. A composite very large-scale neighborhood search algorithm for the vehicle routing problem. In J. Y-T. Leung, editor, Handbook of Scheduling: Algorithms, Models and Performance Analysis, pages 49-01 to 49-23. CRC Press, 2004.
R.K. Ahuja, Ö. Ergun, J.B. Ergun, and A.P. Punnen. A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics, 123:75-102, 2002.
E. Alba, editor. Parallel Metaheuristics. Wiley Series on Parallel and Distributed Computing. Wiley, 2005.

İ.K Altinel and T. Öncan. A new enhancement of the clarke and wright savings heuristic for the capacitated vehicle routing problem. Journal of the Operational Research Society, 56:954-961, 2005.
H. Ben Amor, J. Desrosiers, and A. Frangioni. Stabilization in column generation. Technical Report G-2004-62, GERAD, August 2004.
D. Applegate, R. Bixby, and V. Chvátal abd W. Cook. Implementing the dantzig-fulkerson-johnson algorithm for large traveling salesman problems. 97:91-153, 2003.
D. Applegate, W. Cook, S. Dash, and A. Rohe. Solution of a min-max vehicle routing problem. INFORMS Journal on Computing, 14(2):132-143, 2002.
T. Bektas. The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega, 34:209-219, 2006.
R. Bent and P. Van Hentenryck. A two-stage hybrid algorithm for pickup and delivery vehicle routing problem with time windows. Computers \& Operations Research, 33(4):875-893, 2006.
U. Blasum and W. Hochstättler. Application of the branch and cut method to the vehicle routing problem. Technical Report zaik2000-386, Zentrum fur Angewandte Informatik Koln, 2000.
C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268-308, 2003.
L.D. Bodin and T.R. Sexton. The multi-vehicle subscriber dial-a-ride problem. TIMS Studies in Management Science, 22:73-86, 1986.
N. Boland, J. Detridge, and I. Dumitrescu. Accelerated label setting algorithms for the elementary resource constrained shortest path problem. Operations Research Letters, 2005. Forthcommming.
J. Bramel and D. Simchi-Levi. Set-covering-based algorithms for the capacitated vrp. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 4, pages 85-108. SIAM, Philadelphia, 2002.
O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part i: Route construction and local search algorithms. Transportation Science, 39:104-118, 2005a.
O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part ii: Metaheuristics. Transportation Science, 39:119-139, 2005b.
A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling problem. Operations Research, 50(5):851-861, 2002.
A. Chabrier. Vehicle routing problem with elementary shortest path based column generation. Computers \& Operations Research, 2005. Forthcoming.
N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial Optimization, pages 315-338. Wiley, Chichester, UK, 1979.
G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12:568-581, 1964.
W. Cook and P. Seymour. Tour merging via branch-decomposition. INFORMS Journal on Computing, 15(3):233-248, 2003.
J.-F. Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54: 573-586, 2006.
J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M.M. Solomon, and F. Soumis. Vrp with time windows. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 7, pages 157-193. SIAM, Philadelphia, 2002.
J.-F. Cordeau, M. Gendreau, A. Hertz, G. Laporte, and J.-S. Sormany. New heuristics for the vehicle routing problem. Technical Report G-2004-33, GERAD, Montreal, Canada, 2004.
J.-F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30:105-119, 1997.
J.-F. Cordeau and G. Laporte. A tabu search algorithm for the site dependent vehicle routing problem with time windows. INFOR, 39:292-298, 2001.
J.-F. Cordeau and G. Laporte. The dial-a-ride problem (darp): Variants, modelling issues and algortihms. 4OR, 1(2):89-101, 2003.
J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehicle routing problems with time windows. Journal of the Operational Research Society, 52:928-936, 2000.
J.-F. Cordeau, G. Laporte, J.-Y. Potvin, and M.W.P. Savelsbergh. Transportation on demand. In C. Barnhart and G. Laporte, editors, Transportation, Handbooks in Operations Research and Management Science. Elsevier, Amsterdam, 2005a. Forthcoming.
