

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 16, 2021

Particle filters with applications

Frydendall, Jan

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Frydendall, J. (2009). Particle filters with applications. Technical University of Denmark, DTU Informatics,
Building 321. D T U Compute. Technical Report No. 2009-02

https://orbit.dtu.dk/en/publications/dafb7da7-28c8-4757-b3c0-2425be71446a

Particle filters
with Applications

Jan Frydendall

January 19, 2009

DTU Informatics

1

CONTENTS 2

Contents

1 The state space model 3

2 The preliminaries 4

2.1 Perfect Monte Carlo Simulation . 4

2.2 Bayesian Importance Sampling . 6

3 Particle Filters 7

3.1 Proposal distributions . 7

4 SIS 8

5 SIR 9

5.1 Resampling . 10

6 Application 11

7 Particle smoothers 15

7.1 The Forward-Backward Smoother . 15

7.2 The two filter smoother . 16

7.2.1 Artificial distribution . 17

7.2.2 The prediction and update steps . 18

7.2.3 The combination step . 18

7.2.4 The algorithm . 19

1 THE STATE SPACE MODEL 3

1 The state space model

The type of filtering that we are interested is state space filtering. Hence, we are given an arbitrary
state space model with a set of observations. The task is now to construct a mechanism that would
enable us to do estimations of the state space model parameters and reconstruction of the states.
In our setting we are mostly interested in non linear state space models. The notion on linear state
space models is well covered in [11]. The general form of the state space model is the following
[14]

xt+1 = ft(xt,vt) (1)

yt = ht(xt,wt), (2)

where ft : Rn ×Rm → Rn is the model transition operator and vt ∈ Rm is a white noise process
that is not dependent on the past and current states. The ht : Rp ×Rr → Rr is the observation
operator that relates the states to the observations. The observations noise wt ∈ Rr is also and
white noise process that is not dependent on the past and current states and the system noise. It
is assumed that the PDF of vt and wt is known and that we also know the initial distribution of
p(x1|y0) = p(x0) together with transition and observation operator for all t ∈ {0, · · · , T }. The
task is to construct the PDF of the current state xt given all the information avaliable to us
p(x0:t|y1:t). Much as we have done with Kalman filter and the Extended Kalman filter in [11, 12]
we will do the construction in two steps, a prediction and a update step. Assume that we have the
PDF p(x0:t−1|y1:t−1) at time step t−1 we can now construct the p(x1:t|y1:t−1) with the transition
operator,

p(xt|y1:t−1) =

∫

p(xt|xt−1)p(xt−1|y1:t−1)dx1:t−1, (3)

where p(xt|xt−1) is the transition probability that is generated from the transition model with
known vt−1. The transition PDF is generated from the Markov state model (1) and the known
PDF of vt−1, hence

p(xt|xt−1) =

∫

p(xt|xt−1,vt−1)p(vt−1|xt−1)dvt−1, (4)

by assumption we have that p(vt−1) = p(vt−1|xt−1), thus we get

p(xt|xt−1) =

∫

δ(xt − ft(xt−1,vt−1)p(vt−1)dvt−1, (5)

the delta function δ(·) indicates that we do not known xt−1 and vt−1 explicitly. If we did we could
easily get xt from (1) [14]. When the measurements becomes avaliable we can update the prior
via Bayes rule [4],

p(xt|y0:t) =
p(yt|xt)p(xt|y0:t−1)

∫

p(yt|xt)p(xt|y0:t−1)dxt

(6)

The likelihood PDF, p(yt|xt) is defined by the observation operator and the known distribution
wt,

p(yt|xt) =

∫

δ(yt − ht(xt,wt))p(wt)dwt. (7)

The equation (6) is used to update the prediction prior (3) when new measurements yt become
avaliable. This is required if we want to obtain the posterior of the states. The equation (3)
and (6) is the solution of the Bayes recursive estimation problem [14]. The only known analytical
solution to these equations is the Kalman filter, if we assume that the our state space model is
linear and the noise process are normal distributed.

An example of a nonlinare state space model is

xt = 0.5xt−1 + 25
xt−1

1 + x2
t−1

+ 8cos(1.2(t − 1)) + vt (8)

yt =
x2

t

20
+ wt, (9)

2 THE PRELIMINARIES 4

where vt ∼ N (0, σ2
v) and wt ∼ N (0, σ2

w) are normal distributed PDF with known variance. This
model is widely used in literature [16, 14, 4],when it comes to particle filtering. In our example
we will use the following initial conditions, σ2

v = 10, σ2
w = 1 and x0 ∼ N (0, 10). In figure 1 is the

state space model represented.

Time

x
t+

1

State evolution

0 20 40 60 80 100
-15

-10

-5

0

5

10

15

20

Figure 1: The simulate states of the model (8)

2 The preliminaries

In order to take full advantage of the particle filters, we have to address the two most important key
elements in the particle filter cocktail. Namely the Monte Carlo interpretation and the Importance
sampling steps. First we will address the Monte Carlo requirement.

