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Improving Deep Learning-Based Defect Classification 

in Solar Cells using Conformal Prediction 

Vitus B. Thomsen, Claire Mantel, Gisele A. dos Reis Benatto, Allan P. Engsig-Karup, Søren Forchhammer 

Technical University of Denmark, Kongens Lyngby, 2800, Denmark 

Abstract  —  Deep learning-based approaches have become 

popular for automatically detecting defects in electroluminescence 
images of solar cells. However, deep learning methods are those 

that require the most training data among machine learning 
approaches. Thus, the data available to train such models is 
currently a bottleneck for their performances due to expensive and 

possibly inaccurate labeling. To address this problem, we propose 
to use a model comprising a standard deep learning classifier to 
which we add conformal prediction. The model calculates a degree 

of confidence on new predictions and can send low-confidence 
predictions for human expert labeling in an uncertainty-aware 
active learning loop. In tests with a limited-size data set, using the 

conformal model to select and classify high-confidence samples 
yields significantly higher performance compared to the standard 
deep learning classifier, as the F1 score increases from 0.44 to 0.62 

while only leaving out 9.4% of predictions as low-confidence that 
need human assessment for validation and model update, 
demonstrating the effectiveness of the framework. 

I. INTRODUCTION 

Inspection of photovoltaic (PV) modules is crucial to ensure 

optimal power output. Electroluminescence (EL) imaging of 

PV cells is an effective way of performing inspection, as it 

allows for greater detail than when using thermal or visible 

imaging only, acting like an “X-ray” image of the PV device 

[1]. In recent years, there has been extensive research in using 

machine learning, especially convolutional neural networks 

(CNN), on EL images for detecting defective cells [2]-[4]. A 

major limitation of the performance of learning-based models 

is currently the data available. Indeed, training a model requires 

large datasets whose quality depends on the variety and 

distribution of defects. For supervised learning (the most 

common), models need to be trained on labeled datasets. These 

labels are annotations from human experts which make them 

both very time consuming to create and prone to containing 

potential errors (inaccuracies, inconsistencies, or omissions). 

In machine learning, the idea of conformal prediction allows 

for uncertainty quantification of a model. Conformal prediction 

is a general framework for constructing prediction intervals for 

machine learning models with a guaranteed level of accuracy, 

regardless of the distribution of the underlying data, that can be 

implemented in a general way and comes with a wide array of 

applications [5][6]. 

Another important framework in machine learning is the 

concept of active learning, which can be used to define an 

algorithm driven training loop that relies on a machine learning 

model and some measure of information content that can be 

used to ask a human expert for input on new instances that are 

of most value to further improve the machine learning model. 

During active learning, the machine learning model is then 

conveniently retrained to be updated using newly labeled data, 

allowing for optimal model improvement over time while 

keeping the cost of labeling data to a minimum as only a 

minimal amount of new images is seen by an expert for labeling 

[7][8]. Active learning can be done in several ways, and in this 

work conformal prediction is used to define an uncertainty-

aware active learning loop for determining the low-confidence 

data to be labeled by a human. This idea is also explored in 

other works, e.g. [9]. 

In this work, we develop and test an uncertainty-aware active 

learning framework for PV classification based on conformal 

prediction and apply it to a deep learning model. The objective 

is that this framework will make it easier to improve the 

accuracy of PV classification models as more data becomes 

 
 
Fig. 1. Illustration of the proposed uncertainty-aware active 
learning framework based on conformal prediction. The dashed 
arrows indicate steps that are not directly considered in this work. 



 

 

available, hence dealing with the challenges of doing manual 

annotations and improving model accuracy at the same time. 

Fig. 1 illustrates the proposed active learning loop. Initially, 

a deep learning-based classification model is trained using 

existing labeled data (i.e., EL images of solar cells). Whenever 

new data is collected, the model is used to predict if each cell is 

defective or not. In this work, we also predict the type of defect, 

although the framework can be applied to simple binary 

classification as well. Using conformal prediction, each 

prediction is then identified as either high or low confidence. 