J.-F. Cordeau, G. Laporte, M.W.P. Savelsbergh, and Daniele Vigo. Short-haul routing. In C. Barnhart and G. Laporte, editors, Transportation, Handbooks in Operations Research and Management Science. Elsevier, Amsterdam, 2005b. Forthcoming.
J.-C. Créput, A. Koukam, J. Kozlak, and J. Lukasik. An evolutionary approach to pickup and delivery problem with time windows. Lecture Notes in Computer Science, 3038:1102-1108, 2004.
G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management Science, 6:80-91, 1959.
G.B. Dantzig and P. Wolfe. Decompostion principle for linear programs. Operations Research, 8 (1):101-111, 1960.
G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon, and F. Soumis. Vrp with pickup and delivery. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 9, pages 225-242. SIAM, Philadelphia, 2002.
G. Desaulniers, J. Desrosiers, I. Ioachim, M.M. Solomon, F. Soumis, and D. Villeneuve. A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In T.G. Crainic and G. Laporte, editors, Fleet management and logistics, chapter 3, pages 57-93. Kluwer Academic Publishers, 1998.
G. Desaulniers, J. Desrosiers, and M.M. Solomon. Accelerating strategies in column generation methods for vehicle routing and crew scheduling problems. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 309-324. Kluwer, 2001.
J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time constrained routing and scheduling. In C.L. Monma M.O. Ball, T.L. Magnanti and G.L. Nemhauser, editors, Network Routing, volume 8 of Handbooks in Operations Research and Management Science, chapter 2, pages 35139. North-Holland, Amsterdam, 1995.
J. Desrosiers, Y. Dumas, and F. Soumis. A dynamic programming solution of the large-scale single-vehicle dial-a-ride problem with time windows. American journal of mathematical and management science, 6(3):301-315, 1986.
J. Desrosiers and M.E. Lübbecke. A primer in column generation. In G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, volume 5 of GERAD 25th Anniversary Series, chapter 1, pages 1-32. Springer, 2005.
O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation. Discrete Applied Mathematics, 194:229-237, 1999.
Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time windows. European Journal of Operational Research, 54:7-22, 1991.
I. Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, Department of Mathematics and Statistics, The University of Melbourne, May 2002.
I. Dumitrescu. Polyhedral results for the pickup and delivery travelling salesman problem. Technical Report CRT-2005-27, Centre for Research on Transportation, Canada, 2005.
A. H. G. Rinnooy Kan E. L. Lawler, J. K. Lenstra and D. B. Shmoys, editors. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley \& Sons, 1985.
O. Ergun, J.B. Orlin, and A. Steele-Feldman. Creating very large scale neighborhoods out of smaller ones by compounding moves: A study on the vehicle routing problem. Technical Report MIT Sloan Working Paper No. 4393-02, MIT, October 2002.
D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44:216-229, 2004.
M.L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle routing. Networks, 11:109-124, 1981.
P. M. França, M. Gendreau, G. Laporte, and F.M. Müller. The m-traveling salesman problem with minmax objective. Transportation Science, 29(3):267-275, 1995.
R. De Franceschi, M. Fischetti, and P. Toth. A new ilp-based refinement heuristic for vehicle routing problems. Mathematical Programming, Ser. B, 2005. Forthcomming.
R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, and R.F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, Ser. A, 2005. Forthcoming.
B. Funke, T. Grünert, and S. Irnich. Local search for vehicle routing and scheduling problems: Review and conceptual integration. Journal of Heuristics, 11:267-306, 2005.
H. Gehring and J. Homberger. A parallel hybrid evolutionary metaheuristic for the vehicle routing problem with time windows. In Proceedings of EUROGEN99., pages 57-64, 1999.
M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Séguin. Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Technical Report CRT-9810, Centre for Research on Transportation, 1998.
M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search heuristic for the vehicle routing problem with two-dimensional loading constraints. Technical report, CRT, September 2004.
M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the capacitated vrp. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 6, pages 129-154. SIAM, Philadelphia, 2002.
