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Standardized methods for thermal comfort assessment already exist, namely the predicted mean vote (PMV) and
the adaptive comfort model, both valid for groups of people. To identify whether a specific person is comfortable
under different factors such as thermal, air quality, lighting, and acoustics, the only current reliable method is
subjective evaluation. To reduce the need of occupant feedback, personal comfort models are currently being
developed that aim to predict thermal response based on information from the occupant and its surroundings.
These comfort models leverage machine learning tools and have been found to provide suitable estimations of
personal comfort responses. According to the literature, an average prediction accuracy of 70-80% is attainable.
Therefore, these models are promoted as innovative and efficient ways for comfort-based HVAC control. The
challenge is however identifying the most relevant indicators and acquiring them in a simple way. Integrating
anthropometric data, e.g., age, sex, and body mass index may represent a method for generating a personal
comfort model. Including physiological data such as skin temperature, heart rate, and signal transformation
could increase performance. Strong relationships were identified between subjective thermal response and
physiological indicators, however their variation was not found to be governed solely by thermoregulation. Few
automatic control implementation examples of personal comfort models using physiological indicators shows
that challenges still exist. In order to achieve an accurate control, certain issues remain regarding acceptable
thresholds for personal comfort model performance and the optimum set of indicators and combination to
achieve it.

Control

estimate precisely at a given point in time and space (e.g., clothing level,
air speed, metabolic level) for each individual, and therefore assump-
tions which may not be representative of the situation are used instead.
As inter- and intra-personal differences are not taken into account [5,6]
discrepancies can appear between the predicted and true comfort of
each occupant. Thus, in an effort to satisfy the majority of occupants,

1. Introduction

Improper heating, ventilation, and air-conditioning (HVAC) control,
partly due to faulty operation [1] or due the static setpoints imposed,

leads to an inadequate thermal comfort for building occupants [2].
Currently, standardized thermal comfort models such as the predicted
mean vote (PMV) and the adaptive comfort model are used for the
design and operation of building HVAC systems [3,4]. Although the
former is intended for buildings with and the latter without mechanical
cooling, both comfort models are general, being oriented towards
satisfying the majority of a large group of people in a space and not
modelling individual aspects [3,4]. The PMV requires inputs difficult to
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excessively tight temperature setpoints are imposed which can lead to
energy intensive systems [2]. Furthermore, the lack of a comfort model
independent of the adopted cooling solution limits the energy saving
potential of mixed-mode buildings (using both natural ventilation and
mechanical cooling), especially during the transition between opera-
tions [7-9].

To account for inter-personal differences buildings may also be
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Nomenclature

BP Blood pressure [mmHg]
BMI Body mass index [ ]
HR Heart rate [bpm]

HRV Heart rate variability [ms]
MET Metabolic rate [ ]

RH Relative Humidity [%]
RHgk Skin relative humidity [%]
SC Skin conductance [pS]

SpO, Blood oxygen saturation [%]

Tcore Core temperature [ C]
Tmsk Mean skin temperature [ C]
Tsk Skin temperature [ C]
Abbreviations

ANN Artificial neural network
BF Blood flow

DT Decision tree

ECG Electrocardiogram

EDA Electrodermal activity

EEG Electroencephalogram
ERBT Ensemble RUSBoosted trees
ETC Extra tree classifier

GBM Gradient boosting method

GPC Gaussian process classifier
HF High frequency
HHMM Hierarchal hidden Markov model

HVAC  Heating, ventilation, and air conditioning
KNN K-nearest neighbor

LDA Linear discriminant analysis

LF Low frequency

LVQ Linear vector quantization

Logit Logistic regression

ML Machine learning

NB Naive Bayes

PECS Personalised environmental control systems

PMV Predicted mean vote
PPG Photoplethysmography

RF Random forest

RGB Red Green Blue

RR Interbeat interval

STD Standard deviation

SVM Support vector machine
TCV Thermal comfort vote
TPV Thermal preference vote
TSaV Thermal satisfaction vote
TSV Thermal sensation vote

designed with thermal zoning attempting to group occupants according
to their preferences [10] or equipped with systems providing personal
control over their near-environment, e.g., personalised environmental
control systems (PECS) [11-14]. In these scenarios, personal compared
to generalized approaches for modelling thermal comfort may offer an
advantage by adequately representing the needs of a specific group or
individual. As intra-personal differences may have a higher impact than
inter-personal differences [2] a comfort model able to predict the change
in comfort both in time and space is desired. Still, no matter the HVAC
system and design, input is required from the occupant as comfort is a
function of both thermoregulatory and psychological aspects. Personal
thermal comfort models generated using solely occupant thermal pref-
erence for automatic HVAC controls that cater to the individual needs of
occupants were presented by Jazizadeh et al. [15] and Aguilera et al.
[16]. The framework proposed requires though continuous feedback
from occupants if real-time updates are to be integrated [15-17].
Therefore, multiple studies stressed the need for subjective thermal
response emulators to reduce interaction with the occupant [6,18,19].
Since the body reacts to a change in the thermal environment in the
direction of comfort, indicators can be derived from environmental
changes and thermoregulatory reactions while additional indicators
may be derived from behaviour and occupant differences in body type (i.
e., anthropometric information). Environmental indicators reflect the
dynamics of the surroundings and thus range from temperature and air
movement to thermal history [4,20,21]. Behavioural indicators repre-
sent an action (e.g., window opening) but may also have origin in past
experience (e.g., culture, habits) [10,22-25]. Thermoregulatory physi-
ological indicators are representative of an active change induced by the
nervous system in blood flow, perspiration, and metabolic rate as a re-
action to stimuli [23,26-29]. Nevertheless, as widespread wearable and
economically feasible physiological sensing methods are emerging,
numerous physiological indicators representative of human thermo-
regulation are proposed and included beside environmental, behavioral,
and anthropometric indicators without a clear overview of their
usefulness.

Although fundamental statistical approaches or stochastic modelling
have been applied to represent the observed data [2,26,30,31], a

multitude of recent studies made use of data-driven black box models, i.
e., machine learning (ML) [32-34]. Accuracies above 80% were ob-
tained when using single physiological indicators as input to ML based
comfort models [35-37]. The performance was further enhanced by
adding environmental indicators as inputs or by using combinations of
physiological indicators [36,38-40]. Physiological indicators were also
complemented by behavioural [9,22] and anthropometric indicators for
individualized comfort models [5,41-43]. Occupant poses were
employed as well to differentiate between neutral, moderate, and
extreme thermal conditions [44,45]. The generated models were
frequently assessed relative to the PMV leading to improved perfor-
mance [46-48]. However, in most studies the models were generated on
a limited number of subjects with unequal sex distribution - in this study
considered as binary, assigned at birth - without following a standard-
ized experimental approach [49]. Despite the number of publications,
limited examples of automatic controls using personal comfort models
can be found in literature [9,24,50], with no consensus on the minimum
set of indicators relevant for personal thermal comfort development.
Although certain tests can provide a ranking of the predictor variables
[20,21] transparency still represents an issue in black box modelling [2].
This study aims to identify physiological, environmental, behav-
ioural, and anthropometric information used in literature for subjective
thermal response estimation while assessing their prediction capabilities
in ML algorithms through backward inference. Examples of personal
comfort model implementation in automatic controls are analysed with
the goal of identifying benefits compared to current comfort models.

1.1. Previous review studies

Alist of eleven review articles was found in the literature that include
personal thermal comfort sensing for monitoring or control strategies for
indoor environment. As shown in Table 1, all articles mentioned phys-
iological sensing. Except for Mansi et al. [51] and Chen et al. [49], all the
other studies lacked an analysis of the measuring principle.

Only Chen et al. [49] presented a summary of the characteristics of
the subjects analysed as the study focused on the experimental campaign
design. Mansi et al. [51], Jung et al. [55], and Yang et al. [59], included
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Table 1

%XLOGLQJDQG (QYLURQPHQW

Review articles that include thermal comfort sensing in the built environment. Physio.: Physiological. Instr.: Instrumentation. Adv./Lim.: Advantages and limitations.

