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Towards the global endeavor of clean energy transition, there is a rapid development of distributed energy
resources installed in the premises of residential or commercial users, enabling them to act as flexible energy
prosumers. Empowering prosumers is envisioned as a catalytic development for modern energy economies, with
recent research, as well as innovation and policy actions, pointing to the promising direction of decentralized
energy markets, where active energy prosumers exchange energy in a decentralized fashion. Despite the vast
amount of recent research on prosumer-centric peer-to-peer (p2p) energy markets, only a small subset of studies
accounts for managing the inherent uncertainty of prosumers’ flexible demands.

In this paper, we consider the problem of controlling the decisions of energy prosumers’ within a p2p
exchange network. The multi-bilateral economic dispatch is formulated as an optimal control problem. The
proposed solution is based on a direct lookahead policy, effectively addressing the issues of dimensionality and
local constraint satisfaction. Experimental simulations demonstrate the method’s efficiency and the system’s
behavior. The proposed formulation and method is shown to effectively address the operation of p2p markets
under uncertainty, closely tracking the performance of the (full information) optimal-in-hindsight benchmark.

1. Introduction and consumed by each prosumer, as well as the amount of energy
exchanges through each bilateral link. The efficiency of the market
clearing process refers to maximizing the social welfare (or, equiv-
alently, minimizing the aggregate cost) of the system. For elaborate
presentations of p2p electricity markets the reader can refer to compre-
hensive recent surveys [2,3]. In this paper, we contribute to the related
literature by formulating the p2p market clearing as an optimal control

problem, accounting also for the prosumers’ inherent uncertainties.

The transition to clean energy is triggering innovative developments
in various aspects of the power and energy systems.

Decentralized electricity markets is a major such development,
through which the focus is shifted from centralized bulk power plants
to active energy prosumers generating and consuming energy, as well
as exchanging energy among each other. Such decentralized market
architectures empower prosumers, by engaging them in an active role
in power systems while letting them discover (and be attributed) the
value of their energy [1]. This, in turn, acts as an incentive towards
further micro-investments in distributed energy resources, accelerating

1.1. Related work

the clean energy transition.

From a technical perspective, these decentralized markets call for
distributed algorithmic techniques towards performing the necessary
market clearing actions in a fast and efficient manner. More specifi-
cally, a set of prosumers along with their multiple bilateral connections
for energy exchange, can be visualized as a graph, while each pro-
sumer features certain energy generating/consuming facilities each one
bearing a cost (or utility) function. The peer-to-peer (p2p) market
clearing problem refers to deciding how much energy will be generated

* Corresponding author.
E-mail address: geots@dtu.dk (G. Tsaousoglou).
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The problem of p2p market clearing was comprehensively modeled
and analyzed by authors in [4,5], using a distributed optimization
framework. In this framework, the market clearing problem takes the
form of a multi-bilateral economic dispatch problem, which can be
solved in a distributed manner by relaxing the coupling constraints
between pairs of prosumers using Lagrangian relaxation. The optimal
Lagrange multipliers of these constraints can be reached through it-
erative updates, namely using the Alternating Direction Method of
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Multipliers (ADMM), and be interpreted as prices for the bilateral
energy exchange. An improved version of the ADMM algorithm for
prosumer-based systems was proposed in [6], where the authors train
a neural network to learn the system’s Lagrange multipliers. Moreover,
such exchanges can be configured with distributed ledger technolo-
gies towards integrating the decentralized conceptualization of such
frameworks [7-9]. Notably, significant policy developments have been
undertaken towards this direction [10], triggering a rapid growth in
projects involving p2p energy markets [11].

State-of-the-art literature examines how such p2p markets can be
configured with the safe operation of the physical underlying dis-
tribution network. Namely, [12] focuses on minimizing the power
losses created by p2p exchanges and allocating their financial value,
while [13] incorporates the power transfer limits of physical distribu-
tion network lines in the decentralized optimization problem. Another
impactful direction refers to generalizing the notion of prosumers into
small energy hubs that feature resources of various energy carriers
(namely gas, heat and possibly hydrogen in addition to only electricity).
Ref. [14] models such multi-energy prosumers and analyzes the fairness
properties of the p2p market dispatch, while the latest work in [15]
presented a scalable distributed optimization algorithm for a p2p mar-
ket with prosumers spanning electricity and heat carriers. Moreover
in [16], a distributed energy trading mechanism has been proposed,
that allows energy exchange between multiple types of grid participants
and energy hubs.