2.1 Perfect Monte Carlo Simulation

To put Monte Carlo simulation in lay man terms; Monte Carlo simulation is just a another way of
interprete integrals as sums. However, this loose definition will not do us any good mathematically.
In order to get a rigorous mathematical definition we assume the following. Assume that we have
some function f(x) ∈ R that we would like to know the expectation. We use the definition of the
expectation by assuming that we have a given probability distribution function (pdf) p(x, y) ∈ R.
The expectation can be written as

E[f(x)] =

∫ ∞

−∞

f(x)p(x, y)dx, (10)

most often the integral can not be solve analytically and therefore we most find another way.
One way is the Monte Carlo simulation, Lets assume that we have N independent and identically

2 THE PRELIMINARIES 5

Time

y t
+

1

Observations

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

Figure 2: The observation from the state evolution through the observation operator (9)

distributed (i.i.d.) random samples from {x(i)
0:t; i = 1, . . . , N} according to our pdf p(x0:t,y1:t). As

in the book by [4] we will define the empirical distribution as a sum of dirac delta functions,

pN (dx0:t,y0:t) =
N
∑

i=1

δxi
0:t

(dx0:t), (11)

where δxi
0:t

(dx0:t) is the probability mass located in xi
0:t. The dx0:t just the denotes that we are in

continuous formulation and that we can not specify the exact location of the probability mass, so
we only specify the probability mass in a vicinity of xi

0:t by make a small sphere around it. With
this definition we able to estimate the expectation (10) as

E[ft(x0:t)] =
1

N

N
∑

i=1

f(xi
0:t), (12)

where ft is the function to be estimated and for generality we have made it time depending and
multidimensional. According to law of large numbers, the expectation (12) will converge almost

surely to (10), i.e E[ft(x0:t)]
a.s.−−−−→

N→∞
E[ft(x0:t)] and if the posterior variance of ft(x0:t) is bounded

i.e. σ2
ft

< ∞ we then have from the central limit theorem that [15, 4]

√
N
(

E[ft(x0:t)] − E[ft(x0:t)]
)

====⇒
N→∞

N (0, σ2
ft

),

where ====⇒
N→∞

denotes converges in distribution.

2 THE PRELIMINARIES 6

2.2 Bayesian Importance Sampling

Here we will develop the idea of Importance sampling, which in short is to find a proper proposal
distribution by considering a clever scaling distribution. Consider again the expectation of ft

E[ft(x0:t)] =

∫

ft(x0:t)
p(x0:t|y1:t)

q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t

=

∫

ft(x0:t)
p(y1:t|x0:t)p(x0:t)

p(y1:t)q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t

=

∫

ft(x0:t)
ωt(x0:t)

p(y1:t)
q(x0:t|y1:t)dx0:t,

where we q(x0:t|y1:t) is the new proposal distribution and ωt(x0:t) is the importance weights

ωt(x0:t) =
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
. (13)

The distribution p(y1:t) is not depending on x0:t and therefore it can be brought outside the inte-
gral. We can again use that the distribution is the marginalization of p(y1:t) =

∫

p(y1:t|x0:t)p(x0:t)dx0:t

and rewrite the expectation

E[ft(x0:t)] =
1

p(y1:t)

∫

ft(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t

=

∫

ft(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t
∫

p(y1:t|x0:t)p(x0:t)
q(x0:t|y1:t)
q(x0:t|y1:t)

dx0:t

=

∫

ft(x0:t)ωt(x0:t)q(x0:t|y1:t)dx0:t
∫

ωt(x0:t)q(x0:t|y1:t)dx0:t

=
Eq(·|y1:t)(ωt(x0:t)ft(x0:t))

Eq(·|y1:t)(ωt(x0:t))
,

where Eq(·|y1:t) denotes the expectation of ωt(x0:t) with respect to the proposal distribution
q(·|y1:t). With this in mind we can now express the expectation as

E[ft(x0:t)] =
1
N

∑N

i=1 ft(x
i
0:t)ωt(x

i
0:t)

1
N

∑N
i=1 ωt(xi

0:t)
(14)

=

N
∑

i=1

ft(x
i
0:t)ω̃t(x

i
0:t), (15)

where ω̃i
t are the normalized importance weights,

ω̃i
t =

ωi
t

∑N
j=1 ωj

t

. (16)

The expectation (14) is biased as long as N is finite. However, from the law of strong numbers the
estimate is asymptotically unbiased, for a good discussion of this look in [6]. As N tens to infinity,
the posterior density function can be approximated arbitrarily well by the point-mass estimate.

p̂(dx0:t|y1:t) =

N
∑

i=1

ω̃t(x
i
0:t)δxi

0:t
(dx0:t). (17)

3 PARTICLE FILTERS 7

3 Particle Filters

After all the sung and dance in the previous section we now able to formulate the particle filters.
The first an most straight forward particle filter is the one called the Sequential Importance
Sampling (SIS). The idea is to draw samples from our prior distribution and then assign an
importance weights to each particle at every time step. Put into a more formal frame, we first
have to make some assumptions on the Importance weights. In order to sample from the proposal
distribution q(x0:t|y1:t), we have to assume that we can compute the sequential estimate of the
posterior distribution at time t without modifying the previously simulate states x0:t−1 [15]. Thus,
the following distribution can be used