The high-confidence predictions are trusted, while the 

remaining samples are handed off to a human annotator 

(possibly along with the corresponding low-confidence 

predictions) who will manually go through these samples and 

correctly label the data. The newly labeled data is then used to 

retrain the model. The benefits of the active learning framework 

are thus twofold. The first benefit is that the predictions can be 

made more accurate and hence more trustworthy when 

restricted to the high confidence samples. The second benefit is 

that we can choose the examples for manual labeling that are 

most useful for retraining the model, and thus the model can be 

improved over time in an efficient manner. This work focuses 

on setting up the conformal prediction framework and the first 

of these benefits, i.e., optimizing the model accuracy on the 

high-confidence samples. We leave the annotation and 

retraining steps to be explored in more detail in future work. 

We propose a simple way of splitting the predictions into 

high and low confidence, as well as a method of tuning the 

framework such that the high confidence predictions are 

accurate while having as few low confidence predictions as 

possible.   

II. METHODOLOGY 

A. Data filtering and preprocessing 

The dataset consists of EL images collected from different 

solar farms using a high-resolution silicon-based detector 

camera at nighttime [10]. A perspective correction algorithm 

has been applied to the panel images, followed by local 

brightness normalization and algorithmic separation into 

individual cells [11]. Four different types of defects are 

considered: cracks of modes A, B, and C, as well as finger 

failures, as defined in [1]. Examples of defective cells are seen 

in Fig. 2. Each defective cell has been annotated with the type 

of defect and its location within the image as a binary mask. 

Some cells in the dataset present potential induced 

degradation (PID), but this defect was not among the 

considered defects and those cells were excluded from the 

dataset by thresholding the mean pixel intensity. Furthermore, 

the cell images were checked for correct content, and those 

incorrectly cropped were discarded as well. 

A small number of cells are annotated with more than one 

defect type. Since this work is focused on simple multiclass 

classification, where each cell belongs to only one of several 

classes (as opposed to multilabel classification, where a cell 

may belong to multiple classes at the same time), a single defect 

type is assigned to each of the multi-labeled cells. The assigned 

class is chosen using the following prioritized list based on how 

important or severe the four defect types are deemed, in order 

from highest to lowest priority: Crack C, crack B, finger failure, 

and crack A. 

As the labeling was done on full modules, the marked 

locations of the defects were also split into cells. Special 

attention was made to avoid false positives from manual 

marking of a defect in one cell jutting out on neighboring cells. 

After the data filtering, the dataset contains 35969 images of 

cells split into five classes – one class for the non-defective 

cells, and one class for each of the four defect types. The 

distribution of the five classes is seen in Table I. It is seen that 

the dataset is highly imbalanced, with only 993 cells in total 

labeled as defective. 

TABLE I. DISTRIBUTION OF CLASSES 

Class Number of 

samples 

No defect 34976 
Crack A 130 

Crack B 232 

Crack C 124 

Finger failure 507 

Total 35969 

 

B. Model selection 

The dataset is split into a training, validation, and testing set 

in the proportions 60:20:20 with class stratification. The basic 

model is a classifier using a CNN, which is trained on the 

training set. Model selection is done using the macro-averaged 

F1 score as a performance metric, evaluated on the validation 

set. The usual F1 score for a single class is defined as 

 
 
Fig. 2. Examples of cells with annotations from different defective 
classes. The defect types are crack A (top left), crack B (top right), 
crack C (bottom left), and finger failure (bottom right). 
 



 

 

𝐹1 = 2 ∙
Precision ∙ Recall

Precision + Recall
, (1) 

where precision and recall are given by 

Precision =
TP

TP + FP
, (2) 

Recall =
TP

TP + FN
, (3) 

where TP, FP, and FN denote true positives, false positives, and 

false negatives, respectively. The macro-averaged F1 score is 

then given by the mean of the F1 scores on the four defect 

classes (the no defect class is excluded). 

After initial tests with different network architectures, a 

transfer learning model based on the VGG-13 architecture [12] 

with batch normalization is chosen. The first and last layers 

have been slightly modified, such that the network accepts 

grayscale images as input rather than RGB images, and such 

that the network has five output neurons, corresponding to the 

five classes. All layers of the network are trained 

simultaneously. 

