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Abstract
District heating is envisioned to play an important role in future carbon-neutral energy systems,
by facilitating the integration of renewable and excess heat, and providing flexibility to the
electrical power system. With the integration of renewable and excess heat, there will be increased
fluctuations in the available amount and the generation cost of heat. To provide heat reliably at
a reasonable cost, flexibility on the demand side is needed. Attractive sources of demand-side
flexibility exist both at the end-consumer and in thermal storage systems. While the increased
number of small heat providers and the increasing demand-side flexibility lead to a more complex
operation of the system, these developments may at the same time pave the way for liberalized
heat markets. This thesis concerns the design of market mechanisms to support the more complex
operation of future district heating systems, with three future system characteristics in mind: the
presence of many small generators, the fact that generators and flexible loads are distributed over
the system, and the presence of thermal storage systems.

First, we investigate an alternative to direct market participation of excess heat producers, where
these actors are sent a price signal, based on which they self-schedule their production. In a
realistic case study we quantify how suboptimal this self-scheduling is in comparison to market
participation, in terms of total generation cost. We find that the self-scheduling method may
be suitable under low excess heat penetration, while we advise that more sophisticated pricing
signals and/or other market setups are used when excess heat covers a significant share of the
heat load. Second, we propose a market mechanism that takes heating network constraints into
account. We provide insight into the price formation in this network-aware market design, by
including peer-to-peer trades that reveal the network losses caused by each market participant. In
an illustrative case study, we show that the proposed market design can result in schedules and
prices that are beneficial for network operation and reduce its cost, by effectively promoting more
local heat consumption. Our third contribution sheds light on a more fundamental issue in market
design for non-merchant storage. To cope with time-linking constraints that are present in such
markets, it is common to make simplifying assumptions on the end-of-horizon storage level. Using
illustrative examples and formal proofs, we analyze which market properties hold under such
assumptions, as well as in their absence. In particular, we find that market inefficiencies may even
arise given perfect decisions on the end-of-horizon storage level, because prices in subsequent
market horizons may fail to reflect the value of stored energy. Finally, we propose a method for
restoring market efficiency in a perfect foresight setting.
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Resumé
Fjernvarme forventes at spille en vigtig rolle i fremtidige kulstofneutrale energisystemer ved at
facilitere integrationen af vedvarende energikilder og overskudsvarme, samt at levere fleksibilitet til
elsystemet. Med integrationen af vedvarende varmekilder og overskudsvarme vil der være øgede
udsving i den tilgængelige mængde af varme og også større udsving i produktionsomkostninger.
For at levere varme pålideligt til en rimelig pris er fleksibilitet på efterspørgselssiden nødvendig.
Attraktive kilder af fleksibilitet på efterspørgselssiden findes både hos slutforbrugeren og i termiske
lagringssystemer. Mens det øgede antal små varmeudbydere og den stigende fleksibilitet på
efterspørgselssiden fører til en mere kompleks drift af systemet, kan denne udvikling samtidig bane
vejen for liberaliserede varmemarkeder. Denne afhandling omhandler design af markedsmekanis-
mer til at understøtte den mere komplekse drift af fremtidige fjernvarmesystemer i betragtning af
tre fremtidige systemkarakteristika: tilstedeværelsen af mange små generatorer, det faktum, at
disse generatorer og fleksible belastninger er fordelt over hele systemet, og tilstedeværelsen af
termiske lagringssystemer.

Først undersøger vi et alternativ til direkte markedsdeltagelse af overskudsvarmeproducenter,
hvor disse aktører får tilsendt et prissignal, ud fra hvilket de selv skemalægger deres produktion.
I et realistisk casestudy kvantificerer vi, hvor suboptimal generatorernes egen skemalægning er
i forhold til markedsdeltagelse, hvad angår de samlede produktionsomkostninger. Vi finder, at
generatorernes egen skemalægning kan bruges under lav gennemtrængning af overskudsvarme,
mens vi anbefaler, at mere sofistikerede prissignaler og/eller andre markedsmekanismer anvendes,
når overskudsvarme dækker en væsentlig del af varmebehovet. For det andet foreslår vi en
markedsmekanisme, der tager hensyn til begrænsninger i fjernvarmenettet. Vi giver indsigt i
prisdannelsen i dette netværksbevidste markedsdesign ved at inkludere peer-to-peer handel,
som giver netværkstab forårsaget af hver markedsdeltager. I et illustrativt casestudy viser
vi, at det foreslåede markedsdesign kan resultere i tidsplaner og priser, der er gavnlige for
netværksdriften og reducerer omkostningerne ved at fremme mere lokalt varmeforbrug. Vores
tredje bidrag kaster lys over et mere grundlæggende problem inden for markedsdesign til non-
merchant energilagringssystemer. For at klare tidsbindingsbegrænsninger, der er til stede i sådanne
markedsdesigns, er det almindeligt at lave forenklede antagelser om lagerniveauet ved slutningen
af markedshorisonten. Ved hjælp af illustrative eksempler og formelle beviser analyserer vi, hvilke
markedsegenskaber holder under sådanne forudsætninger, såvel som i deres fravær. Vi finder,
at markedsineffektivitet endda kan opstå givet perfekte beslutninger om lagringsniveauet ved
slutningen af horisonten, fordi priserne i efterfølgende markedshorisonter muligvis ikke afspejler
værdien af lagret energi. Til sidst foreslår vi en metode, som garanterer, at markedet er effektivt,
når man antager, at fremtidige parametre kan forudsiges perfekt.
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Chapter1
Introduction

1.1 Context and motivation

Many countries around the world have committed to become carbon neutral by 2050 [1]. The
decarbonisation of the energy system is often defined as a first step towards this goal. Studies
show that district heating can play an important role in future carbon-neutral energy systems [2, 3].
District heating systems consist of heat generators and consumers, as well as a network of pipelines
to distribute the heat. Given a sufficiently high spatial heat load density, these systems can be
beneficial from both economic and energy-efficiency perspectives, compared to heat generation
at the individual end-user. Therefore, district heating is traditionally more popular in densely
populated areas and cooler climates, such as Northern Europe, Russia, and Northern China. There
is evidence that district heating could also supply a large share of residential and commercial heat
loads in many North-Western European countries, such as Germany and the United Kingdom,
and even has potential in Southern European cities [4, 5]. Interest in district cooling as part of future
sustainable energy systems is also increasing, among others in the European Union [6]. A report
from the European Parliament states that 50% of the heat load in the European Union could be
supplied by district heating in the future [7]. Besides potential cost and energy savings, advantages
of district heating and cooling compared to local solutions include easier pollution control [8],
reduced complexity and space requirements at the end user [9], improved domestic air quality
[10], and greater flexibility in choosing heat sources [9].

For energy systems to become carbon neutral, the dependence on conventional, fossil-fuel based
generators must come to an end. District heating contributes towards this goal among others by
facilitating the integration of certain carbon-neutral heat sources that are not suitable for use in
individual heating applications [11]. Such sources include, but are not limited to, excess heat, solar
collector fields, and large-scale heat pumps [12, 13]. The European Commission defines excess heat
as ‘a by-product of another process that would be emitted into the environment, until supplied for
off-site use’, explicitly excluding Combined Heat & Power (CHP) plants from this definition as
these are built with the intention of generating heat [14]. There are different types of excess heat
sources, including excess heat from waste incineration, industrial processes, and urban sources
[15]. Besides enabling the decarbonisation of the heating sector itself, district heating systems are
envisioned to play a broader role in future energy systems. Studies advocate that heating systems
should provide flexibility to electrical power systems, as heating systems contain several attractive
sources of flexibility [16, 17].

Conventional district heating systems are of a centralized nature, with few large generators
producing heat through combustion of fossil fuels and municipal waste. In the transition to carbon
neutrality, heat systems must adapt to accommodate the integration of carbon neutral heat sources,
which differ from conventional ones in several ways. First of all, they typically have a smaller
heat generation capacity. This also implies that a greater number of these sources are needed to

1



2 CHAPTER 1. INTRODUCTION

meet a similar heat load. Second, future heat sources may be distributed over both transmission
and distribution heat networks, while conventional generators are usually located at a central
location connected to the transmission network. Finally, the generation profiles of solar and excess
heat sources differ from conventional sources. For one, the available heat from solar and excess
heat producers is fluctuating depending on external factors, such as weather conditions, industrial
activity, or the cooling load in a supermarket, for instance. Indirectly, these factors may again be
weather dependent. As a result, both daily and seasonal variations in the maximum available
heat can be expected. In addition, these sources can usually be operated with limited flexibility.
For example, excess heat sources may be able to deviate only slightly from a baseline production
profile.

Due to the rise of CHP plants and heat-pump based excess heat producers, the physical connection
between district heating and power systems is becoming stronger. As a result, it becomes
increasingly important to take economic interactions between these systems into account, even
though their markets or pricing systems are usually not explicitly coupled. The electricity price
strongly affects the district heating schedule [18], because it largely determines the heat generation
cost of CHP plants and heat pumps. Therefore, large electricity price fluctuations due to the
increased penetration of renewables in power systems result in similar fluctuations in the generation
cost of heat [19]. It should also be noted that many of the foreseen changes in district heating
are similar to those already occurring in power systems, such as the rise of distributed energy
resources and fluctuating renewable energy sources. Extensive research has been performed in the
past decades on how to accommodate these changes in the power system. Therefore, the literature
on power systems can inspire the development of solutions for future heating systems.

With the expected fluctuations in the available capacity and generation cost of future heat sources,
flexibility in heat consumption will be necessary to maintain reliable heat provision at a reasonable
cost. Attractive sources of demand-side flexibility in heat systems include thermal energy storage,
virtual storage in buildings, and pipeline storage [20]. Thermal energy storage systems are available
for both short-term and seasonal applications. The latter is especially useful given the seasonality
of carbon-neutral sources such as solar heat, as well as many sources of cooling-based excess heat.
Second, it is expected that residential and industrial consumers will become more pro-active in
their usage of heat, for example by adapting their load in response to price signals. By allowing
indoor temperature to vary within a comfort range, buildings can act as a virtual storage [21]. This
marks the rise of the heat prosumer, defined in this thesis as a pro-active consumer that may possess
assets for energy generation, conversion and/or storage [22]. Third, the district heating network
itself can be a source of flexibility by storing heat in the pipelines.

The operation of future heating systems will become more complex with the massive integration
of distributed excess and renewable heat sources, and the need for flexibility provision to the
electricity system. Whereas most electrical power systems have moved to liberalized markets,
almost all existing district heating systems have a strongly regulated market, where the price
of heat and/or the profit made by district heating companies is regulated [23]. Liberalization of
heating markets would mean that the schedule and price of heat are determined based on a heat
market clearing, with minimal regulation on the form of generator and consumer bids. The main
argument against liberalization of heat markets is the lack of competition among heat generators,
as a relatively small number of large producers can supply end-users in a certain area due to
distance restrictions of heat transport. In this regard, heat systems are unlike power systems.
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However, more liberalized heating markets may become attractive in large district heating systems,
in view of the possible increase in market competition due to increasing demand-side flexibility, as
well as the increasing number of excess heat producers. This is illustrated by the case of Lithuania,
where a relatively advanced level of competition has been introduced in the district heating market
[24, 25]. In fossil-fuel based heat systems, the marginal cost of heat fluctuates less on a daily basis,
which is another reason that heat markets and variable heat prices were less essential in the past.
However, with the expected increase in daily price fluctuations, a real-time heat price could be of
use, for example to incentivize demand-side flexibility [19].

1.2 Challenges and research directions

As a result of these developments, the operation of district heating systems will become more
complex. At the same time, the integration of new market actors may pave the way for liberalized
heat markets. These markets should be designed such that they can support the more complex
operation of future district heating systems and coordination of the actors involved. By coordination
we mean the act of steering different actors to enable them to work together effectively. This section
presents the three main challenges we identify for market-based coordination of actors in future
district heating systems. Based on these challenges, we introduce three corresponding research
directions (RDs) for this thesis and identify the existing research gaps in each of these directions.

Moving from a system with a few large generators and passive consumers to a setting with many
smaller generators and prosumers, the first challenge involves the optimal coordination of these actors.
Their size and multitude may make them unsuitable for full market integration, i.e. the submission
of bids in wholesale markets as an individual entity [26], as the transaction cost may be too large
for both the market operator and the small heat providers. From a market operator’s perspective,
direct market participation of many small producers may be problematic for several reasons. The
communication burden increases with the number of participants, as each of them must submit
bids. Furthermore, the optimization problem that is solved to determine the optimal heat schedule
and price of heat becomes more complex as the number of bids increases [27], which may lead to
computational issues. Therefore, current electricity markets often have a minimum bid size, which
excludes many small actors from participating directly in the market. Direct market participation
may also be undesirable from the perspective of excess heat producers and prosumers with local
heat generation. Excess heat providers, such as energy-intensive industries or data centers, are
usually companies for which heat generation is not their main business. The same holds for
(residential) prosumers with local production. It may therefore be difficult for them to formulate
and submit bids, as this can be a labour-intensive process that involves special competences, so that
the transaction cost for selling small amounts of heat would be too high. Related to this challenge,
we define our first research direction:

[RD1] Scheduling and pricing for many small heat producers

In electricity systems, the need for coordinating many small actors has arisen in the context
of demand response. Similar to excess heat generators, residential (electricity) consumers are
small actors that cannot participate in the market directly, as their capacity is normally smaller
than the minimum bid size. Instead, the literature envisions a new market entity called an
aggregator to bridge the gap between demand-side flexibility providers and the wholesale and/or
flexibility markets [28]. Direct control of such a large number of loads by the aggregator is costly,
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computationally heavy, and undesirable from a privacy perspective. As an alternative method
for activating demand-side flexibility, dynamic pricing has been investigated in the literature, and
in some places implemented in practice [29]. Under dynamic-pricing schemes, the aggregator
sends a time-dependent price signal to (residential) loads, who use it to self-schedule their energy
consumption [30]. This strategy may also be suitable for the coordination of many small actors in
the heating system, and has in fact been implemented in practice in the Stockholm district heating
system [31]. However, coordination of small heat producers through price signals has not been
explored in the scientific community.

The second challenge we see concerns network operation in future district heating systems. With
the integration of heat sources in the distribution network, as well as the rise of the prosumer,
these systems become increasingly distributed. In such a distributed system, it is more difficult
to guarantee network feasibility and to ensure energy- and cost-efficient use of the network [32].
Indeed, the installation of small generation capacities across a district heating network may increase
the burden for network operators [24]. Efficient network operation is important for district heating
systems, since low operational cost increases their competitiveness with local solutions at the
end-user, such as local heat pumps. There is thus a need for the design of heat markets that assist
network operators in the integration of prosumers and distributed heat producers. Previous works
emphasize the need for network-aware coordination of distributed energy resources to support
reliable and efficient system operation [32–34]. In this context, studies in both heat and power
systems have proposed to include network constraints explicitly in market-clearing optimization
problems. This motivates our second research direction:

[RD2] Network-aware market design for distributed district heating systems

A major challenge in this field has been to model the temperature and pressure dynamics in the
network accurately, while maintaining convexity of the optimization problem. Non-convexity in
market-clearing formulations has many drawbacks, including the lack of optimality guarantees on
solver solutions, intractability of larger problems, and the absence of meaningful dual variables.
Meaningful dual variables are desirable in a market setting because of their useful interpretations
for pricing. For electrical power systems, research on network-aware optimal dispatch has been
ongoing since the early 1990s [35, 36]. The Alternating Current (AC) power flow equations
underlying the power system are non-linear, and including these equations in the optimal dispatch
results in the non-convex AC Optimal Power Flow (OPF) model. In the past decades, the
approximation and convexification of this problem has been an important research topic [37, 38].

In the design of network-aware optimal dispatch mechanisms for district heating, similar difficulties
arise. The equations governing the dynamics of district heating networks are highly complex
and non-linear. As a consequence, the most general Optimal Thermal Flow (OTF) model with
variable flow and temperature is a non-convex, nonlinear problem. In an optimal-dispatch
setting, the so-called node method is often applied, which results in a Mixed-Integer Nonlinear
Program (MINLP) [39, 40]. Studies on network-aware heat market design have proposed different
convexification approaches in three main categories, based on the related ‘control strategy’ for
the network variables: Variable-Flow-Variable-Temperature (VFVT) with convex relaxations,
Constant-Flow-Variable-Temperature (CFVT), and Variable-Flow-Constant-Temperature (VFCT)
[41–47]. Each of these strategies has its own advantages and drawbacks, and the most suitable
design must be selected considering the characteristics of future district heating systems. Previous
works on network-aware heat markets have not placed emphasis on the integration of flexible
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agents such as prosumers and storage systems. As a result, their flexibility is often not harnessed
to the fullest. This shows that our different research directions are in fact closely linked, and should
not be tackled in isolation.

The third challenge we observe for the operation of future district heating systems is the optimal
integration of storage. In fact, there are two types of energy storage systems that are relevant
in this context. First, the district heating network itself can be seen as a special kind of heat
storage. This is a result of time delays that occur when transporting heat from generators to
consumers. In this regard, heat networks differ from power networks, where transmission of
electricity occurs almost instantaneously. In a market setting, pipeline heat storage becomes relevant
in certain network-aware market-clearing formulations. Second, it is expected that regular thermal
energy storage will become an essential part of future district heating systems [48]. To support the
optimal operation of these systems, there is a need for suitable market mechanisms that harness
the flexibility from both types of storage. It remains an open question how heat markets, and
energy markets in general, should be designed to optimally integrate storage. In this context, a
specific type of market design that considers non-merchant storage has sparked research interest in
recent years [49–51]. A non-merchant storage does not submit price-quantity bids to a market,
but its operational constraints are included in the market-clearing problem, so that the storage
operation is co-optimized with generation and loads to achieve the highest social welfare. Not
only designated storage devices can be integrated in markets as non-merchant storage: in fact,
pipeline heat storage behaves as a special kind of non-merchant storage in network-aware heat
markets. This motivates our third and final research direction:

[RD3] Market integration of non-merchant storage

A special feature of storage is that its optimal dispatch involves time-linking or intertemporal
constraints. Indeed, network-aware heat market designs that consider network storage naturally
include such time-linking constraints in the market-clearing optimization problem, showing
the connection between [RD2] and [RD3]. The intertemporal constraints pose challenges to
market design, in part because energy markets are cleared sequentially for subsequent finite time
horizons, even though different market-clearing horizons influence one another. An overview
of market design with intertemporal constraints is given in [52]. If subsequent market intervals
are cleared without taking their interdependence into account, this can result in suboptimal,
‘myopic’ scheduling of non-merchant storage. Myopic decisions on end-of-horizon storage levels
are problematic because the temporal arbitrage by the storage is reduced, and desirable market
properties may be lost.

1.3 Contributions

Motivated by these developments, the main objective of this thesis is to design markets that
support the optimal operation of future district heating systems. This thesis contributes to the
literature through the analysis and design of market mechanisms for district heating systems,
focusing on three important aspects as specified by our research directions. We cover a broad range
of topics within this field, with the nature of our contributions ranging from fundamental towards
more applied. First, this thesis thoroughly investigates the performance of a specific exogenous
pricing solution for scheduling and pricing excess heat. Our findings highlight that more complex
market-based coordination may be necessary in future, when the penetration of these sources
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significantly increases. Second, we improve the market-based coordination of distributed heat
sources by proposing a network-aware market mechanism, with a focus on flexibility in nodal
heat injections. This market mechanism can help maintain feasibility and reduce operating costs
in district heating networks, by effectively promoting more local heat consumption. Our third
contribution sheds light on a more fundamental issue within market design for non-merchant
storage. This work draws attention to the fact that market efficiency in such formulations may be
compromised, and shows why this happens using a thorough duality analysis. Furthermore, we
propose a method for restoring this market property in a perfect foresight setting. Although this
thesis is focused on heat, our work on non-merchant storage considers a more general formulation,
so that it is applicable to other types of non-merchant energy storage as well.

Towards the first research objective regarding scheduling and pricing for many small heat producers,
we focus on excess heat producers, which are expected to supply a large share of the heat load
in some future district heating systems. The possible price-responsiveness of these actors also
makes them more interesting to study in terms of pricing than non-dispatchable renewable heat
producers. Several existing works have investigated the scheduling and pricing of excess heat
producers. In these studies it is often assumed that these producers participate directly in a
market by submitting marginal-cost based bids [53–56]. All of these works disregard flexibility
in the production profile of excess heat producers, which illustrates the fact that bid formation
for excess heat providers is non-trivial. More importantly, we have argued above that market
participation may be unsuitable for small producers, as well as prosumers. As an alternative to
direct or aggregated market participation, price signals could be used for the integration of small
heat producers. In the literature, such price signals have already been investigated in the context
of demand-side flexibility in power systems [57]. Here, common price-signal designs include
time-of-use pricing, critical peak pricing, and real-time pricing [57–59].

An interesting price signal is used to integrate small heat producers in the Open District Heating
system in Stockholm [31]. Here, the system operator disseminates an ambient temperature-
dependent price signal, which is computed using a pre-determined decreasing function of the
ambient temperature. This is motivated by the fact that heat demand usually decreases with
ambient temperature too. Excess heat producers use this price signal to self-schedule their production,
and are paid according to the price signal for each generated unit of heat energy. Although the
methods seems to have successfully attracted and integrated several sources of excess heat into
the Stockholm heating system, this method has not yet been verified in systems with higher
shares of excess heat. To this end, [Paper A] aims to investigate how the performance of this
particular pricing method depends on excess heat penetration. This is done through a realistic
case study of the Copenhagen district heating system. [Paper A] thus presents a quantitative
analysis of an existing market mechanism’s performance, given an existing district heating system.
The main contribution of this work is the quantification of sub-optimality of the price-signal
method compared to the case where excess heat producers participate in the market directly. A
methodological contribution of this work is its district heating system model, that is quite simple
but includes electricity-price dependent bidding behavior for both CHP plants and cooling-based
excess heat providers. This model can be easily applied to investigate other topics, such as
quantifying the effect of forecast errors in electricity prices. Due to its simplicity, the model could
easily be extended, for example to include uncertainty or network constraints.

Towards the second research objective, many studies have proposed network-aware heat market
designs to support the operation of increasingly distributed heating systems. In our view, the
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two most common network formulations used in this context have important shortcomings.
In CFVT-based heat markets that are most widely used, the flow of the heating fluid becomes
a parameter in the optimization problem. This limits the exploitation of prosumer flexibility
considerably, as the sign of nodal heat injections is fixed, and rather restrictive bounds are imposed
on their size as well. As the harnessing of this flexibility becomes increasingly important in future
district heating systems, this is a severe limitation of this formulation. A second common approach
is to apply convex relaxations to the VFVT formulation [41, 42, 60]. A major drawback of this
approach is that the obtained solution is in most cases infeasible to the original problem, and
there exist no optimality guarantees for the feasible solution that needs to be retrieved ex-post.
In addition, the relaxed problems often remain nonlinear mixed-integer problems [41, 42], and
can therefore already become intractable in the presence of a moderate number of nodes. In
summary, more suitable network-aware heat market designs are needed to support the operation
of future distributed heating systems. [Paper B] aims to fill the research gap related to the design
of network-aware markets with a focus on optimally harnessing prosumer flexibility. In contrast to
previous studies, we use the VFCT control strategy to model the network, which allows for flexible
sign and size of nodal power injections. The resulting market-clearing optimization problem is a
linear program, which ensures computational tractability and the existence of meaningful duals for
pricing. The proposed market design helps ensure network feasibility of resulting heat schedules.
By including an approximation of heat losses in the network, this mechanism is also able to reduce
operational cost of district heating. [Paper B] analyzes the proposed market mechanism in detail.
In order to increase transparency of scheduling and pricing using this mechanism, peer-to-peer
trades are added to the formulation. In this way, we can trace the network losses back to specific
producers and consumers, which can be used to explain the price formation in this market. A final
contribution of [Paper B] is the formulation of a suitable benchmark to evaluate our proposed
network-aware market mechanism against.

In relation to the third and final research direction, we focus on end-of-horizon issues in the
market integration of non-merchant storage. The main challenge is to account for the relations
between subsequent market intervals, in order to avoid myopic decision-making regarding the
end-of-horizon state-of-charge in the storage. If the markets are cleared myopically, taking only
the current horizon into account, non-merchant storage systems will be empty by the end of the
horizon, unless negative prices occur. To avoid this, a future-aware decision on the final storage
level could be enforced. However, many studies on market clearing with non-merchant storage
make simplifying assumptions on the final state of energy. A first contribution of [Paper C] is to
formally show that while common simplifying assumptions ensure cost recovery for the storage,
they can lead to market inefficiencies. This effect has been overlooked in existing works that
consider market properties within a single horizon [51]. To remedy this, a future-aware approach
would be needed. Our second contribution in [Paper C] is the analysis of market properties in a
future-aware setting, assuming perfect foresight of future market parameters. Previous works have
applied rolling-horizon methods to set a future-aware end-of-horizon level for the non-merchant
storage [52, 61, 62]. In [Paper C], we consider a more general formulation where the final storage
level is constrained to take a pre-specified value, to be determined for each market clearing while
taking future market horizons into account. The second contribution in [Paper C] is to show that a
new problem arises in this future-aware setting, even if end-of-horizon storage levels are chosen
with perfect knowledge about future market horizons. This problem entails that market prices in
subsequent horizons may fail to reflect the value of storage. Previous works have analyzed this
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issue in relation to ramping constraints in a rolling-horizon setting [61]. Through an illustrative
example as well as detailed proofs, [Paper C] shows under which conditions the market prices in
subsequent market horizons fail to reflect the value of storage. In addition, we show how this may
leads to a lack of dispatch-following incentives and lack of cost recovery for the non-merchant
storage. In particular, the storage system may sometimes fail to recover its cost, while it improves
overall social welfare. As a final contribution, we propose an adaptation of the future-aware market
with non-merchant storage where these market properties are restored, given perfect foresight
about future market-clearing parameters.

Our contributions towards the three research directions are compatible, i.e. the proposed market
designs can be combined. For instance, both the price-signal method from [Paper A] and the
storage formulation from [Paper C] can be implemented in a network-aware market as proposed
in [Paper B].

1.4 Thesis organization

This thesis provides an overview of the contributions made during this Ph.D. project, based on the
articles written in this period. In Chapter 2, we provide context through a brief overview of existing
district heating systems and markets. In addition, this chapter lays the theoretical foundations for
the remainder of the thesis, by introducing the fundamentals of convex optimization and common
formulations in energy markets. Chapters 3 to 5 each present the contributions to one of our three
research directions. Finally, we draw conclusions and provide perspectives for future work in
Chapter 6. The scientific articles that this thesis is based on are provided as appendices.

Notation: For coherence within this thesis, notations have been adapted compared to their original
form in the publications. Lower-case roman letters are reserved for decision variables and for
functions. We use lower-case Greek letters for all dual variables, but Greek letters may sometimes
also be used for other purposes. We use bold symbols for vectors. For instance, for a double
indexed value pgt, the vector pg stacks all values for different t, and the vector p is a vector stacking
all the vectors pg. We use calligraphic capital letters to represents sets, e.g. G, and the matching
capital letter (in this case G) represents the size of this set. Where possible, we use matching
lower-case letters as indices for elements from those sets, for example g would be the index
corresponding to the set G. We use the superscripts H and E to distinguish between heat- and
electricity-related quantities. Upper and lower limits are represented using · and · , respectively.
We use ·̂ to indicate that a quantity is forecasted or estimated.

1.5 List of publications

The selected publications forming the basis of this thesis are:

[Paper A] L. Frölke, I.-M. Palm, J. Kazempour, “Market integration of excess heat”, in Electric Power
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[Paper B] L. Frölke, T. Sousa, P. Pinson, “A network-aware market mechanism for decentralized
district heating systems”, in Applied Energy, vol. 306, Article number: 117956, 2022. DOI:
10.1016/j.apenergy.2021.117956.
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Chapter2
Heat market design preliminaries

This chapter provides context on existing district heating systems and markets, and lays the
theoretical foundations for the remainder of this thesis. Although this thesis focuses on heat
market design, the same principles underlie the design of other energy markets. As the literature
on electricity markets is more developed, it is used here to inform and inspire the discussion on
future heat markets.

In Section 2.1, we describe the elements of current and future district heating systems. Next,
we introduce several fundamental concepts in energy market design in Section 2.2, and discuss
these concepts in the context of current European district heating markets. As optimization is
an essential tool used in almost all market-clearing procedures, we present the fundamentals of
(convex) optimization in Section 2.3, including common formulations used in energy markets.
Energy markets may include models of network operational constraints, which we discuss in detail
specifically for heat markets in Section 2.4.

2.1 Current and future district heating systems

We describe common elements in current and future district heating systems in terms of generation,
consumption, storage and transport of heat. Table 2.1 provides an overview of current and future
elements in each category. The development of district heating systems is often expressed in terms
of so-called ‘generations’, depending on their operational principles [3, 48, 63]. Most current
systems are considered to be of the third generation, while the requirements for future fourth and
fifth generations are discussed in the literature.

2.1.1 Generation

In many systems, the majority of the heat load is supplied by Combined Heat & Power (CHP) plants
that simultaneously generate heat and electricity [48, 64]. Such cogeneration is highly efficient
compared to generating the different forms of energy separately. Although waste-to-energy and
biomass-fueled CHP plants are common, fossil fuels still account for 90% of total heat supply in
district heating systems globally [65]. Fossil-fueled and sometimes electric heat boilers are typically
used to supply peak load [48]. In future carbon-neutral district heating systems, most heat should
be supplied by renewable and excess heat sources [48]. While waste incineration in CHP plants is
useful as a year-round reliable source of heat, recycling of waste should be prioritized over heat
generation from an overall energy-efficiency perspective. Renewable heat sources include solar
and geothermal heat. Small amounts of solar and geothermal heat have already been introduced
in several countries, but more can be harnessed in the future [66, 67].

There is a great potential to use excess heat from industrial or urban sources [15, 48], and an
increasing amount of such sources is integrated in district heating networks [65, 68]. Industrial
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Current Future
Generation • Heat-only and CHP plants • Excess heat

(fossil fuels, waste, biomass) • CHP plants (waste)
• Boilers (fossil fuel, electric) • Renewable heat (solar, geothermal)
• Centralized • Decentralized
• Controllable • Seasonal & daily fluctuation

Consumption • Inflexible • Flexible
• Space heating ≫ DHW • Space heating ≈ DHW
• Seasonal differences • Reduced seasonal differences

Storage • Short-term TES
• Seasonal TES

Network • Medium supply temperature • Low supply temperature
• Centralized • Distributed
• Radial, unidirectional • Perhaps circular, bidirectional
• Delay & storage • Delay & storage

Table 2.1: Overview of elements in current and future district heating systems. CHP = combined
heat and power, DHW = domestic hot water, TES = thermal energy storage.

excess heat can be extracted from energy-intensive processes in for example steel and cement
factories. Urban excess heat can come from a variety of sources, such as waste-water treatment
plants, data centers, metro tunnels, and service-sector buildings [15, 65]. The excess heat from
many urban sources comes from cooling processes, either by refrigeration systems in the service
sector [69], or by cooling systems in e.g. data centers [70]. Power-to-X production facilities may
also supply excess heat from cooling their electrolyzers [71]. Heat pumps are used for heat recovery
in such cooling-based excess heat sources. Due to the presence of heat pumps and CHP plants,
future district heating systems will remain tightly connected to power systems.

In future district heating systems, heat consumers may also have their own local heat production
to complement district heating, for example using photovoltaic-thermal panels [72]. Certain
excess-heat providers are also both producers and consumers of heat, such as supermarkets that
both consume heat for space heating, while producing heat as a by-product of refrigerator cooling
[73]. With the integration of excess and renewable heat, as well as heat production by small
consumers, future district heating systems will be increasingly decentralized.

2.1.2 Consumption

District heating supplies residential and commercial buildings, as well as industries. Residential
consumption can be subdivided into Space Heating (SH) and Domestic Hot Water (DHW)
consumption. Substantial reductions in the space heating demand of future buildings are expected
due to improved isolation [74]. A benefit of this is that seasonal heat load will have smaller
fluctuations, as these seasonal fluctuations mainly come from the space heating demand. On the
downside, heat load reductions challenge the efficient operation of district heating systems, as
lower heat densities imply a higher unit cost of distribution [74].

Currently, heat demand is rather inelastic [75]. However, experimental and simulation studies
have shown that buildings can provide short-term flexibility [76]. Space heating demand can be
flexible by allowing deviations from a setpoint indoor temperature within an acceptable range [18,
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20]. In [77], demand-side flexibility is obtained from storage tanks for domestic hot water, as well
as from flexible space heating demand. The flexibility provided by buildings may be smaller than
by dedicated storage devices [18], because the latter can provide medium-term storage as well. The
available flexibility varies widely with building type: for example, less insulated buildings have a
higher flexibility potential [78]. The flexibility can be used for peak shaving in the total system load
[79], relieving congestion in distribution networks [80], integration of excess and renewable heat,
and cost reductions [76]. There is thus a great potential benefit of harnessing this flexibility, but in
current systems this is rarely implemented. The adoption of demand-side management requires
more advanced metering and communication infrastructure in heating systems. Furthermore,
effective business models are needed to make flexibility provision acceptable and profitable for
consumers [18].

2.1.3 Storage systems

The term thermal energy system is used for heat storage in dedicated devices. Some current district
heating systems make use of short-term thermal storage, typically in hot water tanks, for example
to smoothen daily variations in heat load or deal with price fluctuations of CHP plants. Short-term
thermal storage can also absorb daily fluctuations in renewable and excess heat sources, and reduce
the use of expensive peak-load generators. With the increased electricity dependence of future
heat sources, it may become profitable for short-term thermal storage to provide balancing power
to electricity systems [81]. Finally, network congestion and high pumping cost during peak hours
can be prevented using short-term storage [82].

Although longer-term thermal storage systems are much less common [20], several types of seasonal
thermal storage are technically feasible, including large storage tanks, pit storage, and borehole
storage [83]. Seasonal latent heat storage systems consist of abundant, low-cost, and non-toxic
materials, but heat loss may be around 30%, and the energy density of these storages is low [84].
Still, this technology is already used commercially on large scale in e.g. Denmark, Germany, and
Sweden [85], and other technologies for seasonal thermal storage are under development [84]. In
Denmark, several large pit heat storages have been built in e.g. Marstall [81]. In Alberta, Canada, a
borehole seasonal storage allows the local district heating system to supply over 90% of the yearly
space heating load with solar energy [86]. Heat sources in future district heating systems will
exhibit strong seasonality, due to seasonal patterns in solar radiation and cooling loads of excess
heat providers. Therefore, the economic benefit of seasonal storage systems will increase [81].

2.1.4 Network layout and operation

Almost all modern district heating systems use water as a heat carrier [63]. Heat transport is
considerably slower than electricity transmission, with delays that can amount to multiple hours
in large networks [8]. District heating networks usually have a radial structure, consisting of a
transmission network with distribution pipelines branching out [3]. The networks consist of a
supply and a return side. Supply temperatures in second-generation networks were above 100°C
with relatively high heat losses, but these are lowered in third-generation systems. The trend
towards lower distribution temperatures is expected to continue [48], to decrease network heat
loss and to allow the injection of low-temperature excess heat in the supply network. Most modern
heating networks are operated with variable mass flows, to adapt to changes in demand more
easily than when varying supply temperatures [41, 87]. The variable cost of heat distribution
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comes from pipeline heat loss and electricity used for pumping. There is a trade-off between these
two cost components, as higher flow leads to increased power used for pumping, while reducing
heat loss. The relative contributions of pumping cost and heat loss cost vary between studies,
depending on the design of the heating system and the operating strategy [88, 89].

In future heating networks, several changes are envisioned to improve efficiency of network
operation, and to accommodate developments in the generation and consumption of heat. Heating
networks need to adapt to the situation where generation moves from large centralized plants to
smaller, more distributed heat sources, while flexibility in heat consumption may become available.
Network operators are looking for solutions to optimally integrate these decentralized (excess)
heat producers and prosumers [90]. In this context, alternative structures to the existing tree
structures are sometimes considered, such as a ring structure with branches [3]. In addition, while
current district heating systems are operated with unidirectional pipeline flow, the possibility of
bidirectional networks has been investigated in early-stage works, such as the simulation study in
[91].

The possibility of utilizing the thermal energy storage present in the network itself is a popular
research topic. In order to harness this flexibility, advanced control strategies are needed, and the
temperature of the water in the network needs to be varied [20, 41]. However, frequent temperature
variations are undesirable as they may cause premature material fatigue in steel pipelines [20]. In
addition, flexibility provided by network storage has been shown to be limited compared to the
flexibility potential from buildings [92]. Overall, there are disadvantages to the active utilization of
pipeline heat storage, while the benefit to be gained may be small [93].

2.2 Energy market design in theory and practice

Here, we introduce important concepts in the design of energy markets, and describe how existing
heating systems deal with these different aspects, with a focus on European heating markets.

2.2.1 General organization of energy markets

An electricity market design can be defined as ‘the set of arrangements which govern how market
actors generate, trade, supply and consume electricity and use the electricity infrastructure’ [94].
Energy markets have the aim of introducing competition within and between the generation and
consumer sectors, which can lead to increased cost efficiency in two main ways. First, competition
can have price-lowering effects in the short term, by creating the incentive to offer the available
energy for the lowest possible price. Second, markets can be designed to create efficient long-term
investment signals, providing generators and consumers with incentives to invest in cheaper
and/or more energy-efficient technologies [24, 95].

Two core elements of a market design are a bidding format and a market-clearing procedure. The
latter can be defined as a set of rules that determines the schedule and price of energy for the
considered time horizon, given bids from market participants. Typically, an optimization problem
is formulated to clear the market, with the aim of finding a schedule that is optimal with respect to
a specified objective. We will describe the general formulation of such optimization problems and
related common bidding formats in Section 2.3.

Energy is often traded in both day-ahead and intra-day markets. In the day-ahead market, a
schedule and price is determined for the following 24-hour horizon. During the day itself, intra-day
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adjustments can be traded in intra-day markets closer to the time of delivery. Finally, there may be
balancing or real-time markets, which are used as a last resort to offset imbalances between supply
and demand [30]. Day-ahead planning is useful to give generators sufficient time to plan their
operation, while forecasts used (e.g. weather forecasts, load forecasts) are reasonably accurate at
this stage [96]. However, there will be forecast errors and possibly unforeseen changes in plant
availability, which can be accounted for in intra-day and balancing markets.

Most European countries do not have a common liberalized marketplace for heat, because heat
generation and distribution is handled by a single company or organization, commonly referred to
as the district heating company. Little information on existing scheduling procedures is available,
likely because this scheduling is done by the district heating companies internally. The Greater
Copenhagen area has an optimal scheduling procedure in place, supervised by Varmelast [68].
Varmelast is responsible for preparing day-ahead heating plans, and adjusting this plan three
times daily, as updated heat forecasts, electricity price forecasts, and available capacities become
available. The schedule is made based on a cost-minimization principle, while also considering the
hydraulics of the system. However, waste incineration plants and geothermal energy are politically
prioritized [97]. The exact scheduling procedure is confidential.

2.2.2 Market actors and structure

Actors on energy markets include generators, consumers, a market operator, and a network operator.
There may be separate operators of distribution and transmission networks, but district heating
systems commonly have a single network operator handling both transmission and distribution of
heat. For fair competition, it is often considered important that generation, transport, and retail of
energy are executed by separate entities. A vertically-integrated utility is a single entity that owns
generation, transmission and distribution assets [98]. If a vertically-integrated utility owns all
generation, it may have a monopoly for the supply in a certain area. When different tasks are
executed by different entities, and no vertically-integrated utilities exist, the market structure is
called unbundled. In power systems, there is typically a wholesale market where generators, large
consumers, and energy retailers can trade electricity. Small consumers cannot participate there
directly, because there is a minimum bid size that exceeds their needs. Instead, they buy energy
from retailers on the retail market.

Related to unbundling and ownership is the concept of third-party access (TPA) or market opening.
In heating systems, third-party access refers to the non-discriminatory access to networks to supply
heat [99]. The name already suggests that currently, most networks do not allow all ‘third parties’,
in contrast to gas and electricity systems, where market opening and third-party access have
already been addressed in the past decades. The European Commission has called for the opening
of district heating networks for third parties, in order to promote integration of renewable and
excess heat [100]. Third-party access can also promote competition in district heating systems [99,
101]. Several possible schemes for third-party access in district heating markets as listed in [24] are
1) no TPA, 2) negotiated TPA, 3) regulated TPA, and finally 4) full TPA. Under negotiated third-party
access, the district heating company is free but not obliged to negotiate contracts with third parties
[24]. Under regulated third-party access, the district heating company must connect external heat
producers, although it is often allowed to put some general requirements on the suppliers in place.
Under regulated third-party access, the conditions of access are determined in advance, whereas
these conditions are negotiated on a case-by-case basis in negotiated third-party access [99]. Finally,
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Figure 2.1: Categorization of European district heating systems based on level of unbundling and
deregulation. TPA = third-party access. Adapted from [25].

full third-party access is used to describe a system in which non-discriminatory access has to be
given to all producers wishing to enter the system, if they satisfy a set of pre-specified requirements,
and where the network operator is a separate entity that does not own any heat generation units

In most European countries, heat generation and distribution is handled by a single, vertically-
integrated district heating company. An overview of European countries and their level of
unbundling and deregulation (discussed below) in heating markets is shown on the horizontal axis
in Figure 2.1. The district heating company often owns both generation plants and the network,
and sells heat directly to heat consumers without any retail market. In some cases, there are other
heat generators present in the system, so-called independent heat producers, that are not owned by
the district heating company. As illustrated in Figure 2.1, there are a few exceptions to this rule.
In Hungary, heat production and distribution are to be executed by different entities [25]. Most
Italian district heating systems are vertically integrated, with the exception of the Turin area, where
unbundling has been completed [25, 102]. Denmark is listed as vertically integrated in Figure 2.1,
but exceptions exist in the larger Danish networks. For example, in the district heating system
of Greater Copenhagen, the distribution company is formally separated from the generators. In
addition, the independent entity Varmelast is installed by the different generation companies in
this system, and given the task of scheduling the heat generation [68]. Although many countries
have vertically integrated structures, it should be noted that district heating companies are often
publicly owned [66, 103]. Many Danish district heating companies are cooperatives owned by
its own customers. In Sweden, after heat market liberalization in 1996, many district heating
companies moved from municipality-owned to private- or state-owned large energy companies
[23].

