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Epilepsy is the neurological disorder affecting around 50 million people worldwide. It is characterized by 
recurrent and unpredictable seizures. Correctly counting seizure occurrences is crucial for diagnosis and 
treatment of epilepsy, which will lower the risk of SUDEP (sudden unexpected deaths in epilepsy). Many 
previous researches on patient-specific seizure detection have obtained a good performance but with 
limited practicability in clinical setting. On the other hand, patient non-specific detection is clinically 
practicable but with limited performance. This study aims to improve the performance of patient non-
specific seizure detection by comparing performances among one modality based models and multi-
modal based model. The study was based on clinical data from the open source Siena Scalp EEG 
Database, which consist of simultaneous EEG (Electroenchephalography) and ECG (electrocardiography) 
recording from 14 patients with focal epilepsy. The seizures were annotated by an epilepsy expert after 
a careful review of the clinical and EEG data of each patient. First, relevant signal pre-processing were 
performed, followed by features extraction. Then, machine learning approach based on random forest was 
employed for seizure detection with leave-one-patient-out cross validation scheme. EEG detector and ECG 
detector were separately trained with each signal. Multi-modal detector was based on combining EEG 
detector and ECG detector by the late integration approach with the Boolean operation “OR” strategy. 
The performances were compared among those three detectors and with the state of the art. The result 
has shown that the multi-modal detector achieved a sensitivity of 87.62% and outperformed the ECG 
detector (41.55%), the EEG detector (81.43%), and the state-of-the-art non-specific detectors. Notably, 
the ECG detector detected some seizures which EEG detector failed to detect. This indicated that the 
ECG signal was beneficial for increasing sensitivity. However, due to the “OR” fusion strategy, the multi-
modal detector also inherited the false detections resulted from either EEG detector or ECG detector. The 
findings of the study demonstrate the potential of improving performance of patient non-specific seizure 
detection by multimodal data. It shows that the proposed method should be further validated on large 
database and further development should focus on lowering false detections before clinical application.

© 2023 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Epilepsy is a neurological disorder affecting around 50 million 
people worldwide [1]. It is characterized by recurrent and unpre-
dictable seizures, which can affect different parts of the brain and 
manifest itself by loss of consciousness, sudden changes in behav-
ior, sensation and cognition, and convulsions. There is one case of 
sudden unexpected deaths in epilepsy (SUDEP) among 1000 pa-
tients each year. The cause of SUDEP is not fully understood, but it 
is believed that uncontrolled or frequent seizures will increase the 
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risk of SUDEP [2]. Therefore, an automatic and accurate detection 
of seizures is essential for effective management of the condition.

EEG (Electroencephalography) is non-invasive recording of brain 
electrical activities. With its high temporal resolution, EEG is a 
valuable tool in the diagnosis and management of various neu-
rological conditions, as well as in basic research and applied neu-
roscience [3–8]. Currently, the diagnosis and treatment of epilepsy 
is based on the visual inspection of the long-term EEG signal by 
a trained clinician. The epileptic EEG is interpreted by its com-
plicated spectral, temporal, and spatial features. Visual inspection 
of EEG is subjective, time-consuming, and can be prone to hu-
man error [9]. To overcome these limitations, various automatic 
seizure detection algorithms have been developed over several 
decades [10–13]. It typically involves features extraction and ma-
chine learning based classification. The features reflecting charac-
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Table 1
Patient Information from Siena Scalp EEG Database (PId: patient Id).

PId Age Sex Seizure Nr. of Seizure Recording Time (m)