Study Year Physio. Physio. Adv. and lim. of Subjective thermal Algorithm Physio. sensing HVAC control PECS
sensing sensing physio. sensing response prediction selection integration into HVAC strategies
instr. methods control
Kim et al. [13] 2018 X X X
Naylor et al. 2018 X X
[52]
Wangetal. [53] 2018 X X
Warthmann 2018 X X X X X
et al. [54]
Jung et al. [55] 2019 X X X X X
Park et al. [56] 2019 X X
Andre et al. 2020 X X X X
[12]
Lee et al. [57] 2020 X X X X
Xie et al. [58] 2020 X X X
Yang et al. [59] 2020 X X X X X
Mansi et al. [51] 2021 X X X X
Chen et al. [49] 2023 X X X X X
Present study X X X X X

a review of the equipment used for monitoring human physiology and
technologies to integrate those parameters into HVAC control systems.
Out of the three only Yang et al. [59] provided details about measure-
ment uncertainty while none presented how different measuring devices
could be integrated in monitoring and HVAC control frameworks. A
comprehensive assessment of physiological sensing approaches was also
provided, with emphasis mainly on non-invasive strategies [59].

An algorithm selection framework for personal comfort models,
providing information from data collection to algorithm selection and
evaluation was presented by Kim et al. [13]. Comfort model perfor-
mance was compared across literature qualitatively and quantitatively,
especially as a function of the ML algorithm [49,55]. The effect of in-
dicators on model performance was analysed quantitatively only by
Jung et al. [55]. Several articles discussed different algorithms that can
incorporate physiological characteristics as input parameters. However,
no detailed review of different data modelling methods for specific
physiological features or a combination of them was provided. The effect
of derived indicators or response used on model performance was also
not taken into account.

Most review articles found in the literature that included control
strategies for HVAC systems did not focus on physiological character-
istics but rather on behavioural input (e.g., occupancy, interaction with
control mechanisms, and window opening behaviour). For PECS, an
overview of control strategies was presented by Warthmann et al. [54]
without focusing on ML based comfort prediction.

1.2. Review scope

A systematic review of data driven thermal comfort prediction for
HVAC control is provided. The objective was to determine relevant input
and output for ML algorithms when used for personal thermal comfort
estimation. Due to the multitude of physiological indicators and algo-
rithms, significant changes in model performance was examined. The
analysis was made as a function of the indicators, their type, algorithm,
and subjective thermal response. By identifying examples of automatic
HVAC control strategies, the current state of the art for integrating oc-
cupants in the loop was identified.

2. Methods

Google Scholar, Scopus, and Web of Science were the major data-
bases used during the literature review. The keywords to collect relevant
research studies were the following: physiological, physiology, wear-
able, contactless, smart control, control, smart building, thermal com-
fort, sensation, preference, acceptability, comfort, HVAC system,
thermostat, sensor, monitor, sensing, occupant, response, personal, skin

temperature, and heart rate. Combinations and permutations of the
keywords were used while the method “reference by reference” was also
applied to find relevant studies. Personal thermal response estimation
for HVAC control with a particular focus on physiological indicators
represented the review scope.

As aresult a total of 133 articles were found in the literature. Articles
were selected if i) physiological indicators were measured and their
relationship to thermal comfort was investigated, ii) personal comfort
models estimating the thermal response were developed where either
physiological, environmental, behavioural, or anthropometric in-
dicators were used, or iii) occupant feedback or physiological indicators
were used in the HVAC control strategy. By reading the abstract while
considering the use of indicators (measurement and relationship to
comfort) as the main selection criteria, the list was further reduced to 98
articles. After carefully investigating the contents of the papers and
including latest publications according to the three aforementioned
criteria, a total of 94 research articles were included in the analysis.

As shown in Fig. 1, this study is comprised of three parts, namely
thermal comfort indicators, thermal comfort modelling, and control
implications. Thermal comfort model indicators were grouped accord-
ing to four categories, namely environmental, behavioural, physiolog-
ical, and anthropometric. Since the target was thermal comfort, a
description of physiological signals representative of thermoregulation
and their response to comfortable and uncomfortable conditions was
provided. A list of potential signal processing techniques for obtaining
additional indicators representative of thermoregulation was included.

A statistical approach was used to identify suitable machine learning
algorithms for thermal comfort prediction, representative input by
variable and type, and suitable metrics for the thermal response. The
analysis was made by using a Welch ANOVA test followed by a pairwise
Games-Howell post hoc test. The former checked for significant differ-
ence between the mean accuracy of the investigated group of models,
while the latter examined any pairwise significant difference in the data.
The difference between the mean prediction accuracy was categorized
by three different significance levels, i.e., ***: p < 0.001, **: p < 0.01,
and *: p < 0.05. In total 1245 models and their respective performance
were collected. The dataset was generated by collecting the input type,
the response, and resulting performance from all studies that reported
the development of a thermal comfort model using a machine learning
approach. Only thermal comfort models generated with data obtained
indoors were included. Distinction was made based on ML algorithm, if
one or multiple physiological indicators were included as inputs, the
indicator and its type (e.g., wrist skin temperature, physiological), and
the subjective response scale used and its discretization level. All models
generated by each source were included in the analysis. Only classifi-
cation algorithms were included in the analysis since it provided a
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Fig. 1. Overview of the study’s contents and outputs.

sample size sufficient to observe trends across the literature. Although
not exhaustive, only models that reported accuracy (the number of
correctly predicted instances out of all instances) were included and
compared since it was the most reported performance measure across
the investigated studies. In the comparison, for each group of models the
number of model samples (n) using the same algorithm, indicator, and
scale was provided.

Finally, the current state of physiological sensing integration in
HVAC control strategies along with control method concepts was ana-
lysed. Focus was set on identifying control frameworks and
implementation.

3. Overview of data collection campaigns

Fig. 2a shows that almost 80% of the studies were performed in
climatic chambers (42%) or laboratories (36%) with tightly controlled
experimental protocols. Climatic chambers were spaces representative
of small offices where limited number of subjects can occupy the space
simultaneously with tight control over the indoor environmental con-
ditions. Laboratories were building spaces of larger area specifically
assigned for conducting experiments but not necessarily equipped with a
precise indoor environment control.

Field studies were performed in spaces of different typologies. These
ranged from office buildings (both single and shared spaces) [38,60,611],
educational [10], residential [22], and commercial buildings [62]. In

field studies the indoor environmental conditions were not tightly
controlled and the aim was to observe the variability of the physiological
indicators under realistic settings. In some cases subjects were also
exposed to outdoor conditions with or without shading [25,63].

For office settings subjects performed office work and had an activity
level equivalent to 1.2 met or lower during the experiment. Other ac-
tivities performed during experiments were walking [25,64,65], exer-
cising [25,66], and climbing stairs [67] for a certain part of the
experiment.

On average clothing insulation was between 0.25 and 1.2 clo
(Fig. 2b). Only Takada et al. [64] investigated the thermal sensation of
occupants wearing only trunks (0.03 clo). Other studies either main-
tained clothing insulation constant even if the temperature of the
environment was varied from cold to hot (between 18 and 30 C) [6,
68-71], adjusted it according to the indoor thermal environment, i.e.,
higher if cold and lower if hot [19,61,72,73], or tested both high and low
clothing insulation at each temperature level [74]. Experiments with
light clothing between 0.49 and 0.76 clo during extreme cold conditions,
8 C-14 C, were also performed [75].

Fig. 2c shows that most studies included fewer than twenty-five
subjects, with only two studies investigating more than ninety subjects
[30,48]. The goal was usually to obtain equal sex distribution but male
bias was observed [31,63]. The age distribution of the subjects (Fig. 2d)
showed that young adults were predominantly included in the studies.
Most subjects were ‘students’ while other interest groups consisted of

Fig. 2. General statistics of the performed studies on thermal comfort estimation.
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scientific staff and professors at the time of the study [62,76,77]. The
body mass index (BMI), weight, and height reporting was not homoge-
neous, certain studies providing limited information. Although the mean
BMI distribution (Fig. 2e) shows that data was representative of healthy,
young and middle-aged adults, the minimum and maximum values re-
ported were between 17 and 32, respectively, which shows that several
under- and overweight subjects were also included. This is supported
also by the weight and height data, Fig. 2e and f. Nevertheless, no
heavily under- and overweight subjects were included in the studies. A
summary of the experimental protocols presented in the investigated
papers can be found in Appendix A.

