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Summary
Antimicrobial resistance (AMR) has developed rapidly and now threatens to under-
mine our treatment of infectious diseases unless the spread of antimicrobial resistance
genes (ARGs) is halted. AMR is a global challenge impacting human, animal, and
planetary health, which calls for monitoring the abundance of ARGs across these
three areas. Most of the current AMR surveillance systems only focus on clinical
prevalences, failing to acknowledge that ARGs are also present in non-pathogenic mi-
crobes outside of hospital settings. In metagenomic sequencing, the goal is to recover
genes for all organisms in a host or an environmental sample. That way, the abun-
dance of ARGs can be quantified across all organisms in a sample, both unknown
and known species.

Today, there is a vast amount of metagenomic sequencing datasets available in public
repositories due to the good data-sharing practices during the academic publishing
process. Most samples remain underutilized as few researchers have the computa-
tional and bioinformatic resources to analyze terabytes of data. However, the poten-
tial amount of information on microbial and AMR dynamics that can be extracted
from these datasets using a standardized approach makes it worthwhile to explore.
This has been the goal of this PhD project, where 214,095 metagenomic datasets were
retrieved and analyzed to characterize the abundance of ARGs in host and environ-
mental sources. With such a large pool of data, there are many questions on the
distribution of ARGs that can be answered, and this project has focused on studying
the differences in abundance for individual ARGs in local ecological settings and the
overall co-occurrence of ARGs at a global scale. The three manuscripts enclosed in
this PhD are presented below.

In Manuscript I, we carried out the download and processing of the 214,095 metage-
nomic datasets from the European Nucleotide Archive (ENA). Using the 442 · 1012

basepairs of sequencing reads, we aligned the reads against reference sequences from
two databases, Silva and ResFinder, to determine the abundance of ARGs and bacte-
rial genes. In this publication, we presented a brief characterization of overall trends in
this collection and observed differences in resistome and microbiome compositions be-
tween different sample types. We also made the count data and the curated metadata
available to promote the reuse of publicly available samples and further encourage
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sharing of raw sequencing data.

In Manuscript II, we studied the distribution of the family of mcr genes in the 214K
collection of metagenomic samples. The mcr genes confer resistance to colistin, a last-
resort antibiotic that is only used when all other treatment options fail. Our results
confirmed that some of the mcr genes had spread around the world a while before
being discovered. For example, we saw that the mcr-9 gene had been circulating for
almost a decade before it was first reported. We also concluded that the differences in
mcr abundances could largely be explained by the sampling source and location but
that the genomic context of the mcr gene had not undergone significant changes. This
manuscript confirmed the value of using publicly available metagenomic datasets for
AMR surveillance and how the results can supplement existing surveillance programs.

In Manuscript III, following the characterization of only one group of genes in
Manuscript II, we decided to investigate the abundance of all ARGs and how they co-
occur. By inferring pairwise ARG correlations, we constructed correlation networks
for different ecosystems that suggested that ARGs encoding resistance to different
antimicrobials influences each other abundances. These observations suggest that
using one antimicrobial in a specific environment induces the risk of resistance to
multiple kinds of antimicrobials being indirectly selected, including resistance to the
most critical antimicrobials for human medicine. We argued that the correlations
could be used as risk profiles for guiding the safe use of antimicrobials in different
settings.

Understanding how ARGs have spread through various ecological settings will be an
effective tool in controlling and hopefully stopping the spread of AMR. The results
presented in this thesis show how valuable it is to utilize sequencing datasets that
are freely available in public repositories, coming one step closer to enabling global
surveillance of AMR.



Resumé
Antibiotikaresistens har udviklet sig med en alarmerende hastighed og truer nu med
at gøre behandlinger imod infektionssygdome ineffektive, medmindre at spredningen
af antibiotikaresistensgener stoppes. Antibiotikaresistens er en global sundhedsudfor-
dring for både mennesker, dyr og naturen. Det er derfor nødvendigt at etablere et
overvågningssystem af resistensgener på tværs af de tre fokusområder. Langt størst-
edelen af de eksisterende antibiotikaresistens overvågningsprogrammer fokuserer dog
udelukkende på resistens i sygdomsfremkaldende bakterier i kliniske og andre udval-
gte miljøer. De programmer negligerer derved det faktum, at resistensgener også kan
fremkomme i ikke-sygdomsfremkaldende mikrober i alle mulige forskellige miljøer. I
metagenomsekventering er målet at ekstrahere genetisk materiale for alle mikroor-
ganismer i en prøve. Derved kan mængden af resistensgener i prøven kvantificeres for
alle organismer i en prøve, både ukendte og kendte arter.

Takket være den gode praksis at dele ens rå sekventeringsdata i forbindelse med pub-
liceringen af videnskabelige artikler, er der i dag en stor mængde af metagenomiske
prøver tilgængelige i offentlige databaser. Desværre er der kun en lille del af datasæt-
tene, som bliver brugt af andre, hvilket skyldes at det kun er få forskere der har adgang
til en tilstrækkelig computerkapacitet og de nødvendige bioinformatiske ressourcer.
Anvendes der en standardiseret tilgang til at analysere prøverne, kan der udtrækkes
en hel del ny viden om sammensætningen af mikrober og resistensgener. Dette har
været det overordnede mål i denne Ph.d.-afhandling, hvor 214,095 metagenomiske
datasæt er blevet brugt til at analysere fordelingen af resistensgener i lokale biolo-
giske miljøer og tendensen til resistensgener til at fremkommer samtidigt på et glob-
alt niveau. De tre videnskabelige artikler der er inkluderet i denne afhandling, er
præsenteret nedenfor.

I artikel I, blev selve indsamlingen og behandlingen af de 214,095 metagenomiske
datasæt fra European Nucleotide Archive (ENA) udført. De 442 · 1012 basepar af rå
sekventeringsreads blev alignet til referencesekvenser fra de to databaser ResFinder
og Silva, således at hyppigheden af resistensgener og bakterier kunne bestemmes. I
artiklen præsenterede vi selve kollektionen ved at give et overblik over de bakterielle-
og resistensmønstre. Ud fra dette, kunne vi observere, at der var klare forskelle i både
resistomet og mikrobiomet i de mange forskellige prøvetyper. Desuden offentliggjorde
vi også alle resultater af vores read alignments og det standardiserede metadata med
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det formål at få andre forskere til at drage nytte af vores kollektion og fremhæve
værdien i, at rådata deles.

I artikel II, undersøgte vi fordelingen af gener for mobilt colistin resistens, mcr-
generne, i de 214K metagenomer. mcr-gener danner resistens mod colistin, hvilket er
et antibiotikum der kun bruges som den absolut sidste behandlingsmulighed. Vores
resultater viste, at nogle af mcr-generne har været i kredsløb et stykke tid før de blev
opdaget. Eksempelvis så vi, at mcr-9 havde cirkuleret i et årti, før det første gang
blev rapporteret. Desuden observerede vi forskelle i hyppigheden af individuelle mcr-
gener primært skyldtes prøvelokationen og prøvekilden, men at der dog ikke var nogle
store ændringer i den genomiske placering af mcr genet. Denne artikel bekræftede
den store værdi, der er i at analysere metagenomiske prøver fra offentlige databaser
og hvordan resultaterne kan bruges til at udvide eksisterende antibiotikaresistens
overvågningsprogrammer.

I artikel III, undersøgte vi forekomsten af alle resistensgener i stedet for kun én
specifik familie. Vores analyse af korrelationen mellem par af to resistensgener viste,
at resistensgener der virker mod forskellige antibiotika havde en tendens til oftest at
følges ad. Dog var der en klar separation mellem forskellige økosystemer, hvilket vi
argumenterede for kunne bruges til at skabe risikoprofiler for hvordan resistens ud-
vikles. Risikoprofilerne indikerede, at hvis et antibiotikum bruges i et specifikt miljø,
så bliver resistens til visse andre antibiotika indirekte selekteret for. Artiklen konklud-
erede, at risikoprofilerne bør blive brugt som en vejledning til hvordan antibiotika kan
blive brugt med fornuft uden at der bliver indirekte selekteret for resistens.

Forståelsen for spredningen af resistensgener på et globalt plan er vigtigt for at
kunne kontrollere, og på sigt stoppe, spredningen af antibiotikaresistens. Resultaterne
fra dette Ph.d.-projekt viser værdien i hvor meget information der kan udledes fra
metagenomiske analyser, og at det samlede projekt kan ses som et skridt på vejen til
at etablere et verdensomspændende overvågningssystem af antibiotikaresistens.



Preface
This PhD was carried out at the National Food Institute (Food) at the Technical
University of Denmark (DTU) between 15.11.2019 and 14.11.2022. The project was
supervised by Associate Professor Thomas Nordahl Petersen as the main supervi-
sor and co-supervised by Associate Professor Christian Brinch, Assistant Professor
Patrick Munk, and Professor Frank M. Aarestrup. A part of the research was com-
pleted at the University of Vic, Spain, under the guidance of Professor M. Luz Calle.

The PhD was funded as part of the Global Surveillance of Antimicrobial Resistance
project under the Novo Nordisk Foundation grant NNF16OC0021856 and as part of
the VEO project that got funding from the European Union Horizon 2020 program
under grant agreement 874735.

Kongens Lyngby, 14th November 2022

Hannah-Marie Martiny



vi



Acknowledgements
When I began this PhD, the road to the finish line seemed quite straightforward, but
despite different disruptions such as a couple of lockdowns, there are several people
that have made this journey a very enjoyable one to which I owe my thanks.

First and foremost, thanks to my main supervisor Thomas Nordahl Petersen. Your
support would not have made this PhD what it is, especially your calm and positive
attitude has made this experience very enjoyable. Secondly, the co-supervision by
Patrick Munk and Christian Brinch has also shaped this project greatly, whether it be
from our bi-weekly meeting where everything from data analysis and idea generation
to silly puns was discussed or always being ready to provide feedback and guidance.
My thanks also go to Frank M. Aarestrup, you have been an integral part of this PhD
by having tons of ideas and providing fact checks, spontaneous requests, and often
well-deserved comments. The involvement of you four has been incredible in making
this PhD what it is.

I was fortunate enough to go on an external research stay to work with Malu Luz
Calle at the University of Vic in Spain, for which I want to give thanks for the many
discussions about compositional data and I have enjoyed learning from you. To the
people, I met at UVic that made my two visits very enjoyable.

Thanks to Markus Hans Kristofer Johansson, Derya Aytan-Aktug, Judit Szarvas,
Nikiforos Pyrounakis, JD Martin, Amalia Bogri, Alexander Gmeiner, Baptiste Jacques
Philippe Avot, Nermin Ghith, Timmie Lagermann, Laura Elmlund Kohl Birkedahl,
Maja Lykke Brinch, Malte Bjørn Hallgren, Alfred Ferrer Florensa, Line Jensen Osten-
feld, Saria Otani, and the other current and former members of the Research Group
for Genomic Epidemiology for all the chit-chats, lunches, and other great times during
the last three years.

Thanks to my family and friends for supporting me through the various stages of the
project, be it both for letting me vent my frustrations and enjoying the upsides over
food and beers. To my friends that I met throughout my studies at DTU, Marianne
Helenius, Michelle Lind Østrup, Marie Højmark Fischer, Cecilie Edelmann Bertelsen,
and to those from VG, Rasmus Amund Henriksen, Marie Garnæs, Ida Sophie Brun,
Nynne Kajs, and to all the others that I have met throughout the many years.



viii Acknowledgements

To my dad, Steen Martiny, who has always encouraged me to pursue science and
always showed great interest in my education and work. To my mom Janne Olsen
and sister Elisa Martiny for being just as encouraging and helpful with everything.
For the scientific inquiries and motivation from Adam and Jennifer Martiny.

My warmest thanks to everyone.
- Hannah-Marie Martiny



List of publications
Publications included in the thesis

1. Martiny, H. M., Munk, P., Brinch, C., Aarestrup, F. M., & Petersen, T. N.
(2022). A curated data resource of 214K metagenomes for characterization of
the global antimicrobial resistome. PLOS Biology 20(9): e3001792.

2. Martiny, H. M., Munk, P., Brinch, C., Szarvas, J., Aarestrup, F. M., &
Petersen, T. N. (2022). Global Distribution of mcr Gene Variants in 214K
Metagenomic Samples. mSystems, 7(2), e00105-22.

3. Martiny, H. M., Munk, P., Brinch, C., Aarestrup, F. M., Calle, M. L, &
Petersen, T. N. Utilizing co-abundances of antimicrobial resistance genes to
identify potential co-selection in the resistome. Manuscript in preparation.

Publications not included in the thesis

1. Martiny, H. M., Armenteros, J. J. A., Johansen, A. R., Salomon, J., & Nielsen,
H. (2021). Deep protein representations enable recombinant protein expression
prediction. Computational Biology and Chemistry, 95, 107596.

2. Thumuluri, V., Martiny, H. M., Almagro Armenteros, J. J., Salomon, J.,
Nielsen, H., & Johansen, A. R. (2022). NetSolP: predicting protein solubility
in Escherichia coli using language models. Bioinformatics, 38(4), 941-946.



x



Abbreviations
ALR Additive log-ratio

AMR Antimicrobial resistance

ARG Antimicrobial resistance gene

bp basepair

CLR Centered log-ratio

CoDa Compositional Data

DA Differential Abundance

ENA European Nucleotide Archive

FAIR Findability, Accessibility, Interoperability, and Reusability

HGT Horizontal gene transfer

HTS High-throughput sequencing

INSDC International Nucleotide Sequence Database Collaboration

MAG Metagenome assembled genome

MDR Multidrug-resistant

MGE Mobile genetic element

NGS Next-Generation Sequencing

PCA Principal Component Analysis

PCR Polymerase chain reaction

rRNA ribosomal rRNA

SDG Sustainable Development Goal

WGS Whole-genome shotgun

WHO World Health Organization



xii



Contents
Summary i

Resumé iii

Preface v

Acknowledgements vii

List of publications ix

Abbreviations xi

Contents xiii

I Introduction 1

1 The Threat of Antimicrobial Resistance 3
1.1 The origins of AMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Natural resistance . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Acquired resistance . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Dissemination of AMR . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Emergence and distribution of AMR in clinical settings . . . . 6
1.2.2 Environmental sources of AMR . . . . . . . . . . . . . . . . . . 7
1.2.3 AMR, One Health, and the Sustainable Development Goals . . 9

1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Epidemiological surveillance with (meta)genomics 11
2.1 A brief history of DNA sequencing . . . . . . . . . . . . . . . . . . . . 12

2.1.1 First generation sequencing . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Second generation sequencing . . . . . . . . . . . . . . . . . . . 13
2.1.3 Third generation sequencing . . . . . . . . . . . . . . . . . . . . 14

2.2 The wealth of sequencing data . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 De-novo assembly of NGS reads . . . . . . . . . . . . . . . . . 16



xiv Contents

2.2.2 Mapping of NGS reads . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Epidemiological uses of assemblies and read mappings . . . . . 18
2.2.4 Reusability of sequencing data . . . . . . . . . . . . . . . . . . 20

3 Analyzing metagenomes using Compositional Methods 23
3.1 Handling the sparsity of count data . . . . . . . . . . . . . . . . . . . . 26
3.2 Analyzing metagenomic data with CoDa methods . . . . . . . . . . . . 26

II Manuscripts 31

4 Manuscript I 33

5 Manuscript II 49

6 Manuscript III 77

III Conclusion 109

7 Conclusion 111

Bibliography 115



Part I
Introduction





CHAPTER1
The Threat of
Antimicrobial

Resistance
The wide distribution and diversity of microorganisms mean that some are good, some
are neutral, and some are bad. The latter group can cause infections with sometimes
fatal outcomes. Up until the 20th century, such microbial infections were tough to
treat. It was not until 1904 that Paul Erlich began his search for a “magic bullet” that
could target only disease-causing microbes. Erlich systematically screened hundreds
of compounds to find the one drug that worked against syphilis, and today this
approach is one of the most commonly used in the search for new drugs [1].

1928 marks the year of one of the most significant turning points in the history of
modern medicine when Sir Alexander Fleming accidentally discovered penicillin [2].
While Fleming is credited with the discovery, it took another 12 years before the
protocol for mass production and distribution of penicillin was published by Howard
Florey and Ernest Chain in 1940 [1]. The administration of penicillin to treat in-
fections during the Second World War was a huge success and inspired a worldwide
search to find and produce more antibiotics [3, 4]. In fact, the period between the
1940s and 1960s is called the golden age of antibiotics because new antibiotics were
discovered almost yearly [1], and most major classes of antibiotics were discovered
during this period (Table 1.1) [5].

Medical agents that kill or inhibit microbes are called antimicrobials and are clas-
sified according to which microbial organism they work against. Antibiotics target
bacteria, antifungals work on fungi, and antiparasitics for parasites. The widespread
and successful use of antimicrobials has been estimated to have extended the aver-
age human life expectancy by 23 years [5]. During the previously mentioned golden
age, many antimicrobials were discovered by screening microbes sampled from nature
using the Waksman platform, which was built following the same idea as Ehrlich [6,
7]. The Waksman platform was used over the next 20 years and most of the major



4 1 The Threat of Antimicrobial Resistance

antimicrobial classes were discovered during this time.

Unfortunately, the microbes have been fighting back by developing Antimicrobial re-
sistance (AMR). Alongside the discovery of natural antimicrobials, AMR also started
to emerge. To begin with, modifying existing antimicrobials, known as semisynthetic
drugs, and, later, creating fully synthetic antimicrobial agents were sufficient to com-
bat resistance [7, 8]. However, soon the rate of discovery started to decline, and the
spread of AMR increased. It became apparent in the 1990s that AMR was rising
faster than new antimicrobials were discovered [7]. As seen in Table 1.1, the time
between the clinical introduction and the first case of resistance can be quite short,
often only a few years.

Today, AMR threatens to unravel the last century of medical achievements. Experts
estimate that if the resistance problem is not handled, by 2050, AMR will be the
leading cause of death on a global scale [9]. A recent study by Murray et al. [10]
estimated that in 2019, 4.95 million deaths were associated with bacterial AMR; of
these, 1.27 million were directly attributed to bacterial AMR.

1.1 The origins of AMR

Considering that microorganisms develop antimicrobial resistance as a survival mech-
anism, it is not surprising that genes of AMR, the Antimicrobial resistance genes
(ARGs), have been detected in 1-2,000-year-old human fecal samples [11] and sam-
ples from 30,000-year-old permafrost sediments [12]. Still, it is important to empha-
size that the presence of ARGs has not always been to compete against humans but
rather to create an equilibrium between antimicrobial-producing microbes and resis-
tant microbes. Especially in nutrient-limiting environments, the benefit of producing
antimicrobials or having AMR genes is to outcompete other microbes and gain ac-
cess to more resources [13]. Many of those that produce antimicrobials also carry
the corresponding resistance genes in their genome to avoid suicide [14]. With the
introduction of antimicrobial agents in modern medicine, the pressure for microbes to
obtain and keep ARGs has become much dire. The occurrence of ARGs in genomes
is either due to natural or acquired mechanisms.

1.1.1 Natural resistance

Natural resistance mechanisms refer to ARGs found to be naturally occurring in a
host’s chromosome. ARGs can be grouped as intrinsic (always expressed) or induced
upon exposure to an antimicrobial. Intrinsic resistance is typically defined as a trait
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common to a species that does not depend on previous exposure and is not acquired
via horizontal gene transfer [15, 16]. One example of an intrinsic resistance mecha-
nism is the efflux pumps, where the antimicrobial is expelled directly from the cell
[16]. ARGs can occur either as a natural phenomenon or acquired through several
mechanisms.