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1,y1:t). (18)

Hence the current state is independent of the future observations. Along with the Markov prop-
erties of the states

p(x0:t) = p(x0)
t
∏

j=1

p(xj |xj−1) (19)

and that the observations are conditionally independent given the states

p(y1:t|x0:t) =

t
∏

j=1

p(yj |xj) (20)

If we now apply the above assumption onto the Importance weights (13) we can establish the
following recursive importance weights

ωt =
p(y1:t|x0:t)p(x0:t)

q(x0:t−1|y1:t−1)q(xt|x0:t−1,y1:t)
(21)

= ωt−1
p(y1:t|x0:t)p(x0:t)

p(y1:t−1|x0:t−1)p(x0:t−1)

1

q(xt|x0:t−1,y1:t)

= ωt−1
p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1,y1:t)

With the above recursive importance weights we can now at each time step generate a new impor-
tance weight, i.e. a new state reconstruction, since we are able to calculate the likehood p(yt|xt)
and the transition probabilities p(xt|xt−1), given that we have a prober proposal distribution
q(xt|x0:t−1,y1:t).

Until now we have just stated that the proposal weights are something that is essential in the this
estimation approach. However, finding the prober proposal distribution is a very difficult task.
Much of the current research is devoted to finding prober proposal distribution or avoiding them.

3.1 Proposal distributions

The most critical ingredient in the particle filters that uses importance sampling are the proposal
distributions. The foremost property of the proposal distribution is to minimize the variance
of the importance weights conditional on x0:t−1 and y1:t [5]. The prober choice is then the
distribution q(xt|x0:t−1,y1:t) = p(xt|x0:t−1,y1:t), that minimizes the variance of the importance
weights. However, this result does not do much for us, it is only of theoretical interest. Among
practitioners the following proposal distribution is popular [14]

q(xt|x0:t−1,y1:t) ∼ p(xt|xt−1), (22)

where the proposal distribution now is distributed as the transition prior. Although we are given
up the requirement of the minimizing variance of the importance weights, we have on the other

4 SIS 8

hand got a proposal distribution which most easier to implement and to sample from. If we
substitute the (22) into the (21) we get a very nice result

ωt = wt−1
p(yt|xt)p(xt|xt−1)

p(xt|xt−1)
= wt−1p(yt|xt). (23)

In the next section we will give some examples of the SIS and the other variant called the SIR.

4 SIS

If we use the idea of importance sampling (23) from the previous section we can formulate the two
basic particle filters. The first filter is the SIS filter and the generic algorithm is shown below in
algorithm (1).

1: procedure SIS

2: Initialization, t = 0
For i = 1, · · · , N , sample xi

0 ∼ p(x0) and set t = 1.
3: Importance sampling step

For i = 1, · · · , N , sample xi
t ∼ p(xt|xt−1) and set x̃i

0:t =
(

xi
0:t−1, x̃t

)

.
For i = 1, · · · , N , evaluate the importance weights ωt = p(yt|xt)
Normalize the importance weights.
Set t → t + 1 and go to step 3

4: end procedure

Algoritme 1: The generic SIS algorithm

When we use the transition prior as proposal distribution the filters are often called Bootstrap

filters.

The SIS filters has one major problem that over shadows everything else. The key idea with
the SIS filters is to select the particles that have the most probable outcome compared to the
observation given the predictions. With this algorithm we are thinning out the particles that do
not represent the state and observations. When this thinning is applied at every time step we
more or less thin out all particles except one. This problem is known as degeneracy and can be
illustrated in the figure (3). Put in more mathematically formalism we say that the variance of
the weights increases over time. If we again look at the definition of the importance (13) weights
we have,

ωt(x0:t) =
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
(24)

=
p(y1:t,x0:t)

q(x0:t|y1:t)

=
p(x0:t|y1:t)p(y1:t)

q(x0:t|y1:t)

∝ p(x0:t|y1:t)

q(x0:t|y1:t)
,

where we have used that p(y1:t) is a constant. The ratio (24) is called the importance ratio and
it can be shown that the variance of this ration will increase over time. This has been done by
([10, 5]). Following the argument from [15] we want to have that the proposal and the posterior
density to be close, i.e. that is the proposal distribution has full support over the true posterior
density. Taking the expectation of the importance ratio with respect to the proposal distribution

Eq(·|y1:t)

(

p(x0:t|y1:t)

q(x0:t|y1:t)

)

= 1 (25)

5 SIR 9

Figure 3: The degeneracy problem of the SIS filters. At each time step the most probable particles
are given an weight that represents the probability that prediction is close to the observations.

and the variance

varq(·|y1:t)

(

p(x0:t|y1:t)

q(x0:t|y1:t)

)

= Eq(·|y1:t)

(

(

p(x0:t|y1:t)

q(x0:t|y1:t)
− 1

)2
)

, (26)

this gives an indication of that we want the variance of the importance weights to be close to zero
in order to get good estimates. However, when the variance of the weights increase over time we
get inaccurate estimations.

