
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

Downloaded from orbit.dtu.dk on: Jul 25, 2021

Two Methods for Antialiased Wireframe Drawing with Hidden Line Removal

Bærentzen, Jakob Andreas; Munk-Lund, Steen; Gjøl, Mikkel; Larsen, Bent Dalgaard

Published in:
Proceedings of the Spring Conference in Computer Graphics

Publication date:
2008

Link back to DTU Orbit

Citation (APA):
Bærentzen, J. A., Munk-Lund, S., Gjøl, M., & Larsen, B. D. (2008). Two Methods for Antialiased Wireframe
Drawing with Hidden Line Removal. In Proceedings of the Spring Conference in Computer Graphics

https://orbit.dtu.dk/en/publications/557648e9-bee8-48ca-8076-ae7320f7369b


Two Methods for Antialiased Wireframe Drawing with Hidden Line Removal
J. Andreas Bærentzen, Steen Lund Nielsen, Mikkel Gjłl, and Bent D. Larsen�

Figure 1: The left image shows Stanford Bunny drawn using (a) the offset method with a constant offset, and (b) our single pass method. The
right image shows the Utah Teapot drawn using (c) a constant offset, (d) our ID buffer method and (e) a slope dependent offset. The white
arrows indicate artifacts introduced by the slope dependent offset. Notice the stippling in the constant offset images.

Abstract

Two novel and robust techniques for wireframe drawing are pro-
posed. Neither suffer from the well-known artifacts associated with
the standard two pass, offset based techniques for wireframe draw-
ing. Both methods draw pre�ltered lines and produce high-quality
antialiased results without super-sampling. The �rst method is a
single pass technique well suited for convex N-gons for small N
(in particular quadrilaterals or triangles). It is demonstrated that
this method is more ef�cient than the standard techniques and ide-
ally suited for implementation using geometry shaders. The second
method is completely general and suited for arbitrary N-gons which
need not be convex. Lastly, it is described how our methods can
easily be extended to support various line styles.

1 Introduction

Modern graphics cards are machines for drawing textured trian-
gles, and even though they have become extremely sophisticated
and completely programmable, they are very poor at drawing lines.
While line drawing is not so often required in �consumer� graph-
ics, wireframe drawing is commonly used by graphics profession-
als (artists and programmers alike) to gauge the quality of polygo-
nal meshes with regard to various uses, and removal of the hidden
lines makes it much easier to understand the geometry. Therefore,
it is unsurprising that there are well known, standard procedures
for wireframe drawing with hidden line removal [McReynolds
and Blythe 1999]. However, although almost universally used,
these methods, which were designed for �xed function graphics

�Andreas Bærentzen is with the Informatics and Mathematical Mod-
elling Department of the Technical University of Denmark. Email:
jab@imm.dtu.dk. Steen Lund Nielsen is with Deadline Games. Email:
steen@munk-lund.dk. Mikkel Gjłl is with Zero Point Software. Email:
pixelmager@gmail.com. Bent D. Larsen is with Dalux and the Department
of Informatics and Mathematical Modelling, Technical University of Den-
mark. Email: bdl@dalux.dk

pipelines, suffer from inherent problems with two types of artifacts,
namely stippling where a visible line is intermittently invisible (cf.
Figure 1a,c) and disocclusion of lines that should be hidden (cf.
Figure 1e). Furthermore, these methods are based on the hardware
supported line primitive which tends to be costly to render, espe-
cially because the quality is very low unless hardware antialiasing
is enabled.

In this paper, we propose two new algorithms, which are both de-
signed for modern, commodity graphics hardware supporting frag-
ment and vertex shaders. The algorithms are designed with the
goals that they should

� support the combination of wireframe and �lled polygons.

� not suffer from the artifacts of the standard techniques.

� produce high quality, antialiased lines (without hardware su-
per sampling).

Our �rst solution is a simple, single pass method which solves the
hidden line removal problem by drawing the wireframe mesh as a
part of the rendering of the �lled polygons. At little extra effort,
the wireframe is drawn using smooth, pre�ltered lines [Gupta and
Sproull 1981]. The single pass method is shown in Figure 1b and
discussed in Section 2. For hardware supporting geometry shaders,
a very ef�cient implementation is possible.

The single pass method is most ef�cient for convex N-gons for rel-
atively small N. For completely general polygons (not necessarily
planar, convex and of arbitrary N) we propose a second method,
which we denote the identity (ID) buffer method. This method,
which also produces artifact free, pre�ltered lines, is shown in Fig-
ure 1d and discussed in Section 3. Both our methods can be ex-
tended to handle a variety of line styles. Most importantly, we can
distance attenuate the line thickness, but many other possibilities
present themselves as discussed in Section 4 where our results are
presented. Below, we discuss related work, and in the �nal section
(Section 5) we draw conclusions and point to future work.



1.1 Related Work

The standard wireframe rendering techniques are described well in
[McReynolds and Blythe 1999]. There is a number of variations,
but they all have in common that the �lled polygons and the poly-
gon edges are drawn in separate passes. Assuming that the �lled
polygons have been rendered to the depth buffer, the depth value of
a fragment generated from a line (polygon edge) should be either
identical to the stored depth value (from a �lled polygon) or greater
� depending on whether the line is visible or hidden. In reality it is
less simple, because the line depth values depend only on the end
points whereas the depth value of a fragment that originates from a
�lled polygon depends on the slope of the polygon. Thus, a frag-
ment produced by polygon rasterization can have a very different
depth value from a fragment at the same screen position produced
from the line rasterization of one of its edges.