Model selection is done in several stages. A few different 

regularization techniques are tried to avoid overfitting, one at a 

time. Label smoothing is a technique used to avoid the model 

becoming overly confident in its predictions [13]. It is found 

that adding a small amount of label smoothing (smoothing 

level = 0.05) improves the F1 score. Weight decay (L2 

regularization) was also tried but was not found to improve the 

model. Hyperparameters (the learning rate and its decay rate) 

are also tuned by a small grid search. The networks are trained 

using the cross-entropy loss function. The Adam optimizer [14] 

is used with a learning rate of 0.001, which is set to 

exponentially decay by a factor of 0.995 after every epoch. 

Training is done for 300 epochs using a batch size of 64. 

Weighted random sampling is used during training, so the 

model sees roughly the same number of images from each class. 

Due to the small number of images in the defective classes, 

data augmentation is used to introduce more variation to the 

training data. This is done by randomly applying 

transformations to each image on-the-fly during training, each 

with probability 1/2. The transformations that are found to 

improve the model are: horizontal/vertical flipping, 90-degree 

rotations, small rotations (±2°), brightness and contrast 

adjustments (±25%), gamma adjustments (γ chosen log-

uniformly from [2/3, 3/2]), and random cropping, which is done 

in such a way that the bounding box of the defective region is 

kept (mostly) within the cropped image. 

C. Conformal prediction 

Conformal prediction is a general framework for 

constructing prediction intervals for machine learning models 

[5][6]. For a classifier, this allows for outputting a prediction 

set of classes rather than a single predicted class. A user-defined 

α allows for obtaining a set C1-α that will contain the true class 

with probability at least 1 - α. Due to our limited amount of 

data, we here apply the cross-conformal prediction algorithm 

known as cross-validation+ [15]. In summary, the algorithm 

works by splitting the training set into K folds (we use K = 5), 

then training K different classifier networks, each using only 

K - 1 of the folds as a proper training set. For each of the 

samples in the remaining fold, a certain conformity score 

function is computed by comparing the raw model outputs to 

the true labels. These scores are referred to as the hold-out 

scores. When making predictions on new data, the prediction 

set is constructed as the set of classes such that the resulting 

conformity score of the new sample is smaller than 

(1 - α)(n + 1) corresponding hold-out scores, aggregated over 

all K classifiers. This method ensures that we meet the above-

mentioned coverage guarantee of 1 - α. For a more detailed 

description of the algorithm, we refer to the original paper [15]. 

In the proposed active learning framework, the predictions 

are split into high and low confidence. The idea is that 

predictions for which the model has low confidence will be sent 

to a human expert for annotation and/or verification. In this 

study, we consider a prediction as high-confidence if its 

prediction set is a singleton, i.e., it contains exactly one class, 

and low-confidence otherwise (0 or ≥2 classes). Note that the 

prediction set can contain both the no defect class and any of 

the four defect classes. 

We aim at maximizing jointly these two aspects: (i) The 

performance of the model when restricted to the high-

confidence predictions, and (ii) The proportion of predictions 

that are considered high-confidence. With both these goals in 

mind, we define the following metric for evaluating the 

performance of the conformal model: 

�̃�1 ≔
𝑁conf

𝑁val
𝐹1

conf (4) 

where 𝐹1
conf is the macro averaged F1 score evaluated only on 

the trusted high-confidence predictions, 𝑁conf is the number of 

high-confidence predictions, and 𝑁val  is the size of the 

validation set, i.e., the total number of predictions we make. We 

tune the conformal model by optimizing �̃�1 over the following 

two parameters: the significance level α (i.e., to what level of 

certainty should the prediction sets be constructed) and the 

number of epochs of training. The optimal set of values for 

these two parameters is determined by a simple grid search. 

On a somewhat technical note, the cross-validation+ 

algorithm inherently involves randomness to construct the 

conformity scores and thus the prediction sets. To get more 

robust results, we generate 50 realizations of the prediction sets 

for each combination of parameters by using 50 different seeds 

for the random number generator, then average the relevant 

scores over these. 