M. Gendreau and J.-Y. Potvin. Metaheuristics in combinatorial optimization. Annals of Operations Research, 140:189-214, 2005.
A.M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical Programming Study, 2:82-114, 1974.
B.E. Gillet and L.R. Miller. A heuristic algorithm for the vehicle-dispatch problem. Operations Research, 22:340-349, 1974.
B.L. Golden, E.A. Wasil, J.P. Kelly, and I-Ming Chao. The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets and computational results. In T.G. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 33-56. Kluwer, Boston (MA), 1998.
M. Gronalt, R. F. Hartl, and M. Reimann. New savings based algorithms for time constrained pickup and delivery of full truckloads. European Journal of Operational Research, 151:520-535, 2004.
G. Gutin and A.P. Punnen, editors. The Traveling Salesman Problem and Its Variations. Kluwer Academic Publishers, 2002.
C.A. Hjorring. The Vehicle Routing Problem and Local Search Metaheuristics. PhD thesis, Department of Engineering Science, The University of Auckland, 1995.
D. Huisman, R. Jans, M. Peters, and A.P.M. Wagelmans. Combining column generation and lagrangian relaxation. In G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors, Column Generation, GERAD 25th Anniversary Series, chapter 9, pages 247-270. Springer, 2005.
A. Imai, E. Nishimura, and S. Papadimitriou. Berth allocation with service priority. Transportation Research Part B, 37:437-457, 2003.
G. Ioannou, M. Kritikos, and G. Prastacos. A greedy look-ahead heuristic for the vehicle routing problem with time windows. Journal of the Operational Research Society, 52:523-537, 2001.
M. Iori, J.J. Salazar González, and D. Vigo. An exact approach for the vehicle routing problem with two-dimensional loading constraints. Technical Report OR-04-6, Universita di Bologna, 2004.
S. Irnich, B. Funke, and T. Grünert. Sequential search and its application to vehicle-routing problems. Computers $8 \mathcal{E}$ Operations Research, 2005. Forthcoming.
S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and $k$-cycle elimination for $k \geq 3$. Technical Report G-2003-55, GERAD, Montreal, Canada, September 2003.
J.-J. Jaw, A.R. Odoni, H.N. Psaraftis, and N.H.M. Wilson. A heuristic algorithm for the multivehicle advance request dial-a-ride problem with time windows. Transportation Research Part B, 20(3):243-257, 1986.
M. Jepsen, S. Spoorendonk, and B. Petersen. A branch-and-cut-and-price framework for vrp applied on cvrp and vrptw. Master's thesis, DIKU Department of Computer Science, University of Copenhagen, August 2005.
B. Kalantari, A.V. Hill, and S.R. Arora. An algorithm for the traveling salesman problem with pickup and delivery problems. European Journal of Operational Research, 22:377-386, 1985.
B. Kallehauge and N. Boland. Path inequalities for the vehicle routing problem with time windows. Technical report, Centre for Traffic and Transport, Technical University of Copenhagen, May 2005.
B. Kallehauge, J. Larsen, and O.B.G. Madsen. Lagrangian duality applied to the vehicle routing problem with time windows. Computers $\mathcal{G}$ Operations Research, 33(5):1464-1487, 2006.
H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Number ISBN: 3-540-40286-1. Springer, 2004.
N. Kohl. Exact methods for time constrained routing and related scheduling problems. PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 1995.
N. Kohl, J. Desrosiers, O.B.G. Madsen, M.M. Solomon, and F. Soumis. 2-path cuts for the vehicle routing problem with time windows. Transportation Science, 33(1):101-116, 1999.
J. Kytöjoki and O. Bräysy. Huge scale vehicle routing problem solving with efficient metaheuristics. Presentation, ROUTE2005, Bertinoro, Italy, June 2005.
G. Laporte and F. Semet. Classical heuristics for the capacitated vrp. In Paulo Toth and Daniele Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 5, pages 109-128. SIAM, Philadelphia, 2002.
H.C. Lau and Z. Liang. Pickup and delivery with time windows : Algorithms and test case generation. In The 13th IEEE International Conference on Tools with Artificial Intelligence, ICTAI-2001, pages 333-340, Dallas, USA, 2001.