Lithuania has ambitious goals related to the unbundling of district heating market activities [24].
Regulated third-party access has been implemented [25], as an intermediate step towards the
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aim of full third-party access [24]. In Sweden, third-party access has been particularly highly
debated, when liberalization on the heating market lead to price increases in some regions. Process
industries, such as steel factories and waste-water treatment plants, have promoted the introduction
of third-party access in Swedish heating networks [99] . Sweden had a weak form of negotiated
third-party access implemented between 2009-2014, where the district heating company must pay
third parties according to the avoided variable costs [99]. Since 2014, regulated third-party access
has been adopted [104]. Poland has implemented full third-party access, but due to complexity of
regulations, this is not effective in practice [101]. Most other countries have no specific regulation
in place regarding third-party access, and we refer to [101] for an overview.

2.2.3 Market competition and regulation

The literature disagrees about the question whether or not district heating is a natural monopoly,
which can be defined as follows: ‘A firm producing a single homogeneous product is a natural
monopoly when it is less costly to produce any level of output of this product within a single
firm than with two or more firms. In addition, this “cost dominance” relationship must hold over
the full range of market demand for this product’ [105]. Although many works consider district
heating as a natural monopoly, this view is challenged in several recent works, such as [24, 101]. In
[101, 106] it is noted that the heating network may be regarded as natural monopoly, but that on the
production side, a second competitor does not face high sunk costs. Therefore, a competitive heat
market should in general be possible, especially in larger networks. Natural monopoly or not, in
the absence of perfect competition (i.e. in practice), most markets can be subject to the execution of
market power by its participants. To combat the exertion of market power, the market may need to
be regulated.

The subject of competition is especially relevant in heat markets, compared to e.g. electricity and
gas markets. Creating competition in electricity and gas markets is easier, as their grids cover
large areas and are even interlinked on international scales. In district heating systems, however,
heat losses under transport of energy restrict the size of the networks: typically, networks are
built to serve a single city or urban region. As a result, the number of generators and consumers
competing in the same system is also more limited [107]. In sufficiently large heating systems,
where a greater number of generators can be integrated, competition on the generation side is
considered feasible [24]. The authors of [24] argue that the regulatory reform in Lithuania shows
the feasibility of (partial) liberalization of district heating markets. Depending on the system size,
the benefits and disadvantages of liberalized and regulated markets must be carefully weighted. In
strongly regulated markets, there may be a lack of incentive to invest in energy- and cost-efficient
new technologies [24]. In liberalized systems, efficiency of the system may be increased through
competitive pressure. However, liberalized markets do not necessarily decrease energy prices for
consumers, if there is room for exertion of market power [107]. It has for example been shown that
prices of heat in some regions in Sweden increased after liberalization of the heating market [75].

2.2.4 Remuneration of generators

In the literature, existing district heat pricing methods are divided into two categories: regulated
or liberalized [23, 103]. Although one could argue that even liberalized markets have some type of
regulation in place, we stick with this divide and define it as follows. In a liberalized heat market,
the price of heat is defined between producers and consumers, with minimal additional regulation
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in place. In regulated heat markets, the price formation is more strongly regulated with the aim of
protecting consumers from excessively high prices, by preventing monopoly pricing and inhibiting
the exercise of market power by generators. Ideally, such regulation should also provide incentives
for investments in cheaper and more efficient technologies. However, a drawback of several types
of price regulation is the lack of such incentives [107]. Different type of regulation principles have
been applied in practice [23, 103, 107]. Price regulation may be done ex-ante or ex-post, i.e. before
or after the market is cleared [103, 108]. On the vertical axis of Figure 2.1, European countries are
sorted based on their regulations on the pricing of heat.

One popular regime for pricing of heat generation is regulated pricing with mandatory price
control [103]. Common methods for regulated pricing are non-profit and cost-plus methods, as well
as the introduction of a price cap. In Denmark, a non-profit principle is applied to both generation
and distribution of district heat. This means that the price of heat must cover all cost of supply and
distribution, both variable and fixed. A drawback of this method is that there is little incentive for
suppliers to reduce production cost, e.g. by investing in new technologies or increasing energy
efficiency [107]. However, this effect is partially overcome by the public ownership of district
heating companies in Denmark. In the Greater Copenhagen optimal scheduling procedure, the
participating plants must submit their true cost, based on fuel prices, operation and maintenance
cost, energy taxes, CO2 quota, and electricity price forecasts. The price of heat is not determined
by Varmelast, but follows from confidential long-term bilateral contracts between generators and
the district heating company.

The cost-plus pricing mechanism is similar to the non-profit scheme, except that a limited profit is
allowed. Usually, the allowed profit is specified as a fixed share of the total cost. The cost-plus
method, for example used in Iceland, Poland, and Slovakia [25], is the most common method
for regulated pricing in Europe [103]. As the allowed profit is proportional to a heat generator’s
total cost, a drawback of this method is that generators have an incentive to inflate costs [23]. In
countries including The Netherlands and Norway, a price cap for district heat is set based on the
price of the cheapest alternative [24, 25], although this method can be too restrictive and therefore
hamper district heating expansion [103].

Another popular pricing paradigm for heat generation in Europe is liberalized pricing with ex-post
price control on request [25, 103]. Suppliers are not allowed to exercise market power by charging
excessively high prices, which is controlled ex-post on request, when there is reasonable evidence
that excessive prices have been charged. The Swedish district heating sector was deregulated in
1996, which involved removal of the non-profit pricing principle [109]. In some areas, heat price
increases followed, such as in Uppsala and Stockholm, which opened the debate whether and
how to re-regulate the heat market [99, 109, 110]. In 2008, Sweden introduced transparency rules,
which state that suppliers must make information about their price setting mechanisms public,
and submit annual reports [23, 103, 109].

Lithuania stands out in Figure 2.1, having both liberalized pricing and high degree of unbundling.
Here, a heat auction is organised by Baltpool, the operator of the energy exchange [111]. Heat
suppliers have to place offers for the available quantity and a related price, and the auction
determines the heat generation schedule for each supplier based on a least-cost principle, taking
into account the operational constraints of the heating network [25]. The variable cost of the district
heating company is used as a price ceiling for bids in this auction [24]. If a scheduled participant
cannot deliver the promised quantity, it must cover the cost for an alternative heat generator.



2.3. CONVEX OPTIMIZATION FOR ENERGY MARKET DESIGN 19

Interestingly, peak power supply, reserve, and balancing remain functions served by the district
heating company only, as it is expected that introduction of competition in these functions is not
feasible for now [24]. For the district heating company supplying these monopoly markets, the
cost-plus method is applied on long-term heat prices [111]. Price regulation is only applied for
specific producers, such as those that supply more than one third of the heat load. It is reported that
district heating prices have steadily declined since introduction of third-party access and auction in
Kaunas, Lithuania [25]. As more independent heat producers have entered the Lithuanian district
heating systems, the market price of heat has moved away from the price ceiling in both Kaunas
and Klaipeda, which suggests that competition was successfully introduced [24].

2.2.5 Energy rates for consumers

Energy rates for consumers generally consist of different components: the actual energy price,
tariffs, and taxes [112]. This is also the case for heat, where the tariff usually covers the fixed costs
related to maintenance and operation [23]. In Denmark and Sweden, there is an additional cost
component for consumers related to their contribution to efficiency in the district heating system,
which can be estimated from the average temperature gradient or average flow at the consumer’s
heat exchanger [23, 113]. Only the energy price is subject to competition in liberalized energy
markets, whereas grid tariffs are usually strongly regulated [112].

The price that small consumers pay for a unit of energy is usually not determined by wholesale
market-clearing mechanisms directly. In liberalized electricity markets, consumers buy electricity
from retailers, which participate on the wholesale market and resell the energy, thereby acting as
intermediates [30]. Consumers should be free to choose between different retailers easily, to ensure
competition on the retail market. In the case of heat, consumers usually buy from the district
heating company only, so there is usually no possibility to choose between multiple heat retailers.

Electricity retailers often offer flat-price contracts for small consumers [30], although modern
retailers also offer variable-price contracts. Whether or not the price is variable, the retailer absorbs
the risk of deviating from consumption schedules [30, 114]. The consumer pays a premium for the
retailer to absorb its risks, i.e. the price is higher than the average cost of supplied energy [114].
Variable-price or other types of contracts may help retailers to reduce this risk and the related cost,
and thereby the risk premium charged to consumers could be lowered under such contracts [114]
For heat, a flat rate for each year is also common, even though the system marginal cost fluctuates
considerably over the year. In some countries, e.g. Sweden, the unit price of heat energy varies per
season [23]. We are not aware of any countries where consumer district heating prices vary on a
smaller time scale, such as in variable-price contracts for electricity. In Copenhagen, the energy
component of the consumer heat price could be derived from the optimal dispatch supervised by
Varmelast [68], but this price is not used. Instead, the price of heat for consumers is fixed for an
entire year, based on a contract between the consumer and the local heating supply company [97].

2.3 Convex optimization for energy market design

We now present fundamental concepts of convex optimization, and proceed to show how convex
optimization can be used for energy market design. Finally, we discuss desirable properties in the
field of market design.
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2.3.1 General formulation

In an optimization problem, the goal is to find a/the optimal value of one or more decision variables,
given a certain objective function that is to be minimized or maximized. Our convention is to
formulate optimization problems in the minimization form. Any problem can be converted to
a maximization problem by multiplying the objective function by -1. We denote the vector that
gathers all decision variables by x. Optionally, one may specify a set of conditions that the variables
in x should satisfy, turning the problem from a unconstrained into a constrained optimization
problem. Two kinds of constraints can be specified, namely, inequality and equality constraints. In
this thesis, we only use continuous optimization variables x. When integer-valued optimization
variables are included, the related optimization problems become Mixed-Integer (MI) Programs,
which are non-convex.

The following problem presents a classical, continuous convex optimization problem using the
notation of [115]:

min
x

f0(x) (2.1a)

s.t. fi(x) ≤ 0 : λi i = 1, . . . , m (2.1b)

A⊤
i x = Bi : νi i = 1, . . . , p . (2.1c)

Here, the objective function f0 is a convex function of x. The set of m inequality constraints in
(2.1b) are also specified using functions fi convex in x. Finally, p linear equality constraints are
specified, which must be linear in x for the problem to remain convex. The coefficients specifying
each linear constraint are collected in vector Ai and scalar Bi for all i = 1, . . . , p. Each of the
constraints in (2.1) has a dual variable associated to it, where we use the vector λ to collect the duals
for inequality constraints, and ν for equality constraints. Alternatively, constraints can be rewritten
using the concept of a feasible region, which contains all values that satisfies the constraint. For
example, (2.1b) would be rewritten to

x ∈ Fi i = 1, . . . , m , (2.2)

where Fi is the feasible region defined as

Fi = {x | fi(x) ≤ 0 } . (2.3)

Depending on the form of the functions f0 and fi, convex optimization problems can be divided
into subcategories. For example, (2.1) is a Linear Program (LP) if f0 and fi for all i are linear. If all
fi are affine and the objective function is convex quadratic, (2.1) is a Quadratic Program (QP).

To generalize the convex problem in (2.1), regular inequalities (2.1b) can be replaced by so-called
generalized inequality constraints:

fi(x) ⪯Ki
0 , (2.4)

where Ki is a proper cone with Ki ⊆ Rki for a certain dimension ki [115]. This results in a more
general form of the standard convex form (2.1), as the generalized inequality has the regular
inequality constraint (2.1b) as a special case. Again, the form of fi for i = 0, . . . , m leads to different
types of convex optimization problems, such as conic and semidefinite programs [115].



2.3. CONVEX OPTIMIZATION FOR ENERGY MARKET DESIGN 21

For any optimization problem, convex or not, the Lagrange dual function and a related dual
problem can be defined. The Lagrange dual function related to problem (2.1) is

g(λ,ν) = inf
x

m∑
i=1

λi fi(x) +
p∑

i=1
νi (A⊤

i x − bi) , (2.5)

where the infimum (i.e. greatest lower bound) is taken over all feasible x. For any positive λ ≥ 0
and any ν, this function provides a lower bound on the optimal objective value of problem (2.1)
[115]. This property can be used to derive the dual problem of primal problem (2.1). The objective
of the dual problem is to find the best lower bound that the Lagrange dual function can give. A
general form of the dual problem related to primal formulation (2.1) is given by:

max
λ,ν

g(λ,ν) (2.6a)

s.t. λi ≥ 0 i = 1, . . . , m . (2.6b)

For specific types of optimization problems, such as linear, quadratic, and conic problems, a general
form of the dual problem can be specified in more detail, see e.g. [115].

Strong duality holds when the optimal value of the primal problem coincides with the best lower
bound from the Lagrange dual, i.e. the optimal value of the dual problem. In this case, the duality
gap is said to be zero. When strong duality holds, the dual variable associated to a constraint can
be interpreted as the sensitivity of the primal objective function to a change in the bound of that
constraint. If a constraint is not binding, this implies that a change in this bound would not affect
the value of the objective function, and therefore the associated dual variable has a value of zero.
Instead, if the constraint is binding, the associated dual variable may be nonzero.

For convex optimization problems with differentiable functions fi for i = 0, . . . , m, the Karush-
Kuhn-Tucker (KKT) conditions provide a set of necessary and sufficient conditions for a tuple
(x,λ,ν) to be primal and dual optimal with zero duality gap. In other words, if (x,λ,ν) satisfy the
KKT conditions, these values of the primal and dual variables solve the primal and dual problem
to optimality with zero duality gap, and vice versa. The KKT conditions do not say anything about
the uniqueness of optima. It is possible that there are multiple solutions to an optimization problem,
meaning that several points (x,λ,ν) solve the primal and dual problem to optimality.

2.3.2 Optimization in energy market design

In day-ahead markets, a common market design is a two-sided auction, where both consumers
and producers place bids for each time period [30]. We use index t for time periods in the market
clearing, and collect all periods for a single market clearing in the set T = {1, 2, . . . , T} of size
|T | = T . A general bidding format can be specified as follows. Each market participant i submits
a feasible region Fi for its power injection profile pi, as well as a cost function f0,i that maps its
power injection profile to a cost, i.e. f0,i : RT → R. For a consumer, the power injection is negative.
The market participants i are collected in the set I . A general form of an optimization problem for
clearing such a market is:

min
pi

∑
i∈I

f0,i(pi) (2.7a)

s.t. pi ∈ Fi, ∀i ∈ I (2.7b)

fgrid({pi}i∈I) ∈ Fgrid (2.7c)

fbalance({pi}i∈I) ∈ Fbalance : (λ) . (2.7d)
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Here, the optimization variables pi are vectors of the power injections, each of size T to specify a
power injection for each time period. The problem may include additional optimization variables
to specify the feasible sets of the participants. Constraint (2.7b) ensures that the scheduled power
is feasible according to the bid by the market participant. Optionally, grid- or network-related
constraints may be specified, as represented by constraint (2.7c). We will discuss such constraints
for heat markets in Section 2.4. The abstract constraint (2.7d) enforces a form of supply-demand
balance, which may be specified in different ways depending on the network representation in the
market.

Under the most common uniform pricing scheme, the market price is derived from dual variable λ

corresponding to the balance constraint (2.7d). If network constraints are disregarded, there will
be a single uniform market price λt for each time period t that the market is cleared for. This unit
price is paid by each consumer and received by each producer. If instead, network constraints are
included in the market clearing, prices may differ between the nodes (or zones) as specified by the
network representation. Therefore, the price at each time t is now a vector λt of uniform prices,
one for each node. These prices are also called the locational marginal prices (LMPs).

In a common simple form of the two-sided auction, the bidding format is of the price-quantity
type. Loads l submit the maximum quantity Dlt they are willing to consume, and the maximum
price they are willing to pay per unit Ult (i.e. willingness to pay or utility per consumed unit).
Generators g submit the maximum quantity they are able to generate Ggt, along with the minimum
unit price Cgt they are willing to sell it for. This results in linear cost and utility functions for all
market participants. The bidding format may be extended with a lower production limit Ggt and
lower consumption limit Dlt. Loads l and generators g are collected in the respective sets L and G.
Given these bids, a common simple form of a pool market without network constraints is specified
as follows:

min
g,d

∑
t∈T

Ñ∑
g∈G

Cgt ggt −
∑
l∈L

Ult dlt

é
(2.8a)

s.t. Ggt ≤ ggt ≤ Ggt, ∀g ∈ G, ∀t ∈ T : (µ
gt

, µgt) (2.8b)

Dlt ≤ dlt ≤ Dlt, ∀l ∈ L, ∀t ∈ T : (χ
lt

, χlt) (2.8c)∑
g∈G

ggt =
∑
l∈L

dlt, ∀t ∈ T : (λt) . (2.8d)

Here, the decision variable ggt represents the scheduled generation of generator g at time t, and
dlt represents the scheduled demand of load l at time t. In this notation, the index g matches the
variable g, but the context will always make it clear which of the two is meant. The objective 2.8a is
to minimize the difference between total cost and total utility, or equivalently, to maximize the social
welfare. The uniform market price for time t is given by the dual variable λt corresponding to the
energy balance constraint (2.8d). For each time t, the price λt is a scalar since there are no network
constraints, and thus no nodal price differences. The dual variables corresponding to lower and
upper limits of constraints (2.8b) and (2.8c) are indicated in the brackets on the right-hand side of
these equations.

This basic market design has been extended in many ways, for example by including start-up
and ramping constraints for generators, which introduces integer variables to the problem. Other
versions of the two-sided auction for energy have been proposed, which allow for more elaborate
descriptions of market participants’ feasible regions, as well as the inclusion of uncertainty
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formulations, and complex network constraints. To allow market participants to specify more
complex feasible regions, [116] proposes a price-region bidding format. Here, market participants
may specify the feasible region of power injections using a set of linear constraints, using additional
state variables if needed. Such bidding formats can enable more accurate representation of
flexible resources, so that more flexibility can be harnessed. Uncertainty-aware markets have been
proposed, for example using chance constraints [117]. Such more elaborate market formulations
often require optimization frameworks beyond linear and quadratic programs. This is also the
case for more elaborate network-aware market formulations, such as in [118]. The work in [119]
generalizes many of these approaches by formulating a conic market, where a Second-Order Cone
Program (SOCP) is used to clear the market. Conic constraints can be used to include more accurate
models of both market participants and the network, and to include uncertainty, e.g. using chance
constraints. A uniform pricing scheme is derived from the dual variables in this conic formulation,
where each location and time is subject to its own uniform price [119].

2.3.3 Desirable market properties

In the field of market and mechanism design, four common desirable properties have been
formulated, which an ideal mechanism should satisfy. The first property, market efficiency, holds
when the dispatch determined by the market achieves the optimal value of the market’s objective,
and the market provides dispatch-following incentives. The latter means that the prices determined
by the market are dispatch supporting, so that no market participants can benefit from deviating
unilaterally from the optimal dispatch. Second, a market mechanism is incentive compatible if market
participants have the incentive to bid truthfully. For example, this would mean that a generator
cannot increase its profits by inflating its production cost in a price bid. Third, cost recovery (also
called individual rationality) refers to a market in which no generator or consumer incurs a loss.
This implies among others that a generator will be paid enough to cover the production cost of its
schedule. The fourth and final property of revenue adequacy holds when the market operator does
not suffer a loss when clearing the market. In other words, payments by market participants add
up to at least the amount that is to be paid to (other) market participants. A special case of revenue
adequacy is budget balance: in this case, the payments by market participants are exactly equal to
the amount paid to market participants.

No market design can generally satisfy all four properties simultaneously in practice, as it is only
possible for all four to hold if there are an infinite number of market participants [120]. In most
common market designs, there is possibility for strategic behavior, especially when there is a
lack of competition. This means that incentive compatibility does not hold. Indeed, this is the
case for the market formulation in (2.8), as well as conic generalizations of this market design. If
participants bid truthfully, reported utilities correspond to the true willingness to pay for loads,
and reported cost correspond to the true generation cost for generators. In addition, the reported
available capacities would match their real values. In case market participants do not bid truthfully,
the social welfare can be reduced, so that market efficiency also fails to hold. On the other hand,
cost recovery and revenue adequacy are ensured in problem (2.8).

2.4 Modeling district heating networks

In order to support the optimal operation and control of district heating networks, heat market
designs can take network constraints into account. As works on heat network modeling specifically
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for market design is scarce, we first review modeling approaches in control and optimal dispatch
in district heating systems. We close of with a discussion of network models that have been used
in heat market design.

Ultimately, the temporal and spatial dynamics of fluid and energy flows in a district heating
network are described by a set of nonlinear partial differential equations. These equations are the
starting point for deriving (generally nonlinear) optimization models for heat networks, also called
Optimal Thermal Flow (OTF) models. These models consist of a hydraulic model describing the
fluid flow and pressures in the network, and a thermal model for the temperature dynamics. In a
market or optimal-dispatch context, the hydraulic part of the system is assumed to be in a steady
state, since hydraulic transients propagate at the speed of sound, and thus can be neglected given
typical time granularity in these applications [63]. However, thermal transients propagate much
slower, so that the dynamics of temperature propagation do need to be taken into account [8].
It is usually assumed that the network is radial, and that the temperature in a cross-section of a
pipeline is constant.

In principle, the partial differential equations governing the district heating network dynamics
could be approximated and solved using finite-difference based methods. The work [121]
outlines the assumptions needed to arrive at a simplified partial differential equation, leading to a
pipeline model of a single spatial dimension. Similar models are used in several previous works,
including [121–123]. The partial differential equation for transport of energy through pipelines
is also discussed in [124]. The authors derive a steady-state heating network simulation model,
emphasizing the assumptions needed to arrive at the final result. Finite-difference based methods
have not been applied in a market setting for heat, due to the high computational burden associated
with these methods [125]. Instead, many network-aware heat market designs use the so-called node
method from [126] or simplified variations of this formulation to approximate the partial differential
equations. The node method discretizes the state variables in space, using only the network
node locations. The outlet temperature of a pipeline at time t is modelled as a weighted sum of
historic inlet temperatures. For a visualisation of which historic temperatures are used in the node
method, we refer to [45]. The node method uses a set of auxiliary time index variables. If the flow
is considered a variable rather than a parameter in this model, integer variables are needed to
model the variable time indices, and the optimization problem becomes a Mixed-Integer Nonlinear
Program (MINLP). In [127], the node method is compared to a finite-difference approach. It is
concluded that the node method is superior both in terms of accuracy as well as computational
cost for a given discretization size. The recent work [121] also provides a comparison of these
different modeling approaches, assessing their performance using real measurements, while also
discussing them qualitatively. It is concluded that the node method provides a higher accuracy for
a given time discretization size. However, it contains integer variables, which leads to a higher
computational burden.

The literature distinguishes three types of control strategies, Variable-Flow-Variable-Temperature
(VFVT), Constant-Flow-Variable-Temperature (CFVT), and Variable-Flow-Constant-Temperature
(VFCT), depending on whether the temperatures and flows are decision variables in the optimiza-
tion problem. The complexity of heating network models lies in the so-called mixing equation, which
describes the temperature of a mixture of several water streams of possibly different temperatures.
The mixing equation is bilinear and thus non-convex, in case both the flow and the temperature
are considered as continuous decision variables.
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In the VFVT control strategy, flows as well as temperatures are decision variables in the optimization
problem, which in most formulations results in a MINLP formulation. Iterative algorithms have
been proposed to solve the resulting optimization problems [39, 40, 128]. Iterative solution
methods may be suitable for control of heat systems, but have several drawbacks in practice. The
convergence of the algorithms is not guaranteed, and can become computationally intractable for
relatively small systems. To get around this, [129] restricts the mass-flow variable to a limited set
of discrete values, whereas the temperature remains a continuous variable. This approach reduces
complexity of the network problem to a Mixed-Integer Linear Program (MILP). A similar approach
is taken in [130], where in this case the flow is a continuous variable, while the temperatures take a
set of discrete values, again resulting in a MILP formulation. In [41], a VFVT-based optimal dispatch
model is solved non-iteratively, using a simplified version of the node method. The resulting model
is still a MINLP, which is converted to a Mixed-Integer Second-Order Cone Program (MISOCP) or
MILP using different convexification methods. A problem with this approach is that the solution
to the relaxed problem is usually infeasible to the original problem, so that a feasible solution
needs to be retrieved after solving the relaxed problem. There is no bound on the optimality gap
of this retrieved solution, which means that there is no guarantee that the solution is close to the
optimum of the original problem. Another conic mixed-integer form of VFVT for optimal dispatch
is proposed in [42], where the mixing equation is omitted, using the assumption that the mixture
temperature equals the temperature of the largest inflow of each node [42]. Again, solutions to this
model are certainly infeasible to the original problem.

The second category of works considers CFVT, also called quality regulation, because the temperature
of the water is variable while the flows are parameters in the model [45, 87, 131, 132]. When the
flows are fixed, so are the time delays. This greatly reduces the model complexity, resulting in an
LP network model. A drawback of quality regulation is that frequent temperature changes in steel
pipes may speed up material fatigue [20]. The third and final control strategy is VFCT, also called
quantity regulation, where the flow is considered variable while the temperatures are parameters in
the model. The VFCT strategy is applied in e.g. [46, 47]. Most modern district heating system are
controlled using variable flows [133].

Few works have compared the different control strategies. As the VFVT control strategy allows for
most flexibility, it should provide the least-cost solution, compared to VFCT and CFVT methods.
This is confirmed in [134]. The comparison in [135] shows that variable-flow methods have both
lower fuel cost and operational cost, but this comes at the cost of a higher computation time. When
the district heating network is modeled in order to provide flexibility to power systems, the topic
of network or pipeline heat storage is often studied. While such network storage can arguably
be exploited when VFVT is used, see e.g. [41], we argue that this is not the case for VFCT and
CFVT formulations, even though existing works sometimes suggest that CFVT formulations do
store heat in the network. Our reasoning is that when the flows are fixed, a change in the amount
of energy injected at a specific time is always directly linked to a change in energy extracted at
another node and another time. There is no flexibility at what time the extraction takes place in
this formulation, except if the loads are flexible. In that case, such flexibility should be attributed
to the loads.

Specifically in the setting of network-aware market design for heat, previous works have applied
the CFVT control strategy, see e.g. [19, 136–138]. This formulation is attractive because its dual
variables can be readily used for pricing. In addition, these works often have the Chinese setting in
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mind, where district heating networks are operated with constant flow. In a market context, most
studies aim to show that the heating system can provide flexibility to the power system. Pricing
considerations are rarely discussed for network-aware heating market designs. An exception to
this is [136], where a generalized locational marginal price for a combined heat and electricity
market is proposed and analyzed in detail.



Chapter3
Market integration of excess heat

Based on the work in [Paper A], this chapter presents our contribution towards the first research
direction: scheduling and pricing for many small heat producers. Although solar heat could also
fall into this category, we focus on excess heat producers, as they can adapt their production in
response to price signals while solar heat cannot. Excess heat has the potential to cover a large
share of the heat load in district heating systems. For example, a detailed study estimates that
industrial excess heat could currently cover over 80% of the heat load in certain large Danish district
heating networks, such as Aalborg and Kalundborg [139]. Another study estimates that 50% of
Copenhagen’s heat load could be supplied by excess heat from biorefineries that could be built in
the area [140]. A high-level estimation in [74] suggests that the potential excess heat capacity for
use in households is also large in other European countries, especially Germany, France, and The
Netherlands. The integration of excess heat contributes to carbon neutrality in district heating
systems, and may increase cost efficiency by increasing competitive pressure, if it results in a
greater number of generators participating in the heat market [24]. Although not all processes
from which excess heat can be extracted are carbon neutral, the excess heat can be considered
carbon neutral if it does not lead to additional carbon emissions. Most excess heat sources remain
untapped, although their integration is technically feasible, as shown in a simulation study [141]
and proven by applications in several existing district heating systems [142]. One barrier to its
integration is the lack of suitable methods for scheduling and pricing excess heat. Direct market
participation may be undesirable, since excess heat producers may lack the specialist knowledge
needed for bid submission. As a pragmatic alternative, the operator of the Stockholm Open District
Heating sends excess heat producers a time-variant price signal, based on which they locally
determine their preferred schedule for heat injection into the district heating system [31]. We use
the term self-scheduling for this individual action of excess heat providers.

In this chapter, we present qualitative and quantitative comparisons of two paradigms for the
price-based integration of excess heat producers: self-scheduling and market participation. The
latter can be seen as an ideal benchmark that may be impractical in practice, in particular in the
presence of many excess heat providers, while the former could be seen as a pragmatic solution.
The aim of the comparison is to determine whether price-based self-scheduling can suffice for
market integration of excess heat producers. Existing studies have only focused on direct market
participation for the scheduling and pricing of excess heat [53–56]. Price signals have been studied
in the context of heat demand response [97, 143], but not for the scheduling and pricing of (excess)
heat. Although the self-scheduling model has its benefits in terms of practicality, the resulting total
generation cost is at best equal to but likely higher than what can be achieved by co-optimizing all
generation costs, as done in the market-participation model. A market clearing minimizes the total
cost on the system level, while self-scheduling individuals are maximizing their own profit, which
is not necessarily aligned with the system cost minimization. Therefore, the market-participation
model is an ideal benchmark in terms of total system cost. As the main contribution of this chapter,
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we quantify the potential suboptimality of the price-based self-scheduling method using a realistic
case study of the district heating system in Greater Copenhagen. In particular, we thoroughly
analyze how this suboptimality depends on the market share of excess heat. We study a specific
price-signal design, but our method is general in the sense that it can be applied to investigate the
performance of any other price signal in any given district heating system. Our results inform the
discussion of whether it is advisable to use such price-signal methods in current and future district
heating systems.

In Section 3.1, we describe the self-scheduling and market-participation paradigms in more detail,
and provide a qualitative comparison. We then formulate the market-participation model in
Section 3.2 and the self-scheduling model in Section 3.3. The case study is presented in Section
3.4, including bidding models for the market participants, the used input parameters, numerical
results, and a summary of our conclusions. Finally, we propose directions for future work in
Section 3.5.

3.1 Two paradigms

We first provide clear definitions of the self-scheduling and market-participation models in Section
3.1.1, followed by a qualitative comparison in Section 3.1.2.

3.1.1 Definition

The market-participation model refers to the situation where the excess heat producers submit bids
to the heat market, and is thus treated the same as any other heat generator. After receiving all the
bids, the market operator clears the market, and obtains a schedule for all hours of the following
day, as well as a market price for each hour. We assume that this price is used for remuneration of
heat generators, although this is not currently the case in Copenhagen. Instead, the generators
are remunerated according to prices as agreed in long-term contracts with the district heating
company.

Under the self-scheduling model, the heat market operator broadcasts a time-varying price signal
for excess heat producers, which serves as a basis for excess heat producers to self-schedule
their heat generation accordingly. In principle, any price signal can be used, but we will study
a specific signal that is presented in our case study. We assume for simplicity that the resulting
schedule is then shared with the market operator, or equivalently, that the market operator has a
perfect forecast of the total amount of heat to be injected by excess heat producers. In practice,
the market operator may in fact not be informed about the self-determined schedules of excess
heat producers, so that the market operator must use a forecast. Given the excess-heat schedules,
the market operator schedules the remaining producers in the subsequent market clearing, which
is equivalent to the market clearing under the market-participation paradigm. The excess heat
providers are remunerated according to the price signal sent to them, whereas the generators
participating directly in the heat market are still remunerated according to the hourly market price.
The self-scheduling method mimics the setup used in the Stockholm Open District Heating system
[31], which we will explain in detail in our case study description in Section 3.4.

3.1.2 Comparison of the two paradigms

We compare the two paradigms based on several characteristics, as summarized in Table 3.1
and elaborated on in the following. First, we discuss optimality of the resulting schedules in



3.1. TWO PARADIGMS 29

Market Participation Self-scheduling
Optimal scheduling ✓ ✓ / ×

Relevance for small producers × ✓
Price formation Endogenous Exogenous
Problem type Linear program Linear program

Table 3.1: Comparison of the two paradigms for scheduling and pricing excess heat. Adapted
from [Paper A].

terms of total heat generation cost. In the market-participation model, the schedule of excess heat
producers is co-optimized with that of other generators with the objective of achieving minimal
total generation cost. Therefore, the market-participation model can be seen as an ideal benchmark
with respect to total generation cost. Generally, the self-scheduling model results in a suboptimal
schedule in terms of total generation cost. Theoretically, it is sometimes possible to design an
efficient price signal such that the resulting dispatch and total generation cost equal those of
market-participation model. However, it is not guaranteed that such a price signal exists, and in
practice it would be nearly impossible to design such a ‘perfect’ price signal. It can be expected
that the suboptimality of the self-scheduling method increases with the share of excess heat in the
system. However, it is not trivial to foresee how steep this increase is, and whether this steepness
changes. For example, one may expect to see some plateauing behavior. It is this dependence that
we aim to reveal in our case study.

A second point of comparison of these methods is their relevance for scheduling and pricing
heat from small producers, for whom heat production is not their main business. Direct market
participation of excess heat producers has some drawbacks in practice. Most importantly, it may
be difficult for small excess heat producers to decide on market bids, as heat production is by
definition not their main business, and it may not make sense for them to have specialized staff to
deal with bid submission. They may therefore prefer to receive a price signal, sine the resulting
self-scheduling may be easier to automate. Compared to self-scheduling, the market participation
of these producers implies that the operator receives many bids, clears a more complex market with
an increased number of variables and constraints, and then shares the resulting schedules with
each market participant. Therefore, the self-scheduling paradigm may be preferred in practice from
the perspective of the market operator as well, as it is a rather simple and computationally cheap
way of scheduling and pricing excess heat, with lower IT requirements. Given the advantages that
the price-signal method brings, a small optimality gap with respect to total generation cost could
be justified, if this method attracts more low-cost excess heat to the system.

The nature of their price-formation process is a third difference between the two methods. Under
the market-participation scheme, the price paid to excess heat producers (and other generators)
is a result of bids submitted by market participants, including the excess heat producers. As the
price originates from the bids, this price formation is called endogenous. In contrast to this, the
price formation in the self-scheduling case is exogenous, as the price received by the excess heat
producers is set by the market operator, unrelated to the cost parameters of these agents. However,
the price for the other generators under the self-scheduling paradigm is still formed endogenously.
This means that the price received by the excess heat producers under self-scheduling in general
does not represent the marginal system cost. The price signal can of course be designed with
different properties in mind. For example, the market operator could forecast the marginal price
that would result from the market clearing, and use this as a price signal. In Stockholm, the hourly
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Figure 3.1: Overview of the information flow in the market-participation model. Adapted from
[Paper A].

price signal for excess heat producers is a predetermined, decreasing function of the ambient
temperature. This temperature-dependent price function is known to businesses that consider to
become providers of excess heat, which has the advantage that it is straightforward for them to
estimate whether the expected profits can cover their investment and operational cost.

Finally, we emphasize that we formulate both the market-participation and self-scheduling models
as linear programs without binary or integer variables. In the next two sections, we specify the
corresponding optimization problems.

3.2 Market-participation model

Here, we formulate the market design that was used for the case study simulations in this chapter.
We assume a market-clearing setup similar to the current Copenhagen heat market at the day-ahead
stage, which is a marginal-cost based dispatch without network constraints. Network feasibility of
the dispatch is checked after market clearing [144]. This market is cleared before the electricity
market. The market-participation model assumes submission of bids from all generators, including
excess heat providers. The heat load is a parameter and heat loads do not submit bids, which is
also the case in the current heat market clearing in Copenhagen. Instead, the market operator
uses a forecast of the total heat load at each time period, D̂H

t , to clear the market. The market
formulation in this chapter is network agnostic, unlike in the following Chapter 4, so that all
market participants are subject to a single uniform price λH

t for each hour. We denote the set of all
market participants by I = E ∪ G, where the disjoint sets E and G collect excess heat producers
and the remaining generators, respectively. We use the index e for excess heat producers and g for
other generators, whereas the index i may refer to any market participant.

The market design is of the general form (2.7), without network constraints. The time periods
for a single market interval are collected in the set T of size |T | = T . The bidding format is
given by

(
Fi, ci(·)

)
for each market participant i. Here, Fi is the convex feasible region of the

heat generation profile vector gH
i , which collects the production for all time periods t. The bid

ci : Fi → R is the convex cost function of participant i given a production profile gH
i . The location

of bids is not relevant in the current network-agnostic framework. Figure 3.1 gives an overview of
the information flow in the market-participation model.

Similar to constraint (2.7b), generation profiles must be contained in the provided feasible regions:

gH
i ∈ Fi ∀i ∈ I . (3.1)

The energy-balance constraint in the current market design is given by∑
g∈G

gH
gt +

∑
e∈E

(
gH

et − wet

)
= D̂H

t − ut : λH
t , (3.2)
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Figure 3.2: Overview of the information flow in the self-scheduling model. Adapted from [Paper
A].

which ensures that at every time t, there is a balance between the predicted heat load D̂H
t and the

scheduled generation. If needed, the load can be shed by an amount ut at a constant cost CU per
unit of lost load. Similarly, excess heat producer e can be curtailed at any time t by an amount
wet, without a cost associated to it. The need for curtailment arises sometimes when the feasible
region for excess heat providers are such that their lower bounds for production are non-zero. The
uniform market price at time t is given by the dual variable λH

t related to this balance constraint.

The objective in the market is to minimize total cost over one entire market horizon, given by
objective function ∑

g∈G
cg

(
gH

g

)
+

∑
e∈E

ce

(
gH

e − we

)
+ CU

∑
t∈T

ut , (3.3)

where the total cost includes generation cost and cost of lost load. The excess heat producers are
only paid per unit of actually scheduled heat production, given by gH

et − wet.

The set of optimization variables is Γ = {gH,w,u}.

3.3 Self-scheduling model

Figure 3.2 provides an overview of the information flow for the self-scheduling paradigm. First,
the market operator determines a price signal µH

t for each t in the upcoming market period T , and
broadcasts it to excess heat producers. Although we investigate a specific price-signal design in
this chapter’s case study, our method is general in the sense that it can be used for any other price
signal. Next, each self-scheduling excess heat producer e ∈ E solves optimization problem (3.4) to
determine an optimal schedule for the upcoming market horizon T :

min
gH

e

ce

(
gH

e

)
− (µH)⊤gH

e (3.4a)

s.t. gH
e ∈ Fe . (3.4b)

The objective (3.4a) for the excess heat producer is to minimize its net cost, given by the difference
between the cost of generation and the revenue from selling the generated heat at the price µH.
This price is a parameter in the self-scheduling model. The only constraint in the self-scheduling
optimization problem is feasibility of the dispatch in (3.4b).

At the same time, all remaining generators g ∈ G have submitted bids in the same way as in the
market-participation model. The market operator receives those bids, as well as the determined
optimal schedules GH

e from each excess heat producers. Given these inputs, the market operator
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clears the market using the following market-clearing optimization problem:

min
gH

g ,u

∑
g∈G

cg

(
gH

g

)
+ CU

∑
t∈T

ut (3.5a)

s.t. gH
g ∈ Fi, ∀g ∈ G (3.5b)∑

g∈G
gH

gt +
∑
e∈E

GH
et − wt = D̂H

t − ut, ∀t ∈ T : (λH
t ) , (3.5c)

which is an adapted version of the market-clearing under the market-participation model. The
objective function no longer minimizes the cost of excess heat producers. The feasible region
constraint for the excess heat producers is also omitted. In the energy balance constraint (3.5c), the
excess heat production gH,∗

et is now a parameter. The wasted excess heat wt is still a variable to be
determined by the market clearing, but it is now determined as a single value, rather than for each
excess heat producer individually.

In the self-scheduling model, the excess heat providers are not given the opportunity to minimize
the wasted excess heat wt, as they are in the market-participation model. Therefore, they are paid
at price µH

t for any self-scheduled unit of generated heat, regardless of whether it is wasted or not.

3.4 Simulation study

We consider the district heating system of Copenhagen, which currently includes 13 CHP plants
[145], including waste-to-energy and fossil-fueled plants, with a total installed capacity of 2050 MW
[68]. The Copenhagen system also includes reserve generators, but these are outside the scope
of this study. We vary the excess heat capacity added to this system from 0 to 2100 MW. The
excess heat is assumed to be of the cooling-based type, as would usually be found in the service
sector, among others. More specifically, we assume that the excess heat is a by-product of cooling
supermarket refrigeration cabinets using local heat pumps.

3.4.1 Bidding models

We specify the bidding behaviour of CHP plants and excess heat producers by providing models
for their feasible regions F and cost functions c(·). An underlying assumption in these bidding
models is that the heat market is cleared before the electricity market, as is the case in Copenhagen.
Therefore, these bids must rely on a forecasted day-ahead electricity price λ̂E, rather than realized
electricity prices.

The scheduled heat production for a CHP affects its limits for electricity generation, and vice
versa. The assumed shape of the feasible region for CHP plants is depicted in Figure 3.3. The
lower bound on this region is due to the minimum power-to-heat ratio Ri, which represents the
minimum amount of power generation needed in order to extract one unit of heat. Thus, the slope
of this line is Ri. The upper bound of the region is a result of the maximum fuel consumption F i

of the plant. There may additionally be a vertical border on the right of this region, given by an
upper bound on heat generation G

H
as given by the dotted line in Figure 3.3. If this bound is not

given, the crossing of the two sloped borders defines a maximum heat generation. As depicted,
the lower bound on the heat generation is zero, regardless of the scheduled electricity generation.
As the heat market is cleared before the electricity market, all dispatches within the feasible region
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are still feasible at the time of bidding. This implies that the feasible region for CHP i at time t can
be written as

Fit =
®

gH
it

∣∣∣∣∣ 0 ≤ gH
it ≤ min

Ç
G

H
i ,

F i

ρH
i + Ri ρE

i

å´
, (3.6)

where the upper bound is the minimum of G
H

or the crossing of the sloped borders. Here, ρE
i and

ρH
i are the fuel efficiency for electricity and heat, respectively. Note that in our CHP model, the

feasible region for the entire market horizon can be split in individual feasible regions for each
time period. This is possible due to the lack of intertemporal constraints (for example, ramping
constraints) in our CHP model.