4. Personal comfort model indicators
4.1. Environmental indicators

Environmental indicators represent the basis for thermoregulation
since surrounding conditions trigger a reaction of the human body in the
direction of comfort. These indicators also represent key parameters for
current indoor thermal comfort models such as PMV [3,4].

According to the literature, the environmental indicators included in
the personal thermal comfort models were both indoor (air temperature,
operative temperature, mean radiant temperature, relative humidity,
and air speed) and outdoor (air temperature, relative humidity, and
solar radiation) parameters. Outdoor environmental indicators were
usually measured using weather stations [9,60] and were used as proxy
for clothing habits, thermal expectation, and operation of HVAC systems
[60]. Indoor environmental indicators were obtained with sensors
placed within the occupied space, some even in close proximity (e.g., on
the desk) or worn by the subjects [10,22,24,60,61,78].

Additional indicators were the operation mode of the HVAC system,
e.g., heating or cooling [79], or derived from the variation in time or
over the space of the environmental parameters. General statistics, e.g.,
mean, minimum, and maximum, were used to investigate the variation
of indoor environmental parameters [37,69]. Radiant temperature
asymmetry was also included by determining space gradients generated
by solar radiation and cold windows from measurements obtained from
sensors across the space [46]. Several studies also integrated thermal
history as a function of conditions in previous indoor environmental
exposure [20] or as a function of the air conditioning strategy (me-
chanical, natural, or outdoor) [21,80].

4.2. Physiological indicators of human thermoregulation

Changes in neural activity, heartbeat, blood flow, activity, body
temperature, and sweat are governed by the human thermoregulation
mechanism. From these, several physiological indicators representative
of comfort can be obtained [11,81,82]. A summary of these indicators
can be found in Table 2. Fig. 3 provides a list of the most common
physiological indicators obtained from the human body and the asso-
ciated body part on which the measurement was made. The values
indicate in percentage points the number of times an indicator was
measured on a certain body part from the studies included in the present
study.

a) Neural activity

Since human thermoregulation is controlled by the central nervous
system, neural activity could be an effective signal for thermal sensation
[26,83-85]. This is because thermal signals at the skin level reach the
hypothalamus which sends nerve impulses as a reaction to the stimuli
[17,23,29,35,83]. Brain electrical activity correlation to thermal
sensation has been investigated under different temperature and relative
humidity (RH) levels. Still, not all brainwave bands are relevant to
thermal comfort; studies point out only Alpha (8-14 Hz), Beta (13-35
Hz), Delta (0.5-4 Hz), and Gamma (35-45 Hz) bands as useful for

%XLOGLQJDQG (QYLURQPHQW

Table 2
Physiological indicators representative of thermoregulation.
Signal Domain Indicator Description Source
Neural Frequency  Alpha (8-14 Hz), Brainwave [26,35,77,
activity Beta (13-35) Hz, frequency 83-87]
Delta (0.5-4 Hz), bands
Gamma (35-45
Hz)
Neuromuscular Muscle [87]1
activity response to a
frequency bands nerve’s
Alpha (8-14 Hz), stimulation
Beta (13-35 Hz)
Heartbeat Time Heart rate (HR) Heart beats per [6,9-11,18,
minute 20-22,25,
29,35,39,
40,42,43,
46,50,
60-62,65,
67,75,77,
79,88,89]
Time Heart rate The electrical [18,23,26,
variability (HRV) activity of the 27,47,68,
heart 83,87,90]
Blood flow Time Blood pressure Pressure of [21,42,62,
(BP) blood onwall of  80]
blood vessels
Time Blood oxygen Blood oxygen [18,42,43]
saturation (SpO-) intake
Time Respiration Pulmonary [18,26,71,
activity 91]
(indirect
measurement of
Sp0,)
Time Skin blood flow Blood volume [11,17,29,
changes 72,88]
Activity Time Metabolic rate Change in [11]
(MET) metabolism and
energy
expenditure
Time Activity Motion [9,24,60,
61,67]
Time Calorie Motion [22]
consumption
Temperature  Time Core temperature Internal body [39,70,88,
(Tcore) temperature. 92,93]
Inner eye
temperature
was considered
as Tcore
Time Skin temperature Temperature [5,6,9,11,
(Tsk) measured at the 18-22,25,
skin level 261,
(covered/ [28-34,
uncovered by 36-43,46,
clothing) 48,50],
[60,61,
63-65,67,
69,701,
[72-74,76,
79,80,83,
87,891,
[92-106]
Sweat Time Skin relative Skin wettedness  [50]
humidity (RHsk)
Time Skin conductance Electrical [22,35,42,
(SC) conductance of 46,61,67,
skin 79,87,105]
Time Skin hardness Contraction of [72,105]
arrector pili
muscles
Time Sweat Amount of [66]
sweat
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Figure 3. Summary of body parts and the physiological signals — Activity, heartbeat, neural activity, blood oxygen saturation (SpO,), skin temperature (Tsk), sweat,
electrodermal activity (EDA), core temperature (Tcorg), blood flow (BF) — investigated in the analysed studies. The values indicate in percentage points the dis-
tribution of measured indicators by body part from the studies included in this paper. Blood flow (BF) stands for any measurements of blood pressure and blood
volume changes. Heartbeat includes both heart rate variability and heart rate measurements, while sweat includes both measurements of relative humidity and

amount of sweat.

differentiating between neutral and uncomfortable conditions [84-87].
According to Kim et al. [86], who investigated the neural activity of
thirty students in subway stations, Beta and Gamma band powers
frequently increased in an uncomfortable environment. A similar
outcome where the Beta band increased when the subjects were un-
comfortable, although under steady state conditions with subjects
resting in bed, was observed by Yao et al. [84]. Furthermore, the authors
mentioned that the Alfa and Delta bands helped differentiate cool and
neutral thermal sensations, respectively, while the Theta band had no
clear relationship with the thermal sensation [84]. Pao et al. [87] also
investigated the electrical activity of muscles and nerves as a potential
indicator of neuromuscular activity. Although usually used as a test for
neuromuscular activity, according to the authors the electrical activity
of muscles and nerves is influenced by exposure to temperature — as
ambient temperature decreases, the amplitude increases.

b) Heartbeat

Depending on the intensity and direction of the thermal sensation,
the hypothalamus initiates multiple physiological processes [29]
sending nerve impulses through the autonomic nervous system [26,27,
68] which regulate the heart rate, blood oxygen saturation, and blood
pressure. As the blood flow through the body is driven by the heart,
numerous signals correlated to human thermoregulation could be
measured. Heart rate (HR) or pulse rate is the speed of the heartbeat
measured by the number of contractions of the heart per minute [42,88].
The HR influences how much thermal energy leaves the body [75],
increasing in hot and decreasing in cold environments [23]. It can be
determined from the heart rate variability (HRV). HRV reflects the time
variation between successive heartbeats and evaluates the balance and
capacity of the autonomic nervous system which controls human ther-
moregulation [27,90].

¢) Blood flow

The heart’s activity can also be derived from blood volume changes
in the vessels [29,68]. Measured also from the blood flow, blood pres-
sure (BP) represents the pressure on the wall of the blood vessels [42,
62]. BP is closely linked to thermoregulation and can reflect the effect of

thermal stress on the cardiovascular system [42,107]. It consists of
systolic pressure, indicating the highest pressure that the heart exerts
while beating, and diastolic pressure, which is the pressure in the ar-
teries between heartbeats [42,62]. However, Chaudhuri et al. [42] did
not find a clear distinction in thermal state due to neither systolic nor
diastolic blood pressure.