F. Li, B. Golden, and E.Wasil. Very large-scale vehicle routing: new test problems, algorithms, and results. Computers \& Operations Research, 32:1165-1179, 2005.
H. Li and A. Lim. A metaheuristic for the pickup and delivery problem with time windows. In The 13th IEEE International Conference on Tools with Artificial Intelligence, ICTAI-2001, pages 160-170, Dallas, USA, 2001.
S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling salesman problem. Operations Research, 21:498-516, 1973.
F.-H. Liu and S.-Y. Shen. A method for vehicle routing problems with multiple vehicle types and time windows. Proceedings of Natural Science Council, 23(4):526-536, 1999.
Q. Lu and M. Dessouky. An exact algorithm for the multiple vehicle pickup and delivery problem. Transportation Science, 38(4):503-514, 2004.
Q. Lu and M.M. Dessouky. A new insertion-based construction heuristic for solving the pickup and delivery problem with hard time windows. European Journal of Operational Research, 2005. Forthcoming.
M. Lübbecke. Engine scheduling by column generation. PhD thesis, Techniscen Universtät Braunschweig, 2001.
M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Research, 2005. Forthcomming.
J. Lysgaard. Reachability cuts for the vehicle routing problem with time windows. European Journal of Operational Research, 2005. Forthcoming.
J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, Ser. A, 100:423-445, 2004.
D. Mester and O. Bräysy. Active guided evolution strategies for large-scale vehicle routing problems with time windows. Computers \& Operations Research, 32:1593-1614, 2005.
S. Mitrović-Minić. Pickup and delivery problem with time windows: A survey. Technical Report SFU CMPT TR 1998-12, Simon Fraser University, 1998.
D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated vrp. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 3, pages 53-84. SIAM, Philadelphia, 2002.
W.P. Nanry and J.W. Barnes. Solving the pickup and delivery problem with time windows using reactive tabu search. Transportation Research Part B, 34:107-121, 2000.
G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, New York, 1988.
I. H. Osman. Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research, 41:421-251, 1993.
A. Oukil, H. El Gueddari, J. Desrosiers, and H. Ben Amor. Stabilized column generation for highly degenerate multiple-depot vehicle scheduling problems. Technical Report G-2004-75, GERAD, October 2004.
G. Pankratz. A grouping genetic algorithm for the pickup and delivery problem with time windows. OR Spectrum, 27:21-41, 2005.
M.B. Pedersen. Optimization models and solution methods for intermodal transportation. PhD thesis, Centre for Traffic and Transport, Technical University of Denmark, 2005.
M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust branch-and-cut-andprice algorithms. November 2003.
J.-Y. Potving and J.-M. Rousseau. An exchange heuristic for routeing problems with time windows. Journal of the Operational Research Society, 46:1433-1446, 1995.
C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers \& Operations Research, 31:1985-2002, 2004.
H.N. Psaraftis. A dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. Transportation Science, 14(2):130-154, 1980.
T.K. Ralphs and M.V. Galati. Decomposition in integer linear programming. In John K Karlof, editor, Integer Programming: Theory and Practice, volume 3 of Operations Research Series. CRC Press, 2005.
G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Technical report, Note del polo Ricerca N.66, October 2004.
G. Righini and M. Salani. New dynamic programming algorithms for the resource constrained elementary shortest path problem. Technical Report Note del polo - Ricerca N.69, Dipartimento di Tecnologie dell'Informazione, Università degli Studi di Milano, January 2005.
S. Ropke and J.-F. Cordeau. Branch-and-cut-and-price for the pickup and delivery problem with time windows. Working Paper, 2006.
L.-M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for column generation. Technical Report C7PQMR PO2003-39-X, Centre for Research on Transportation, 2003.
K.S. Ruland and E.Y Rodin. The pickup and delivery problem: Faces and branch-and-cut algorithm. Computers and Mathematics with Applications, 33(12):1-13, 1997.
