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Abstract—This paper focuses on a federated learning (FL)
system that employs a base station as a central server while clients
with limited computation capabilities perform local training. The
limited bandwidth leads to that only a portion of clients can
participate in each FL training round, and picking different
clients can impact the performance of FL systems, requiring
effective allocation of their computing resources. In FL systems,
both model convergence and energy consumption are important
performances. To this end, we formulate a multi-objective op-
timization problem (MOP) to simultaneously speed up model
convergence and reduce energy consumption. To address the
MOP, we propose a multi-objective algorithm (MOA) for FL
systems to obtain a Pareto optimal solution set, where Tcheby-
cheff approach is adopted to divide MOP into multiple single-
objective problems and optimize them by differential evolution.
The extensive experiments on Fashion-MNIST dataset in both
i.i.d and non-i.i.d data settings illustrates that MOA outperforms
other algorithms.

Index Terms—Federated learning, multi-objective algorithm,
differential evolution, decomposition.

I. INTRODUCTION

Centralized machine learning (ML) has been widely applied
to a number of fields in 5G wireless communication [1]
[2]. ML centrally trains and learns a global model through
collecting data, leading to the leakage of privacy data. To deal
with the problem, a novel distributed learning called federated
learning (FL) is proposed, which aims to train a global model
in a distributed manner. In FL systems, clients need to be
picked in each round and different selection strategies could
affect the performance of the system because clients have
different computing resources, storage capacity and. To this
end, many works concentrates on how to establish an efficient
client selection strategy. Huang et al. [3] studied a random
client selection method to address the tradeoff between model
convergence and learning stability. Xu et al. [4] designed a FL
system and jointly optimized client selection and bandwidth
allocation. The allocation of computing resources, such as
CPU frequency, has a significant impact on the performance
of FL systems and has been extensively studied. Zhang et al.
[5] proposed a novel scheme for the joint allocation of datasets
and computing resources in FL systems and formulated an en-
ergy consumption minimization problem with the constraint of

completing training within a certain time frame. Huang et al.
[6] introduced a problem of minimizing model convergence
time while adhering to an energy consumption constraint,
which involved joint optimization of CPU frequency and phase
shifts.

Most of the previous studies focus on single-objective
optimization problems. The objective function separately takes
energy consumption or model convergence into account. In
fact, both energy consumption and model convergence are
important performances of FL systems. To this end, we design
a multi-objective optimization problem to simultaneously min-
imize energy consumption and model convergence. A multi-
objective algorithm (MOA) is proposed to address this multi-
objective optimization problem (MOP). We remark that this is
an early application of multi-objective optimization in the field
of federated learning. The main contributions of this work are
summarized as follows:
• By considering client selection and CPU frequency, a

MOP for FL systems is developed to reduce model
convergence and energy consumption concurrently.

• A multi-objective optimization approach called MOA is
suggested to solve this MOP. MOA divides the MOP into
N single objective problems, which are then simultane-
ously optimized using differential evolution (DE) method.

• The experimental results show that, for both i.i.d and non-
i.i.d data settings, MOA outperforms other algorithms on
Fashion-MNIST dataset.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Figure 1 illustrates the studied FL system, which comprises
a single-antenna base station (BS) and a group of K single-
antenna clients with energy constraints. Each client k has its
own local dataset Dk with Dk = |Dk| labeled data samples
(xxxn, yn)

Dk

n=1 ∈ Dk, where (xxxn, yn) denotes the input-output
data sample including a feature xxxn and its corresponding label
yn. Because of bandwidth limitations, only a subset of clients
denoted by K′ are chosen to participate in the training process.
The overall workflow is given as follows, which contains T
training rounds. The BS initializes the parameters of the global
model denoted as www1 and picks up clients to participate in



the t-th (t ∈ T = {1, 2, ..., T}) round. Then, it sends wwwt
to the chosen clients. When receiving wwwt, the chosen client k
(k ∈ K′) trains the parameters of its local modelwwwk,t = wwwt via
Dk. The goal of training is to minimize the local loss function
Fk(wwwk,t) by www∗k,t = wwwk,t−δ5Fk(wwwk,t), where δ = 0.1. Here,
Fk(www) := 1

Dk

∑
n∈Dk

fn(xxxn, yn;www), where fn(xxxn, yn;www)
denote the loss function on (xxxn, yn). Then, the chosen client
k sends www∗k,t to the BS. The BS performs the aggregation and
then updates wwwt by wwwt+1 =

∑
k∈K′

DK

D www∗k,t, where D is the
number of total data samples. Then, the computing model,
communication model and model convergence are presented,
respectively.
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Figure 1. An illustration of a wireless FL system.