Blood oxygen saturation (SpO,), another indicator obtained from the
blood flow, is the percentage of haemoglobin binding sites in the
bloodstream occupied by oxygen [18,42]. Linked with respiration, it can
indicate the impact of thermal stimuli on the respiratory system [18,42].
Chaudhuri et al. [42] found that under warm discomfort (maximum
27 C), males had higher SpO; fluctuations. However, SpO; was not
found to be sensitive to changes in temperatures. Respiration was also
investigated by Jung and Jazizadeh [71,91] at varying thermal condi-
tions (20 C-30 C) to identify possible correlations between subtle
movements from pulmonary activity and the subjective thermal
response. Although not achieving statistically significant results due to
the limited number of participants, it was determined that respiration
states are sensitive to changes in thermal conditions [91]. Furthermore,
if body surface and the volumetric rate of oxygen consumption would be
known, the pulmonary activity could be used for quantifying metabolic
rate in real-time [71].

d) Activity

The heart rate is closely linked to the metabolic rate (MET) [9,23,46,
75,108]. An increased heart rate and body acceleration could be asso-
ciated with enhanced metabolism or energy expenditure [60]. MET
represents the conversion of chemical into mechanical and thermal en-
ergy and thus it is an important determinant of thermal comfort or strain
[108]. By estimating MET, the energy expenditure in form of thermal
energy to the environment can be determined. However, MET is difficult
to measure directly in practice. Thus, values from standards are used if
the activity is known, e.g., from performing office work or walking
[108], or activity level (e.g., movement) is used as a proxy instead [22,
24,60,671].

e) Temperature
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Another physiological indicator dependent on the metabolic rate is
the core temperature (Tcorg) [64,109]. The core represents the tissue
not affected by a temperature gradient at the skin level [110]. Therefore,
the Tcore's influence on thermal sensation is weaker and subject to
smaller variation than the skin temperature under sedentary conditions
[64]. Nevertheless, this indicator is representative of increased meta-
bolic activities, e.g., walking, or when the body is under heat stress [64,
109].

Skin temperature (Tsg) is a common physiological indicator for
human thermal sensation [6,41,95]. This is because the skin represents
the boundary layer which regulates the heat transfer between the human
body and the surrounding environment [6]. Regulation is realized
through vasoconstriction and vasodilation [27,94]. Under warm con-
ditions, blood flow at the peripheries is increased (vasodilation) leading
to heat dissipation and an increase in skin temperature [6,28,29,41,92,
95]. When cold, the cutaneous blood flow and heat dissipation are
restricted thus lowering the skin temperature [28,29,41,92,95]. Usually
Tsk measurements follow the standards, the main body parts investi-
gated being forehead, neck, right scapula, left upper chest, right upper
arm, left forearm, left hand, right abdomen, left paravertebral, right
anterior thigh, left posterior thigh, right shin, left calf, and right instep
[110]. The skin temperature’s variation was studied under both
steady-state [74,84,100] and transient conditions [18,31,64,96] and
was found to be a more reliable physiological response than heart rate
under transient conditions [29]. High variance in Tskx was associated to
cold discomfort while small variance with warm discomfort [96].
However, Tsg will not change dramatically at the same ambient tem-
perature level because of the human thermoregulatory function [103].

According to Liu et al. [31], under transient conditions from
32/30/28 Cto 25 Cand back, the most sensitive body parts to hot and
cold stimulus are head, chest, back, and calves. Under transient thermal
environments from 22/26/32 C-37 C and back, Tsx was found to be
significantly more sensitive to temperature down-steps [18], with the
Tsk of arms, back, and legs as the strongest reacting in both up- and
down-step change. As an independent body part, the wrist was found to
be responsive for differentiating the neutral thermal sensation from
slightly cool or warm under drifting temperatures from 20 Cto 30 C
[6]. A detailed analysis on the wrist skin temperature’s relationship with
the TSV at temperatures between 18 and 35 C showed a positive cor-
relation between the wrist Tgx and the TSV, with little difference be-
tween measurement points around the wrist [101]. Wrist Tgg was found
to distinguish between cool and cold conditions [36], although the Tgk
of wrist, neck, upper arm, and thigh were all correlated with the TSV.
This is however in counterargument with Ghahramani et al. [28] who
mentioned the wrist as inappropriate for thermoregulation representa-
tion due to the absence of vasodilation. While analysing only different
sections of the face, i.e., ear, cheek, front face, and the nose during
extreme varying conditions (comfort, 18 C, and 29 C) they found the
Tsk of the ear and nose as the most responsive. The latter was most
representative of overall thermal sensation during cold stress while the
former during heat stress. He et al. [33] also found that nose and hand
temperature vary more than cheek temperature under cool and neutral
thermal sensations, with lower hand than nose temperature during cool
sensation. Moreover, similar temperature changes for cheek, nose, and
hand under warm sensations were observed. A good correlation between
the forehead Tsk and the thermal sensation was also found when sub-
jects were exposed to temperature up-steps and down-steps between 16
and 27 C[73,76] The Tsk of another highly vascularized body part, the
neck, was also found significant for distinguishing between hot and
warm thermal sensation categories [36].

f) Sweat
Although Tgg can still be used as an indicator even at low or high

temperatures [48,63,74] its effectiveness decreases in hot environments
[36]. Outside certain thresholds, below 18 Cand above 33 C, restricted
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blood flow and shivering or increased blood flow and sweating appear,
respectively [6,17,72,88]. Thus, skin humidity level (sweat rate [66])
represents a potentially suitable indicator for hot conditions [22,23,42,
67]. The activity of the eccrine (sweat) glands, or electrodermal activity
(EDA), can be obtained by measuring the skin electrical conductance
(SC). As the presence of sweat enhances the SC [67], the latter could help
differentiate between high levels of warm to hot thermal discomfort [42,
111]. Even though EDA can be used as a thermoregulatory response, it
also reflects changes in the sympathetic nervous system and thus could
also be attributed to arousal (stress, engagement, and excitement) and
emotion [22,23,35,67]. Still, according to Gerrett et al. [111], SC could
though represent a better indicator than skin wettedness (e.g., skin
relative humidity), which does not take into account intradermal sweat.
Skin hardness could also provide an indication of thermoregulatory
stress [105]. Governed by the arrector pili muscles connected to the hair
follicles of human skin, its increase or decrease varies depending on
thermal status [105], e.g., the contraction of the arrector pili muscles
(hardened skin) preserves heat when the body is exposed to a cold
environment [23].

g) Indicators derived from physiological signals

Although the signals presented so far could be directly used to a
certain degree, several studies attempted to further improve prediction
power by deriving additional indicators. A summary of the indicators
derived from neural activity, heartbeat, and skin temperature is pro-
vided in Table 3.

From the HRYV three type of indices can be derived belonging to the
time, spectral (frequency), and non-linear domains [23,27,68]. Time
domain indices, i.e., statistical indices such as mean, median, and
standard deviation (STD), are used to interpret the fluctuations in the
cardiac cycle (inter-beat interval RR) [47]. Spectral analysis indices such
as the ratio of low (LF) over high frequency (HF) of the HRV, LF/HF, are
presumed to be representative of the balance of the autonomic nervous
system, i.e., sympathetic and parasympathetic [27,83,84]. Though also
influenced by the psychological state [47] since the sympathetic nerve
generates vasoconstriction or sweat under discomfort, LF/HF could be
representative of thermoregulation [90]. Non-linear analysis helps
explain short and long term signal perturbations, predictability of the
signal, and similarity in RR intervals representative of the non-linearity
in cardiovascular regulation and thus the thermoregulation mechanism
[47].

The RR interval was found to be longest in cold environments (18 C)
and shortest in hot environments (30 C) [23]. LF/HF was found to be
correlated with the TSV [27,83,84], with air temperature having the
most significant influence on the indicator compared to RH which only
impacted the LF/HF at high levels [27,35]. Under temperatures of
18-30 C and humidity levels of 30-80%, a threshold of one for the
LF/HF (balance) was found indicative of comfort, with greater values
(high sympathetic activity) indicating hot or cold discomfort [27,47,68,
84]. These results were found for steady state conditions, with subjects
either performing office work or lying in bed, where thermal sensation
was monitored only at the end of the experiment. Nevertheless, HRV and
LF/HF were also found to be sensitive when investigated under transient
conditions during experiments between 22 and 37 C [18]. Similar to
Tsk, these indicators were significantly more sensitive to temperature
down steps [18].