1.1.2 Acquired resistance

The organism can also obtain resistance through mutations or acquisition. If muta-
tions occur in genes encoding drug targets, antibiotic-modifying enzymes, drug trans-
porters or regulators, the microbe might develop AMR. However, this mutation-aided
AMR often comes at the cost of fitness decreasing [16].

Genetic material can also be shared between microorganisms of different species
through Horizontal gene transfer (HGT) in one of the three main routes: transforma-
tion, where the bacteria can take up free DNA from the environment: transduction,
where bacteriophages mediate the transfer of DNA: and conjugation, where the ge-
netic material is transferred via a small tube from one bacteria to another [17].

Conjugation can be mediated by plasmids [15]. Plasmid-mediated resistance is one
of the most common ways of acquiring resistance and can be considered platforms
on which genes and genetic elements are arranged in a circular or linear form [18]
and can replicate independently of the host chromosome [15, 19]. The emergence
of pathogens being resistant to a multitude of different antimicrobials and their un-
controlled spread through clinical settings is believed to be due to their association
with specific conjugative plasmids [20]. The basic component of all plasmids, the
minimal replicon, consists of the origin, a region for initiation of plasmid replication,
and an initiator gene. While plasmids encode their replication initiation, they use
the replication machinery for DNA synthesis of their host. This exploitation is one
of the factors that limit the host range of plasmids, but also factors for whether the
plasmid is transmitted by conjugation or mobilization determine the host range [21].

Mobile genetic elements (MGEs) are pieces of DNA that promote the mobility of
genetic material within and between bacteria. There are many different kinds of
MGEs, such as insertion sequences, transposons, plasmids, and phage plasmids [22].
Transposable elements carry their own set of genes, including both ARGs and genes
involved in the translocation. Integrons carry the machinery needed to perform site-
specific recombination, passenger genes such as ARGs, and a promotor, allowing the
integron to be expressed in a host [19, 23, 24]. Today, many acquired ARGs have
been discovered (Table 1.1), and their widespread dissemination is largely due to
the capability of MGEs to jump between different hosts and plasmids and taking
the ARGs with them. There have been increased efforts to develop strategies that
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can mitigate the actions of MGEs, such as considering the MGEs as pollutants and
invasive species [22].

1.2 Dissemination of AMR

While the mechanism of developing or requiring resistance genes was described in the
previous section, there is typically a fitness cost of keeping ARGs and mobile genetic
elements around. However, the promotion of mobilization and maintenance of ARGs
within a host typically happens under selection pressure [25]. Therefore, it is crucial
to recognize that the AMR crisis goes beyond just studying the genetic functions
and that characterizing other drivers of AMR is just as important. Drivers, such as
trade and travel routes, environmental changes, and populations, have already been
shown to influence the dissemination [26]. The increased accumulation of ARGs in
various environments can, to some degree, be attributed to human activities, such as
the overuse of antibiotics in clinical settings and the practice of adding antibiotics in
livestock feed to promote growth and prevent disease. Spillover from these activities
into the environment results in a buildup of resistance-carrying bacteria in water, soil,
or air [25, 27].

Notably, the use of antimicrobials in agriculture has been associated with the preva-
lence of resistance in both pathogenic and commensal bacteria [28, 29]. Studies have
even shown that, in some cases, resistance remains in an environment years after
removing the selective pressure and that using different classes of antimicrobials in-
creases the risk of co-occurrence of various resistance genes [30, 31, 32]. Fleming
already warned about the dangers of inappropriate use of antibiotics leading to more
severe forms of the disease in an interview in 1945 [33].

Based on these observations, the World Health Organization (WHO) developed a
ranking system of antimicrobials to reflect their importance in human medicine (Ta-
ble 1.1). These rankings can then be used to establish resistance risks associated
with the use of different antimicrobials in animals [34, 35]. In the remaining part of
this chapter, the distribution of resistance around the globe will be introduced, and,
finally, present the One Health perspective on AMR.

1.2.1 Emergence and distribution of AMR in clinical settings

Most antibiotics were, in the beginning, used in hospitals, which is also where the
first strains of drug-resistant pathogens emerged. One example is the emergence
of the penicillin-resistant Staphylococcus aureus in London hospitals shortly after
the introduction of penicillin in the 1940s [36]. Multidrug-resistant (MDR) bacteria
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appeared in the late 1950s to early 1960s but continued to re-emerge and cause
infections that are difficult to treat, sometimes with no successful outcome [37]. In
the case of treating MDR pathogens, antimicrobials that were discontinued have
been taken into rotation again as a last-resort treatment. One last-resort antibiotic
is colistin or polymyxin E, which was first discovered in 1947 (Table 1.1) and used
in human medicine. Due to neurotoxic and nephrotoxic side effects, colistin was
abandoned in the 1980s but was taken into use again in the early 2000s [38, 39].
WHO has classified colistin as a critically important antibiotic (Table 1.1). However,
due to a history of colistin used in veterinary medicine and as a growth promoter in
pigs and poultry [40], plasmid-mediated resistance to colistin began to emerge, and in
2015 the first resistance gene was reported, namely the mobilized colistin resistance
gene mcr-1 [41]. Since then, multiple mcr genes have been reported and shown to
have spread worldwide [42, 40, 43]. The newest member of the family of mcr genes is
mcr-10 was reported in 2020 [44], suggesting that it is only a matter of time before
the next gene in the family is discovered.

The high consumption level of antimicrobials in clinical settings and hospitals is also
reflected in the waste that causes a spillover into the environment [45]. The hospital-
generated waste accumulates antibiotics, exposing bacteria to the antibiotics and
creating selective pressure for bacteria carrying resistance genes [46, 45]. There are
examples of several antibiotics that could be detected in abundances strong enough
to penetrate other environments, e.g., soil, from sewage treatment plants, despite a
dilution of hospital sewage with communal sewage and wastewater treatment [46].

1.2.2 Environmental sources of AMR

As already highlighted in the previous sections, settings where historically the use of
antimicrobials has been high have created hotspots of AMR that can cause ARGs
to move into other environments. Examples include: ARGs conferring resistance
to beta-lactams that have been detected in farm animals; tetracycline resistance in
farm manure, wastewater treatment plants, and aquatic and soil environments; and
resistance to sulfonamides (folic acid antagonists) in agricultural areas, wastewater
treatment plants, rivers, and oceans [27].

The route of resistance-carrying bacteria might start with the emergence of novel re-
sistance genes, then the genes become mobilized and move into various environments,
and are ransferred into human pathogens [25]. The steps might not happen in the
order written but highlights how resistance factors move. The One Health approach
of recognizing the interplay between human health, the environment, and animals, is
especially fitting for the issue of antimicrobial resistance [47].
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1.2.3 AMR, One Health, and the Sustainable Development Goals

Applying the concepts of the One Health approach to tackle AMR will require that all
three domains (people, animals, and environments, see Figure 1.1) are well understood
in their contribution to the development and spread of resistance [47]. Recording
new ARGs as they emerge is a crucial step in establishing comprehensive monitoring
across the three One Health pillars, as well as utilizing the many sequencing efforts
happening across the globe. There are already existing surveillance programs in place,
such as the Danish Integrated Resistance Monitoring Programme (DANMAP) started
in 1995 that monitors AMR in clinical isolates, livestock, and along the food chain
[55, 56], or the WHO Global Antimicrobial Resistance and Use Surveillance System
(GLASS) that uses patient samples to survey the prevalence of pathogens common
in human infections [57, 58].

AMR not only threatens health but is also a societal challenge considering the impact
on the Sustainable Development Goals (SDGs). The UN developed the SDGs in 2015
to achieve a “better and more sustainable future for all” [59]. Besides the effect on
SDG3 about good health and well-being, AMR is also linked to SDG1 on no poverty
and SDG2 about zero hunger, as the increasing global population also increases the
requirements of food production, increasing the use of antimicrobials as supplements
in livestock feed [31]. Climate change (SDG13) and AMR are also linked; for example,
a study has shown that AMR increases with a rise in temperature [60]. AMR is also
linked to several other SDGs (see Gajdács et al. [61]), but hopefully, these examples
illustrate why AMR has many ramifications beyond global health and how surveillance
on the distribution of ARGs is needed on a global scale. Especially understanding
where ARGs come from, how they move, and their abundances are important to make
effective regulations on how to solve the AMR threat.

1.3 Problem statement

Viewing AMR as a global issue will require new multidisciplinary approaches, such
as establishing how to characterize the distribution of AMR in humans, animals, and
environments. The next two chapters will introduce how the distribution of ARGs
can be surveyed by reusing publicly available sequencing datasets to answer the three
main questions of this PhD project: what, where, and how much?

Creating a workflow for retrieving, processing, and analyzing sequencing reads from
public data repositories to characterize the global distribution of AMR is the primary
goal of this thesis. The studies conducted during this PhD focused on the following
objectives:
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1. Develop a pipeline for retrieving metagenomic samples from the European Nu-
cleotide Archive (ENA), quality checking and trimming sequencing reads, and
aligning the trimmed reads against reference sequences from two databases:
ResFinder [48], consisting of acquired ARGs, and Silva [62], which contains
ribosomal rRNA (rRNA) sequences.

2. Create a MySQL database for storing sampling metadata and output of the
alignment procedure for more accessible analysis and data sharing.

3. Using techniques from compositional data analysis and genomics, profile the
emergence and distribution of ARG abundances in different sampling locations,
years, and sources to identify novel patterns.

HUMAN
HEALTH

ANIMAL
HEALTH

ENVIRONMENTAL
HEALTH

ONE 
HEALTH

©hmmartiny

Figure 1.1. The One Health approach focuses on how the human health is connected to the
health of both animals and the environment. In terms of AMR, there are clear links to each
of the three pillars, and the study of all three domains is needed to understand how AMR
emerges, evolves, and disseminates.



CHAPTER2
Epidemiological
surveillance with
(meta)genomics

Epidemiology is a field of study focusing on the distribution of disease in populations
and which factors, or determinants, are involved in this distribution [63]. In terms
of infectious diseases, determining the origin and monitoring the spread of pathogens
can provide better and faster response and, in the end, control the disease. With
the technical advances and decreasing cost of sequencing technologies, characterizing
disease-causing agents at a genetic level has become more feasible and are routinely
done as part of clinical diagnostics. Using genomic DNA sequences can give a faster
and more reliable identification of the pathogen, identify phylogenetic relationships,
and characterize of genomic traits relevant to epidemiological studies [64, 26]. Imple-
menting a surveillance system of AMR embracing the One Health approach have the
potential to elucidate how ARGs move across environments, hosts, and geographical
borders.

Genomics, as a field, focuses on studying the genome of a single organism and was
coined as a term in 1986 during a meeting about starting the project about sequenc-
ing the human genome [65]. A genomic workflow begins with the cultivation of a
microbe. DNA is then extracted and amplified from the isolated microbe. Thirdly,
the sequencing library is created, and finally, the generation of reads using a sequenc-
ing machine so that, in the end, the species’ genome can be constructed (Figure 2.1).
However, genomics is only done on organisms that can be cultivated, which does not
capture the full diversity of microorganisms [66]. In metagenomic studies, all genetic
material is recovered from an environmental sample and sequenced, which omits the
cultivation step (Figure 2.1), i.e., a genetic snapshot of the environment is created.

To profile the composition of a microbial community, the sample can be sequenced us-
ing different methods, such as Whole-genome shotgun (WGS) sequencing or targeted
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16S rRNA sequencing. WGS sequencing randomly breaks down long DNA molecules
into smaller fragments that are sequenced [67]. Targeted 16S rRNA sequencing takes
advantage of the universal presence of the 16S rRNA gene in prokaryotes. The 16S
rRNA gene is about 1550 basepair (bp) long and consists of variable and conserved
regions. Primers are designed for the conserved regions, and the variable regions are
used to distinguish between the different bacteria [68]. Depending on the end goal,
there are both advantages and disadvantages for doing shotgun or targeted 16S rRNA
sequencing. Profiling of 16S rRNA does not need as high sequencing depth as WGS
because 16S sequences are well-defined in reference databases; for example, GenBank
has over 167,000 nucleotide 16S sequences deposited (retrieved 22-09-2022). WGS se-
quencing, instead, can capture all kinds of genetic sequences and not only 16S genes,
which allows for the characterization of eukaryotes and viruses and functional anal-
yses of, e.g., the distribution of ARGs. Because of the broader genetic information
offered by WGS, it can be complex to analyze shotgun sequencing data [69].

Genomics

Cultivation Sequencing Single genome 

Metagenomics

Sequencing Genomes

©hmmartiny

Figure 2.1. A simplified overview of genomic and metagenomic workflows to illustrate the
difference between them, where the goal of genomics is to obtain the genome of interest and
the metagenomic aim is to capture all genomes in the sample.

2.1 A brief history of DNA sequencing

While Alexander Fleming’s discovery of penicillin kickstarted modern medicine, the
starting point of DNA sequencing was when James Watson and Francis Crick solved
the three-dimensional structure of DNA in 1953 [70] using crystallographic data pro-
vided by Rosalind Franklin and Maurice Wilkins [71]. It took almost another 25 years
before the first generation of sequencing began with the Sanger method published in
1977, but since then, the field has seen many new sequencing platforms come and go,
all in the quest to produce more accurate, longer, and cheaper DNA sequences.



2.1 A brief history of DNA sequencing 13

2.1.1 First generation sequencing

The aforementioned Sanger sequencing [72] was a groundbreaking technique because
of the chain-termination method. This technique involves adding chain-terminating
dideoxynucleotides that have been, in the early days, radioactively labeled, to per-
form sequencing of a DNA fragment. After the addition of the labels, the fragments
were then run through gel electrophoresis to separate based on fragment size and,
lastly, analyzed to determine the sequence. In a later version of Sanger sequencing,
the labeling was done using fluorescently instead of radioactively [73, 74]. The accu-
racy, robustness, and ease of use led Sanger sequencing to become the most common
sequencing technology [73]. The first generation of automated DNA sequencing ma-
chines used the Sanger method [75], which generated sequencing reads of a little less
than one kilobase (kb) in length [76].

2.1.2 Second generation sequencing

When the project to sequence the human genome began in the 1990s [77], the need
for higher quantities and longer sequencing reads sped up the development of High-
throughput sequencing (HTS) platforms. The pyrosequencing method [78] used in
the 454 machines (later Roche) made it possible to do mass parallelization to obtain
larger amounts of DNA in just one sequencing run. The 454 machines could produce
reads around 400-500 bp long. Following the success of 454, new parallel sequencing
techniques were developed that made it possible for individual research laboratories to
build their sequencing capacities [79]. These new innovative sequencing technologies
are called second generation or Next-Generation Sequencing (NGS) technologies.

Table 2.1 lists examples of NGS platforms, where the most notable of them is the
Illumina machines, which today are the most common sequencing machine in use.
Illumina machines produce short reads of up to about 300 bps in length and support
paired-end sequencing, which means that the DNA fragment is sequenced from both
ends [76]. Another NGS approach is the Ion Torrent sequencing by ThermoFisher,
which instead of using fluorescence or luminescence detection, measures the difference
in pH to determine the sequences.

All three sequencing platforms (454, Illumina, Ion Torrent) do sequencing-by-synthesis
using Polymerase chain reaction (PCR), but an alternative approach was introduced
with the SOLiD system from Applied Biosystems, later acquired by ThermoFisher
(Table 2.1). SOLiD stands for sequencing by oligonucleotide ligation and detection
using DNA ligase [73]. The length of the sequenced reads in a SOLiD platform is gen-
erally relatively short, at only about 35 bps, but the output per sequencing run was in
the order of gigabases [80]. This large output made the SOLiD platform cost-effective
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compared to the other NGS platforms [73].

The revolution of genome sequencing platforms has had a drastic impact on the ease
and cost of performing sequencing experiments, as the number of bases that can be
sequenced per unit cost has been growing at an exponential rate. Stein [81] showed
in 2010 that the cost of genome sequencing has been decreasing faster than the cost
of disk storage; in other words, it is cheaper to sequence a genome than to store the
output.

2.1.3 Third generation sequencing

The second generation sequencing machines are known as short read technologies, as
the read lengths are still in the bp range, up to a few 100 bps. The newest iteration of
platforms, the third generation, uses long-read technologies that generate sequences
of more than 10kb in length directly from the native DNA (Table 2.1). Pacific Bio-
sciences (PacBio) and Oxford Nanopore Technology are the two main companies with
third generation platforms on the market.

PacBio does single-molecule real-time sequencing by sequencing in thousands of re-
action wells, in which the DNA template is added to the bottom. Four differently
fluorescently labeled deoxyribonucleoside triphosphates (dNTPs) are added, and us-
ing a DNA polymerase, the sequence is called by detecting the small signal emitted
by incorporating the dNTPs [82]. The resulting sequence fragments might contain
random errors, but the errors are randomly distributed, and bias is reduced due to
skipping the PCR amplification step [83]. The Oxford Nanopore Technology plat-
forms (Table 2.1) pass a single-stranded DNA molecule through a specific protein
pore, a nanopore, where the DNA fragment is pulled through the pore one base at a
time. The sequence is then determined by detecting changes in an electrical current
through the nanopore [84]. This kind of sequencing did suffer in the beginning from
much higher error rates, around 15% [83], but is now down to less than 1% [85]. The
benefit of nanopore sequencing is the very long reads, as detecting structural variants
is much less cumbersome. There are only a few hundred reads to compare as opposed
to a million reads from the earlier NGS platforms (Table 2.1) [84].
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2.2 The wealth of sequencing data

With the increased output and lowered cost of NGS technologies (Table 2.1), modern
biology now utilizes sequence data routinely in research projects. As part of a scien-
tific publication, it is highly encouraged to share the raw sequencing reads in public
archives, resulting in an unprecedented amount of sequencing data being available
online. Members of the International Nucleotide Sequence Database Collaboration
(INSDC; www.insdc.org) have built the core infrastructure for sharing nucleotide
sequencing data and the associated sample information, or metadata, in repositories
that are publicly available. This collaboration is between three members that repre-
sent different parts of the world and facilitates a daily data exchange: the DNA Data
Bank of Japan (DDBJ, www.ddbj.nig.ac.jp), the European Nucleotide Archive
(ENA, www.ebi.ac.uk/ena), and GenBank (www.ncbi.nlm.nih.gov/genbank) [88].
Figure 2.2 shows the staggering amount of sequencing datasets, or runs, deposited
on ENA since 2010. With more than 20 million sequencing runs encompassing more
than 40 petabytes of data, it is safe to say that an enormous number of reads have
been generated so far. These numbers are expected to continue to increase, as the
current estimates say that the number of datasets doubles about every 22 months,
and the disk storage doubles every 31 months.