A. Energy Consumption Models

Computation Model: The CPU cycles required to execute
one data simple (xxxn, yn) in the studied system are denoted by
a constant ck [7]. Therefore, the total number of CPU cycles
required for client k to perform one local training iteration
is ckDk. The computing time in the t-th round can then be
expressed as:

TIMEcmpk,t =
ckDk

fk,t
, (1)

where fk,t is the CPU frequency of client k in the t-th round.
The computing energy consumption in the t-th round can be
expressed as

Ecmpk,t =
αk
2
ckDkf

2
k,t, (2)

where αk

2 is the capacitance coefficient of client k.
Communication Model: The uplink communication is taken

into account, in which the BS assigns the chosen clients O
subchannels where each subchannel has the same bandwidth
b = B

O . Here, B is the total bandwidth. Additionally, chosen
client k is also given the channel gain hk,t in the t-th round.
Consequently, the transmission data rate of client k can be
expressed as

rk = b log2

(
1 +

Pkh
2
k,t

σ2

)
, (3)

where σ2 denotes the Gaussian channel noise and Pk repre-
sents the transmit power of client k. The transmission data

rate rk is set to the threshold transmission data rate Rk in
order to get the minimum transmit power Pk. Therefore, the
communication time of client k in the t-th round can be
represented as

TIMEcomk,t =
H

b log2

(
1 +

Pkh2
k,t

σ2

) . (4)

where H is a constant to measure the size of wwwt.
The communication energy consumption for client k in the

t-th round can be given by

Ecomk,t =
JPk

b log2

(
1 +

Pkh2
k,t

σ2

) , (5)

To simplify the calculation, we convert the loss function into
the model convergence value via the staleness method [7]

St = −

(∑K
k=1 sk,tDkFk(wwwk,t)Ck,t

)µ
µ

, (6)

where τ is a constant.Ck,t+1 is the staleness value as follow:

Ck,t+1 = (Ck,t + 1) (1− sk,t) . (7)

B. Problem Formulation

The total energy consumption in the t-th round can be
calculated by

Et =

K∑
k=1

sk,t

(
φEcmpk,t + Ecomk,t

)
, (8)

where φ represents the number of local training iterations and
sk,t denotes the client selection variable of client k in the t-th
round. If client k is chosen, sk,t = 1; otherwise, sk,t = 0.

In this paper, we optimize the FL model convergence
and energy consumption simultaneously by considering client
selection variables and CPU frequencies. MOP is defined as

min
fk,t,sk,t

F = (St, Et),∀k ∈ K,∀t ∈ T (9a)

s.t. C1 : fmin ≤ fk,t ≤ fmax,∀k ∈ K,∀t ∈ T , (9b)
C2 : sk,t ∈ {0, 1},∀k ∈ K,∀t ∈ T , (9c)

C3 :

K∑
k=1

sk,t ≤ O,∀k ∈ K,∀t ∈ T , (9d)

where C1 defines the lower and upper bounds of the CPU
frequency for each client k; C2 indicates whether each client
k (k ∈ K) is chosen to take part in the training process; C3
makes sure that the number of chosen clients does not go
above the maximum number of subchannels in the t-th round
because of the bandwidth limitation.

III. PROPOSED METHOD

A. MOA

To address (9), a multi-objective evolutionary algorithm for
FL systems called MOA is proposed. MOA aims to utilize a
decomposition approach to divide the MOP into several single
objective problems and introduces DE algorithm, including the



mutation, crossover and selection operators, to search for a
Pareto optimal solution set.

The general framework of MOA is presented in
Algorithm 1Algorithm 1Algorithm 1. In detail, www are first initialized (line 1). Then,
MOA decomposes (9) into single objective problems based
on a uniform spread of weight vectors denoted as {λ1, . . . ,
λN} via the simplex method (line 2). Then, the weight vectors
are input to perform the optimization process in each round.
Specifically, we first utilize the candidate Pareto optimal
solution set CP to collect the non-dominated solutions (line
4), where CP is set to ∅. After that, for each weigh vector,
the neighbors B(i) (denoted as {i1, . . . , iJ}) is initialized as
well as its J closest weigh vectors (denoted as {λi1 , . . . , λiJ})
for λi are obtained via the Euclidean distances between any
two weight vectors.