PN00 55 M Right Temporal lobe Focal onset impaired awareness 5 192
PN01 46 M Left Temporal lobe Focal onset impaired awareness 2 809
PN03 54 M Right Temporal lobe Focal onset impaired awareness 2 1453
PN05 51 F Left Temporal lobe Focal onset impaired awareness 3 362
PN06 36 M Left Temporal lobe Focal onset impaired awareness 5 723
PN07 20 F Left Temporal lobe Focal onset impaired awareness 1 524
PN09 27 F Left Temporal lobe Focal onset impaired awareness 3 410
PN10 25 M Bilateral frontal lobe focal to bilateral tonic-clonic 10 1122
PN11 58 F Right Temporal lobe Focal onset impaired awareness 1 145
PN12 71 M Left Temporal lobe Focal onset impaired awareness 4 366
PN13 34 F Left Temporal lobe Focal onset impaired awareness 3 520
PN14 49 M Left Temporal lobe Focal onset without impaired awareness 4 1408
PN16 41 F Left Temporal lobe Focal onset impaired awareness 2 293
PN17 42 M Right Temporal lobe Focal onset impaired awareness 2 308
teristics of epileptic EEG have been extracted by various methods 
such as statistic descriptive of time domain, FFT, autoregressive 
modeling, cross-correlation of channels, phase synchronization, 
wavelet transform, entropy, spatial filtering and so on [14]. For 
classification, the studies have used machine learning method such 
as decision tree, K-nearest neighbor, random forest, support vector 
machine (SVM) and deep learning such as Convolutional Neural 
Network (CNN) [15], recurrent Neural Network (RNN) [16] or com-
bination of CNN and RNN [17]. Generally, there are two different 
approaches for seizure detection, namely patient specific model 
and patient non-specific model. A patient specific model is per-
sonalized and focuses on an individual patient, trained with their 
specific data. On the other hand, a patient non-specific model aims 
to identify patterns or trends within a group, providing general in-
sights applicable to the group and can be directly used with new 
patients. The researches have found that patient specific algorithms 
outperformed the non-specific ones [11,12]. Many researchers have
been devoted to patient specific model and achieved good per-
formance. Daoud and Bayoumi [17] developed a patient specific 
model using CNN for extracting the significant spatial features 
from different scalp positions and RNN for expecting the incidence 
of seizures. They achieved a highest accuracy of 99.6% and lowest 
false alarm rate per hour of 0.004. An non-specific model proposed 
by Sridevi et al. [18] extracted signal energy, spectral energies in 
different frequency bands and spectral entropy. Among five clas-
sifiers, they obtained the best performance of a sensitivity of 80% 
and a specificity of 86% with classifier based on SVM.

Many studies on seizure detection have focused on using EEG 
signal. In recent years, there has been increasing interest in also 
using electrocardiography (ECG) signals for seizure detection [19]. 
The findings presented by Zijlmans et al. in [20] suggested that 
ECG changes occur during a seizure and sometimes even before 
the earliest EEG change. They reported that an increase of at least 
10 beats/minute was found in 73% of all seizures (281) and ECG 
abnormalities could be seen in 26%. Greene et al. [21] considered 
both a patient specific and non-specific model using a combination 
of both EEG and ECG. They utilized a linear discriminant classifier. 
The multimodal detector used both an early integration approach 
and a late integration for information fusion from EEG and ECG. 
They scored a sensitivity and false positives per hour (FP/h) of 
81.44% and 3.15 FP/h and 81.27% and 3.05 FP/h, respectively.

Patient specific model achieved great performances for seizure 
detection. However, the patient specific models need to be trained 
for each patient before deployment, which limit their applicability. 
The patient non-specific models lack of good performance. It can 
explain that automatic seizure detection hasn’t been adopted sys-
tematically in clinical setting yet. The ECG was found to increase 
performance in patient-specific seizure detectors [22], however, lit-
tle research had gone into examining whether this could also be 
true for non-specific detectors. In this study, we aim to improve 
2

the performance of patient non-specific seizure detection by fus-
ing data from both EEG and ECG in the way that two modalities 
will be complimentary to each other. The performance of multi-
modal detector will be compared with two uni-modals trained 
for each signal. The developed multi-modal detector will aid the 
clinician for a subjective and efficient assessment of epilepsy. The 
main contributions of our work are summarized as follows. First, 
we proposed an efficient method to represent patients’ variabil-
ity by extracting features from different domains for both EEG and 
ECG. Second, those EEG and ECG features server as input to ran-
dom forest based classifier. Random selection of subset of large 
EEG and ECG features for training trees in forest will increase di-
versity among trees and reduce over-fitting. Third, the study shows 
the advantage and disadvantage of combining ECG. In addition, the 
study demonstrates a practical way to balance sensitivity and false 
positives.