5 SIR

When doing filtration with SIS algorithm one has to start out with a very large numbers of
particle in order make sure that some of the particle survives. In order to reduce the particle
set size and thereby reducing the computational time, we will consider the SIR filter. The idea
with the SIR filter is to resample the particles at each time step. We still uses the importance
sampling algorithm, however, after we have assign weights to the particles will only keep the
particles that have more weight then 1/N and then resample the particles that has less weights
from the surviving particles.

Assume that to each particle xi
0:t we can assign an weight Ni ∈ N such that

∑N
i=1 Ni = N and

that we can rewrite (17) as

PN (dx0:t | y1:t) =
1

N

N
∑

i=1

N
(i)
t δ

x
(i)
0:t

(dx0:t) (27)

The above assumption leads to the following interpretation of the weights. At each time step we
assign the particles importance weights and then we resample the particles such that after the
resampling step all the particles will have equal probability 1/N . We do not change the number of

5 SIR 10

particles in the set we only discard the ones that are unlikely and multiply the ones that survives
such that the total number of particles are N . The SIR algorithm can also be written in a generic
algorithm

1: procedure SIR

2: Initialization, t = 0
For i = 1, · · · , N , sample xi

0 ∼ p(x0) and set t = 1.
3: Importance sampling step

For i = 1, · · · , N , sample xi
t ∼ p(xt|xt−1) and set x̃i

0:t =
(

xi
0:t−1, x̃t

)

.
For i = 1, · · · , N , evaluate the importance weights ωt = p(yt|xt)
Normalize the importance weights.

4: Resampling step

Multiply/Suppress samples x̃i
0:t with high/low importance weights ω̃i

t, respectively,
to obtain N random samples xi

0:t approximately distributed to p(yt|xt)
For i = 1, · · · , N set ωi

t = ω̃i
t = 1

N

Set t → t + 1 and go to step 3
5: end procedure

Algoritme 2: The generic SIR algorithm

5.1 Resampling

The selection of the particles and the resampling step can be done in many ways. Here we only
discuss the very basic resampling algorithm, namely the multinomial sampling. We want to find
a mapping from {xi

0:t, ω̃
i
t} → {xi

0:t, N
−1}. The mapping is given in [14] and can be written as

M−1
∑

j=1

ω̃j
t < ui ≤

M
∑

j=1

ω̃j
t , (28)

where ui is a random sampling from the uniform distribution U(0, 1]. This procedure is repeated
for i = 1, · · · , N . This algorithm can be written in generic form

1: procedure Multinomial

2: For i = 1, · · · , N , sample ui ∼ U(0, 1]
3: calculate the discrete c.d.f. of ui and ω̃i

t

4: set j = 1 and i = 1
5: while j ≤ N do

6: if c.d.f.(ui) - c.d.f.(ω̃i
t) ≤ 0 then

7: idx(j) = i
8: j = j + 1
9: else

10: i = i + 1
11: end if

12: end while

13: end procedure

Algoritme 3: The generic multinomial sampling algorithm

where idx(i) is the index function. The graphical interpretation of the algorithm is given in figure
(4).

The c.d.f. of ui is seen as the strait line in the figure (4) and the step line is the c.d.f. of ω̃i
t. At the

top of the figure is the particle weights shown. When the particles have great mass then the step

6 APPLICATION 11

Figure 4: The graphical interpretation of the algorithm (3).

function is above the strait line and the particles are preserved and multiply to the locations where
the particles have little mass. When the particles have small mass the step function is below the
strait line and the particular particle is killed and gets resampled from one of the particles that
have great mass. There exist of corse more resampling algorithms in literature see for example
[3, 7] for a survey of the most common used.

6 Application

In this section we will give examples of the particle filters. We will use the state space model
(1) and (2) as the test bed of the filtration. First we will try the SIS filter. In the filtration we
will use 500 particles and the noise is assumed to be normal distributed. Thus, the model noise
Q ∼ N (0, 10) and the observation noise R ∼ N (0, 1). The observation operator H is given as
H = y2, where y is the input from the predictions. Hence, the filter does not know explicitly if
the sign of the states and therefore around zero the filter will have trouble with the estimation
since the there is no indication of the dynamics of the state. The likelihood function p(yt|xt) will
be given as an Gaussian bell

ωi
t =

exp(−0.5((yi
t − Hxi

t)
TR−1(yi

t − Hxi
t))

∑N
j=1 exp(−0.5((yj

t − Hx
j
t)

TR−1(yj
t − Hx

j
t)))

. (29)

In the figure (5) the reconstruction of the states are shown and below is the scatter plot of the
reconstructed states and the observations. It is not obvious that this filtration is very good since
from the plot we can see that the reconstruction is following the observations and the scatter plot
is also close to the strait line. However, when we consider the the effective particle size i.e. the
inverse of the variance of the importance weights,figure (6).

We can see that the particle set is reduced to effectively one single particle. This means that
the filtration is only consisting of one realization of the process and therefore we can not assume
that we will converge to the true states. This can also be seen from the density plot in the same
figure. The densities starts out as a concentration around the prior, however, as the simulation
continues the particle sizes is reduced and the densities get smoother out and will not carry any
useful information trough to the prediction.