Next, a population is initialized randomly Z =
{zzz1, . . . , zzzN} (line 5), where each individual corresponds to a
solution for a weight vector. Each individual is represented as
the following encoding scheme:

zzzi = {fi,1, ..., fi,k, ..., fi,K , si,1, ..., si,k, ..., si,K},∀i ∈ N ,
(10)

where fi,k = fmin + rand ∗ (fmax − fmin) is the CPU
frequency and si,k = xrandy represent the client selection
variable of client k for λi, respectively; rand denotes a random
number within [0, 1]; and N is the population size. Then, we
initialize the reference point RF ∗ = (RF ∗m|m = 1, 2) and the
F -value FV , respectively (line 6). Then, the population are
evolved via DE algorithm.

When we update the population, it makes sense to choose
individuals from outside the neighbors as the mating parent
population to expand the variety of the population. The se-
lection range of the mating parents needs to be defined in
each generation. Specifically, we generate a random number
β within [0,1], which is used to choose the mating parent
population (line 9)

P =

{
B(i), if β ≤ η,
{1, 2, ..., N}, otherwise,

(11)

where η represents a pre-set probability to choose B(i). If β ≤
η for λi, we employ B(i) to update population. Otherwise, the
entire population is selected as the range of the mating parents.
Then, we perform the mutation and crossover operations to
obtain a new solution according to P .

The mutation operator is to gain a mutant vector uuui =
(ui,1, ui,2, . . . , ui,2∗K) based on zzzi for λi. In this paper, a
famous mutation operator called DE/current-to-rand/1 is as
follows:

uuui = zzzi + F · (zzzr1 − zzzi) + F · (zzzr2 − zzzr3) , (12)

where r1, r2 and r3 are three random integers chosen from
P and different from i, and F represents the mutation control
parameter.

Then, the crossover operator is performed to increase the
diversity of the population. In detail, the crossover vector vvvi is

obtained according to yyyi and zzzi. Here, the binomial crossover
technique is utilized, which is a widely used method and can
be expressed as:

vi,n =

{
ui,n, if randn ≤ CR or n = nrand,

zi,n, otherwise,
(13)

where nrand denotes a integer randomly chosen within [1, 2 ∗
K]; randn represents a random number within [0, 1] for each
n; and CR is the crossover control parameter. Then, vvvi is to
generate a solution as yyy. We fix the invalid elements of yyy and
generate yyy

′
.

Then, we evaluate the fitness value of two objective func-
tions for zzzi in the t-th round, which can be expressed as (line
11)

F(zzzi) = (F1(zzzi),F2(zzzi)),∀i ∈ N . (14)

Here,

F1(zzzi) = −

(∑K
k=1 sk,tDkFk(wwwk,t)Ck,t

)µ
µ

, (15)

and

F2(zzzi) =

K∑
k=1

sik,t(E
cmp,i
k,t + Ecom,ik,t ),∀i ∈ N , (16)

where sik,t represents client selection variable of client k for
λi in the t-th round. Therefore, the fitness function for λi in
the t-th round can be formulated as

After that, the MOP is divided into N single objective
problems by the Tchebycheff method [8], where the i-th single
objective problem can be given as

min gte(zzz|λi, RF ∗) = max
1≤m≤2

λim|Fm(zzz)−RF ∗m|,∀i ∈ N ,
(17)

Here, RF ∗m for the m-th objective function is initialized by
RF ∗m = min1≤m≤2 Fm(zzz).

Then, RF ∗ is updated as follows (line 12):

RF ∗m =

{
Fm(yyy

′
), RF ∗m ≤ Fm(yyy

′
);

RF ∗m, otherwise.
(18)

Next, we update the solutions in B(i) and FV are updated
in each j (j ∈ B(i) = {i1, i2, . . . iJ}) as follows (line 13):

zzzj =

{
yyy

′
, gte(yyy

′ |λij , RF ∗) ≤ gte(zzzj |λij , RF ∗),
zzzj , otherwise,

(19)

and

FV j =

{
F (yyy

′
), gte(yyy

′ |λij , RF ∗) ≤ gte(zzzj |λij , RF ∗),
FV j , otherwise.