2. Methodology

2.1. Siena scalp EEG database

In this project, the clinical data from the open access Siena 
Scalp EEG Database was used [23]. The data was acquired by the 
Unit of Neurology and Neurophysiology at the University of Siena. 
The database consists of simultaneous EEG and ECG recordings 
with a sampling rate of 512 Hz from 14 patients (nine males, 
five females) with focal epilepsy. Mean of age was 43.5 years old 
(range: 20–71). The EEG was recorded from 19 monopolar chan-
nels (Fp1, F3, C3, P3, O1, F7, T3, T5, Fz, Cz, Pz, F4, C4, P4, O2, F8, 
T4, T6 and Fp2) according to international 10-20 system. Most of 
the recordings also contained 1 or 2 ECG signals. The annotation of 
seizure was carried out by an expert clinician after a careful review 
of the clinical and EEG data of each patient. In total, the database 
contains 47 seizures with a mean seizure duration of 61 seconds 
on approximately 144 hours of recording time. Table 1 shows the 
basic information about all patients.

2.2. Multi-modal detector of seizure

Seizure detection refers to identify epileptic EEG associated 
with seizure. It is a binary classification problem, aiming to clas-
sify seizure versus non-seizure. The architecture of multi-modal 
seizure detector using both EEG and ECG is illustrated in Fig. 1. 
It consists two uni-modals (EEG detector and ECG detector) and 
fusion step. First, EEG detector and ECG detector were trained 
and evaluated separately with leave-one-patient-out cross valida-
tion scheme. Then post-processing was carried out in the way that 
the detections within 30 seconds were grouped into one detection. 
Finally, a late integration approach was adopted for data fusion 
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Fig. 1. Architecture of Multi-modal detector of seizure. D is the detector decision; D f is the decision after post-processing; DCombined is the decision after fusion.
where the decisions from two detectors were combined into a final 
decision with Boolean operation of “OR”. The performance of EEG 
detector, ECG detector and multi-modal detector was measured by 
sensitivity, specificity, false positives per hour (FP/h), detection la-
tency (DL) in seconds and the receiver operating characteristics 
curve (ROC) with variation. Sensitivity and specificity provide a 
quantitative indication of the model’s ability to correctly identify 
true positive and true negative cases, respectively. FP/h refers to 
the number of false positives that are generated by a test per hour. 
DL is difference between first detected seizure epoch and the onset 
time of seizure annotated by the clinician. It shows how early the 
model can detect the seizure. The ROC curve is created by plotting 
the true positive rate (TPR) against the false positive rate (FPR) at 
various threshold settings. It represents the trade-off between the 
TPR and FPR for different threshold values. In our study, the met-
ric FP/h was used instead of FPR for plotting ROC curve [22], which 
give more concrete measure of false positives.

The patient non-specific EEG detector has been developed in 
our previous study [24]. In the following, first EEG detector will be 
briefly described. Then the development of ECG detector will be 
explained in detail, followed by multi-modal fusion.

2.2.1. EEG-detector
The algorithm developed in [24] was used in this study for EEG 

detector. For reader’s convenience, we briefly introduce the algo-
rithm here. For more details, please refer to [24]. The EEG signal 
first went through high-pass filtering at 0.5 Hz and a 50 Hz notch 
filtering. Then the signal was divided into 6-seconds epochs, from 
which features will be extracted [25]. Features from time domain, 
frequency domain and entropy were extracted from each channel 
and then concatenated into a feature vector. Epochs without fully 
overlapping with seizure period were labelled as non-seizure while 
with fully overlapping as seizure. For epochs labeled with seizure, 
there is 50% overlap in order to increase the number of seizure 
samples. Afterwards, random forest was applied for classification 
between seizure and non-seizure with leave-one-patient-out cross 
validation scheme. Finally, the performance was reported by sensi-
tivity, specificity, FP/h, DL in seconds and ROC curve with variation.