As the heat market is cleared before the electricity market, the heat schedule affects the feasible
region of the CHP in the electricity market. The cost bid of the CHP plants is designed to take this
interaction into account. We use the CHP cost bid as derived in [146] for CHP plants in a sequential
heat and electricity market setting. The marginal cost of heat depends on the (forecasted) electricity
price λ̂E and (constant) fuel price αi as follows:

CH
it =





αi (ρE
i Ri + ρH

i ) − λ̂E
t Ri if λ̂E

t ≤ αiρ
E
i

λ̂E
t

ρH
i

ρE
i

if λ̂E
t > αiρ

E
i .

(3.7)

The cost function is split into two cases depending on the forecasted electricity price. If the
forecasted electricity price does not exceed a certain threshold, CHP plants bid their fuel cost minus
the income from electricity sale, as represented by the first case in (3.7). If instead the forecasted
electricity price is above this threshold, CHP plants bid the lost opportunity cost from selling heat
instead of electricity, as in the second case in (3.7). This implies that the CHP plants submit the
following linear cost function:

cg

(
gH

g

)
= CH

gt gH
gt . (3.8)

The feasible region of the considered cooling-based excess heat producers is

Fe =
{
gH

e

∣∣∣ (21) − (26) from Appendix A.2 of [Paper A]
}

. (3.9)

The considered constraints are all linear, as specified in Appendix A.2 of [Paper A]. The constraints
include a model of the heat pump, as well as a model of cooling-cabinet temperature dynamics.
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There is flexibility in the excess heat production of these agents, because limited fluctuations of
the temperature in the cooling cabinets around a setpoint are allowed. In contrast to the feasible
region in our CHP model, the feasible region of the excess heat producers cannot be split into
independent feasible regions for each t ∈ T , due to the presence of intertemporal constraints for
temperature dynamics in the cooling cabinets.

We assume that excess heat producers bid at zero cost, corresponding to the following cost function:

cH
e (gH

e ) = 0 ∀e , (3.10)

which is reasonable given that the heat pump would be used to cool the cabinets anyway, so this
cost is not to be attributed to the heat production.

3.4.2 Input parameters
The two models are simulated for a full year in an hourly time resolution. Our online repository
[147] contains a detailed description of the used input parameters and code, which can be used to
reproduce our results. For a description of chosen model parameters for both CHP plants and
excess heat producers, we refer to [Paper A].

A central input parameter to this case study is the price signal µH that is disseminated by the
market operator. We study specifically the ‘Spotvärme prima’ price signal used in Stockholm’s
Open District Heating program [148], which is fully determined by the ambient temperature
T A. We were only able to obtain this price signal for discrete values of the outdoor temperature.
In order to obtain a price signal as a continuous function of the ambient temperature, we fit an
approximate pricing function as

µ(T A
t ) =





380 · 0.92T A
t for T A

t < 17.5°C

0 for T A
t ≥ 17.5°C .

(3.11)

As seen in Figure 3.4, the function µ is monotone decreasing with the ambient temperature, as the
base of the exponent is non-negative and below 1.

The case study also requires forecasts of ambient temperature, electricity prices, and heat load
for each t ∈ T . We take historical data of these inputs as perfect forecasts, see [Paper A] for
specifics on data sources. The ambient temperature is needed to determine µH using the function
µ from (3.11). Furthermore, we model the Coefficient of Performance (COP) of the heat pumps as
ambient-temperature dependent functions.
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Figure 3.4: Price signal for excess heat producers. Black dots are real prices obtained from
Stockholm Open District Heating. The prices used in our case study are given by the red line.
Adapted from [149].
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3.4.3 Main results

Figure 3.5 displays our main result, the evolution of self-scheduling suboptimality under increasing
excess heat penetration, in three different ways. We study the suboptimality in terms of the total
generation cost of CHP plants. The upper Figure 3.5(a) shows that the total generation cost initially
decreases steeply for both the self-scheduling and market participation scheme, but this decrease
flattens out afterwards. As expected, the suboptimality increases with the installed excess heat
capacity. The absolute suboptimality is the increase in total generation cost of CHP plants, compared
to the market participation model. Figure 3.5(b) shows that for the considered range of excess heat
capacity, the suboptimality increases approximately linearly. There is no plateauing behavior seen
in this range. However, the relative suboptimality, i.e. the suboptimality normalized by the total
generation cost of the market participation benchmark, increases faster than linear. This can be
observed in Figure 3.5(c), where the relative suboptimality increases faster with greater installed
excess heat capacity. This is due to the fact that the total generation cost of the market-participation
benchmark also decreases with the installed excess heat capacity.

To gain insight in the cause of the suboptimality, we plot the suboptimality and wasted excess heat
on a monthly resolution in Figure 3.6, for three selected levels of excess heat penetration. It shows
that the suboptimality is largest in those months where excess heat capacity has the potential
to cover the full load in some hours, but only does so if it is scheduled at the correct times (i.e.
corresponding to the load). When excess heat almost fully covers the heat load in a certain period,

(a) Total generation cost

(b) Absolute suboptimality i.t.o. generation cost (c) Relative suboptimality i.t.o. generation cost

Figure 3.5: Comparison of total generation cost in self-scheduling and market participation models
aggregated over full year, as a function of the installed excess heat capacity. Figure 3.5(a) and 3.5(b)
are taken from [Paper A].
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(a) Total generation cost (b) Difference in generation cost

Figure 3.6: Monthly suboptimality of self-scheduling compared to market integration in terms of
total generation cost of all CHP plants in the system. Taken from [Paper A].

the suboptimality decreases. This happens because the most expensive generators are pushed out
of the market by cheaper excess heat, even if the excess heat is scheduled suboptimally. From
this observation, it is likely that the suboptimality curve in Figure 3.5(b) will plateau when the
excess heat capacity is further increased, and that the curve will bend downward at an even higher
installed excess heat capacity.

Finally, we plot the monthly wasted excess heat in Figure 3.7, for the same selected levels of excess
heat capacity. For both scheduling paradigms, the total wasted excess heat increases steadily
with installed capacity. The increase happens first in the months with lower heat demand. There
may also be waste of excess heat under the market participation scheme, because the excess heat
producers have limited flexibility and may have a minimum generation capacity that exceeds
the heat load. This is seen more frequently when the installed capacity increases. Under the
self-scheduling mechanism, waste of excess heat is in addition caused by mismatches between
scheduled excess heat production and heat load, which could be avoided if the excess heat
producers would participate in the market.

Figure 3.7: Monthly values for excess heat scheduled volume and wasted volume for self-scheduling
compared to market integration. Taken from [Paper A].



3.5. FUTURE PERSPECTIVES 37

3.4.4 Conclusion

When scheduling and pricing excess heat producers, there is a trade-off between different objectives:
simplicity and transparency in the self-scheduling model, versus complexity and optimality in the
market-participation model. The self-scheduling model offers an attractive, simple solution for
both market operator and excess heat producers, and it can be a transparent way of communicating
prices to producers. Based on our analyses we conclude that self-scheduling may suffice at lower
excess heat penetration, but is no longer adequate at higher levels. This is due to two main effects:

1. Expensive scheduling: Under self-scheduling, excess heat producers are not aware of the
CHP plants’ production cost over time, and there is no incentive to adapt their self-scheduled
profile to this cost either. Therefore, the self-scheduled excess heat will generally not
replace the most expensive CHP plants, so that total CHP generation cost is higher under
self-scheduling than it is under market participation.

2. Wasted excess heat: Under the self-scheduling paradigm, excess heat producers have no
incentive to match the heat load, so that the self-scheduled excess heat may exceed the load
and must be wasted.

We advise that more sophisticated pricing signals and/or other market setups are used when
excess heat covers a significant share of the heat load. Under lower penetrations of excess
heat, self-scheduling can be considered suitable, especially in periods of high heat load. The
small suboptimality compared to a perfect benchmark could be accepted, if this method would
successfully attract more excess heat producers to connect to the district heating network. The
total system generation cost can in some cases be lowered by the presence of excess heat producers,
even when they are scheduled suboptimally.

3.5 Future perspectives

We concluded that the studied self-scheduling model no longer suffices for systems where excess
heat can supply a large share of the heat load. Future work should propose and study new methods
for better scheduling and pricing heat from this large number of small generators, for whom heat
generation is not their main business. It would be important that scheduling procedures account
for the heat load in the system, as well as the generation cost of other generators, to avoid the two
negative effects that we found for the self-scheduling method studied in this chapter. One suitable
option could be market participation through an aggregator for excess heat providers, a proposal
that has been studied extensively in the context of scheduling distributed energy resources in
electricity systems, see for instance [150] for a review. An aggregator would place bids in the heat
market, while incentivizing excess heat providers to schedule themselves according to those bids,
by sending them a price signal. In such a setup, this new market actor would be responsible for
determining a suitable price signal. Different price-signal design methods have been proposed in
the literature, for example using reinforcement learning [151] or bi-level optimization [152]. A
specific type of aggregator that has been proposed is called a Virtual Power Plant (VPP), which are
usually assumed to have access to the operational parameters and constraints of the resources
it aggregates [153, 154]. Although aggregators may enable many small generators to enter the
market and thereby increase competition, an aggregator with too large market share may also
harm competition [150]. Furthermore, a for-profit aggregator earns a profit that could be earned by
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the consumers themselves, if they could organize themselves without the need for an intermediate
actor.

Otherwise, if excess heat providers in the future would be able to participate in the market directly,
a direction of study could be the design of a suitable bidding format for excess heat providers. The
bidding format should be such that the full flexibility of these providers can be harnessed, see for
example [116]. As excess heat producers are generally located in the distribution networks, the
market participation of such agents may necessitate the inclusion of network considerations in the
optimal dispatch. This topic is addressed in Chapter 4.

In the context of systems with a large installed capacity of excess heat, it would be interesting to
investigate the benefits of installing (seasonal) heat storage. Storage systems may decrease the
wasted excess heat, so that a higher share of the load could be supplied by excess heat year-round. It
may also improve the performance of the self-scheduling method, as the storage could compensate
for suboptimally scheduled excess heat.

For systems with low penetration of excess heat, the self-scheduling model can still be of interest.
In future work, the self-scheduling model from this chapter can be improved and extended. In
particular, it would be interesting to compare the performance of the Stockholm price signal to
other price signals to be designed. Price signals can be designed to minimize the expected total
cost, such as for instance done in [152]. Furthremore, the price that results from clearing the heat
market without the excess heat producers, i.e. λH from (3.2), would be a clear candidate for further
investigation. Other price-signal designs to be used for self-scheduling could be inspired by the
literature on aggregators in electricity systems.

We see several meaningful ways to improve and extend the analysis done in this chapter. First, we
only analyzed the benefits of the two paradigms from a system perspective. To extend our analysis,
future work should look into the individual generator perspective. Parameters of interest would
be revenues and profits for excess heat producers under different scheduling and pricing methods,
and payback periods of investments. In relation to this, suitable business models for these actors
should be identified, similar to the work in [155] for supermarket excess heat. Second, it would be
interesting to quantify the relative contribution of the two main effects causing the suboptimality
as listed in the case study conclusions. Third, we considered cooling-based excess heat production
only. It is likely that the system would benefit from a diversified excess heat stock in terms of daily
and seasonal patterns in heat production, especially from adding non-seasonal excess heat sources
such as energy intensive industries. Future work should include a more diverse set of excess heat
sources. Our study could also be extended by adding heat storage to the system and quantifying
its benefits.

Finally, we could extend individual modeling choices to be more detailed. For one, the modeled
feasible region for CHP plants could be more complex, see e.g. [64] for an overview. In the
market-participation model, the cost function for excess heat producers could be reformulated
to more accurately represent their cost. There exists a profile Ĝopt

e that minimizes the cost of
electricity used by the heat pump, given λ̂E. By definition, the scheduled excess heat profile leads
to an electricity cost greater than or equal to this minimum cost. To account for this gap, the cost
bid for the excess heat producer could alternatively be defined as

CH,alt
e

(
gH

e

)
= (λ̂E)⊤ (gH

e − Ĝopt
e ) , (3.12)

which is the difference between the (forecasted) electricity cost related to the profile scheduled by
the market, and the minimum electricity cost this producer could obtain.



Chapter4
Network-aware heat market design
This chapter presents our contribution towards the second research direction, market design for
distributed future heating systems. It is based on the work in [Paper B]. District heating systems
become more distributed with the integration of prosumers, including excess heat producers
and pro-active residential and commercial consumers. The installation of many small generation
capacities across the system is found to increase the burden for the network operator to balance the
network hydraulics [24]. Indeed, distributed energy resources increase complexity of operation
and control of energy systems, as a larger number of sources distributed over wider network areas
needs to be managed [153], and the number of possible system configuration increases rapidly.
Furthermore, the location of heat injection has a considerable impact on heat losses in the network
[101]. However, failing to coordinate distributed energy generators may lead to network operation
problems [33]. The challenge is to thus ensure reliable and efficient operation of these more complex
systems, by coordinating the many agents involved and harnessing various sources of flexibility.
Market mechanisms can be designed to support this more complex operation, by creating the right
incentives for generators and end-consumers. To align the objectives of individual users with the
objective of the system operator, previous studies have proposed to introduce network constraints
in energy market clearing problems. For electricity markets, [33] finds that markets with explicit
network constraints are necessary under a very high penetration of distributed energy sources. As
the location of heat injection has considerable impact on network heat loss [101], network-aware
heat market designs should also consider the minimization and allocation of costs associated to
these losses [101].

In this chapter, we present our network-aware heat market design that is based on the Variable-
Flow-Constant-Temperature (VFCT) control strategy. The VFCT formulation has been applied in
an optimal dispatch setting, to prevent congestion in a distribution network with a single point
of heat injection and several flexible consumers [47]. However, regarding the use of the VFCT
control strategy in a market setting, several questions remain to be answered, in particular related
to pricing and network losses. To fill this gap, we explore who causes losses in the network, which
generator should compensate for the losses, and who should pay for the losses. We use peer-to-peer
trades in our formulation to reveal the cause of network loss, and to enforce specific generators
to compensate for these losses. This opens up for different ways to account for heat loss in both
dispatch and pricing. In this way, we provide insight into the price formation in a VFCT based
market, so that the prices become more transparent. For a meaningful evaluation of our proposed
market design, we formulate a benchmark. Using an illustrative case study, we perform a detailed
analysis of our VFCT-based heat market and show its benefits for the support of optimal operation
of district heating networks.

First, we set the scene in Section 4.1 by describing the system setup considered in this chapter.
Next, we motivate our choice for the VFCT formulation in Section 4.2. The VFCT model equations
are then presented in Section 4.3. Our market design consists of an optimal dispatch mechanism

39
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ṁS
p

Prosumers Prosumers Prosumers

ṁN
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Figure 4.1: Representation of the heating system setup considered in this chapter. The district
heating network consists of a supply-side network in red, and a return-side network in blue.
Prosumers connect the supply and return side. The root node is connected to a greater heating
grid. Nodal temperatures, nodal flows, and pipeline flows are indicated. Taken from [Paper B].

and a pricing method. We introduce different optimal dispatch strategies in Section 4.4, and pricing
methods in Section 4.5. These sections also present our proposed benchmark market design. In
Section 4.6, we present a case study to show how this network-aware market affects dispatch and
pricing. Finally, Section 4.7 concludes this chapter and provides perspectives for future work.

4.1 System description

We focus on distribution-level heating networks, as it is here that the operation of distributed agents
will become relevant with the integration of excess heat producers and pro-active consumers. With
this in mind, we make several simplifying assumptions regarding the district heating network. A
first assumption is that the district heating network is unidirectional, which means that the fluid flow
in pipelines is unidirectional. It is important in our formulation that nodal flow is bidirectional, to
harness flexibility from prosumer nodes. At the nodes, fluid can flow from the supply to the return
side or vice versa, so that nodes are free to be net generators or net loads. Existing district heating
networks are operated with unidirectional flow, so our assumption matches current practice.
Although bidirectional flow is discussed as a vision for future district heating, this concept is still
in an early stage of research and development [91]. Second, we assume that the heat network is
radial, which means that no cycles exist. Of course, there are cycles when considering flow between
supply and return side as well – the network is thus considered radial on the supply side and
return side individually. Figure 4.1 shows an example of the considered network setup. This
particular example heat network has no branches, but in general our setup does include branched
networks.

In our setup, the root node of the local heat distribution system is connected to a greater heat grid,
that may supply heat for a given import price. Due to the unidirectionality, heat cannot be exported
to the greater grid. The heat import from the grid is assumed unlimited. However, this quantity is
limited indirectly as a result of network constraints.

The district heating network consists of a supply and a return side, as also indicated in Figure
4.1. The prosumers in this network may be net generators or consumers at different points in
time. A net generator injects heat by heating up cold fluid while it is flowing from the return
side to the supply side. The supply pipelines then transport the heated fluid to net consumers,
which consume heat by extracting heat from the hot fluid while it flows from the supply-side
to the return-side network. The supply side of the district heating network is described by a
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directed graph (N , P), with a set of nodes N connected by pipes P ⊆ N × N . It is assumed
that the supply and return networks are identical, so that it suffices to describe the supply-side
network configuration only. Any pipe p ∈ P is defined by its supply-side start and end node, i.e.,
if p = (n1, n2), then the flow in the supply side of pipe p goes from node n1 to node n2. For some
parameters and variables, separate values for supply and return side are needed. For example,
nodal supply and return temperatures will differ. Therefore, we use superscripts S and R to denote
variables and parameters related to the supply and return side of each node and pipe.

The system state is described by nodal supply T S
n and return temperatures T R

n , nodal mass flow
rates ṁN

n (our convention is that these are positive when flowing from supply to return side),
and unidirectional pipeline mass flow rates ṁS

p . Due to mass conservation and symmetry of the
network, the mass flow rates in the supply and return side of a pipe are equal. Therefore it suffices
to consider only the supply-side flow. These quantities are indicated in Figure 4.1.

4.2 Choice of network model and control strategy

The different network modeling approaches and control strategies as discussed in Section 2.4 each
have their advantages and weaknesses. Therefore, the modeler should define what properties are
most important in the envisioned application, and choose the most suitable model accordingly. In
a market setting, convex models are preferred. The main reason is that the dual variables in such
formulations have meaningful interpretations for pricing, and can be used to formulate a simple
and transparent pricing mechanism with attractive market properties. Furthermore, in non-convex
models there is no guarantee that current commercial solvers can find a global optimum, and the
problems can quickly become computationally intractable for larger systems. For these reasons, we
choose not to use the Variable-Flow-Variable-Temperature (VFVT) control strategy in our market
framework. The drawbacks of convex relaxations of the VFVT formulation were discussed in more
detail in Section 2.4.

We aim to design a network-aware heat market that integrates distributed generators and prosumers,
while minimizing operational cost. Thus, the chosen network model must harness flexibility from
distributed producers and prosumers, as well as estimate and minimize heat losses in the network.
Considering these specifications, we choose to use a VFCT control strategy in our optimization.
This strategy allows for much more flexible production and consumption at distributed network
nodes, compared to the Constant-Flow-Variable-Temperature (CFVT) formulation with fixed flows.
In the latter, both the sign and size of nodal flows are fixed before the optimization, so that it is
decided in advance whether the node will be net producer or consumer, and a minimum heat
injection or extraction is also assigned. We argue that this lack of flexibility is not acceptable
in future heating systems. The choice for constant temperatures is justified by several studies.
In [124] it is found that for mass flow rates in the usual range, heat loss is nearly independent
of mass flow rate. This supports the choice for the VFCT control strategy, because it results in
constant loss factors between any pair of nodes, as further discussed in Section 4.3.4. Experimental
data from e.g. [77] also supports the choice for constant nodal temperatures in the model. The
VFCT formulation is able to capture network heat losses in a simplified manner. Therefore, we
call the market loss-aware. To allow for distributed heat injections, we must omit pressure and
pumping power constraints, as the linearization used in [47] is only suitable for systems with a
single injection point.
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This formulation does not exploit the network storage effect, so this source of flexibility is not
utilized. Leaving out the network-storage effect is justified by the finding that network storage
flexibility is limited compared to the flexibility potential from buildings [92]. Furthermore, we
argue that the CFVT formulation only includes a limited form of network storage. As the flows are
fixed in that case, the delays are fixed too. Therefore, it is known for each supplier at what time the
injected heat arrives at a certain consumer. Thus, the only way to change the amount of energy in
the network while meeting a non-flexible load is by scheduling a supplier that is located a longer
distance away.

4.3 Network model

We now present our VFCT-based heating network model, to be used in the market design in the
next section. First, we discuss the simplifying assumptions needed to derive this network model
from a full VFVT model. Next, we formulate the model equations. As the choice of temperature
parameters in this model has a big effect on the outcome, we devote a section to this. Finally, we
derive the multiplicative losses.

4.3.1 Assumptions for derivation

The VFCT network model can be derived from a full VFVT model using several simplifying
assumptions, similar to the way the DCOPF is derived from the ACOPF to model power grid
dynamics.

On the supply side of a radial heat network, constant nodal temperatures follow from two
assumptions. First, it is assumed that pipeline heat loss is independent of the size of the flow.
This means that no matter how fast the fluid is flowing through pipeline p, it will cool down by
temperature gradient ∆Tp. We add a second assumption stating that the injection temperature
of supplied heat is fixed for each node. These nodal injection temperatures can be fixed in such
a way that the pipeline temperature gradients ∆T S

p are respected. This is done by selecting the
injection temperature at a single node, and deriving all other nodal temperatures using the pipeline
gradients. For the supply side, the constant-temperature formulation can be derived from these
two assumptions.

On the return side, these assumptions do not suffice, because due to the tree-like structure of the
network and the reversed flow directions, mixing of fluid flowing from different pipelines may
occur. One way to ensure constant temperatures on the return side would be to assume absence of
return-side pipeline losses, combined with a nodal return-side injection temperature equal for all
nodes. One may also derive a consistent set of return-side nodal temperatures by specifying ∆T R

p

for each pipeline, and setting the return-side temperature of the root node. The rest of the nodal
temperatures for the return side can then be derived. In this way, the mixing equation becomes
trivial, because it is always a mixture of several flows of the same temperature.

Finally, we omit pressure considerations, by leaving out the equation that relates pipeline flow and
pressure loss, as well as the pumping power equation. In [77], an approximation of the pumping
power equation is formulated, but this is only suitable for networks with a single generating node.
For our purposes, we assume that the energy used for pumping (overcoming pressure loss) is
negligible compared to heat losses.
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4.3.2 Model equations

We consider a market horizon with time periods t collected in the set T . The network consists
of a set of nodes n collected in N and pipelines p collected in P . The network model variables
include the nodal flows ṁN

nt for each node n and time t, and the pipeline flows ṁS
pt for each supply

pipeline p and time t. Due to mass conservation and network symmetry, the mass flow rates in
the supply and return side of a pipe are equal, so that we only need to model one of them. We
collect the heating network variables in the set ΓDHN = {ṁN, ṁS}. The nodal supply and return
side temperatures, T S

n and T R
n for all n ∈ N are parameters in our model. These quantities do not

have a time index, because they are assumed to be constant in time. As a result, time delays can be
neglected, which greatly simplifies the model as it eliminates the need for binary variables.

The model variables are bounded. As the pipeline flow is unidirectional, it must be positive.
Furthermore, an upper bound is specified:

0 ≤ ṁS
pt ≤ Ṁ

S
p . (4.1)

The bidirectional nodal flows can be above and below zero. In both directions, the size of this flow
is upper bounded:

− Ṁ
N
n ≤ ṁN

nt ≤ Ṁ
N
n . (4.2)

We take the convention that the nodal flow ṁN
nt is positive towards the return side.

Conservation of mass at each node is ensured by the mass-flow balance equation:∑
p∈S−

n

ṁS
pt −

∑
p∈S+

n

ṁS
pt = ṁN

nt , (4.3)

where S−
n and S+

n are the respective sets of pipelines whose supply sides end and start at node n.

Every node has a heat exchanger that injects locally produced heat into the network in case the
node is a net generator, and extracts heat from the network in case the node is a net consumer. The
nodal power injection (negative when heat is extracted) and nodal flow are related as∑

i∈In

pH
it = −Cf ṁN

nt (T S
n − T R

n ) , (4.4)

where Cf is the heat capacity of the fluid, and pH
it is the heat injection from prosumer i at time

t. The latter variable will be further discussed in relation to our case study, where we provide a
prosumer model. We generally use the superscript H to refer to heat-related quantities, whereas
the superscript E is used for electricity-related quantities. This equation contains the assumption
that nodes must inject heat at T S

n when producing, and after extracting heat the fluid must be
cooled down to T R

n .

4.3.3 Choice of nodal temperatures

When using the VFCT formulation, it is important to carefully select meaningful values of T S
n

and T R
n , with the following two principles in mind. First, the supply-side temperature at a node

must be greater than its return-side temperature. Second, as the nodal temperatures determine
temperature losses in each pipeline, the pipeline connections and their directions must be taken
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into account when choosing nodal temperatures values. In particular, nodal temperatures should
be non-increasing along the flow direction of the supply-side pipelines, and the same holds for the
return side. For example, if there is a supply pipeline connecting n1 and n2, then the downstream
node n2 should have a supply temperature lower than upstream node n1. The nodal temperatures
may be selected based on measurements, as in [47]. Otherwise, one may estimate temperature
losses as in [156] (Equations 7 and 8), or use average mass flow and temperature loss equations as
in [128] (Equation 6).

4.3.4 Multiplicative losses

We show below that the VFCT formulation leads to multiplicative heat loss in the network. This
means that it is fixed what share of injected heat in a certain pipeline is lost while the heat carrier
flows to the next node. We add equations to our network model, in order to provide more insight
in pipeline heat loss. In the next section, we will use this derivation to formulate a peer-to-peer
model, that allows us to allocate losses to market participants.

Heat is lost in pipelines when the fluid travels between nodes. Equations (4.3) and (4.9) implicitly
model those losses. Let nodes n1 and n2 be two arbitrary nodes from N . If n1 = n2, there is no loss
related to the energy sold, so assume n1 ̸= n2, and assume n1 is upstream from n2. In that case,
generated energy from n1 can be sold to n2. If a generated amount gH

n1
is injected at n1, we have

gH
n1

= Cf ṁn1 (T S
n1

− T R
n1

) . (4.5)

By conservation of mass, ṁn1 = −ṁn2 . Thus, a heat load dH
n2

of

dH
n2

= −pH
n2

= −Cf (−ṁn1) (T S
n2

− T R
n2

) . (4.6)

is consumed at n2. The share of energy lost on the way, given by loss factor Wn1n2 , is thus

Wn1n2 =
gH

n1
− dH

n2

gH
n1

=
Cf ṁn1 (T S

n1
− T R

n1
) − Cf ṁn1 (T S

n2
− T R

n2
)

Cf ṁn1 (T S
n1

− T R
n1

)

= 1 −
T S

n2
− T R

n2

T S
n1

− T R
n1

. (4.7)

In the final expression, the flow cancelled out, so that the share of energy lost between the two
nodes is independent of this variable. Note that the loss factor is negative if n2 is upstream from n1.
Equivalently, we can denote the relationship between the generation and load by

(1 − Wn1n2) gH
n1

= dH
n2

. (4.8)

We can conclude that, as a result of the constant nodal temperature assumption, the losses become
multiplicative. The loss factor for each pair of nodes is constant, i.e., it does not depend on any
variables.

4.4 Optimal dispatch formulation

Here, we proceed to present our proposed optimal dispatch formulations. A schematic overview
of the general format of the optimization problem and its components is given in Figure 4.2. We
specify the bidding format, including the form of generator and consumer feasible regions, in
Section 4.4.1. In Section 4.4.2, the peer-to-peer trades are discussed. The network model was
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Objective function

min
Γ
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loss-aware
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Generator/consumer feasible regions

Network model

Peer-to-peer trades
DLC

CLG

Network-aware market clearing

Section 4.4.3
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Section 4.3

Section 4.4.2

Figure 4.2: Schematic overview of the network-aware market formulations and its components.
For each component, the relevant section is indicated. Γ is the set of decision variables and fobj is
the objective function.

presented in the previous section. For a summary of the full optimization problems, we refer to
[Paper B].

By varying two settings in the formulation, we propose three different optimal dispatch strategies.
All three are network-aware, meaning that their dispatch is feasible in the network (assuming that
our network model is accurate). The first setting to be varied is Centralized Loss Generation (CLG)
versus Decentralized Loss Generation (DLG), determining which generator(s) inject heat to
compensate for network losses. This is discussed in Section 4.4.2 in relation to the formulation
of peer-to-peer trades, which allow us attribute network losses to particular agents. The second
setting that can be varied is loss-awareness versus loss-agnosticism, which can be specified in the
objective function, as discussed in Section 4.4.3. An overview of the resulting three strategies is
given in Table 4.1. Although these two settings could produce four different dispatch strategies,
we exclude one of the four options, as indicated in Table 4.1. The loss-agnostic Decentralized
Loss Generation (DLG) strategy is unlikely to be applicable in reality, does not mimic any existing
market designs, and results in counter-intuitive dispatch and prices. The latter is due to the fact that
the loss generation is competing with energy generation for the limited capacity local generators.

The aim in this chapter is to show the benefits of the loss-aware dispatch. The loss-agnostic dispatch
is used as a benchmark, which also resembles current practice in heat markets, as these usually
disregard network constraints and operational cost. However, if the benchmark would disregard
network constraints completely, a fair comparison to our proposed loss-aware market would not

DLG CLG
loss-aware loss-aware DLG loss-aware CLG

loss-agnostic loss-agnostic DLG loss-agnostic CLG

Table 4.1: Overview of considered dispatch strategies. Taken from [Paper B].
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be possible, as the benchmark dispatch would not respect network constraints. Therefore, we
formulate a benchmark with the same feasible space as the proposed dispatch, but with a different,
loss-agnostic objective function.

4.4.1 Bidding format

In this section, we specify the bid format used in our market design for market participants. The
set I contains all market participants (excluding the grid agent) that are present in the considered
heating network. Each agent i has an associated location ni ∈ N , and the set In collects all agents
located at node n. The index g is used for the grid agent. All market participants are to submit
generation and load bids of a price-quantity format. The load bids are extended in our formulation
to include load shifting flexibility, as we will specify below.

We model the total heat injection pH
it for each market participant as the difference between hourly

heat generation gH
it and load dH

it:

pH
it = gH

it − dH
it (4.9)

Here, the heat load is modelled to consists of two parts: an inflexible domestic hot water load
D̂DHW and a partially flexible space heating load dSH,

dH
it = dSH

it + D̂DHW
it . (4.10)

The flexibility in space heating load is represented using a reference profile D̂SH
it and a maximum

flexibility F i. At every time step, the space heating load of agent i deviates by at most F i from the
reference profile, i.e.

max{D̂SH
it − F i, 0} ≤ dSH

it ≤ D̂SH
it + F i , (4.11)

where the lower bound also ensures non-negativity of the space heating load. In addition, an
energy budget constraint ensures that space heating load may be shifted to a different hour, but is
satisfied at some point within the considered market horizon:∑

t∈T
dSH

it =
∑
t∈T

D̂SH
it . (4.12)

Finally, the load bid must be accompanied by a utility function uit(dSH
it ), which specifies for each

time t the utility of space heating consumption. In summary, the bid format for heat load is(
D̂DHW

it , D̂SH
it , F i, uit(·)

)
.

Related to generation, the market participants have to submit upper bounds G
H
it, which are enforced

by the constraint

0 ≤ gH
it ≤ G

H
it . (4.13)

The generation bid must include a cost function cH
it(gH

it) that specifies the generation cost at each
time. The bid format for heat generation is thus

(
G

H
it, cH

it(·)
)
.

The variables related to market participants are collected in the set Γagent = {pH,dH,dSH, gH}.
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Figure 4.3: Visualisation of peer-to-peer variables related to the trade τij = sij = bji = −τji. If
α = 1, the seller generates the losses, while this is done by the grid in case α = 0. Taken from
[Paper B].

4.4.2 Peer-to-peer trades

We include peer-to-peer trades in our market design with the main aim of relating specific
generators and consumers to heat loss in the network. In general, peer-to-peer trades have also
been used in the literature to enable market participants to negotiate bilateral trades without
interference of a market operator. The framework presented here can also be used for such bilateral
negotiation. Our peer-to-peer formulation extends a common peer-to-peer setup, as described
in for example [157]. To this formulation we add an explicit loss representation, as well as a set
of constraints to prevent arbitrage. We emphasize that the addition of these peer-to-peer trades
does not change the optimal dispatch, as we do not consider any preferences with respect to
trading partners. The same dispatch could therefore be obtained using an equivalent pool market
formulation. The peer-to-peer trades are here added solely for the purpose of connecting heat
losses in the network to specific trading partners.

A trade τijt between agent i and j at time t is defined to be positive if i sells heat to j, and negative
if the reverse holds. Trades with the grid agent g are also possible. We decompose τijt into sales
sijt ≥ 0 and buys bijt ≥ 0 as

τijt = sijt − bijt . (4.14)

The following constraint ensures trade reciprocity.

sijt = bjit . (4.15)

Self-consumption of produced energy is given by the variables biit = siit.

In our definition, trades τ equal the heat energy received by the buyer, excluding any network heat
loss that may be associated to that trade. The estimated losses wij related to the trade must be
generated by some agent. We propose two different ways of selecting this producer: distributed loss
generation (DLG) and centralized loss generation (CLG). The binary parameter αij ∈ {0, 1} indicates
whether the seller of trade τij will produce the associated losses (αij = 1) or whether grid import
will compensate for these losses (αij = 0). This binary parameter allows us to capture CLG and
DLG in a single set of equations. Figure 4.3 visualizes the relationship between the different
trade-related variables, including losses w and wg that we introduce next.

The network losses related to trade τij can be computed using the nodal loss factor Wninj
from

Equation 4.7:

wijt = Wninj
sijt , (4.16)
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where wijt is the energy that is lost between ni and nj . This quantity is used in the DLG formulation.
Losses must be positive,

wijt ≥ 0 . (4.17)

As a result, wij is the network loss between ni and nj associated with the trade τij in case the
energy is flowing from ni to nj , i.e., i is the seller. If instead energy is flowing from nj to ni and i is
the buyer, then wij = 0 while now wji ≥ 0 represents the loss associated with this trade.

Under the CLG formulation, the grid agent must compensate for this loss by injecting an amount
of energy wg

ijt at the grid connection node. Intuitively, this injection of the grid agent should result
in an amount of wijt arriving at the seller node, as shown in Figure 4.3. If wijt > 0, i is the seller of
the trade τijt. Therefore, an amount of wijt must arrive at node i. This means that the grid agent
must produce

wg
ijt =

T S
ng

− T R
ng

T S
ni

− T R
ni

wijt =
T S

ng
− T R

ng

T S
ni

− T R
ni

Wij sijt .

Again, the loss must be positive, i.e.

wg
ijt ≥ 0 . (4.18)

So far, this peer-to-peer formulation allows for arbitrage. If nonzero pipeline losses are considered,
this arbitrage would only occur between different agents at a single node. However, we would
like to exclude arbitrage completely, so that the resulting trades give insight in the energy that
actually flows between agents. To prevent arbitrage, we include the constrain that agents must
buy an amount exactly equal to their heat consumption,∑

j∈I
bijt = dH

it , (4.19)

where we emphasize that the sum includes self-consumption bii. As a result, reselling of purchased
energy (i.e. arbitrage) is prevented. Similarly, we formulate an arbitrage-preventing constraint for
generation: ∑

j

sijt + αijwijt = gH
it . (4.20)

The grid agent must produce∑
ij

(1 − αij)wg
ijt +

∑
j

(sgjt + αij wgjt) = gH
gt , (4.21)

where wg
ij is the amount the grid agent must inject to compensate for the losses in the trade τij . The

primal variables related to the peer-to-peer trading are collected in the set Γp2p = {τ, b, s, w, wg}.

4.4.3 Loss-aware and loss-agnostic dispatch

Our loss-aware and loss-agnostic dispatch differ only in the objective function fobj of the respective
optimization problems. Both markets have the objective to maximize some form of social welfare.
In the loss-aware dispatch, the cost of producing losses is included in the objective function, so that
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this is minimized alongside with production cost, while the loss-agnostic dispatch does not take
these costs into account. This leads to the following definition of the loss-aware objective function:

fawa =
∑
t∈T

(
cH

gt

(
gH

gt

)
+

∑
i∈I

(
−uit

(
dSH

it

)
+ cH

it

(
gH

it

))
)

, (4.22)

where cH
gt is the cost function of grid imports at time t. This expression includes total production

cost consisting of the cost of energy sold to a consumer and the cost of producing losses.

For the loss-agnostic benchmark, we artificially remove the cost of produced losses from the
objective function, to consider the production cost of consumed load only:

fagn(gH
it , wijt) =

∑
t∈T

cH
gt

Ñ
gH

gt −
∑
j∈I

wgjt −
∑

i,j∈I
(1 − αij) wg

ijt

é
+

∑
t∈T

∑
i∈I

Ñ
−uit

(
dSH

it

)
+ cH

it

(
gH

it −
∑
j∈I

αijwijt

)
é

. (4.23)

After loss-agnostic dispatch, the cost of losses can be determined a posteriori, which will be
discussed in more detail in Section 4.5. If the agent that should generate the losses is not specified
in the loss-agnostic case, there will in general not be a unique solution to the optimization problem.
This is another reason for us to specifically assign ‘loss generators’ using the peer-to-peer trades.

4.5 Pricing and loss allocation

After finding the optimal schedule using one of the dispatch strategies, an allocation mechanism
is needed to determine payments and revenues for all market participants. We propose two
allocation mechanisms, that differ in the way they allocate the cost of network heat losses. Both
mechanisms are based on the principle of nodal marginal pricing. First, we discuss how the cost of
generated losses can be determined for the three different dispatch mechanisms. Next, we propose
two loss allocation mechanisms, i.e., mechanisms for allocating this cost to the market participants.

Determining the cost of loss

Nodal marginal prices are denoted by πN
nt, and seller i and buyer j marginal price by πs

it and πb
jt

respectively. We derive expressions for the nodal prices in the Appendix of [Paper B]. It is shown
that the price per unit of loss and price per unit of consumed energy are equal. Since the heat loss
associated to a unit of consumed energy increases with distance from the generator, so does the the
loss cost per unit of energy consumed. In Appendix A.2 of [Paper B], it is derived that seller i

receives unit price µS
it + µinj

it , whereas buyer j pays −µB
jt + µinj

jt per unit consumed. For loss-aware
DLG, it is shown that these prices relate as

πb
jt = (1 + Wij)πs

it . (4.24)

From this, we derive that the cost of loss CL,DLG
ijt connected to energy sale sijt on the loss-aware

DLG market is given by

CL,DLG
ijt = wijt πs

it . (4.25)
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Similarly, in Appendix A.3 of paper [Paper B] it is derived for the loss-aware CLG market that the
prices of seller and buyer relate as

πb
jt = πs

it +
T S

ng
− T R

ng

T S
ni

− T R
ni

Wijπs
gt . (4.26)

Thus, the cost of loss CL,CLG
ijt connected to sale sijt in the loss-aware CLG market is given by

CL,CLG
ijt = wg

ijtπ
s
gt . (4.27)

This means that the price of loss is equal to the nodal price at the grid connection.

For loss-agnostic CLG, a derivation in Appendix A.4 of [Paper B] shows that in the absence of
network congestion, the buyer and seller of any trade experience the same marginal price, no
matter the distance between them. The formulation thus successfully removes the connection
between the buyer and the cost of losses it causes. In the loss-agnostic case, the cost of loss is not
represented by any dual variable, but it can be computed in hindsight. Similarly to the loss-aware
markets, we set the price of loss in the loss-agnostic case to the nodal price of the generator of the
loss, which in this CLG setting is the grid node. As a result, the ex-posteriori computation of loss
cost connected to sale sijt is according to (4.27).

Allocating the cost of loss

After an optimal schedule is determined, the cost of losses can be computed, and this cost needs to
be allocated to market participants. One desirable property of a loss allocation scheme is budget
balance, which means that the payments for loss add up to the cost of loss. In this way, the network
operator does not suffer a loss or earn a profit.

We propose two budget balanced loss allocation policies: individual and socialized. In the former,
loss cost are allocated to the heat consumer that is causing them, while loss cost are shared evenly
under the latter policy. The socialization could be done in different ways. Here, we define the
socialized loss cost per unit consumed as the average over the entire considered market horizon,
which results in a single unit price of loss for all time periods t. This choice mimics common
network and loss charges in practice, where the network and loss costs are usually even averaged
over an entire year and then socialized in a constant grid tariff. Our socialized loss allocation policy
is a pro rata method, as described in [158] for electrical losses. In our case, 100% of the loss cost is
allocated to the consumers. Any pro-rata procedure is network-agnostic, as loads near generating
nodes pay the same loss price per unit consumed as distant loads [158].

For our loss-aware markets, the individual loss allocation policy follows naturally from the nodal
prices. Therefore, the payments from this allocation policy support the schedule resulting from
the loss-aware dispatch. This is not the case for the socialized loss allocation. This means that the
loss-aware dispatch would be different if the market participants would be able to anticipate the
socialized loss allocation. For the loss-agnostic market, the lack of dispatch support holds for both
individual and socialized loss allocation. For simplicity, we assume in this thesis that the agents
are unable to anticipate the loss allocation post-processing.

The socialized cost of loss per consumed unit of heat for DLG is

πL,DLG =
∑

i,j,t wijtπ
N
nit∑

i,t dH
it

, (4.28)
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n3 ... n10 n11

HP1 HP2 HP6

Figure 4.4: Layout of the case study district heating system. Nodes 1, 2, 4, 6, 8, 10 each contain
a single prosumer with a heat pump (marked with HP). Nodes 3, 5, 7 each contain 4 flexible
consumers, and nodes 9, 11 each contain 5 flexible consumers. There is a grid connection at node 1.
The flow is unidirectional, directed from the supply side of node 1 to 11. The return side is equal to
the displayed supply network, with reversed flow directions. This figure is taken from [Paper B].

and for CLG it is

πL,CLG =
∑

i,j,t wg
ijtπ

N
ngt∑

i,t dH
it

. (4.29)

4.6 Illustrative case study

In this case study we aim to illustrate the properties of our proposed network- and loss-aware
market frameworks. While [Paper B] includes two variants of this case study, we focus on a
single variant here. First, Section 4.6.1 present the input parameters used. We have chosen input
parameters that clearly show the possible effects of loss-aware dispatch. Although these parameters
therefore do not correspond to any specific real system, their values are within realistic ranges. We
present and discuss the case study results in Section 4.6.2. Our online repository [159] contains an
implementation of the three market variations in Julia [160]. This case study can be reproduced
using the repository. It also includes an example analysis of the market outcomes.