(20)
Finally, we update CP based on the domination relation-

ship. Specifically, if yyy
′

is dominated by all the solutions in
CP , yyy

′
is removed from CP . yyy

′
is added to CP (line 14).

The local model training and transmission are executed in
line 5. Next, for λi, the optimal client selection variables
and the CPU frequencies are obtained (line 18) and the



corresponding Sit and Eit are calculated (line 19). To this
end, the total model convergence and energy consumption
are updated, respectively (line 20). Finally, we perform the
global aggregation, and update wwwt (line 22). When overall
FL training process termination, a Pareto optimal solution set,
the corresponding minimal model convergence, and energy
consumption are output.

Algorithm 1 General framework of MOA
Input: Initialize Si = 0 and Ei = 0 for λi(i ∈ N );
1: Initialize the global model parameters www;
2: Initialize a uniform spread of weight vectors to divide (9)

into N single objective problems;
3: for training round t = 1 : T do
4: Initialize CP , B(i) and its H closest weight vectors;
5: Initialize Z1 = {zzz11, zzz12, ..., zzz1N};
6: Initialize RF ∗ and FV i for the i-th objective;
7: for generation g = 1 : gmax do
8: for each weight vector λi (i ∈ N ) do
9: Generate β to set P based on (11);

10: Execute the mutation and crossover operation to
get yyy and obtain yyy

′
;

11: Execute the fitness evolution to obtain F (yyy
′
) and

gte(yyy
′ |λi, RF ∗) for the i-th problem;

12: Update RF ∗ according to (18);
13: Update the solutions in B(i) and FV according to

(19) and (20);
14: Update CP ;
15: end for
16: end for
17: for each weight vector λi (i ∈ N ) do
18: Obtain oi∗k,t and f i∗k,t for λi;
19: Get the corresponding Sit and Eit for oi∗k,t and f i∗k,t;
20: Calculate Si and Ei via Si = Si+Sit , E

i = Ei+Eit ;
21: end for
22: Execute the global aggregation and update wwwt;
23: end for
Output: A Pareto optimal solution set, and the minimal Si

(∀i ∈ N ) and Ei (∀i ∈ N ).

IV. EXPERIMENTAL STUDY

A. Experimental Settings
The system consists of multiple clients randomly distributed

within a rectangular area with vertices located at [70, 0, 0],
[90, 10, 0], [90, 50, 0], and [70, 50, 0] m. The BS is located at
[0, 30, 1] m. The path loss is determined using the formula
PL = PL0 − 10β log( dd0 ) where PL0 = 30 dB represents
the path loss at a reference distance of d0 = 1 m, and d is
the distance between the transmitter to the receiver, with the
value of β being determined by the system. The total size of
the model parameters and dataset is set to 86.6 KB and 47.04
MB, respectively, while the size of each client’s local dataset
Dk is determined based on their CPU frequencies. For more
details on the parameters of the studied FL system, we provide
them in Table I.

Table I
PARAMETER SETTINGS OF THE WIRELESS EDGE FL SYSTEM

Parameter Value Parameter Value
K 15 O 10
B 1.25 Mbps R 500 Kbps
η 0.9 gmax 100
αk 2e-28 P 0

k 1e-2 W
ck 20 cycle/bit Pk 1e-1 W
CR 0.9 F 0.9
T0 1 N 30
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(a) i.i.d data setting
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(b) non-i.i.d data setting

Figure 2. Hypervolume with Fashion-MNIST dataset.

The FL training process involves the classification of hand-
written digits via Fashion-MNIST dataset [9]. The training set
contains 60,000 samples, while the test set includes 10,000
samples. Fashion-MNIST dataset can be used in both i.i.d
and non-i.i.d data settings. In the i.i.d data setting, the data
distribution among clients is uniform and balanced, whereas in
the non-i.i.d data setting, the distribution of the dataset among
clients is unbalanced, with varying dataset sizes among dif-
ferent clients. To train Fashion-MNIST dataset, a multi-layer
perceptron network is used, which includes a hidden layer
with 50 neurons and employs the Tanh activation function.
To evaluate the effectiveness of MOA, three multi-objective
approaches, including NSGAII [10], SPEAII [11] and MOPSO
[12], are used as baselines.