The indicators derived from the Tsx were mostly related to its vari-
ation across the body surface and in time. Although requiring up to
fifteen measurement points, mean skin temperature (Tysg) was also
calculated according to standardized formulas found in literature [31,
34,63,64,83]. Other approaches involved determining a mean surface
temperature from the Tgk of the body parts analysed [70]. The variation
of Tsk was determined between different body parts, e.g., face and hand
[701, but also for single body parts, e.g., different regions of the face [73,
92]. Surface based Tgk gradients and temperature gradients between
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Table 3
Indicators derived from physiological signals. Adapted and updated from Refs. [47,68].
Signal Domain Indicator Description Source
Neural Frequency Average and relative power of Alpha and Beta bands Brainwave [87]
activity
Integration, mean, root mean square of neuromuscular activity Neuromuscular electrical activity [87]
Heartbeat Time Mean, min, and max of HR Over a period (e.g., every 5 min) [75,77]
Mean and Median RR Average of all RR [47,68,87]
RMSSD Square root of the mean of sum of difference of [35,47,68]
successive RR
SDANN Standard deviation of difference between adjacent RR [35,47,68]
intervals
pNNx Percentage of RR pairs that differ by x milliseconds [35,47,68]
Frequency TP Total spectral power (0-0.4 Hz) [43,68]
VLF Spectral power in very low range frequencies [35,43,68]
(0.003-0.04 Hz)
LF Spectral power in low-rate frequencies (0.04-0.015 Hz) [35,43,47,68,83,
84]
HF Spectral power in high range frequencies (0.15-0.4 Hz)  [35,43,47,68,83,
84]
LF/HF Ratio between LF and HF [27,35,43,47,68,
87]
Non- DFA(al) Short-term fluctuations of detrended fluctuation [68]
Linear analysis
DFA(al) Long-term fluctuations of DFA [68]
SD1, SD2, SD1*SD2 Short and long-term Poincaré plot variability of [47,68]
adjacent RR
SampleEn Sample entropy (complexity) [68]
Temperature Surface Temperature gradient of Tsk Difference between body parts [70,74,101]
Mean, STD, Median, and variance of Tsk in a predefined area Thermal imaging [70,92,95,98,
104,112]
Tmsk Mean skin temperature of different body parts [19,26,31,34,70,
85,97,103]
Heat loss Derived from Tgk or measured [31,113]
Time Gradient of Tsk, mean of gradient of Tsk, and mean square root of  1st derivative [6,37,42,64,65,
gradient of Tsg within a predefined window 69,75,89]
Min, Max, Mean, Median, STD of Tsk gradient General statistical parameters [37,38,60,69,75,
79]
Gradient of Ty 1st derivative [19,26,31,34,70,
85,97,103]
Frequency Spectral analysis of Tsk Mean power of frequency bands — 0.05 to 0.1 Hz, [101]

0.1-0.2 H, 0.2-0.3 Hz, and 0.3-0.5 Hz

different body parts, especially head-to-extremity or between distant
points, were used to improve subjective thermal response prediction
[74,101].

The Tsk variation in time was also an effective way of differentiating
between cold and heat stress [6,64,112]. Descriptive statistics were
applied to avoid the cancelling effect between positive and negative
gradients [42]. Different windows ranging from 10 s to 60 min were
used [69,70,75,95,112]. However, for a temperature step change, a
better correlation was obtained when the Tgk gradient was determined
over a greater time span or when relative to a reference Tsk represen-
tative of a sedentary activity (34 C) than when determined over short
time periods, e.g., 5 min [73].

For non-steady state indoor conditions between 20 and 38 C, Tysk
and its time differential were also closely related to overall thermal
sensation even during light exercise, e.g., walking, aside for moments
when the time gradient direction of Tsk did not differ significantly across
the monitored body parts [31,64]. According to Yao et al. [83], as the
room temperature increased from 21 to 29 C, smaller time variations
between Ty of different body parts but an increase in the Tysk occurred.

The power densities resulting from the spectral analysis of the Tgk
signal were rarely included in thermal response prediction. Still, it was
found that for light office work at temperatures between 18 Cand 35 C
the average power density of each frequency band — 0.05 to 0.1 Hz,
0.1-0.2 Hz, 0.2-0.3 Hz, and 0.3-0.5 Hz - generally decreased as TSV
increased [101]. An additional indicator associated with TSV, heat loss,

either computed using measured Tsk or directly measured using heat
flux sensors showed high correlation in both up and down-step changes
[31,113].

Though limited, general statistics and time gradients were also used
for other physiological indicators than Tggx and HRV signals. The mean
squared gradients within and the first order gradient over the past 5 min
of SpO, and SC were derived by Chaudhuri et al. [42]. Standard devi-
ation of wrist accelerometry over 5 or 60 min was used by Liu et al. [60].
The mean SC and its difference within and over 1, 5, and 10 min in-
tervals was determined by Yoshikawa et al. [79].

4.3. Behaviour and anthropometric indicators

It is not possible to generalize the thermal sensation experienced by
one person to another [75,98]. This is due to both differences in phys-
iological and psychological aspects [27]. Therefore, attempts were made
to find indicators that personalize thermal comfort models. Occupant
characteristics, i.e., anthropometric information (sex, age, weight,
height, BMI, or body fat), were included [21,75]. This is because sig-
nificant differences were observed between thermal perception across
sex and BMI groups [5,35,85]. Differences between sexes were also
observed in the optimum set of variables used for predicting thermal
response, with pulse rate being significant only for women while SpO,
only for men [42].

Behaviour was also included in personal comfort models through
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indicators such as activity [22,24,67], clothing [50], preference history
[10], and occupancy [114]. It was also integrated through the HVAC
induced changes, e.g., setpoint [24], heating or cooling control intensity
[34], and window opening [9,24], if operated by the users. Activity may
help explain inter-personal differences [85]. However, compared to sex,
MET was observed to have a lower impact on the thermal response
under stationary conditions [5,40]. Clothing insulation was found to be
correlated with the thermal response [3,35]. Since clothing can vary
throughout time, difficulties arise though in its accurate estimation.
Multiple approaches were observed, such as inferring it from the dif-
ference between Tgk and proximity temperature [22,98] or through the
infrared radiation emitted by the human body which is negatively
correlated to the clothing level [114]. Using clothing surface tempera-
ture directly may also be possible, as according to Lu et al. [98], it
presented a higher correlation with the thermal response than Tgg.

In order to reduce dimensionality but still address individual dif-
ferences, numerous studies normalized the data by the anthropometric
information (e.g., sex and BMI) and clothing insulation instead of adding
new inputs to the model [41,43].

4.4. Subjective thermal response

The subjective thermal response is usually used as the predicted
variable, i.e., the output of the personal comfort model, but it may also
be used as input [10,24,32,89] and can be measured by using different
voting methods and discretization levels. However, as already
mentioned by André et al. [12] there is no homogeneous approach
across the literature, visible also in the data gathered in the present
study.

Four different scales were used for measuring the subjective response
of the subjects, namely thermal comfort vote (TCV), thermal sensation
vote (TSV), thermal satisfaction vote (TSaV), and thermal preference
vote (TPV) [115]. Variations of these scales were also observed, one
particular being the TPV scale (prefer cooler/no change/warmer) fitted
with a slider indicating the intensity associated with the vote as a sur-
rogate for the TSV [15].

5. Analysis of machine learning based thermal comfort models

For the thermal comfort models generated in the literature multiple
ML algorithms were used with single or multiple inputs to predict the
subjective thermal response. The inputs were of different types, namely
physiological, environmental, anthropometric, and behaviour, to which
feature transformations were performed. Since the goal was to investi-
gate the data for the most relevant ML algorithms, input, and response
variables, the thermal comfort models were compared in terms of model
performance.