Another recent research direction considers the prosumers’ strategic
market participation and formulates the multi-bilateral interaction us-
ing game-theoretic models and concepts. The work in [17] modeled
the problem as a mean-field game considering given (fixed) energy
demands/offers from prosumers and a simple matching mechanism.
The authors in [18] present a comprehensive analysis of a p2p mar-
ket (generalized Nash) equilibrium, including a characterization of
the price of anarchy. Bilateral exchanges are considered jointly with
exchanges with the main grid, using a game-theoretic approach, in a
hybrid market framework in [19]. Finally, putting the focus back on
physical network constraints, the work in [20] studies the generalized
Nash equilibrium in the presence of power flow constraints.

Nevertheless, the prosumers’ energy consumption needs during the
day are subject to uncertainty, a point not considered in formulations
based on the deterministic models discussed so far. Making energy
management decisions under uncertainty, especially in the case of
flexible prosumers, has received great attention in the smart grid litera-
ture (see [21] for a recent review). However, uncertainty management
within a p2p market framework is yet to be addressed, with only a few
recent works considering some form of uncertainty within p2p markets.
The authors in [22,23], consider uncertainty (within stochastic bi-level
programs) using scenarios for uncertainty realization. This technique is
shown to be effective in p2p exchanges between wind producers and
aggregators of prosumers. Nevertheless, in fully decentralized markets
with multiple individual prosumers (and therefore multiple sources
of uncertainty) the scenario tree grows very abruptly, constituting
the method unsuitable for online prosumer energy management and
p2p market operation. Towards enabling fast online decision making,
the authors in [24] propose an online optimization approach for p2p
market operation which, however, does not fully exploit the statistical
information over the prosumers’ uncertain parameters that is usually
available. Ref. [25] treats uncertainty by repeatedly solving a determin-
istic, p2p market, optimization problem, in a model predictive control
fashion. However, this approach is after adapting to observed (realized)
uncertainties, rather than proactively accounting for them. Finally,
the work in [26] configures the model predictive control approach
with forecasts for uncertain parameters, adopting the “forecast-first,
then-optimize” approach for the p2p market operation.
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1.2. Research gap, paper contributions and organization

The main shortcoming of most works in the p2p electricity market
literature is the complete absence of uncertainty consideration, while
the few papers that consider uncertain factors adopt a simplified model
(e.g. a deterministic-equivalent optimization) as described towards the
end of Section 1.1. More generally, it appears that no prior study on
p2p electricity markets has addressed the need for an uncertainty-
aware, sequential dispatch process, as revealed by the summary of the
literature review presented in Table 1.

In this paper, we propose a novel technique towards operating a
p2p prosumer-based market under uncertainty of flexible prosumer
demands. Assuming that statistical information over such uncertainties
is available, we consider an end-to-end approach where, instead of
learning to forecast the uncertain parameters (and then optimize the
system), the learning module is after learning to directly optimize the
system (in our context, learning an optimal policy towards deciding
the prosumers’ generation, consumption and exchanges). A closely-
related concept is known as the learn-to-optimize approach in some
communities (e.g. [27]).

The standard learn-to-optimize approach parameterizes and trains
a machine-learning (ML) module, to predict an optimal decision for
the decision variables. In the language/framework set by [28], this
is effectively a policy-function approximation. In our multi-bilateral
prosumer market, however, we show that this approach entails a very
large amount of decision variables, rendering the learning task ineffi-
cient. Moreover, in the approach where the ML directly controls each
prosumer’s energy management decisions, the satisfaction of individual
prosumer constraints is not guaranteed.

Our proposed solution, combining the deterministic Lagrangian op-
timization methods discussed with the powerful ML machinery, is to
perform the learning on the (much smaller) dual problem’s space. More
specifically, we learn to predict the system’s optimal dual variables
using a ML algorithm (trained offline), once the system’s state is
observed. These future dual variables (i.e. the Lagrange multipliers
of the bilateral exchanges) are shared with the prosumers. Finally,
each prosumer’s control actions are decided in a distributed manner
using the ADMM algorithm, but with the twist that the Lagrange
multipliers of future times are set as predicted by the ML algorithm.
In the proposed approach, each prosumer controls its own resources,
making sure that its local constraints are respected, while its decisions
are informed of the available information (prediction) about the future.
Using a predicted future system trajectory classifies the method as a
direct look-ahead policy,' with the special feature that all information
about the future is compactly encapsulated into a set of multipliers
allowing each prosumer to distributedly decide its own controls.