 

 

Both the conformal model and a ‘standard’ classifier are then 

retrained using the union of the training set and the validation 

set as the new training set, then evaluated on the test set. 

III. RESULTS 

As a baseline model, a standard classifier is trained on the 

combined training/validation set and evaluated on the test set. 

The model is trained for 300 epochs. The macro-averaged F1 

score of the model during training is seen in Fig. 3. The final F1 

score obtained is 0.44, although the exact value fluctuates a lot 

between epochs. A notable observation is that after training for 

approximately 150 epochs, the F1 score is not found to increase 

any further. This is explained by the fact that the precision is 

increasing with the epoch number, while the recall is 

decreasing, and these two effects seem to cancel each other out 

in the F1 score. This suggests that the model tends to become 

increasingly biased towards classifying cells as non-defective 

the longer it is trained. 

When tuning the conformal model on the validation set, we 

find that the optimal �̃�1 value occurs at α = 0.03 and after 125 

epochs, with an estimated �̃�1  value of 0.54 (after some 

smoothing). The full grid search is seen in Fig. 4. In general, it 

is observed that lower values of α tend to give a greater �̃�1 

value, although very small values such as α = 0.005 gives very 

poor results. This is mainly because very small values of α 

result in prediction sets that are almost always of size ≥2 to 

achieve 1 - α coverage. On the other hand, large values of α 

make it more likely for the model to give empty prediction sets. 

Using the found optimal values, the conformal model is 

retrained on the combined training/validation set and applied to 

construct prediction sets for the test set. Once again, in order to 

get more robust results, we generate 50 realizations of the 

prediction sets and find the 𝐹1
conf  scores for each realization, 

however this time, we find the median of these 𝐹1
conf scores and 

only consider the realization giving this median score. This is 

then considered representative of the typical outcome of the 

conformal model. 

The confusion matrix for the standard classifier is shown in 

Table II, while the confusion matrix for the high-confidence 

predictions by the conformal model is shown in Table III 

(classes are abbreviated as ND = no defect, A/B/C = crack 

A/B/C, FF = finger failure). The key observation is that for the 

conformal model, the predictions are more concentrated on the 

diagonal of the confusion matrix. Table IV shows some key 

numbers summarizing the confusion matrices. We see 

TABLE II. STANDARD CLASSIFIER 

  Predicted  
  ND A B C FF Total 

A
c
tu

a
l 

ND 6907 6 17 4 61 6995 

A 18 5 2 0 1 26 

B 14 4 24 2 2 46 
C 4 1 5 13 2 25 

FF 46 1 1 2 52 102 

 Total 6989 17 49 21 118 7194 

TABLE III. CONFORMAL MODEL 

  Predicted  
  ND A B C FF Total 

A
c
tu

a
l 

ND 6416 1 7 0 20 6444 

A 8 4 0 0 0 12 

B 3 1 10 0 0 14 

C 2 0 2 9 0 13 

FF 9 0 0 0 26 35 

 Total 6438 6 19 9 46 6518 

TABLE IV. METRICS FOR THE TWO CLASSIFIERS 

 Standard Conformal 

Macro F1 0.4439 0.6277 

Macro precision 0.4609 0.6895 

Macro recall 0.4360 0.6207 

Accuracy 0.9732 0.9919 

Number of predictions 7194/7194 6518/7194 

 

 
Fig. 4. Estimated �̃�1  values of the conformal model during the 
tuning process, evaluated at different α values and epoch numbers. A 
small amount of Gaussian smoothing has been applied in the epoch 
direction. 

 

 
Fig. 3. Macro-averaged F1 score of the final standard classifier, 
evaluated on the test set. 

 



 

 

substantial improvements in F1 score, precision, recall and 

accuracy for the conformal model. The price we pay for this is 

that 676 out of the 7194 test images (9.4%) are regarded as low-

confidence, where a considerable proportion of these (18.5%) 

are from the defect classes. 