2.2.2. ECG-detector
The architecture of ECG detector is illustrated in Fig. 2. It con-

sists of pre-processing, feature extraction and classification. The 
following sections will provide a detailed description of each step.
ECG Pre-processing To extract reliable features, 60-seconds epoch 
was chosen. It is the preferred window size in several studies us-
3

ing ECG for automatic seizure detection [21,22]. The window was 
moved along the ECG signal extracting l = 1, ..., L epochs. The 
epochs overlapping with the seizure interval were labeled as 1 
(seizure), otherwise as 0 (non-seizure). Additionally, as an attempt 
to obtain more seizure data, a 50% overlap was applied to seizure 
epochs. A representation of this is shown in Fig. 3.

For the ECG model, the feature extraction part is based on an 
analysis of heart rate variability (HRV). To conduct such an anal-
ysis, it is pivotal to detect the R-peaks of the signal. Here, we 
used one of the most famous QRS-detection algorithms, namely 
the Pan-Tompkins algorithm proposed in [26]. It has been applied 
by several studies for the purpose of analyzing HRV for seizure 
detection [22,27]. The code used to implement the algorithm can 
be found in [28]. The output of the Pan-Tompkins algorithm was 
all the R-peak time points, where the RR (R-peak to R-peak) in-
tervals were constructed. Prior to the feature extraction, the RR 
intervals went through another processing stage with the aim of 
removing possible outliers and ectopic beats. Here, an outlier was 
defined as an interval length below 300 ms or above 2000 ms. 
Ectopic beats are defined as beat-to-beat intervals deviating from 
normal beat-to-beat intervals [29]. Outliers and ectopic beats were 
replaced with linearly interpolated values. Finally, the cleaned list 
of RR intervals, commonly referred to as NNI (Normal-to-Normal 
Interval) [30], were fed to the ECG feature extraction unit. In the 
following, the term NNI will be used.
ECG Feature Extraction The ECG features were extracted from 
time-domain, frequency-domain, geometrical domain, and the 
non-linear domain. In total, 31 features were extracted from a sin-
gle channel for every epoch. All extracted features are commonly 
found in the literature for seizure detection based on HRV analy-
sis [22,27,29–31]. A short description of each feature can be seen 
in Table 2.
Performance evaluation The machine learning method random 
forest was used for model development. Random forest is an en-
semble of decision trees, where each tree is trained on a random 
subset with replacement of the original data set and randomly se-
lected subset of features [35]. This way avoids a high correlation 
between the trees in the ensemble and therefore have more vari-
ability. This method is robust to noise and outliers, resistant to 
over-fitting, fast, simple, and accurate compared to other meth-
ods [36]. In this study, the Gini entropy was used as a measure 
of impurity in the different branches and 150 decision trees were 
trained in the forest. We evaluated the performance of ECG de-
tector using leave-one-patient-out cross validation. The patient left 
out was tested with detector trained with the rest of the patients. 
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Fig. 2. Architecture of the ECG detector. f Z corresponds to the Zth feature and Yl where l = 1...L number of epochs in the ECG recording. D EC G is the decision outputted by 
the detector for that epoch.

Fig. 3. Segmentation of the ECG signal into seizure (1) and non-seizure (0) epochs.
This process repeated until every patient has been tested. During 
model training, the data was imbalanced with most samples from 
non-seizure class. To address class imbalance, under-sampling of 
non-seizure samples was performed by randomly removing the 
non-seizure samples until a ration of 9:1 between non-seizure 
class and seizure class were met. The performance of the ECG 
detector was measured by the same performance metrics as EEG 
detector.

2.2.3. EEG and ECG detector fusion
There are two main approaches to integrate information from 

multiple modalities, namely the early integration and the late inte-
gration. In early integration, extracted features from each modality 
are fused into one large feature vector which is then classified to 
output a final decision. In late integration, the classifier is trained 
with each modality, then the outputs of classifiers are fused into a 
final decision. In this study, two modalities were designed to work 
in the way that they are complementary to each other in the situ-
ation where changes related to seizure are reflected from only one 
of these two signals. In addition, HRV changes and EEG changes 
associated with epileptic seizure don’t happen at the same time. 
Therefore, the late integration is a proper approach in this study. In 
4

addition, the work presented in [37] found late integration method 
is superior. To fuse two decisions from two modalities, Boolean 
operation of OR was chosen in order to maximize the sensitivity. 
Mathematically, the “OR” strategy can be expressed as:

DCombined =
{

1 otherwise
0 i f D f E EG = D f EC G = 0

(1)

Similar to uni-modal detectors, the performance of this multi-
modal detector was evaluated according to previously mentioned 
metrics.