B. Performance Evaluation

To begin with, we will discuss the convergence of MOA
and introduce the hypervolume (HV) metric commonly used
to evaluate the convergence. To evaluate the convergence of
MOA, we calculate the HVs using the obtained Pareto optimal
solution sets with the Fashion-MNIST dataset for two data
settings. The results are presented in Fig. 2. Fig. 2(a) shows
that in the i.i.d data setting, the HV with Fashion-MNIST
dataset initially rises and then fluctuates within a certain range
after the 50-th generation. In Fig. 2(b), the HV with Fashion-
MNIST dataset in the non-i.i.d data setting rises initially and
then starts to fluctuate within a certain range after the 50-th
generation. These results demonstrate that MOA can identify
the Pareto optimal solution after 50 generations for each
problem with Fashion-MNIST dataset. Consequently, MOP is
capable of reaching the Pareto optimal solution set.

For the four multi-objective optimization algorithms, they
were run 30 times to obtain the average and standard deviation
of their supercolumes, and rank sum tests were performed. The
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Figure 3. Test accuracy among the four multi-objective approaches with
Fashion-MNIST dataset.

experimental results are shown in Table II, where +, ≈, and
- denote that MOA is better than, similar to, and worse than
other baselines, and std is a function to calculate the standard
deviation of the members in a vector. This table indicates
that MOEA-FL can achieve the best HV under different data
settings with Fashion-MNIST dataset, which means it can
obtain a better approximate Pareto optimal solution set than
the other three multi-objective methods.

Table II
EXPERIMENTAL RESULTS OF MOA AND OTHER THREE BASELINE WITH

FASHION-MNIST DATASET

MOA NSGAII SPEA MOPSO
Data setting Mean HV ± variance Mean HV ± variance Mean HV ± variance Mean HV ± variance

i.i.d 6.13E-01 ± 1.87E-036.13E-01 ± 1.87E-036.13E-01 ± 1.87E-03 5.87E-01 ± 4.35E-02 + 5.74E-01 ± 7.88E-02 + 5.72E-01 ± 3.30E-02 +
Non i.i.d 6.07E-01 ± 6.14E-026.07E-01 ± 6.14E-026.07E-01 ± 6.14E-02 5.75E-01 ± 1.41E-02 + 5.56E-01 ± 6.57E-02 + 5.59E-01 ± 2.00E-02 +

+/≈/- - 2/0 2/0 2/0

Next, we discuss the accuracy of the FL system used by
MOA. We compare the four multi-objective approaches. In
order to compare them, we first take the mean value for
the Pareto optimal solution set obtained by MOA, NSGAII,
SPEAII, and MOPSO, respectively. Then, the solution closest
to the mean value and corresponding accuracy curve is se-
lected. The results are shown in Fig. 3. In Fig. 3(a), we can
observe that the accuracy for MOA reaches 91.57% and the
accuracy for NSGAII reaches 90.24% while the accuracy for
SPEAII is 88.93% and the accuracy for MOPSO is 88.06%.
Meanwhile, MOA is faster to converge than the other three
multi-objective approaches. In Fig. 3(b), among the four multi-
objective approaches, MOA obtains the highest accuracy and
faster convergence in the non-i.i.d data setting.

Fig. 4 presents the solutions obtained by the four approaches
on Fashion-MNIST dataset. It can be observed that MOA
obtains the approximate Pareto optimal solution set in both
the i.i.d and the non-i.i.d data settings. In contrast, NSGAII,
SPEAII, and MOPSO do not perform better than MOA. The
reason may be that these methods keep the solutions that need
to be discarded in the search process.

V. CONCLUSIONS

This paper investigated an FL system with bandwidth con-
straints and formulated a MOP that jointly reduces model
convergence and energy consumption. To solve the MOP,
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Figure 4. Solutions in the last generation among the seven approaches with
Fashion-MNIST dataset.

we proposed MOA, which utilized the Tchebycheff approach
to decompose the MOP into single objective problems and
employed DE algorithm to optimize them. The results demon-
strated that MOA outperforms other algorithms on Fashion-
MNIST dataset.
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