4.6.1 System description

This case study considers an hourly day-ahead market consisting of 24 hours. Figure 4.4 shows the
considered supply network topology. A set of 11 nodes is connected by a pipeline network without
any branches, although branches are allowed in our framework. The constant nodal temperatures
are fixed by setting the supply temperature at n1 to T S

n1
= 90◦C, the return temperature at n11 to

T S
n1

= 40◦C, combined with the assumption of 0.1 K m−1 temperature loss on the supply side and
0.05 K m−1 on the return side.

We distribute 28 prosumers over the nodes in the system. Six of these prosumers may generate
heat using local heat pumps, while the remaining 22 prosumers only consume heat. All even
nodes and node 1, i.e. node 1, 2, 4, 6, 8, 10, contain one of the generating prosumers, as indicated in
Figure 4.4. The remaining agents without production are distributed over the remaining nodes. On
the consumption side, we use measurements from the Nordhavn neighbourhood in Copenhagen,
collected in the EnergyLab Nordhavn project [161], to create unique Domestic Hot Water (DHW)
and space-heating reference profiles for each prosumer. The following quadratic utility functions
are applied:

uit

(
dSH

it

)
= −ũit

Ä
dSH

it − D̂SH
it

ä2
, (4.30)

i.e., the utility is inversely proportional to the squared deviation from the reference space heating
profile.
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Figure 4.5: Heat and electricity import prices used in case study. Taken from [Paper B].

The generated heat from the heat pump of agent i is linearly proportional to its electricity load
dE,hp

it :

gH
it = COPi dE,hp

it , (4.31)

where the proportionality is given by the Coefficient of Performance (COP) of this heat pump.
The COPs are considered constant in this chapter. As a result, the cost bid of these agent linearly
depends on the electricity price cE

gt as

cit

(
gH

it

)
= 1

COPi
cE

gt gH
it . (4.32)

The maximum generation capacity is the same for all six generating prosumers, but their heat
pump COP differ. The six heat pump COP values range linearly from 3.27 to 3.46. The heat
pumps are placed so that the marginal production cost increases (and thus, COP decreases) with
distance from the grid connection. The heat source at node 1 will thus have the lowest generation
cost, followed by node 2, node 4, etc.

The used electricity and heat import price curves are plotted in Figure 4.5. Consumers in many
countries, including Denmark, can enter contracts with a variable electricity price, and this is
assumed in the current work. The used electricity price profile is from Nord Pool day-ahead
market Elspot on January 8th 2021, multiplied by a factor 2.55 to account for taxes and transport
cost. The heat import price is constant at 524 DKK/MWh or 69.87AC/MWh, as was the case for
consumers in Copenhagen in 2021 [162].

We assume that the agents are non-strategic and regulation-agnostic, which means that they do
not change bidding behaviour in the dispatch because of the hindsight payments.

4.6.2 Numerical results

We illustrate how network- and loss-awareness affects the schedule and (nodal) prices, as well
as the quantity and cost of the resulting network losses. We focus on the comparison between
the loss-aware DLG market with individual loss allocation, compared to the loss-agnostic CLG
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Figure 4.6: Total scheduled nodal generation. Generated losses are shaded. Adapted from [Paper
B].

market with socialized loss allocation. The former is our proposed market design with the pricing
that suits it most naturally, while the latter is our benchmark, and resembles current practice.
Before proceeding to numeric results, we focus on a benefit of network-aware markets that is not
visible in the simulations: the fact that the resulting dispatch is feasible in the network, given that
the considered network model is accurate. This holds for both our loss-aware and loss-agnostic
markets.

The most important effect on the dispatch is that loss-aware markets may increase the scheduled
volume of distant generators, i.e. generators located further away from the grid connection point,
thereby moving generation closer to consumption. This effect is seen when comparing the total
nodal dispatch between the loss-aware DLG and loss-agnostic CLG markets in Figure 4.6. The
more local heat consumption is a result of minimizing the cost of pipeline heat loss alongside the
cost of consumed heat. While the production cost of generators at distant nodes is higher in this
illustrative case study, these generated have a smaller associated network loss, due to the reduced
distance between generator and consumer.

Directly related to this more local loss consumption is the fact that the loss-aware markets are
guaranteed to be have a lower or equal amount of heat losses in the network than the loss-agnostic
market. This effect is quantified in Table 4.2. Admittedly, the size of these reductions is case
dependent. As a result of this reduced heat loss, the total generation cost in loss-aware markets is
lower or equal to that in the loss-agnostic market, as shown also shown in the table. Here, we
compute the total generation cost for the loss-agnostic market after clearing the market.

loss-agnostic loss-aware market
benchmark (% decrease)

cost 201.7 MAC ↓ 1.3 %
heat loss 137.3 kW ↓ 47 %

Table 4.2: Comparison of total generation cost (i.e., including loss costs) and heat loss in the
loss-agnostic and loss-aware markets.
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(a) loss-aware market,
individual loss allocation

(b) loss-agnostic benchmark,
socialized loss allocation

Figure 4.7: Locational marginal prices as a function of time.

Next, we point out that loss-awareness in most cases leads to variations in nodal marginal prices
between nodes, even when there is no congestion. This effect is shown in Figure 4.7(a). In contrast,
the loss-agnostic benchmark with socialized loss allocation produces equal prices for all nodes in
the absence of congestion, as shown in Figure 4.7(b).

4.7 Future perspectives

The proposed network-aware market design can potentially support the operation of distributed
heating networks by reducing network heat loss and the related cost. Regarding network-awareness
in heat markets, our approach has been to simplify the network representation compared to many
works in the literature. Based on several simplifying assumptions, we formulated a VFCT-based
heat market. An advantage of our formulation compared to more complex network-aware heat
markets is the transparency and intuitive interpretability of the prices that result from our market
design. It should be noted that the VFCT model assumption of flow-independent temperature losses
is only verified on system with single injection point [77]. Experimental verification of the validity
of this assumption in heat distribution systems with multiple injections should be performed. To
use this market design in practice, it is important to choose the fixed nodal temperatures accurately
and fairly, as these values have a large effect on the resulting market outcomes. This may be the
greatest challenge for practical application of the proposed network-aware market design.

Although it is likely that the assumed network model is not accurate enough for real-time operation
of heating networks, it may be sufficiently realistic for the scheduling phase. However, it should be
checked in experiments that the proposed market can provide near-feasible schedules. Generally,
the purpose of an energy market is to bridge the gap between network and system operation and
the many actors interacting within this system. Inclusion of network constraints in a market setting
is only useful if the resulting formulation leads to improved operation of the system, by providing
the right incentives for market participants to support this operation. Compared to our formulation,
more complex network models for optimal dispatch have been proposed, for instance in [41] and
[42]. However, as none of these models has been experimentally verified, it is not guaranteed that
this complexity will lead to actual improved heat system operation compared to our approach.
Future research should focus on the interaction between network-aware heat markets and the
control strategies in the corresponding heating networks. The benefits of network-aware dispatch
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could then be quantified in real experiments, and the use of different network formulations in
market designs could be compared.

In the current work, we have not considered uncertainty related to heat generation and consumption.
On the distribution level, there is large uncertainty associated with non-aggregated load profiles.
At the same time, excess heat production profiles may be subject to uncertainty, for example due to
weather dependence. It would be important to investigate how this uncertainty can be taken into
account in optimal dispatch and market design.

Our network formulation focused on the minimization of operating cost related to network heat
loss, while we did not include operating costs and constraints related to water pumping in the
network. A meaningful extension of our work would be to add estimates of pumping power and
its related cost. For a single point of heat injection, [47] includes a first order approximation of
the bilinear expression for pumping energy. This approximation is not suitable for direct use in
the presence of multiple injection points, but can perhaps be generalized to the multiple injection
setting. Another option would be to include approximate pumping costs after market clearing,
and respond to these cost as a recourse action.

Finally, the design of network-aware markets suitable for bidirectional and/or meshed heat
distribution networks could be a topic for future investigations. It may be possible to adapt our
proposed market design to accommodate meshed networks. To allow for bidirectional flows, the
multiplicative loss formulation could be used, but it is non-trivial how nodal temperatures and
pipeline flows could remain part of such model.





Chapter5
Market integration of storage

This chapter presents our contribution towards the third and final research direction: market
integration of non-merchant storage. It is based on the work in [Paper C]. Previous studies have
highlighted the need for large-scale energy storage in systems with very high penetration of
intermittent and stochastic renewables [163]. The International Energy Agency foresees a great
increase in utility-scale battery storage, from less than 20 GW in 2020 to over 3000 GW by 2050
[164]. However, market-design and regulatory issues currently still form a barrier to the economic
profitability of large-scale storage [165, 166]. The need for market reforms is illustrated by a
2018 FERC order, which called for system operators to facilitate market participation of electric
storage, and to provide them with fair compensation, while taking the physical and operational
characteristics of these assets into account [167]. Various ways of doing so are discussed in e.g.
[168]. Here, we study the option of including non-merchant storage, which entails that the market
includes physical and operational storage constraints, but no price-related bid for the storage. This
formulation is especially relevant for heat markets, as non-merchant storage arises naturally in
network-aware district heating market designs with variable temperatures [41, 45]. Furthermore,
such designs have been considered in the context of financial storage rights [49, 50], or market
integration of storage in general [51, 168]. The intertemporal nature of storage constraints poses a
challenge in a market context, as they introduce connections between subsequent market-clearing
horizons. Uncertain parameters from future market-clearing horizons therefore affect the optimal
decisions in preceding horizons. In the case of storage, the state of energy in the storage at the end
of a market horizon is such a decision, depending on both current and future market parameters.

In this chapter, we address the end-of-horizon issue in markets with non-merchant storage. In
the literature, it is common to make simplifying assumptions on the final state of energy in
non-merchant storage, in order to bypass the end-of-horizon issues. Our aim is to show the
importance of dealing with end-of-horizon effects properly. We convey two key messages in
a rigorous manner, which are backed up by proofs in [Paper C]. First, we show that common
simplifying assumptions introduce market inefficiencies and lead to the loss of dispatch-following
incentives for the storage operator. Therefore, our first message is that it is important to set a
future-aware end-of-horizon storage level, rather than making simplifying assumptions. We move
on to a setting where we set a future-aware level, assuming perfect foresight of future market
horizons. That is, the end-of-horizon storage level is set to its optimal value. We show that in this
setting, a new problem arises: market prices may fail to reflect the value of the energy that was in
the storage at the beginning of the market horizon. In particular, we provide a set of mathematical
conditions under which market inefficiencies will occur. The mildness of these conditions show
that this problem is likely to occur in practice. Our second message is therefore that this problem
must be addressed, as it leads to the loss of market efficiency and cost recovery for storage. Our
final contribution is a reformulation of the market to retain the value of storage. Here, the market
properties of efficiency and cost recovery are restored, given perfect foresight about future market
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parameters.

The remainder of this chapter is organized as follows. Section 5.1 presents an introduction to
non-merchant storage, and discusses bidding formats for storage in current European and US
electricity markets. In Section 5.2, we discuss various ways of making end-of-horizon decisions in
markets with non-merchant storage. We present the considered stylized energy market model with
non-merchant storage in Section 5.3. In Section 5.4, we show how common simplifying assumptions
affect the market properties. In Sections 5.5 and 5.6, we place ourselves in a future-aware setting
with perfect foresight. In Section 5.5, we show which market properties are guaranteed to hold
in this setting, and which may fail to hold. Remaining in a perfect foresight setting, Section 5.6
presents our approach for restoring those market properties. Finally, we draw conclusions and
present directions for future work in Section 5.7.

5.1 Market design for integration of storage

We outline existing approaches, from research and practice, for integrating storage in energy
market designs. Most of these approaches come from electricity market design, but are applicable
to heat markets too. Inspired by [168], we categorize the designs based on the way they represent
storage in the objective function and in the constraints of the market-clearing formulation. An
overview of the three categories is provided in Figure 5.1.

The first market design considers self-managed merchant storage of the storage (self-schedule in [168]),
implying that the storage submits price-quantity bids for charging and discharging decisions. The
storage operator itself is responsible for ensuring the feasibility of its scheduled (dis-)charging
profile, and should take this into account when formulating its bids. Separate (linear) cost functions
may be submitted for charged energy b+

st≥ 0 and discharged energy b−
st≥ 0 of storage s at time t.

The market would then include the storage cost curves fs in the objective function given linear
cost parameters C−

st and C+
st as

∑
s∈S

f0,s(b−
s , b+

s ) =
∑
s∈S

(∑
t∈T

C−
st b−

st − C+
st b+

st

)
. (5.1)

The first term in the right-most expression is positive, because a discharging storage can be seen as
a generator. Limits on the net charging of energy would be specified as

− B ≤ b+
st − b−

st ≤ B ∀s, t . (5.2)

The second management option is market-managed merchant storage (coined SOC-management-lite
in [168]). In this case, the storage can submit operational parameters, in addition to the cost
function for charging and discharging. The market will include operational constraints for the
storage, keeping track of the state of energy and its feasibility. The storage operator is able to
influence its schedule through the offer curve, and has the possibility to be strategic here.

The third and final option is equal to our definition of non-merchant storage (called ISO-SOC-
Management in [168]). Here, the storage operational constraints are taken into account in the
market clearing, but there is no option to submit a cost curve. Note that market-managed merchant
storage is equal to the non-merchant storage formulation if the storage operator decides to bid
a zero cost curve. It is claimed in [168] that this third option would in theory be the most
economically efficient, since storage does not have exogenous marginal cost besides possibly
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Objective function

min
pi,b+

s ,b−
s

∑
i∈I

f0,i(pi) + storage cost curves f0,s(b+
s , b−

s )

Constraints

(dis-)charging limits

model of storage SOE

Other constraints

Market-clearing with storage

1 & 2

1 & 2 & 3

2 & 3

Figure 5.1: An overview of the way different market designs represent storage in the objective
function and constraints. We distinguish self-managed merchant storage (1), market-managed
merchant storage (2) and non-merchant storage (3). SOE = state of energy. Index s is used for
storage systems, i for remaining market participants. Charging and discharging variables are
b+ and b−, respectively. Recall that the power-injection profiles of other market participants are
denoted pi, and cost curves by f0.

degradation cost. The non-merchant storage formulation can be adapted to include degradation
cost [168]. On the other hand, strategic price-maker storage could have negative effects on the
market properties, depending on its bidding strategy. The impact of different bidding formats for
a strategic price-marker storage is studied in [169]. It is found that under increased uncertainty,
complex bid structures involving storage operational constraints are beneficial for both storage
owners and the system.

In US markets, it is common to design resource-specific bidding formats, whereas European
markets typically consider a general bidding format available for all different types of market
participants. Several US markets already consider adapted market designs and bidding formats
for pumped-hydro storage, where the feasibility of storage dispatch is ensured by the system
operators [168, 170]. Instead of price-quantity bids, the storage would in that case submit its
technical parameters, accompanied by a cost curve [170]. The market clearing thus includes the
storage cost curve in the objective function, as well as the storage-specific operational constraints,
corresponding to the market-managed merchant storage approach for integration of storage.
In most European markets, there are no bid formats specifically designed for storage, so that
storage operators must choose between existing bid formats like any other market participant
[170]. This means that regular price-quantity bids can be submitted like in the first market format,
i.e. self-managed merchant storage. Alternatively, to ensure feasibility of the market schedule
resulting from its bids, storages may opt to use block orders [170]. Such an offer would include a
charging block and a discharging block, making sure that the storage is not scheduled to discharge
without its charging offer being accepted first. In the EPEX Spot market, a so-called ‘loop order’
has been introduced, which allows bids of exactly two blocks to be executed or rejected together
[170]. Both these bidding formats would however represent the operational constraints of the
storage in a rather restricted way, limiting the flexibility that can be harnessed.
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Figure 5.2: Illustrative example: the effect of different end-of-horizon decisions on the state of
energy in the storage over several market-clearing horizons. Adapted from [Paper C].

5.2 End-of-horizon considerations

The splitting of a market clearing with time-linking constraints into multiple clearing horizons can
result in sub-optimal, ‘myopic’ scheduling of non-merchant storage. This effect is shown for an
illustrative example in Figure 5.2. The black curve represents an optimal state-of-energy profile
that may be found when clearing current and (relevant) future market horizons simultaneously,
assuming perfect foresight over future horizons. In this case, the storage would in general be
non-empty by the end of a market clearing horizon (in this case at t = 4).

When instead, subsequent market horizons are cleared separately, as is done in practice, a different
optimal state-of-energy profile may be found. As the value that could be obtained in future market
horizons is not visible in the previous market horizon, it would be locally optimal to use as much
energy from the storage as possible, unless negative prices occur [168]. As a result, the storage
level would be at its lower bound by the end of each horizon, as shown by the blue curve in Figure
5.2 for t = 4 and t = 8. Many existing works with non-merchant storage do not consider the
end-of-horizon issue, thereby neglecting the relation between subsequent market horizons [49–51,
171]. Other works by-pass the need for making future-aware decisions by assuming equal storage
levels at the beginning and end of each horizon [172–174]. If this level is set to the lower bound
S, this approach would also lead to the blue curve in Figure 5.2, otherwise this curve would be
shifted in the vertical direction. Sometimes a reasonable level of this initial and final storage level
is determined [172], but in many works, this level seems to be chosen arbitrarily.

In formulations with non-merchant storage, additional considerations are needed in order to avoid
myopic decisions about the energy left in the storage at the end of the market-clearing horizon.
Such future-aware decisions about end-of-horizon storage levels can be enforced in different ways
[168]. For example, a desired final storage level may be included in the bidding format and enforced
in a hard constraint. Another option would be to allow the storage owner to offer a value for each
unit of energy left in the storage by the end of the horizon, and add a term to the objective function.
Rolling-horizon market formulations have also been used to support non-myopic end-of-horizon
decisions [52, 61, 62]. Each of these approaches could lead to a future-aware state-of-energy profile
such as the red profile in Figure 5.2, if end-of-horizon decisions were well-chosen.

In this chapter, we do not deal with the question of how to optimally determine end-of-horizon
decisions. We consider a rather general formulation for enforcing non-myopic end-of-horizon
decisions. Our formulation is general in the sense that the final state of energy can be determined
using any desired method, e.g. rolling horizon, online learning, etcetera. Instead, we highlight a
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problem that arises regardless of how such decisions are made, even under perfect foresight. We
show that even when perfect final storage levels are enforced, several desirable market properties
may no longer be guaranteed. If a storage performs arbitrage between different horizons, the
value of energy present in the storage may be lost in subsequent market horizons. In other
words, subsequent market-clearing horizons are unaware of losses and gains incurred by market
participants in past horizons [61]. This problem has been addressed in a rolling-horizon setting,
and with a focus on ramping constraints [61, 175]. Here, we analyze the problem specifically for
markets with non-merchant storage, and without the rolling-horizon approach.

5.3 A stylized market design with non-merchant storage
Our market design includes a storage model, which we will present first. In the remainder of this
chapter, we consider a single storage system. As we will not include network constraints, the
results would not change when including multiple storage systems. For our current purposes, we
keep the non-merchant storage model in the market design as simple as possible. This allows us to
show that a minimal set of constraints can already lead to problems when clearing the markets
sequentially. The considered stylized model of the storage system is:

0 ≤ et ≤ S, ∀t ∈ T : (νt, νt) (5.3a)

et = et−1 + bt, ∀t ∈ T \ {1} : (ρt) (5.3b)

e1 = Einit + b1 : (ρ1) (5.3c)

eT = Eend : (ξ) . (5.3d)

The state of energy in the storage system et is a decision variable for each time t in the considered
time horizon T = {1, 2, . . . , T}. The first constraint (5.3a) ensures that the state of energy stays
within the physical bounds of the storage system, which is bounded below by 0 and above by S.
The state of energy changes over time depending on the amount of charged energy bt, and this
dependence is described by (5.3b) and (5.3c). The decision variable bt is positive when charging,
and negative when discharging. A single decision variable for (dis-)charging suffices in our model,
because we do not model charging and discharging losses. The addition of such losses would lead
to more complex notation in the primal and dual problems, but would not alter our main message,
and are therefore omitted. The final constraint (5.3d) fixes a decision for the end-of-horizon
storage level eT , to a pre-specified parameter Eend. This formulation contains approaches from
the literature as special cases. For example, Eend can be chosen equal to Einit. In a future-aware
approach, Eend would be identified separately for each market horizon, depending on knowledge
of future market-clearing horizons. Our formulation does not prescribe any method for doing so,
and therefore includes e.g. rolling horizon methods as a special case. In a myopic market clearing,
(5.3d) would be omitted, or Eend would be chosen equal to Einit.

The market formulation that we consider in this chapter resembles the common pool day-ahead
market as presented in (2.8) of Chapter 2, though with the addition of the storage constraints.
We consider two versions of this market clearing, constrained and free, depending on the in- or
exclusion of the end-of-horizon constraint (5.3d). The constrained market-clearing optimization
problem for set of time periods T , which includes the end-of-horizon constraint, is denoted C(T )
and given by:

max
d,g,b,e

∑
t∈T

Ñ∑
l∈L

Ult dlt −
∑
g∈G

Cgt ggt

é
(5.4a)
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s.t.
∑
l∈L

dlt + bt −
∑
g∈G

ggt = 0, ∀t ∈ T : (λt) (5.4b)

0 ≤ ggt ≤ Ggt, ∀g ∈ G, t ∈ T : (µ
gt

, µgt) (5.4c)

0 ≤ dlt ≤ Dlt, ∀l ∈ L, t ∈ T : (χ
lt

, χlt) (5.4d)

(5.3a) − (5.3d) . (5.4e)

We assume linear cost functions for loads l and generators g, which are specified by bid and offer
prices Ult and Cgt in the objective function (5.4a). If participants bid truthfully, these quantities
correspond to the willingness to pay for loads, and the marginal generation cost for generators.
The energy balance (5.4b) now includes the charging variable bt, besides the load and generation.
The dual variables are collected in the set Γ = {λ,ρ, ξ,µ,µ,ν,ν,χ,χ}.

For purposes of pricing and analysis of the mechanism, we derive the dual problem CD(T ) of (5.4)
as

min
Γ

∑
t∈T

Ñ∑
g∈G

Ggtµgt +
∑
l∈L

Dltχlt + Sνt

é
+ Einitρ1 − Eendξ (5.5a)

s.t. Cgt − µ
gt

+ µgt − λt = 0, ∀g ∈ G, t ∈ T : (ggt) (5.5b)

− Ult − χ
lt

+ χlt + λt = 0, ∀l ∈ L, t ∈ T : (dlt) (5.5c)

− ρt + λt = 0, ∀t ∈ T : (bt) (5.5d)

− νt + νt + ρt − ρt+1 = 0, ∀t ∈ T \ {T} : (et) (5.5e)

− νT + νT + ρT − ξ = 0 : (eT ) (5.5f)

µ
gt

, µgt, νt, νt, χ
lt

, χlt ≥ 0 . (5.5g)

A more compact dual formulation could be derived by combining the non-negativity constraints
(5.5g) with the other constraints. However, as we use the constraints in their equality form in
subsequent proofs, we present the dual formulation in this loner form. We choose the signs of the
free variables ρ1 and ξ such that (5.5e) and (5.5f) have a similar form for all t, including t = T .

The free market-clearing problem F(T ) is obtained from the constrained problem (5.4) by removing
the end-of-horizon constraint (5.3d). The dual problem FD(T ) of the free market clearing is
obtained from (5.5) by setting ξ = 0.

A thorough analysis of the dual problem and an interpretation of the dual variables is available
in [51]. We use λt as the uniform hourly market price for all market participants, including the
storage system. Previous works sometimes use other dual variables for pricing [49–51], but in
[50, 51] it is shown that the two pricing systems are equivalent for the free market clearing with
non-merchant storage, i.e F(T ). The dual variable ρt represents the marginal value of an additional
unit of energy in the storage at time t, i.e. increasing et by one unit. By (5.5d), it holds that
ρt = λt for all t, so that both these dual variables represent the hourly uniform marginal price. The
relation between ρt and λt would be changed if limits on the rate of charge bt were included in
the storage model (5.3). In that case, the equality would only hold when the rate-of-charge limits
were not active. If charging and discharging losses were added as a constant proportion of the
amount charged or discharged, the relation between ρt and λt as given by (5.5d) would change by
a constant factor.

Constraints (5.5e) and (5.5f) specify the relation between the market price at consecutive time
periods. The price only changes over time if the state of charge in the storage system is at a



5.4. SIMPLIFIED END-OF-HORIZON DECISIONS 63

1 2 3 4 5 6 7 8

S

S

e t
[W

h]

1 2 3 4 5 6 7 8
0

5

X d1 X d2

Time periods t ∈ T

Pr
ic

e
ρ

t
[AC

/
W

h]
X

T d1 T d2

Figure 5.3: Bottom: Example of market-clearing price dividing the market horizon into four time
zones. Top: Storage state-of-energy (et) profile related to the below market price signal. Taken
from [Paper C].

bound. More specifically, the market price decreases from time t to t + 1 if et = S, and increases if
et = S. This effect motivates the definition of a time zone similar to a spatial zone that may arise in
network-aware markets when network constraints are inactive.

Definition 1 (Time zone) A time zone is the longest possible set of consecutive time steps with the same
market price. That is, a set of time steps Z with mint∈Z t = z0 and maxt∈Z t = Z is a time zone if and
only if

1. Z only includes consecutive time steps

2. For all t ∈ Z it holds that λt = K for some constant K

3. ρz0−1 ̸= c and ρZ+1 ̸= c.

We illustrate this definition in Figure 5.3. The bottom plot shows four time zones with constant
market price λt = ρt. A example state-of-energy profile for the storage that is in accordance with
the given time zones is shown in the upper plot. For example, the storage must be at a lower
bound at t = 1, as the market price ρ decreases from t = 1 to t = 2.

5.4 Simplified end-of-horizon decisions

Here, we investigate the effect of the following two common end-of-horizon simplifications for
non-merchant storage on desirable market properties. Assumption 1 entails that the final storage
level is unconstrained. As a result, the storage will be scheduled to maximize social welfare
within the current market-clearing horizon. Unless negative prices occur, this will lead to the
end-of-horizon storage level hitting its lower bound. Under Assumption 2, the final storage level
is constrained the initial storage level.

5.4.1 Market properties

In [Paper C], we show that either assumption guarantees cost recovery for the storage owner. This
cost recovery is even ensured within each market-clearing horizon (and therefore also in the long
run). However, each of the simplifying assumptions can lead to loss of market efficiency in the
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long run. In particular, social welfare can be negatively impacted, and the storage may have an
incentive to deviate from the market clearing outcomes. For the details of these derivations we
refer to [Paper C]. Here, we provide intuition for these results using an illustrative example.

5.4.2 Illustrative example I

In this illustrative example, we consider two sequential market-clearing intervals by the sets
T d1 = {1, 2} and T d2 = {3, 4}, i.e. a market-clearing interval consists of two time periods. There
is a non-merchant storage with a maximum capacity of S = 2.5 Wh. In addition, there is a single
load and two generators, a cheaper one and a more expensive one. The price-quantity bids of
the load and generators can be found in the Appendix of [Paper C]. Our code for the illustrative
examples in this chapter is available in our online repository [176].

We compare three cases with different assumptions on the initial and end-of-horizon storage level
Einit and Eend:

1. On both day 1 and day 2, there is no constraint on the final level, corresponding to Assumption
1. On day one, Einit = 0.

2. The initial and final levels are equal as in Assumption 2. Specifically, Einit = Eend = 1.25 Wh,
i.e. half of the storage capacity.

3. The final storage level is optimal w.r.t. the storage profit over these two clearing horizons.
This corresponds to Eend = 2.5 Wh, i.e. the maximum capacity. On the second day, the
end-of-horizon storage level is unconstrained.

The optimal state-of-energy profiles for the storage system in these different cases are shown
in Figure 5.4. It shows that the temporal arbitrage by the storage is limited in Cases 1 and 2,
compared to the future-aware approach in Case 3. This is a result of the simplifying end-of-horizon
assumptions, as they do not allow temporal arbitrage between different market-clearing intervals.
For Cases 1 and 2, the charging and discharging pattern is the same, but this is not a general result.
The missed opportunity in terms of arbitrage is reflected in the social welfare for the different cases.
In Cases 1 and 2, the total social welfare obtained is AC46, whereas it is AC55.5 in Case 3.

To evaluate the cost recovery and dispatch-following incentives for the storage system, we compare
the storage system’s profit in the three cases in Table 5.1. The profit is nonnegative for each day
in Cases 1 and 2, which is consistent with our finding that cost recovery is ensured within each
market clearing under the simplifying assumptions. This does not hold for Case 3, where the profit
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Figure 5.4: Storage state of energy over time for the three cases in illustrative example I. Blue lines
are myopic approaches, whereas the red line represents a future-aware approach.
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t Case 1 Case 2 Case 3

T d1 1 -4 -4 -10
2 4 4 -2.5

T d2 3 -11 -11 6
4 11 11 9

Total T d1 0 0 -12.5
Total T d2 0 0 15

Total 0 0 2.5

Table 5.1: Profit (AC) of the storage system for the three cases in illustrative example I. Adapted
from [Paper C].

is negative on the first day. However, the storage benefits from the temporal arbitrage between the
two days in Case 3, as it earns a greater profit. In Cases 1 and 2, the storage operator can improve
its profit by changing its schedule to that of Case 3, which shows that the simplifying assumptions
indeed do not ensure dispatch-following incentives for the storage.

5.5 Future-aware end-of-horizon decisions

We move on to investigate market properties in the case where a future-aware decision is made for
the energy in the storage at the end of a market-clearing horizon. The main aim is to show the
effect of splitting a market clearing in multiple intervals on the optimal primal and dual solutions.
We place ourselves in a perfect foresight setting, in order to prove that the effects to be shown are
not caused by suboptimal end-of-horizon decisions, but purely by the act of splitting itself. More
specifically, by perfect foresight we mean that the storage operator decides on the future-aware
Eend with perfect foresight of all future market parameters.

5.5.1 Definition of full- and split-horizon problems

To investigate the effect of splitting the market clearing, we define a full-horizon problem as a perfect
baseline for comparison. In the full-horizon problem, the market outcomes are determined in a
single clearing for the entire finite horizon T . To allow for fair comparison, we restrict ourselves
to this finite time period and disregard what happens after time t = |T | = T . Therefore, we do
not constrain the end-of-horizon level for the storage at t = T , which means that the full-horizon
optimization model is given by F(T ) from (5.4). Optimal values of variables in this model are
denoted by ∗. In a finite-horizon world, the full-horizon problem ensures cost recovery, dispatch-
following incentives, and market efficiency [51]. Therefore, we can consider this full-horizon
market clearing as a perfect baseline in our comparison.

In the split-horizon problem on the other hand, the market outcomes for T are determined in two
separate, sequential market-clearing problems. The set T is divided into two ‘days’ of equal
length denoted T d1 = {1, . . . , H} and T d2 = {H + 1, . . . , 2H}, where T = 2H . On the first day,
the storage operator is to specify a future-aware end-of-horizon storage level Eend, so that the
optimization problem for the first day is given by C(T d1). The storage level at the end of the
second day is unconstrained in the split-horizon problem too, to ensure fair comparison to the
full-horizon problem. The split-horizon optimization model for the second day is therefore F(T d2).
Optimal values of variables in the split-horizon model are denoted by ′. The term split-horizon
problem refers to the combination of both optimization problems. They can be combined in a single
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optimization problem that is solved at once, because the two problems are independent. Of course,
the Eend for the first day has to equal Einit for the second day for this combined formulation to
make physical sense. When combining the first- and second-day objectives into a single objective
function, this function equals the objective function of the full-horizon problem.

Finally, we define the split-horizon model with perfect foresight. In this case, the final storage level
Eend on T d1 is chosen equal to the optimal storage level e∗

H obtained from solving the full-horizon
problem.

5.5.2 Market properties

Here, we give an overview of three main theoretical results from [Paper C], and provide intuition
for these results using an illustrative example. For rigorous proofs of these results we refer to the
paper.

Our first result relates to the effect of the split-horizon clearing on primal solutions. In [Paper C]
we prove that the primal solution(s) of the split-horizon problem with perfect foresight are equal to
those from the full-horizon problem. This correspondence is formalized in the following lemma.

Lemma 1 Let e∗
H be part of an optimal solution x∗ to the full-horizon problem. Then x∗ is an optimal

primal solution to the full-horizon problem if and only if x∗ is an optimal primal solution to the split-horizon
problem with Eend = e∗

H .

Next, we analyze how splitting the market clearing affects the dual solutions. In this case, the
correspondence between the full- and split-horizon problems is weaker, i.e. it can only be shown
in one direction. Our second theoretical result is that any optimal primal and dual solution to the
full-horizon problem links to a corresponding solution to the split-horizon problem. The following
lemma specifies what this means exactly.

Lemma 2 Any optimal primal and dual solution pair {x∗, ζ∗} to the full-horizon problem is also an optimal
solution to the split-horizon problem, with additional split-horizon variable ξ′ taking the value ξ′ = ρ∗

H+1.

While previous works such as [61] have noted the existence of problematic solutions to the
split-horizon problem, they do not mention the fact that the dual solution to the full-horizon
problem always remains a solution to the split-horizon problem. Therefore, we find it important to
emphasize that a dispatch-supporting dual solution to the split-horizon problem always exists.

Our third and final result shows that the correspondence between dual solutions to the full- and
split-horizon problems does not hold in the other direction. Indeed, there may exist additional dual
solutions to the split-horizon problem, that are not optimal and even infeasible to the full-horizon
problem. A problem with such additional dual solutions is that they can lead to loss of market
properties. Before stating our theorem about their existence, we provide a formal definition of
such problematic solutions.

Definition 2 (Weak dual) A dual solution to the split-horizon problem is weak if the resulting price is
not dispatch supporting for the non-merchant storage. Such a weak dual exists if and only if one of the
following situations occurs.
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1. eH ∈ (S, S) and ρ′
H ̸= ρ′

H+1

2. eH = S and ρ′
H < ρ′

H+1

3. eH = S and ρ′
H > ρ′

H+1 .

The storage has incentive to deviate from its schedule if such deviations can improve its profit.
The following two cases show that weak solutions provide this incentive to deviate:

1. If ρ′
H > ρ′

H+1, the storage can improve its profit by decreasing e′
H . This is possible in case

eH ̸= S, i.e. both in situations 1) and 3) of Definition 2.

2. If ρ′
H < ρ′

H+1, the storage can improve its profit by increasing e′
H . This is possible in case

eH ̸= S, i.e. both in situations 1) and 2) of Definition 2.

Under a weak dual solution, the storage operator may even earn a negative profit, and thus, cost
recovery is not ensured. This would for example be the case if the storage system charged an
amount e′

H at price ρ′
H and is scheduled to sell the same amount for a lower ρ′

H+1, and no other
trades occur.

In Theorem 1 we provide sufficient conditions for a weak solution to exist.

Theorem 1 Assume all cost and utility bids are unique. More specifically, Ult = Ul′t′ ⇐⇒ l = l′ ∧ t = t′,
and Cgt = Cg′t′ ⇐⇒ g = g′ ∧ t = t′, and Ult ̸= Cgt′ ∀t, t′, l, g. .
If the optimal solution to the full-horizon problem is such that H + 1 and T are in different time zones, and

ρ∗
H = ρ∗

H+1 , (5.6)

then the split-horizon problem with perfect foresight admits a weak dual solution.

We refer to [Paper C] for the exact proof, and discuss the reasoning behind this result more
informally in this chapter. The proof is constructive: we show how a weak dual solution for the
split-horizon problem can be constructed from a solution to the full-horizon problem. This is
possible due to a ‘freedom’ that arises in the split-horizon problem as a result of the splitting.
The primal split-horizon problem includes an additional constraint compared to the full-horizon
problem, namely:

eH = Eend : (ξ) (5.7)

which also introduces an additional dual variable ξ. Whereas in the full-horizon problem, the
following dual relation must hold:

− νH + νH + ρH − ρH+1 = 0 , (5.8)

this is replaced by the following dual relation for the split-horizon problem:

− νH + νH + ρH − ξ = 0 . (5.9)

Thereby, the additional dual variable ξ introduces freedom in the relation between market prices
ρH and ρH+1 in the time periods where the market is split.

The sufficient conditions in Theorem 1 ensure that this potential freedom can be exploited. If cost
and utility bids were not unique, it could happen that all market participants’ power injections
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are scheduled to be on a bound of their feasible region, but there is still no freedom in the related
dual variables. To exclude such exceptional cases, we assume uniqueness of the cost and utility
bids. The remaining conditions ensure that the full-horizon optimal solution has a time zone that
extends over both days, but does not extend over the entire second day. In the split-horizon case,
this time zone would be split over two market-clearing intervals, and at most one of the two parts
of the split time zone would have a marginal load or generator. The other will lack a marginal
load or generator, which leaves room for the optimal market-clearing price to take multiple values.
However, if t = T was included in that time zone, while e∗

T ∈ (S, S), the freedom in ρH+1 would
be lost.

5.5.3 Illustrative example II

In this example, we apply the full-horizon and split-horizon optimization problem to the same
case and compare the results. We consider a time horizon T = {1, 2} consisting of two days,
T d1 = {1} and T d2 = {2}. A single load, two generators, and a non-merchant storage with
capacity S = 2.5 Wh participate in the market. The assumed price-quantity bids for the load and
generators are listed in Table 5.2.

We first clear the market using the full-horizon problem, to obtain the results for this ideal
benchmark. For the unique optimal solution, the storage is charged to e∗

1 = 1 Wh on the first day,
and discharged fully on the second day. The storage is thus not at a bound after the first hour.
Therefore, there is a single time zone for the two days, and the clearing can be represented in a
single market-clearing diagram as done in Figure 5.5(a). The unique optimal values for the market
prices are λ∗ = [5, 5]AC/Wh. Performing temporal arbitrage, the storage buys one unit of generation
at t = 1 from a generator with cost of 5AC/Wh, and sells it at t = 2. Thereby, the presence of the
storage helps avoid the scheduling of a more expensive generator of 9AC/Wh at t = 2.

When we clear the market using the split-horizon problem with perfect foresight, we enforce on
the first day that Eend = e∗

1 = 1 Wh. As a result, the primal solutions of the two problems are
equal, which is a general result as proven in Lemma 1. The individual market-clearing diagrams
for the two days under the split-horizon problem are shown in Figure 5.5(b) and 5.5(c). The first
day is subject to a unique optimal market price equal to that of the full-horizon problem, i.e.
λ′

1 = 5AC/Wh = λ∗
1. However, price multiplicity arises on the second day, where all values λ′

2 in the
range [2, 9]AC/Wh are optimal. As stated in Lemma 2, the optimal dual price from the full horizon
problem is still a solution to the split-horizon problem too, i.e. 5 = λ∗

2 ∈ [2, 9]. The values of λ′
2 < 5

are part of weak dual solutions, since the storage has incentives to deviate from the schedule. The
storage paid λ′

1 = 5 for the stored energy, and therefore loses profit for each stored unit: it could
thus increase its profit by decreasing e1. In this particular example, the storage earns a negative
profit, so that cost recovery is lost. This example also proves that the conditions in Theorem 1
are not necessary for weak dual solutions to exist, because one of the conditions is now not met.
Namely, the final time period t = T = 2 is included in the time zone that spans the two days.

t D1t(Wh) P 1t(Wh) P 2t(Wh) U1t(AC) C1t(AC) C2t(AC)
1 - 2 2 - 5 10
2 3 2 2 12 2 9

Table 5.2: Price-quantity bids for one load and two generators in illustrative example II. Taken
from the Appendix of [Paper C].
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Figure 5.5: Market-clearing diagrams for illustrative example II. Subfigures (a) and (c) are adapted
from [Paper C].

To sum up, this example shows that the optimal social welfare is obtained by the split-horizon
problem with perfect foresight, and the system benefits from using the storage. However, there
exist optimal solutions for which the storage earns negative profit and has incentive to deviate
from the schedule.

5.6 Restoring market efficiency in future-aware setting

We present a method to restore the market properties of the split-horizon problem with perfect
foresight. This is done by ensuring that the split-horizon problem admits only the dual solutions of
the full-horizon problem. Remaining in a perfect-foresight setting, we now also assume perfect
foresight of the optimal dual variables to the full-horizon problem, including ρ∗

H+1. We propose a
future-aware-plus method which is a modification of the split-horizon problem. The modification
restores the link between ρH and ρH+1 that is present in the full-horizon problem given by Equation
(5.8). This is done by interpreting end- and start-of-horizon storage levels as variables, as well as
adding related terms to the objective function to steer these new variables to their correct values.

For the first day of the split-horizon problem, this means that eH becomes a variable, the end-of-
horizon constraint (5.3d) is omitted, and the term eH ρ∗

H+1 is added to the objective. The latter
term could be interpreted as the expected value to be gained if an amount of eH is stored, so that
the expected value of storage in the next market clearing is considered. In the current perfect
foresight setting, ρ∗

H+1 is the perfect prediction of this dual variable, and therefore equal to the
optimal value from the full-horizon problem. As a result of these modifications, dual relation (5.9)
in the first day of the split-horizon problem is replaced by

− νH + νH + ρH − ρ∗
H+1 = 0 . (5.10)
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We denote optimal values obtained using the future-aware-plus method by ′′. In illustrative
example II, the optimal value ρ∗

2 = 5AC/Wh would be known at the time of market clearing for day
1. Using this value, the optimal values e′′

H = 1 W h and ρ′′
H = 5AC/Wh are obtained.