R. A. Russell. Hybrid heuristics for the vehicle routing problem with time windows. Transportation Science, 29(2):156-166, 1995.
D.M. Ryan, C. Hjorring, and F. Glover. Extensions of the petal method for vehicle routeing. Journal of the Operational Research Society, 44(3):289-296, 1993.
M.W.P. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation Science, 29:17-29, 1995.
M.W.P. Savelsbergh and M. Sol. DRIVE: Dynamic routing of independent vehicles. Operations Research, 46:474-490, 1998.
A. Schrijver. On the history of combinatorial optimization (till 1960). In K. Aardal, G.L. Nemhauser, and R. Weismantel, editors, Discrete Optimization, volume 12 of Handbooks in Operations Research and Management Science, chapter 1. Elsevier, 2005.
G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking optimization results using the ruin and recreate principle. Journal of Computational Physics, 159(2):139-171, 2000.
P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming), volume 1520 of Lecture Notes in Computer Science, pages 417-431, 1998.
M.M. Sigurd. Column Generation Methods and Applications. PhD thesis, Dept. of Computer Science, University of Copenhagen, Denmark, June 2004.
M.M. Sigurd, D. Pisinger, and M. Sig. Scheduling transportation of live animals to avoid the spread of diseases. Transportation Science, 38:197-209, 2004.
M.M. Sigurd and D.M. Ryan. Stabilized column generation for set partitioning optimisation. Technical report, Dept. of Engineering Science, University of Auckland, 2003.
M.M. Sigurd, N.L. Ulstein, B. Nygreen, and D.M. Ryan. Ship scheduling with recurring visits and visit separation requirements. In G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors, Column Generation, GERAD 25th Anniversary Series, chapter 8, pages 225-245. Springer, 2005.
M. Sol. Column generation techniques for pickup and delivery problems. PhD thesis, Technische Universitet Eindhoven, 1994.
M.M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2):254-265, 1987.
P.M. Thompson and J.B. Orlin. The theory of cyclic transfers. Technical Report MIT Operations Research Center Report 200-89, MIT, 1989.
P. Toth and D. Vigo. Heuristic algorithms for the handicapped person transportation problem. Transportation Science, 31(1):60-71, 1997.
P. Toth and D. Vigo. A heuristic algorithm for the symmetric and asymmetric vehicle routing problems with backhauls. European Journal of Operational Research, 113:528-543, 1999.
P. Toth and D. Vigo. Branch-and-bound algorithms for the capacitated vrp. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 2, pages 29-51. SIAM, Philadelphia, 2002a.
P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, chapter 1, pages 1-26. SIAM, Philadelphia, 2002b.
P. Toth and D. Vigo. The granular tabu search and its application to the vehicle-routing problem. INFORMS Journal on Computing, 15(4):333-346, 2003.
F. Vanderbeck. On dantzig-wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Operations Research, 48(1):111-128, 2000.
V.V. Vazarani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.

Stefan Voß. Meta-heuristics: The state of the art. Lecture Notes in Computer Science, 2148, 2001.
L.A. Wolsey. Integer Programming. Wiley-Interscience series in discrete mathematics. WileyInterscience publication, 1998.
H. Xu, Z.-L. Chen, S. Rajagopal, and S. Arunapuram. Solving a practical pickup and delivery problem. Transportation Science, 37:347-364, 2003.


[^0]:    ${ }^{1}$ http://www.carmen.se
    ${ }^{2}$ http://www.giro.ca/
    ${ }^{3}$ http://www.transvision.dk
    ${ }^{4}$ http://www.e2efactory.dk/

[^1]:    ${ }^{1}$ http://www.tsp.gatech.edu/sweden/index.html
    ${ }^{2}$ http://www.tsp.gatech.edu/world/index.html

[^2]:    *DIKU - Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark. E-mail: \{pisinger, sropke\} @diku.dk

[^3]:    *DIKU, University of Copenhagen, Denmark
    ${ }^{\dagger}$ Canada Research Chair in Distribution Management, HEC Montréal, Canada