The paper’s contributions can be summarized as follows:

+ We formulate a p2p economic dispatch problem as an optimal
control problem, taking into account the system’s uncertainty.
In contrast to stochastic programming techniques that cannot
handle problems where the uncertainty dimension increases ex-
ponentially with the number of decision stages, we consider
a machine learning algorithm towards a learn-to-optimize ap-
proach.

In contrast to standard learn-to-optimize approaches, we propose
learning the system’s dual variables instead of the primal and use
them as predicted prices for future p2p exchanges. This allows the
prosumers the freedom to decide on their actions, while making
sure that their local constraints will be respected.

1 The family of direct look-ahead policies refers to techniques that approxi-
mate the possible future system trajectories using a (typically deterministic)
model based on current information. In this way, the control actions are
decided by solving a deterministic optimization problem formulated to in-
corporate the look-ahead model [28]. Model predictive control would be a
predominant example of a direct look-ahead policy.
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Table 1
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Literature classification based on the motivated attributes of the Peer to Peer decision-making process.

Uncertainty consideration

Sequential decisions

Data-Driven Distributed computations

[41, [51, [121,[13], [16] X X X v
[171, [18], [19], [20]

[6] v X v v
[22]1,[23],[24], [25],[26] v X X X
this work v v v v

The system model and problem formulation are presented in Sec-
tion 2. In Section 3, we unfold the presentation of the proposed control
policy. Section 4 presents the simulation setup and the experimental
evaluation of our proposition, while Section 5 concludes the paper.

2. System model and problem formulation

Let us consider a set N’ of prosumers, partly inteconnected via a
communication graph where a prosumer n € N interacts with its
connected prosumers (peers) of the set C, C N. We are interested in
the energy management and exchange decisions of set N within a set
T of discrete timeslots.

2.1. System model

At a timeslot t € 7, a prosumer n € N can generate an amount p’,
of energy, bearing a generation cost 2, modeled as

@

where a,,b,,d, are positive constants. This quadratic model covers
both the case in which the prosumer features generation facilities
(where the convex cost function models the decreasing fuel efficiency
of the generator), as well as the case of prosumer load curtailments, in
which the quadratic term implements a convex relationship between
cost and amount of curtailment; notice that this is equivalent to a
concave relationship between energy consumption and user utility, as
prescribed by microeconomic theory.

The prosumer also features a set D, of flexible demands. A flexible
demand d € D, is characterized by a tuple 2, = (t;,T;‘,tg,Ed,f)d,wd),
comprised by its arrival time t?, its desired departure time Tg, its
deadline td >, its energy requirement E,, its maximum consumption
rate p,, and its elasticity w, that captures how impatient the demand is.
The energy allocated to flexible demand d € D,, at ¢ is denoted as pg, "
and the allocation profile needs to satisfy the demand within [ts, t“l‘], as
in

g _ g 2 g
ot = (P, )" + b0, +d,, Vne N,teT,

Y i, =E;, VdeD,neN,

a d
1t ty]

@

while a demand can only consume an amount of energy between zero
and its maximum consumption rate, i.e.

3

Importantly, we assume that the upper bounds p, are the result of a
network feasibility study conducted by the system operator. This means
that all possible demands below p, are pre-approved to satisfy the
physical network’s constraints and no real-time power flow model is
needed. Note that this is the current practice in real systems.

Observe that the prosumer’s inflexible demand can readily be mod-
eled as a flexible demand with E; =p, - (tj — t§). Moreover, when part
of the demand is satisfied beyond the demand’s desired departure time
1, there is a dissatisfaction cost c;', , modeled as

0<p, <ps VdED,neN1eT.

£ "T‘dj
d PaMa i eD ne N>
o =1 s A>T,

0, Vd€D,.ne N1 <.

4
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Fig. 1. Graphical illustration of the system’s architecture.