Fig. 5 shows some examples of test data with their 

corresponding true labels and prediction sets, where the first 

three examples are high-confidence and the last three examples 

are low-confidence. In general, it is observed that the low-

confidence samples indeed tend to be images where the true 

class is somewhat ambiguous, for example due to a blurry 

image or a crack where the type is not clear. 

We remark that the conformal model has an empirical 

coverage of 97.9% across all prediction sets, exceeding the 

expected 97% (as α = 0.03). We also remark that it is possible 

to use the conformal model as a ‘regular’ model, giving only a 

single prediction, by simply taking the predicted class to be the 

first class that would be included in the prediction set (thus 

using it as a sort of ensemble model over the five underlying 

classifiers). This method allows us to evaluate the conformal 

model on all test samples, not just the high-confidence ones. 

Doing this gives an F1 score of 0.50, which is an improvement 

on the standard model but not on the conformal model restricted 

to high-confidence predictions. This further supports the 

finding that the separation into high- and low-confidence 

predictions is meaningful. 

IV. DISCUSSIONS AND FUTURE WORK 

The main factor limiting the performance of the models in 

this work is the ‘real-life’ quality of the dataset. Firstly, the 

dataset is heavily imbalanced with a lack of samples in the 

defective classes, which makes it difficult for a model to learn 

a general pattern, but also difficult to accurately assess the 

model performance due to a lack of test data. Secondly, the 

labeling has inconsistencies due to different people having 

labeled different parts of the dataset. Moreover, even though it 

was attempted to remove the factitious annotations, there may 

still have been some cells left with incorrect labels in the final 

dataset.  It is certain that more data as well as relabeling the 

existing data can lead to further improvements of the models. 

However, it was seen that the conformal prediction 

framework led to significant improvements when restricting to 

high-confidence predictions. This demonstrates that even with 

a dataset of non-ideal quality, the conformal prediction 

framework works as intended, in the sense that the high-

confidence predictions by themselves are more accurate than 

when considering all predictions at once. The main benefit of 

the uncertainty-aware active learning framework is that it 

allows detecting the difficult samples for which the prediction 

can only be made with low confidence. Once these low-

confidence predictions go through human evaluation to be 

labeled with certainty, the model is retrained to give better 

performance. 

A significant downside of the cross-validation+ approach 

used in this work is its computational cost, as it requires training 

K = 5 distinct networks. This method was deemed necessary in 

this work due to limited data. There is also the limitation that 

the method cannot be easily applied to existing classifier 

systems without retraining. For future work, it would be 

relevant to explore cheaper methods such as simple split-

conformal calibration [6][15] that are both computationally 

simpler and more readily applicable to existing systems. 

Additionally, further work is required on streamlining the 

proposed active learning framework. The tuning process used 

in this work was necessary to give the desired performance 

improvements, and it may be revised. In a practical setting, one 

might want to choose the significance parameter α manually to 

gain control of the balance between the guaranteed level of 

confidence and the number of samples that must be manually 

labeled, depending on the application. Alternatively, one might 

want a fixed number of samples to be manually labeled in each 

iteration of the active learning loop. It is also important to stress 

that the parameters found in this work are by no means 

necessarily optimal in a general setting, as they may depend 

highly on the available data and the underlying deep learning 

model that is used. 

Furthermore, while the conformal prediction framework is 

theoretically well-founded, there is no theoretical guarantee that 

the active learning framework used in this work chooses the 

optimal samples for learning. As such, the work done here 

should be seen as preliminary and a “proof-of-concept”. In 

future work, more sophisticated ways of choosing samples for 

manual labeling may be considered, as has been done in other 

works [9]. Additionally, focus should be on incorporating tests 

that promote higher quality in the data. For example, it could be 

considered to modify the active learning loop such that we also 

 
 
Fig. 5. Examples of test data with corresponding true labels and 
prediction sets (PS). The top three predictions are regarded as high-
confidence since the prediction sets contain exactly one class, while 
the bottom three are regarded as low-confidence. 
 



 

 

predict on a small amount of data that was previously deemed 

high-confidence to ensure that the updated model is still 

confident in these samples, which can work as a quality 

assurance step. 
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