2.2.1 De-novo assembly of NGS reads

Assembly of reads is the process of figuring out where the, typically, short reads over-
lap and reconstructing the original genomes based on these overlaps. This recovery
can be done by creating assemblies either by using reference-based methods, de novo
or a combination of both with reference-guided de novo assembly. However, if the
microbial sample contains genomes not part of reference databases, reference-based
methods cannot recover unknown genomes. De novo assembly has aptly been de-
scribed as putting the pieces of a jigsaw puzzle together without knowing what the
whole picture looks like [89]. It is a computationally expensive process, as it begins
with assembling the NGS reads into long sequences, or contigs, by finding the over-
lapping regions. Then the contigs are scaffolded, ordering of contigs by using linkage
information, such as mate pairs. Finally, the gaps between contigs in the scaffolds
are filled out by independent reads. Scaffolding and gap-filling are sometimes done
repeatedly in an iterative process to improve the overall assembly [90]. Many de novo
assembly tools use de Bruijn graphs to build the contigs, such as metaSPADes [91].
The basic principle of building de Bruijn graphs is to construct k-mers from the reads
and connect overlapping k-mers. However, efficiently storing the k-mers in memory
is difficult as the usage increases with the length of the reads, coverage, and the com-
plexity of the metagenomic sample, as illustrated by the approximation of gigabytes
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Figure 2.2. The growth of sequencing runs available on European Nucleotide Archive
(ENA). Top: Count of sequencing datasets (runs) uploaded (left y-axis) and the disk
storage size required to store all these datasets (right y-axis). Bottom: The doubling
time of sequencing reads available and data size. The two figures were retrieved from
www.ebi.ac.uk/ena/browser/about/statistics. Note that the graphs include all NGS
datasets, not only metagenomic datasets.

needed of RAM to store a table of k-mers: 2(k + 1)G gigabytes to store k-mers of
size k of and genome size G [92]. Next, the question is what information can be
extracted from the assembled contigs. Tools such as Kraken [93] or QIIME [94] can
be used to assign taxonomic labels to genomes and analyze the microbial community,
MGEs can be detected with MobileElementFinder [24], phylogenetic clustering with
PhyloPhlAn [95]. These tools are just some examples of what can be used to study
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assembled genomes.

2.2.2 Mapping of NGS reads

Instead of assembling reads, an alternative route is to characterize the unassembled
sequence reads by mapping the reads against reference sequences. As the name sug-
gests, using reference-based mapping happens by comparing the reads to reference
genomes and is a relatively computationally inexpensive process, which can be pretty
effective in, e.g., benchmarking studies in which the microbial composition is known
[90]. Existing tools such as Bowtie 2 [96], BWA-MEM [97], and KMA [98] map the
reads against entire databases of reference sequences. There are many different refer-
ence databases available, such as Silva [62] to profile the 16S rRNA genes or ResFinder
[48] or CARD [99] to obtain ARG reference sequences. These methods of mapping
reads to references scale well in their efficiency to complex datasets since each read
is considered indecently to the rest but can still be slow if the reference database is
large [69]. The result of mapping and aligning reads is typically a matrix with the
count of reads matched to reference sequences if not doing assemblies.

An abundance matrix consists of multiple samples with their read counts that can
be used to explore microbial diversity through different ecological indices. Alpha
diversity measures the diversity of species or genes within a sample, whereas beta
diversity quantifies the variations between samples [100]. There are also methods to
test whether the abundances differ between categories [101], study the relationships
by associating abundances of different genes or taxa [102, 103] or explore the beta-
diversity with principal component analysis [104].

Although the process of assigning reads to references is less complex than doing
assemblies, analyzing the abundance matrix to describe the community in the sample
has a few key challenges that need to be addressed: not all species are often observed
so the abundance table might be quite sparse; the counts depends on what is in the
reference databases, so there might be a large unmapped part of the sample; and, the
total number of reads depends mainly on the capacity of the platform, which might
make the output of two sequencing runs on the same sample differ [69, 100]. The
latter makes the data compositional and is the focus of the next chapter.

2.2.3 Epidemiological uses of assemblies and read mappings

In the epidemiological setting, recovering genomes is relevant for investigating out-
breaks. One example is tracing patient-to-patient transmissions of methicillin-resistant
Staphylococcus aureus (MRSA) in intensive care units by comparing the genetic sim-
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ilarities of the isolated strains [67]. In retrospective studies, genetic variations are
often used to find the origin and construct transmission networks. Another recent
example, but not AMR related, is finding where the novel severe acute respiratory
syndrome coronavirus (SARS-CoV-2) came from in 2019. In the study by Worobey et
al. [105], they investigated where the coronavirus that caused a worldwide pandemic
came from. By analyzing various environmental sources and modeling the likelihood
of origin, they showed that the epicenter most likely was a seafood market in Wuhan,
China, where SARS-CoV-2 jumped from animals into humans.

From the metagenomic perspective, there are many examples of studies assembling
genomes from metagenomic samples, otherwise known as Metagenome assembled
genomes (MAGs). With 38 metagenomic samples from activated sludge reactors
treating antibiotic production wastewater, Zhao et al. [106] assembled 689 genomes
from 2245 million paired-end reads to investigate the prevalence and mobility of ARGs
in hosts. The authors found that ARGs are likely to be mobilized under high antibi-
otic selection pressures through a co-occurrence analysis of ARGs and MGEs in their
MAGs. A characterization of MAGs recovered from fecal pig samples by Holman
et al. [107] revealed that MAGs assigned to commensals in the gut were carrying not
only ARGs but also specific enzymes involved in metabolism. They suggested that
the functional identification likely could explain why macrolide and tetracycline resis-
tance persisted in the gut in the absence of antimicrobial selective pressure. The Tara
Oceans expedition [108] collected samples from the world oceans, where Cuadrat et
al. [109] used the assembled metagenomes to explore the ARG distribution. Some of
their results showed that specific ARGs are more abundant in coastal environments,
which they hypothesize is due to the inflow of antibiotic-resistant strains by wastewa-
ter. From the intestines of deep-sea fish in the Atlantic Ocean, almost all the MAGs
reconstructed by Collins et al. [110] lacked acquired antimicrobial resistance genes.
This snapshot of the microbiome at deep-sea levels suggested that this environment
remains largely unaffected by human activities.

Abundance analyses have revealed several associations of the resistome in various
environments. For example, ARG transmission in soil environments was assessed
by Knapp et al. [111], which resulted in that eight different ARGs being positively
associated with copper levels in the soil. In another study by Wang et al. [112], they
showed that the spread of ARGs across a soil-root continuum was a continuous stream
by evaluating the attributions of environmental sources on the resistome. Urban
wastewater environments have also gained a lot of attention for AMR surveillance,
mainly due to the fact that globally an increased number of people are connected to
sewage treatment plants. Some of the main benefits of sewage surveillance are that
they cover large communities, a sampling procedure is straightforward to implement,
sequencing and downstream analyses are easily standardized, and there are no ethical
concerns in doing so [113]. Multiple studies have shown that higher abundances of
ARGs exist in sewage [26, 114, 115, 116], but there are systematic differences in
resistomes across world regions, likely due to sanitation and health factors [26].
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2.2.4 Reusability of sequencing data

The growing number of sequencing reads offers many new possibilities to catalog and
explore microbiomes in different environments, conditions, and geographical locations
(Figure 2.2). Four principles were formulated to encourage the practice of sharing
and building tools: Findability, Accessibility, Interoperability, and Reusability. Better
known as the FAIR principles, they were designed to serve as guidelines for good data
management [117]. The policy created by ENA and the other members of INSDC
was actually used as the template for the FAIR principles [88], and arguably a lot
of the reference sequence databases that exist also embrace these principles, such as
ResFinder [48] and Silva [62].

However, working with terabytes, or even petabytes, of data, is not feasible for many
researchers simply due to the lack of resources needed to handle such large amounts.
Therefore, there is also a need for standardized pipelines that enable the sharing of
assemblies, read counts, and other results of downstream analyses of DNA sequencing
data that are easily accessible to the larger scientific community. Parallels can be
drawn to experimental protocols, where each step is carefully documented, e.g., with
concentrations and temperatures. The code, software, software versions, parameter
values, and other details in a computational workflow have typically been omitted
from published articles, but for the results to be reproducible, these details need to be
shared [118]. Most journals nowadays require these for the manuscript to be published,
but instead of just documenting it as part of a method section, several workflow
managers are available that simplify the process of reimplementing. Two of them are
Snakemake [119, 120] and Nextflow [121], which both uses a domain-specific language
that improves readability and provides statements and declarations for controlling
input files, variables, commands, and output [120]. Recently, a protocol for how
to carry out metagenome analyses was published in Nature, in which the authors
developed several easy-to-use scripts for the steps in the protocol [122]. Depositing
data that is not the raw sequencing data, e.g., the output of an analysis, can be stored
on other data repositories that provide a permanent digital object identifier, such as
Zenodo (zenodo.org) [123]. From writing this, it could sound like the task of reusing
the publicly available sequencing data might be straightforward; however, there are
several challenges that one might face beyond just handling the sheer volume of data.

The information on the sample’s origin, such as the sampling source, location, and
date, is essential to put the results into context, but how this metadata is written is
often filled with many errors. When entering metadata for uploading to a repository,
e.g., ENA, there are fields with a restricted vocabulary of values to choose from, but
others are free text giving ample risks for mistakes to be entered. While there to-
day are several checklists in place to ensure minimum information about a sample is
shared, these checks have not been in place from the beginning. Even if still encoun-
tering mistakes, updating the existing metadata records is currently only available for
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the submitter of the data, not other users. Arguably, it should be a major point of
a data submitter to ensure that their metadata is as clean as possible. More impor-
tantly, it should be possible for other users to flag incorrect data. Curating metadata
can be a time-consuming and manual process but necessary to allow using the data
to its full potential [124].

Creating a global overview of AMR also requires that the data be as much unbiased as
possible. Historically it has been more expensive to perform sequencing experiments,
as observed in public data repositories when looking at the sampling origins. For
example, Abdill et al. [125] noted that human microbiome samples tended to come
from Europe, USA, and Canada and fewer from central and southern Asian countries.
The skewed distribution of sampling origins is not limited to only human samples but
demonstrates well how the underrepresentation of specific world regions will restrict
the interpretation of results from global analyses.

The rapid innovation in NGS platforms has also spawned a variety of experimental
procedures for obtaining DNA sequences, and each iteration of the platforms has
aimed to improve both read length and output size (Table 2.1). Illumina machines
are the most dominant on the market, but that does not mean that there are no
samples of older date and sequenced on the first machines. The variety of procedures
and platforms also creates a non-removable bias in the available sequencing datasets,
which should be considered when retrieving reads from different projects.

Nonetheless, there is still much to be gained from repurposing existing NGS datasets if
the issues above are either handled in an appropriate manner or at least acknowledged
when interpreting results. Especially the bias introduced by uneven sampling distri-
butions will hopefully be less as the NGS platforms continue to become cheaper and
better. Figure 2.3 shows how a pipeline can accomplish the reuse of a metagenomic
dataset from ENA to characterize the abundance of ARGs. The pipeline takes the
reads, does trimming, quality checking, and alignment to chosen reference databases,
and stores the mapping results in a database. At the same time, a mix of automated
and manual metadata curation is being done to conform the needed information into
the same format (Figure 2.3a). The database then contains the output of both the
processing of the reads and the curated metadata, where the data can then be ex-
tracted and analyzed to study the global resistome and microbiome (Figure 2.3b).
The existing surveillance efforts should still continue, such as DANMAP and GLASS,
as the proposed pipeline is not a replacement but should instead be considered as a
supplement to broaden the understanding of AMR.
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Figure 2.3. The proposed pipeline for retrieving and analyzing metagenomic datasets. a.
The uniform processing of sequencing reads and metadata curation is stored in a database.
b. The abundance matrix of counts and the associated metadata can then be analyzed to
identify data structures across spatial, ecological, and temporal spaces.



CHAPTER3
Analyzing

metagenomes using
Compositional

Methods
The sequencing reads produced by NGS technologies have many different uses, all
with the goal of assessing the biological content of a sample. One of the use cases is
to quantify the abundance of microbes or genes in the sample by aligning the reads
to reference sequences. However, the different NGS techniques use different sample
preparation and assay protocols, causing bias to be introduced into the number of
reads generated and, subsequently, downstream analyses. Therefore, the total number
of reads produced depends not only on the sample but also on the capacity of the
sequencing platform. If one were to have a set of reads generated from two samples
from the same environment, the two read distributions might be very different [126,
127].

Compositional Data (CoDa) refers to a set of vectors that consists of positive numbers
that are part of a whole. That can easily be translated into the count matrix of reads
aligned to different references. The read counts can only be interpreted by considering
them as the relative proportion of the total number of reads. In 1897, Karl Pearson
noted that the analysis of relative counts, or ratios, can produce spurious correlations
and warned against attempts to interpret that [128]. Even so, it was not until the
work of John Aitchison in 1982 that CoDa became its own field of research [129].
This chapter will not be a comprehensive review of CoDa but will focus on how CoDa
methods are applicable for working with metagenomic samples. The mathematical
notation in the accompanying sections follows the notation of Pawlowsky-Glahn et al.
[130].
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A composition is a vector x = [x1, x2, , xD] of D relative numbers, where D is the
number of components, i.e., the number of genes, and each xi ∈ RD is the count
of reads assigned to gene i. The counts can only be considered as carrying relative
information as a count is only interpretable in relation to all the other counts. Due to
this relativeness, the compositional data is constrained to be on the simplex S, which
is the sample space with a dimension size of one less than the number of components
(Figure 3.1). The compositional data in the simplex can be normalized by closing
the composition to express the counts proportionally to a specific constant, i.e., the
counts of reads are normalized to be like percentages by using definition 3.1:

Closure

Definition 3.1. For a compositional vector x of D parts, closure is defined
as

C(x) = κ∑D
i=1 xi

· x

where κ > 0 is the closure constant.

x

y

z

y

x
D=2

1-simplex
D=3

2-simplex

Figure 3.1. Example of 1-simplex and 2-simplex as graph representations.

The traditional statistical methods do not apply in the compositional sample space
because they operate on real numbers. Aitchison did define geometrical functions
[129], but using these functions makes the calculations much more cumbersome. In-
stead, the starting point of any statistical analysis of compositional counts should be
to do a log-transformation of count ratios. Transforming the relative counts into a
log-space makes the data symmetric and linearly related and converts them into a
log-ratio space of real numbers [126]. Another way to put it is that the ratios are now
relative to other features in the data directly related to the sampling origin and no
longer on the NGS platform used to produce the reads. The Additive log-ratio (ALR)
and the Centered log-ratio (CLR) are often used and can be found in definitions 3.2
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and 3.3.

Additive log-ratio transformation

Definition 3.2. The ALR transformation uses one part as the reference and
transform the composition x ∈ SD into RD−1 by

ALR(x) =

[
ln x1

xD
, ln x2

xD
, ..., ln xD−1

xD

]

Centered log-ratio transformation

Definition 3.3. Instead of using one of the components as a reference,
the CLR transformation uses the geometric mean gm(x) of the sample as the
reference:

CLR(x) =

[
ln x1

gm(x)
, ln x2

gm(x)
, ..., ln xD

gm(x)

]
where gm(x) is

gm(x) =

(
D∏

i=1
xi

)1/D

= exp

(
1
D

D∑
i=1

ln xi

)

ALR might not be so unfamiliar to the reader, as there have been variations of ALR
used for a while. One variation is log(FPKM) or the logarithm of fragments per
kilobase per million reads. log(FPKM) has been designed to reflect the number of
reads aligned to a reference, scaled by the length of the reference sequence in kilobases,
and then divided with the total number of fragments in millions in a sample. However,
the choice of xD does not need to be the output size but can be what the analyst
chooses. An interpretation of ALR is that the counts are compared to a specific
reference [127]. There is still the issue of using the total number of reads available
as xD does not give information about the environment [126], which is why the sum
of bacterial reads is often chosen in AMR research instead. By using the sum of
bacterial reads as the reference, the ALR abundance will reflect the fraction of ARGs
to the amount of bacteria in the environment.

The CLR transformation does not require a specific reference being chosen but in-
stead uses the geometric average of the compositional vector. The most significant
advantage of CLR-transformed data is that the values can be used for multivariate
hypothesis testing and building models [126]. That is because CLR values are in-
variant to scaling (multiplying by a number), perturbation (unit conversion), and
permutation (change of order) and show sub-compositional dominance (a subset of
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the composition is less informative than the full) [130, 127].

3.1 Handling the sparsity of count data

During the process of aligning read fragments to reference sequences, there might be
millions of references to pick between. An abundance matrix of at least two samples
can therefore be quite large and filled with zeroes, as there might be references that
did not have any read hits in one sample but did in the other one. This often results
in a sparse abundance matrix. A quick glance at the definitions of ALR and CLR
will, hopefully, raise the question of what to do, as taking the logarithm of zero is
impossible.

Considering what a zero represents is necessary before tackling the issue of its presence.
It might be easy to jump to that zero means that the gene is absent because no reads
were matched, but that cannot be true if we consider the pool of reads a fixed-size
random sample of the true distribution. A zero might mean the gene is not there or
that, by chance, the reads matching the gene were simply just not observed. Since
there is no way to know which of the two statements is correct, there is a tendency
to believe the latter: the deeper a sample is sequenced, the more references will get
at least one matching read [131].

There is an ongoing discussion on how to best handle zeroes [127]. Zeroes can be
replaced with a small, fixed number, but this imputation is more a way of masking the
missing data than actually handling it [132]. Another way to replace zeroes is to use
a Dirichlet sampling procedure, which converts the count of reads into proportions
of reads and thus eliminates the zeroes. Using this sampling from a probability
distribution is much more computationally expensive than just adding a small value.
Still, it does have the benefit of incorporating the mapping evidence [133].

3.2 Analyzing metagenomic data with CoDa
methods

Many methods used to describe microbiomes stem from ecology, where the goal typi-
cally is to investigate the relationship between species and their environment. These
parallels are also valid for analyses of metagenomic samples, just that the goal is
not to count animals or plants but the genetic material. As already touched upon
earlier, calculating the diversity of the samples is an excellent first step in exploring
the microbiome data.
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Specifically, measuring the diversity between samples, the beta-diversity, can reveal
similarities or differences in microbiomes. Between two samples, it can be quantified
with the Aitchison distance, a compositional measurement that functions the same
as using Euclidean distances on CLR values. Distances can be used for clustering
and ordination of samples. The variance in samples can be visualized with Principal
Component Analysis (PCA) biplots, displaying the relationship between variances in
counts in samples can be studied (Figure 3.2). The beta diversity is best explored
through a PCA biplot [126].
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Figure 3.2. An example of a PCA biplot that is part of manuscript II. It shows the variance
in mcr gene abundances, where, for instance, mcr-1 and mcr-9 is separated by the sampling
location.
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While a PCA biplot might display variances in the data, it does not say whether the
abundance of a reference sequence is significantly different between sample groups.
Differential Abundance (DA) testing has been done in different ways, but not all DA-
models are designed for compositional data [134]. Benchmarking studies have shown
that some of these tools, such as edgeR [135] and metagenomeSeq [136], suffer from
high false-positive discovery rates [134]. ALDEx2 adheres to compositional principles
and performs an ANOVA-Like Differential Expression (ALDEx) analysis on CLR
values [101]. Another tool for DA that uses log-ratio transformations is ANCOM
which relies on ALR values and tackles the issue of choosing which part a reference
is by using each of them in a regression [137]. Nearing et al. [138] found that out of
the many different DA models available, ALDEx2 and ANCOM-II [139], an updated
version of ANCOM, produced the most consistent results across different studies.
They did recommend that multiple DA tools should be used to ensure robust results.

Since microbes exist together in a microbiome and interact with each other, measuring
these relationships can enhance understanding of the functional microbiome [140].
Correlations are one way to study these relationships, where compositional tools
such as SparCC [102] and SpiecEasi [103] are available. Yet, obtaining all pairwise
correlations for multiple samples can be a computationally heavy task if the count
matrix is both large and sparse. Imagine if a matrix has counts for 500 parts, there
is a possibility of getting (n ∗ (n − 1))/2 = (500 ∗ (500 − 1))/2 = 124, 750 correlations
[141] and only increases with more features to test. SparCC does a log-ratio analysis
of the count data and aims to estimate the basis, or truth, through an inference
procedure with Aitchison’s formula for variance [102]. In contrast, SpiecEasi seeks
to infer correlations with a directional dependence using either a penalized regression
or maximum likelihood selection on CLR transformed values [103]. Weiss et al. [141]
showed that the tools infer different numbers of correlation coefficients and that some
types of relationships, such as mutualism and commensalism, are better detected
overall. They highlighted SparCC as being able to identify competitive relationships.
Another way to study relationships in abundance is to find positively and negatively
associated parts [142]. Selbal [143] finds a balance of geometric means from two
groups of parts associated with a sampling group or another response variable, a
so-called signature of the data for a specific outcome is identified.