A prosumer can self-consume energy (i.e. satisfy its demands from
its own generation), and/or also exchange energy with its neighbors
m € C,. Let p,,, denote the energy that prosumer n sends to its peer
m € C, at timeslot + € 7 (negative for receiving energy from m).
Possible upper/lower bounds on each exchange (e.g. due to regulation)
are taken into account, as in

P S|Punil Py VNEN,mEC, 1ET. (5)

—n
Based on the so far definitions, the intra-prosumer power balance
equation, for each prosumer, reads as

pf,, = Z pf“ + z Pomps YRENTET.

deD, meC,

(6)

Finally, the inter-prosumer power balance constraints demand that the
energy sent from » to m equals the energy that m received from n, i.e.

Va,me N, teT. @)

pnm,t = _pmn,t’

We consider prosumers with preferences over which peer they
exchange energy with. Namely, a prosumer » bears a per-unit cost g,
for buying energy from m € C,. Thus, the exchange cost c;’, of n is given
by

== QuiPunss VMENIET. (8)

nt
meC,
2.2. Problem formulation

At any given timeslot 7, the decisions on generation, consumption,
and p2p exchanges, for all prosumers, need to be made by also taking
into account the future, since the flexible loads constitute the system
temporally coupled. The system’s architecture is graphically illustrated
in Fig. 1.

Our goal is to establish a control policy = = (r),c\ for variables
u 2 (0% (0l Daep, Pumdmec, ) yerr> 1-€- for all the decision variables
Jo 1’2. 1> Pum, Of €ach prosumer at any given timeslot. The system’s state
captures all the information that is relevant upon deciding a control

action, and is defined as
£
Z pd"r)deD,,,ne./\/>’

x 2 <t’ (('Qd)deDn )neM’ <Tem n ©
-
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where the first state variable is the current operational timeslot, the sec-
ond set of variables are the tuples 2, of all demands of all prosumers,
and the third is the up-to-now energy allocated to each demand.

For demands that are inactive at 7 (have departed or have not yet
arrived), we set the values of 2, to a default null state. The arrival of
new demands at ¢ constitutes the system’s disturbance w. Finally, the
system’s total cost, when transitioning out of timeslot ¢, is defined as

o= (+ Yl +e) 10
neN deD,
Our objective can then be formulated as an optimal control prob-

lem [29], of the form:

min{]E[Z c,]} (11
T teT
st x,q = f(x,u,wy).

(1)-(10).

In the next Section, we present our approach for discovering an efficient
policy in this multi-agent optimal control problem.

3. Solution approach

In this Section, we present the proposed approach towards discover-
ing a well-performing policy for problem (11). To this end, we exploit
a special property of the problem: while in generic optimal control
problems the disturbances w, are a (probabilistic) function of the state
and control, as in w, € P(-|x,,u,), the system at hand features the
special property of exogenous, or control-independent, disturbances w;,,
since new demand arrivals (flexible or inflexible alike) do not depend
on the power allocation decisions but follow an independent stochastic
process. This allows us to generate samples of optimal controls for
given disturbance trajectories, relatively easily: first, we generate a
set S of scenarios for the disturbance realization, with each scenario
s € S representing a random walk in the space of possible disturbance
trajectories, i.e.

s 2w, )ers (12)

and then we obtain the optimal control actions for each scenario
by solving a deterministic optimization problem. These samples of
optimal-in-hindsight decisions, will facilitate the construction of our
policy.

In the following subsections, we present different policies of increas-
ing sophistication, each one building on the concepts of the previous,
thus concluding with the proposed policy in Section 3.3.

3.1. Point-forecast distributed optimization

Using a certain uncertainty realization scenario s € S as a point-
forecast, we can formulate a deterministic multi-bilateral economic dis-
patch optimization problem, defined as the minimization of the ag-
gregated prosumers’ costs under the exchange and demand-satisfying
constraints described:

min {3 (5 + X el +es))

4 f
PusPy o Prmi (€T neN' deD,

s.t. (1)—(8). 13)