5.1. Model performance by algorithm

Fig. 4 shows the model performance based on the most frequent
machine learning algorithms for subjective thermal response prediction
used in the reviewed literature, namely decision trees (DT), K-nearest
neighbor (KNN), random forest (RF), and support vector machine
(SVM). Their performance relative to simple algorithms, the logistic
regression (Logit), Naive Bayes (NB), and linear discriminant analysis
(LDA), and a complex algorithm known for its ability to deal with non-
linear problems [47], the artificial neural network (ANN), were included
in the comparison. All other ensemble trees methods aside for the RF
used in the studies, namely ensemble boosted trees, bagged trees, RUS
boosted trees, gradient boosting method, and extra tree classifier, were
grouped under EMTree. For each distribution the samples consisted of
data from at least four different studies. Overall there was little differ-
ence between the mean accuracy across algorithms, as reported by other
studies [69]. The accuracy distribution across all studies included (All)
showed a mean accuracy of 80% but also high variability across the ML
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Fig. 4. Model performance depending on the machine learning algorithm used,
logistic regression (Logit), naive bayes (NB), linear discriminat analysis (LDA),
decision tree (DT), artificial neural network (ANN), K-nearest neighbor (KNN),
random forest (RF), ensemble of trees except for RF (EMTree),and support
vector machine (SVM). The model performance distribution of all collected
models is given under group All. The number of model samples (n) using each
algorithm is given. Significant differences between the mean prediction accu-
racy is given for different significance levels (p-value).

models obtained.

KNN’s mean prediction accuracy was closest to the overall mean
shown in Fig. 4, followed by the ANN. According to Aryal et al. [37],
KNN’s high performance may be due to the way it operates, similar to
how people categorize their thermal sensation, i.e., slight difference
from neutrality may also be considered acceptable. Therefore, KNN may
represent a potential baseline algorithm for personal comfort models.
Out of all algorithms the SVM registered the highest mean accuracy,
significantly higher than the KNN and DT. This is in line with the find-
ings of Laftchiev et al. [46] and Huang et al. [22] - not included since
accuracy was not reported - which compared multiple regression and
classification algorithms for thermal comfort estimation. As reported by
Dai et al. [74], this may be due to the Gaussian kernel which can deal
with non-linear relationships present in the thermodynamic response
and physiological indicators [46,74]. RF had a higher mean accuracy
compared to KNN and Logit which may be due to RF’s random sampling
of the features at each split thereby reducing the chance of over-fitting
[112]. The mean accuracies of the SVM, RF, and EMTree were higher
than the overall mean and significantly higher than that of Logit, a linear
algorithm. No significant difference was observed though when
compared with the ANN algorithm. Another ML algorithm which led to
accuracies higher or equal to 85% but not included in Fig. 4 due to the
limited samples was learning vector quantization (LVQ) [67].

5.2. Model performance by physiological indicator

Fig. 5 shows the distribution of model performance by physiological
indicator used as input to the model. Only models that included a single
physiological indicator are shown. Due to the limited number of model
samples using other indicators, only the models that used HRV and
related indicators and the Tsg were included. Tsk a1, takes into consid-
eration all models that used only Tsk as input no matter the combination
e.g., Tsk of head and arm. Since the Tsx may vary across body parts, it
was further divided into Tsk urap, Tskarms, and Tsgoruer Which in-
cludes the Tsx measured above the neck level, from the finger to the
upper arm, and from the neck down except for arms, respectively.
Distinction was made between Tsk nrap, Tsk,arms, and Tsk orHer Since
usually the skin on the head and arms was not covered by clothing and as
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Fig. 5. Model performance by physiological indicator used as input to the
model. The mean is given as an orange diamond. Tgk a11, represents all models
that used only Tsk as input no matter the combination. Tsk yrap includes models
with Tgx measured above the neck level as input. Tsk arms includes models with
Tsk inputs from the finger to the upper arm. Tk oruer considers models with
Tsk inputs from the neck down except for arms. The number of model samples
(n) using each indicator is given. Significant differences between the mean
prediction accuracy is given for different significance levels (p-value). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

the Tgi of different body parts was shown to impact the structure of the
model [21].

The statistical analysis shows if there is any significant difference
between the mean model accuracy obtained using different physiolog-
ical indicators. According to the data gathered, the model mean accu-
racy, shown by the orange diamond, was on average similar if skin
temperatures were measured only at the head level (Tsk nrap) or on
multiple body parts (Tsg ). Thus, adding the Tsk of a secondary body
part other than the head may not necessarily boost performance. Still,
several studies [32,33] indicated that measuring the Tgg of more than
one body part may be beneficial, especially if distant body parts are used
e.g., cheek and hand [33]. This may be particularly relevant for
non-uniform conditions as according to Liu et al. [63] adding the Tgk of a
secondary body part improved the model accuracy by 4-7% in outdoor
conditions when exposed to solar radiation, with a high correlation
between TSV and the Tgk of exposed body parts. The mean accuracy
slightly decreased if Tsx was measured only on the arms (Tsk arwms)-
However, it significantly decreased if measured on any other body part
(TSK,OTHER) rather than the head (TSK,HEAD) or arms (TSK,ARMS): indi-
cating that uncovered skin temperatures may be more representative of
thermal comfort and discomfort. Although only slightly higher, using
the HRV and related indicators should lead to a significantly better
performance than using Tsk (Fig. 5).

As single input variables, skin blood flow and sweat level related
signals led to lower performing comfort models than when using Tsg
according to Cheng et al. [72]. SC explained only 51% of the variance in
the thermal sensation as opposed to using skin hardness which improved
the model fit to 63% for data obtained under neutral, warm, hot, and
cold conditions [105]. Thus, physiological indicators related to BF, BP,
and sweat alongside Tcogg and activity — not included in Fig. 5 — were
mostly used as secondary physiological inputs to Tsk or heartbeat signals
[42,61,67,72,79]. When including skin hardness and SC as predicting
variables beside Tgg, the model fit increased by 17% [105]. Combining
Tsk with sweat signals when using fan desk ventilation at a temperature
of around 26 C led to higher model performance than with skin blood
flow [72]. Combining wrist RHgg with other physiological inputs,
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namely wrist Tgg and HR, and environmental indicators the model
explained 89% of the variance in the TSV collected at temperatures
between 18 and 27 C [50]. For transient conditions between 18 and
27 C, prediction accuracies up to 94% were obtained when including
SpO; and BP for male and female, respectively, alongside Tsg and SC
[42]. Tcore was only integrated as a comfort model input by Sugimoto
et al. [39] which led to an accuracy of up to 95% with a hierarchal
hidden Markov model (HHMM), i.e., structured multi-level stochastic
processes. The high accuracy was though obtained by including also
hand skin temperature, HR, 3-axis acceleration, air temperature, and
RH. Neural activity was rarely used as input to ML algorithms. Shan
et al. [85] used brainwaves as the single physiological signal and Pao
et al. [87] combined both brainwaves and neuromuscular with activity,
HRYV related signals, and body temperature as features. With over 500
brainwave features (1 Hz bins of the mean power density), Shan et al.
[85] predicted the TSV with an accuracy of over 90%.

5.3. Model performance by indicator type

The influence of input type, i.e., environmental (E), physiological
(P), anthropometric information, and behaviour (AB) and associated
feature transformation (FT) on the model performance is shown in
Fig. 6. The accuracies of the developed models are grouped by input,
namely E, P, or AB. The influence of feature transformations or derived
indicators is shown by indicating the groups where ‘FT” was used. The
right side of the figure shows if there is a significant difference between
the mean accuracy of each two groups.

Using solely environmental indicators may lead to poor thermal
comfort prediction performance, being also one of the reasons for inte-
grating physiological indicators. Generating models with data solely
from physiological indicators should on average lead to an expected
accuracy around 80% but with high uncertainty with values less than
40% and up to 95%. When including environmental indicators, the
difference between the mean prediction accuracy is insignificant,
although some models may reach a higher accuracy, as mentioned by
Salamone et al. [61]. The inclusion of HR along with environmental data
was found to enhance model accuracy by Barrios et al. [75]. According
to Huang et al. [22] including humidity and near body temperature
beside SC, Tsg, HR, step count, and estimated calorie consumption
increased performance by 20-24%. Investigating the heat exchange
between the environment and the human body may be useful when
modelling comfort. As shown by Shan et al. [36], the temperature at a
point suspended 2 mm above the wrist representative of the heat flow
between the skin and the environment had a strong correlation with
TSV, increasing the prediction accuracy of the comfort model for tran-
sient temperatures between 16 and 30 C. The increase may be in the
order of 3-4% under drifting conditions between 22 and 29 C regard-
less of the classification algorithm used [69]. Environmental data may
also be relevant for TSV prediction when occupants make use of PECS.
According to Aryal et al. [37]. data from the environmental sensors led
to an increase between 2 and 5% compared to using only wearable or
thermal imaging data. Furthermore, including the air temperature as a
secondary feature can make the prediction method more reliable and
inclusive [43].