Interpreting the results uncovered by compositional analyses in the context of micro-
bial research is a difficult task. For example, it can be quite challenging to decipher
a microbiome’s functional role since there is no information on which genome the
gene with aligned reads sits in. There might also be several confounders in the data
collection, such as unreported reference sequences, sample conditions, or erroneous
metadata annotations. Some results could most likely be verified through rigorous lit-
erature research or by comparing the read abundances with fully assembled genomes.
The actual distribution of microbes in a sample is also somewhat unknown, so it
is hard to determine how many NGS reads are needed. While there is a tendency
to believe that all genes are present, for example, when working with the Dirichlet
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distributions, it might not be entirely correct.

All the metagenomic NGS data available online are ready to be repurposed for AMR
surveillance by analyzing the read abundances across different metagenomic samples.
With so many samples, biases introduced by various sequencing platforms, environ-
ments, and sparsity of counts should be significantly less prevalent, and analyzing
across so many samples, the many compositional data techniques, some of them pre-
sented in this thesis, can be used to find new patterns, and confirm existing ones,
on the global dissemination and distribution of ARGs so that in the end effective
regulations can be implemented to halt the spread of AMR.
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The growing threat of antimicrobial resistance (AMR) calls for new epidemiological surveil-

lance methods, as well as a deeper understanding of how antimicrobial resistance genes

(ARGs) have been transmitted around the world. The large pool of sequencing data avail-

able in public repositories provides an excellent resource for monitoring the temporal and

spatial dissemination of AMR in different ecological settings. However, only a limited num-

ber of research groups globally have the computational resources to analyze such data. We

retrieved 442 Tbp of sequencing reads from 214,095 metagenomic samples from the Euro-

pean Nucleotide Archive (ENA) and aligned them using a uniform approach against ARGs

and 16S/18S rRNA genes. Here, we present the results of this extensive computational

analysis and share the counts of reads aligned. Over 6.76�108 read fragments were

assigned to ARGs and 3.21�109 to rRNA genes, where we observed distinct differences in

both the abundance of ARGs and the link between microbiome and resistome compositions

across various sampling types. This collection is another step towards establishing global

surveillance of AMR and can serve as a resource for further research into the environmental

spread and dynamic changes of ARGs.

Introduction

The vast amount of genomic data available in public data repositories is a unique and poten-

tially important resource for doing research and genomic surveillance of antimicrobial resis-

tance (AMR). Using these datasets collected from locations all over the world across different

years and from various sampling sources might further aid our understanding of the emer-

gence and distribution of antimicrobial resistance genes (ARGs).

The sharing of genomic sequence data to one of the available repositories is today a major

and often mandatory step in peer-reviewed journals, for which several repositories were cre-

ated by the members of the International Nucleotide Sequence Database Collaboration

(INSDC) [1], including the European Nucleotide Archive (ENA) [2]. The number of sequenc-

ing data available at ENA continues to increase with an estimated doubling time of 18 months

(https://www.ebi.ac.uk/ena/browser/about/statistics; accessed 2022-03-08).
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Several approaches for analyzing genomic data depending on the sample types are already

well established.

However, the exploration of these resources is often restricted to a few research groups only

since both sufficient skills in bioinformatics and access to high-performing computer

resources are needed to handle the large amount of available data.

Existing collections of analyzed datasets tend to focus on either specific sample sources,

such as humans [3,4], marine [5], or urban sewage [6,7], or focus on specific genera [8]. Espe-

cially the COVID-19 pandemic has highlighted the value of data sharing to trace the spread

and evolution of the virus [9]. Despite the attempts to standardize the analysis workflows of

these databases, they are limited in their ability to generalize across environments and loca-

tions. A recent study [10] has shared a searchable collection of 661K bacterial genomes for

exploring the global bacterial diversity across different origins, providing an easy-to-access

resource for genomic research. While this is an impressive data-sharing effort, the authors did

not include metagenomic samples in their pipeline. Metagenomic techniques aim to sequence

all DNA in a sample and can be used to characterize the microbiome in different environments

[11,12], discover novel organisms [13], monitor disease [14,15], and specific genes, such as

ARGs [5,6,16].

Here, we present a large-scale metagenomic analysis of 214,095 metagenomic samples

retrieved from ENA. We have carried out an assembly-free approach by aligning sequencing

reads against ARGs and 16S/18S ribosomal RNA genes. We have previously published an in-

depth analysis of the distribution of mobilized colistin resistance [17] based on those data.

Now we both share the entire collection of mapping results and showcase how to characterize

the global resistome and microbiome with this dataset. The curated metadata and mapping

results are available at https://doi.org/10.5281/zenodo.6919377 and documentation at https://

hmmartiny.github.io/mARG/Tables.html.

Materials and methods

Retrieval of metagenomes

We retrieved metagenomic datasets from ENA [2] uploaded between 2010-01-01 and

2020-01-01 that had library source as “METAGENOMIC” and library strategy of “WGS.” We

collected 214,095 sequencing runs from 146,732 samples from 6,307 projects corresponding to

442 Tbp of raw reads taking up 300 TB of storage. The associated metadata for each sample

was also retrieved.

Preprocessing and mapping of sequencing reads

The retrieved raw FASTQ reads were trimmed and aligned against reference sequences, as out-

lined in Martiny (2022) [17]. In brief, we used FASTQC v.0.11.15 (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) for read quality checking and BBduk2 v.36.49

[18] for trimming the raw sequencing reads. With the k-mer-based alignment tool KMA

1.2.21 [19], the trimmed reads were mapped against reference sequences from 2 different data-

bases: The AMR gene database ResFinder [20] (downloaded 2020-01-25), which contained

3,085 sequences of acquired ARGs, and the ribosomal rRNA Silva [21] gene database (version

138, downloaded 2020-01-16), which had 2,225,272 reference sequences with more than 88%

of them being 16/18S rRNA genes. For KMA, we used the following alignment parameters: 1,

-2, -3, -1 for a match, mismatch, gap opening, and gap extension. For read pairing, we used a

value of 7 and a minimum relative alignment score of 0.75. Data retrieval, quality checking,

trimming, and read alignments were done using the Danish National Supercomputer for Life

Sciences (https://www.computerome.dk/).
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Standardization of metadata

The following attributes for each metagenome were standardized: sampling location, sampling

host or environment (referred to as a host below), and sampling date.

To standardize the label for sampling locations, we looked at the values entered in the two

fields “country” and “location.” First, the latitude and longitude coordinates were mapped to a

country using the Python library Shapely 1.7.1 [22] to find the matching area defined in one of

the 3 public domain map datasets (countries, marine, and lakes) available in the Natural Earth

Data collection. If the lookup failed or the coordinates were not given, the second step was to

match the text attribute in the country label to ISO 3166 country codes with a fuzzy search

with the Python library PyCountry 20.7.3 (https://github.com/flyingcircusio/pycountry).

Finally, if the 2 lookup searches did not yield a match, we did a manual lookup of the country

labels to standardize the text.

For the standardization of host labels, we mapped the taxonomic id given by the attribute

“host_tax_id” to the NCBI Taxonomy database [23], or if the feature was missing, the “tax_id”

was used instead.

Since the only way to curate entered collection dates is to look up suspicious dates in pub-

lished studies manually, and that was deemed too time-intensive, we decided to replace dates

entered as later than 2020-01-01 in the sample attribute field “collection_date” with the miss-

ing value NULL.

Measuring the abundance of ARGs

Since we report the fragment count aligned to each reference gene, the mapping results are

compositional and should be treated as such [24]. In the simplest form, the ARG abundance

for a sample or sample group can be calculated as the log-ratio of the count of reads, ni, aligned

to each ARG i over the total sum of rRNA read fragments nB:

x ¼ ½n1; n2; . . . ; nD; nB�; i ¼ 1::D

Abundance xð Þ ¼ log
n1

nB
; log

n2

nB
; . . . ; log

nD

nB

� �

where D is the number of ARGs and nB ¼

PDB
j

nj

1�106 with DB being the number of read fragments

aligned to rRNA genes. Each ARG count ni has been adjusted with the length of the gene in

kilobases.

The relative abundance resistance classes were calculated as the proportion of ARG resis-

tance assigned to different classes and scaled with κ = 100:

Relative abundance xð Þ ¼
k
P

ni
ni

Diversity measurements

Besides the read abundance values, we report the species richness, Shannon diversity index

[25], and the Gini–Simpson [26] diversity index of read counts of ARGs, genera, and phyla per

sample. Species richness is the number of different genes or taxonomic groups present in the

sample with at least 1 read fragment aligned.
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The Shannon index (H0) was calculated using the proportions of reads pi ¼
niP

n
:

H0 ¼ �
XR

i¼1

pilnpi

whereas the Gini–Simpson index (GS) was calculated using the read counts n = [n1,. . .,nD] and

N = ∑n is the total count of reads for the group:

GS ¼ 1 �

P
ni � ðni � 1Þ

N � ðN � 1Þ

Together with these 2 indices, we also report the sample-wise unique number of reference

sequences or taxonomic groups matched.

Results

Here, we present a large-scale mapping of 442 Tbp of raw reads of 214,095 metagenomic sam-

ples suitable for analyzing the distribution of acquired antimicrobial resistance genes and 16S/

18S rRNA genes. Furthermore, we have spent considerable effort standardizing 3 main sample

attributes: sampling date, location, and source. To facilitate easy access and usage, we have

shared the mapping results and corrected metadata in 3 different data formats (TSV, HDF,

and MySQL dumps). We also provide tutorials with code examples in R and Python on using

the data in different scenarios. Data files are all available at https://doi.org/10.5281/zenodo.

6919377.

By collecting the sequencing reads from ENA, we could also verify the inherited bias of spe-

cific sample types or sources being overrepresented simply due to the availability in the public

repository. While the 214,095 metagenomic datasets were collected from 797 different hosts,

most were either of human or marine origin (Fig 1A). A similar skewed geographical distribu-

tion towards European and North American countries was observed in the sampling locations

Fig 1. Distribution of metagenomes reveals the overrepresentation of samples from specific sources. (a) Number

of samples grouped per sampling host, where only hosts with more than 1,000 samples are plotted. (b) Sample

locations for metagenomes with available GPS coordinates; each marker is a sample. A total of 83,903 samples did not

have coordinates available. (c) Year of which a sample was collected. A total of 84,238 of the samples did not have a

valid sampling date recorded. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.6919377,

and the base layer map was created with data from https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pbio.3001792.g001
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(Fig 1B). The distribution of samples according to the sampling year reveals that a considerable

number were collected between 2010 and 2020 (Fig 1C).

Of the more than 1.8�1012 raw sequencing reads, corresponding to 442.1 Tbp, 93% of the

reads were generated using Illumina sequencing technologies (S1 Fig). We mapped over

1.69�1012 trimmed read fragments, with a median of 784,748 fragments per sample (range 1 to

916,901,400) (Fig 2A). Approximately 0.04% of all read fragments could be aligned to ARGs,

and 0.19% to rRNA genes. Overall, the amount of sequencing reads and bases available did

increase the count of aligned read fragments (S3 Fig). The number of ARG fragments aligned

increased with the number of aligned rRNA fragments, although for 34% of the samples, we

did not find any ARGs despite having read fragments aligning to 16S rRNA genes (Fig 2B).

The microbial differences in the different sampling origins were highlighted in the number of

aligned fragments (S4 Fig).

The global abundance of antimicrobial resistance

To measure the global distribution of ARGs and the composition of the resistome, we calcu-

lated the abundance of ARGs as the log-ratio of ARG fragments over summed rRNA sequence

Fig 2. Distribution of available and aligned fragments. (a) Density distribution of available fragments per sample.

(b) The distribution compares the number of fragments mapped to rRNA genes and ARGs. The data underlying this

figure can be found at https://doi.org/10.5281/zenodo.6919377.

https://doi.org/10.1371/journal.pbio.3001792.g002
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fragments. Almost all of the reference sequences from the ResFinder database had at least 1

fragment aligned, and only 94 ARGs had no hits (S2 Fig). The median observed resistance load

per metagenomic sample was 11.74 (log range: −1.45 to 23.52) (Fig 3A), which appeared to be

mainly dependent on the geographic origin and environment (Fig 3B–3D) and not on which

year the sample was taken. For example, samples originating from locations within Europe

showed similar abundance levels for most of the samples but with several outliers, whereas

multiple samples from locations in the Oceania region had a much broader load distribution

with few outliers (Fig 3C).

While the distribution of sample-wise resistance loads illustrates the high variability in this

data collection (Fig 3), we saw that once we stratified the relative ARG read proportions per

resistance class and sample type, there were clear separations between different groups (Fig 4).

For the sampling years with a considerable number of samples available (2004 to 2019), the rel-

ative proportion of classes was relatively consistent, with Tetracycline reads being the most

common, except for a spike of Beta-lactam reads in 2017 (Fig 4A). Across the continents and

large water bodies, we observed that ARGs conferring resistance to Aminoglycosides or Beta-

lactam antimicrobials were more common in water environments, whereas mainland regions

had a more diverse distribution (Fig 4B). Once we stratified by sampling host or source, the

distribution of resistance classes was very dependent on the group, as seen by the high propor-

tion of read fragments aligned to, for example, Phenicol for marine and soil samples and Tetra-

cycline reads being highly prevalent in mice (Mus musculus) samples (Fig 4C).

Linking the microbiome diversity with resistance diversity

The relationship between the diversity of the microbiome and the resistance genes was quanti-

fied by calculating the species richness and 2 alpha diversity measurements (Shannon and

Fig 3. Boxplots of ARG abundances in metagenomic samples show that levels vary across different origins. (a)

Distribution of ARG abundance per sample. (b) Distribution of sample-wise ARG abundance grouped by sampling

year. (c) Sample-wise ARG abundance per sampling location. (d) Sample-wise ARG abundance grouped by hosts.

Only hosts with more than 1,000 metagenomes analyzed are shown. The data underlying this figure can be found at

https://doi.org/10.5281/zenodo.6919377.

https://doi.org/10.1371/journal.pbio.3001792.g003
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Gini–Simpson) on ARG levels and phyla and genera taxonomic levels. Without looking at the

sample origin, we observed that a majority of the samples had both high microbial diversity

and ARG diversity (Figs 5 and S5). However, the relationship between genera and ARG diver-

sity indexes differed between sampling sources, with several groups containing samples that

Fig 4. Composition of reads assigned to ARGs from different resistance classes grouped by sampling origin. (a)

Grouped by sampling year. (b) Grouped per sampling location. (c) Grouped per sampling host. Only hosts with more

than 1,000 metagenomes analyzed are shown. The data underlying this figure can be found at https://doi.org/10.5281/

zenodo.6919377.

https://doi.org/10.1371/journal.pbio.3001792.g004

Fig 5. The genus–ARG diversity relationship for all metagenomic samples. The Gini–Simpson diversity indexes

were calculated on genus categories (x-axis) compared to ARG levels (y-axis). Left: scatterplot of all samples. Right:

samples colored by selected host or environmental origins. The data underlying this figure can be found at https://doi.

org/10.5281/zenodo.6919377.

https://doi.org/10.1371/journal.pbio.3001792.g005
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did not follow the assumption of the 2 diversity measurements following each other, suggest-

ing that increased diversity of microbes in, for example, soil samples does not necessarily lead

to a higher diversity of resistance genes. Contrarily, the chicken (Gallus gallus) samples showed

that they still had elevated ARG diversity despite having lower microbial diversity (Fig 5).

Discussion

Global surveillance of AMR based on genomics continues to become more accessible due to

the advancement in NGS technologies and the practice of sharing raw sequencing data in pub-

lic repositories. Standardized pipelines and databases are needed to utilize these large data vol-

umes for tracking the dissemination of AMR. We have uniformly processed the sequencing

reads of 214,095 metagenomes for the abundance analysis of ARGs.

Our data sharing efforts enable users to perform abundance analyses of individual ARGs,

the resistome, and the microbiome across different environments, geographic locations, and

sampling years.

We have given a brief characterization of the distribution of ARGs according to the collec-

tion of metagenomes. However, in-depth analyses remain to be performed to investigate the

influence of temporal, geographical, and environmental origins on the dissemination and evo-

lution of antimicrobial resistance. For example, analyzing the spread of specific ARGs across

locations and different environments could reveal new transmission routes of resistance and

guide the design of intervention strategies to stop the spread. We have previously published a

study focusing on the distribution of mobilized colistin resistance (mcr) genes using this data

resource, showing how widely disseminated the genes were [17]. Another use of the data col-

lection could be to explore how the changes in microbial abundances affect and are affected by

the resistome. Furthermore, our coverage statistics of reads aligned to ARGs could be used to

investigate the rate of new variants occurring in different reservoirs. Even though we have

focused on the threat of antimicrobial resistance, potential applications of this resource can be

to look at the effects of, for example, climate changes on microbial compositions. Linking our

observed read fragment counts with other types of genomic data, such as evaluating the risk of

ARG mobility, accessibility, and pathogenicity in assembled genomes [27,28], and verifying

observations from clinical data [29].

We recommend that potential users consider all the confounders present in this data collec-

tion in their statistical tests and modeling workflows, emphasizing that the experimental meth-

ods and sequencing platforms dictate the obtained sequencing reads and that metadata for a

sample might be mislabeled, despite our efforts to minimize those kinds of errors. Further-

more, it is essential to consider the compositional nature of microbiomes [30]. The reads do

not depend on the distribution of genetic material in the sample but on the capacity of the

sequencing platform [24,31]. Various statistical methods already exist that consider the com-

positionality [24,32,33]. Finally, it is important to highlight that the results we have presented

here include fragment counts of 1 for the sake of transparency, but we also recommend poten-

tial users consider appropriate filters in their analysis.

The sequencing data in public repositories has continued to grow, giving us plenty of

opportunities to continue to expand our data collection even more. To establish a truly global

surveillance program of AMR, sequencing data should be analyzed as soon as published in

these archives. Although this would require access to even more computational resources, we

hope to achieve this soon and compare our approach with other methods, such as AMRFin-

derPlus [34] and CARD [35]. As new sequencing technologies are becoming more used, our

settings for our alignment procedure should also be tuned to better take advantage and be

aware of the flaws of different sequencing platforms.
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With this data resource, we have taken a step towards enabling the scientific community to

utilize the wealth of information in these metagenomic samples to broaden our understanding

of the dissemination of antimicrobial resistance and changes in microbiomes at both local and

global scales through time and environments.

Supporting information

S1 Fig. Distribution of samples per sequencing instrument platform. (a) Sample count per

platform. (b) Distribution of raw sequencing read counts per platform. The data underlying

this figure can be found at https://doi.org/10.5281/zenodo.6919377.

(TIFF)

S2 Fig. More than 96% of ARG templates had at least 1 aligned fragment. The bars illustrate

the percentage of ARGs per resistance class without and with at least 1 aligned fragment. The

parenthesis after each class label contains the number of genes found out of the total available

templates. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.

6919377.

(TIFF)

S3 Fig. The sample-wise distribution of aligned (a) ARG or (b) rRNA fragments compared

to raw sequencing base counts. The data underlying this figure can be found at https://doi.

org/10.5281/zenodo.6919377.