Observe that problem (13) is a convex optimization problem that
can be tackled efficiently. Moreover, the optimal solution can also be
reached via a distributed algorithm, namely ADMM. Towards develop-
ing the presentation of the proposed policy for our original problem
(11), it is useful to present the ADMM procedure for the deterministic
problem (13), because it will be used as a building block for our
full policy. Let us relax constraints (7), and consider the augmented
Lagrangian of the deterministic problem (13) as:
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c=3 % (chr ¥ el

teT neN deD,
P 2
CEXZ - Z (’ltnm,t(pnm,r + pmn,t) - E(pnm.t + pmn,)‘) ) ) . (14)
meC,

where 4,,, is the Lagrange multiplier corresponding to constraint
(7). In ADMM, each prosumer iteratively solves a local optimization
problem (i.e. deciding only for its local variables pﬁ’t, pZJ, Pumyg- Let
Pi,x[k]’ pf”[k], Pumilk] denote n's decision at iteration k and
(Ayms[kDy men rer denote the tuple of all Lagrange multipliers at k. The
local optimization problem of n at k, reads as

Py 11, Y K1, P [K] =

argmin{ E} (15)
s.t. (1)-(6), (8),

i Pl Pijs = Ptk = 10, p} Tk = 10, pyy [k = 11, Vi#n,

where the last constraint clarifies that for n’s local problem, all the
variables decided by other prosumers i # n are fixed to the values
determined by them in the previous iteration.> Each prosumer solves
its local problem (15) in parallel and then the multipliers 4, [k + 1]
are updated as

Anm,t[k +1]= Anm,t[k] tp- (an,t[k] +Pmn,t[k])’

VnmeN,teT, (16)
Amn,t[k +1]= Amn,t[k] P (pnm,t[k] + pmn,t[k])’
VnmeN,teT, a7)

The procedure iterates until

max + <e, 18
nmeN teT {an’t Pruns } ( )

i.e., the highest violation of constraint (7) is below a small upper bound.
3.2. Point-forecast distributed model predictive control

Determining the values of our control variables for the whole hori-
zon using a point-forecast just before the first timeslot, as described
in the previous subsection, is obviously an open-loop policy. Building
our way towards the proposed policy, in this subsection we describe a
model predictive control (MPC) extension of the distributed (still point-
forecast) ADMM solution. In the distributed MPC policy, the ADMM
algorithm is again executed, similarly to the previous subsection, but
after the system transitions to the next timeslot (and observing the
realized disturbances) the point-forecasts are updated and the ADMM
procedure is run again to determine the new control actions (which
will in general be different than the actions calculated before the
disturbances were realized).

Let 7 denote the current timeslot of online operation and
P> P o Pum- denote the final decisions for 7, i.e. after the ADMM has
converged. We can write n’s local problem at any operational timeslot
7, by reusing our formulation of problem (15) and adding the constraint
that past decisions cannot be changed®:

(pi[[k],p[f“[k],p,,m,,[k])ter =

argmin{ £} 19

2 Observe that problem (15) is indeed local in the sense that, with fixed
variables P;é,w!’f_v pijy» the costs (and constraints) of other prosumers i # n
become constants (and trivially true respectively). Thus they do not take part
in n’s local problem.

3 This formulation is redundant, since it still uses variables of past timeslots
only to fix them. However, it is very handy in terms of implementation, since
it maintains the same implementation as problem (15), only adding a simple
constraint.
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Algorithm 1 Distributed point-forecast model predictive control

1: Initialize z =0
2: Whiler € T
3:  Observe system state x,

4:  Generate a point-forecast for future disturbances
5:  Initialize k = 1, (A, (0D, men = O
6: Initialize (pfyt [0y, pg [01, Py [0]),r at random
7: while max,c ' mec, re7 { Pum K]+ Ppnys [k} > €
8: Each prosumer solves problem (19) to decide
Py LK1 P TKY, P K]
9: Set A, [k + 1] using (16)
10: Setk=k+1

11:  Set (3% B .. Pumcdnmen to the converged values (p} [k —
11,9l Lk = 11, Py e [k = 1D e

12: Setr=7+1

13:  Realize disturbances

14:  System transitions to the new state

s.t. (1)-(6), (8),
g f _ g £
Pip Pigs Pije = Py, lk =10, p; [k = 1], pyj [k — 1],
Vi#njeC,teT,
pi” pg{,t’ pnm,! = ’ﬁf,p 5{,‘,4}’ an,t’ Vi < T,n,me N

The distributed point-forecast MPC algorithm is described in Algorithm
1.