For the second day of the split-horizon problem, the initial storage level eH is turned into a variable,
and the term eH (ρ′′

H − ν′′
H + ν′′

H) is added to the objective function, where the optimal values
obtained in the first day are used. The addition of this variable eH adds the following constraint to
the split-horizon dual problem for the second day:

−ρH+1 + ρ′′
H − ν′′

H + ν′′
H = 0 . (5.11)

In illustrative example II, this would add the constraint ρ2 = ρ′′
1 = 5AC/Wh, so that there is a single

dual solution for ρ′′
2 equal to the solution in the full-horizon problem. Thus, the added term in the

objective function makes the market aware of the value of the energy that was in the storage at the
start of the market-clearing horizon.

In all, the future-aware-plus method restores the full-horizon optimal solution(s) in the split-horizon
problem under perfect foresight. Therefore, the market properties of cost recovery and market
efficiency are guaranteed to hold as long as there is perfect foresight of ρ∗

H+1. The future-aware-plus
method is impractical for application under imperfect foresight, i.e. in practice. Errors in the
prediction of ρ∗

H+1 would generally lead to different values of eH being obtained in the clearings
for the first and second day. As a result, the dispatch determined for the different market intervals
could be infeasible.

5.7 Conclusions and future perspectives

Table 5.3 summarizes this chapter’s theoretical results. The simplified end-of-horizon decisions
on the storage level guarantee cost recovery for the non-merchant storage, even within a single
market-clearing horizon. However, this comes at the cost of suboptimal dispatch compared to
future-aware approaches, both for the storage itself, and in terms of social welfare. Therefore,
market designs with these simplifying assumptions are inefficient. The future-aware market with
perfect foresight does restore optimality in terms of social welfare, but due to the possible existence
of weak dual solutions, cost recovery and dispatch-following incentives are not guaranteed. In our
proposed future-aware-plus market design, we restore these market properties in a perfect foresight
setting. Cost recovery does not necessarily hold within each market interval, as the storage may
perform arbitrage across market intervals, but it is guaranteed in the long term. Under imperfect
foresight, however, our proposed solution may produce infeasible market outcomes when there is
an error in the prediction of ρ∗

H+1. Although we did not analyze the market properties formally in
this case, we expect that cost-recovery and market efficiency would not be guaranteed to hold due
to possible infeasibility of market outcomes.

In Theorem 1 we provided sufficient conditions for the existence of weak solutions to the split-
horizon problem with perfect foresight. The mildness of these conditions show that this problem
is not just technically possible, but actually likely to occur in practice. We emphasize that the
provided conditions are not necessary, i.e. weak dual solutions to the split-horizon problem can
also exist while these conditions do not hold. It is possible that the conditions could be further
specified and restricted to make them both necessary and sufficient. However, this would probably
lead to less intuitively attractive conditions, as several special ‘miscellaneous’ cases would need to
be excluded.
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(perfect foresight) (imperfect
foresight)

Einit = Eend future-aware future-aware-plus
cost recovery within clearing ✓ ✗ ✗ ?
cost recovery across clearings ✓ ✗ ✓ ?
dispatch-following incentives ✗ ✗ ✓ ?
optimal social welfare ✗ ✓ ✓ ?
market efficiency ✗ ✗ ✓ ?

Table 5.3: Overview of market properties for different end-of-horizon decisions and market designs
for non-merchant storage. ? = to be investigated.

A natural direction for future work is the design of a future-aware market with non-merchant
storage that is suitable in an imperfect-foresight setting. It would be a first priority for market
outcomes to be feasible, which is not ensured in the future-aware-plus method. A question that
arises in this setting is whether each market property should be guaranteed in expectation, or in
absolute terms. The answer to this question may be different for each market property. Market
efficiency and optimal social welfare would in an imperfect foresight setting never be guaranteed
in absolute terms. For cost recovery on the other hand, we could envision a market design that
guarantees this property in absolute terms under imperfect foresight. The design of such a market
would be an interesting first extension of this work. However, it is possible that mechanisms that
guarantee cost recovery only in expectation can actually improve the expected profit of the storage.
Future works should investigate this trade-off.

The results in this chapter have been obtained assuming linear cost and utility functions, which are
common in practice. We expect that the pricing problem can also arise in the nonlinear convex case,
for similar reasons as in the linear case. However, the exact conditions in the nonlinear convex
case need to be analyzed in more detail. This would be an interesting extension of our current
analysis. Another extension could be to allow the non-merchant storage to provide services in
several markets, for example, both energy and frequency regulation markets. The authors of [177]
emphasize the importance of providing multiple services for the cost-effectiveness of storage, and
the existence of market and policy barriers that prevent storage from doing so.

Given a suitable market design in the imperfect foresight setting, one could investigate how closely
a real storage operator could approach perfect operation of the storage. This depends on the
methods used for determining end-of-horizon decisions, i.e. the optimal final storage level Eend.
Future work should propose and compare different methods. A popular approach has been the
use of rolling-horizon markets, where the immediate dispatch is determined in an optimization
that includes a longer time horizon. Forecasts of future market horizon parameters are needed to
apply this method. In [165], forecasts of future market prices are used to determine the optimal
storage dispatch in the current market horizon. An implicit assumption of using price forecasts
directly is that the storage is a price taker. Other works apply stochastic programming methods,
using scenarios of parameters in future market horizons. All of these methods rely on forecasts
to indirectly determine optimal end-of-horizon decisions. Alternatively, one could consider to
forecast the end-of-horizon decision directly from available data. Different forecasting techniques
could be applied, for example online (reinforcement) learning.

In network-aware market designs for district heating, non-merchant storage is implicitly present.
By changing the temperature of the water in the network, the amount of energy contained can be
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varied. In many studies with variable network temperatures, these temperatures are initialized at
a level above their lower bound. Due to the lack of end-of-horizon constraints, these temperatures
will be at their lower bound by the end of the simulated market clearing. This results in an
overestimated value of network storage that many such works compute, see e.g. [45]. In practical
applications, the lack of future-aware end-of-horizon decisions on the network temperature is likely
to lead to suboptimal heat schedules, and may even result in problems with meeting inflexible
heat loads in the start of a market-clearing horizon.



Chapter6
Conclusions

In this thesis, we presented our contributions to three research directions in the field of market
design for district heating systems, focusing on different aspects of future district heating systems.
The first research direction involved the design of scheduling and pricing mechanisms for systems
with a large number of small heat producers, where we focused on price-responsive excess heat
providers. Next, we considered network-aware market design, which becomes important in
more distributed district heating systems. In the third research direction, we investigated market
properties in energy markets with non-merchant storage.

6.1 Key findings

Related to the integration of excess heat providers in district heating systems (RD1), we investigated
whether self-scheduling based on a price signal can be a suitable alternative to direct market
participation. The performance of the self-scheduling model was expected to depend strongly on
the market share of excess heat providers. Therefore, we quantified the suboptimality resulting
from self-scheduling for varying levels of excess heat penetration in a realistic case study of the
Copenhagen district heating system. The case study included realistic bidding models of the
Combined Heat & Power (CHP) plants and cooling-based excess heat providers. We showed
that the absolute suboptimality increases approximately linearly with the installed excess heat
capacity. However, the relative suboptimality increases more dramatically, as the generation cost
of the perfect benchmark also decreases with installed excess heat capacity. We found that this
suboptimality is caused by two main effects. Firstly, the excess heat is not optimally scheduled
to replace the CHP plants when these are most costly, leading to suboptimal scheduling of CHP
plants. Second, the self-scheduling excess heat producers are not aware of the heat load and have
no incentive to match this load. Therefore, a larger amount of self-scheduled excess heat is wasted.
We concluded that the suboptimality of self-scheduling may be acceptable under low excess heat
penetration, given the advantages of this method in terms of simplicity and transparency. However,
our findings suggested that more advanced coordination is needed when a higher market share of
excess heat is achieved.

Towards the second research direction (RD2), we proposed a network-aware heat market mecha-
nism based on the Variable-Flow-Constant-Temperature (VFCT) control strategy. This network
formulation was chosen after careful evaluation of network modeling approaches for district
heating systems. The variable-flow was preferred over the variable-temperature formulation, as it
allows for more flexibility in both the direction and size of nodal heat injections, which is important
for the integration of prosumers. Due to the complexity of more detailed and potentially more
accurate heating network models, those formulations may be more suitable for the control of district
heating systems, while simpler formulations may be more suitable for heating markets. Markets
can be used to bridge the gap between the needs of the system operator and the needs of actors
that are part of this system. On the one hand, suitable market designs support system operation,
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by providing schedules that are likely (near-)feasible in the network and result in reasonable
operating cost. On the other hand, the market should provide interpretable and transparent price
signals to market participants. Our proposed VFCT-based heat market was designed with this
trade-off in mind. We analyzed how the addition of VFCT-based network constraints affects the
scheduling and pricing of heat. Using peer-to-peer trades, we were able to trace network losses
back to the producer and consumer related to these losses. A dual analysis revealed how modeled
heat losses in the network affect nodal prices. We performed an illustrative case study to compare
the proposed network- and loss-aware market to a network-aware but loss-agnostic benchmark,
which was formulated to allow a fair comparison. By estimating and pricing heat losses in the
network, we showed that our network-aware market mechanism promotes a more local heat
consumption, which can result in reduced losses and total cost. We concluded that the proposed
market mechanism can reduce operating costs while integrating distributed prosumers.

Towards the research direction related to energy markets with non-merchant storage (RD3), we
addressed fundamental end-of-horizon issues that are often overlooked in the literature. These
issues are often by-passed by making simplifying assumptions on the end-of-horizon storage
level, in particular, to assume equal final and initial states of energy, or to disregard the final
level altogether. We showed using an illustrative case study and formal derivations that these
common simplifying assumptions, while ensuring cost recovery for the non-merchant storage
within each market interval, can lead to market inefficiencies. Therefore, we concluded that it
is important to set a future-aware end-of-horizon storage level, instead of making simplifying
assumptions. However, we showed that in the absence of the simplifying assumptions, the prices
in subsequent market horizons may fail to reflect the value of storage. Our aim was to draw
attention to this pricing problem, which is important to address in practice, as it can lead to lack
of dispatch-following incentives, and possibly lack of cost recovery for the storage. Intuition
for the mechanism behind this pricing problem was provided using an illustrative example. In
our main theorem, we provided sufficient conditions for the pricing problem to occur. The mild
conditions showed that this problem is actually likely to occur in practice. Finally, we proposed a
market-clearing procedure with non-merchant storage which is efficient and ensures cost recovery,
under perfect foresight about future market-clearing parameters.

6.2 Perspectives for future research

The investigations in this thesis open up directions for future research from several perspectives.
While more detailed, technical directions for future work were discussed in Chapters 3-5, in this
section we take a broader view, and draw connections between the different chapters.

From a technical modeling perspective, we made several assumptions that could be relaxed in
future work. An assumption common to all chapters has been that of perfect foresight. Our work
towards each research direction could be extended by relaxing this assumption and considering
uncertainty in specific parameters. When modeling the price-based self-scheduling of excess
heat producers, the electricity prices and ambient temperature were assumed to be perfectly
forecasted. In an extension of this work, we could quantify how uncertainty in electricity prices
affects the performance of the self-scheduling and market-participation models. In network-aware
heat market designs, it can be useful to consider uncertainty in the feasible region of generators
and loads. This is especially the case on a distribution level, where there is high uncertainty in
residential load. In addition, there could be uncertainty in the generation profile from excess and
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solar heat producers. Inspired by recent works on uncertainty in network-aware electricity markets,
our network-aware heat market could be extended to be robust with respect to uncertainty. It
could furthermore be investigated how the related cost of robustness could be allocated to the
sources of uncertainty. In market designs with non-merchant storage, end-of-horizon decisions
need to be made under uncertainty about the parameters in the next market horizon. Methods for
optimally determining end-of-horizon decisions related to the storage system’s state of energy
are needed. Finally, market designs with non-merchant storage need to be adapted to deal with
decisions that turn out suboptimal in hindsight, and to represent the value of storage at the start of
a market clearing in an imperfect-foresight setting. We envision a reformulation of markets with
non-merchant storage to ensure cost recovery for the storage operator, by tracing the end-of-horizon
energy in the storage back to specific time periods where this energy was bought.

For our network-aware heat market design, we relied on several assumptions to derive a simplified
model of a district heating network. Future research should continue to study how to best represent
district heating networks in a market setting, bearing in mind the trade-off between accuracy,
computational tractability, and interpretability of the resulting prices. Generally, in the literature
on network-aware heat market design, we find that the chosen network model is assumed to be
accurate, and that the set-points found by clearing the market can be directly used in the control of
the system. In practice, errors will be made by the network models used in market design, which
are usually less detailed and apply a lower time resolution than network models used for system
control. Although some network models, such as the model specified by the node method, have
been tested in practice, many others have not. It would be interesting to quantify the benefit of
different network-aware heat market designs in practice, with a related control policy in mind.
This would show the real benefit of using these market designs, compared to network-agnostic
ones. It is not sure that the heating system would actually benefit from market designs with more
detailed and complex network models of the system, if it has not been proven that such models
lead to improvements in practice. Related to the work done in this thesis, it would be interesting to
test the proposed VFCT-based market design in a real system, accompanied by a suitable control
strategy.

From a broader modeling perspective, the availability of realistic, high-quality data is an important
aspect that enables research and technological innovation. Such data is lacking in several areas
related to district heating. For example, network data is usually not public, which makes it
difficult to build realistic case studies for network-aware heat markets. Similar to IEEE test cases
for power networks, it would be beneficial to have standardized test cases for district heating
networks. This would also allow comparison between different network-aware heat market
designs proposed in the literature. In addition, information regarding market-clearing procedures
in existing district heating systems is difficult to find. The literature extensively covers current
practices and conditions in the district heating systems of e.g. Denmark, Sweden, and China, but
other countries are not covered in the same level of detail. Future research should diversify with
regard to the studied district heating systems, and provide new insights on best practices from
other regions.

From a system operation and market design perspective, this thesis focused on market design to
support district heating system operation in the day-ahead stage. Related to the aforementioned
uncertainty considerations, it would be interesting to study the design of intra-day and real-time
heat markets, as well as their interaction with day-ahead markets. A related open question
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is the inclusion of non-merchant storage when it participates in both day-ahead and intra-day
markets. Another important direction for future work from the system operation perspective
remains the integration of many small, distributed heat producers and prosumers. We have
shown that price-signal-based self-scheduling may not suffice when these participants cover a
large share of the market, and new methods for their integration are needed. It is possible that
market-based coordination of flexible consumers and excess heat providers can be achieved by
similar methods. This coordination could be done with different aims in mind, such as integrating
excess and renewable heat, supporting network operation, relieving congestion, or peak shaving.
The question is how this coordination of prosumers and small producers should be organized.
Several proposals from the power system literature, regarding integration of distributed energy
resources, could be interesting to investigate in a heat setting. First, heat aggregators could be
introduced as a new market participant responsible for the coordination of distributed prosumers
and small producers. Future work should develop strategies for a heat aggregator, both for bidding
in the market, as well as for price-signal design to provide the aggregated agents with the right
incentives. As a second paradigm, decentralized trading platforms for heat could be established,
for example in the form of energy communities for heat.

From a policy perspective, it is important to consider that district heating systems are more local
and less interconnected than power systems, and that different systems therefore may require
different solutions. Liberalized heat markets are likely not suitable for small district heating
systems. The market mechanisms that were proposed and investigated in this thesis can still be
applied, though in a more regulated setting. In larger district heating systems, it will be important
to create enough competition to enable liberalization of their district heating markets, so that
competitive forces can lead to increased system efficiency. To stimulate competition, policy must
facilitate the integration of excess heat sources in district heating systems, and the activation of
flexibility in heat consumption. As a side benefit, independent heat producers and prosumers
may experience increased autonomy when given market access, as they can influence the heating
system by changing their own behavior in response to market signals. To support policy-making, it
would be useful to have a tool to evaluate whether a liberalized market could be advantageous in a
given district heating system. While we in this thesis assumed perfect competition and disregarded
strategic behaviour, future research could extend our work by modeling the effect of strategic
behaviour in the proposed market designs. Such models can be used to simulate the effect of
strategic behavior on the market outcomes, and thereby to evaluate whether it is advisable to
liberalize the heat market in a given system. With the Lithuanian transition towards a liberalized
heat market in mind, one could consider self-scheduling based on a price signal as a suitable
intermediate step to attract more heat generators, and to activate demand-side flexibility. Once
a sufficient amount of independent heat producers are integrated, a liberalized market could be
introduced to coordinate these many small actors.
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Abstract—Excess heat will be an important heat source in
future carbon-neutral district heating systems. A barrier to
excess heat integration is the lack of appropriate scheduling
and pricing systems for these producers, which generally have
small capacity and limited flexibility. In this work, we formulate
and analyze two methods for scheduling and pricing excess
heat producers: self-scheduling and market participation. In the
former, a price signal is sent to excess heat producers, based on
which they determine their optimal schedule. The latter approach
allows excess heat producers to participate in a market clearing.
In a realistic case study of the Copenhagen district heating
system, we investigate market outcomes for the two excess heat
integration paradigms under increasing excess heat penetration.
An important conclusion is that in systems of high excess heat
penetration, simple price signal methods will not suffice, and
more sophisticated price signals or coordinated dispatch become
a necessity.

Index Terms—Heat market, open district heating, excess heat,
pricing.

I. INTRODUCTION

District heating is expected to play an important role in
future carbon-neutral energy systems, especially in urban areas
[1]. District heating networks facilitate the decarbonization of
heat generation, for instance by allowing for distribution of
excess heat to consumers. Examples of excess heat producers
include energy intensive industries such as metal and cement
factories, sources in the service sector that produce heat as a
by-product of their refrigeration systems [2], and data centers
that produce heat from cooling their servers [3]. In many cities,
excess heat has the potential to cover a large share of total
heat demand. For example, [4] finds that excess heat could
cover over half of Greater Copenhagen’s heat demand in 2050.
Excess heat could also cover over 80% of demand in several
other large Danish district heating networks [5]. Current
district heating systems typically rely on few large generators,
such as Combined Heat and Power (CHP) plants and waste
incinerators. Compared to these conventional sources, excess
heat producers are generally of smaller capacity and lower
flexibility. Integration of excess heat producers would therefore
result in a more distributed heating system, with a large
number of small heat sources. In such a system, coordination
and scheduling of heat generation becomes more challenging.

A major barrier to excess heat injection in district heating
networks is the lack of suitable methods for scheduling and
pricing excess heat. Most potential excess heat sources are
untapped, even though it has been shown that their integration
decreases both fuel usage and operational cost of the system
[6], and the integration of excess heat has proven feasible

in simulation studies and in practice [7], [8]. It remains an
open question how heat scheduling and pricing systems can
be designed to optimally integrate excess heat producers.

Most existing district heating systems do not have a liber-
alized market. In Greater Copenhagen, the daily heat dispatch
is determined by Varmelast.dk, which is a regulated heat
market that dispatches generators based on submitted price-
quantity bids. While the scheduled quantities are determined
by this market, the prices that could be derived from the
market are not used. Instead, the price of heat is fixed in
advance in contracts between suppliers of district heating
and distributors/transmitters. Excess heat providers currently
do not have the possibility to participate in this dispatch
procedure. See e.g. [9] for more details on Varmelast.dk.

Only few existing works have studied excess heat producers
in a market setting. In [6], the impact of excess heat producers
on the heat market in Espoo, Finland, is investigated. Ref-
erences [10] and [11] study the potential effect of dynamic
pricing on marginal cost of district heating systems, for a
system including excess heat producers. In both works, it is
assumed that the excess heat production profile is constant
over each month or over the entire year, and that this profile
is fully inflexible. Furthermore, the price bidding behaviour of
CHPs is not modeled accurately, either disregarding electricity
price dependence [11], or disregarding the dependence on
opportunity cost in the electricity market [10]. Reference [12]
applies marginal-cost pricing to a case study in the Netherlands
to assess whether different producers can recover their fixed
costs from market revenues. Their market clearing consists of
a combined unit commitment and economic dispatch. Excess
heat from industrial processes is included, but its flexibility
is not modeled. None of these works investigate the effect of
increasing excess heat penetration.

In this work, we investigate whether price signals to be
disseminated by the heat market operator can suffice for
market integration of excess heat producers. To the best of our
knowledge, this is the first paper in the literature that explores
the integration of excess heat producers through price signals.
Given a price signal, excess heat producers self-schedule
their production. We evaluate this self-scheduling model by
comparison to an ideal benchmark, namely direct market
participation of excess heat producers. This comparison is
done by performing a realistic case study of the Copenhagen
district heating system, which currently includes 13 CHP
plants. We evaluate the success of the self-scheduling method
by adding an increasing number of excess heat producers to
the Copenhagen system. We aim to show the consequences of
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integrating cooling-based excess heat producers under these
two paradigms, including how the suboptimality of the self-
scheduling model evolves under increased penetration of ex-
cess heat. Our main finding is that price signals can be
used as an alternative for market participation of excess heat
producers, but their success depends highly on the quality
of the signal, as well as the penetration of excess heat. As
long as the installed excess heat capacity is sufficiently low, a
simple price signal may suffice, but as excess heat penetration
increases there may be significant downsides to this approach.

The remainder of this article is structured as follows. In Sec-
tion II, we discuss the self-scheduling and market participation
models in more detail. We provide model formulations, and
outline the bidding behavior of different market participants.
The real case study of the Copenhagen district heating system
is presented in Section III, including numerical results. In
Section IV we conclude with further discussions regarding the
implications of both methods and provide several recommen-
dations for future work.

II. MARKET PARTICIPATION VERSUS SELF-SCHEDULING

One natural way of integrating excess heat producers in
heat markets, is by direct market participation. For example
in the district heating system of Copenhagen, a marginal-cost
based heat market is operated by Varmelast1. This paradigm
will further be referred to as market participation. Another
option is for heat market operators to publish a time-varying
price signal for excess heat producers, which optimally self-
schedule their heat generation accordingly, and share the
resulting schedule with the market operator. We further refer
to this paradigm as self-scheduling. In the Open District
Heating system of Stockholm, small excess heat producers
are successfully integrated in this way using an ambient
temperature-dependent price signal2.

We first discuss the advantages and benefits of each model
in Section II-A, and then present the model formulations in
Sections II-B and II-C. Finally, Section II-D outlines CHP and
excess heat provider bidding behaviour.

A. Comparison of market integration and self-scheduling

We compare the two paradigms in Table I. First of all,
they differ in the formation of the price received by excess
heat participants. Under the market participation scheme, the
market-clearing price follows from the bids submitted by mar-
ket participants (including excess heat producers), while the
price for excess heat is set exogenously by the market operator
in the self-scheduling case. As also indicated in Table I, market
participation would provide incentives to optimally schedule
excess heat production, as it minimizes total generation cost.
If the price signal for self-scheduling is designed perfectly,
the resulting schedules may be the same as in a market
setting. Otherwise, the schedule resulting from price signals
will be suboptimal. This suboptimality may increase with the
penetration of excess heat producers.

1www.varmelast.dk/
2www.opendistrictheating.com

Market Participation Self-scheduling
Price formation Endogenous Exogenous

Optimal scheduling ✓ ✓ / ×
Relevance for small producers × ✓

Problem type Linear program Linear program

TABLE I: Comparison of the two paradigms for scheduling and
pricing excess heat

Although market participation of excess heat producers
would be optimal from a cost minimization perspective, it
has some drawbacks in practice for a heat system with many
small (excess) heat producers. For small excess heat producers,
it may be difficult to decide on market bids, and they may
therefore prefer to receive a price signal. For the market
operator, the market participation of many small excess heat
producers poses a communicational challenge: the operator
receives bids from many participants, clears a more complex
market, and then needs to send the individual schedules to
each small market participant. Therefore, the self-scheduling
paradigm may be preferred in practice, as it is a rather simple
and computationally cheap way of scheduling and pricing
excess heat, with lower IT requirements. We consider the
market participation scheme as ideal benchmark, and explore
the success of self-scheduling scheme in comparison to this
ideal benchmark. Both the market participation and the self-
scheduling model are Linear Programs, in which no binary
variables are used.

B. Model formulation for market participation

In the market participation scheme, excess heat producers
participate in a market clearing. We formulate a heat market
clearing without network constraints as a linear optimization
problem. The market clearing results in a uniform market price
and scheduled quantities for all participants, including excess
heat producers. All market participants submit price-quantity
bids. The market then dispatches generators to minimize total
generation cost, i.e., according to the merit order. Follow-
ing EU electricity market design, we do not consider unit
commitment constraints. This implies that unit commitment
constraints should be internalized into the bids. We also
choose not to enforce network constraints in the optimal
dispatch, because the current optimal dispatch mechanism in
Copenhagen does not include such constraints either. Instead,
hydraulic conditions are checked after clearing the market [9].

The objective of the market clearing is to minimize total
heat generation cost, given by the function

f(Γmp) =
∑

t∈T

(∑

e∈E
cet(G

H
et −Wet) +

∑

i∈G
citG

H
it + cUUt

)
,

(1)

where Γmp is the set of optimization variables for the market
participation model, cit is the bid price of CHP i at time t, cet
is the bid price of excess heat producer e, GH

it is the generated
heat by a CHP, and cU represents the (constant) penalty cost
per unit of unsupplied load Ut. The excess heat production
GH

et may in some cases exceed the load, so that an amount of
Wet will have to be wasted, i.e., vented to the outside air. The
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Bid submission
∀e, i, tλE

t
MO clears

market
GH

it, GH
et,

λH
t

cit,Fit

cet,Fet

Fig. 1: Overview diagram of market participation model. Market
Operator is abbreviated to MO.

wasted excess heat must be non-negative and cannot exceed
the produced excess heat:

Get ≥ Wet ≥ 0 ∀e, t . (2)

A power balance must hold between the predicted heat
load L̂H

t and the scheduled generation. If the load cannot be
supplied due to insufficient installed capacity, the load can be
curtailed by an amount Ut of unsupplied load:
∑

e∈E
GH

et −Wet +
∑

i∈I
GH

it = L̂H
t − Ut : λH

t ∀t . (3)

The uniform market price λH
t is given by the dual variable

corresponding to constraint (3), which is equal to the marginal
price bid of the most expensive scheduled generator.

The market participants’ bid includes a description of the
feasible region F of their heat generation. These feasible
regions are respected in the market clearing:

GH
it ∈ Fit ∀i, t (4)

GH
et ∈ Fet ∀e, t . (5)

We will define these feasible regions for CHPs and excess heat
producers in Section II-D, and in more detail in Appendices A
and A. The set of optimization variables in the market-clearing
optimization problem is given by Γmp = {GH

it, G
H
et,W

H
et , U

H
t }.

Fig. 1 shows a graphical overview of the market participation
model. The forecasted electricity price λE

t is an input to the
marginal cost model of both CHPs and excess heat producers,
which will be discussed in Section II-D.

C. Model formulation for self-scheduling

In the self-scheduling model, the market operator broadcasts
a price signal µH

t for each market period t to all excess heat
producers, who self-schedule their production accordingly. The
resulting schedule is submitted to the market operator, who
uses the total excess heat production as a fixed input to the
market clearing with conventional generators only. This market
clearing is as described previously in Section II-B, except
that GH

et is now a parameter instead of a variable for all e, t.
As a result, the total self-scheduled heat generation by the
excess heat producers is prioritized in the heat market, and
the CHPs may supply any remaining unsupplied load. If the
self-scheduled excess heat exceeds the heat load at certain
hours, some of the excess heat is wasted, i.e., vented to the
air.

We assume an ambient-temperature-dependent price signal
for excess heat producers, inspired by the Stockholm Open
District Heating pricing system. In particular, the received
price decreases with the ambient temperature, as heat demand
often decreases with ambient temperature too. Under the self-
scheduling scheme, the excess heat producers are paid as in

MO clears
market

GH
it, λH

t

Submission of
CHP bids ∀i, t

cit,Fit

Excess heat
self-scheduling ∀e, t GH

et

λE
t

µH
t

Fig. 2: Overview diagram of self-scheduling model and the following
market clearing. Market Operator is abbreviated to MO.

the price signal for each unit generated, regardless of whether
(part of) the produced excess heat exceeds the supplied load
and needs to be wasted. Clearly, this is an undesirable effect
of the self-scheduling paradigm. The CHPs are still paid at the
uniform marginal price resulting from the market clearing.

During self-scheduling, excess heat producers aim to min-
imize total cost, given by the difference between costs for
electricity used by the heat pump LE

et bought at the (fore-
casted) electricity spot price λE, and the income from selling
the generated heat GH

et:

CH
e =

∑

t∈T

(
λE
t L

E
et − µH

t G
H
et

)
. (6)

It is assumed that all excess heat producers and CHPs use
the same forecasted electricity prices λE

t . The excess heat
producers must schedule an amount of heat that respects their
physical constraints:

GH
et ∈ Fet ∀e, t . (7)

The feasible region Fet will be defined in the next Section
II-D, and more details can be found in Appendix A. Fig. 2
shows a graphical overview of the self-scheduling model.

D. Excess heat and CHP models

To simulate the two paradigms, the bidding behavior of
different market participants needs to be modeled. In this work,
we consider CHPs and cooling-based excess heat producers
only. The derivation of their bidding behavior and feasible
regions is presented in more detail in Appendices A and
A. We assume that the heat market is cleared daily before
the electricity market is cleared, as is currently the case in
Copenhagen. The resulting feasible region for CHP i at time
t is given by

Fit =

{
GH

it

∣∣∣∣ 0 ≤ GH
it ≤ min

(
G

H

i ,
F i

ρHi + ri ρEi

)}
, (8)

where G
H

i is the maximum heat generation, ρEi and ρHi are the
fuel efficiency for electricity and heat, respectively, ri is the
minimum power-to-heat ratio, and F i is the maximum fuel
consumption. Note that these parameters are here considered
time-invariant, but this could easily be adapted.

Reference [13] derives the optimal heat bid cHit for CHPs in
a sequential heat and electricity market setting. The marginal
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cost of heat depends on the (forecasted) electricity price λE

and (constant) fuel price αi as follows:

cHit =

{
αi (ρ

E
i ri + ρHi )− λE

t ri if λE
t ≤ αiρ

E
i

λE
t

ρH
i

ρE
i

if λE
t > αiρ

E
i .

(9)

This bidding function assumes that in case the forecasted
electricity price is lower than or equal to a certain threshold,
CPHs bid their fuel cost minus the income from electricity
sale, as represented by the first case in (9). Otherwise, if the
forecasted electricity price is relatively high, CHPs bid the lost
opportunity cost from selling heat instead of electricity, as in
the second case in (9).

The feasible region for excess heat producers is derived in
Appendix A. The excess heat producers’ flexibility in heat
production is represented by modeling cooling cabinet heat
dynamics as a set of linear constraints as given in Appendix
A through Eqs. (21)-(26). We define the feasible region for
excess heat production as the set of production setpoints that
satisfy the aforementioned constraints:

Fet =
{
GH

et

∣∣ (21) − (26)
}
. (10)

The price bid of excess heat producers in the market
participation model is assumed to be at zero3, i.e.,

cet = 0 ∀e, t . (11)

III. COPENHAGEN CASE STUDY

We analyze the application of the market participation
and self-scheduling models in the district heating system of
Copenhagen, Denmark.

A. Case study description

The district heating system of Copenhagen consists of 13
CHPs. In our case study, we vary the level of excess heat
capacity added to this system from 0 to 2100 MW. The excess
heat is assumed to be produced as a by-product of cooling. In
particular, we assume excess heat producers cool refrigeration
cabinets using a local heat pump. We simulate in an hourly
time resolution for a full year. In our online appendix, a
detailed description of all used parameters can be found, as
well as the code used to generate our results4.

Several time series are needed as inputs for the market
participation and/or self-scheduling models. The forecasted
ambient temperature is an input used to model the Coeffi-
cient Of Performance (COP) of the heat pumps, and also to
determine the price of waste heat in the self-scheduling model.
We use hourly temperature measurements from 2019 from the
Danish Meteorological Institute [14]. For the month March we

3Bidding at zero is reasonable if any sold excess heat is considered extra
income for these producers. However, the electricity consumption cost of a
given excess heat production profile may be greater than the electricity cost of
the production profile that minimizes these costs. One may therefore choose
to define the price bid of a certain production profile as the difference between
the electricity cost of the given profile and the minimum electricity cost this
producer could obtain if it would minimize electricity cost only.

4www.github.com/linde-fr/excess-heat-in-market

use measurements from 2020, due to many missing measure-
ments for March 2019. As the electricity price forecast, we
use Nord Pool historical electricity prices for DK2 [15]. For
the forecasted heat load, we use the hourly heat load in the
entire Copenhagen district heating area for 2019, provided by
Varmelast.

For the self-scheduling model, the excess heat price signal
needs to be given. The self-scheduling pricing signal used here
is inspired by Stockholm’s Open District Heating Spot Prima
price. We approximate their ambient-temperature dependent
price function using an exponential regression on data avail-
able from their website. The resulting price signal µH

t (·) is
defined as follows:

µH
t (T

A
t ) =

{
380 · 0.92TA

t for TA
t < 17.5◦C

0 for TA
t ≥ 17.5◦C .

(12)

Note that the price is decreasing with the ambient temperature,
as the base of the exponent 0.92 is non-negative and below 1.

We further require input parameters for CHP and excess
heat producer models. For the CHPs, most input parameters
have been obtained from [16]. The minimum power-to-heat
ratio was not given there, and therefore a default value of
r = 0.45 has been taken from [17].

The excess heat producers are assumed to have the same
input parameters. The heat dynamics parameters are A = 0.1
and B = 1

21 . The temperature in the cooled room has to be
within 2-8 ◦C, while the average temperature every 6 hours
has to be within 4-5 ◦C. The indoor temperature at the excess
heat producers is assumed to be constant at 25 ◦C. The heat
pumps’ maximum generation capacity is G

H
= 30 kW. Heat

pump ramping limits are set to 0.25 of its maximum generation
capacity. It is assumed that the COP of the excess heat
producers’ heat pumps varies with the ambient temperature.
The approximate ambient temperature dependence of the COP
was obtained using a more detailed heat pump simulation
model, under several simplifying assumptions, including a lin-
ear dependence of supply and return temperatures on ambient
temperature.

To validate our CHP bidding model, we have compared our
resulting heat market prices to Varmelast heat market prices for
a given electricity price signal. The results showed satisfactory
correspondence between our and Varmelast’s heat prices.5

B. Results

The total heat load in 2019 in Copenhagen was around
8.3TWh or 30PJ. For the different maximum capacity levels
of the excess heat producers of 300, 1200, and 2100 MW
participating in the heat market, we find that the excess
heat providers are scheduled for 1.8, 5.8, and 8.0TWh,
respectively. Considering that [4] reports that excess heat could
cover over 50% of the Copenhagen heat load, the 1200MW
case could be realistic for the Copenhagen system in 2050.

5Exact results cannot be shared here due to confidentiality of Varmelast
pricing data.
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(a) Total generation cost (b) Difference in generation cost

Fig. 3: Full year suboptimality of self-scheduling compared to market
integration in terms of total CHP generation cost. Note that this does
not include excess heat generation cost.

Suboptimality: When the excess heat producers are self-
scheduling and the market for CHPs is cleared afterwards,
the total generation cost for CHPs will be greater than it is
in the case the market is cleared with excess heat producers
integrated. Here we consider suboptimality in terms of the
total CHP generation cost, where we treat this total cost
similarly as in the objective function of the market clearing.
That is, generation cost of each scheduled CHP is computed
as its scheduled quantity multiplied by its price bid, and
the total generation cost is obtained by summing over all
CHPs. In Fig. 3, we visualize how the total suboptimality
over a full year depends on the penetration of excess heat
producers. In the left-hand Fig. 3a, we observe that both
schemes experience a steep decrease of the total generation
cost with the installation of the first 500 MW of excess heat
capacity, but this decrease flattens out afterwards. Fig. 3b
shows that the absolute suboptimality grows almost linearly
with the installed excess heat capacity. The curve is slightly
steeper when the latest installed excess heat is replacing a CHP
that is expensive compared to the CHPs that bid a price just
below it.

Next, we investigate how this suboptimality in total CHP
generation cost is distributed over the year, by zooming in on
three levels of excess heat penetration in Fig. 4. The left-hand
Fig. 4a shows that the generation cost is unequally distributed
over the year, as monthly heat load varies significantly over
the year. As seen in the right Fig. 4b, the suboptimality is quite
equally distributed over the year for a low capacity of excess
heat at 300 MW (blue). For higher excess heat penetration,
the suboptimality is increasingly shifted to the colder months.
In the warmest summer months, i.e., from June to August,
the suboptimality of the 300 MW case (blue) is relatively
high compared to the 1200 MW and 2100 MW cases (orange
and green). The reason for this is that from a certain level
of excess heat capacity, the overcapacity in summer is very
high, so that the total demand is (almost) always completely
supplied by excess heat, both under self-scheduling and market
participation. Therefore, suboptimality will be low in summer
for a higher penetration of excess heat.

Scheduled and wasted excess heat: The scheduled excess
heat varies over the year. There can be a difference between
generated and scheduled excess heat, as some excess heat may
have to be wasted in case it exceeds the heat load. We compare

(a) Total generation cost (b) Difference in generation cost

Fig. 4: Monthly suboptimality of self-scheduling compared to market
integration in terms of total CHP generation cost.

(a) Scheduled volume (b) Wasted volume

Fig. 5: Monthly values for excess heat scheduled volume and wasted
volume for self-scheduling compared to market integration

the monthly scheduled excess heat for the self-scheduling
and market participation under different levels of excess heat
penetration in Fig. 5a, and do the same for monthly wasted
excess heat in Fig. 5b. Under the market participation model,
a capacity of 2100 MW (green) is enough to supply the load
fully in all but the coldest months, i.e., December to March.
This is not the case for the self-scheduling model, which is due
to a greater mismatch between supplied excess heat and heat
load. This manifests itself in the consistently greater amount
of wasted heat for the self-scheduling model. In general,
differences in the self-scheduling and market participation
model in total scheduled excess heat are greatest in months
where excess heat is the marginal supplier in some hours,
but not in all hours. With increasing excess heat capacity, the
months where this is the case shift more towards the winter
months with greater heat load. Note that the scheduled volume
in the summer months is almost equal for the 1200 MW
(orange) and 2100 MW (green) cases, which is the reason that
suboptimality in summer months is similar for these cases, as
we observed previously in Fig. 4b.

Finally, we highlight that the total wasted excess heat
increases steadily with increasing excess heat penetration, for
both scheduling paradigms. This is due to the limited flexibility
of these producers, combined with the fact that these producers
have a minimum heat generation that may exceed the load. To
decrease the wasted excess heat and supply a higher share of
the load, it would be beneficial to install heat storage as the
penetration of excess heat increases.

Market prices: We compare monthly average market prices
resulting from the market clearing in both the self-scheduling
and market participation models in Fig. 6. Recall that we
also clear the market in the self-scheduling model, but in this
case the excess heat schedule is a fixed input to the market.
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Fig. 6: Average market prices per month for self-scheduling com-
pared to market participation, under various levels of excess heat
penetration.

Under a low excess heat penetration of 300 MW (blue), the
average market price only differs for the summer months.
Counter-intuitively, the average market price for the market
participation model is higher in this case than that in the self-
scheduling model. The explanation of this is that the market
participation model schedules excess heat when it can reduce
total generation cost as much as possible, which means that it
will spread out the excess heat schedule to avoid scheduling
of more expensive generators. The effect of this spread can be
that on average, the marginal generator is more expensive than
in the self-scheduling case, as is the case for our case study. In
other words, the minimization of total generation cost does not
necessarily lead to the lowest average market prices. This is
also seen for the month January for the 2100 MW case (green).
However, in most cases and months the market participation
model does lead to lower average market prices compared to
the self-scheduling model.

As expected, the average market price decreases under
increasing excess heat penetration. With a relatively high
installed excess heat capacity of 2100 MW (green), the market
price for the market participation model is close to zero from
April up to and including October. In the case of high installed
capacity, the average marginal price difference between the
two models is most pronounced.

IV. CONCLUSIONS AND FUTURE PERSPECTIVES

We have investigated the consequences of integrating excess
heat in district heating systems under two different scheduling
and pricing paradigms: self-scheduling and market participa-
tion. The self-scheduling is attractive due to its simplicity
for both market operator and excess heat producers, but may
lead to suboptimal scheduling. Our main conclusion is that
at higher excess heat penetration, a simple price signal is no
longer adequate, and more sophisticated pricing signals and/or
other market setups may be needed. In our case study, we have
shown that the disadvantages of using a price signal under high
excess heat penetration include:

1) Expensive scheduling: Excess heat is scheduled in
hours where CHPs can produce relatively cheap heat
instead of where CHPs produce more expensive heat.

As a result, total CHP generation cost is higher under
self-scheduling than the market participation.

2) Wasted excess heat: Excess heat production is not
matched to heat load, so that a greater amount of excess
heat is wasted.

3) High market prices: Even though market participation
may lead to higher average market prices in some cases,
market prices are most of the time higher in the self-
scheduling model, especially under high excess heat
penetration.

A. Discussion

Under increasing penetration of excess heat, market prices
decrease under both paradigms, and most drastically under
market participation. Market prices get close to zero during
the summer time already for intermediate penetration of excess
heat. This may affect the recovery of fixed cost for generators.
For example, in [12] it is shown that market revenues can
be insufficient for investment cost recovery for most heat
producers in a case study in the Netherlands. This problem
has also been encountered in electricity systems with high
shares of solar and wind energy [18]. For this case, it has
been suggested that marginal-cost-based market clearing is not
necessarily a proper solution for systems of generators with
high fixed and low marginal costs, and a rethinking of power
markets is needed [18]. This problem can be expected to arise
in excess heat based heat systems too.

We have concluded that more sophisticated pricing signals
than the Stockholm price are needed in systems with high
excess heat penetration. However, the Stockholm ambient-
temperature dependent pricing signal has two attractive proper-
ties: transparency and interpretability. These properties should
be considered when designing new methods for generating
pricing signals.

Finally, we note that cooling-based excess heat producers
provide most excess heat during the summer months, which is
a mismatch with the load that is minimal in this period. This
relation indicates that a seasonal storage may be a suitable
supplement in systems dominated by cooling-based excess
heat producers.

B. Recommendations for future work

In this work, we have designed a model of cooling-based
excess heat producers with the aim was to mimic general
dynamics of such producers in a convex manner. The model
has been formulated after discussion with experts in more
detailed heat pump modeling. However, the model has not
been verified using real data of excess heat producers. This
should be done in future work.