(TIFF)

S4 Fig. The sample-wise distribution of aligned rRNA fragments and ARG fragments, col-

ored by selected host and environmental sources. The data underlying this figure can be

found at https://doi.org/10.5281/zenodo.6919377.

(TIFF)

S5 Fig. Additional distributions showing the relationship between ARGs and genera for all

metagenomic samples. (a) The richness of genus groups (x-axis) vs. ARG richness (y-axis).

(b) The relationship between Shannon diversity index calculated on genus level (x-axis) and

ARGs (y-axis). Right: samples colored by selected host or environmental origins. The data

underlying this figure can be found at https://doi.org/10.5281/zenodo.6919377.

(TIFF)
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Figure S1: Distribution of samples per sequencing instrument platform. a. Sample count per platform. b. Distribution of 
raw sequencing read counts per platform. The data underlying this figure can be found at 
https://doi.org/10.5281/zenodo.6919377. 

 
Figure S2: More than 96% of ARG templates had at least one aligned fragment. The bars illustrate the percentage of ARGs 
per resistance class without and with at least one aligned fragment. The parenthesis after each class label contains the 
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number of genes found out of the total available templates. The data underlying this figure can be found at 
https://doi.org/10.5281/zenodo.6919377. 

 
Figure S3: The sample-wise distribution of aligned a. ARG or b. rRNA fragments compared to raw sequencing base 
counts. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.6919377. 
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Figure S4: The sample-wise distribution of aligned rRNA fragments and ARG fragments, colored by selected host and 
environmental sources. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.6919377. 



Supplementary Material 
Martiny, H. M., Munk, P., Brinch, C., Aarestrup, F. M., & Petersen, T. N. (2022). A curated data resource of 
214K metagenomes for characterization of the global antimicrobial resistome. PLOS Biology 20(9): 
e3001792. 

 4 

 
Figure S5:  Additional distributions showing the relationship between ARGs and genera for all metagenomic samples. a. 
The richness of genus groups (x-axis) vs. ARG richness (y-axis). b. The relationship between Shannon diversity index 
calculated on genus level (x-axis) and ARGs(y-axis).  Right: Samples colored by selected host or environmental origins. The 
data underlying this figure can be found at https://doi.org/10.5281/zenodo.6919377. 
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ABSTRACT Since the initial discovery of a mobilized colistin resistance gene (mcr-
1), several other variants have been reported, some of which might have circulated a
while beforehand. Publicly available metagenomic data provide an opportunity to
reanalyze samples to understand the evolutionary history of recently discovered anti-
microbial resistance genes (ARGs). Here, we present a large-scale metagenomic study
of 442 Tbp of sequencing reads from 214,095 samples to describe the dissemination
and emergence of nine mcr gene variants (mcr-1 to mcr-9). Our results show that
the dissemination of each variant is not uniform. Instead, the source and location
play a role in the spread. However, the genomic context and the genes themselves
remain primarily unchanged. We report evidence of new subvariants occurring in
specific environments, such as a highly prevalent and new variant of mcr-9. This
work emphasizes the importance of sharing genomic data for the surveillance of
ARGs in our understanding of antimicrobial resistance.

IMPORTANCE The ever-growing collection of metagenomic samples available in pub-
lic data repositories has the potential to reveal new details on the emergence and
dissemination of mobilized colistin resistance genes. Our analysis of metagenomes
deposited online in the last 10 years shows that the environmental distribution of
mcr gene variants depends on sampling source and location, possibly leading to the
emergence of new variants, although the contig on which the mcr genes were found
remained consistent.

KEYWORDS antimicrobial resistance, metagenomics, microbiome

Antimicrobial resistance (AMR) is considered one of the most significant threats
against human and animal health (1). Over the years, we have observed the emer-

gence of a multitude of novel antimicrobial resistance genes (ARGs), and it is generally
believed that such genes have emerged and evolved in the commensal flora for a long
time prior to being detected in pathogenic isolates (2).

Colistin is an important antibiotic used as a last-resort choice to treat multidrug-re-
sistant (MDR) and carbapenem-resistant bacteria (3). Before 2015, colistin resistance
was believed to be only due to mutational and regulatory changes in chromosomal
genes. A mobilized colistin resistance gene,mcr-1, was discovered in 2015 on a plasmid
in Escherichia coli isolates from China (4), raising concern in the scientific community
about the possibility of resistance spreading more rapidly by horizontal gene transfer
by mobile genetic elements (MGEs) (4, 5). Immediately following the first report, a large
number of studies were initiated in several countries around the world, and it was
soon determined that mcr-1 was already widespread and has now been detected in all
continents (6–8). In initial reports, the most frequent isolates were sampled from live-
stock sources, followed by humans, meat, and food products (9). Since then, several
new variants of mcr genes have also been identified, named mcr-2 to mcr-10 and shar-
ing 81%, 32.5%, 34%, 36%, 83%, 35%, 31%, 36%, and 29.31% amino acid sequence
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identity to mcr-1, respectively (10–17). Retrospective screening of bacterial isolates and
available sequences of mainly pathogenic isolates showed a more widespread occur-
rence and prior evolution of mcr before its initial discovery (8, 18, 19).

However, investigating only pathogenic strains or cultivable bacteria will only provide
limited insight into the potential reservoirs of such novel ARGs. As documented by our
research group and others, investigating the entire microbiome provides additional infor-
mation on the presence and diversity of ARGs (7, 20–22). Today most researchers con-
ducting microbiome studies are depositing their raw data in global repositories, allowing
other researchers to reanalyze the data and provide novel insight.

This study was conducted to investigate the occurrence and global dissemination
of known mcr gene variants in publicly available metagenomic data sets. We down-
loaded 442 Tbp of raw reads from 214,095 metagenomic data sets and determined the
presence and abundance of 9 mcr gene variants. We found that only a small subset of
the metagenomic data sets was positive for at least one of the mcr genes but that the
abundance gradually increased as a function of time. The distribution of each variant
varied by region and sampling source, but the genomic background of each gene was
consistent across different environments. However, several subvariants are observed
with conserved single nucleotide polymorphisms (SNPs) across multiple samples.
Despite the sparsity of the data once stratified by the presence ofmcr genes, our analy-
sis suggests that multiple factors have likely influenced the dissemination of colistin re-
sistance and that screening publicly available metagenomic samples can, together
with single isolates, further deepen our understanding of the distribution of mcr gene
variants.

RESULTS
Data set. After retrieval, quality checking, and trimming of the raw sequencing

reads of the 214,095 metagenomic data sets, we aligned the reads against ARGs and
16S rRNA sequences using the assembly-free method KMA. The resulting counts of
read fragments aligned to different reference sequences were used to analyze the dis-
tribution and abundance of mcr genes. The abundance of an mcr gene was calculated
as the fragment count of that gene over the total amount of bacterial fragments for a
sample or a group, whereas the fragment count for ARGs was the only one used for
statistical analyses.

Out of the 214,095 metagenomes, we found that 2.09% (4,465) of them contained
read fragments aligning to at least 1 of the 9 mcr gene variants. The average number of
reads per mcr-positive sample was 27 million reads, and on average, 0.003% of the reads
were aligned to mcr genes. Among the variants in the mcr family, mcr-1 and mcr-9 were
the most frequent, with 25.91% and 57.47% of the mcr-aligned reads aligning to these
variants, and disseminated across 10 and 13 sampling years, 21 and 56 countries, and 23
and 61 hosts, respectively. The rarest variants were mcr-2, mcr-6, and mcr-8 with read fre-
quencies of 0.03%, 0.01%, and 0.08%, respectively, and their metagenomic origins were
more restricted (Table 1). Overall, different log-ratio abundance levels seemed to be dif-
ferent across the sampling years in different countries and hosts (Fig. S1).

Level ofmcr variants over time. The mcr-positive metagenomic samples were col-
lected between 2003 and 2019, with the exception of 2005, in which no mcr fragments
were detected (Fig. 1). Only two metagenomes sampled in 2003 contained mcr frag-
ments, and a single mcr-positive metagenome was from 2004. Onward, the percentage
of positive samples fluctuated, with the lowest value of 0.5% in 2008 and the highest
of 6.4% in 2019 (Fig. S1). All the variants were frequently found in samples from 2016
to 2017, except mcr-6, which was only found in 2012 (Table 1).

We found that the log ratio abundance of aligned read fragments fluctuated for the
nine variants in each sampling year (Fig. 1). The oldest positive metagenomes were
sampled in 2003 and 2004 and contained only mcr-3 and mcr-5. From 2006, the other
variants began to emerge. mcr-1 was detected first in 2009 at a low log abundance,
and increased levels were observed between 2011 and 2019. Similarly, mcr-9 could be
detected in small amounts in metagenomes from 2007. In 2012 and 2013, mcr-9 was
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the most abundant variant, with 81% and 86% of the read fragments aligning to this
gene. In 2007, only 3% of the mcr read fragments aligned to mcr-7, but more and more
fragments for each year were assigned to the mcr-7 gene and peaked in 2019 with
95% of the mcr fragments aligned being to it.

Significant levels of different mcr genes were observed for sampling years 2011,
2013, 2014, 2015, 2016, and 2017 (P value , 0.05, Fig. 4a). Even though the variance of
mcr levels within the sampling years was high, several variants stood out as having
higher or lower levels in specific years compared to other years. In 2011, mcr-3 had a
higher abundance than expected and continued to be high in 2013 to 2014, together
with mcr-1 and mcr-5. mcr-9 was lower in those years. In 2016, the metagenomic pic-
ture changed as mcr-3 and mcr-5 had decreased levels, while mcr-1, mcr-4, mcr-7, and
mcr-9 were increased.

Geographical distribution ofmcr gene variants. The 9 variants were spread across
95 different sampling locations (Fig. S1), although samples from different world regions
were often different in which variant they were positive for (Table 1). A higher abun-
dance of mcr gene variants was observed in the Americas, Asia, and Europe, and
decreased abundances were observed in Africa. The highest total log-ratio abundances
of mcr fragments could be found in metagenomes from Australia, Lake Huron (USA),
and Cambodia, and lowest levels, in Kiribati, Greece, and the Caribbean Sea (Fig. 2).

The individual variants were not equally distributed worldwide; instead, it seemed
like specific variants were restricted to specific regions (Fig. 2). For example, the variant
mcr-1 was less widely spread worldwide (Americas, Asia, and Europe) than mcr-9

TABLE 1 Read alignment of eachmcr variant across different sample types

mcr-1 mcr-2 mcr-3 mcr-4 mcr-5 mcr-6 mcr-7 mcr-8 mcr-9
Origina

Read frequency (%) 25.91 0.03 10.33 0.98 1.86 0.01 3.32 0.08 57.47
No. of yrs 10 6 14 13 13 1 13 11 13
No. of countries 21 6 59 42 43 1 27 14 56
No. of hosts/reservoirs 22 6 49 54 40 1 43 8 60

Yrb

2010 16.67
2012 9.03 100.00 20.00
2013 17.04
2014 23.89
2015 37.66
2016 58.77 20.89 61.11 30.68 16.00 22.11
2017 22.86 16.67 14.36 17.40

Countryc

Angola 16.67
Cambodia 6.36
China 68.96 21.9
Denmark 40.11 12.16 36.24
France 100.0
Kenya 11.10
Netherlands 16.67
USA 13.43 39.38 18.78 23.63 11.11 45.18

Host/reservoird

Homo sapiens 32.51 33.33 23.71 19.35 56.46
Panda 22.59
Activated sludge metagenome 5.93
Freshwater metagenome 10.16 18.24
Marine metagenome 22.22 48.39
Microbial mat metagenome 100.0
Wastewater metagenome 65.77 26.20 60.81 25.88 13.44

aRead frequencies and counts of unique sampling origins, i.e., the number of years, countries, and hosts/reservoirs.
bThe top two sampling years for the given variant was the most abundant in abundant in is shown in percentage ofmcr-mapped reads.
cThe top two sampling countries as described in footnote b.
dThe top two sampling hosts and reservoirs as described in footnote b.
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(Africa, Americas, Asia, Europe, Oceania, Atlantic Ocean, and the Pacific Ocean). No
metagenomic locations contained all types of variants. In the Australian metagenomes,
mcr-9 was the most dominant gene, whereas mcr-4 had high abundance levels in Lake
Huron (USA), and mcr-1 and mcr-9 had high abundance levels in Cambodian metage-
nomes. The only location of mcr-6 was France.

Of the 95 sampling locations, 15 had significant abundances of at least one of the
mcr variants (P value , 0.05); however, the variance in the samples from most of the
locations was high and did not have a large effect size compared to other locations
(Fig. 4c). Metagenomic locations that showed consistency within the group and were
found to be different from the rest of the locations had lower levels of single variants
—mcr-1 in Bulgaria, mcr-3 in Iceland, mcr-5 in Malaysia, and mcr-9 in Cambodia.

Host- and reservoir-specific mcr abundances. We found mcr genes present in 125
different sampling hosts and reservoirs, but with the various variants having different log-
ratio fragment abundances (Fig. S2) and the two most frequent types differing for each
variant (Table 1). All 6 metagenomes from Pomacea canaliculate (golden apple snail) and
the 11 Danio rerio (zebrafish) metagenomes containedmcr fragments. For two of the larg-
est sampling groups, we found 897 out of 1,803 (49.75%) wastewater metagenomes and
13,831 out of 102,211 (1.35%) human-derived samples to bemcr positive.

Out of the 125 hosts, only 20 of them showed significant levels of mcr gene frag-
ments. These all had higher levels of colistin resistance genes (Fig. 3). The dispersion
within most of the 20 hosts was high, and their log-ratio levels were not significantly
different from those of the other hosts, except a few (Fig. 4e). The zebrafish samples
had lower levels of mcr-7 than expected, whereas golden apple snail metagenomes
had higher levels. Panda metagenomes had elevated levels of mcr-9 but had slightly
smaller amounts of mcr-3, mcr-4, and mcr-5. Metagenomes from pigs (Sus scrofa and
pig gut) had increased levels of both mcr-1 and mcr-9. Human metagenomes did not
have large effect sizes but contained slightly less mcr-1 and mcr-9 than expected.

Diversity of mcr-positive metagenomes. By performing compositional PCA analy-
sis on CLR values, we can visualize the variance in mcr read proportions in biplots

FIG 1 Discovery and the change of mcr genes over time. (Top) Timeline showing when each gene was first reported in the literature. (Middle) Changes in
log abundance of aligned mcr read fragments over time for each gene are shown, as well as the number of samples with or without an mcr hit from each
year as bars. (Bottom) The frequency of each gene compared to the total mcr amount. Data were normalized with gene lengths to generate the charts.
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showing which type of samples make the level of a resistance gene significant (Fig. 4).
The biplots highlight a clear separation of metagenomes that contain mcr-1 or mcr-9
and show that these samples also differ a lot from each other. None of the samples
from the different years are similar, which means that high levels of one of the variants
cannot be explained simply due to a specific collection year (Fig. 4b). Instead, we can
see that several Panda metagenomes came from China in 2016, which most likely con-
tributed to the higher levels of mcr-1 in 2016 (Fig. 4d). Likewise, human metagenomes
clearly show a geographical separation mainly driven by mcr-1 being abundant in
China and mcr-9 in the United States and Australia (Fig. 4f, Fig. S3), which could explain
that even if these metagenomes contain significant levels of mcr genes, we could not
observe large effect sizes. Excluding these two most abundant genes suggests, how-
ever, that the differences are mainly driven by source and not by year or geographical
location (Fig. S4).

Distribution ofmcr variants in pathogenic bacterial genomes. As several studies
have performed retrospective screening of pathogenic bacterial isolates, we decided
to compare the metagenomic mcr abundances to the prevalence in pathogenic single
isolates. Out of 912,469 isolates screened by the NCBI Pathogen Detection Pipeline,
only 7,934 (0.87%) were shown to carry at least 1 of the mcr genes. The majority of the
mcr-positive isolates contained either mcr-1 (51.08%) or mcr-9 (40.38%), while mcr-6
and mcr-7 were not detected at all (Table S1).

The congruence of relative counts in isolates and relative abundance levels in
metagenomes varied depending on which allele and what kind of sample grouping it

FIG 2 Global levels of mcr genes. The large map shows the total log abundance levels of all mcr genes, whereas the nine smaller plots show the individual
gene log-scaled abundances worldwide. A circle represents a collection of samples from water containing mcr genes. White color indicates an absence of
results, not that a specific location does not have any mcr genes. The circle markers illustrate water environments.
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was. Grouped by the sampling location, the mcr-1 gene appeared to be more wide-
spread according to the isolates, whereas mcr-3 had a larger global distribution based
on the metagenomes. Similarly, for human samples, mcr-1 had a higher prevalence in
isolates, whereas metagenomes showed a higher abundance of mcr-9-aligned read
fragments (Fig. S5).

Genomic background ofmcr genes. The dissemination of colistin resistance genes
between different reservoirs and countries in different sampling years was further
investigated by creating assemblies of metagenomic samples with 95% coverage of at
least one variant. We assembled 869 metagenomes, where we found 1,939 different
contigs carrying mcr genes (range, 1 to 20 mcr contigs per metagenome). The most fre-
quent gene present on these contigs was mcr-9, followed by mcr-3 and mcr-5
(Fig. S6a). To identify structural patterns between different metagenomic origins, we
analyzed the genetic signatures in regions up- and downstream of an mcr gene (the
flanks) with a minimum size of 1,000 bp and a maximum of 21,000 bp to include most
of the elements found in the flanks (Fig. S6b). As most contigs were shorter than 1,000
bp (Fig. S6a), only 138 contigs passed the size criteria. All 20 contigs containing plas-
mid replicons in their flanks carried mcr-1 genes, whereas the 63 flanks with MGEs
were on contigs with different mcr variants (Fig. S6c).

Six distinct clusters became apparent upon calculating the distance between the
flanks surrounding the mcr genes (Fig. 5). We find that the presence of specific MGEs
seemingly correlated with the presence of an mcr variant on the contig, as ISApl1
occurs only on mcr-1 contigs, and IS903, on mcr-9 contigs. Five of the six clusters are all
flanks around the same variant, with two being mcr-1 clusters, while the sixth contains
flanks surrounding four different mcr gene variants.

In the first mcr-1 cluster, an IncX4 plasmid replicon was present either upstream or
downstream in most members. These contigs were found in metagenomes sampled in

FIG 3 Distribution of mcr genes in selected sampling hosts. Hosts were selected based on the host showing significant CLR values according to the
ALDEx2 analysis (Fig. 4). (Top) Bar plot showing both the number of samples without and with an mcr hit and the overall mcr level for each host measured
by log-abundance values. (Bottom) The abundance of individual mcr genes relative to total mcr levels. Data were normalized with gene lengths before
plotting. To see the distribution of mcr genes for all sampling hosts available, refer to Fig. S2.
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FIG 4 Analysis of significant mcr levels in sampling years, countries, and hosts. (a, c, and e, left column) Visualizations of within-
group dispersion of CLR values of individual mcr genes compared to the between-group difference in CLR values for (a) sampling

(Continued on next page)
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2016 and 2017 from a diverse background, indicating that IncX4 plasmids are involved
in multiple transmission events in different settings. The second mcr-1 cluster differs
from the first in that we see an absence of IncX4 and IncI2 in a few contigs instead. The
cluster can instead be best characterized by the presence of the insertion element
ISApl1 in half of the flanks, which mainly originate from gut metagenomes from
Cambodia in 2014, while those without the insertion element are from Chinese sam-
ples from 2015 to 2017.