The shortcoming of this method is that it uses a single point-forecast
(scenario) for future disturbances, which makes it ignorant to the
full statistical information available. One could enhance the method’s
performance by generating multiple scenarios for future disturbances
and replace problem (19) with a stochastic program. However, due to
the multi-dimensional uncertainties of the problem, a large number of
scenarios is required, which quickly becomes problematic, since the
number of variables of the stochastic program grows proportionally
to the number of scenarios. In the next subsection, we present the
proposed policy which side-steps this issue.

3.3. Learning-based, distributed model predictive control

In an ML-assisted approach, we solve multiple instances (scenarios)
of the deterministic optimization problem (13) offline, for each one
obtaining the sequence of realized states [x)],c; and corresponding
optimal control actions [u]],c7. By generating a set ) of multiple pairs
y € Y of the form

VA ub), (20)

we can, in theory, train a machine-learning module to return the
optimal action u, once presented with the current state x, at current
timeslot 7z of the online operation. In this way, the computational
burden, discussed in the previous subsection, is outsourced to the
offline procedure, i.e. the training phase, and the online decision is
made by the trained ML algorithm in a matter of a few seconds (at
most). This is also called the “learn-to-optimize” paradigm.

This approach, however, creates two major challenges: first, the
resulting controls must respect the power balance Egs. (6), (7) (which
the ML algorithm does not generally guarantee) and, second, the di-
mensionality of the action space renders the learning unrealistically
data-intensive (recall also that in the learn-to-optimize approach the
data is not readily available, but to obtain |7| pairs y, we need to solve
an optimization problem, namely (13)).

Notice, however, that problem (13) is a convex optimization prob-
lem, featuring a set of optimal dual variables 4,,, corresponding to
constraints (7) and observe that, when solving problem (13) for a
scenario s, the optimal duals 4;, , can also be attained. Our proposition

Applied Energy 343 (2023) 121234
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Fig. 2. Online procedure at a timeslot z.

is to use the scenarios and corresponding instances of problem (13) to
obtain pairs of the form

y* £ (xf,(/ls A)nEN,mECn,?G[I+1,\T|])’ (21)

nm,t

i.e., connect an occurring state with the optimal dual variables of the
subsequent timeslots, instead of the optimal control (primal) variables.
This twist effectively resolves both of the challenges mentioned. Be-
ginning from the second challenge, observe that when learning the
optimal duals instead of the primals, the learning task’s dimension (and
therefore the necessary data) is dramatically reduced, since the dual
variables are only %l./\f [-1C,|-17| (in contrast to the number |N'|-|T |+
|D, |- |IN|-|T|+|N|-|C,|-|T | of primal variables). Thus, a ML algorithm
can be trained to return the (predicted) optimal duals of the timeslots
ahead, once presented with the observed state x, at timeslot = of online
operation. Learning the duals of an economic dispatch problem was also
applied in [6], although only for reducing the number of iterations of
ADMM in a deterministic setting and without p2p transactions. In our
context, we use the predicted duals in online operation as part of a
direct look-ahead policy, an early (simpler) version of which was first
proposed in [30] for a different problem.

Specifically, at iteration k and current timeslot 7, each prosumer
n € N solves the local optimization problem (19), similarly to the MPC
policy of the previous subsection, effectively addressing the challenge
of local constraint satisfaction (since each prosumer takes care of them
when solving problem (19)). In our direct lookahead policy, when
executing the ADMM procedure we update only the multipliers 4,,,, , of
the current timeslot, while the multipliers (4,,,,),», of future timeslots
are fixed to the values supplied by the ML module. This enhances the
policy’s performance since the predicted optimal future multipliers en-
capsulate relevant information about future expected demand arrivals,
without the need to run multiple scenarios in online operation. The
online procedure, at a timeslot 7, is graphically illustrated in Fig. 2.

After the ADMM converges, the controls for the current timeslot are
implemented and the system transitions to the next timeslot r+ 1 where
the new state is communicated to the ML and the ADMM procedure is
repeated using the new multipliers supplied by the ML for the future
timeslots r > 7 + 1. The exact algorithm is described in Algorithm 2.
The next subsection instantiates the specific ML technique used for the
learning task described.