As mention earlier, one way of taking the degeneracy into account is to include a resampling step
after each importance sampling step to keep the particles alive.

6 APPLICATION 12

Time

S
ta

te
es

ti
m

a
te

True value

Posterior estimate

Observations

Estimate for the posterior SIS

T
ru

e
st

a
te

-30 -20 -10 0 10 20 30

5 10 15 20 25 30 35 40 45 50

-40

-20

0

20

40

-20

-10

0

10

20

Figure 5: The reconstruction of the states
with the SIS algorithm

Time

T
h
e

E
ff
ec

ti
v

p
a
rt

ic
le

si
ze

Time Sample space

P
o
st

er
io

r
d
en

si
ty

S
IR

F

-20
-10

0
10

20

0 10 20 30 40 50

0
20

40
60

0

100

200

300

400

500

0

0

100

200

Figure 6: The effective particle size and the
posterior densities from the SIS estimation

Time

S
ta

te
es

ti
m

a
te

True value

Posterior estimate

Observations

Estimate for the posterior SIS

T
ru

e
st

a
te

-30 -20 -10 0 10 20 30

5 10 15 20 25 30 35 40 45 50

-40

-20

0

20

40

-20

-10

0

10

20

Figure 7: The reconstruction of the states
with the resampling at every time step

Time

T
h
e

E
ff
ec

ti
v

p
a
rt

ic
le

si
ze

Time Sample space

P
o
st

er
io

r
d
en

si
ty

S
IR

F

-20
-10

0
10

20

0 10 20 30 40 50

0
20

40
60

300

350

400

450

500

0

0

500

500

Figure 8: The effective particle size and the
posterior densities with the resampling of
the particles

In the figure (7) we can see that the reconstruction is better then the one from (5). (We are using
the same seed in the random number generator). Remember that the observations in the figures
are generated trough the observation operator and therefore we can not compared them directly
to the states.

Looking at the effective particle size figure (8) we can that the resampling step is keeping the
particle set well stirred and the all the particles carry information. This is also evident from
the posterior density plot. We see that since we have a much effective particle set the densities
will carry information thorough to the next prediction step. In this plot it is also clear that the
posterior densities are not Gaussians and the strength of the particle filters should be obvious
compared to the Extended Kalman Filter.

However, the resampling step is increasing the variance of the posterior estimates and therefore
it should not be performed unless it is necessary. Therefore it is suggested that we use a form of
threshold sampling for example Neff ≤ 2

3N , where Neff = (
∑N

j=1(ω
j
t)

2)−1. This means that
we use the SIS filter at every time and when the effective particle size is reduced to less then
the threshold then we perform the resampling step. Put into the generic algorithm form The

6 APPLICATION 13

1: procedure SIS with threshold sampling

2: Initialization, t = 0
For i = 1, · · · , N , sample xi

0 ∼ p(x0) and set t = 1.
3: Importance sampling step

For i = 1, · · · , N , sample xi
t ∼ p(xt|xt−1) and set x̃i

0:t =
(

xi
0:t−1, x̃t

)

.
For i = 1, · · · , N , evaluate the importance weights ωt = p(yt|xt)
Normalize the importance weights.

4: if Neff ≤ βN then

5: Perform the resampling step

6: Multiply/Suppress samples x̃i
0:t with high/low importance weights ω̃i

t, respectively,
to obtain N random samples xi

0:t approximately distributed to p(yt|xt)
For i = 1, · · · , N set ωi

t = ω̃i
t = 1

N

7: end if

Set t → t + 1 and go to step 3
8: end procedure

Algoritme 4: The generic SIS with threshold sampling algorithm

estimation with SIS with threshold sampling gives the same result as with SIR. However, we have
made sure that with this approach has some sort of variance reduction on the posterior estimates.
The estimation with SIS with threshold sampling can be seen in the figures (9) and (10).

Time

S
ta

te
es

ti
m

a
te

True value

Posterior estimate

Observations

Estimate for the posterior SIS

T
ru

e
st

a
te

-30 -20 -10 0 10 20 30

5 10 15 20 25 30 35 40 45 50

-40

-20

0

20

40

-20

-10

0

10

20

Figure 9: The reconstruction of the states
with the threshold sampling

Time

T
h
e

E
ff
ec

ti
v

p
a
rt

ic
le

si
ze

Time Sample space

P
o
st

er
io

r
d
en

si
ty

S
IR

F

-20
-10

0
10

20

0 10 20 30 40 50

0
20

40
60

0

200

400

600

0

200

400

Figure 10: The effective particle size and the
posterior densities from the threshold sam-
pling

The final comparison is done with run two independent filtration with N = 250 and N = 500 with
same noise assumptions. In table (6) the mean and the variance and the root mean squared error of
the 1-step prediction error is shown. (Runs with higher particle numbers has also been conducted,
however, results showed that the estimation had converge i.e. there was no improvement in the
bias, variance and rms).