Four of the mcr-9 contigs contain IS102, IS26, or ISKpn43, while the remaining carry
IS903. Since all these contigs contain at least one insertion sequence, it suggests that
they were highly mobilized between different metagenomes from human and environ-
mental sources between 2008 and 2018.

The mixed cluster shows a surprising clustering of flanks on contigs of uneven
lengths, with different MGEs and replicons present, carrying four different mcr gene
variants—mcr-1, mcr-4, mcr-8, and mcr-9. This indicates that despite the contigs carry-
ing different mcr genes, there are similarities in their broader genomic context, despite
it not being obvious how they are connected considering their various sample types.

Metagenomic evidence of new mcr subvariants. The varied origins of the col-
lected metagenomes can be used to investigate how conserved known mcr gene var-
iants are in different sources, as well as provide evidence of the presence of new mcr
subvariants. Overall, most of the mcr reference sequences could be recovered from the
metagenomic samples, although a large proportion seems only to be fragmented

FIG 4 Legend (Continued)
year, (c) location, and (e) host. (b, d, and f, right column) Compositional biplots of the first two principal components (PC) capturing
64% of the variation in the data set, where samples are colored according to significant (b) years, (d) countries, and (f) hosts. Gray
filled markers are samples that were nonsignificant. CLR: centered-log ratio transformed values of the proportion of mcr aligned read
fragments.

FIG 5 Clustering of mcr contigs reveals that the genomic context remains conserved. The k-mer distance tree for flanks of mcr contigs with flank sizes
between 1,000 bp and 21,000 bp is drawn in the left panel, with the metagenomic origins (year, country, host) added as colored tiles in the middle panel.
The genomic background on the right is a schematic illustration of the size of each flank region in gray centered on the middle of the mcr gene and
plasmid replicons and mobile genetic elements (MGEs) colored in the flanks.
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sequences (Table 2). We constructed consensus sequences that had at least 90% tem-
plate coverage, mean coverage depth of 5, and query identity of at least 90% and kept
single nucleotide polymorphisms (SNPs) that had a minimum depth of 5 and 90% fre-
quency. Of the 968 sequences constructed, 27.38% had at least one SNP difference in
their template (Table 3). The majority of consensus sequences recovered from the
metagenomes, whether they were known or new potential subvariants, could only be
recovered in a few samples. Although, there are a few groups that stand out. We found
33 different subvariants of mcr-3 genes, 32 of mcr-7.1, and a highly prevalent subvar-
iant of mcr-9.1 (Table 3, Fig. 6). Since these sequences were constructed from metage-
nomic samples with KMA, we call SNP variants for potential new subvariants.

The number of mcr-3 subvariants in our version of the ResFinder database is 25, mak-
ing it the variant with most subvariants. We found evidence of 33 new subvariants,
though most only appear in a small number of samples, except for a subvariant of mcr-3.6
called mcr-3.6.v1 (Fig. S7a) and a subvariant of mcr-3.15 called mcr-3.15.v2 (Fig. S7b). Both
mcr-3.6.v1 andmcr-3.15.v2 were detected in genomes of Aeromonas species (Table S2).

None of the mcr-7.1 constructed sequences was an exact match to the reference
sequence, and instead, we saw various numbers of SNPs (Fig. 6, Fig. S8a). While the fre-
quencies of each new possible mcr-7.1 variant in the metagenomes were not high, there
appear to be several SNPs that were well conserved, for example, the two SNPs A1020G
and A1275T present in 29 and 30 of the variants, respectively (Fig. S8a). Many of the 32
possible subvariants of mcr-7.1 were found in water sources (e.g., zebrafish, freshwater,
and wastewater) sampled over a period of 4 years (2016 to 2019) (Fig. 6). Unfortunately,
none of the possiblemcr-7.1 subvariants had complete BLAST matches (Table S2).

We saw a high occurrence of a new subvariant sequence of mcr-9.1, named mcr-
9.1.v4, which contained two SNPs, A1619G and A1620G (Fig. S8b). mcr-9.1.v4 appears
to originate in human or gut samples, a similar distribution to that of the template

TABLE 2 Coverage of mcr templates according to KMAa

Gene

No. of Template coverage (%) Depth of coverage (×)

Samples Known subvariants Avg. Min. Mdn. Max. Avg. Min. Mdn. Max.
mcr-1 418 12/14 71.238 1.05 85.980 100.18 43.877 0.01 2.350 1315.16
mcr-2 12 2/2 34.694 1.05 1.240 100 2.435 0.01 0.060 11.27
mcr-3 1,204 25/25 37.170 1.05 30.595 100.8 2.822 0.01 0.580 209.51
mcr-4 565 5/6 35.112 1.11 21.590 100 1.684 0.01 0.350 67.77
mcr-5 1,100 2/2 40.030 1.1 31.990 100 1.705 0.01 0.490 118.32
mcr-6 4 1/1 64.982 1.24 84.755 89.18 3.177 0.01 2.335 8.03
mcr-7 384 1/1 28.138 1.17 6.665 100.06 8.103 0.01 0.120 209.91
mcr-8 32 1/1 18.987 1.06 1.325 100 1.919 0.01 0.010 30.31
mcr-9 2,148 1/1 50.690 1.17 39.570 102.53 23.161 0.01 0.690 3,985.21
aThe table contains an overview of the found number ofmcr subvariants out of howmany were known in the metagenomic samples, as well as summary statistics of
template coverage and depth of coverages. Avg., average; Min., minimum; Mdn., median; Max., maximum.

TABLE 3 Overview of SNP variant calling on consensus sequences

Genea Total sequencesb SNP variants (%) Unique SNP subvariant sequencesc

mcr-1 170 1.18 2
mcr-2 4 100.00 4
mcr-3 127 47.20 33
mcr-4 33 36.40 5
mcr-5 58 1.72 1
mcr-6 0 0 0
mcr-7 39 100.00 32
mcr-8 3 66.70 2
mcr-9 534 27.20 6

Total 968 27.38 62
aThe number of consensus sequences permcr gene.
bThe percentage of consensus sequences found that are SNP variants.
cThe number of unique SNP variant sequences recovered.
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mcr-9.1 (Fig. 6). mcr-9.1.v4 had 20 BLAST hits, where the two most common species car-
rying this gene were Enterobacter hormaechei and Salmonella enterica subsp. enterica
(Table S2).

DISCUSSION

The growing collection of metagenomic sequencing data available in public reposi-
tories has the potential to provide a much more detailed picture of the emergence,
evolution, and spread of ARGs. We downloaded and analyzed 214,095 host-derived
and environmental metagenomes to characterize the global distribution of 9 mobilized
colistin resistance genes that have been identified since 2015. Among the downloaded
samples, we found that 4,465 metagenomes (2%) contained mcr reads distributed dif-
ferently across the sampling period (2003 to 2019) and geographical and host origins.
We found that all the nine different gene variants were present in metagenomes
sampled years before their discovery (Fig. 1), confirming the notion of the resistance
genes circulating in the environment long before being reported (18, 19, 23). This con-
firms the value of publicly sharing raw next-generation sequencing (NGS) data to pro-
mote new, better, and more comprehensive analyses of existing data.

To date, mcr-1 is the most studied mcr gene variant, and the dissemination has
been described in detail. Multiple studies agree that even though mcr-1 has been
detected in a few isolates from the 1980s (18), it has been appearing with increasing
frequencies in samples between 2011 and 2017 and was decreasing in later years (8,
18, 19, 24). We see a similar trend in the frequencies of mcr-1-positive metagenomes,
although the levels seem to increase starting from 2008 to the highest levels in 2015,
the year of mcr-1 first being reported (4) (Fig. 1).

In just a few years after discovering mcr-1, multiple other mcr variants were
reported in different world regions, with mcr-1 and mcr-9 being the most disseminated
genes (6). Despite mcr-9 being the newest member (17), we observe that it was the
most abundant gene variant in publicly available metagenomes, with mcr-1 being the
second most abundant. The two variants are not equally distributed across sampling
sites, as mcr-1 appears to be more geographically restricted to Europe and Asia,
whereas mcr-9 has reached a wider area (Fig. 2). In human metagenomes, mcr-1 and
mcr-9 dominate, whereas other hosts and environmental origins display a considerable

FIG 6 Phylogenetic tree of consensus sequences. Sequences were aligned with MAFFT and clustered with FastTree. On the right is the occurrence of each
sequence variant in different sampling origins (year, location, and source).
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variation in mcr variants. Despite earlier reports of the presence of mcr-1 of both ani-
mal (4) and environmental (25) origins, we see only very few environmental origins of
the gene (Fig. S2). Only a few hosts have significantly different levels ofmcr gene abun-
dances than expected, where mcr-1 and mcr-9 tend to be higher in pigs and pandas,
and mcr-3, mcr-4, mcr-5, and mcr-7 are lower in other hosts. Mcr-2, mcr-6, and mcr-8
only appear in very few metagenomes, with mcr-6 being the rarest variant. Since the
first report of mcr-6 (14), it has only been detected in very few places around the world
and all in 2014 and 2015 (14, 26), but we can here report the presence of mcr-6 in very
small amounts in a metagenome from France sampled in 2012 (Fig. 1 and 2). Overall,
there appears to be a connection between the abundance of a variant and the sampling
source and location, but due to the sparse nature of our data set, we have not been able
to determine the relative contribution of these factors to the observedmcr levels.

When observing the trends of the aligned mcr read fragment abundances in the
data set, one should keep in mind that this collection is restrained by what was
available in ENA at the time of download. The type of metagenomic data sets avail-
able is dependent on the ongoing research trends in the different scientific com-
munities, which can cause a bias toward specific hosts or environments, such as the
panda samples, by being overrepresented in the repository. Furthermore, there are
challenges due to improved experimental protocols and sequencing platforms
becoming available, possibly causing mapping bias. On the other hand, the evi-
dence of the number of read fragments that match a specific gene should not be
discarded too easily regardless of the sample origin. We applied compositional
methods that can handle the nature of various read counts to ensure that the
observed abundance levels of the different mcr alleles were not simply due to
chance.

The NCBI Pathogen Detection Project is another example of a surveillance program
that routinely screens available public data, in this case, genomes of single isolates.
This data collection also has the same biases as those highlighted for our metagenomic
collection, where our comparison of the two resources showed that each resource is in
some cases better at capturing the prevalence of specific mcr alleles than the other.
Essentially, our study highlights the benefit of using metagenomic data sets in addition
to single isolates to monitor the distribution of AMR.

Interestingly, we observed that the mcr contigs from the assembled metage-
nomes were well conserved across reservoirs and locations except for mcr-1 contigs.
This suggests that most of the mcr alleles have only been mobilized once and then
spread globally and between reservoirs. In contrast, mcr-1 is known to be present in
a variety of genomic backgrounds (8), which we also observe as the flanking regions
of our mcr-1 contigs grouped together in three distinct clusters (Fig. 5). Mcr-1 is
commonly found on IncI2, IncHI2, and IncX4 plasmids with ISApl1 (8, 25), although
we only observed ISApl1 on two IncI2 plasmids, a possible loss of ISApl1 near IncX4
replicons, and we observed that no IncHi2 plasmids were present on mcr-1 contigs.
The absence of ISApl1 in one of the mcr-1 clusters could indicate a loss of mobility
due to either their difference in sampling years or a shift in hosts. IS26 has been
observed downstream of mcr-9 (27), which we only observed once, and instead, we
see that IS903 occurs on both sides of mcr-9 in the examined contigs. The metage-
nomic origin of mcr-9 contigs is highly diverse, suggesting that the presence of mul-
tiple different insertion sequences has been a contributing factor in their mobiliza-
tion between 2008 and 2018.

Even with the diverse genomic context of mcr-1, only very few of the mcr-1 consen-
sus sequences we constructed contained any SNPs, indicating that despite the differ-
ent mobilization factors, the different mcr-1 subvariants remain well conserved (Fig. 6).
On the contrary, the sequences of mcr-3 subvariants were highly prone to contain
SNPs, as shown by our report of 33 potential new members, where several of them
could be matched to genes in known species with BLAST (Table S2). Similarly, the
diverse origin of mcr-9 contigs is also reflected in the fact that an unknown subvariant
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of mcr-9.1, which we are calling mcr-9.1.v4, was detected in 100 different genomes,
with the species Enterobacter hormaechei being the most common (Table S2). We hesi-
tate to call these SNP variants new variants, as more work needs to be done to test the
expression levels and susceptibility of the organism carrying one of these potential
subvariants, although there is strong evidence for the mcr-9.1.v4 variant already being
widely distributed.

As we collected data by downloading publicly available metagenomic samples, we
present a data set with uneven coverage of sampling locations and sources. This bias
heavily influences our ability to provide an in-depth understanding of the mobilization,
emergence, and spread of themcr genes. Regardless of this, we have shown the poten-
tial of using raw sequencing reads generated by other researchers to improve our
knowledge. It is, however, important that all such generated data are shared publicly
to allow for future exploration and improved understanding of the global microbial
biology (28). Since the start of this project, another mcr variant was discovered named
mcr-10 (29), but we decided not to include the gene due to the massive computation
task of mapping 442 Tb of raw sequencing reads. Nevertheless, it will be indeed inter-
esting to figure out when mcr-10 first appeared and characterize its dissemination as
well, which we hope to do for this and for other ARGs in the future.

MATERIALS ANDMETHODS
Data collection. Metagenomic data sets were collected from the public data repository the European

Nucleotide Archive (ENA) (30). We queried the ENA API for samples uploaded between 1 January 2010 and
1 January 2020 that were shotgun sequenced and had at least 100,000 sequencing reads. In total, we
downloaded 214,095 sequencing runs from 146,732 samples from 6,307 projects corresponding to 442 Tbp
of raw reads.

Reference sequence databases. The AMR gene database ResFinder (31) (downloaded 25 January
2020) contains 3,085 sequences. The 16S rRNA SILVA (32) gene database (version 138, downloaded 16
January 2020) contains 2,225,272 sequences.

Preprocessing and mapping sequencing reads. The raw FASTQ reads were quality checked using
FastQC v.0.11.15 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed with
BBduk2 36.49 (33) to remove low-quality sequences and adaptors. BBduk2 settings were set as follows:
minimum read length set to 50 bp, k=19, kmin=11, tbo flag on 11, the Phred quality threshold at 20
(99% accuracy), and only right trimming (ktrim=r). Assignment of trimmed reads to reference sequen-
ces was done with global alignment using KMA 1.2.21 (34) with the following alignment parameters:
1, -2, -3, -1 for a match, mismatch, gap opening, and gap extension. Also, a value of 7 for read pairing
and a minimum relative alignment score of 0.75 were used. We used ResFinder to assess the number
of acquired AMR reads in each sample and Silva to determine the bacterial content. On average, it
took 5.7 s per metagenome for ResFinder mapping and 232.7 s for Silva mapping on a node equipped
with dual 20 core Xeon Gold 6230 CPUs clocked at 2.1 Ghz using the Danish National Supercomputer
for Life Sciences (https://www.computerome.dk).

Compositional data analysis. The collected metagenomic data have large variability in how the
samples were collected, how DNA was extracted, and how it was sequenced. Furthermore, the probabil-
ity of observing a gene also depends on the sequencing depth. To account for some of the variability,
we use read fragment counts as the gene counts for mapping against ResFinder genes, and they were
adjusted by individual gene lengths. Bacterial 16S read fragment counts from Silva mapping were aggre-
gated to a total sum for each sample and divided by a million.

Abundance tables of mcr genes were created by transforming the composition x of mcr-1 to mcr-9
length-adjusted counts ni (i = 1 . . .9) and the summed per million bacterial component nB by using the
bacterial component as the reference and log-transforming the ratios:

x ¼ ½n1; n2; . . . ; n9; nB�

Abundance xð Þ ¼ log
n1
nB

; log
n2
nB

; . . . ; log
n9
nB

� �

For the statistical analysis performed on the mapping results, we treated the mcr read fragment
counts as compositional. If we do not consider the observed counts as being relative to each sample,
statistical tests can produce faulty results. Instead, if we apply the methods of compositional data analy-
sis, this is avoided. As proposed by Aitchison (35), we log-ratio transform the counts to make the data
symmetric, linear, and in a log-ratio coordinate space.

However, before applying log-transformations, counts of zero needed to be treated. Since a zero
does not necessarily mean that a gene is absent from a sample and the logarithm of zero is an unde-
fined value, we infer the proportion pi of reads of an ARG i within a sequenced sample directly from the
observed read count ni. If we assume that each ni was sampled from a Poisson process, ni ; Poisson(l i),
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and the vector of counts follows a multinomial distribution n1; n2; . . .½ � jn� �
;Multinomialðp1; p2; . . . jnÞ,

where n ¼
X
i

ni and pi ¼ l iX
k
lk

. The posterior distribution of [p1, p1, . . . is given as the product of the

multinomial likelihood with a Dirichlet 1
2 ;

1
2 ; . . .

� �
prior. These inferred proportions will never be precisely

zero, even if the observed count is zero because of the multivariate distribution (36).
We used the centered log-ratio (CLR) transformation on the zero-replaced composition consisting of

mcr read proportions p, excluding the bacterial component:

p ¼ ½p1; p2; . . . ; p9�

CLR pð Þ ¼ log
p1

gm pð Þ ; . . . ; log
p9

gm pð Þ
� �

where gm pð Þ ¼
YD

i¼1
pi

� �1
D

; D ¼ 9 is the geometric mean of the composition. The CLR values were used

as the input for differential abundance tests and principal-component analysis, as described below.
Data visualization. Graphics visualizing abundance and relative abundances were created with

Python 3.8 with Matplotlib 3.3.2 (37) and seaborn 0.11.0 (38). Bar plots showing relative abundances
were created by closing the composition to 100. Geographical maps showing gene abundances were
created using Shapely 1 3166.7.1 (39) and Cartopy 0.18.0 (40) to translate labels from the metadata into
geographical shapes with the Natural Earth data set.

Statistical analysis. We carried out a differential abundance analysis on samples containing mcr
fragments with ALDEx2 (41) 1.18.0 in R. We aimed to identify which experimental groups showed a dif-
ference in their abundance of mcr gene read fragments compared to other groups. ALDEx2 tests for sig-
nificant differences of CLR abundance between categorical sample groups used Welch’s t test followed
by a Benjamini-Hochberg false-discovery rate (FDR) correction (42). We report significant groups of ei-
ther sample locations, host, or collection year where the FDR is ,0.05 and differential abundances were
represented in an effect plot (43) displaying the within- and between-group variation in CLR values.

Principal-component analysis (PCA) was applied to the centered, scaled by total variance, and CLR
transformed data set of mcr read proportions (44) to reduce the dimensionality of the data. The eigen-
vectors and eigenvalues from PCA were used to create a biplot, highlighting the significant sample
groups found in the differential abundance analysis.

Comparison of metagenomic abundance levels to prevalence in pathogen isolates. The NCBI
Pathogen Detection Project (45) routinely screens new isolates to identify AMR genes with the tool
AMRFinderPlus (46), which reports whether a gene was found or not in an assembled genome. We
downloaded the annotation results of 912,469 assembled genomes from NCBI’s Pathogen Detection
Resource (https://ftp.ncbi.nlm.nih.gov/pathogen/Results/, accessed 5August 2021); 7,934 (0.87%) of the
single isolates contained at least 1 of the 9 mcr variants. We reported the frequency of the number of
isolates carrying each mcr variant. Furthermore, we grouped the isolates by either sampling year, loca-
tion, or host and reported the relative count of each variant to the relative abundance levels in the
metagenomes.