3.4. Learning the duals

In this subsection we elaborate on the ML algorithm developed,
towards learning to associate a system’s observed state x, at current

timeslot z, to the optimal dual variables (}‘nm,t)xer; -, corresponding to
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Algorithm 2 Model predictive control with direct lookahead policy

1: Initialize 7 =0

2: Whiler eT

3:  Observe system state x,

4:  Feed state x, to the ML

5:  Set the future multipliers (4, )7 nen mec, @S prescribed by the
ML

6: Initialize k = 1, (4,, ;[0 nen =0

7:  Initialize (p} [0], p; [0], p,,,,[0]),cr at random

8 while max, ¢y mec, {Pum (K] + P [K]} > &

9: Each prosumer solves problem (19) to decide
Py LK), Y KL, P [K]

10: Set Ay [k + 1] using (16)

11: Setk=k+1

12:  Set (3% B .. Pumcdnmen to the converged values (pf. [k —
Hap;yf[k - 1]7 pnm,r[k - ll)n,me./\f

13: Setr=7+1

14:  Realize disturbances

15:  System transitions to the new state

future timeslots. This refers to the ML used in line 5 of Algorithm 2. To
this end, a Neural Network (NN) is utilized.

We opt for a simple NN with five dense layers. At each layer we
perform a batch normalization in order to standardize the input data.
This way, the learning process would be stabilized and the training
epochs required are reduced. As a means to prevent overfitting, we
added a dropout layer after each normalization layer. The dimension
of the first layer equals the system’s state dimension, while the final,
output layer has the dimension of the Lagrange Multipliers of all
prosumer connections in time, 4,,,. The ReLU activation function was
used for each node of the NN. In addition, due to many demands not
being present at a given timeslot, the state vector x, contains many null
(zero) values that complicate the model’s learning. In order to confront
this difficulty, we added a masking layer before the NN’s input. This
layer deactivates the zero value neurons of the input and thus they do
not take part in the learning process. Finally, during the training phase
we added an extra condition which is called early stopping. In this
technique, the training stops when the difference between the previous
epoch loss and current epoch loss is below a threshold for 3 consecutive
timeslots.

4. Performance evaluation
4.1. Benchmarks

To assess the performance of the proposed algorithm (Algorithm
2), we compare it with two benchmarks. The first benchmark is the
optimal-in-hindsight solution of the system. This could be obtained,
only in theory, if all the information about the future (namely, future
demand arrivals and their exact characteristics) was known beforehand.
In that case, the optimal set of market exchanges would correspond to
the solution of the deterministic optimization problem:

. min {z Z(Ci,"' Z cs’,+c;§>}
deD,

Py ’P:fi,r’p””’" teT neN
s.t. (1)—(8), (22)

which is a convex program that can be efficiently solved using off-the-
self solvers.

The second benchmark is a plausible conservative policy, where
each demand is served upon arrival without looking at the current
prices or reasoning about future prices. Notably, this is the current
practice in actual power systems, where the demand is considered
inflexible and is served immediately upon arrival, optimizing only the
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Fig. 3. Graph of prosumers’ bilateral connections.
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Fig. 4. Average system cost accumulated by each scheme over the horizon.

supply side so as to meet the demand at minimum generation cost.
In our model, the conservative benchmark is obtained by fixing the
consumption pfi , of each present demand at

A s N

p;’t = mm{pd, [Eq - Z p'd,f] }, (23)
T€[th.1-1]

where [x]* denotes the operation max{0,x}, and then solving only for

the optimal generation and exchanges of the present timeslot, as in

: g d ex
min {Z(cn,r"' Z cd’,+cn’,>}
deD,

[’5.1 ’pzfj,r‘p"m’ neN
s.t. (1)-(8), (23). 24

The process (solving problem (24)) is repeated at each timeslot with
the updated demands.

4.2. Evaluation setup

The proposed scheme and the two benchmarks were tested in a
system with 12 prosumers of which six were consumers and the other
six were producers during all 24 timeslots of each experiment.* During
all experiments the prosumers connection graph was as shown in Fig. 3,
while the values of the model’s cost parameters were set as described
in Table 2.

Each consumer was assumed to make one demand over the 24
timeslots and the arrival and departure times for each scenario were
sampled by a Poisson distribution with a Poisson factor of 5 and 15
respectively. The demands’ energy requirements were calculated as a
function of t} ,Tj,ﬁd in order to ensure the problem’s feasibility.