Furthermore, the model could be extended and made more
realistic in several ways. In our model, flexibility of heat
producers was limited using an energy budget to be respected
over every six hours. This is a stylized representation of excess
heat flexibility. Future reformulations of the model could focus
on improving the representation of this (limited) flexibility.
On the conventional generator side, the market considered
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here assumes that unit commitment constraints are included
in the price-quantity bids. However, we have ignored unit
commitment considerations in the construction of supply bids.
Our work could be extended with block bids to represent
bidding behavior of CHPs more realistically.

It could be argued that a scaling is needed to adapt the
Stockholm heat price signal to the Copenhagen case. A
sensitivity analysis for the value of scaling factor could show
how this would affect our results.

We have addressed effects of excess heat integration on
the day-ahead market, without considering potential sources
of uncertainty. Future work could investigate how uncertainty
of heat load, as well as uncertainty in excess heat production,
could affect the scheduling and pricing of excess heat. We
have also disregarded network considerations. Inclusion of
such constraints could change our results quantitatively, as
there would be a delayed arrival of CHP heat, while local
excess heat would be delivered close to real time. In addition,
heat transported from a distance would be accompanied by
greater heat losses. Our work could be extended to include
network constraints, for example using the linear formulation
in [19].

Our analyses could also be extended by adding different
types of market participants. For example, future work could
investigate the effect of adding flexible loads to the system. It
is furthermore likely that future district heating systems will
include other excess heat producers that are not cooling based,
such as energy intensive industries.
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APPENDIX

We derive the price bids and feasible regions F for CHPs
and excess heat producers in Appendices A and A, respec-
tively.

Our model of CHP plants, including their bidding behavior,
is identical to the sequential decoupled formulation in [13]. As
it is the current practice in Copenhagen, we assume sequential
heat and electricity markets, where the heat market is cleared
first.

The fuel intake Fit of CHP i is equal to the fuel used for
electricity generation GE

it and heat generation GH
it. The fuel

generation is upper bounded as

Fit = ρEi G
E
it + ρHi G

H
it ≤ F i ∀i, t . (13)

Recall that ρEi and ρHi represent the fuel efficiency for elec-
tricity and heat, respectively. A minimum power-to-heat ratio
ri relates heat and electricity production as

GE
it ≥ riG

H
it ∀i, t . (14)

Both heat and electricity generation must be non-negative, but
due to (14) limiting heat generation suffices.

0 ≤ GH
it . (15)

If drawn in a diagram with GE
it on the y-axis and GH

it on the
x-axis, constraints (13)-(15) form a triangle with the y-axis as
a base. At the tip of the triangle, the amount of generated heat
is

GH,∗ =
F i

ρHi + ri ρEi
∀i . (16)

Additionally, the heat generation of a CHP may be upper
bounded as

GH
it ≤ G

H

i ∀i, t . (17)

As the heat market is cleared before the electricity market,
constraints (13)-(17) can be replaced by the following bounds
on the generated heat quantity:

0 ≤ GH
it ≤ min

{
G

H

i ,
F i

ρHi + ri ρEi

}
∀i, t . (18)

Recall that we have already provided the feasible space
for CHPS resulting from this constraint in Section II-D in
Equation (8).

The net heat production cost for a CHP is given by the
difference of fuel cost and revenue from electricity sale:

CH
it = αi (ρ

E
i G

E
it + ρHi G

H
it)− λE

t G
E
it ∀i, t , (19)

where α is the fuel price. In [13], the optimal heat bid cHit is
derived for CHPs in a sequential heat and electricity market
setting. The price bid depends on the (forecasted) electricity
price as

cHit =

{
αi (ρ

E
i ri + ρHi )− λE

t ri if λE
t ≤ αiρ

E
i

λE
t

ρH
i

ρE
i

if λE
t > αiρ

E
i .

(20)

We assume that all excess heat is produced as a by-product
of cooling. In particular, we assume these agents cool their
refrigeration cabinets using a local heat pump. The heat
pump’s heat output GH

et relates to its electricity load LE
et as

GH
et = COPetL

E
et ∀e, t , (21)

where the coefficient of performance COPet is a time-varying
parameter in our model. This allows us to include its approxi-
mate ambient temperature dependence. The heat output of the
heat pump is subject to upper and lower bounds:

0 ≤ GH
et ≤ G

H

e ∀e, t . (22)
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The refrigeration cabinets are the heat source of the heat
pump. This implies that the available heat depends on the tem-
perature dynamics in these cabinets. We model the refrigerator
temperature TF

et using a linear difference equation as

TF
et+1 − TF

et = Ae (T
I
et − TF

et)−Be (G
H
et − LE

et) ∀e, t ,
(23)

where T I is the indoor temperature in the supermarket. The
parameters Ae and Be may differ per excess heat provider,
depending on the physical characteristics of the refrigerators.
The refrigerator temperature is subject to bounds:

TF
e ≤ TF

et ≤ T
F ∀i, t . (24)

The average temperature of the refrigerator over chosen time
periods P must also stay within pre-set limits:

TF−
e ≤ 1

|P |
∑

t∈P

TF
et ≤ TF+

e ∀e, P ∈ P , (25)

which ensures that the refrigerator temperature will not be on
lower or upper bounds for longer periods of time. The periods
must be defined such that

⋃
P∈P P = T , so that all time steps

are part of at least one period. Finally, the heat output from
the heat pump is subject to ramping limits:

Re ≤ GH
et+1 −GH

et ≤ Re ∀e, t . (26)

Recall that we already provided the feasible space for excess
heat producers resulting from the previous constraints in
Section II-D in Equation (10).
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Abstract

District heating systems become more distributed with the integration of prosumers, including excess

heat producers and active consumers. This calls for suitable heat market mechanisms that optimally

integrate these actors, while minimizing and allocating operational costs. We argue for the inclusion

of network constraints to ensure network feasibility and incentivize loss reductions. We propose a

network-aware heat market as a Quadratic Program (QP), which determines the optimal dispatch and

a set of nodal marginal prices. While heat network dynamics are generally represented by non-convex

constraints, we convexify this formulation by fixing temperature variables and neglecting pumping

power. The resulting variable flow heating network model leaves the sign and size of the nodal heat

injections flexible, which is important for the integration of prosumers. The market is based on peer-

to-peer trades to which we add explicit loss terms. This allows us to trace network losses back to

the producer and consumer of these losses. Through a dual analysis we reveal loss components of

nodal prices, as well as relations between nodal prices and between seller and buyer prices. A case

study illustrates the advantages of the network-aware market by comparison to our proposed loss-

agnostic benchmark. We show that the network-aware market mechanism effectively promotes local

heat consumption and thereby reduces losses and total cost. We conclude that the proposed loss-

aware market mechanism can help reduce operating costs in district heating networks while integrating

prosumers.

Keywords— District heating; peer-to-peer market; loss allocation; prosumers; convex optimiza-

tion.

Nomenclature

Super- and subscripts

DHW Domestic Hot Water

E Electricity

g Index for the grid agent

H Heat

L Loss

N Nodal

R Return side

SH Space Heating

1



S Supply side

i, j Indices for prosumers

n Index for a heat node

ni Index for heat node of prosumer i

p Index for a DHN pipe

p(n1, n2) Index for a DHN pipe from node n1 to n2

t Time index

Parameters

α Binary, 1 for DLG, 0 for CLG

COPi Coefficient of Performance of heat pump of agent i [-]

L̂ Forecasted load [W]

ũ Utility function scaling factor [-]

w̃ij Loss factor from i to j [-]

c Cost per energy unit [EUR/Wh]

cf Heat carrier specific heat capacity [J kg−1 K−1]

f Space heating flexibility factor [-]

Tn Temperature at node n [°C]

Sets

Γ Set of optimization variables

I Set of prosumers

In Set of prosumers at heat node n

N Set of heat nodes

P Set of DHN pipelines

T Set of time indices

S
+/−
n Set of pipelines starting/ending at node n

Variables

γ, µ, τ Symbols used for dual variables

ṁ Mass flow rate [kg/s]

π Price [EUR / MWh]

τij Trade from i to j [W]

bij Heat bought by i from j [W]

C Total cost [EUR]

G Power generated [W]

L Power consumed [W]

P Net heat power injection [W]

R Revenue [EUR]

sij Heat sold by i to j [W]

u Prosumer utility function

wij Loss caused by sale sij [W]

1 Introduction

1.1 Context

District heating is expected to play an important role in future carbon neutral energy systems, espe-

cially in urban areas [1]. Through a district heating network, excess heat from industrial processes

can be distributed to households, thereby facilitating the decarbonisation of heat generation. Example

sources of excess heat include supermarkets and data centers that produce heat as a by-product of
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their refrigeration or cooling system. Excess heat generation is usually less flexible than conventional

generation, as only limited deviation from a reference production profile is possible. In order to com-

pensate for a less flexible supply, flexibility on the demand side is needed. Studies show that households

can provide such flexibility, among others using the virtual heat storage of buildings [2]. The presence

of excess heat producers and active consumers marks the rise of the prosumer in heating systems, a

new market participant that has already gained interest in power systems. Prosumers are defined as

proactive consumers that may possess assets for local energy generation, conversion and/or storage [3].

Heat prosumer assets include, for instance, heat accumulators, heat pumps, and solar collectors.

The structure and operation of district heating systems will change significantly with the rise of

distributed (excess) heat sources and heat prosumers. It remains an open question how heat markets

should adapt to this new paradigm. Existing heat pricing methods do not succeed in providing con-

sumers and generators with the right incentives to exploit their flexibility [4]–[6], nor do they deal with

challenges related to the operation of a more distributed system. There is thus a need for the design

of heat markets that exploit the benefits prosumers can bring to the heating system, while facilitating

the integration of more distributed generation from a network operator’s perspective. For the latter,

markets should help ensuring network feasibility and minimizing operational costs, including the cost

of heat loss.

To this end, we aim to design a network-aware market mechanism suitable for district heating

systems with distributed generators and prosumers. In a more distributed system, it becomes more

challenging to ensure network feasibility and operate the system efficiently. In this context, studies

have pointed to the advantage of network-aware markets, which include explicit network constraints

[7], [8]. Such markets guarantee network feasibility and economic efficiency of operation in a system with

high penetration of distributed generators. If managed and integrated properly, it has been shown that

prosumers can facilitate network operation and reduce system costs [9]. In order to optimally coordinate

prosumers while exploiting their value, the concept of consumer-centric markets has attracted attention.

In the next Section, we review the literature on network-aware market design for heating as well as

electricity systems, including works involving consumer-centric network-aware market design.

1.2 Status quo of network-aware operations and markets

The need for network-aware optimal dispatch has long been recognized for electrical power systems, in

order to minimize operating costs while meeting system and security constraints [10], [11]. Optimal

energy flow for the heating and gas sector has also been a topic of interest, see e.g. the literature review

in [12]. Possibly due to the liberalisation of electricity markets, as well as increased decentralization,

optimal flow problems for electricity have been researched most extensively. Solving Optimal Power

Flow (OPF) problems in systems with many agents (e.g., producers and consumers) has become more

complex [13]. A standard OPF-based electricity market minimizes generation costs subject to power

flow equations and operational constraints. The Alternating Current (AC) OPF considers the full

non-linear power flow equations in its constraints, and thus represents the power flows most accurately.

However, the non-convexity of this formulation has many drawbacks, such as a general lack of optimality

guarantees on solver solutions and intractability of larger problems. Much research has therefore focused

on approximation and convexification of the AC OPF.

A similar problem arises when designing network-aware heat market mechanisms, due to the highly

complex, non-linear nature of district heating network dynamics. In the most general and most accurate

variable-flow-variable-temperature (VFVT) formulation, the flow, pressure, and temperature of the heat

carrier are variable. In the control literature, the resulting Mixed Integer Non-Linear Problem (MINLP)

is solved using iterative methods, such as in [14]–[16]. However, convex formulations are preferred in

many applications, including market design. One may apply convex relaxations and retrieve a solution
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to the original problem after solving, as done in e.g. [17] and [18]. However, there are no guarantees

on the magnitude of the optimality gap, and the nonlinear problems can quickly become intractable

for larger number of nodes. We therefore consider such methods unsuitable for our purpose. A sec-

ond convexification method is to fix flow variables to arrive at the constant-flow-variable-temperature

(CFVT) formulation, e.g. applied in [19]–[22]. The fluid temperature is variable at injection points and

throughout the network, so that the network can be used as a heat storage. As a drawback, due to

fixed nodal flows, a node must be marked as a net producer or net consumer before market clearing.

Nodal temperature constraints even enforce minimal injections and extractions of these pre-appointed

producers and consumers, which limits the exploitation of prosumer flexibility considerably. Finally,

the variable-flow-constant-temperature (VFCT) formulation convexifies the problem by fixing nodal

temperatures, leaving the flow of the heat carrier variable. The heat loss in each pipeline is now a fixed

share of the transported heat, i.e. loss is multiplicative. VFCT is applied in an optimal dispatch setting

in [23]. The authors of [24] apply the VFCT to prevent congestion in a distribution network with a

single point of heat injection and several flexible consumers.

Over recent years, consumer-centric electricity markets have been proposed in order to accommodate

prosumers. The authors of [7] review approaches for integration of distributed energy sources into

power systems, and in this context discuss peer-to-peer mechanisms, as well as network considerations.

Network-agnostic peer-to-peer markets based on bilateral trades are formulated in e.g. [25], [26]. More

recently, several works have considered network effects within decentralized market frameworks. In [27],

the cost for infrastructure usage is allocated to agents using several types of exogenous network charges,

without considering explicit grid constraints. The authors of [28] propose a peer-centric market where

distribution locational marginal prices reflect network usage charges that peers must pay to the utility.

A peer-to-peer market with distribution and transmission grid constraints is formulated in [8], where

the authors study the effect of different loss allocation policies as well. The prosumer has also gained

interest in the context of district heating, not least because many types of excess heat providers classify

as prosumers. The authors of e.g. [29] foresee the presence of prosumers in future heating systems, and

highlight the importance of integrating them optimally. It has been shown that prosumers can be a cost-

efficient solution to bottleneck problems in heating networks [30]. The literature on consumer-centric

heat markets is however limited. From a market perspective, the authors of [31] develop a community-

based combined heat and electricity market for a group of prosumers, consisting of an optimal dispatch

and different allocation mechanisms, while disregarding network constraints. The aforementioned work

[24] proposes a mechanism for exploiting flexible prosumer demands while considering the network. In

this work however, there is a single point of heat injection, and prosumers cannot export heat.

1.3 Contributions

The state-of-the-art literature lacks a convex, network-aware heat market that integrates distributed

generators and prosumers, while minimizing operational costs. In this work, we propose a VFCT based

network-aware market mechanism to fill this gap. The market is network- and loss-aware, minimizing

total production cost including the cost of generated losses. The choice for VFCT representation of the

heating network is motivated by the need for a convex model as well as variable sign of nodal injections.

This comes at the cost of fixing nodal temperatures, so that the storage capacity of the heating network

itself is not exploited, and market participants must inject at a fixed temperature. We furthermore

neglect pressure and pumping power constraints, so that we can include distributed heat injections.

The market mechanism is suitable for any radial network with unidirectional pipeline flows. Nodal

flows may be bidirectional, so that prosumer flexibility can be harnessed. Our choice for unidirectional

network flow matches current practice in the operation of district heating networks. Bidirectional

network flow is envisioned to be realized in fifth generation district heating, but this concept is in an
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early stages of research and development [32]. Due to the unidirectionality in the pipelines, prosumers

cannot sell heat to agents located upstream. In other words, prosumers can only sell heat to agents at

their own node, or downstream nodes. For prosumers at the end node, this implies that they can only

sell heat to other prosumers at the same node.

We explore several questions related to network heat losses. Who causes them? Which generator

compensates for the losses? And finally, who pays for losses? The answers to these questions help use to

account for heat loss in both dispatch and pricing. Our market formulation includes peer-to-peer trades.

In this work, the main purpose of introducing peer-to-peer trades is to reveal the agents that cause a

certain network loss. We link network losses to a particular trade, which allows us to identify which

seller and buyer caused a certain amount of heat loss in certain parts of the network. We present two

variations of the dispatch mechanism, in which either the distributed generators or the grid connection

compensate for heat losses. Furthermore, we propose two allocation mechanisms for the costs of energy

and losses. We provide insights in our proposed formulation through detailed analysis, including a

derivation of the loss components of nodal prices, and a dual analysis revealing relations between nodal

prices and between seller and buyer prices. For fair evaluation of the proposed market mechanism we

formulate a network-aware but loss-agnostic benchmark. By comparison to this benchmark, we can

show the effects of loss-aware dispatch in our case study. The comparison shows that the proposed

network- and loss-aware mechanism effectively promotes a more local heat consumption and thereby

reduces losses and total costs. Finally, we compare the effect of individual and socialized loss allocation

on consumer payments.

To the best of our knowledge, we are the first to engage in a detailed analysis of VFCT-based

heat markets, and thereby to provide deeper insights in this formulation. In fact, explicit market

considerations apart from optimal dispatch are rarely addressed in the literature. In addition, we

consider explicit allocation of loss generation costs, which has not been done for the heat case. Our

network and peer-to-peer formulations are partly inspired by the work in [24], but differ from it in several

ways. Firstly, we add constraints to prevent arbitrage, ensuring a unique solution. We furthermore allow

for multiple points of heat injection. As a result we need to omit the pumping power constraint.

The remainder of this article is organized as follows. We describe the components of the system

under consideration in Section 2, including the district heating network model and agent representation.

Section 3 presents the proposed market mechanisms, as well as the benchmark. The price of energy

and loss are discussed in Section 4, including two different loss allocation policies. Next, the properties

of the proposed market are illustrated in a case study in Section 5. We draw conclusions and discuss

future work in Section 6.

2 System description

This Section describes the dynamics of the considered heating system, as well as the representation of

agents present in this system. First, the general district heating system setup is introduced in Section

2.1. Sections 2.2 and 2.3 respectively present the heating system model and the agent model that are

used in our market formulation. Temporal coupling is introduced through the load flexibility model in

the latter Section. Therefore, we need to use a time index t ∈ T .

2.1 District heating system representation

Figure 1 provides a graphical representation of the district heating system setup. The district heating

network consists of a supply and a return side. Heat generators extract cold fluid from the return

side and inject hot fluid on the supply side. Supply-side pipelines then transport the hot fluid to heat

consumers, which extract the hot fluid from the supply side and inject cold fluid in the return side.
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Figure 1: Representation of district heating network with prosumers and connection to greater heating

grid. The supply side is colored red, the return side blue. Nodal temperatures and flows, as well as

pipeline flows are indicated.

The network is a directed graph (N ,P), where N is a set of nodes connected by pipes P ⊆ N × N .

Each node and pipe consists of a supply and a return side, which are indicated by superscripts S and

R. Any pipe p ∈ P is defined by its supply-side start and end node, i.e., if p = (n1, n2), then the flow

in the supply side of pipe p goes from node n1 to node n2. The system state is described by nodal

supply T S
n and return temperatures TR

n , nodal mass flow rates ṁN
nt (here positive towards the return

side), and unidirectional pipeline mass flow rates ṁS
pt. Due to mass conservation, the mass flow rates in

the supply and return side of a pipe are equal, so that it suffices to consider only the supply-side flow.

We consider a unidirectional district heating network on the distribution level. More specifically,

pipeline flow is unidirectional, while nodal flow may be from the supply to the return side or vice versa,

so that nodes are free to be net generators or net loads. This allows for prosumer nodes, which do not

have to fix the sign of their injection before market clearing. The local system is connected to a larger

grid,that may supply heat energy at import price cHt . Due to the unidirectionality, no heat export to the

larger network is possible. As this work focuses on the heating system, we simplify the connection to the

electricity system. It is assumed that all agents are subject to the same known electricity import price

cEt for each period. The imported heat and electricity from the grid are denoted GH
g and GE

g . These

quantities are not upper bounded, so that the grid agent can in principle supply unlimited amounts of

heat and electricity. However, due to grid constraints introduced in the next Section, these quantities

are limited indirectly.

2.2 Model of district heating network dynamics

We will now continue to present our VFCT heating network model. The network-related variables are

the nodal flows ṁN
nt and the pipeline flows ṁS

pt. The temperature at the supply and return side of each

node are model parameters, and they are constant over time. This way, time delays can be neglected.

The temperature loss in each pipeline is determined by those fixed values. The supply-side temperature

at a node must necessarily be greater than its return-side temperature for the node to be able to extract

heat from the system. In addition, temperatures must be non-increasing along pipelines in the direction

of the flow. It is important to emphasize that losses are multiplicative in this formulation. That is, a

fixed share of the heat injected in a certain pipeline is lost while the heat carrier flows to the next node.

This share does not depend on flow or temperatures. However, total system losses are not fixed, as the

amount of heat injected in each pipeline is variable. For the VFCT model, fixed nodal temperature

values are needed. These may be obtained from measurements, as in [24]. Another option is to estimate

temperature losses as in [33] (Equations 7 and 8), or using an average mass flow and temperature loss

equations as in [14] (Equation 6).

The set of heating system variables is given by ΓDHN = {ṁN
nt, ṁ

S
pt}. Mass is preserved at each node,
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which means that the difference between incoming and outflowing mass at a node must equal the nodal

flow. This translates to

∑

p∈S−n

ṁS
pt −

∑

p∈S+
n

ṁS
pt = ṁN

nt . (1)

Each node contains a heat exchanger that ensures locally produced heat is injected into the network.

The nodal power injection and nodal flow are related as

∑

i∈In
PH
it = −cf ṁN

nt (T S
n − TR

n ) , (2)

where cf is the heat capacity of water. The nodal flow ṁN
nt is considered positive when the direction is

from supply to return side. Note that the temperature of the injected fluid on the supply and return

side of node n must equal the fixed temperatures T S
n and TR

n , respectively. Finally, the flow variables

are subject to limits. The flow in pipelines is unidirectional, and upper bounded:

0 ≤ ṁS
pt ≤ ṁ

S
p . (3)

The nodal flows are bidirectional, but bounded in size:

− ṁN
n ≤ ṁN

nt ≤ ṁ
N
n . (4)

2.3 Consumption model

A set of agents I is present in the system. Agent i is located at a node ni in the district heating

network. The set of agents at node n is denoted In; multiple agents may thus be located at a single

node. The agents have an hourly heat load LH
it and generation GH

it, resulting in a total heat injection

PH
it given by

PH
it = GH

it − LH
it . (5)

The heat load consists of an inflexible domestic hot water load L̂DHW and a partially flexible space

heating load LSH,

LH
it = LSH

it + L̂DHW
it . (6)

It is assumed that the heat is generated using heat pumps (HPs), which have an electric load LE,hp
it .

The electric load and heat production are related by the heat pump Coefficient of Performance (COP)

as

GH
it = COPiL

E,hp
it . (7)

The COP can in principle vary in time, but is considered fixed in this work. All agent variables are

collected in the set Γagent = {PH, LH, LSH, GH, LE,hp}. The generation is upper and lower bounded as

follows

0 ≤ GH
it ≤ G

H

it . (8)

Flexibility in prosumer consumption is represented as follows. First, the space heating profile of agent

i may at most deviate from this agent’s reference profile L̂SH
i by a maximum flexibility f i at each time:

max{L̂SH
it − f i, 0} ≤ LSH

it ≤ L̂SH
it + f i . (9)
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Note that if L̂SH
it − f i < 0, the lower bound on the space heating consumption is zero. In addition, the

total heat consumption for space heating has to equal the total in the profile, i.e.

∑

t∈T
LSH
it =

∑

t∈T
L̂SH
it , (10)

which means that space heating load may be shifted but has to be consumed eventually.

The utility is inversely proportional to the squared deviation from this profile. This relation is scaled

by a time and agent dependent factor ũit representing the importance of following the space heating

profile. The resulting utility as a function of the space heating demand is

uit(L
SH
it ) = −ũit (LSH

it − L̂SH
it )2 . (11)

Heat generation costs for agent i are given by

cHit = cEgtL
E,hp
it = cEgt

GH
it

COPi
. (12)

3 Optimal dispatch strategies

We will now define the three different dispatch strategies we consider in our market designs. An overview

of the proposed dispatch strategies is first provided in Section 3.1. Next, we present our formulation

of peer-to-peer trades in Section 3.2. This formulation allows us to derive the losses each agent is

causing, which we do in the following Section 3.3. The objective functions used for loss-aware and for

loss-agnostic dispatch are provided in Section 3.4. Finally, we summarize the full optimization problem

in Section 3.5.

3.1 Overview

We design three optimal dispatch strategies, that differ from eachother in one or two aspects. The

first option that can be switched is loss-awareness versus loss-agnosticism. This setting is discussed

in Section 3.4. Our aim in this work is to show the benefits of loss-aware dispatch compared to the

status quo in heat markets. We use the loss-agnostic dispatch as our benchmark for showing these

benefits. This benchmark is intended to resemble current practices in heat markets, which usually do

not consider the network nor operational costs. However, for a fair comparison to our network-aware

and loss-aware market, the benchmark needs to respect network constraints.

The second setting is centralized loss generation (CLG) versus decentralized loss generation (DLG),

which determines the generator that compensates for losses, as we will discuss in Section 3.2. Combining

these options gives four different dispatch strategies, illustrated in Table 1. However, as indicated, we

exclude the loss-agnostic DLG variant, as it is unlikely to be applicable in reality, nor does it mimic

any existing market setups. Moreover, it results in counter-intuitive dispatch and prices, as the loss

generation is competing with energy generation for the limited capacity local generators. In all cases,

we assume non-strategic and regulation-agnostic agents. By the latter we mean that agents are not able

to anticipate hindsight payments, which implies they do not change behavior in the dispatch because

of the hindsight payments.

Reasons for including network constraints in the optimal dispatch are twofold. Firstly, for all three

proposed dispatch strategies, the resulting dispatch will be feasible. This means that the physical

limitations posed by the network are respected by any resulting dispatch. Second, the network model

implicitly models heat loss, so that the cost of loss related to a certain unit of consumed energy is

directly included in the market. This cost will influence the choices of heat consumers when buying

8



DLG CLG

loss-aware loss-aware DLG loss-aware CLG

loss-agnostic loss-agnostic DLG loss-agnostic CLG

Table 1: Overview of dispatch strategies considered.

heat: it may happen that a generator close to a certain consumer is preferred over a cheaper but far

away generator, when the latter trade becomes more expensive due to loss costs. This effect can be

observed in our loss-aware dispatch. In the loss-agnostic dispatch, we artificially remove the loss costs

from the objective function, as we will formalize in Section 3.4. The loss-agnostic dispatch is agnostic

to the cost of loss only: the losses are still produced and transported, and the dispatch remains feasible

in the network.

In our proposed markets, generator bids are of price-quantity format. That is, they bid a maximum

quantity G
H

t for each time step, as well as their generation costs per unit for each time. The consumer

bids are more complex: they bid a fixed load L̂DHW, a minimum and maximum quantity for flexible

load LSH, and the total to consume flexible load over the entire day. In addition, the price component

of the consumer bid comes as a quadratic utility function uit(L̂
SH, L̂DHW). If the market were to be

decomposed, and agents would engage in bilateral trades in a decentralized system, the consumers

would not need to hand all this information to the market operator. Instead, the information would be

used in their local optimization problem.

3.2 Peer-to-peer trades

The market includes peer-to-peer trades, which enable agents to negotiate directly with one another

and agree on bilateral heat trades. Our formulation is an extension of a common peer-to-peer setup, as

described in for example [34]. The extension consists of constraints that prevent arbitrage, as well as an

explicit loss representation. We define a trade τij between agent i and j, which is positive if i sells and

negative if i buys heat. The grid agent is denoted using the index g. Trades define an amount of energy

that is received by the buyer, not including any losses on the way. This means that, besides the traded

heat τij , the losses wij associated with the trade need to be generated by some agent. We introduce a

binary parameter αij ∈ {0, 1} to indicate whether the seller of trade τij will be responsible for producing

the losses caused by this trade (αij = 1) or whether grid import will be used to compensate for losses

(αij = 0). We will refer to these respective cases as distributed loss generation (DLG) and centralized

loss generation (CLG). An illustration of peer-to-peer trading variables is given in Figure 2.

A trade τij can be decomposed into sales sij ≥ 0 and buys bij ≥ 0 as

τijt = sijt − bijt . (13)

Trade reciprocity is ensured by the constraint

sijt = bjit . (14)

ni

seller i

njng (1− αij)w
g
ij sij

wij

sij αijwij

buyer jgrid

bji(1− αij)w
g
ij

Figure 2: Visualisation of peer-to-peer variables related to the trade τij = sij = bji = −τji. If α = 1,

the seller generates the losses, while this is done by the grid in case α = 0

9



The variable bii = sii represents energy bought from own production, used for self-consumption. This

self-consumption variable bii is used to prevent arbitrage and ensure a unique solution, using the fol-

lowing constraints. Agents can buy no more and no less than the energy they need for consumption,

∑

j∈I
bijt = LH

it , (15)

which prevents reselling of bought energy and thus prevents arbitrage. Note that the sum in this

Equation includes the self-consumption bii. Among others, this constraint ensures that for any i, j, no

agent is both buying from and selling to a single other agent, i.e. bij = 0 ∨ bji = 0.

An agent must generate an amount equal to the total sale of heat plus the associated loss generation

allocated to this agent,

∑

j

sijt + αijwijt = GH
it . (16)

The losses wij will be quantified in the next Section. The grid agent must produce

∑

ij

(1− αij)w
g
ijt +

∑

j

(sgjt + αij wgjt) = GH
gt , (17)

where wg
ij is the amount the grid agent must inject to compensate for the losses in the trade τij , which

is quantified in the next Section.

The primal variables related to the peer-to-peer trading are Γp2p = {t, b, s, w,wg}.

3.3 Explicit loss formulation

Pipeline losses occur both on the supply and return side in the network. These losses are implicit in

(1) and (5). In order to provide more insight in the losses, and to be able to allocate losses to market

participants, we turn to a more explicit loss formulation.

Suppose without loss of generality that trade τijt > 0, so agent i is the seller of the nonzero trade

with agent j. In the VFCT formulation, the loss associated to trade τij is a fixed share of this trade,

depending on the nodal temperatures at ni and nj . To derive this share, suppose sij = bji > 0. Then

the change in power injection (and thus flow) at the receiving node nj equals

∆PH
nj

= −∆LH
nj

= −bji = −cf∆ṁnj
(T S

nj
− TR

nj
) (18)

by (2). By continuity of flow, ∆ṁnj
= −∆ṁni

. Assuming the losses are supplied by the seller i, the

change in power injection at node ni is

∆PH
ni

= ∆GH
ni

= −cf∆ṁni (T S
ni
− TR

ni
)

= cf∆ṁnj
(T S

ni
− TR

ni
) . (19)

The lost energy is equal to the difference between generated and consumed energy in this trade, as

given by (19) and (18) respectively. The total loss associated to the trade τij thus equals

wij = cf∆ṁnj
(T S

ni
− TR

ni
)− cf∆ṁnj

(T S
nj
− TR

nj
)

= cf∆ṁnj (T S
ni
− TR

ni
)− bji . (20)

Thus, we derive the constant relationship w̃ij between wij and bji as

w̃ij =
wij

bji
=

∆GH
ni
− bji

bji
=
T S
ni
− TR

ni

T S
nj
− TR

nj

− 1 . (21)
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An important observation is that, as a result of assuming constant nodal temperatures, the losses

become multiplicative, i.e. a fixed share of the energy transported through a pipeline. Note furthermore

that the factor w̃ij is only non-negative if the temperature gradient between supply and return side

at ni is at least as large as the gradient at nj . This is the case as long as nj is downstream of ni, or

ni = nj .

Loss component for Decentralized Loss Generation (αij = 1)

We define wij as the loss associated with the trade τij in case that the seller of this trade is also

producing the loss, i.e. αij = 1. If τij < 0, so i is the buyer of this trade, then wij = 0 while now

wji ≥ 0 represents the loss associated with this trade. In other words, sij ≥ 0 =⇒ wij ≥ 0, wji = 0,

whereas bij ≥ 0 =⇒ wij = 0, wji ≥ 0. The explicit computation of the losses caused by a certain trade

is

wijt = w̃ij sijt ,

where it is important to note this holds under the assumption that the seller produces these losses.

Furthermore, losses must be positive, i.e. wijt ≥ 0. Combining this with the nonnegativity of s, we

enforce that sijt = 0 if w̃ij < 0. The interpretation of this is that j cannot buy from i if j is upstream

of i, so these constraints exclude physically impossible trades.

Loss component for Centralized Loss Generation (αij = 0)

In this case, the grid agent has to inject an amount of energy that results in an amount of wijt arriving

at the node of the seller of trade τijt. If wijt > 0, i is the seller of the trade τijt. Therefore, an amount

of wijt must arrive at node i. This means that the grid agent must produce

wg
ijt =

T S
ng
− TR

ng

T S
ni
− TR

ni

wijt =
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij sijt .

Again, the loss must be positive, i.e. wg
ijt ≥ 0.

3.4 Loss-aware and loss-agnostic objective functions

The difference between our loss-aware and loss-agnostic dispatch lies in the objective function fobj of

the respective optimization problems. The objective of both markets is to maximize some form of social

welfare (or equivalently, minimize negative social welfare). In the loss-aware dispatch, total production

cost is included, which consists of the costs of energy sold to a consumer and the cost of producing

losses:

fawa(GH
it) =

∑

t∈T

(
cHt G

H
gt +

∑

i∈I

(
−uit +

cEt
COPi

GH
it

))
. (22)

In the loss-agnostic benchmark, the objective function of the market is adapted to minimize only

the production cost of consumed load, while disregarding the cost of losses:

fagn(GH
it, wijt) =

∑

t∈T
cHt


GH

gt −
∑

j∈I
wgjt −

∑

i,j∈I
(1− αij)w

g
ijt


+

∑

t∈T

∑

i∈I


−uit +

cEt
COPi


GH

it −
∑

j∈I
αijwijt




 . (23)
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After a loss-agnostic dispatch, the cost of losses may be computed and allocated a posteriori as discussed

in Section 4.2. The total cost of losses is therefore in general different when using these two objective

functions. Note that without appointment of an agent responsible for loss generation, there will in

general not be a unique solution in the loss-agnostic case.

3.5 Resulting overall market optimization problem

To arrive at a complete market formulation, we combine the constraints defined over Sections 2 and

3 in a single optimization problem in (24). Dual variables are indicated for each constraint, where we

use µ for equality constraints and γ for lower and upper bounds. These dual variables are used in our

derivation of energy and loss prices in Section 4.1 and Appendices A.1-A.4.

The objective function fobj is either fawa for loss-aware dispatch, or fagn for loss-agnostic dispatch.

The optimization variables are Γ = {PH
g , G

H
g } ∪ ΓDHN ∪ Γagents ∪ Γp2p. We list network constraints in

(24b)-(24e), and the agents’ own constraints in (24g)-(24l). To synchronize notations between the grid

agent and prosumers, we add a power injection constraint for the grid agent in (24f). Trade related

constraints are in (24m)-(24q), and loss related constraints in (24r)-(24u). In the absence of preferences

with respect to trading partners, as in this work, the same dispatch as the one resulting from our

peer-to-peer market can be obtained from an equivalent pool formulation as well.

min
Γ

fobj (24a)
∑

p∈S−n

ṁS
pt −

∑

p∈S+
n

ṁS
pt = ṁN

nt : µmc
nt (24b)

∑

i∈In
PH
it = −cf ṁN

nt (T S
n − TR

n ) : µHE
nt (24c)

0 ≤ ṁS
pt ≤ ṁ

S
p : γmp, γmp (24d)

− ṁN
n ≤ ṁN

nt ≤ ṁ
N
n : γmn, γmn (24e)

PH
gt = GH

gt − LH
gt : µinj

gt (24f)

PH
it = GH

it − LH
it : µinj

it (24g)

LH
it = LSH

it + L̂DHW
it : µLtot

it (24h)

GH
it = COPiL

E,hp
it : µcop

it (24i)

0 ≤ GH
it ≤ G

H

it : γG
it
, γG

it (24j)

max{L̂SH
it − f i, 0} ≤ LSH

it ≤ L̂SH
it + f i : γSH

it
, γSH

it (24k)
∑

t∈T
LSH
it =

∑

t∈T
L̂SH
it : µeb

i (24l)

τijt = sijt − bijt : µT
ijt (24m)

sijt = bjit : µR
ijt (24n)

∑

j

bijt = LH
it : µB

it (24o)

∑

j

sijt + αijwijt = GH
it : µS

it (24p)

∑

ij

(1− αij)w
g
ijt +

∑

j

(sgjt + wgjt) = GH
gt : µS

gt (24q)
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wijt = w̃ij sijt : µw
ijt (24r)

wijt ≥ 0 : γw
ijt

(24s)

wg
ijt =

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij sijt : µwg
ijt (24t)

wg
ijt ≥ 0 : γwg

ijt
(24u)

4 Pricing and loss allocation mechanisms

After the optimal schedule is determined using one of the three dispatch strategies presented in Section

3.1, payments and revenues have to be determined for all market participants using an allocation

mechanism. In this Section we propose different allocation mechanisms. First, the allocation of energy

and loss cost is discussed in Section 4.1. Then, Section 4.2 presents different loss allocation mechanisms.

4.1 Marginal price of energy and loss

Different choices of consumed energy and loss prices are possible. In this work, we consider nodal

marginal pricing. In the Appendix, we derive dual relations for the different markets, and determine

the nodal prices. It is derived that the price per unit of loss and price per unit of energy are equal.

However, the amount of loss per unit of consumed energy depends on where the energy is imported from,

and therefore the loss cost per unit of energy consumed increases with distance from the generator. We

denote nodal marginal prices as πN
nt, and seller i and buyer j marginal price as πs

it and πb
jt respectively.

In Appendix A.2, we show that the unit price received by seller i is given by µS
it + µinj

it , whereas the

price per unit consumed for buyer j is −µB
jt + µinj

jt . We further derive that for loss-aware DLG, these

prices relate as

πb
jt = −µB

jt + µinj
jt = (1 + w̃ij)

(
µS
it + µinj

it

)
= (1 + w̃ij)π

s
it . (25)

As a result, the cost of loss connected to energy sale sijt on the DLG loss-aware market is given by

CL,DLG
ijt = wijt π

s
it . (26)

In the loss-aware CLG market the prices relate as

πb
jt = −µB

jt + µinj
jt = µS

it + µinj
it +

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij(µ
S
gt + µinj

gt )

= πs
it +

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijπ
s
gt (27)

as derived in Appendix A.3. So, losses are paid for at the nodal price of the node of grid connection.

Therefore, in the CLG loss-aware market the cost of loss connected to sale sijt is given by

CL,CLG
ijt = wg

ijtπ
s
gt . (28)

Finally, for the loss-agnostic CLG, we show in Appendix A.4 that the buyer and seller marginal

price are always equal, i.e. πs
it = πb

jt, regardless of whether the agents are at different nodes (as long as

there is no congestion). This implies that the losses are not paid by the buyer directly, which is what

was intended with this formulation. The costs of losses are not optimized and therefore the cost of loss

cannot be obtained from any dual variable. Instead, the cost of loss has to be computed in hindsight.

As in the loss-aware markets, we choose to price the loss in hindsight at the nodal price of the generator

13



of the loss, in this case the grid node. Thus, the cost of loss connected to sale sijt is computed in

hindsight in the same way as in CLG loss-aware market as given in (28), .

Note that we price the loss wij at the nodal price of generator i in all three market formulations.

4.2 Allocation mechanisms for loss costs

Once the generation cost of losses are known, these costs have to be allocated to market participants.

A loss allocation policy is a system for distributing loss costs over generators and loads. It is desirable

that such a policy is budget balanced, i.e. the loss payments add up to the cost of loss, so that the

network operator does not suffer a loss or earn a profit.

In this work, two budget balanced loss allocation policies are investigated:

1. individual : the buyer of heat pays for the generation of the losses associated with this trade.

2. socialized : losses are paid for collectively a posteriori. Each consumed unit is charged the average

cost of loss per unit consumed, so that the loss costs are distributed proportionally to prosumer

total consumption.

In the individual loss allocation policy, losses are paid by the individual that is causing them, while the

cost of losses are shared evenly using the socialized loss allocation policy. In particular, the socialized

loss cost per unit consumed is taken as an average over the entire time period considered, so that

the unit price of loss is equal for any time t. This is intended to mimic current network and loss

charges, which are usually a fixed price per unit, where the network and loss costs for the whole year

are socialized in a grid tariff. The socialized loss allocation is a pro rata method, as described in [35] for

the allocation of electrical loss costs. In our case, we allocate 100% of the loss costs to the consumers.

Pro rata procedures are network-agnostic, i.e. loads near generating nodes pay the same loss price per

unit consumed as loads far away from generating nodes [35].

It should be noted that the individual loss allocation policy suits our loss-aware markets naturally.

In other words, in the loss-aware markets the agents are dispatched optimally, given that the losses are

allocated according to the individual loss allocation policy. For these loss-aware markets, the dispatch

would be different if the agents would be able to anticipate the socialized loss allocation. For the

loss-agnostic market, this is the case for both the individual and the socialized loss allocation. In this

work, we however assume that the agents are not able to anticipate the loss allocation post-processing,

i.e. they are regulation-agnostic. To summarize, the socialized loss allocation is an ex post step for all

market types, while the individual loss allocation is integrated in the market clearing for the loss-aware

markets.

For the loss-aware DLG, the revenue Rit of generator i at time t is computed as

Rit =
∑

j∈I
(sijt + wijt)π

N
nit =

∑

j∈I
sijtπ

N
nit +

∑

j∈I
wijtπ

N
nit (29)

so that every generated unit costs the nodal price at ni. In the rightmost expression the cost is split into

cost of consumed energy and cost of loss. When using the individual loss allocation policy, consumer j

is paying wijtπ
N
nit to make up for the cost of loss. In the socialized loss allocation policy, the costs of

loss are shared over all consumed units, so that the cost of loss per unit consumed πL in DLG becomes

πL,DLG =

∑
i,j,t wijtπ

N
nit∑

i,t L
H
it

, (30)

and in CLG becomes

πL,CLG =

∑
i,j,t w

g
ijtπ

N
ngt∑

i,t L
H
it

. (31)
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5 Numerical results

Through an illustrative case study we show the benefits of loss-aware dispatch, and the drawbacks of

not considering the cost of loss. We look at total scheduled generation volumes, total amount of losses,

total cost and cost of loss, and agent payments and revenues. In addition, we visualize the effect of loss-

and network-awareness on nodal (locational) marginal prices. The aim of this case study is to illustrate

the properties of the proposed market mechanisms, rather than to mimic a specific real system as closely

as possible. All case study inputs, as well as an implementation of the three market variations in Julia,

and example analysis of the outcomes can be found in our GitHub repository1.