Final words on importance particle filtering, the trouble with particle filters is that on never know
how many particles to use. In our simple state space model we only had to reconstructed one
state, however, if the state space model goes to higher dimensions the number of particles could
very well increase by a factor 1000. There are many reference in litterateur on how to reduce
the particle size and how to implement them. The auxiliary SIR and the kalman filter hybrids
as being the most common. However, when we straying away from the Kalman Filter and are
trying with other non-parametric filters, we should be very aware of the no free lunch theorem.
The theorem states that may the SIR filter is better on this type of model that we have uses

6 APPLICATION 14

N = 1000 SIS SIR Neff ≤ 2/3N
N 250 500 250 500 250 500

mean -2.133 -1.676 -0.514 -1.012 -1.008 -0.821
var 120.086 34.556 32.068 10.935 18.430 9.454
rms 11.164 6.113 6.051 3.708 4.7939 3.512

Table 1: The statistics of two simulation with particle filters, for respectively N = 250 and N = 500

here, however, could very well be that is the other way around with another model [2]. With this
in mind the particle filters is very easy and a very good estimator for non-linear models. With
growing computational power the particle filters are getting better and better.

7 PARTICLE SMOOTHERS 15

7 Particle smoothers

In this section the notion of smoothing will be investigated. In this section two particle smoothers
will be discussed.

1. The Forward-Backward Smoother (FBS)

2. The two filter smoother (TFS)

7.1 The Forward-Backward Smoother

The FBS is the simplest to construct it relies on a forward filtering in time up till the desired time
to obtain the marginal distribution p(xt|y1:t). Then a backward sweep is thourgh the data set is
conducted to modify the importance weights so that they now represent the smoothed distribution
p(xt|y1:t). The algorithm for the FBS is simple and intuitive However, the FBS relies on that the
filter distribution has support where the smoothed density is significant [9].

The quest is to construct the marginal distribution p(xt|y1:t) from the forward filter and the
backward recursion.

p(xt|y1:T) =

∫

p(xt,xt+1,y1:T)dxt+1 (30)

=

∫

p(xt+1|y1:T)p(xt|xt+1,y1:t)dxt+1

= p(xt|y1:t)

∫

p(xt+1|y1:T)p(xt+1|xt)
∫

p(xt+1|xt)p(xt|y1:t)dxt

dxt+1,

where

• p(xt|y1:t) is the filtered density

• p(xt+1|y1:T) is the smoothed density

• p(xt+1|xt) is the dynamics of the model

•
∫

p(xt+1|xt)p(xt|y1:t)dxt is the state prediction

The recursion is approximated in the usual way by defining the an empirical distribution [9]

p̂(dxt|y1:T) =

N
∑

i=1

ωi
t|T δxi

t
dxt (31)

and inserted into (30) thus we get the empirical approximation of (30)

ωi
t|T = ωi

t+1|T

[N
∑

j=1

ωj

t+1|T

p(xj
t+1|xi

t)
∑N

k=1 ωk
t p(xj

t+1|xk
t)

]

. (32)

The (32) is of the order O(N2) by noticing that the denominator can be calculated inpendently
from i for each j. The algorithm for the FBS can be seen in algorithm 5 In figure (7.1) the marginal
distribution of the FBS is shown. The difference between the forward filter and the FBS is not
significant. The figure also underlines the problem with FBS. The smoother can not change the
support of the particles if there located in the wrong part of the state space. No new information
is added to the smoohter, so the only option is to relocate the partices in the given support.

7 PARTICLE SMOOTHERS 16

1: procedure FBS

2: Filtering For t = 1, · · · , T , perform the particle filtering to obtain the weighted measure
{xi

t, ω
i
t}N

i=1

3: Initialization For i = 1, · · · , N , set ωi
T |T = ωi

T

4: Backward recursion For t = T − 1, · · · , 1 and i = 1, · · · , N evaluate

ω
i
t|T

= ω
i
t+1|T

»

PN
j=1 ω

j

t+1|T

p(x
j
t+1|x

i
t)

P

N
k=1

ωk
t p(x

j
t+1|x

k
t)

–

5: end procedure

Algoritme 5: The generic Forward-Backward smoother

Time

S
ta

te
es

ti
m

a
te

True value
Posterior estimate
Smoothed estimate
Observations

Smoothed estimate for the posterior SIRF

T
ru

e
st

a
te

-30 -20 -10 0 10 20 30

5 10 15 20 25 30 35 40 45 50

-50

0

50

-20

0

20

Figure 11: The smoothed estimate of the FBS and the scatter plot of the truth vs. the smoothed
estimate

7.2 The two filter smoother

The marginal smoothed posterior distribution can be computed by combining the output of tow
independent filters [1]. The two filters that is need is first the normal particle filter and a filter
that runs backward in time. The normal particle filter is just any one of the SMC filters that
calculates p(xt|y1:t−1). The backward filter our barckward information filters is due to [13] and
dates back to 1966. The backward filter calculates p(yt:T |xt) backward in time. Combining the
forward and backward filter we can obtain the smoothed marginal distribution p(xt|y1:T), hence

p(xt|y1:T) = p(xt|y1:t−1,yt:T) (33)

=
p(xt|y1:t−1)p(yt:T |y1:t−1),xt)

p(yt:T |y1:t−1)

∝ p(xt|y1:t−1)p(yt:T |xt)