4 Such a small number of prosumers makes the system’s dual variables more
volatile and harder to predict since they are sensitive to the state of each
individual prosumer. Thus, such a setup is considered as a more challenging
for the proposed algorithm.
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Table 2

Parameter values.
Prosumer a, b, Qun P Pum
Agent 0 0 0 0 -34 0
Agent 1 0 0 0 -54 0
Agent 2 0 0 0 -47 0
Agent 3 0 0 0 -58 0
Agent 4 0 0 0 -50 0
Agent 5 0 0 0 -49 0
Agent 6 0.3351 0.3297 0.9326 0 52
Agent 7 0.0498 0.4701 0.6676 0 36
Agent 8 0.8167 0.4464 0.4040 0 56
Agent 9 0.2919 0.6128 0.6654 0 51
Agent 10 0.4254 0.2279 0.4208 0 50
Agent 11 0.5444 0.4998 0.9972 0 57

4.3. Simulation results

The NN was trained using 2400 problem instances and tested in
another 240 instances. The MAE of tested values was 0.45. The results
to be presented were averaged out over a number of experiments.

Fig. 4 presents the comparison of the three schemes with respect to
the average (over experiments) system cost ¢, as defined by Eq. (10),
that they accumulate over the horizon’s timeslots. As can be observed,
the conservative policy accumulates cost early on, since it serves the
demands immediately upon arrival. Consequently, it does not suffer
any cost after a certain point, but the total cost accumulated by the
end of the horizon is by far greater than the one of the proposed
method. In contrast, the proposed algorithm refrains from serving the
demands early (although a little bit too much compared to the optimal-
in-hindsight solution). This results in a delayed accumulation of cost,
stemming also from the disutility suffered by some demands, based on
Eq. (4). Overall, looking at the total cost accumulated at the end of the
horizon, it becomes apparent that the proposed method achieves a cost
quite close to the theoretical optimal-in-hindsight solution, exhibiting
a dramatic improvement over the conservative benchmark. In fact, the
accumulated cost of the proposed solution is in the order of 8.5% higher
than the one of the optimal-in-hindsight solution.

To gain insight into these results, we present the resulted power
exchanges of a certain peer (peer 3) for each of the three schemes in
Fig. 5 and the total energy consumed by peer 3 across the horizon in
Fig. 6.

Note, however, that this result is achieved by assuming accurate
statistical knowledge over the demands’ characteristics (i.e. we do not
know the characteristics of future demands but we do know their
probability distributions, since those are used to generate the offline
instances on which the NN was trained). To test the method’s sensi-
tivity/robustness against inaccurate knowledge of the demands’ prob-
ability distributions, we use the trained model in a setup where the
demands are generated from a Poisson distribution that is different
than the one on which the model was trained. Specifically, the Poisson
distribution of the demands’ arrivals was modified in the test instances.
Fig. 7 shows the proposed algorithm’s error ratio as a function of
the Poisson factor (with 5 being the factor on which the model was
trained). The error ratio is defined as the percentage ratio of the
average accumulated cost of the proposed algorithm (at the end of the
horizon) to the one of the optimal-in-hindsight solution.

Finally, it is worth noticing that the parameter p of the ADMM
procedure (built into the proposed algorithm) controls the trade-off
between computational time and efficiency, i.e., a higher p makes the
algorithm converge fast but sacrifices efficiency, while a smaller p
achieves better results at the expense of more algorithm’s iterations.
These points are quantified in Fig. 8(a) and (b).

5. Conclusions

In this paper, we considered the problem of operating a p2p
prosumer-centric energy market under uncertain energy demands. The
problem was formulated as an optimal control problem with distributed
networked agents. We presented a novel control policy that satisfies
the local prosumers constraints by design, while exploiting statistical
information about uncertainties in a scalable manner. The method
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was experimentally shown to achieve a system cost close to the one
of the (full information) optimal-in-hindsight solution, significantly
outperforming a conservative benchmark policy. Future work should
focus on further improving the proposed method in several directions.
Specifically, privacy preserving methods, such as differential Privacy,
should be integrated in the message exchange process, to ensure
security in peers’ communications. In addition, the training of neural
networks could be done with robust techniques, to enhance the quality
of predictions in a large input domain and minimize the convergence
time for an out of the box input. Finally, one could test different Neural
Networks architectures such as Graph Neural Networks, to boost the
performance of the proposed framework.
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