5.1 Case study setup

We simulate an hourly day-ahead market for 24 hours. We consider a simple network topology without

branches, see Figure 3, even though the market mechanisms are also suitable for other types of radial

systems. The system consists of 11 nodes. The supply temperature at the most upstream node n1 is

90°C, and the return side temperature of the most downstream node n11 is set to 40°C. Precise ways of

determining constant nodal temperatures are beyond the scope of this work. For illustrative purposes,

we will assume a temperature loss of 0.1K m−1 on the supply side, and a loss of 0.05K m−1 in return

side pipelines. A total of 28 prosumers are present in the system, of which 6 generate excess heat

using heat pumps, while the remaining 22 cannot generate heat. The used reference DHW and space

heating load profiles are measurements from the Nordhavn neighbourhood in Copenhagen, collected in

the EnergyLab Nordhavn project [36]. The excess heat generators are located at all even nodes and

node 1, i.e. node 1, 2, 4, 6, 8, 10, which are marked as HP in Figure 3. The remaining agents without

production are distributed over the remaining nodes, so that nodes 3, 5, and 7 contain 4 agents each, and

node 9 and 11 contain 5 agents each. The excess heat generators have identical maximum generation

capacity, while their heat pump COPs differ. The six heat pump COP values range linearly from 3.27

to 3.46.

The agents are subject to a variable electricity price, whereas the heat import price is constant.

This is a situation that currently can be the case for consumers in for example Denmark: consumers

can opt-in on variable electricity prices, whereas heat prices are always constant (apart from possible

seasonal differences). The price curves used in this case study are plotted in Figure 4. The electricity

price profile is a series of day-ahead prices from Nord Pool Elspot on January 8th 2021. This price only

includes the energy price, so the real price paid by consumer is higher, especially in Denmark where the

price of energy is around 20% of the total price 2. To be more realistic, we multiply the price signal by

1github.com/linde-fr/network-aware-heat-market
2www.forsyningstilsynet.dk/tal-fakta/priser/elpriser/prisstatistik-1-kv-2021

n1 n2

grid

n3 ... n10 n11

HP1 HP2 HP6

Figure 3: Overview of case study district heating system. Each of the nodes 1, 2, 4, 6, 8, 10 contains a

single prosumer with a heat pump (marked with HP). Nodes 3, 5, 7 each contain 4 flexible consumers,

while nodes 9, 11 contain 5 each. The grid agent injects heat at node 1. The flow is unidirectional from

the supply side of node 1 to 11. The return side is equal to the displayed supply network, with reversed

flow directions.
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Figure 4: Heat and electricity import prices used in case study.

2.5. The constant heat import price signal is set to 524 DKK/MWh or 69.87 EUR/MWh, which equals

the consumer heat price set by the Danish heat provider HOFOR 3.

We consider two variants of this case study: case I and case II. The cases differ only in the marginal

costs of the local heat pumps, which allows us to illustrate different properties of our mechanism, and

to distinguish between general outcomes and case-dependent outcomes. In case I, the heat pumps are

placed so that marginal production costs decrease (i.e. COPs increase) with distance from the heating

grid connection. This means that the excess heat producer at node 1 will have the highest marginal

cost, followed by the producer at node 2, then node 4, etc. In case II, the heat pump order is reversed, so

that the marginal production cost increases and COP decreases with distance from the grid connection.

Now the marginal costs of the producer at node 1 will be lowest. In the next Section, we use case

studies I and II to compare the different market mechanisms, and illustrate relevant properties.

5.2 Results

First, it should be noted that a network-agnostic dispatch in a unidirectional network with multiple

producers may be infeasible. The main reason for this is the lack of directional awareness, i.e. down-

stream producers can be scheduled for an amount greater than the loads they are able to reach. An

important benefit of the considered market mechanisms (including the loss-agnostic benchmark) is that

the resulting dispatch is guaranteed to be feasible, as opposed to network-agnostic markets. In addition,

the loss-aware dispatch is optimal under the assumption that grid temperature cannot be varied. When

projecting network-agnostic market outcomes in the feasible space, as is common practice in current

district heat dispatch, such optimality guarantees do not exist.

Scheduled generators

We compare the dispatch of local generators in the loss-aware markets, both DLG and CLG, to our

loss-agnostic CLG benchmark. In the loss-aware markets, the cost of loss is taken into account in

the dispatch, while the loss-agnostic benchmark minimizes production cost of consumed heat only. It

is expected that distant generators have an advantage in the loss-aware markets, as their loss costs

are lower. This effect is indeed seen in the dispatch shown for case study I in Figure 5a and case

study II in Figure 5b, where the generation over the entire time horizon is shown per node. In both

3www.hofor.dk/privat/priser-paa-forsyninger-privatkunder/prisen-paa-fjernvarme-2021-for-privatkunder/
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(a) Case I: decreasing marginal costs
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(b) Case II: increasing marginal costs

Figure 5: Total scheduled nodal generation. The shaded part represents the generated heat that is lost

on the way to the consumer.

loss-aware markets (blue and orange bars), distant heat producers are scheduled to generate a greater

amount of energy than in the loss-agnostic benchmark (green bars). This shows that loss-aware dispatch

promotes more local heat consumption. We note that for case II, the DLG has a far more widely varying

generation between nodes 6-10. This observation is most certainly case-study specific, and would not

be there if focusing on a different case-study application.

In case I, the loss-aware markets’ generation schedules are equal except for the loss generation,

which is shifted from the local generators to the grid agent in the CLG dispatch. This similarity of

schedules is not a general result, as we see for case II in Figure 5b. In case II, the loss-aware DLG and

CLG dispatches are not equal for node 6, 8, and 10. Compared to DLG, loss-aware CLG increases

the generated heat at the most distant generation nodes 8 and 10, while reducing the generated heat

at node 6. This is due to the higher cost of loss for these generators in the CLG market compared to

the DLG market, as the losses have to be imported from the grid node that is far from node 6 − 10.

In other words, distant nodes have a greater incentive to minimize losses in loss-aware CLG than in

loss-aware DLG.

Total heat loss and total generation costs

Table 2 gives an overview of the total heat loss over 24 hours for each market mechanism and each

case. Note that the heat loss in all three markets is considerably higher in case II than in case I,

because in case II the cheaper generators are located far from the distant consumers. As expected,

the loss-agnostic market results in the largest heat loss in both case I and II. The table also shows the

percentage decrease in heat loss relative to the loss-agnostic case for the other two markets. In case II,

this decrease is most dramatic: the heat loss is almost halved in the two loss-aware markets, compared

to the loss-agnostic case. These results show that loss-aware dispatch leads to a decrease in network

heat loss.

One may expect that the losses of loss-aware DLG must always be lower than loss-aware CLG.

Interestingly however, the results of case II in Table 2 show loss-aware CLG may lead to lower total

losses than loss-aware DLG. The explanation for this is that in loss-aware CLG, losses are more expensive

as they have to be imported from the grid, so that local production is stimulated even more than in

loss-aware DLG. This may result in more frequent scheduling of the distant generators, and thereby a
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loss-agnostic CLG loss-aware CLG loss-aware DLG

case I
Total heat loss [kW] 68.63 57.32 56.71

% decrease - 16.48 % 17.37 %

case II
Total heat loss [kW] 137.34 64.48 72.99

% decrease - 53.05 % 46.85 %

Table 2: Total heat loss for the three different market mechanisms in case I and II. Percentage decrease

with respect to the loss-agnostic CLG market is provided for the other two market mechanisms.

reduction in total heat loss.

Table 3 summarizes total generation costs for all three market mechanisms, for both case I and II.

In addition, the cost reductions in percentages compared to loss-agnostic CLG are given. Loss-agnostic

dispatch is expected to increase the cost of loss, and thereby the total cost. Furthermore, it is expected

that CLG leads to higher generation costs than DLG, because the feasible space is restricted by forcing

the grid agent to produce all losses, rather than leaving it to the cheapest generator. These effects are

indeed observed for both case I and case II, as seen in Table 3. In case II, the total costs are lower

for loss-aware DLG than loss-aware CLG, despite the observed higher heat loss. The cost differences

between the different market types are largest in case II, whereas they are minimal in case I. The reason

for this is that in case I, the different market mechanisms lead to rather similar generator schedules. In

all, we show here that loss-aware dispatch decreases operational costs resulting from heat loss.

loss-agnostic CLG loss-aware CLG loss-aware DLG

case I
Total generation cost [MAC] 198.24 197.85 197.54

% decrease - 0.19 % 0.35 %

case II
Total generation cost [MAC] 201.76 199.54 199.2

% decrease - 1.10 % 1.27 %

Table 3: Total generation costs for the three different market mechanisms in case I and II. Percentage

decrease with respect to the loss-agnostic CLG market is provided for the other two market mechanisms.

Locational marginal prices

The Locational Marginal Prices (LMPs) as a function of time for case I are shown in Figure 6, and

for case II in Figure 7. These prices depend on the choice of loss allocation policy as well. For the

loss-aware markets, we use the individual loss allocation that suits these markets naturally. For the

loss-agnostic benchmark, we use the socialized loss allocation that is most suitable to this market. Two

effects on the nodal prices can be distinguished: the effect of losses and the effect of (unidirectional)

flow constraints. The effect of losses is only present in the loss-aware markets, most clearly in case II

in Figure 7a and 7b, but also in, for example, hour 10 of the loss-aware markets in case I. The LMP

at node 1 equals the import price, and as one moves away from the grid node the LMP increases by

a (known) factor. The effect of unidirectional flow can be seen in both loss-aware and loss-agnostic

markets of case I in hour 14 to 17. It occurs when a cheap marginal generator is located downstream, so

that it cannot supply some upstream nodes. As a result, marginal prices may be lower at distant nodes.

The effect is not seen in case II, as the cheaper marginal generator is always upstream. Concluding,

in the loss-aware markets the LMPs may differ per node for two reasons, namely due to losses and/or

due to heat flow restrictions. In the loss-agnostic case, the LMPs only differ between nodes due to heat

flow restrictions, and downstream LMPs will always be lower than or equal to upstream LMPs.
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(a) loss-aware DLG (b) loss-aware CLG (c) loss-agnostic CLG

Figure 6: Locational marginal prices as a function of time in Case I. We consider individual loss

allocation for the loss-aware markets, and socialized loss allocation for the loss-agnostic benchmark.

On the shape of the LMP curves, it is also visible at which hours nodal heat is generated and when

heat is imported from the grid. The latter is the case in those hours where the LMP curve is at high

level, and horizontal. Here, we see the effect of having a constant heat import price while having a

variable electricity price. Local generators are selling heat at times of low electricity price, i.e until 9 AM

and after 9 PM, no matter if grid heat is actually cheap at that time. Heat is imported between 10 AM

and 20 PM, which includes the evening demand peak. This puts a pressure on the heat transmission

grid, which may be prevented if a variable cost of importing heat is communicated to the consumer.

This illustrates the need for variable heat import prices, or even combined heat and electricity markets.

(a) loss-aware DLG (b) loss-aware CLG (c) loss-agnostic CLG

Figure 7: Locational marginal prices as a function of time in Case II. We consider individual loss

allocation for the loss-aware markets, and socialized loss allocation for the loss-agnostic benchmark.

Payments: individual VS socialized loss allocation

In this Section we illustrate how consumers may be affected by loss-aware dispatch under different loss

allocation policies, by looking at the average consumer price per unit consumed. This average price

includes the costs of consumed energy and of loss, where the latter is either socialized or individual,

while the former is individual in all cases. The proposed loss allocation policies affect the payments

made by consumers of heat, whereas the revenues received by generators are equal for the different loss

allocation policies.

The socialized loss allocation policy redistributes the cost of loss, so that an equal loss price is paid

for all consumed units. As a result, nodes with an above average loss costs per unit consumed will pay

a lower price in the socialized case than in the individual case, and vice versa for nodes with below

average loss costs. The redistribution of loss costs is most intuitive in case II, as illustrated in Figure

8b for the loss-aware DLG market. In case II, where marginal generation costs increase with distance
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(b) Case II

Figure 8: Loss-aware DLG: average consumer price per unit consumed as a function of node for the

different loss allocation policies.

from the grid node, the cost of loss increases with distance from the grid node. As a result, it can

be seen that the socialized loss allocation generally reduces the unit price for distant nodes, whereas

it increases the price for nodes closer to the grid connection. The socialization of loss cost also pulls

most nodal prices towards the average price, for all nodes except node 6 and 8. This is not a general

result, but it is a result of the fact that most nodes with higher loss costs also have higher energy costs.

For case I in Figure 8a, there is also a trend that the socialized loss allocation redistributes loss costs

from distant nodes to proximal nodes, but it does not hold for all nodes. For instance, node 10 pays

a higher unit price under the socialized loss allocation. For case I, as opposed to case II, most nodes

experience an average unit price further from the average under the socialized loss allocation. In other

words, if energy costs are individualized, the socialization of loss costs may lead to larger differences in

unit prices, which is the opposite of what may be expected from socialization.

Finally, we compare the average unit price of loss-aware DLG market with individual loss allocation

policy, and of loss-agnostic CLG market with socialized loss allocation policy. The loss-aware DLG

market with individual loss allocation is the one giving optimal incentives to market participants for

reducing losses, but leads to the highest loss price differentiation between them. The loss-agnostic CLG

market with socialized loss allocation is closest to existing practices. The comparison is shown in Figure

9, which shows both the average unit price as a function of node, and the overall average. In both case

I and II, the overall average unit price is higher for the loss-agnostic market. As a result, most nodes

pay a lower unit price in loss-aware DLG with individual loss allocation, even though the loss is paid

by the individual. Only those nodes with the very highest loss costs benefit in the loss-agnostic CLG

with socialized loss costs.
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Figure 9: Average price per unit consumed as a function of node. Comparison between loss-aware DLG

with individual loss allocation policy and loss-agnostic CLG with socialized loss allocation policy

6 Conclusion

District heating systems become more distributed with the integration of prosumers, including excess

heat producers and active consumers. This calls for suitable heat market mechanisms that optimally

integrate these actors while ensuring network feasibility and considering operational costs. To this

end, we have proposed two variants of a network- and loss-aware heat market mechanism, as well as a

network-aware but loss-agnostic benchmark. The markets are formulated as Quadratic Programs. In

our distributed loss generation (DLG) market variant, losses caused by a certain trade are produced

by the seller of that trade, while in the centralized loss generation (CLG) formulation this is done by

a grid agent. In the benchmark, the loss costs are excluded from the objective function. We used

peer-to-peer trades to explicitly link losses to certain market participants. The mechanisms are suitable

for radial, unidirectional district heating systems with bidirectional nodal flow, , and allow for multiple

heat injection points. We have derived dual relations for the proposed markets and the benchmark, and

determined the nodal marginal prices. Based on these nodal prices we formulated allocation mechanisms

for energy and loss production costs. We considered two allocation mechanisms for the cost of loss: an

individual and a socialized policy. In the former, loss costs are allocated to the buyer of the trade causing

the losses, whereas in the latter they are socialized. Through a case study we have illustrated several

properties of the proposed market mechanisms by comparing to our benchmark. Most importantly, we

have shown that the designed loss-aware dispatch may schedule distant generators despite their higher

production costs, in case this reduces the total cost including cost of loss. We have shown that the

total heat loss and cost of heat loss are reduced in a loss-aware dispatch compared to our loss-agnostic

benchmark. In conclusion, we have shown that the loss-aware market mechanisms can help promote

local consumption and reduce operating costs in district heating networks, while integrating distributed

generators and prosumers.

6.1 Discussion

Compared to network-aware mechanisms in the literature, our formulation has the advantage that

it can include multiple distributed generators and flexible loads, while leaving the size and sign of

nodal power injection variable. The latter means that no unit commitment decisions are fixed before
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dispatch, and prosumer nodes are free to either consumer or produce, as opposed to constant-flow

variable-temperature (CFVT) formulations. These advantages come at the price of other desirable

properties. First of all, generators (consumers) must inject water at the respective nodal supply (return)

temperature, while CFVT or full variable-flow variable-temperature (VFVT) formulations allow for

variable injection temperatures. This may be a problem for some agents in practice. A way to deal

with this would be to have punish deviations from the set temperature. For example, generators would

not be paid for the additional energy in case they inject at a too high temperature, and would pay a

fee in case they inject at a lower temperature than expected. Another challenge is that the fixed nodal

temperatures in our formulation have a large impact on dispatch and prices, and should therefore be

selected carefully. New, fair methods of determining these temperatures are needed.

The main purpose of adding peer-to-peer trades in this work was to trace losses back to certain

producers and consumers. There are other reasons these peer-to-peer trades may appeal in practice. For

one, the formulation allows for including consumer preferences, both based on the source of the heat as

well as on the amount of loss. This would be done by adding weighting factors to the objective function,

as for example in [26]. Moreover, for implementation of a consumer-centric heat market in practice, the

peer-to-peer formulation is appealing because it forms the basis for deriving a decentralized negotiation

mechanism, in which all market participants solve a local optimization problem. The peer-to-peer

market is then cleared using a distributed optimization method, such as the Alternating Direction

Method of Multipliers (ADMM), in which agents would negotiate directly with one another. ADMM is

an iterative method. In every iteration, the market participants all solve a local optimization problem,

and sends trade proposals to each trading partner. For more details on reformulation to distributed

setup, as well as a discussion of the implications of a decentralized peer-to-peer market in practice, refer

to for example [27]. Our individual peer-to-peer dispatch satisfies conditions to be solved by ADMM

as summarized in [37]. Therefore it is possible to solve the dispatch in a distributed, fully decentralized

manner. Note that the socialized loss allocation policy is not readily suitable for use in a distributed

setup.

6.2 Future perspectives

Future research could investigate the inclusion of operating costs and constraints related to water

pumping in the network. This is done in [24] for a system with a single point of heat injection, using a

first order approximation of bilinear expression for pumping energy. This approximation cannot be used

in the presence of multiple injection points, but can perhaps be generalized to the multiple injection

setting. Otherwise, one could respond to approximate pumping costs as a recourse action, after market

clearing. In such a setup, the output of the simplified market clearing without pumping equations may

be seen as the operating point for the system. Then, by adding McCormick relaxations of pumping

equations to the simplified setup, one could see how much it would be beneficial to deviate from these

operating points. Those deviations may eventually be seen as potential recourse actions.

The proposed market design is only suitable for systems with unidirectional pipeline flow. It could

be adapted to accommodate systems with bidirectional flow. For instance, pipelines losses could remain

a fixed share of transported energy, i.e. the losses would still be multiplicative. A loss factor would

have to be determined for each pipeline. It is however not trivial how nodal temperatures and pipeline

flows could remain part of such model, and this should be investigated further.

In this work, we have focused on the heat market, and therefore simplified connections to the

electricity system. Already in this simplified case, it became clear that consumers that are subject to

variable electricity prices but fixed heat import prices may shift their load in a way unfavourable for the

heating system. This highlights the need for variable heat prices in the presence of variable electricity

prices. In future work, the proposed heat market mechanisms can be extended to a combined heat and
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electricity market.
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A Appendix

In this Appendix we derive dual variable relations for the three market setups considered in this work.
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A.1 Dual variable relations between nodes

The relations derived in this Section hold for all market formulations in this work. To determine the

relations between the nodal dual variables µHE
nt , we derive the first order conditions for flow in node n

and pipe p = (n1, n2)

ṁN
nt : −µmc

nt + cf(T
S
n − TR

n )µHE
nt − γmn + γmn = 0 (32a)

ṁS
pt : µmc

n2t − µmc
n1t − γmp + γmp = 0 . (32b)

Now consider two nodes n1 and n2 connected by pipe p = (n1, n2). If none of the pipeline flow bounds

are active, it holds that γmp = 0 = γmp, so that µmc
n1t = µmc

n2t. Combined with (32b) and assuming that

none of the nodal flow bounds are active, the following relation between µHE
n1t and µHE

n2t can be derived

cf(T
S
n1
− TR

n1
)µHE

n1t = cf(T
S
n2
− TR

n2
)µHE

n2t

µHE
n2t =

T S
n1
− TR

n1

T S
n2
− TR

n2

µHE
n1t . (33)

A.2 Loss-aware DLG peer-to-peer market

In this Section we derive the dual relations for the DLG loss-aware peer-to-peer market. Consider the

following first order conditions for this case. Those are

GH
it :

df loss

dGH
it

− µinj
it +HHHµcop

it + γG
it − γG

it
− µS

it = 0 (34a)

LH
it : µinj

it + µLtot
it − γL

it
− µB

it = 0 (34b)

LSH
it :

df loss

dLSH
it

+ µeb
i − µLtot

it + γSH
it − γSH

it
= 0 (34c)

PH
it : µHE

nit + µinj
it = 0 (34d)

tijt : µT
ijt = 0 (34e)

wijt : µS
it + µw

ijt − γw
ijt

= 0 (34f)

sijt :HHH−µT
ijt + µR

ijt + µS
it − w̃ijµ

w
ijt − γs

ijt
= 0 (34g)

bijt :ZZµ
T
ijt − µR

jit + µB
it − γb

ijt
= 0 (34h)

We can identify that the price each agent perceives for generation is µS
it + µinj

it . For the perceived price

for loads, we combine (34b) and (34c) to

µinj
it +

df loss

dLSH
it

+ µeb
i + γSH

it − γSH
it
− γL

it
− µB

it = 0 . (35)

which shows that the perceived price for load i is −(µB
it − µinj

it ) = −µB
it + µinj

it . Note that µeb
i is seen as

a bound on the load.

Next, we derive relations between seller and buyer price of a nonzero trade tijt. Assume the sale

from agent i to j is nonzero, i.e. sijt = bjit > 0. For a marginal generator i,

µinj
it + µS

it =
df loss

dGit
. (36)

By (34g), it holds that

µS
it = −µR

ijt + w̃ijµ
w
ijt (37)
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as γs
ijt

= 0. Similarly, by (34h) for bjit > 0

µB
jt = µR

ijt . (38)

Substituting (38) in (37) gives

µS
it = −µB

jt + w̃ijµ
w
ijt . (39)

Case 1: i and j are at different nodes, so ni 6= nj . Still assuming sijt > 0, the loss must be positive,

so wijt > 0 and γw
ijt

= 0. Then it follows from (34f) that

µS
it = −µw

ijt . (40)

Substituting this in (39), we derive that

µS
it = −µB

jt − w̃ijµ
S
it

(1 + w̃ij)µ
S
it = −µB

jt . (41)

Combining this with nodal price relations in (33), we derive that

buyer price = −µB
jt + µinj

jt = −µB
jt − µHE

njt

= −µB
jt −

T S
ni
− TR

ni

T S
nj
− TR

nj

µHE
nit

= (1 + w̃ij)µ
S
it −

T S
ni
− TR

ni

T S
nj
− TR

nj

µHE
nit

= (1 + w̃ij)
(
µS
it + µinj

it

)
= (1 + w̃ij) · seller price , (42)

where the equality on the third line comes from (41). This relation shows that the buyer price is a fixed

factor greater than the seller price, which implies that the buyer pays more per unit of consumed heat

than the seller is paid per unit of produced heat. This way, the buyer is experiencing the cost of loss.

The price of energy and loss is equal.

Case 2: i and j are at the same node, so ni = nj . Then by (34d) it holds that µinj
it = µinj

jt . The loss

must be zero, i.e. wijt = 0 which implies γw
ijt
≥ 0. From (39) and the fact that w̃ij = 0 if ni = ni, we

derive

µS
it = −µB

jt . (43)

This relation is as expected, as there are no losses when i and j are at the same node.

A.3 Loss-aware CLG market

So in this case, αij = 0 for all agents. This results in several changes in the first order conditions. First

of all, in the derivative with respect to wijt, now we have µS
gt instead of µS

it. This yields

GH
it :

df loss

dGH
it

− µinj
it +HHHµcop

it + γG
it − γG

it
− µS

it = 0 (44a)

GH
gt :

df loss

dGH
gt

− µinj
gt − γG

gt
− µS

gt = 0 (44b)

LH
it : µinj

it + µLtot
it − γL

it
− µB

it = 0 (44c)
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LSH
it :

df loss

dLSH
it

− µLtot
it + γSH

it − γSH
it

= 0 (44d)

PH
it : µHE

nit + µinj
it = 0 (44e)

tijt : µT
ijt = 0 (44f)

wg
ijt : µS

gt + µwg
ijt − γwg

ijt
= 0 (44g)

sijt :HHH−µT
ijt + µR

ijt + µS
it −

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijµ
wg
ijt − γs

ijt
= 0 (44h)

bijt :ZZµ
T
ijt − µR

jit + µB
it − γb

ijt
= 0 (44i)

The price of loss for the trade between agents i and j is a fixed share of the nodal price at the grid

node. We can see that for any time t, it holds that µwg
ijt = µS

gt for all nonzero losses wijt. Most of the

analysis of previous Section still holds, but we derive a new expression for price of loss in the case that

i and j are at different nodes (Case 1). Assuming that the sale from i to j is positive, i.e. sijt > 0, it

follows from (44h) and (44i) that

µS
it = −µR

ijt +
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijµ
wg
ijt

= −µB
jt +

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijµ
wg
ijt , (45)

which can be rewritten using (44g) to

µS
it = −µB

jt −
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijµ
S
gt (46)

µB
jt = −µS

it −
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijµ
S
gt . (47)

In addition, we derive the following relation between nodal prices at ni, nj , and ng using the nodal

price relation in (33) and the definition of w̃ij in (21):

µHE
njt =

T S
ni
− TR

ni

T S
nj
− TR

nj

µHE
nit = (w̃ij + 1)µHE

nit = µHE
nit + w̃ijµ

HE
nit

= µHE
nit + w̃ij

T S
ng
− TR

ng

T S
ni
− TR

ni

µHE
ngt . (48)

Using (46) and (48), we can finally establish the following relation between the buyer and seller price

in the loss-aware CLG market:

buyer price = −µB
jt + µinj

jt = −µB
jt − µHE

njt = −µB
jt −

(
µHE
nit + w̃ij

T S
ng
− TR

ng

T S
ni
− TR

ni

µHE
ngt

)

= µS
it +

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijµ
S
gt − µHE

nit − w̃ij

T S
ng
− TR

ng

T S
ni
− TR

ni

µHE
ngt

= µS
it + µinj

it +
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij(µ
S
gt + µinj

gt )

= seller price +
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij · grid node price . (49)
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A.4 Loss-ignorant CLG market

In this case, αij = 0 for all trades ij, and the objective function does not include the cost of loss, as in

(23). The only difference in the first order conditions compared to loss-aware CLG is in the condition

for wg
ijt, which now includes a derivative of the objective function:

wg
ijt :

dfnoloss

dwg
ijt

+ µS
gt + µwg

ijt − γwg
ijt

= 0 . (50)

Substituting this relation in (45) while assuming the loss is nonzero gives

µS
it = −µB

jt +
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijµ
wg
ijt

= −µB
jt −

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij

(
dfnoloss

dwg
ijt

+ µS
gt

)
(51)

so that the buyer price can be decomposed into

µB
jt = −µS

it −
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij

(
dfnoloss

dwg
ijt

+ µS
gt

)
. (52)

By the first order conditions of grid generation in (44a)

µS
gt =

df loss

dGH
gt

− µinj
gt − γG

gt
. (53)

Assuming nonzero loss, we know that γG
gt

= 0, and the buyer price decomposition becomes

µB
jt = −µS

it −
T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij

(
dfnoloss

dwg
ijt

+
df loss

dGH
gt

− µinj
gt

)

= −µS
it +

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ijµ
inj
gt

= −µS
it +

T S
ng
− TR

ng

T S
ni
− TR

ni

w̃ij

T S
ni
− TR

ni

T S
ng
− TR

ng

µHE
nit

= −µS
it + w̃ijµ

HE
nit . (54)

In the second equality we use that dfnoloss

dwg
ijt

+ df loss

dGH
gt

= −cH,imp
t + cH,imp

t = 0, and in the third equality we

rewrite µinj
gt using the nodal relations in (33).

Combining this result with the nodal price relation in (33) gives the following relation between seller

and buyer price:

buyer price = µB
jt + µinj

jt = µB
jt − µHE

njt

= µB
jt −

T S
ni
− TR

ni

T S
nj
− TR

nj

µHE
nit

= −µS
it + w̃ijµ

HE
nit −

T S
ni
− TR

ni

T S
nj
− TR

nj

µHE
nit

= −(µS
it + µHE

nit) = −(µinj
it + µS

it) = seller payment , (55)

where the left equality on the last line comes from the definition of w̃ij . This equality of buyer and

seller price shows that no one is paying for the losses generated by the grid agent.
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On the Efficiency of Energy Markets with
Non-Merchant Storage

Linde Frölke*, Eléa Prat∗, Pierre Pinson, Richard M. Lusby, Jalal Kazempour

Abstract—Energy market designs with non-merchant storage
have been proposed in recent years, with the aim of achieving
optimal integration of storage. In order to handle the time-
linking constraints that are introduced in such markets, existing
works commonly make simplifying assumptions about the end-
of-horizon storage level. This work analyzes market properties
under such assumptions, as well as in their absence. We find
that, although they ensure cost recovery for all market partici-
pants, these assumptions generally lead to market inefficiencies.
Therefore we consider the design of markets with non-merchant
storage without such simplifying assumptions. Using an illustra-
tive example, as well as detailed proofs, we provide conditions
under which market prices in subsequent market horizons fail
to reflect the value of stored energy. We show that this problem
is essential to address in order to preserve market efficiency and
cost recovery. Finally, we propose a method for restoring these
market properties in a perfect-foresight setting.

Index Terms—non-merchant storage, energy market design,
passive storage, market efficiency.

I. INTRODUCTION

A. Context and Motivations

The need for large-scale energy storage to balance inter-
mittent and stochastic renewables in future energy systems
has become apparent. The IEA Energy Outlook predicts that
utility-scale battery storage will increase from less than 20
GW in 2020 to over 3 000 GW by 2050 [1]. It remains
an open question how to best integrate storage in energy
markets. The urgency of this question is illustrated by a
recent FERC order that requires system operators to facilitate
market participation of electric storage, and to provide fair
compensation for the provided services, given the physical and
operational characteristics of these assets [2].

Currently, most energy markets treat storage like any other
load or generator, which means that the storage operator sub-
mits price-quantity bids. Storage submitting bids in the market
is also called merchant storage. One major disadvantage of
merchant storage is that it can have negative effects on social
welfare [3], [4], depending on its market power. To mitigate
these effects, the concept of non-merchant or passive storage in
energy markets has been investigated in recent years [5]–[8]. A
non-merchant storage does not submit bids, but its operation is
co-optimized with generation and loads to achieve the highest
social welfare. An appealing property of this set-up is that it is
comparable to network-aware markets, which are prevalent in
practice, e.g. in the U.S. markets. Similar to the way that power
lines are included in the market to perform spatial arbitrage, a
non-merchant storage performs temporal arbitrage. Thus, the
storage is scheduled to achieve more efficient use of energy

*These authors contributed equally to this work.

systems. Non-merchant storage would typically be a public
asset owned by the system or network operator, but it could
also be privately owned.

Time-linking constraints are inevitably part of optimal dis-
patch problems for storage. With merchant storage, these time-
linking constraints can be considered in the individual optimal
bidding problem of the storage operator. The challenges as-
sociated with time-linking constraints in this case have been
studied extensively for both price-taker [9], [10] and price-
maker storage [11]–[14]. These challenges are transferred to
the market operator in the case of non-merchant storage. En-
ergy markets are cleared sequentially for subsequent finite time
horizons, but due to intertemporal constraints, the different
market horizons do influence one another. This raises the
question of how to account for the subsequent market clearing
in the current clearing, and vice versa. For an overview
of market design approaches for markets with intertemporal
constraints we refer to [15].

B. Status Quo and Limitations
Existing works on market clearing with non-merchant stor-

age often neglect or simplify relations between subsequent
market horizons, leading to ‘myopic’ decision-making regard-
ing the state of energy of the storage at the end of horizon.
This is pointed out as a research gap by the authors of [16].
A non-myopic, optimal final state of energy is challenging
to determine, because it depends on both current and future
market horizons. The non-merchant storage literature largely
bypasses this problem using the following common simplify-
ing assumptions. Most works do not impose any constraints
on the final state of energy in the storage [5]–[8]. Another
common simplification is to enforce that the storage state of
energy is equal at the start and end of a horizon [17]–[19]. A
possible state-of-energy profile resulting from either of these
myopic approaches is plotted in blue in Figure 1, whereas
an example optimal profile given perfect information about
future market intervals is depicted in black. Such simplifying
assumptions lead to suboptimal use of the storage, loss of
social welfare, and market inefficiencies. These effects are
sometimes overlooked in existing works that consider market
properties within a single horizon [8]. As an alternative, a
‘future-aware’ method, in red in Figure 1, could approach the
perfect profile if good end-of-horizon decisions were made.

Several previous works do consider setting a future-aware
end-of-horizon level for the non-merchant storage, but this
has only been done using rolling-horizon methods [15], [20],
[21]. However, problems can even occur when the final state
of energy is set perfectly, both in rolling-horizon or other
kinds of look-ahead markets. They result from the fact that
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Fig. 1. Illustrative example: the effect of (simplifying) assumptions on the
state of energy of the storage over several market clearing horizons.

subsequent optimization horizons are not aware of losses and
gains incurred by market participants in past horizons [20]. As
a result, it can happen that the storage improves social welfare,
while not recovering its cost. Solutions to this problem have
been proposed in a rolling-horizon setting, and with a focus
on ramping constraints [20], [22].

C. Contributions and Structure of the Paper

The end-of-horizon issue for non-merchant storage is sys-
tematically overlooked, as illustrated by many studies that
make simplifying assumptions on the final state of energy.
To draw attention to this, we aim to convey two key messages
in a rigorous manner. Our first message is that it is important
to set a future-aware end-of-horizon storage level, instead of
making simplifying assumptions. Second, we show that a new
problem arises in the absence of the simplifying assumptions,
namely, that market prices in subsequent market horizons may
fail to reflect the value of storage. This problem is essential to
address, as the market can fail to provide dispatch-following
incentives and cost recovery for the storage. Previous works
have touched upon these issues, but only in a rolling-horizon
setting, and with a focus on ramping constraints. Instead of
using a rolling-horizon approach, we consider a more general
formulation where the final storage level is constrained to take
a certain value, to be determined for each market clearing.

To provide intuitive understanding of these two situations,
we first provide illustrative examples. In addition, we use
a more formal approach to give a general and rigorous
explanation of why these problems may occur, and are likely
to occur in practice. For the first message, we prove that
common simplifying assumptions ensure cost recovery for the
storage, but lead to market inefficiencies. Related to the second
message, we provide sufficient conditions in Theorem 1 under
which the market prices in subsequent market horizons will
fail to reflect the value of storage, and thus fail to provide
dispatch-following incentives and possibly cost recovery for
the storage. A final contribution of this work is a proposed
market-clearing procedure with non-merchant storage which
is efficient and ensures cost recovery, given perfect foresight
about future market-clearing parameters.

The remainder of this paper is organized as follows. In
Section II, we introduce the set-up of this work, including
the market-clearing model and pricing scheme. Section III
analyzes the impact of common assumptions on market prop-
erties. In Section IV, we show why and under which conditions

dispatch-following incentives and cost recovery for the storage
are not ensured, even when the final state of energy is set
to its optimal value. In Section V, we propose a method
for ensuring that the desirable market properties hold, in
the perfect foresight setting. Finally, Section VI concludes.
, followed by several appendices.

II. MARKET MODEL AND DEFINITIONS

We formulate the market-clearing problem with a non-
merchant storage and detail our assumptions. Hereafter, market
horizon refers to a set of time periods covered by a given
market clearing. For example, a day-ahead market would
have a market horizon of 24 hours. The next market horizon
would include the following 24 hours. We disregard what
happens in other markets trading for the same day, e.g.,
intraday and balancing. We first introduce the storage model
in Section II-A before proceeding to the market formulation
in Section II-B. Next, we formulate the dual problem and
discuss the pricing mechanism in Section II-C. Finally, we
define market properties in Section II-D. Nomenclature and
the rules followed for notations are available in Appendix A.

A. Storage Model

We assume there is a single storage system. This is equiv-
alent to including multiple storage systems, as we do not
consider grid constraints. The storage system is described by

0 ≤ et ≤ S, ∀t : (νt, νt) (1a)
et = et−1 + bt, ∀t ̸= 1 : (ρt) (1b)

e1 = Einit + b1 : (ρ1) (1c)

eH = Eend : (ξ) . (1d)

Here and in the following, dual variables are indicated
within parentheses on the right of the corresponding constraint.
For time step t in the market-clearing horizon T , the state of
energy of the storage system is a decision variable denoted
by et. It is bounded between 0 and the storage capacity
S in (1a). The variable bt represents the energy charged
(bt > 0) or discharged (bt < 0). The storage energy balance
is described by (1b) and (1c), where Einit is the initial state
of energy. We omit charging and discharging losses, so that
a single variable for charging and discharging suffices. The
inclusion of charging and discharging losses would change
the dual problem slightly, but as will be argued later on, it
would not alter our main message. We disregard charging
and discharging limits, since they make the formulations and
derivations heavier by introducing additional dual variables,
while they do not affect conclusions. Our storage-system
model is stylized as we focus on the time-linking aspect in
(1b). The representation of the storage system would be more
detailed in a practical market-clearing model. For a discussion
on the storage model assumptions, we refer to [23], [24].
The final state of energy for t = H = |T | can be set to a
predefined value Eend with (1d). Constraints (1c) and (1d)
generalize what is found in the literature, where the initial
level is often assumed to be equal to zero and the final level
is unconstrained, or where Eend = Einit.
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The best value of Eend could be determined in many differ-
ent ways, e.g., rolling horizon, online learning, reinforcement
learning, perfect foresight, etc. It is a topic in itself and we will
not address it here. In Section IV, we consider the situation
where Eend is chosen optimally, i.e., with perfect foresight of
future market horizons. Our formulation is general in the way
that it includes various approaches proposed in the literature
as special cases. Alternatives to imposing the final level with
(1d) could be to have a rolling-horizon set-up or to include
an estimated value of stored energy in the objective function
of the market-clearing [13]. Similar end-of-horizon problems
also arise in those settings.

B. Market-Clearing Formulation

In the market-clearing problem with non-merchant storage,
the storage does not submit price-quantity bids. However,
storage operational constraints (1a)-(1c), and in some cases
(1d), are included in the clearing. The storage is used as an
asset to move cheap energy between time periods, similar
to the way that power lines can be included in the market
clearing to move energy between nodes or zones. As we focus
on the time-linking effects of storage, network constraints are
excluded for simplicity. The addition of network constraints
would, however, not alter our main results*.

We consider two versions of the market clearing with non-
merchant storage, namely, a free and a constrained market. In
the constrained market, (1d) is included in the optimization
problem, which gives the market operator the option to set
the end-of-horizon storage level with future market horizons
in mind. In the free market on the other hand, this constraint
is omitted. The constrained market-clearing problem for the
time periods t ∈ T , denoted by C(T ), is

max
x

∑

t∈T


∑

l∈L
Ultdlt −

∑

g∈G
Cgtpgt


 (2a)

s.t.
∑

l∈L
dlt + bt −

∑

g∈G
pgt = 0, ∀t ∈ T : (λt) (2b)

0 ≤ pgt ≤ P gt, ∀g ∈ G, t ∈ T : (µ
gt
, µgt) (2c)

0 ≤ dlt ≤ Dlt, ∀l ∈ L, t ∈ T : (χ
lt
, χlt) (2d)

(1a) − (1d) . (2e)

Here, x is the vector grouping all primal variables, which
are indicated with Roman lowercase letters. The generators
are indexed by g ∈ G, and loads by l ∈ L. The production
of g at t is a decision variable pgt, and similarly dlt gives
the demand of l at t. The individual bid and offer prices
are Ult and Cgt. These correspond to the demand utility and
the generation cost under the assumption that participants
bid truthfully. The objective function (2a) is to maximize
the social welfare, calculated as the difference between total
demand utility and total generation cost over the given time
horizon. Constraint (2b) enforces balance between production
and demand at each time t, including the charged or discharged

*Storage can also modify the dispatch between buses of the system and
have an impact on line congestions, which is studied in [7].

energy. Production and demand limits are enforced in (2c) and
(2d), with maximum P gt and Dlt, respectively.

The free market-clearing problem for the time periods t ∈
T , denoted by F(T ), is obtained from the constrained problem
by removing (1d).

C. Dual Problem and Pricing

The dual problem CD(T ) of (2) is

min
ζ

∑

t∈T


∑

g∈G
P gtµgt +

∑

l∈L
Dltχlt + Sνt




+ Einitρ1 − Eendξ (3a)
s.t. Cgt − µ

gt
+ µgt − λt = 0, ∀g ∈ G, t ∈ T (3b)

− Ult − χ
lt
+ χlt + λt = 0, ∀l ∈ L, t ∈ T (3c)

− ρt + λt = 0, ∀t ∈ T (3d)
− νt + νt + ρt − ρt+1 = 0, ∀t ∈ T \ {H} (3e)
− νH + νH + ρH − ξ = 0 (3f)
µ
gt
, µgt, χlt

, χlt, νt, νt ≥ 0 . (3g)

The vector ζ groups all dual variables. We include the dual
variables associated with the non-negativity constraints of the
primal variables as they are used in our subsequent proofs. We
choose the signs of the free variables ρ1 and ξ in a way that
will facilitate our derivations. The dual problem FD(T ) of the
free market clearing is obtained from (3) by removing ξ and
the terms related to it.