3. Results

Table 3 shows the performance of three detectors. The perfor-
mance of EEG has been reported in [24] and is reused here for 
comparison. EEG detector achieved an average sensitivity of 81.43%, 
ECG detector sensitivity of 41.55%, multi-modal detector sensitivity 
of 87.62%. Compared to the EEG detector, ECG detector had a con-
siderably lower sensitivity of 41.55%. The sensitivity of ECG varied 
greatly from patient to patient, with 6/14 and 4/14 having sensi-
tivities of 0% and 100%, respectively. The sensitivity of multi-modal 
improved and is the best among three detectors. The specificity 
among three detectors was similar and showed good capability of 
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Table 2
Extracted features from ECG.

Time feature Description

mean_nni Mean of all NNIs
sd_nni Standard deviation of all NNIs
sdsd Standard deviation of differences between adjacent NNIs
rmssd Square root of the mean of the sum of squares of differences between adjacent NNIs [32]
median_nni Median absolute values of the difference between adjacent NNIs
nni_50 Number of adjacent NNIs differing by more than 50 ms
pnni_50 Proportion of NNI_50 from all NNIs
nni_20 Number of adjacent NNIs differing by more than 20 ms
pnni_20 Proportion of NNI_20 from all NNIs
range_nni The difference between maximum and minimum NNI
cvsd Coefficient of variation of successive differences equal to the rmssd divided by mean_nni [33]
cvnni Coefficient of variation equal to the ratio of sdnn divided by mean_nni [33]
mean_hr Mean heart rate
max_hr Max heart rate
min_hr Min heart rate
std_hr Standard deviation of heart rate

frequency feature Description

total_power Total power spectral density
lf Low frequency (0.04 - 0.15 Hz) power of HRV [31]
hf High frequency (0.15 - 0.40 Hz) power of HRV [31]
vlf Very low frequency (0.003 - 0.04 Hz) power of HRV [33]
lf_hf_ratio Ratio of high frequency, low frequency components
lfnu Normalized low frequency power of HRV
hfnu Normalized high frequency power of HRV

Geometrical feature Description

triangular_index This is the integral of the density distribution (number of all NNIs) divided by the maximum of the density distribution [32]

Non-linear Description

SD2 This is defined as the standard deviation of the projection of the poincaré plot on the line of identity (y=x) [34]
SD1 This is defined as the standard deviation of the projection of the poincaré plot on the line perpendicular to the line of identity [34]
ratio_sd2_sd1 Ratio between SD2 and SD1
CSI Cardiosympathetic index
CVI Cardiovagal index
Modified CSI A modified version of CSI

Table 3
Seizure detection performance for EEG detector, ECG detector, Multi-modal detector (NSD: no seizure detected).

PID Sensitivity (%) Specificity (%) FP/h DL (sec)