Metagenomic assembly of mcr samples. We assembled metagenomes where at least one of the
mcr genes had a minimum coverage of 95% by trimmed reads, according to KMA. The trimmed reads
were assembled with MetaSPAdes 3.14.0 (47) with at least 1.2 terabytes of memory, 40 threads per
node, and a maximum runtime of 1 week. Out of 1,014 metagenomes, 145 were not assembled, as they
did not complete within the chosen time frame of a week. Contigs carrying the nine different mcr gene
variants were identified with blastn 11.0 (48) with a percentage identity of$95.

Flank analysis of metagenomic assemblies. The metagenomic contigs carrying mcr genes were
used in the flank analysis. Flanks were created by masking the mcr gene in the contig and cutting out
up- and downstream regions of increasing sizes between 1,000 bp and 30,000 bp by intervals of
1,000 bp with BEDTools (49). The presence of plasmids in the flanks was identified with PlasmidFinder
2.1 (50), and mobile elements, with MobileElementFinder 1.0.3 (51). The distance between the flanks
was calculated as the Szymkiewicz-Simpson dissimilarity with KMA (34). Hierarchical clustering on the
flank distances was done with Ward’s method (52) to create a dendrogram plotted with ggtree 2.0.4 (53)
and ggplot 3.3.3 (54). This approach is similar to the workflow of the tool Flanker by Matlock et al. (55),
except that we cluster with KMA.

Variant analysis of mcr genes. We investigated the presence of SNPs in KMA-produced consensus
sequences that matched the following minimum requirements: template coverage, $98%; depth of cover-
age, $5; query identity, $90%; and P value, #0.05. SNPs were kept if they passed the following filters,
checked with bcftools 1.13 (56): a minimum allele depth of 5 (AD) and a minimum allele frequency of 0.90
(AF). Sequences were aligned with MAFFT v7.490 (57), and phylogenetic trees were created with FastTree
v2.1.1 (58) using a nucleotide substitution model. Trees were visualized with ggtree. A visual summary of
SNPs in sequence alignments was created with snipit (https://github.com/aineniamh/snipit).

We screened all unique sequences that had at least 1 SNP difference to their template against com-
plete and draft genome sequences in GenBank with BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed 24 January 2022). Matches were identified if they had 100% identity to the template.

Data availability. Source data for generating abundance figures and running statistical tests and
flank and variant analysis can be found in the supplementary files at https://doi.org/10.5281/zenodo
.5946866, and the supporting code is available at https://github.com/hmmartiny/mcr_metagenomes.
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Figure S1: Sample origins of metagenomes containing mcr genes and the number of metagenomes without in parentheses. 
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Figure S2: Distribution of mcr genes in all sampling sources.Top: The log count of metagenomes with and without mcr genes, as well as the 

total mcr abundance (blue) per host or environment. Bottom: The relative abundance of mcr read fragments aligned. 

 

Figure S3: Biplot of human samples from PCA on the full dataset colored by a. country and b. sampling year. 
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Figure S4: Biplots produced by doing compositional PCA on read counts of mcr-2 to mcr-8, where samples are colored by a. sampling year, b. 

sampling location, and c. sampling host. 
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 mcr-1 mcr-2 mcr-3 mcr-4 mcr-5 mcr-6 mcr-7 mcr-8 mcr-9 
Isolate 
frequency (%) 

51.08 0.25 6.83 0.74 1.26 0.00 0.00 1.18 40.38 

Table S1: Prevalence of mcr gene variants in single isolates screened by the NCBI Pathogen Detection pipeline. The percentage is the number 
of isolates with one of the mcr genes out of the total number of isolates screened. 
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Figure S5: Pairwise comparison of mcr gene prevalence in single isolates and metagenomes for common sample origins, where the 
prevalence is higher than zero for both measurements. The relative count is the percentage of mcr positive isolates carrying a variant, and the 
relative abundance is the frequency of metagenomic mcr reads aligned to a variant. The closer to the grey line a marker is, the more agreement 
there is between the two measurements.  
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Figure S6: Distribution of mcr contig lengths and the occurrence of elements in flanks. a. Histogram of mcr contig lengths, colored by which 
mcr gene present in the contig. b. Count of mobile elements or plasmids occurring in flanks of different sizes. c. Count of the occurrence of 

mobile genetic elements (left) and plasmids (right) in mcr contigs with flank sizes between 1000 and 21,000 bp. The number does not consider if 
two elements are on the same contig. 
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Figure S7: Overview of SNPs found in a. mcr-3.6 consensus sequences and b. mcr-3.15 consensus sequences . The distinct sequences were 
aligned with MAFFT and visualized with snipit. 
  

a. 

 

b. 
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Figure S8: Overview of SNPs found in a. mcr-7.1 consensus sequences and b. mcr-9.1 sequences. The distinct sequences were aligned with 
MAFFT and visualized with snipit. 
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Abstract 17 

The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the 18 

nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR 19 

effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs 20 

of ARGs co-occur. Given the wealth of NGS data available in public repositories, we have 21 

investigated the correlation between ARG abundances in a collection of 214,095 22 

metagenomic datasets. Using more than 6.76∙108 read fragments aligned to ARGs to infer 23 

pairwise correlation coefficients, we found that more ARGs correlated with each other in 24 

human and animal sampling origins than in soil and water environments. Furthermore, we 25 

showed that the correlations serve as risk profiles of resistance co-occurring to critically 26 

important antimicrobials. Using these profiles, we found several key ARGs indirectly but 27 
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strongly selecting for ARGs of critical importance, such as tetracycline ARGs correlating with 28 

most forms of resistances. In conclusion, this study highlights the important ARG players 29 

indirectly involved in shaping the resistomes of various environments that can serve as 30 

monitoring targets in AMR surveillance programs.  31 

Introduction 32 

Antimicrobial resistance (AMR) is one of the biggest threats to human and animal health1,2, 33 

and it is widely acknowledged that the misuse of antimicrobials has accelerated the 34 

dissemination and prevalence of antimicrobial resistance genes (ARGs)3. Most attempts to 35 

reduce the burden of AMR have focused on reducing the use of single classes of 36 

antimicrobial agents considered of critical importance4.  Despite considerable efforts in 37 

various settings, such as livestock, these regulations have not significantly reduced the 38 

spread of ARGs5,6. It is known that even after banning the use of specific antimicrobials, the 39 

ARGs conferring resistance will still be prevalent in the environment7. Furthermore, studies 40 

have shown that ARGs can be indirectly selected if they co-occur with an ARG conferring 41 

resistance to the antimicrobial, causing the selective pressure6,8–10. We have also recently 42 

observed that changes in the selective pressure of even a single antimicrobial agent 43 

influence several ARGs in pig metagenomes10. It is, however, not known whether this is due 44 

to co-selection due to the genetic linkage of ARGs, the presence of ARGs in the same 45 

bacterial clones or because different bacterial species with different ARGs are co-selected in 46 

a microbial network. 47 

 48 

Most studies associating AMU and AMR have, however, focused on one antimicrobial agent 49 

at that time and how the use impacts the development of resistance to that agent and not 50 

to other unrelated antimicrobials. This needs to be understood better to stop these 51 

collateral damage effects11,12. Co-occurrence of microbes has been evaluated in soil13,14 and 52 

marine environments15,16, whereas ARG co-occurrences have been studied in sewage 53 

sludge17, freshwater18, marine19, swine7, and cattle20. However, most of these studies have 54 

only been evaluated on a smaller scale and not always using the same methods. There are 55 

currently a large collection of next-generation sequencing datasets from metagenomic 56 

samples available in public repositories, providing an excellent resource to quantify the 57 

prevalence of ARGs by analyzing the read abundances 21–24. 58 
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 59 

In this study, we have studied the co-abundance of sequencing reads aligned to ARGs to 60 

assess how resistance to one specific antimicrobial agent is linked to the abundance of 61 

another class of antimicrobial. With a collection of 214,095 metagenomic datasets25, we 62 

examined the correlation between pairwise ARG read abundances with a compositional 63 

approach26,27 using SparCC  (Sparse Correlations for Compositional data)28. Our results 64 

demonstrated that many ARG pairs interact but are highly specific to the environment. We 65 

believe that these interactions provide a new foundation to understand how ARGs are being 66 

co-selected independently of the microbial context, and the findings can be used to design 67 

targeted interventions to limit the spread of AMR. 68 

 69 

Methods 70 

Data collection and pre-processing 71 

We have previously described in detail the process of downloading and analyzing 214,095 72 

metagenomic samples23,25, but in brief: We downloaded raw sequencing reads corresponding 73 

to 442 Tbp from metagenomic samples deposited in the European Nucleotide Archive29 that 74 

were uploaded between 2010-01-01 and 2020-01-01 and had at least 100,000 reads and were 75 

shotgun sequenced. The raw sequencing reads were quality-checked with FASTQC v.0.11.15 76 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed with BBduk2 77 

36.4930. The trimmed reads were then globally aligned using KMA31 1.2.21 against two 78 

reference sequence databases: ResFinder32 (downloaded 25-01-2020) and Silva33 (version 38, 79 

downloaded 16-01-2020). ResFinder is a database of 3,085 acquired ARGs, whereas Silva is a 80 

16S/18S rRNA database of 2,225,272 sequences. 81 

Homology-reduced ResFinder 82 

Since there is a possibility that KMA might assign reads to closely related homologs differently 83 

across samples, we decided to homology reduce the 3,085 ARGs of ResFinder using 84 

USEARCH34 11.0.667 with 90% nucleotide identity, producing a total of 716 ARG groups. For 85 

each of these groups, the read counts for the genes in that group were first adjusted by the 86 

length of the gene and then aggregated together. These new group counts are used in the 87 
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correlation analysis described in the next section. For the rest of the manuscript, we refer to 88 

these 716 ARG clusters as simply ARGs. 89 

 90 

Calculating relative abundances 91 

For a category label, we calculated the relative abundance of fragment counts assigned to 92 

different genes or classes as: 93 

Relative abundance(𝑥𝑥) =
𝜅𝜅
∑𝑛𝑛𝑖𝑖

𝑛𝑛𝑖𝑖 94 

where 𝑥𝑥 is the label, 𝑛𝑛𝑖𝑖 is the count of read fragments assigned to gene 𝑖𝑖, and 𝜅𝜅 = 100 is a 95 

scaling constant. 96 

 97 

Inferring pairwise correlations with SparCC 98 

The SparCC algorithm28 was used to obtain correlations using pairs of log-ratio transformed 99 

ARG read counts to infer linear Pearson correlations. SparCC obtains linear Pearson 100 

correlations and p-values through an iterative approach that adjusts for spurious 101 

correlations and lowers the false discovery rate. The ARG-ARG correlations were inferred as 102 

the average over 50 iterations, and one-sided pseudo p-values were obtained through a 103 

bootstrapping procedure of 100 rounds. In each bootstrapping round, the input count 104 

matrix was shuffled and correlations were averaged over 10 iterations to infer one-sided p-105 

values to test whether the correlation for the observed data was statistically significant. 106 

Correlations values ≥ 0.6 with p-values ≤ 0.01 were selected for further analysis. We 107 

implemented SparCC to run on GPUs on the Danish National Supercomputer for Life 108 

Sciences (https://www.computerome.dk). 109 

 110 

We ran SparCC on the entire dataset of the 214K metagenomic samples and subsets of 111 

samples grouped by sampling host and environment, where at least 800 samples existed. 112 

Due to inconsistent labeling of the sampling sources, we made new source groups, as shown 113 

in Table 1. We only consider genes for SparCC analysis that are present in at least 10 114 

samples with a minimum read fragment count of 50. In total, 11 different correlation 115 

matrices were made, i.e., one for each of the source groups listed in Table 1. The correlation 116 

networks were visualized in R 4.1.035 with packages igraph36, qgraph37, and ggraph38 using 117 

the Fruchterman-Reingold layout algorithm39. 118 
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Source 

group 

Sampling source label(s) Number of 

samples 

Number of 

samples 

with ARGs 

Air Air metagenome 914 870 

Chicken Gallus gallus (1,219), chicken gut 

metagenome (4) 

1,223 1,215 

Cow Bos taurus (872), cow dung metagenome 

(14) 

886 824 

Dog Canis lupus familiaris 3,439 3,182 

Freshwater Freshwater metagenome 4,494 585 

Human Homo sapiens 95,003 57,239 

Marine Marine metagenome  30,002 5,444 

Mouse Mus musculus (1,462), mouse metagenome 

(50), mouse gut metagenome (2,435) 

3,947 3,909 

Pig Sus scrofa (673), Sus scrofa domesticus 

(355), pig metagenome (2,129), pig gut 

metagenome (72) 

3,229 3,461 

Soil Soil metagenome 6,533 2,822 

All  214,095 119,206 

Table 1: Grouped labels for hosts and environments. The parenthesis after each sampling source label denotes the number 119 
of samples assigned to that label if the group consisted of multiple labels. 120 

Network comparisons 121 

The topology of the different networks is described using different metrics: the number of 122 

nodes (𝑁𝑁) and edges (𝐸𝐸), the global clustering coefficient, network density, edge density, 123 

and the number of components. The global clustering coefficient, or the graph transitivity, 124 

measures the density of node triplets in the network40. The network density is calculated as 125 

2𝐸𝐸/𝑁𝑁(𝑁𝑁 − 1) as given in Parente et al. (2018)41. Edge density is the number of edges over 126 

the number of possible edges42.  The average correlation between ARGs of two 127 

antimicrobial classes was calculated using Fisher’s z-transformation on the correlation 128 

values, averaging the z-scores and converting it back to a correlation score with the inverse 129 

Fisher transformation43. 130 
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 131 

Data and code availability 132 

The matrix of ARG read counts is available at https://zenodo.org/record/6919377, and the 133 

code used to run the analysis and create figures are available at 134 

https://github.com/hmmartiny/global_resistome_correlations. Classifications of 135 

antimicrobial importance were retrieved from the 6th revision of critically important 136 

antimicrobials for human medicine from 137 

https://www.who.int/publications/i/item/9789241515528, accessed 2022-10-10. 138 

  139 
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Results 140 

This study investigated the correlation of pairwise ARG abundances across a highly diverse 141 

set of 214,095 metagenomic samples. The samples included in the 214K metagenomic 142 

collection come from a variety of backgrounds, such as the sampling period spanning 143 

between 2000 and 2020 (Figure S1a), primarily sequenced on Illumina platforms (Figure 144 

S1b), and hailing from all over the world (Figure S1c).  We observed that not all samples 145 

contained sequence read fragments aligned to ARGs, so we only included those that did in 146 

the correlation analyses (n = 119,206; Table 1). Looking at the various sampling sources, 147 

read fragments aligned to ARGs conferring resistance to tetracycline and beta-lactams were 148 

very common in host-associated sources, whereas phenicol resistance was more frequently 149 

observed in environmental sources (freshwater, marine, and soil) (Table 2). catA1 was the 150 

most dominant gene in the environmental samples, especially in marine samples, whereas 151 

various tet genes had high relative abundances in livestock or human samples: tet(W) in 152 

chicken and pig samples; tet(Q) in cow, human, and pig metagenomes. blaTEM-52B 153 

accounted for more than 30% of the read fragments assigned to ARGs in air metagenomes 154 

(Figure S2). 155 

 156 

Balancing the sparsity and network complexity 157 

We selected ARGs to infer abundance-based correlations by considering how sparse the 158 

input count matrix was and how that sparsity affected the results of SparCC. Out of the 716 159 

ARGs that could be included, we observed that without filtering the raw counts, SparCC 160 

found that most of the ARGs correlated with each other, even if the count of read fragments 161 

was low. Based on this observation, we decided to require that for an ARG to be included, it 162 

had to have a minimum count across a specific number of samples for a group. Applying 163 

these two filters, the number of correlations inferred for each sampling group decreased as 164 

compared to the no-filter results (Table S1). We decided to pick filter settings to balance the 165 

amount of sparsity allowed in the sample groups and the number of correlation coefficients, 166 

which ended up being a minimum fragment count of 50 across at least 10 samples.  167 

 168 
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Analysis of large-scale metagenomic correlation networks 169 

Based on our filter settings, we constructed a global network using the correlation 170 

coefficients for the entire collection of metagenomes, with each node representing an ARG 171 

and each edge representing a pairwise ARG connection (correlation ≥ 0.6, p-value < 0.01, 172 

Figure S3). The global network, nicknamed ‘all’, contained 225 ARGs connected through 173 

2,344 correlation edges (Figure 1a).  As this all-network was hard to interpret due to the 174 

many highly interconnected ARGs, we also inferred pairwise ARG correlations in specific 175 

sampling groups (Table 1). The genes that were part of these networks were found to 176 

correlate with varying degrees of strength (Figure 1a-b). For example, the human network 177 

contained many correlation coefficients, but most were less than 0.8 (Figure 1c). Another 178 

example is the marine network, where only a few ARGs were found to correlate, but with 179 

values above 0.9 (Figure 1b-c). Despite the networks reflecting the composition of the 180 

various environments, we still observed overlaps between which ARGs were found to 181 

correlate. One example is that all the correlations inferred from the pig metagenomes also 182 

existed in the human metagenomic network (Figure 1d).  183 

 184 

There was a limited number of correlations for ARGs encoding resistance to 185 

fluoroquinolones, steroid antibiotics (fusidic acid), colistin, and rifampicin. On the other 186 

hand, beta-lactam, tetracycline, and aminoglycoside ARGs had many correlations with each 187 

other and with other classes (Figure S4, Figure S5). Despite resistance to some antimicrobial 188 

classes being the most abundant, the ARGs did not always correlate to many others. For 189 

example, tetracycline ARGs were the most abundant in dog metagenomes, but no 190 

correlations were inferred for these ARGs. Similarly, in the human samples where 191 

aminoglycoside and beta-lactam ARGs were less abundant than tetracycline ARGs, 192 

aminoglycoside and beta-lactam resistance genes had a higher number of correlations 193 

coefficients were reported (Table 2, Figure S4).  194 

 195 

On the level of ARG abundance, we observed that just because an ARG was highly abundant 196 

in a sampling group, it did not automatically mean that it correlated to many other ARGs. 197 

The highly abundant catA1 gene in marine (97.4% of all ARG reads), freshwater (55.1%), and 198 

soil samples (84.7%) (Figure S2) did only correlate with one or two other genes in the water 199 

environmental networks, and none in the soil network. On the other hand, catA1 did seem 200 
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to be correlated with 15 other genes in the pig correlation network despite not being highly 201 

abundant in that group of samples (Figure S5a). mef(A)_1 accounted for 15.9% of the reads 202 

aligned to ARGs in cow samples and 6.63% in pigs (Figure S2) and was also strongly 203 

correlating with other genes, which mainly conferred resistance to aminoglycosides, 204 

(fluoro)quinolones and tetracyclines (Figure S5b). tet(L)_4 only accounted for 4.01% of the 205 

read fragments aligned to ARGs in metagenomes of chicken origins (Figure S2) but was 206 

shown to correlate in its abundance with the abundance of 8 other ARGs, e.g., with a 207 

correlation of 0.77 with lnu(A)_1 (Figure S5c). 208 

  209 

The hidden signals between ARGs profile the potential risk of co-selection in different 210 

environmental contexts 211 

Using the correlations between ARGs in the various environments (Figure 1), we calculated 212 

the average correlation between ARGs of different antimicrobial classes (Figure S6). These 213 

average correlations can then serve as profiles to assess the risk of indirectly selecting ARGs 214 

that gives resistance to different ARGs through co- and cross-resistance. These risk profiles 215 

can then be used to judge the strength of interactions upon using one antimicrobial in each 216 

setting. Upon constructing these profiles, we observed that the strength and the number of 217 

correlations highly depend on the antimicrobial classes and the environmental context. We 218 

hypothesize that if an important (IA) or highly important antimicrobial (HIA) is used, first, 219 

the resistance to the antimicrobial class will likely flourish, and, secondly, through co- and 220 

cross-resistance, so will ARGs conferring resistance to other classes, including those that are 221 

critically important antimicrobials (CIA). 222 

 223 

Figure 2 shows two risk profiles for ARG correlations for two highly critical important 224 

antimicrobials glycopeptide and macrolide. Correlations between ARGs of glycopeptide 225 

resistance to other resistance classes were much rarer than those connected with macrolide 226 