The use of feature transformation seems to be a major contributor to
model accuracy. Group E P FT shows accuracies ranging from 70%
to 95%, significantly higher and in a narrower range than P and E P
alone. Aside from temporal and surface temperature gradients,
including HRV derived features alongside environmental indicators
could improve the prediction accuracy under transient conditions be-
tween 15 and 26 C [47]. Integrating the heating and cooling perfor-
mance of the system may also improve the prediction accuracy by 10%
[371.

Although leading to a significantly lower mean model accuracy than
when E, P, and FT were used, including anthropometric and behaviour
indicators could lead to high performance. According to Favero et al. [2]
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Fig. 6. Model performance depending on the indicator type included in the model. Data is grouped by input used, i.e., environmental indicators (E), physiological
indicators (P), anthropometric and behaviour indicators (AB), and combinations between them, e.g., E P  AB. FT denotes the use of feature transformations, e.g.,
time gradient, and other derived indicators. The number of model samples (n) using each indicator type is given. Significant differences between the mean prediction

accuracy is given for different significance levels (p-value).

no matter the model, clothing and BMI were more important than time
of day and operative temperature. Taking into account human activity
variations according to the activity performed beside other physiolog-
ical and environmental indicators, increased model accuracy by up to
8.5% according to Lee et al. [67]. User preference along with time, near
body temperature, location, and HR also led to high performance when
gathered during a field test where people were asked to provide feed-
back when moving across building zones [10]. Chaudhuri et al. [41,43]
also increased the thermal comfort prediction accuracy by 22% when
normalizing physiological measurements based on the skin area,
clothing insulation, sex, and BMIL.

Including all possible indicator types, E, P, AB, and FT may not
necessarily lead to a high accuracy, which could be due to collinearity
between features [20,85] and because certain indicators were not
representative of the investigated conditions e.g., sweat rate when cold.
As observed, the mean model accuracy is around 76%, significantly
lower than when excluding E, AB, or E and AB. Thus the set of features
must still be optimized when training and testing the algorithm [36].

5.4. Model performance by subjective thermal response

The method with which subjective thermal response is collected may
also have an impact on model performance as shown in Fig. 7. Using TSV
led to the highest prediction accuracy, while the TPV to the lowest.
Mean model accuracy was also significantly lower for TPV than for
thermal comfort vote (TCV), TSV, and thermal satisfaction vote (TSaV)
scales. One of the uncertainties related to the use of thermal response
scales according to André et al. [12] is the variation in discretization
across thermal comfort studies.

As seen in Fig. 8 numerous studies combined scale intervals, thus
reducing the scale complexity from seven down to two classes. TSV was
downscaled to either three [22,63,67,88], and two [47,63]. Down-
scaling the number of classes was also done with the 7-point TSaV by
Aryal et al. [37,69]. TPV was always considered as three classes for ML
based comfort models. TCV was also used as a three [34,97] or a two
class [38] scale. A general trend can be observed across all vote
collection types used. As the scale is downsized, the resulting mean
accuracy is increasing. This trend is significant and indicates that the
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Fig. 7. Influence of subjective thermal response, namely thermal comfort vote
(TCV), thermal preference vote (TPV), thermal sensation vote (TSV), and
thermal satisfaction vote (TSaV) on model performance. Mean model accuracy
by group is given as an orange diamond. The number of model samples (n)
using each scale is given. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

model performs better if fewer categories are present in the response
variable. However, as mentioned by André et al. [12] this may impact
control sensitivity when downsizing from more than three classes. If the
scale discretization is reduced to two classes, the direction of change
required for taking an action in the direction of comfort will no longer be
a direct output of the comfort model. Examples of scale discretization
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Fig. 8. Influence of scale discretization on model performance. Mean model accuracy by group is given as an orange diamond. The number of model samples (n)
using each scale by discretization is given. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

are given in Appendix B.
6. Automatic control based on individual comfort models

The goal with individual comfort models is their implementation in a
control as a way to improve thermal comfort in buildings. Although not
implementing and analysing their performance, several studies dis-
cussed the implications of including ML based individual comfort
models in a comfort oriented control. In their vision, Cosma et al. [70],
proposed a method where aside for the thermal preference estimation,
the thermal model would estimate the mean time to warm discomfort
which would help optimize the system state before discomfort is
reached. By including the time gradient of Tsx and the temperature
variance over the skin area improved the thermal comfort model pre-
diction accuracy by 60% and that of the mean time to warm discomfort
by 40%. Salehi et al. [48] envisioned a system where even if the personal
comfort model is already trained, new inputs would continuously be
integrated in the model when a manual change is registered by the
thermostat. Sugimoto et al. [39] presented a thermal environment
control flow generated based on a HHMM for thermal comfort estima-
tion using physiological (Tcorg, HR, and Tsk), behaviour (acceleration),
and environmental (air temperature and RH) indicators. The control was
expected to maximize individual satisfaction and prevent excessive
cooling and heating by using real-time data which would update the
setpoint temperature once a significant change is observed in the data.
Yi et al. [104] and Ranjan et al. [38] discussed the operation and im-
plications of an HVAC system control using ML based individual comfort
models.

Only eight studies were found where automatic control methods
were implemented in the HVAC system control based on either envi-
ronmental, physiological, or behavioural indicators, or a combination of
them. Vesely et al. [102] and Zeiler et al. [106] investigated the used the
Tsk as input to the control of PECS, however without integrating a
personal comfort model and with a limited sample of participants (fewer
than 13). Vesely et al. [102] implemented a control based on the linear
correlation between the user setting and hand skin temperature. Zeiler
et al. [106] fed forward the fingertip skin temperature as the control
variable for the operation of two incandescent reflector heating lamps
oriented towards the hands. In both studies the systems were able to
respond to user preferences, while Vesely et al. [102] found no differ-
ence between the automatic control strategy and the one where the user
had direct control.

Feldmeier et al. [24] evaluated an occupant oriented control where a
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LDA was used for inferring thermal sensation based on which the ther-
mal environment was conditioned through window and damper open-
ings. The comfort control strategy led to an improvement in both
comfort and energy use. One of the few validated controls using ML
based comfort models was found in the work of Deng et al. [50], where
an ANN using physiological (Tsg, RHsk, and HR), environmental (air
temperature and RH), and behavioural indicators (clothing level) was
used to predict the TSV and hence the room thermostat setpoint. The
room temperature control was experimentally validated in
multi-occupant offices where the thermal comfort was improved with
less than 10% of the occupants registering a slightly cold or warm
thermal sensation due to individual differences. The study was further
complemented with a numerical validation of the control using the
simulated building model, which showed a reduction in the percentage
of people dissatisfied and the energy use. Li et al. [9] generated a RF
comfort model trained and tested on environmental (ambient temper-
ature, humidity, and CO;, concentration, outdoor temperature and hu-
midity), physiological (HR, Tsk), and behavioural (activity) indicators
from single-occupancy rooms. Afterwards, the model was implemented
in the control loop of a mechanical conditioning system to dynamically
adjust the temperature setpoint of a multi-occupancy office space which
reduced the number of uncomfortable reports by 54%. Compared to
other studies, in the multi-occupancy scenario, the comfort model was
continuously updated with measurements of the proposed indicators
and occupant responses via a phone app.