EEG ECG multi- EEG ECG multi- EEG ECG multi- EEG ECG multi-

PN00 100 0 100 99.95 100 99.95 0.31 0 0.31 32.8 NSD 32.8
PN01 100 100 100 100 99.57 99.57 0 2.6 2.6 10.5 34.5 10.5
PN03 100 0 100 99.69 99.81 99.5 1.86 1.16 2.97 22 NSD 22
PN05 66.67 0 66.67 98.75 99.21 98.01 7.46 4.64 11.77 14.5 NSD 14.5
PN06 60 80 80 99.89 98.67 98.56 0.66 7.88 8.55 22 28.2 22.2
PN07 100 0 100 97.32 99.61 97.01 16.03 1.83 17.86 9 NSD 9
PN09 33 100 100 100 97.79 97.79 0 13.02 13.02 41 37 35
PN10 30 10 30 99.88 99.52 99.41 0.7 2.83 3.48 12.3 3 8.3
PN11 100 0 100 98.82 99.86 98.67 7.03 0.83 7.86 6 NSD 6
PN12 100 25 100 99.5 98.55 98.05 2.95 8.52 11.48 12.5 46 12.5
PN13 100 66.67 100 99.81 99.92 99.73 1.15 0.46 1.62 20 57 20
PN14 50 0 50 98.69 99.75 98.47 6.86 1.32 7.97 18 NSD 18
PN16 100 100 100 99.1 99.93 99.02 5.32 0.41 5.73 38 44 38
PN17 100 100 100 99.97 100 99.97 0.19 0 0.19 21.5 42.5 21.5

Mean 81.43 41.55 87.62 99.38 99.45 98.84 3.61 3.25 6.82 20 36.5 19.3
detecting non-seizures. The ECG detector produced slightly fewer 
FP/h. EEG detector had similar DL to multi-modal. ECG detector 
had longer DL. Multi-modal detector managed to detect all seizures 
for 10 out of 14 patients. The poorest sensitivities belonged to the 
recordings from PN10 and PN14 with 30% and 50%, respectively.

In Fig. 4, detections from each uni-modal detector were plot-
ted together to visualize how each signal contributed to the final 
detection of multi-modal detector from a few patients. Improve-
ments in sensitivity after fusing ECG signal with “OR” operation 
were especially seen for PN06 and PN09, where EEG detector failed 
to detect the seizure while ECG detector actually identified the 
seizure, as shown in the bottom row. In the top row, it is obvious 
5

that EEG detector had earlier seizure detection than ECG detector 
for patients PN00 and PN05.

Fig. 5 illustrates the performance of the three detectors in terms 
of their sensitivity in relation to FP/h. The ROC-curves were ob-
tained by using outputs’ probabilities and thresholds. Only thresh-
olds yielding a maximum of 5 FP/h are shown. For each curve, 
three thresholds values have been highlighted where the values 
0.56, 0.62, and 0.68 are depicted by the following markers; a 
square, a circle, and a star, respectively. It is obvious that EEG de-
tector and multi-modal detector showed better performance than 
ECG detector. Between around 1 FP/h and 4 FP/h, multi-modal had 
a better sensitivity than EEG detector.
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Fig. 4. Seizure detections by both the ECG and EEG-based detector, 1: seizure, 0: no seizure. Actual: the actual seizure event period. ECG Predicted: seizure predictions made 
by the ECG-detector. EEG Predicted: seizure predictions made by the EEG-detector.
Fig. 5. Sensitivity in relation to FP/h for the three proposed detectors.

4. Discussion

Around 50 million people worldwide are suffering from epilep-
sy. Accurate seizure frequency is crucial for management of epilep-
sy. However, seizure detection is currently based on visual inspec-
tion of long-term and multi-channel EEG. It is time consuming and 
inefficient. With development of computing power and advanced 
data analytic, machine learning based approach has been applied 
to solve the complicated problems within healthcare [38–42]. Ma-
chine learning would provide an efficient solution for automatic 
and accurate seizure detection. The objective of the study was to 
improve the performance of a patient non-specific seizure detec-
tion by fusing information from both EEG and ECG. The developed 
multi-modal detector will assist the clinician for an efficient and 
objective evaluation of epilepsy.

In our study, EEG detector, ECG detector and multi-modal de-
tector were developed and evaluated with random forest using 
leave-one-patient-out cross validation. ECG detector was trained 
using seizures’ annotations based on reviewing patients’ EEG and 
clinical data. Features including time domain, frequency domain, 
geometrical domain and non-linear domain were extracted. Those 
rich features reflected the characteristics of EEG and ECG signal 
from different perspective, therefore have the potential to repre-
sent the diverse characteristics and variation among patients. Each 
tree in random forest was trained with random subset of those 
extracted features to reduce over-fitting problem and increase di-
versity. The result showed that the sensitivity of ECG detector was 
6