A thorough analysis of the dual problem is available in [8].
One useful interpretation of ρt is that it represents the marginal
value of having an additional unit of energy stored at the end
of hour t. Constraint (3d) implies ρt = λt for all t. Therefore,
we use ρ and λ interchangeably in the remainder of this article.
The inclusion of charging and discharging losses would change
relation (3d) by a factor.

We consider a pricing system where all market participants,
including the storage system, buy and sell energy at the hourly
market price λt. Alternatively, the participants could be paid
rents evaluated from other dual variables, as is done in [5],
[6], [8]. The two payment systems are equivalent, as proven
in [5], [8] for the case that Einit = Eend = 0.

Constraints (3e) and (3f) establish a relation between the
value of ρt in subsequent time periods. These constraints show
that the market prices λt in two subsequent hours only differ
if the storage state of energy is at a bound. This can be seen as
intertemporal congestion, similar to the way line congestion
in network-aware markets may lead to differences in nodal or
zonal prices.

We define the concept of a time zone similar to a spatial
zone in network-aware markets. A time zone is the longest
possible set of consecutive time steps with the same market
price. We illustrate the concept of a time zone in Figure 2.

Definition 1 (Time zone). A set of time steps Z with
mint∈Z t = z0 and maxt∈Z t = Z is a time zone if and
only if

1) Z only includes consecutive time steps
2) for all t ∈ Z it holds that λt = c for some constant c
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Fig. 2. Bottom: Example of market-clearing price dividing the market horizon
into four time zones. Notation for sets of time indices used in later sections
is introduced. Top: Storage state-of-energy (et) profile related to the below
market price signal.

3) ρz0−1 ̸= c and ρZ+1 ̸= c.

Denote the time zone of time step t by Zt.

The bottom plot in Figure 2 shows four time zones. Within
each time zone, the market price λt = ρt is constant. The
upper plot in the figure shows an example state-of-energy
profile for the storage that can accompany the price profile
below. As ρ decreases from t = 1 to t = 2, the storage must
be at a lower bound at t = 1, due to constraint (3e). The
same constraint implies that when the price increases, e.g.,
from t = 3 to t = 4, the storage must be at an upper bound
at t = 3.

D. Market Properties

In the next sections, we evaluate the following desirable
properties of the market clearing.

Market prices are dispatch supporting when no market
player desires to unilaterally deviate from the outcomes of
the market clearing. Alternatively, one could say that the
market provides dispatch-following incentives. The market is
efficient if social welfare is maximized and the market provides
dispatch-following incentives. There is cost recovery if the
profit of every participant is guaranteed to be non-negative.
Related works might use other terms to describe similar market
properties, e.g., individual rationality. Another critical market
property is revenue adequacy, which holds when the market
operator has no deficit. We do not mention it in the rest of the
paper because it is ensured regardless of the assumptions on
the final storage level.

In the remainder, we assume that there is perfect competi-
tion, in the sense that demands and generators participating
in the market bid their true utility and cost. Indeed, we
focus on the effects of the storage system on the market
properties and disregard the possibility of strategic bidding
for the other participants, which would also exist without the
storage system.

III. MARKET PROPERTIES UNDER COMMON ASSUMPTIONS
ON THE FINAL STORAGE LEVEL

In this section, we analyze the influence of common sim-
plifying assumptions on market properties, in particular, cost
recovery for the storage system and market efficiency. We
evaluate two assumptions. The first is to not have a constraint
on the final level. The market clearing will then schedule
the storage in order to maximize the social welfare in the
current horizon only, while neglecting future social welfare.
This means that the storage state of energy will be at its lower
bound by the end of each market horizon, unless negative
prices occur. The second assumption is to assume that storage
state of energy is equal at the start and end of a horizon. Often
this level is set to zero, which is not necessarily a good choice,
as the storage operator could prefer to start the day with some
energy available in case the prices are high. We explore how
these assumptions ensure cost recovery over each individual
market horizon, but may lead to market inefficiency.

A. Illustrative Example I

In this example, we clear the market for two sequential days
of two hours each, identified by the sets T d1 and T d2. The
storage capacity is S = 2.5Wh. We consider a single load and
two generators, a cheaper one and a more expensive one. The
time-dependent inputs are summarized in Appendix B. The
corresponding code is available online [25].

We look at the profit of the storage system with different
assumptions on the initial state of energy Einit and final state
of energy Eend on the first day. These results are shown in
Table I. In the first case, the initial level is set to 0 and the
final level is left free, or equivalently set to zero (if no negative
prices occur), which is the most common assumption. In the
second case, the initial and the final level on each day are
equal, which is also a common assumption. The value is set to
1.25Wh (half of the capacity). In the third case, the preference
of the storage, given perfect information about the second day,
is taken into account. The storage starts empty, and the final
level on the first day is set to 2.5Wh. The final level on the
second day is left free, under the assumption that there is no
subsequent market clearing, which is sufficient to show the
potential issues. Indeed, in this last case, the storage earns
negative profit on the first day, but this is compensated for by
a higher profit on the second day. Note that the storage never
obtains a negative daily profit in the other two cases.

The total social welfare obtained is equal to 46AC in the
first case and 55.5AC in the last case. So not only the profit of
the storage is higher in the last case, but the social welfare is
too. The second case’s social welfare cannot be compared to
the other cases since the storage is initially not empty. This
difference in social welfare is due to the fact that in the last
case, the storage system is used in the first hour of the second
day instead of the most expensive generator. In order to charge
the storage, the less expensive generator produces more on the
first day.

In the following, we generalize these results and show that
if the final state of energy is forced to be equal to the initial
state of energy or not fixed at all, the daily profit of the storage
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TABLE I
PROFIT (AC) OF THE STORAGE SYSTEM FOR VARIOUS INITIAL AND FINAL

STATE OF ENERGY (Wh) FOR EXAMPLE I

t
E0 = Eend

= 0
E0 = Eend

= 1.25
E0 = 0 and
Eend = 2.5

T d1 1 -4 -4 -10
2 4 4 -2.5

T d2 3 -11 -11 6
4 11 11 9

Total T d1 0 0 -12.5
Total T d2 0 0 15

Total 0 0 2.5

is never negative. However, these assumptions on the final
storage level will most often give a solution that is not optimal
for the storage, nor the social welfare.

B. Cost Recovery for the Storage System

In both market-clearing formulations F(T ) and C(T ), cost
recovery holds for the generators and loads. For the storage
system however, cost recovery is not automatically ensured
within a single market interval. For example, if the final level
is set to be higher than the initial level and the prices are
positive and decreasing during the market interval, the storage
system pays for charging at the last hour and does not recover
that cost in this market interval. However, we show in this
section that under certain conditions, cost recovery for the
storage within each market interval is ensured.

1) Cost recovery in C(T ) with equal initial and final state
of energy: In order to evaluate cost recovery for C(T ), we
express the profit of the storage as a function of the initial and
final state of energy. We use the profit-maximization problem
of the storage and strong duality to find this relationship. Re-
lated to the market-clearing model (2), the profit maximization
for the storage is

max
b,e

∑

t∈T
−λtbt (4a)

s.t. 0 ≤ et ≤ S, ∀t ∈ T : (νt, νt) (4b)
et = et−1 + bt, ∀t ∈ T , t ̸= 1 : (ρt) (4c)

e1 = Einit + b1 : (ρ1) (4d)

eH = Eend : (ξ) . (4e)

The objective of the storage is to maximize its profit (4a),
considering that it is paid the market price λt when discharging
(b ≤ 0), and it pays the market price λt when charging (b ≥ 0).
The market price is taken as an input. The dual problem of
(4) is

min
ρ,ν

∑

t∈T
Sνt + Einitρ1 − Eendξ (5a)

s.t. λt − ρt = 0, ∀t ∈ T (5b)
− νt + νt + ρt − ρt+1 = 0, ∀t ∈ T , t ̸= H (5c)
− νH + νH + ρH − ξ = 0 (5d)
νt, νt ≥ 0 . (5e)

At an optimal solution, which is identified with the superscript
x∗, strong duality holds, and the values obtained for the primal

and dual objective functions are equal. The profit at an optimal
solution is thus

∑

t∈T
−λtb

∗
t =

∑

t∈T
Sν∗t + Einitρ∗1 − Eendξ∗ . (6)

Adding (5c) for all t to (5d) for the optimal solution, and
multiplying by Eend, we get

Eendξ∗ = −
∑

t∈T
Eendν∗t +

∑

t∈T
Eendν∗t + ρ∗1E

end . (7)

Substituting (7) in the right side of (6), we obtain
∑

t∈T
−λtb

∗
t =

∑

t∈T
(S−Eend)ν∗t+

∑

t∈T
Eendν∗t+ρ∗1(E

init−Eend) .

(8)
This equality shows that if the final level is set equal to the

initial level, the profit of the storage system is non-negative,
due to the non-negativity of νt and νt, and the fact that S ≥
Eend. However, Einit = Eend is a special case. In general, we
do not have guarantees that the profit of the storage system is
non-negative, and in fact it is easy to find counter-examples,
as was provided in Section III-A.

2) Cost recovery in F(T ): We show here that not having
a constraint on the final state of energy is also a special case
for which the profit of the storage system is non-negative. For
F(T ), constraint (5d) is modified to

− νH + νH + ρH = 0 . (9)

Strong duality from (6) simplifies to
∑

t∈T
−λtb

∗
t =

∑

t∈T
Sν∗t + Einitρ∗1 . (10)

Summing all constraints in (5c) and (9) for the optimal
solution, we get

∑

t∈T
ν∗t =

∑

t∈T
ν∗t − ρ∗1 . (11)

Since ν∗t is non-negative,
∑

t∈T
ν∗t ≥ −ρ∗1 . (12)

Multiplying both sides by E0, and using that S ≥ E0, we
derive

S
∑

t∈T
ν∗t ≥ E0

∑

t∈T
ν∗t ≥ −Einitρ∗1 . (13)

We conclude
∑

t∈T
−λtb

∗
t = S

∑

t∈T
ν∗t + Einitρ∗1 ≥ 0 . (14)

In other words, the profit of the storage system is certainly
non-negative when the final state of energy is unconstrained.

The absence of cost recovery over a single market interval
is not necessarily an issue: the storage may still recover its
cost in the subsequent market intervals. In that sense, it would
be more relevant to evaluate cost recovery for the storage
over an infinitely long time horizon (or equivalent). However,
if market intervals are considered completely separate, cost
recovery cannot be ensured. Setting the initial and final levels
to the same value is a way to overcome this, but it has an
impact on other market properties, as we discuss next.
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C. Market Efficiency

We now show that enforcing the initial level to be equal
to the final level can pose problems in terms of market
efficiency. We argue that under this simplification, the storage
system could have an incentive to unilaterally deviate from the
market-clearing outcomes. Indeed, the storage system profit-
maximization problem would actually take into account a
longer horizon than just one market interval, to best utilize
the potential of temporal arbitrage. The storage profit max-
imization should be evaluated over a longer horizon T long,
where H long > H , with H = |T | and H long = |T long|:

max
b,e

∑

t∈T long

−λtbt (15a)

s.t. 0 ≤ et ≤ S, ∀t ∈ T long (15b)

et = et−1 + bt, ∀t ∈ T long, t ̸= 1 (15c)

e1 = Einit + b1 . (15d)

Thus, if the final level at the end of the market interval is
not set to a value found in the storage profit-maximization
problem, i.e. if Eend ̸= e∗H , where e∗H is an optimal solution
for (15), the market output will not be optimal for the storage
system and the storage will have an incentive to deviate.

The social welfare is also impacted, as shown in illustrative
example I. Clearing a set of market intervals together will
always give the best value of the social welfare over the
entire set of time periods included, since the social welfare
is maximized. When we instead clear these market intervals
sequentially without setting the final value of the storage
properly for every single clearing, the social welfare may be
reduced.

In conclusion, it is a good idea to allow system operators
to set the final storage level to a sensible level, based on
information about future market intervals. However, doing so
brings new challenges. In the following , we analyze this type
of market clearing and discuss the duality issues that arise.

IV. MARKET PROPERTIES OF THE MULTI-INTERVAL
MARKET CLEARING

While the previous section focused on market properties
within a single market interval, this section establishes several
results for the multi-interval case. The main aim is to deter-
mine the effect of splitting the market clearing in multiple
intervals on the optimal primal and dual solutions. Ideally,
the splitting should not affect the solutions. We show that
even though the primal solution may be unaffected, this is
not necessarily the case for the dual solution.

First, we specify the formulations used in the remainder
of this work in Section IV-A, including the definition of
the full-horizon and split-horizon problems. In Section IV-B
we use an illustrative example to show how solutions to
these optimization problems may differ, and why this deserves
attention. The following sections formalize and generalize the
results of this illustrative example. In Section IV-C, we show
that the primal solutions to these two problems are equivalent.
However, as will be shown in Section IV-D, market efficiency
is not ensured in the split-horizon problem, while it does hold

for the full-horizon problem. We provide conditions under
which market inefficiencies will occur in the split-horizon
problem.

A. Definition of the Full-Horizon and Split-Horizon Problems

We consider a horizon T that consists of two market
intervals, assumed to be days. The time periods of first and
second days are collected in the respective sets T d1 and T d2,
where H = |T d1| and H+1 is the first hour of T d2. The end
of the entire horizon is T = |T |. We define the full-horizon
problem as the market clearing for the entire horizon T . The
full-horizon optimization model is given by F(T ), as already
defined in Section II-B.

We use the term split-horizon problem for the case where
we clear the market sequentially for T d1 and then for T d2.
The split-horizon optimization model is given by C(T d1) for
the first and F(T d2) for the second day. In the split-horizon
market with perfect foresight, the final storage level on T d1

is set optimally. That is, Eend is equal to the final optimal
storage level e∗H when solving the full-horizon problem. For
fair comparison, the storage level at the end of the second day
is unconstrained in both the full-horizon and the split-horizon
problem. The two optimization problems for the split-horizon
problem are independent, besides the fact that one must choose
the parameters right, which means that Eend on the first day
should equal to the initial storage level Einit on the second
day. As the optimization problems are independent, they can
be solved in an equivalent combined optimization without
changing their solution. The term split-horizon problem refers
to this combined optimization. The objective functions of the
full-horizon and split-horizon problems are equal.

We assume that we can disregard what happens after time
t = |T | = T , i.e. we take the simplifying assumption that there
is a finite horizon for which the market with non-merchant
storage needs to be cleared. This simplification is justified by
the need for a perfect baseline to which we can compare the
split-horizon solution. Over a finite horizon, the results from
Section III show that the market clearing with non-merchant
storage achieves the optimal solution, and cost recovery is
ensured for the storage. Therefore, we can consider this full-
horizon market clearing as a perfect benchmark.

Optimal values in the full- and split- horizon problem are
denoted with ∗ and ′, respectively. Our proofs use the Karush-
Kuhn-Tucker (KKT) conditions of the full- and split-horizon
problems, in particular those corresponding to dual constraints
from (3). For completeness, we provide the full sets of KKT
conditions in Appendix C.

B. Illustrative Example II

Suppose the market is cleared for two sequential hours. The
market participants include a single load, two generators, and
a non-merchant storage with capacity S = 2.5Wh. The time-
dependent parameters, demand and production limits, utility,
and cost, are summarized in Appendix B, and will also be
visible in market-clearing diagrams. The corresponding code
is available online [25].
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Fig. 3. Market-clearing diagram for illustrative example II

In order to evaluate the effect of splitting the market
clearing on primal and dual solutions, we solve both the split-
horizon problem with perfect foresight and the full-horizon
problem. We thus show that the lack of dispatch support is
not due to imperfect information, but an inherent effect of the
market splitting. The optimal values for relevant variables are
summarized in Table II. The primal variables of the full- and
split-horizon problems have equal optimal values and therefore
appear in the table only once.

In the full-horizon problem, the two hours are cleared
together. As the storage is not at a bound after the first
hour, the two hours comprise a single time zone, so that the
market-clearing diagram for the two hours can be depicted
as in Figure 3a. The unique optimal solution is to charge
the storage to e∗1 = 1Wh, and discharge it fully at t = 2.
The corresponding optimal values for the market price are
λ∗ = [5, 5]AC/Wh. The storage improves the optimal value of
the objective function by 1Wh·(9−5)AC/Wh = 4AC compared
to the case without storage, as one unit of generation by the
more expensive generator with cost of 9AC/Wh at t = 2 is
replaced by the cheaper generator with cost of 5AC/Wh at
t = 1.

The split-horizon problem with perfect foresight clears the
two hours separately, while enforcing in the first market
interval that Eend = e∗1 = 1Wh. The primal solution is equal
to that of the full-horizon market – this result we formalize in
Section IV-C. In the first hour, λ′

1 = 5AC/Wh. In the market for
the second hour, none of the loads and generators is marginal.
This is depicted in the market-clearing diagram in Figure 3b.
Therefore, there is no longer a unique dual solution, as all
values λ′

2 in the range [2, 9]AC/Wh are optimal. This interval
includes the full-horizon optimum for λ2, so the full-horizon
dual solution is still optimal for the split-horizon dual problem.
This is a general result, as we will prove in Section IV-C.

The dual multiplicity that can arise in the split-horizon prob-
lem deserves attention for several reasons. If λ′

2 ∈ [2, 5)AC/Wh
is selected, the market does not provide dispatch-following

TABLE II
SELECTED OPTIMAL PRIMAL AND DUAL VALUES IN ILLUSTRATIVE

EXAMPLE II

t et(Wh) d1t(Wh) p1t(Wh) p2t(Wh) λ∗
t (AC) λ′

t(AC)
1 1 0 1 0 5 5
2 0 3 2 0 5 [2, 9]

incentives to the storage, which can increase its profit by
decreasing e1. In this example, the storage even earns a
negative profit, illustrating that cost recovery is not ensured.
At the same time, this dispatch of the storage does achieve the
optimal social welfare. Furthermore, as shown in this example,
there exists a price that supports the dispatch.

One could argue that just selecting the ‘correct’, dispatch-
supporting dual value for λ′

2 = 5AC/Wh would solve this
problem. However, in order to do so the market operator first
of all needs to be aware of the possible existence of multiple
dual solutions. Solvers usually return only one solution, which
is not necessarily the property-preserving one. Second, if dual
multiplicity occurs in the first market interval rather than the
second, then the market operator cannot yet know which dual
solution will preserve market properties. Finally, selecting a
dispatch-supporting dual becomes more complicated in an
imperfect-foresight setting, where the chosen level Eend may
be suboptimal in hindsight.

C. Shared Solutions of the Full- and Split-Horizon Problems

In this section, we investigate whether the solutions of the
full-horizon are also solutions to the split-horizon problem.
Lemma 1 shows that primal solutions to the split-horizon
problem with perfect foresight and those to the full-horizon
problem are identical.

Lemma 1. Let e∗H be part of an optimal solution x∗ to the
full-horizon problem. Then x∗ is an optimal primal solution to
the full-horizon problem if and only if x∗ is an optimal primal
solution to the split-horizon problem with Eend = e∗H .

Proof. In Appendix D-A.

Next, Lemma 2 shows that any optimal primal and dual so-
lution to the original problem can be converted to an equivalent
solution for the split-horizon problem. This correspondence
is sometimes overlooked in the literature. For example, [20]
discusses the existence of dual solutions to the split-horizon
problem that are not dispatch supporting, but does not mention
that the original dual solution remains a solution to the split-
horizon problem too.

Lemma 2. Any optimal primal and dual solution pair
{x∗, ζ∗} to the full-horizon problem is also an optimal solu-
tion to the split-horizon problem, with additional split-horizon
variable ξ′ taking the value ξ′ = ρ∗H+1.
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Proof. In Appendix D-B.

D. Weak Solutions to the Split-Horizon Problem

While every optimal dual solution to the full-horizon prob-
lem is also an optimal dual solution to the split-horizon
problem, the reverse generally does not hold. In this section,
we discuss the existence of a weak optimal dual solution
admitted by the split-horizon problem, but not by the full-
horizon problem. First, we define this type of dual solution,
and show why it is a problem. Next, we provide sufficient
conditions for the existence of weak dual solutions in the split-
horizon problem in our main Theorem 1.

Definition 2 (Weak dual). A dual solution to the split-
horizon problem is weak if the resulting price is not dispatch
supporting for the non-merchant storage. Such a weak dual
exists if and only if one of the following situations occurs.

1) eH ∈ (S, S) and ρ′H ̸= ρ′H+1

2) eH = S and ρ′H < ρ′H+1

3) eH = S and ρ′H > ρ′H+1 .

For a weak dual solution, the storage operator has incentive
to unilaterally deviate from the schedule determined in the
market. This incentive exists if the solution to the storage’s
profit maximization problem (4) given market prices {λt}
is different from the schedule determined in the market. We
distinguish two cases:

1) If ρ′H = ξ′ > ρ′H+1, the storage can improve its profit
by decreasing e′H . This is possible in case eH ̸= S, i.e.
both in situations 1) and 3) of Definition 2.

2) If ρ′H = ξ′ < ρ′H+1, the storage can improve its profit by
increasing e′H . This is possible in case eH ̸= S, i.e. both
in situations 1) and 2) of Definition 2.

In extreme cases, a weak dual solution can cause the loss
of cost-recovery for the storage operator. For example, this
happens if the storage bought all of the energy eH at the price
ρ′H and is scheduled to sell all of it for a lower ρ′H+1.

Theorem 1. Assume all cost and utility bids are unique*. If
the optimal solution to the full-horizon problem is such that
H + 1 and T are in different time zones, and

ρ∗H = ρ∗H+1 , (16)

then the split-horizon problem with perfect foresight admits a
weak dual solution.

Proof. We construct a weak dual solution to the split-horizon
problem, based on the given dual solution to the full-horizon
problem. More precisely, we derive values of δ > 0 for which

ρ′H+1 = ρ∗H+1 + δ (17)

is part of an optimal dual solution ζ′ that satisfies the KKT
conditions of the non-myopic split-horizon problem with per-
fect foresight. We construct δ in such a way that ρ∗H can remain
unchanged, i.e. ρ′H = ρ∗H . In this proof, we refer to KKT

*More specifically, utility bids are unique Ult = Ul′t′ ⇐⇒ l = l′ ∧ t =
t′, cost bids are uniqueand Cgt = Cg′t′ ⇐⇒ g = g′ ∧ t = t′, and
Ult ̸= Cgt′ ∀t, t′, l, g.

conditions coming from the dual and primal problems, which
have been presented in previous sections.

By (16), H and H + 1 belong to the same time zone X .
Denote the time periods in X that are part of day 1 by the set
X d1, and those that are part of day 2 by X d2. These sets are
illustrated in Figure 2.

Due to uniqueness of cost and utility bids, there can at most
be one marginal load or generator in X for a single time period
t ∈ X , which is part of either X d1 or X d2. Therefore, at
least one of X d1 and X d2 does not have a marginal load or
generator. We assume that this is the case for X d2. The proof
is similar for the other case.

By uniqueness of cost and utility bids, ρ∗H can at most be
equal to a single cost or utility bid within X . If there is no
marginal load or generator in X , it can happen that ρ∗H is not
equal to any cost or utility bid.

From the KKT conditions of the full-horizon problem
corresponding to dual constraints (3b) and (3c), for scheduled
loads and generators in X d2 it holds that

χ∗
lt = Ult − ρ∗t ≥ 0 for ∀t ∈ X d2, l ∈ L+

t (18)

µ∗
gt = ρ∗t − Cgt ≥ 0 for ∀t ∈ X d2, g ∈ G+

t . (19)

where L+
t = {l ∈ L| d∗lt > 0} and G+

t = {g ∈ G| p∗gt > 0}.
The inequalities are actually strict for all but a single scheduled
load or generator, except possibly the load or generator that
has a cost bid equal to ρ∗H . Similarly, for unscheduled loads
and generators in X d2,

χ∗
lt
= ρ∗t − Ult > 0 for ∀t ∈ X d2, l ∈ L0

t (20)

µ∗
gt

= Cgt − ρ∗t > 0 for ∀t ∈ X d2, g ∈ G0
t . (21)

where L0
t = {l ∈ L| d∗lt = 0} and G0

t = {g ∈ G| p∗gt = 0}.
We define the maximum positive change in ρt for t ∈ X d2

as

∆
+
= min

t∈Xd2

{
χ∗
lt | l ∈ L+

t

}
∪
{
µ∗
gt

| g ∈ G0
t

}
. (22)

This is defined so that an increase of ρH+1 by ∆
+

can
be counterbalanced by changing µ, µ, χ, χ, so that KKT
conditions corresponding to (3b) and (3c) still hold. Similarly,
the maximum negative change in ρt for t ∈ X d2 is

∆
−
= min

t∈Xd2

{
χ∗
lt
| l ∈ L0

t

}
∪
{
µ∗
gt | g ∈ G+

t

}
. (23)

Non-negativity of ∆
+

and ∆
−

follows from (18)-(21) and
(19)-(20), respectively. In fact, at least one of ∆

+
and ∆

−
is

strictly positive

∆
+
> 0 ∨ ∆

−
> 0 , (24)

since the inequalities in (18) and (19) are strict for all but a
single load or generator.

Other than KKT conditions corresponding to (3b) and (3c),
the dual variable ρt for t ∈ X d2 is bound by an end of time-
zone relation due to the KKT condition corresponding to dual
constraint (3e):

ρ∗X = ρ∗X+1 + ν∗X − ν∗X , (25)



9

where X denotes the final time period in X . As X < T , it
holds that ν∗X > 0∨ ν∗X > 0 by the definition of a time zone.
From (25) we can derive the following additional constraint
on δ:

δ ∈ [−∞, ν∗X ] if ν∗X > 0 (26)
δ ∈ [−ν∗X ,∞] if ν∗X > 0 . (27)

Combining (24), (26), and (27),

δ ∈
[
−∆

−
,min

{
ν∗X , ∆

+}]
if ν∗X > 0 (28)

δ ∈
[
−min

{
ν∗X , ∆

−}
,∆

+
]

if ν∗X > 0 . (29)

Condition (24) ensures that either the upper or lower bound
on δ is nonzero, in both these cases.

Finally, we can construct the weak dual solution accord-
ingly:

ρ′t = ρ∗t + δ ∀t ∈ X d2 (30)

χ′
lt = χ∗

lt − δ ∀t ∈ X d2, l ∈ L+
t (31)

χ′
lt
= χ∗

lt
+ δ ∀t ∈ X d2, l ∈ L0

t (32)

µ′
gt = µ∗

gt + δ ∀t ∈ X d2, g ∈ G+
t (33)

µ′
gt

= µ∗
gt
− δ ∀t ∈ X d2, g ∈ G0

t (34)

ν′X − ν′X = ν∗X − ν∗X + δ . (35)

Intuitively, the conditions in Theorem 1 describe the setting
in which the full-horizon optimal solution has a time zone
which extends over the two different days, but does not cover
the entire second day. When this time zone is split over two
market-clearing intervals, at least one of the parts will lack a
marginal load or generator, and the optimal market-clearing
price for the affected time periods can take multiple values.
These conditions are sufficient but not necessary, i.e. there are
other cases in which a weak dual solution to the split-horizon
problem exists.

Regarding the assumptions in Theorem 1, the uniqueness of
cost and utility bids excludes certain miscellaneous exceptional
cases, such as the case that all market participants are either
on an upper or lower bound, but there is still no freedom in the
related dual variables. We further assume that the time zone
X that spans the two days does not include t = T , the final
time period of day two. This assumption is used to exclude
the following very specific and unlikely case. It could happen
that T ∈ X , while at the same time e∗T ∈ (S, S). By KKT
condition given by dual constraint (3f), this implies that ρ∗t = 0
for all t ∈ X . If there is a marginal generator bidding 0 in
the part of X that is on day one, this fixes ρ′H = 0 for the
split-horizon problem too. Furthermore, due to dual constraint
(3f), it must hold that ρ′H+1 = 0.

V. RESTORING MARKET EFFICIENCY

In this section we propose a method to ensure equivalence
between dual solutions to the split-horizon problem and the
full-horizon problem. We explain how our method solves the
problem in case of perfect foresight, and discuss its use in an
imperfect foresight setting.

A. Proposed method

In the perfect foresight setting, the optimal dual variables to
the full-horizon problem, including ρ∗H+1, are assumed known
or predicted perfectly when clearing the first-day market. We
denote solutions to the restored split-horizon problem using ′′.
When clearing the market for the second day, ρ′′H , ν′′H , and
ν′′H are known.

Our method aims to modify the split-horizon problem in
order to restore the dual constraint that is missing in the split-
horizon problem:

ρH+1 = ρH − νH + νH , (36)

while it is present in the full-horizon problem.
First, we modify problem C(T d1). Instead of fixing the final

storage level eH using a constraint, we use the value ρ∗H+1

to steer the optimal dispatch of the storage. This is done by
adding eH ρ∗H+1 to the objective, where ρ∗H+1 is the perfect
prediction of this dual variable. As a result, the first-day dual
problem includes the dual constraint

− νH + νH + ρH − ρ∗H+1 = 0 (37)

instead of (3f), where it should be noted that ρ∗H+1 is a
parameter in the day 1 problem.

Next, we modify problem F(T d2), using ρ′′H , ν′′H , and ν′′H
determined by the modified day 1 problem as parameters. The
initial storage level eH is now included in the second day
problem as a variable instead of a parameter. We add eH (ρ′′H−
ν′′H +νH) to the objective function. The dual problem for day
2 will then include the following constraint related to variable
eH :

−ρH+1 + ρ′′H − ν′′H + ν′′H = 0 , (38)

which equals the missing dual constraint, with dual variables
related to day 1 as parameters.

B. Illustrative Example

We apply the proposed method to illustrative example II
from Section IV-B. In the perfect foresight case, we assume
that the optimal value ρ∗2 = 5AC/Wh is known at the time
of market clearing for day 1. Using this value, we obtain
e′′H = 1Wh, just as was obtained in the full-horizon problem,
as well as the dual variable ρ′′H = 5AC/Wh. The second day
problem no longer admits multiple dual solutions, because the
new dual constraint (38) enforces that ρ′′H+1 = ρ′′H = 5AC/Wh.
In summary, both λ′′

H and λ′′
H+1 are equal to their original val-

ues in the full-horizon problem. As a result, market efficiency
(including dispatch-following incentives) and cost recovery for
the storage are again ensured.

C. Imperfect Foresight

In an imperfect foresight setting, the market operator would
make an error in estimating ρH+1 on the first day, and the
storage level eH may be set to a suboptimal level compared
to the perfect foresight case. If that happens, the proposed
method is not guaranteed to retrieve to the optimal full-horizon
solution, nor is market efficiency ensured. Furthermore, the



10

values of eH determined in the first- and second-day problems
are likely to differ. As a result, the determined storage dispatch
can be infeasible.

VI. DISCUSSION & CONCLUSION

The inclusion of non-merchant storage in energy market
clearing has received attention, among others for its potential
to increase social welfare. In this work, we have argued
against several simplifying assumptions that are commonly
made in the literature regarding final state of energy of the non-
merchant storage, in particular, to set the final state of energy
equal to the initial state of energy, or to disregard the final
level altogether. We have shown that under these assumptions,
market efficiency is not ensured, as the market may fail to
provide dispatch-following incentives for the storage system.
In addition, the storage can only perform time arbitrage within
a single market interval, but not between market horizons,
resulting in a loss of overall social welfare. However, allowing
the final state of energy to take any value can also have
negative consequences on the market properties if not handled
carefully. First, one must determine the value of the final state
of energy that is optimal for the storage system. Second, the
market prices may not reflect the relation between different
market horizons.

Regarding the latter, we have shown that the split-horizon
market may fail to provide dispatch-following incentives for
the storage, even when the final state of energy is set perfectly.
However, we have shown that any solution to the full-horizon
problem is also a solution to the split-horizon problem. This
changes the nature of the problem, compared to what is
discussed the literature. It shows that there always exists a
property-preserving dual solution to the split-horizon problem,
namely, the dual solution to the full-horizon problem. How-
ever, there may in addition exist optimal dual solutions to the
split-horizon problem, which are infeasible to the full-horizon
dual problem and lead to market inefficiencies. Therefore,
the challenge in the perfect foresight setting becomes that of
selecting the correct dual solution. We have provided sufficient
conditions for the existence of weak dual solutions. Finally,
we have proposed a method that restores market properties in
the split-horizon problem, in the perfect-foresight case.

However, it becomes more complicated in the imperfect-
foresight case, where the value of Eend may turn out to
be suboptimal in hindsight. The proposed solution cannot
be applied in case eH is suboptimal in hindsight. Future
work should develop solutions for the imperfect-foresight case.
Here, it should be considered that the suboptimal final state of
energy leads to a social welfare loss compared to the perfect-
foresight case. It is a nontrivial question how this loss should
be fairly divided over the market participants, especially since
the storage may improve social welfare in expectation.

Furthermore, we note that illustrative examples and proofs
in this work are valid for a market clearing with linear cost and
utility functions. We have restricted ourselves to this setting for
simplicity, and because this type of market clearing is common
in practice. However, the market efficiency problem can also
arise in the nonlinear convex case, under similar conditions.
Future works should analyze this case in further detail.

Finally, we have neglected the problem of determining the
value for the final state of energy. In future work, we will
focus on how to determine this value, both under perfect and
imperfect information.

REFERENCES

[1] IEA, “World Energy Outlook,” 2021, accessed 06-07-2022. [Online].
Available: iea.org/reports/world-energy-outlook-2021

[2] FERC, “Docket Nos. RM16-23-000 and AD16-20-000, Order No.
841: Electric Storage Participation in Markets Operated by Regional
Transmission Organizations and Independent System Operators,” 2108,
accessed 27-09-2022. [Online]. Available: www.ferc.gov/media/order-n
o-841

[3] K. Hartwig and I. Kockar, “Impact of strategic behavior and ownership
of energy storage on provision of flexibility,” IEEE Transactions on
Sustainable Energy, vol. 7, no. 2, pp. 744–754, 2016.

[4] R. Sioshansi, “When energy storage reduces social welfare,” Energy
Economics, vol. 41, pp. 106–116, 2014.

[5] J. A. Taylor, “Financial storage rights,” IEEE Transactions on Power
Systems, vol. 30, no. 2, pp. 997–1005, 2014.
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APPENDIX A
NOMENCLATURE AND NOTATIONS

NOMENCLATURE

Sets and indices
g ∈ G Generators
l ∈ L Loads
t ∈ T Time periods
Parameters
Dlt Maximum consumption of l at t
P gt Maximum output of g at t
S Storage capacity
Cgt Cost of g at t
Eend Final state of energy
Einit Initial state of energy
Ult Utility of l at t
Variables
x Vector grouping all the primal variables
bt Energy charged or discharged for t
dlt Demand of l at t
et State of energy at the end of t
pgt Production of g at t
Dual variables
ζ Vector grouping all the dual variables
λt Dual variable associated with the energy balance at

time t. Market price at t.

A. Notation rules

Here we give the rules that are followed for the notations.
• Sets are represented with calligraphic capital letters: T
• Primal variables are represented with lower-case Roman

letters: pgt
• Dual variables are represented with Greek letters: ξ
• Indices are given as subscript: et
• Characters in bold font indicate vectors grouping all the

variables: x
• Parameters are given with capital letters: Cgt

• The overline is used for maximum: P
• The underline is used for minimum: P
• Superscripts are used to further describe the variables or

parameters: Eend

• The superscript ∗ is used to describe an optimal value of
primal or dual variables: b∗t

• The superscript ′ is used to describe an optimal value of
primal or dual variables of the split-horizon problem (in
Section IV): λ′

t

• The superscript ′′ is used to describe an optimal value
of primal or dual variables for the restored split-horizon
problem (in Section V): ρ′′H

APPENDIX B
TIME-DEPENDENT DATA FOR THE ILLUSTRATIVE

EXAMPLES

TABLE III
TIME-DEPENDENT INPUTS FOR THE ILLUSTRATIVE EXAMPLE OF SECTION

III

t D1t(Wh) P 1t(Wh) P 2t(Wh) U1t (AC) C1t (AC) C2t (AC)

T d1 1 0 2 2 12 4 8
2 1 2 2 12 5 10

T d2 3 3 2 2 12 2 9
4 3 2 2 12 6 11

TABLE IV
TIME-DEPENDENT INPUTS FOR THE ILLUSTRATIVE EXAMPLE OF SECTION

IV

t D1t(Wh) P 1t(Wh) P 2t(Wh) U1t(AC) C1t(AC) C2t(AC)
1 0 2 2 12 5 10
2 3 2 2 12 2 9

APPENDIX C
KKT CONDITIONS

A. KKT conditions full-horizon problem

The KKT conditions of N(T ) are

Cgt − µ
gt
+ µgt − λt = 0, ∀g ∈ G, t ∈ T (39a)

− Ult − χ
lt
+ χlt + λt = 0, ∀l ∈ L, t ∈ T (39b)

− ρt + λt = 0, ∀t ∈ T (39c)
− νt + νt + ρt − ρt+1 = 0, ∀t ∈ T \ {T} (39d)
− νT + νT + ρT = 0 (39e)
0 ≤ pgt ⊥ µ

gt
≥ 0, ∀g ∈ G, t ∈ T (39f)

0 ≤ P gt − pgt ⊥ µgt ≥ 0, ∀g ∈ G, t ∈ T (39g)

0 ≤ dlt ⊥ χ
lt
≥ 0, ∀l ∈ L, t ∈ T (39h)

0 ≤ Dlt − dlt ⊥ χlt ≥ 0, ∀l ∈ L, t ∈ T (39i)
0 ≤ et ⊥ νt ≥ 0, ∀t ∈ T (39j)

0 ≤ S − et ⊥ νt ≥ 0, ∀t ∈ T (39k)
(2b) , (1b) , (1c) (39l)

B. KKT conditions split-horizon problem

The KKT conditions of L(T d1) are

Cgt − µ
gt
+ µgt − λt = 0, ∀g ∈ G, t ∈ T d1 (40a)

− Ult − χ
lt
+ χlt + λt = 0, ∀l ∈ L, t ∈ T d1 (40b)

− ρt + λt = 0, ∀t ∈ T d1 (40c)

− νt + νt + ρt − ρt+1 = 0, ∀t ∈ T d1 \ {H} (40d)
− νH + νH + ρH − ξ = 0 (40e)

0 ≤ pgt ⊥ µ
gt

≥ 0, ∀g ∈ G, t ∈ T d1 (40f)

0 ≤ P gt − pgt ⊥ µgt ≥ 0, ∀g ∈ G, t ∈ T d1 (40g)

0 ≤ dlt ⊥ χ
lt
≥ 0, ∀l ∈ L, t ∈ T d1 (40h)

0 ≤ Dlt − dlt ⊥ χlt ≥ 0, ∀l ∈ L, t ∈ T d1 (40i)

0 ≤ et ⊥ νt ≥ 0, ∀t ∈ T d1 (40j)
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0 ≤ S − et ⊥ νt ≥ 0, ∀t ∈ T d1 (40k)

eH = Eend (40l)

e1 = Einit + b1 (40m)

et = et−1 + bt, ∀t ∈ T d1 \ {1} (40n)∑

l∈L
dlt + bt −

∑

g∈G
pgt = 0, ∀t ∈ T d1 (40o)

The KKT conditions of N(T d2) are

Cgt − µ
gt
+ µgt − λt = 0, ∀g ∈ G, t ∈ T d2 (41a)

− Ult − χ
lt
+ χlt + λt = 0, ∀l ∈ L, t ∈ T d2 (41b)

− ρt + λt = 0, ∀t ∈ T d2 (41c)

− νt + νt + ρt − ρt+1 = 0, ∀t ∈ T d2 \ {T} (41d)
− νT + νT + ρT = 0 (41e)

0 ≤ pgt ⊥ µ
gt

≥ 0, ∀g ∈ G, t ∈ T d2 (41f)

0 ≤ P gt − pgt ⊥ µgt ≥ 0, ∀g ∈ G, t ∈ T d2 (41g)

0 ≤ dlt ⊥ χ
lt
≥ 0, ∀l ∈ L, t ∈ T d2 (41h)

0 ≤ Dlt − dlt ⊥ χlt ≥ 0, ∀l ∈ L, t ∈ T d2 (41i)

0 ≤ et ⊥ νt ≥ 0, ∀t ∈ T d2 (41j)

0 ≤ S − et ⊥ νt ≥ 0, ∀t ∈ T d2 (41k)

eH+1 = Einit + bH+1 (41l)

et = et−1 + bt, ∀t ∈ T d2 \ {H + 1} (41m)∑

l∈L
dlt + bt −

∑

g∈G
pgt = 0, ∀t ∈ T d2 (41n)

APPENDIX D
PROOFS

A. Proof of Lemma 1

Proof. The full-horizon and split-horizon problems have the
same objective function. The optimal solution to the full-
horizon problem x∗ lies in the feasible space F ′ of the
split-horizon problem, i.e., x∗ ∈ F ′, because it satisfies the
additional constraint eH = Eend = e∗H . Therefore, the optimal
objective of the full-horizon problem is a lower bound for
the split-horizon problem. The feasible space F ′ of the split-
horizon problem with the added constraint is a subspace of the
feasible space F of the full-horizon problem, i.e., F ′ ⊂ F .
Thus, the optimal objective of the split-horizon problem is a
lower bound for the full-horizon problem. This implies that the
split- and full-horizon problems attain the same maximum.

As any optimum x′ ∈ F and any optimum x∗ ∈ F ′, the
sets of optimal primal solutions must be equal.

B. Proof of Lemma 2

Proof. As the problem is convex, the KKT conditions are
necessary and sufficient. Therefore, any feasible point in the
KKT conditions of the split problem is an optimal solution to
it. The KKT conditions of the split-horizon problem only differ
from the KKTs of the full-horizon problem in the equations

− νH + νH + ρH − ξ = 0 (42)

eH = Eend , (43)

which replace the full-horizon KKT condition

− νH + νH + ρH − ρH+1 = 0 . (44)

As we in the perfect foresight case set Eend = e∗H , KKT
condition (43) holds for any optimal primal solution to the
full-horizon problem. As for condition (42), we can see that it
is satisfied by the optimal solution to the full-horizon problem
in case ξ′ = ρ∗H+1.

Therefore, any optimal solution to the full-horizon problem,
augmented with ξ′ = ρ∗H+1, also satisfies the KKT conditions
for the split problem. As the KKT conditions are sufficient
for convex problems, this means that this solution is also an
optimal solution to the split-horizon problem.
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