Jazizadeh et al. [15] and Aguilera et al. [16] based their ambient
HVAC control on a collection of personal comfort models that were
determined using fuzzy logic between a thermal preference index and
the ambient temperature to find a comfort based air temperature set-
point that was implemented in the room HVAC system. The results of
Aguilera et al. [16] showed a reduction in the thermal comfort of most of
the occupants (71%) probably due to the insufficient and poorly
distributed data. On the other hand, Jazizadeh et al. [15] found a po-
tential to improve comfort while reducing energy consumption though
with insufficient statistical significance due to the small sample of oc-
cupants. Li et al. [89] also implemented a fuzzy logic based control on a
variable air volume air-conditioning system to adjust the room tem-
perature setpoint based on the thermal sensation of the occupants in an
office room. The control, which was updated continuously, included a
multiple linear regression based personal comfort model developed on
both physiological (Tsg and HR) and environmental (air temperature,
RH, CO, concentration) indicators. The thermal sensation based control
led to increased thermal comfort and a reduced energy use when
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compared to a traditional pre-defined set-point based control.
7. Discussion

7.1. Physiological indicators

Physiological indicators gathered for thermal comfort models stem
from signals representative of human thermoregulation. Indicators of
neural activity, heartbeat, blood flow, activity, temperature, and sweat
were investigated. However, for indoor thermal comfort representative
of office and residential conditions, the most extensively used indicators
were Tsk and signals from the heart. This was because unlike T¢org and
activity, they present higher variability across thermal sensation states.
Compared to sweat and SpO», Tsk and heart signals can help differen-
tiate between cold, neutral, and hot thermal sensations and are not
biased to a specific side of the spectrum. The usefulness and availability
of each indicator is challenged though by the measuring strategy and
location, i.e., even if some indicators are relevant for thermal comfort
prediction obtaining them may be difficult in non-experimental settings.

To further increase the predictive power of the indicators and in the
interest of obtaining a single indicator representative of thermal sensa-
tion, a strong emphasis was put on feature transformation. For Tsy its
variation across the body surface or in time, i.e., rate of change, was
obtained. A clear advantage of the latter is the fact that only a single
point on the body must be investigated at any point in time, although it
may not always be representative of the overall thermal sensation. In-
dicators such as the neural activity or LF/HF may be indicative of
comfort although lacking a clear distinction between the type of thermal
discomfort, i.e., hot or cold. Furthermore, similar to the EDA, these in-
dicators may not isolate the influence of thermal sensation. Further
studies are still required to identify a sole physiological indicator
representative of thermal comfort or as a function of the system design.

Additional input used to complement the physiological information
consisted of information from the surrounding environment, anthropo-
metric information, and behaviour, which were shown to improve
model accuracy. The environmental indicators used are similar to the
inputs of current thermal comfort models, the PMV and adaptive com-
fort model. However, for a personal comfort model the measuring
location of the environmental indicator may be crucial. According to
Jayathissa et al. [10] environmental sensor data brought negligible
improvement in the prediction of comfort if placed around the building
and not in the proximity of occupants. Although clothing information
may be relevant gathering accurate information may be difficult, and
thus attempts were made at using clothing temperature as a proxy
instead [70]. Other indicators, such as anthropometric information,
were used to individualize thermal comfort models increasing their
prediction accuracy. However, this information may be considered
private and thereby sensitive to share.

7.2. Comfort model

Personal comfort models generated using ML algorithms can lead to
prediction accuracies higher than 90%. However, use of complex algo-
rithms (e.g., SVM, and ensemble methods) increases model performance
but require larger amounts of data to provide accurate predictions.
Certain studies used as little as 30 data points while others up to 700 per
subject to train and test the models while investigating a multitude of
indicators. This questions the performance of each model as rule-of-
thumb approaches indicate that the training sample should be at least
10 times the number of features even for simple classification rules
[116]. As the number of samples is application and data dependent,
developers should investigate the bias and variance of resulting pre-
diction errors. In order to properly assess the performance of different
algorithms as a function of input, a uniform dataset representative of
expected indoor environment conditions would be beneficial.

Model performance is also dependent on the combination of
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indicator type. Including both environmental and physiological in-
dicators should increase the model performance and the results show
that the model development process can be more important than the raw
measurement of the physiological indicator. Feature transformation of
physiological indicators significantly increased the model accuracy. This
can be seen in the comparison between HRV and Tsg (Fig. 5) where using
derived indicators from the HRV signal led to similar accuracies to
models where combinations of Tgk of different body parts were used.
When using Tsk as the sole physiological indicator, there was a clear
tendency that measurements on body parts uncovered by clothing would
have a higher predictive power. Non-significant differences between
models using Tsg measurements of the head and the arm indicate that it
may be up to the developer to choose which value to use, depending on
cost and ease of measurement. Nevertheless, including all types of input
may not necessarily lead to the highest model accuracy. This is because
certain indicators may be collinear while some may present little vari-
ability under the conditions of interest, e.g., MET is fairly constant for a
seated person. However, certain indicators are cofounding and thus even
if one does not present a strong correlation with the subjective thermal
response it should not be necessarily eliminated e.g., eliminating gender
may cause a relevant change in BMI even though gender is not strongly
correlated to TSV [117].

The models investigated were mostly individual. This requires an
extensive number of responses with high variability from each subject,
which may be difficult to obtain on a continuous basis in the field,
particularly when relying on behavioural thermal responses or when
physiological and environmental indicators have low variability over
time. Thus, sensors measuring physiological indicators must be
deployed for a period of time during building operation before a model
can be generated. Efforts are being made to identify the number of data
points required before adding new observations no longer improves
model prediction [20] in hopes of reducing interference with the oc-
cupants’ tasks. From a model training perspective, the literature sug-
gests 50 [9], 200 [60], or 300 [20] data points before the performance
plateau is obtained. Based on field studies reviewed and considering that
intra-day variation should be accounted for without overburdening the
occupants, 5 to 15 subjective thermal responses (minimum 30 min step)
should be obtainable per day [10,22]. Not accounting for seasonality
this would require a 3.5-60 day data collection campaign. However, an
alternative may be cohort comfort models [118] where models are
generated for people with similar expectation for the thermal environ-
ment. For this, the model can be generated on historical data, while new
occupants get assigned to the cluster sharing the same expectation of the
thermal environment.

In terms of performance personal comfort models are compared to
the PMV. Although useful as a minimum model performance, surpassing
the PMV is expected since the PMV is not designed to express the indi-
vidual thermal sensation or the thermal sensation of a group of people
with similar expectation of the thermal environment. This comparison
does not offer a clear standing of one particular model relative to others
nor does it represent an overall acceptable performance. Also, there is
still no quantification of the increased model performance relative to the
increased monitoring complexity, control system integration, and
associated costs. Such an analysis would help generate categories as a
function of model performance making a distinction between acceptable
and desirable performance and required indicators for achieving said
categories.

7.3. Control implementation

Numerous attempts have been made at testing the predictive ability
of ML-based personal comfort models while the predictive power of an
extensive number of indicators was investigated. However, a limited
number of indicators were eventually used as input to comfort models
integrated into HVAC control strategies. As a minimum, information on
the environment was included through the room air temperature. In this
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case the comfort models were generated by investigating solely the
relationship between the subjective thermal response and air tempera-
ture. Behavioural indicators such as occupant presence, window open-
ing, and setpoint changes were occasionally also included, increasing
considerably the complexity of the data acquisition system. Neverthe-
less, few physiological indicators were actually integrated, the most
common ones being Tsx and HR. This was probably due to the increased
system complexity and difficulty in acquiring certain indicators such as
neural activity.

In terms of control operation, the trained model predicted the sub-
ject’s state, e.g., cold, neutral, warm. Then the air temperature setpoint
was either changed in increments, e.g., 1K, in the direction of comfort
or it was determined as a function of the prediction. Setpoint changes
were made at an interval of 30 min, when an occupant provided a
change, or when occupants left and entered the space. The time delay
ensured a stabilized measurement of the physiological indicators for the
model before a new prediction was made as the occupants were allowed
to acclimatize. Nevertheless, no matter the indicators, for a space with
multiple occupants the main challenge remains deciding on a single
setpoint from a multitude of personal comfort models. Control examples
found in the literature selected it by either finding the value which
minimizes the distance from neutrality for all occupants [50], using a
fuzzy comprehensive evaluation method [89], or selecting the value
which minimizes the thermal discomfort of the group [9,16]. Thus,
similar to the 