∝ p(xt|y1:t)p(yt:T |xt)

The last line of (33) is the TFS the first density is the bayesian filter and the second density is the
backward filter. This definition the of the TFS the normal forward filtering backward smoothing
is now reduced to a pure filtration assumption. The backward filter can be calculated trough the

7 PARTICLE SMOOTHERS 17

backward information filter [13]

p(yt:T |xt) =

∫

p(yt+1:T |xt+1)p(xt+1|xt)p(yt|xt)dxt+1 (34)

The problem with p(yt:T |xt) is that is not a proper probability density in argument xt and therefore
the integral over xt might not be finite [9]. Therefore normal sequential Monte Carlo approximation
can not be used without making unrealistic assumptions, such as assuming p(yt:T |xt) < ∞ [8]. In
order to make the TFS work for an arbitrary model the assumption derived in [1] and [9] will be
used.

As state above the p(yt:T |xt) is not a probability measure and therefore we can not apply the usu-
ally Monte Carlo methods since the constraint of these methods are that the probability densities
have be finite. However, by introducing a clever artificial distribution over xt with density γ(xt)
will ensure that the integral will be finite.

7.2.1 Artificial distribution

Let {γt(xt)} be a sequence of probability distributions for t = 1, · · · , T such that for

p(yt:T |xt) > 0 ⇒ γt(xt) > 0 (35)

and for the case t = T

p̃(xT |yt) =
p(yT |xt)γT (xT)

∫

p(yT |xt)γT (xT)dxT

. (36)

and for the case t = {2, · · · , T − 1}

p̃(xT |yt) =
γT (xt)

∏T

i=t+1 p(xi+1|xi)
∏T

i=t p(yi|xi)
∫

· · ·
∫

γT (xt)
∏T

i=t+1 p(xi+1|xi)
∏T

i=t p(yi|xi)dxt:T

(37)

Thus the general case for t = {1, · · · , T }

p(yt:T |xt) = p̃(yt:T)
p̃(xT |yt)

γT (xt)
, (38)

where

p̃(xt|yt:T) =

∫

· · ·
∫

p̃(xt:T |yt:T)dxt:T . (39)

The proof for t = T follows strait from the definition. For t = {1, · · · , T − 1}

p(yt:T |xt) =

∫

· · ·
∫

p(yt:T ,xt+1:T |xt)dxt+1:T

=

∫

· · ·
∫

p(xt+1:T |xt)p(yt:T ,xt:T)dxt+1:T

=

∫

· · ·
∫ T

∏

i=t+1

p(xi+1|xi)
T
∏

i=t

p(yi|xi)dxt+1:T

=

∫

· · ·
∫

γT (xt)

γT (xt)

T
∏

i=t+1

p(xi+1|xi)

T
∏

i=t

p(yi|xi)dxt+1:T

= p̃(yt:T)

∫

· · ·
∫

p̃(xt:T |yt:T)

γT (xt)
dxt+1:T

= p̃(yt:T)
p̃(xt|yt:T)

γt(xt)

7 PARTICLE SMOOTHERS 18

7.2.2 The prediction and update steps

The prediction step with the backward filter is defined as.

p̃(xt|yt+1:T) ,

∫

p̃(xt+1|yt+1:T)
p(xt+1|xt)γt(xt)

γt+1(xt+1)
dxt+1 (40)

Again it has to be stessed that p̃(xt+1|yt+1:T) is not a probability measure if γt+1(xt+1) 6=
∫

(xt+1|xt)γt(xt)dxt. In order to have a finite intgral the artificial distribution {γt(xt)} should
selcted such that

p(xt+1|xt)

γt+1(xt+1)
< ∞, (41)

for any (xt+1,xt) ∈ Ω. Put in a more loosly tune we say that γt+1(xt+1) has have thicker tails than
p(xt+1|xt) for any xt [1]. Before the update step is defined the following needs to be calculated

p(yt:T |xt) =

∫

p(yt+1:T |xt)p(xt+1|xt)p(yt|xt)dxt (42)

=

∫

p̃(xt+1|yt+1:T)

γt+1(xt+1)
p(xt+1|xt)p(yt|xt)dxt

=
p(yt|xt)

γt(xt)

∫

p̃(xt+1|yt+1:T)
p(xt+1|xt)γt(xt)

γt+1(xt+1)
dxt+1

=
p(yt|xt)p̃(xt|yt+1:T)

γt(xt)

with the above the update step can now be defined

p̃(xt|yt:T) =
p(yt|xt)p̃(xt|yt+1:T)

∫

p(yt|xt)p̃(xt|yt+1:T)dxt

, (43)

which has been renormalized to be a probability measure. The γt(xt) in the denomenator of the
previous equation (42) will cancel out in the combination of the forward and backward filter.

7.2.3 The combination step

The combination of the forward and backward filter yields the marginal smoothed distribution.
Thus, for t = {2, · · · , T − 1}

p(xt|y1:T) ∝ p(xt|y1:t−1)p(yt:T |xt) (44)

∝ p(xt|y1:t−1)p̃(xt|yt:T)

γt(xt)

∝
∫

p(xt+1|xt)p(xt−1|yt−1)dxt−1p̃(xt|yt:T)

γt(xt)
,

and for t = 1

p(x1|y1:T) ∝ µ(x1)p̃(x1|y1:T)

γ1(x1)
(45)

The idea is to could construct the backward filter with a finite probability measure, therefore the
γt(xt) in the denomenator. When the forward and backward filter are combined the effect of the
artificial distribution is cancel out.