significantly lower than EEG detector and varied greatly among pa-
tients. For 6 out 14 patients, no seizures were detected. It is not 
surprise because previous study has showed that not all patients 
had ECG changes and abnormalities during seizures [20]. Fig. 6
shows ECG signals from two patients during seizures: PN00 with-
out ECG changes from top row; PN01 with ECG changes (tachycar-
dia) at later stage of seizure from bottom row. It explained that no 
seizures were detected by ECG with PN00, while the seizures were 
detected by ECG for PN01. The DL of 36.5 seconds with ECG detec-
tor reflected that HRV changes occur later in the seizure period as 
showed in Fig. 4. This is in line with several other studies where 
they also found interictal tachycardia (ITC) to be more an ictal than 
a pre-ictal phenomenon [43,44]. In comparison to the performance 
of other patient non-specific ECG seizure detectors, our ECG de-
tector was outperformed in terms of both sensitivity and FP/h. 
The ECG-based detector presented in [21] achieved a sensitivity 
of 82.33% together with a FP/h of 1.71. In [22], they obtained sen-
sitivities of 65%, 74%, and 52% with 1 FP/h when evaluated on the 
databases SeizeIT1, Epilepsiae-Freiburg, and Epilepsiae-Paris. There 
are several reasons why our ECG-detector failed to achieve com-
parable sensitivity to the state of the art. First and foremost, there 
was a large variation in the size and seizure type representations 
in databases used for comparison. The database in [21] used 633 
labeled seizure events which are more than 13 times the amount 
of available seizure events (47) in the Siene Scalp Database. Sim-
ilarly, the detector in [22] was trained on the SeizeIT1 dataset 
which contained 221 seizures. Furthermore, both detectors were 
trained and evaluated on a variety of seizure types whereas our 
dataset contained 12 patients with IAS and one patient with FBTC 
and one patient with WIAS. A large variety of seizure types does-
n’t necessarily lead to better performances, however, findings from 
papers researching HR and ECG changes in epilepsy suggest that 
tachycardia and ECG abnormalities are more common in patients 
with prolonged and generalized seizures [45,46]. No such seizure 
types were available in our data set. Secondly, QRS-detection is 
known to be a challenging task which is further hampered by the 
superimposed noise [26,47]. We used the Pan-Tompkins algorithm 
for QRS-detection which has been proven effective [26]. However, 
it sometimes made wrong detection of R-peak as illustrated in 
Fig. 7 or missed the R-peak detection, which lead to inaccurate 
calculation of HRV.
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Fig. 6. 5 seconds ECG signals. Top row for patient PN00. Bottom row for patient PN01. Left: beginning of first seizure event. Right: 30 seconds into first seizure event.
Fig. 7. ECG signal showing the first 10 seconds of patient PN05’s first seizure along 
with the detected R peaks (red dots) computed with the Pan-Tompkins algorithm.

For training a robust model, we down-sampled the non-seizure 
epochs and over-sampled the seizure epochs to have a better bal-
ance. Afterwards, during testing we would evaluate every 6 s seg-
ment of EEG data and 60 s of ECG from unseen patients with the 
trained model to make a detection. Final detections will be based 
on post-processing procedure. Then we compared final detections 
with annotations to evaluate the performance of the model. The 
multi-modal detector achieved a sensitivity of 87.62% which was 
better than two uni-modal detectors. Despite a poor sensitivity 
obtained by the ECG-based detector, the combined did manage 
to correctly detect more seizures. Improvements in sensitivity are 
especially seen for PN06 and PN09 where the ECG detector outper-
formed the EEG detector. It indicates the benefit of using multiple 
modalities. For patients with no evident epileptic EEG pattern may 
instead have measurable ECG changes during seizure. In this sce-
nario, ECG detector will detect more seizures, leading to improve-
ment of the sensitivity. DL of multi-modal detector have an average 
gain of only 0.7 second. Our study focused on improving sensitivity 
at the cost of false detections. The diagnosis of epilepsy depends 
on seizure frequency. We would like to detect as many seizures 
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as possible. With our multi-model, the sensitivity increased by 
around 6% and FPs/h increased by 3.2 FPs/h. When epilepsy experts 
review the detections done by trained model, we assume that can 
they easily identify those false positives.

