SOFC and Gas Separation Membranes

Hagen, Anke; Hendriksen, Peter Vang; Søgaard, Martin

Published in:
Energy solutions for CO2 emission peak and subsequent decline

Publication date:
2009

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Solid Oxide Fuel Cells and Gas Separation Membranes

A. Hagen, P.V. Hendriksen, M. Søgaard
Fuel Cells and Solid State Chemistry Division
Risø DTU

Risø DTU
National Laboratory for Sustainable Energy
Outline

- Background Motivation
 - Combination of Energy Conversion Technologies
 - Solid Oxide Fuel Cells
 - Gas Separation Membranes
 - Summary and Outlook
How can we satisfy our needs for energy – in the right forms and at the right times – with what nature offers?
Background

Biomass

Gasification

Fuel Cells

Membranes

Heat

Electricity
Biomass: Gasification

Gasification of biomass to CO and H₂

- High temperature process
- Use of waste (wood chips, organic waste)
- Efficiency of wood for electricity exceeds 25%
- Potential for increase of electrical efficiency by use of fuel cells and oxygen enriched gasification

! Carbon capture!

Viking gasifier at Risoe DTU
Combination: Gasification – SOFC-Membrane

• Increase of total efficiency:
 – SOFC convert fuel to electricity with higher efficiency than conventional technologies
 – Oxygen rich gasification gives a gas with lower nitrogen content (less diluted fuel)

• New option: Carbon capture

• Challenges:
 – Changing composition according to used biomass
 – Load fluctuations
 – Impurities, minor components in gasification gas:
 • Sulphur containing, ammonia, higher hydrocarbons, etc.
Solid oxide fuel cells (SOFCs)

- Higher efficiency than conventional power generation systems
- Reduction of emissions and pollution (NO\textsubscript{x}, CO\textsubscript{2}, noise)
- Modular concept (from kW to MW)
SOFC Working Principle and Main Components

CATHODE
- Catalytic activity for oxygen reduction
- Gas transport (porosity)
- Electron- (ion-) conducting

ELECTROLYTE
- Gas tight
- (Oxygen) ion conducting
- Electronic isolator

ANODE
- Catalytic activity for fuel oxidation
- Gas transport (porosity)
- Electron- (ion-) conducting

GENERAL
- Chemical inertness
- Thermal compatibility
- Mechanical strength and flexibility

\[
O_2 + 4e^- \rightarrow 2O^{2-}
\]

\[
2H_2 + 2O^{2-} \rightarrow 2H_2O + 4e^-
\]

Gasification gas
• Risoe DTU has developed several SOFC generations based on ceramic materials, which are tailored for different operating conditions
• A pre-pilot manufacture line was established using scale-able and economically competitive processes
Durability of SOFCs – Generation G2

- Good initial performance
- Good durability over thousands of hours in different fuels:
 - Hydrogen, synthesis gas (CO + H₂), methane + steam

![Graph showing power density vs. time under current](image)

- Durability tests on 2G, synthesis gas, 75% fuel utilization
 - 750 °C
 - 850 °C
Tolerance of 2G SOFCs towards H₂S impurities in a fuel mainly containing hydrogen and also hydrocarbons (methane) and steam not sufficient.
Impedance analysis, 750 °C, 20% H₂O

Cell A (2G)

- Fit
- Cat I
- Ano I
- Cat II
- Diffusion
- Conversion
- Cell #A

Cell B

- Fit
- Cat I
- Ano I
- Cat II
- Diffusion
- Conversion
- Cell #B

Smaller resistance from anode and smaller electrolyte resistance = Better performing cell

16 September 2009
Durability of SOFCs – Generation G2.X with Improved Anode: H₂S Impurities

- Significantly improved tolerance of improved 2G SOFCs towards H₂S impurities in the fuel
From Solid Oxide Fuel Cells – Oxygen Transfer Membranes

CATHODE
• Catalytic activity for oxygen reduction
• Gas transport (porosity)
• Electron-(ion-)conducting

ELECTROLYTE
• Gas tight
• Oxygen ion conducting

ANODE
• Catalytic activity for fuel oxidation
• Gas transport (porosity)
• Electron-(ion-)conducting

GENERAL
• Chemical inertness
• Thermal compatibility
• Mechanical strength and flexibility

O₂ + 4e⁻ → 2O²⁻
Oxygen Transfer Membranes (OTMs)

Oxygen is separated from air, transported through a membrane and supplied to partial oxidation of methane.

Cross section SEM picture of a ceria based membrane.
OTMs: Performance (Flux)

Measurements
- **Economical feasibility**

Calculations
- **Flux** vs. **Temperature (°C)**
 - Flux based on in-situ sensor
 - Flux based on ex-situ sensor

Membrane thickness

1. **Hydrogen** 30 µm thick CGO
2. **Air**
3. **0.02 atm O₂**
4. **10 atm air**

DTU Risø
16 September 2009
Summary Outlook

Combination of biomass gasification and SOFC:

• Potential electric efficiency of +50% through use of a SOFC
• By using intelligent heat management, high total efficiencies ~ 90% possible
• Well performing and durable SOFCs developed and demonstrated for several fuels, even in presence of H₂S impurities
 – Challenge: Tolerance towards other impurities

Combination of biomass gasification and OTM:

• Increase of overall efficiency due to gasification gas with higher energy density (less diluted)
• Know-how developed for SOFCs can be utilized
• Promising results regarding performance (flux) and economic feasibility
 – Challenge: Increase of flux and durability
Acknowledgements

• We gratefully acknowledge support from our sponsors:

• Topsoe Fuel Cell A/S
• Danish Energy Authority
• Energinet.dk
• EU Framework Programmes
• Danish National Advanced Technology Foundation
• Danish Research Councils
• DONG Energy
• Areva