The final approximation of the combination step is a follows

p̂(dxt|y1:T) ∝
N
∑

i=1

ω̃i
t

N
∑

j=1

ωj
t−1

p(x̃i
t|xj

t−1)

γt(x̃i
t)

δx̃i
t
dxt (46)

7 PARTICLE SMOOTHERS 19

7.2.4 The algorithm

To complet the derivation of Monte Carlo sampling of the two filter smoother the algorithm is
given in (6)

procedure TFS

Forward filtering

For t = 1, · · · , T , perform the particle filtering to obtain the weighted measure {xi
t, ω

i
t}N

i=1

Backward filtering

1. Initialization

For i = 1, · · · , N , Sample candidates from the proposal distribution xi
t ∼ q(|̇yT)

Compute the importance weights:

ω̃T
i ∝ p(yT |x̃i

T)γT (x̃i
T)

q(x̃i
T
|yT)

2. For t = T, · · · , 2 and i = 1, · · · , N
Sample candidates from the proposal distribution xi

t ∼ q(|̇xi
t,yt−1)

Calculate the backward importance weights:

˜ωt−1
i ∝ ω̃t

ip(yt−1|x̃
i
t−1)γt−1(x̃

i
t−1p(x̃i

t−1|x̃
i
t)

γt(x̃i
t)q(x̃

i
t−1|x

i
t,yt)

Resample if necessary
end procedure

Algoritme 6: The generic two filter smoother

As in the previous section an example with the TFS is given for the same setup as in the other
experiments. The result of the TFS can be seen in the figure (7.2.4), note that the TFS can change
the support of the posterior estimate from the forward filter and therefore the smoothed estimated
is much closer to the truth. Also note the scatter plot in figure (7.1) there was some residuals
from the symmetri from the likelihood kernel, which could be seen in the scatter plot as symmetri
outliers. With the TFS filter these resudals have disapeared.

Time

S
ta

te
es

ti
m

a
te

Smoothed estimate for the posterior SIRF

T
ru

e
st

a
te

True value
Posterior estimate
Smoothed estimate
Observations

-30 -20 -10 0 10 20 30

5 10 15 20 25 30 35 40 45 50

-50

0

50

-20

0

20

Figure 12: The smoothed estimate of the TFS and the scatter plot of the truth vs. the smoothed
estimate

REFERENCES 20

References

[1] Mark Briers. Improved Monte Carlo Methods for State Space Models. Doctoral thesis, Uni-
versity of Cambridge, Department of Engineering, 2007.

[2] Zhe Chen. Bayesian filtering: From kalman filters to particle filters, and beyond. Technical
report, Communications Research Laboratory, McMaster University, Hamilton ON, Canada,
2003.

[3] Randal Douc, Olivier Cappe, and Eric Moulines. Comparison of resampling schemes for
particle filtering, 2005.

[4] A. Doucet, Nando de Freitas, and Neil Gordon. Sequential Monte Carlo Methods in Practice.
Springer Verlag, first edition, 2001.

[5] Arnaud Doucet, Neil J. Gordon, and Vikram Krishnamurthy. Particle filters for state esti-
mation of jump markov linear systems, 2001.

[6] John Geweke. Bayesian inference in econometric models using monte carlo integration. Econo-

metrica, 57(6):1317–1339, 1989.

[7] Jeroen D. Hol, Thomas B. Schon, and Richard Karlson. On resampling algorithms for particle
filters, 2006.

[8] Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space
models. Journal of Computational and Graphical Statistics, 5(1):1–25, 1996.

[9] Mike Klass, Mark Briers, Nando de Freitas, Arnaud Doucet, Simon Maskell, and Dustin Lang.
Fast particle smoothing: If i had a million particles, 2006.

[10] Augustine Kong, Jun S. Liu, and Wing Hung Wong. Sequential imputations and bayesian
missing data problems. Journal of American Statistical Association, 89(1):278–288, 1994.

[11] Henrik Madsen. Time Series Analysis. DTU press, 2th edition, 2006.

[12] Henrik Madsen and Jan Holst. Modelling Non-Linear and Non-Stationary Time Series. DTU
press, 1th edition, 2000.

[13] D. Q. Mayne. A solution of the smoothing problem for linear dynamic systems. Automatica,
4:73–92, 1966.

[14] A.F.M. Smith N.J. Gordon, D.J. Salmond. Novel approach to nonlinear/non-gaussian
bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, 140, 1993.

[15] Rudolph van der Merwe, Arnaund Doucent, Nando de Freitas, and Eric Wan. The unscented
particle filter. Technical report, Cambridge University Engineering Department, 2000.

[16] Mike West. Mixture models, monte carlo, bayesian updating and dynamic models. Computing

Science and Statistics, 24:325–333, 1993.