The “OR” fusion strategy increased sensitivity, but it also in-
herited the false detections produced by each detector. A clear 
example of this can be seen in the top right plot of Fig. 4. Our 
purpose of multi-modal detector is to aid the neurologist for an 
efficient and objective assessment of epilepsy, so higher sensitivity 
must be favored over a low FP/h and DL as an experienced clini-
cian, with relative ease, would be able to reject a FP [43]. It is thus 
also difficult to determine what the upper limit of an acceptable 
number of FP/h might be. Further investigations are needed for 
finding the optimal fusion strategy. Another approach to limit the 
number of false detections, could be to change the threshold/prob-
ability value for making a decision of seizure or non-seizure. The 
performance reported here using the value of 0.5 as threshold. By 
increasing this, one might be able to reduce the false detections 
as showed in Fig. 5. For the multi-modal detector, it seems that 
a threshold value between 0.62-0.68 could decrease the number 
of FP/h to about 1.5 whilst maintaining a sensitivity of above 80%. 
Greene et al. [21] developed patient non-specific model with both 
EEG and ECG and scored a sensitivity of 81.44% and 3.15 FP/h. Our 
multi-modal detector achieved the better performance than theirs.

Lastly, the multi-modal detector was evaluated on a subset of 
patients where the recordings from PN10 and PN14 had been re-
moved for testing. These two patients had different seizure types 
from all other patients, due to the leave-one-patient-out cross 
validation scheme, no training data had been available of those 
two patients. This could justify why all three detectors, gener-
ally, showed the lowest sensitivities for these two patients. The 
result showed that the sensitivity increased from the 87.62% to 
95.56%, with similar DL, FP/h, and specificity. This further empha-
sizes that more seizure cases and a greater variety of seizure types 
are needed for the detector to generalize better.

Future investigation should focus on reducing false detections 
while keeping high sensitivity. It could be achieved as follows.
First and foremost, the detectors will be trained with an increased 
amount of seizure data with different seizure types including 
WIAS, FBTC, IAS, and unclassified seizures. The trained detectors 
are expected to result in an increased performance, especially for 
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the patients PN10 and PN14. Secondly, as the sensitivity of the 
ECG detector was low, an improvement of ECG detector here would 
most likely also provide the greatest value to the multi-modal de-
tector. For the ECG-detector, the feature extraction is based on 
the HRV analysis where an accurate R-peak detection is impor-
tant. R-peak detection is usually challenging especially when ECG 
signal is contaminated by noises. In next step, noise cancellation 
or correction on ECG will be developed for better R-peak detec-
tion. As the main contribution, the paper proposed an efficient 
and robust algorithm based on random forest and rich features 
from EEG and ECG. The study presented the benefit of using multi-
ple modalities for patient non-specific seizure detection. Our algo-
rithm demonstrated an improvement over the state-of-the-art non-
specific methods in terms of sensitivity. The developed method 
will be further validated with big database and integrated for clin-
ical validation.

5. Conclusion

In this study, the aim was to improve the sensitivity of a pa-
tient non-specific seizure detector by combining information from 
both EEG and ECG. EEG detector, ECG detector and multi-modal 
detector have been developed and compared. Generally, the EEG-
based detector outperformed the ECG-based in terms of sensitiv-
ity. Although, for a few patients where the EEG-detector failed 
to achieve high sensitivities, the ECG-detector actually performed 
better and detected more seizures. This was also reflected in the 
sensitivity of the multi-modal detector which was higher (87.62%) 
than the proposed EEG detector and ECG detector. Additionally, 
the multi-modal detector achieved a higher sensitivity than state-
of-the-art non-specific seizure detectors. Our findings showed that 
information from the ECG signal is beneficial and complementary 
for an automatic, patient non-specific seizure detection. However, 
the multi-modal detector did suffer from a relatively high number 
of FP/h as it inherited FPs from both signals. Thus, further inves-
tigations are needed to limit the number of false positives whilst 
still maintaining high sensitivities before clinical deployment.
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