ARGs (Figure S6) and those correlations that were observed were relatively low 227 

(correlation<0.8, Figure 2). Different vancomycin resistance cassettes were responsible in 228 

different environments, namely VanHAX, VanC2, and VanX_bc in human samples and 229 

VanHDX and VanC1XY in pig samples (Figure S7a). VanHAX only has one correlation, 230 

whereas the remaining five correlate with many different ARGs.  231 
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On the contrary, ARGs conferring resistance to macrolide were much more interactive with 232 

other classes of resistance genes in all networks and had strong correlations with specific 233 

classes (correlation > 0.9, Figure 2, Figure S6).  The macrolide ARGs co-abundant with other 234 

ARGs were many but separated into distinct network clusters (Figure S7b). For example, 235 

mef(A) and msr(D) were usually found together in different environments, both in small and 236 

large clusters. 237 

 238 

While Figure 2 highlights how CIA ARGs interact, it is just as important to investigate what 239 

ARGs of less critically important antimicrobials correlate with. As seen in Figure 3, ARGs for 240 

pleuromutilin resistance (IA) and for tetracycline resistance (HIA) were found to interact 241 

with many other classes, including those that are critically important. For example, 242 

pleuromutilin ARGs are few but well connected (Figure 3, Figure S6), as seen with the 243 

connections with lsa(E) and cfr(C) (Figure S8a). Tetracycline ARGs correlated with the 244 

abundance of multiple ARGs, such as those conferring resistance to lincosamides, 245 

macrolides, and phenicols (Figure 3). While there were many ARGs for tetracycline 246 

resistance, they often correlated to the same ARGs (Figure S8b).  247 

Discussion 248 

Considering the complexity of microbiomes, studying how microbial composition shapes the 249 

distribution of ARGs is a challenging task but one that could shed light on how ARGs 250 

indirectly select one another.  However, with the high-throughput sequencing technologies 251 

and many metagenomic datasets available in public repositories, it is now much more 252 

feasible to extract the patterns of how ARGs co-occur without knowing their microbial 253 

origin. Using our recently published collection of 214K metagenomic datasets25, we have 254 

inferred correlations of pairwise ARG abundances to profile which types of resistance 255 

influence the shape of resistome and which genes are the key players.  To the best of our 256 

knowledge, this is the first study to relate ARG abundances on such a large and broad scale. 257 

 258 

Our correlation networks revealed that not all ARGs are connected, as we observed that the 259 

interactions were largely shaped by the composition of the environmental resistome. 260 

Nonetheless, we did not always observe strong correlations if an ARG was highly abundant. 261 

The all-network with correlation for all metagenomic samples was the most complex, which 262 
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we speculate is due to both the wide variety of sampling sources and the 263 

overrepresentation of human metagenomes (Table 1). We found the differences in the 264 

animal and environmental networks much more interesting, as they reflect the dynamics of 265 

ARG abundances under exposure to different antimicrobials (Figure 1). On the level of which 266 

antimicrobial class an ARG confers resistance to, we could also observe that some resistance 267 

classes had more and stronger correlations (Figure S6).  There are several cases of our 268 

observed co-abundant ARGs that have been reported in the literature, and some of the 269 

strongest correlation pairs have been detected due to the ARGs sitting together in the same 270 

genome. For example, the gene cassette vanHAX has been found together with msr(C) and 271 

aac(6’) in genomes of human isolates52 and mef(A) linked with tet(O)53 and mdf(A) with 272 

blaTEM, aph(6), sul2, and, tet(A)54 (Figure S7).  273 

 274 

As highlighted in Figure 2 and Figure 3, we argue that the correlations can serve as a way to 275 

profile the risk of co-selection of ARGs occurring in a setting if exposed to an antimicrobial.  276 

Some of these relationships between ARGs of different antimicrobial classes have been 277 

observed in other studies.  278 

 279 

Antimicrobials have been classified differently to reflect their importance to human 280 

medicine, of which glycopeptides and macrolides are CIA with the highest priorities. 281 

Glycopeptide and macrolide resistance has previously been linked genetically6,8 in pigs, 282 

where we also can report the presence of correlations between ARGs of glycopeptide and 283 

macrolide resistances not only in pigs but also in human and mouse environments (Figure 284 

2). Pleuromutilin and tetracycline antimicrobials have less critical importance of 285 

antimicrobials 44, but many correlations for ARGs of pleuromutilin and tetracycline exist in 286 

various networks (Figure 3) suggest that there are still risks associated with the use of these 287 

two.  Tetracycline resistance has been found to occur together with resistance to 288 

macrolides45–47, aminoglycosides45,48, folate pathway antagonists49,50, lincosamide10, and 289 

beta-lactams48, to name a few studies. This high connectivity of tetracycline ARGs seems in 290 

line with our results, as this specific group of ARGs was connected to almost all classes of 291 

antimicrobials in most of our networks (Figure 3, Figure S8b).  The variety of connections to 292 

antimicrobials of less importance to human health should be more in focus, as our results 293 
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show that there are risks of critical antimicrobial resistances emerging from the enrichment 294 

of less essential resistance genes. 295 

 296 

Following this line of thought of focusing on ARGs that gives resistance to less critically 297 

important antimicrobials, a recent study by Tarek and Garner (2022)51 proposed to create a 298 

monitoring framework based on isolated components, or clusters, in correlation networks. 299 

They constructed a correlation network encompassing ARG abundances in samples from 300 

wastewater treatment plants and argued that representative ARG members from each 301 

cluster in their network should be monitoring targets.  Our networks suggest that limiting to 302 

only a few ARGs would fail to capture the complete picture in some environments, such as 303 

human microbiomes (Figure 1). However, as our risk profiles show, limiting the set of 304 

monitoring targets by only focusing on what happens to ARG abundances during exposure 305 

to one type of antimicrobials would be a way to implement a monitoring system (Figures 2-306 

3, Figure S7-Figure S8). If a monitoring system is implemented, it would need to be updated 307 

regularly to show the changes in antimicrobial usage and ARGs co-occurrences since the 308 

correlations we have inferred in this study only reflects the current and past usage of 309 

antimicrobials. 310 

 311 

In order to use correlation networks for surveillance of AMR, more work is needed to 312 

confirm that the observed interactions do indeed exist in nature55. We have defined 313 

interactions as being indirect since we need to determine the degree that co-abundance is 314 

explained by physical linkage on a genome or plasmid or sharing of a cell. To investigate the 315 

direction of correlation, for example, whether vanHAX influences msr(C) or the other way 316 

around (Figure S6a), the SPIEC-EASI56 method could be used to infer such directional 317 

dependences. A directional correlation could be included in a risk profile. 318 

 319 

We have only included ARGs of different resistance classes that are co-abundant in our 320 

analysis, but the abundance of bacterial reads could also have been analyzed. By including 321 

the bacterial counts, it would likely be possible to understand how the dynamics of 322 

microbiomes and resistomes are linked.  Similarly, redoing the alignment procedure to 323 

include the count of reads aligned to other drivers of resistance, e.g., mobile genetic 324 

elements, could also lead to the discovery of new patterns. There has been much work on 325 
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linking the prevalence of ARGs with antimicrobial usage (AMU) in various settings6,8,10, and 326 

incorporating AMU could confirm our speculation that many of the co-abundances are 327 

driven by selective pressures of various antimicrobials. Pooling the various data types 328 

together in this kind of analysis would be a complicated task that nevertheless would shed 329 

light on how the abundance and selective pressures contribute to the shape of resistomes.  330 

 331 

By utilizing the wealth of information on ARG abundances available in a collection of 214K 332 

metagenomic datasets, we have studied the co-abundance of ARGs to discover how these 333 

interactions shape the prevalence of resistances in different environments. The inferred 334 

correlation networks provide insights into how two resistance types indirectly and species-335 

independent select for each other in different habitats. Our results further highlight that 336 

there are instances of genes of one type of resistance often co-occurring with many other 337 

types of resistance and that the environmental context plays an important role, revealing 338 

them as important targets in surveillance programs to limit their impact on global health. 339 

  340 
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 485 

Figure 2: Correlation profiles for ARGs conferring resistance to the critically important antimicrobial classes glycopeptides (left) and 486 
macrolides (right). Each column shows the average correlation from, e.g., macrolide ARGs to ARGs for other antimicrobial classes. The circle is 487 

colored by the average correlation, where a white circle indicates no statistically significant correlations of ARGs observed between the two 488 
antimicrobial classes.  489 

 490 
Figure 3: Correlation profiles for ARGs conferring resistance to important pleuromutilins (left) and highly important tetracyclines (right). 491 
Each column shows the average correlation from, e.g., tetracycline ARGs to ARGs for other antimicrobial classes. The circle is colored by the 492 
average correlation, where a white circle indicates no statistically significant correlations of ARGs observed between the two antimicrobial 493 

classes.  494 
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Supplementary materials 495 

 496 
Figure S1: Metagenomic origins colored by the sampling group. a. Overview of sampling year for metagenomic samples 497 
colored by their sampling origin. 100 samples were taken before 2000, and 84,238 did not have a valid sampling date. b. 498 
Overview of the amount of sequencing reads available for each sampling origin. c. Sampling locations of metagenomic 499 

samples used in the correlation analysis were split by their sampling source. Number of samples with no coordinates 500 
available; All: 83,361; Air: 16; Dog: 3,159; Chicken: 570; Cow: 262; Freshwater: 61; Human: 40,003; Marine: 363; Mouse: 501 

2,842; Pig: 320; Soil: 477. The ‘Other’ label refers to those that are not in one of the source-specific networks but are 502 
included in the ‘All’ network. 503 
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 504 
Figure S2: Top 10 most abundant ARGs per sampling group. A barplot showing the ARGs having the highest 10 relative 505 

abundances per sampling source colored by resistance class.506 
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 509 

Figure S3: Distribution of correlations and p-values produced by SparCC for each data grouping. Each point is a correlation 510 
between two ARGs and is colored by whether the point was selected if the p-value < 0.01 and correlation ≥ 0.6.511 
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 512 

Figure S4: The relative abundance, number of ARGs, and the number of correlations for each resistance class in each 513 
sampling group. The relative abundance in green shows the percentage of read fragments for each class. In grey is the 514 

number of ARGs for each resistance class. Orange coloring indicates the number of correlation coefficients inferred for ARGs 515 
in a resistance class.516 
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 522 

Figure S6: The average correlation between ARGs of different resistance classes in the upper triangle of the heatmaps with the lower half shows 523 
the correlation coefficients between the two classes. Note that a correlation coefficient between two ARGs might be present in more than one 524 

tile, as some ARGs confer resistance to multiple classes of antimicrobials. 525 

 526 

  527 
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 528 

Figure S7: Highlights of interactions between ARGs of a. glycopeptide resistance and b. macrolide resistance. The ARG node size shows 529 
whether the corresponding ARG gives resistance to the antimicrobial class in focus. Only correlation edges and ARGs nodes are colored if they 530 

correlate with the highlighted ARGs; otherwise, they are colored grey. The coloring schemes for nodes and edges are given in Figure 1a. 531 

  532 
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 533 

Figure S8: Highlights of interactions between ARGs of a. pleuromutilin resistance and b. tetracycline resistance. The ARG node size shows 534 
whether the corresponding ARG gives resistance to the antimicrobial class in focus. Only correlation edges and ARGs nodes are colored if they 535 

correlate with the highlighted ARGs; otherwise, they are colored grey. The coloring schemes for nodes and edges are given in Figure 1a. 536 

 537 
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Part III
Conclusion





CHAPTER 7
Conclusion

The threat of AMR is not only a human health concern but also impacts animal and
environmental health. It is a global problem that needs to be tackled with targeted
solutions, one of them being establishing the surveillance of ARGs embracing the three
pillars of the One Health approach. To date, most AMR studies have only focused on
the prevalence of ARGs in specific genomes or environmental settings, which does not
incorporate that ARGs spread across borders, environments, and hosts. Due to the
many advances in NGS technologies and their frequent use in research, there is a vast
amount of sequencing datasets available in public repositories ready to be reanalyzed.
By analyzing the composition of both the microbiome and resistome in a multitude
of environments with publicly available metagenomic datasets, new patterns of how
ARGs emerge, disseminate, and evolve can be studied in much more detail.

In Manuscript I, the study presented laid the foundation for using publicly available
host and environmental samples for worldwide surveillance of AMR. The steps for
retrieving and aligning sequencing reads and curating the metadata of the 214,095
metagenomic samples shared between 2010 and 2020 on ENA were described in de-
tail. A great effort was put into standardizing the metadata labels, underlining the
issues regarding the information accompanying the samples. Metadata needs to be as
error-free as possible in order to place the genetic information in the correct context.
Despite these issues, the analysis of the 442 · 1012 basepairs of sequencing reads re-
vealed that there were geographical, temporal, and environmental differences in ARG
abundances. These differences suggest that new patterns of AMR dissemination can
be discovered by digging deeper into the data collection. In the spirit of following
the FAIR principles, we have shared the mapping results to allow other researchers
to take advantage of our data.

For the analysis of public metagenomic datasets to be truly powerful, the sample
metadata needs to be as correct as possible. Unfortunately, there are still issues with
how such attributions are recorded, primarily due to different iterations of how this
kind of data is entered during the data-sharing process. A significant proportion of
my time was spent fixing metadata, but many of the 214K metagenomic samples
were still not usable. For example, if a metagenomic sample is annotated as a ‘gut
metagenome’, we have no idea which animal was sampled. There is also the obstacle
that we rely on the sequencing projects of the broader scientific community, which will
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inherently introduce biases in what kind of samples are shared and how the samples
have been sequenced. While these biases cannot be entirely removed, they should be
acknowledged when putting the results of downstream analyses into a global context.

For the research presented in Manuscript II, the goal was to investigate the occur-
rence of the family of mcr genes in the 214K metagenomes to showcase the potential
of the collection built in the first manuscript. The mcr genes confer mobilized resis-
tance to the antibiotic colistin, which is only used when all other treatment options
fail. After the discovery of mcr-1 in 2015, several reports of new mcr gene members
and their widespread dissemination have been reported. With the variety of sampling
origins in our collection, we decided to investigate the abundance of mcr sequencing
reads to pinpoint differences and similarities in samples of different origins. Our re-
sults did confirm the global spread of the mcr genes and the notion that the colistin
ARGs had circulated in the environment for a while before being discovered. What
is more interesting is we found that mcr-9, reported in 2019, was the most abundant
gene and that there was evidence of an unknown mcr-9 variant, showcasing how novel
findings can be extracted from metagenomic data.

Since the sequencing reads generated represent a random sample of the environment,
we do not know the true abundance of bacteria and genes. For example, we observed
a low abundance of mcr-6 fragments in only one location, and while that did confirm
that this gene is very rare, the low abundance needs to be regarded with a bit of skep-
ticism; if only a few read fragments aligned, is that sufficient evidence to conclude
that the ARG is there and it is not only an error stemming from either the sequenc-
ing protocol or alignment? In other words, such results need to be investigated in
more detail, for example, by comparing them with what other surveillance programs
find. As we saw by comparing mcr abundances in our metagenomes with the NCBI
Pathogen Detection Project results, some ARGs were not captured by only looking at
pathogen genomes, and others were not found in the metagenomic data. Each of the
two resources was better at capturing some mcr genes than the other, emphasizing
that combining both surveillance efforts will strengthen our understanding of ARG.

With Manuscript III, we wanted to investigate the co-abundance of ARG pairs
in multiple environmental contexts to assess collateral damages happening under
exposure to an antimicrobial. Using the read abundances of all ARGs in the full
metagenomic collection, we concluded that the amount of pairwise ARG correlations
inferred and the strength of these highly depended on the sampling origin. Moreover,
the correlations on the gene levels were averaged for each pair of antimicrobial re-
sistance classes to construct risk profiles. These profiles showed what happens in an
environment if suddenly one group of ARGs increases in their abundance. In other
words, we argued that our risk profiles show what can happen in a resistome if it
suddenly comes under selective pressure by an antimicrobial drug. For example, we
observed that a small group of ARGs conferring resistance to glycopeptides was re-
sponsible for many of the glycopeptide interactions, whereas tetracycline ARGs were
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many and had even more correlations to other kinds of antimicrobial class resistances.

Interpreting correlation is a complex task, which was not simplified by the number of
samples and correlations inferred by SparCC. Initially, we did not apply any filters
on the raw read counts. However, when the resulting correlations were investigated
in more detail, we saw a clear tendency that often spurious correlations were reported
if an ARG had a low count in one sample out of many. As reflected in the paper, the
reasoning behind our filter settings was to balance the sparsity of the samples and
the number of correlations inferred per sampling group. In some sampling groups,
the correlation networks were still highly complex, likely reflecting the number of
samples available and how much the sampling environment has been affected by an-
timicrobials. Tetracycline ARGs have been reported to co-occur with many other
classes of resistance, which we also observed across most of the networks. However,
what is more concerning is that ARGs that confer resistance to antimicrobials deemed
less critical to human health, e.g., pleuromutilin or tetracycline, did indirectly select
ARGs of more important antimicrobials. For example, tetracycline ARGs had correla-
tions with at least one macrolide ARG in most networks. These correlations indicated
that even by switching to an antimicrobial, where there is less concern of resistance
developing, the ARGs of that antimicrobial might send a ripple through the environ-
ment, causing ARGs of other antimicrobials to rise. There is still extra work needed
to confirm these effects, such as verifying the correlations with other data sources,
and experimentally verifying what happens under changing uses of antimicrobials.

The primary approach of this PhD has been to perform data-driven research, as
opposed to the more traditional hypothesis-driven research. While this kind of ex-
ploratory research is like looking for a needle in a haystack, mining such large quan-
tities of data can confirm and challenge existing notions on the distribution of ARGs.
A significant strength of this metagenomic collection is that the samples span the
entire world across multiple environments and years, which would not have been
possible to build in the more traditional approach of going out and collecting sam-
ples ourselves. The keen observer might have noticed that the 214K collection only
contains metagenomes that were shared on ENA up until 2020-01-01. The pool of
NGS datasets on ENA has continued to grow, meaning that the collection could be
expanded with the metagenomes uploaded since then. Not only has the number of
metagenomic samples available grown but so have the reference sequence databases.
For the work carried out during this PhD to become a truly global AMR surveillance
program, a routine for retrieving newly shared metagenomic datasets should be im-
plemented, and a process for remapping everything when there are enough new genes
to look for. Updating the collection with both new samples and reference genes would
highlight the value of open and reproducible research, which is a goal of mine to do
in the future.

The curated data collection of 214K metagenomes contains a wealth of information
ready to be explored in even more detail than what the three included manuscript has
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done. With the help of DTU press release1, the work has already gained some atten-
tion online, which will hopefully lead to even more studies using the ARG abundances
and further encourage even more researchers to share their sequencing datasets. In
conclusion, this PhD has demonstrated the value of reanalyzing public sequencing
data for exploring the composition of microbiomes and resistomes.

1https://www.food.dtu.dk/english/news/nyhed?id=d27f6275-71de-4c5d-8621-9e8beb79c122
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