Figure 2: Wireframe drawing using the offset methods (b,d) and our
ID buffer method (c) which employs pre�ltered lines (and no other
method of antialiasing). In (a) no offset has been used, and stippling
artifacts are caused by the steep slope of the gray triangle. In (b) a
large constant offset (-30000) is used but the result still suffers from
stippling artifacts although the edge of the gray triangle penetrates
the blue triangle. In (d) a slope dependent offset is used which �xes
the stippling but causes disocclusion.

Stippling artifacts where the lines are partly occluded are caused
by this issue (Figure 2a). To solve this problem, a depth offset
or a shifting of the depth range is used to bias the depth values
from either the polygons or the lines to ensure that the lines are
slightly in front of the polygons. However, this depth offset has to
be very large to avoid stippling in the case of polygons with steep
slopes. Hence, in most 3D modeling packages, stippling can still
be observed along the edges of polygons with steep slopes. In other
cases, the offset is too large and hidden parts of the wireframe be-
come visible. In fact, as shown in Figure 2b, the offset can be
both too large and too small for the same polygon. The OpenGL
API provides a slope-dependent offset, but this often yields offsets
which are too great leading to (usually sporadic) disocclusion of
hidden lines as seen in Figure 2d. In the following, we will refer to
these methods as offset methods.

A few authors have tried to address the issues in wireframe draw-
ing. Herrell et al. [Herrell et al. 1995] proposed the edging-plane
technique. Essentially, this technique ensures that a fragment from
a polygon edge is drawn if the corresponding fragment of the �lled
polygon passed the depth test. This method can be implemented
either using special hardware or using the stencil buffer. In any

case frequent state changes are required for this method. A vari-
ant of the method is discussed in [McReynolds and Blythe 1999].
In Section 3 we propose a similar but more ef�cient algorithm that
requires few state changes. Wang et al. [Wang et al. 1999] pro-
posed a different technique which explicitly computes occlusion
relationships between polygons. While elegant this method can-
not be implemented on a GPU and there is no simple way to handle
intersecting polygons. Finally, in a method which is most practical
for pure quad meshes, Rose et al. [Rose and Ertl 2003] encoded
signed line distances in textures in order to be able to texture map a
detailed mesh onto a simpli�ed model.

In computer graphics, antialiasing is normally performed by taking
multiple samples per pixel. These samples are subsequently com-
bined using a simple discrete �lter e.g. a straight average [Akenine-
M¤oller and Haines 2002]. This method is always feasible to im-
plement, but often many samples are required to obtain reasonable
quality. Far better quality is obtained if continuous �ltering is used.
However, this is only possible if we can directly evaluate the convo-
lution of a continuous image with a low pass �lter at the point where
we desire to compute the intensity of the �ltered image. Clearly,
this is only possible for �lters of �nite support, but in the case of
lines, Gupta and Sproull [Gupta and Sproull 1981] observed that
the convolution depends only on the distance to the line. Thus, the
convolution can be implemented using a 1D lookup table. McNa-
mara et al. [McNamara et al. 2000] proposed an implementation
of pre�ltered line drawing involving small changes to the fragment
generation part of a graphics card, and, more recently, Chan et al.
[Chan and Durand 2005] have proposed a method which is imple-
mentable on modern graphics cards using fragment shaders. For
our second wireframe method (cf. Section 3), we use a similar
technique for pre�ltered line drawing.

This work is related to Non�Photorealistic Rendering (NPR) in two
ways: First of all, both our methods allow for variations of the
line style which is also a common feature in NPR systems. Sec-
ondly, line drawing (especially silhouette and crease lines) is a cen-
tral problem in NPR rendering, and wireframe rendering and NPR
share the problem of determining the visibility of lines. See [Isen-
berg et al. 2003] for a survey of line drawing in NPR. We use a vari-
ation of the ID buffer method from Markosian [Markosian 2000] in
order to resolve visibility in our second wireframe method.

The �rst of the two methods described here was originally pre-
sented in a SIGGRAPH sketch [Bærentzen et al. 2006] based on
which NVIDIA implemented a Direct3D 10 version of the method
for their SDK [Gateau 2007]. However, this is the �rst reviewed
publication on the �rst method, and nothing has been reported on
the second method.

2 The Single Pass Method

In the single pass method, the polygon edges are drawn as an inte-
gral part of drawing the �lled polygons. For each fragment of a ras-
terized polygon, we need to compute the line intensity, I(d), which
is a function of the window space distance, d, to the boundary of the
polygon (see Figure 3) which we assume is convex. The fragment
color is computed as the linear combination I(d)Cl + (1� I(d))C f
where Cl and C f are the line and face colors, respectively.

Note that a convex N-gon is simply the intersection of N half-planes
and that d can be computed as the minimum of the distances to each
of the N lines which delimit the half-planes. In 2D the distance to
a line is an af�ne function. Now, suppose, we are given a triangle
in 2D window space coordinates, pi, i 2 f1;2;3g. Let di = d(pi)
be the distance from pi to a given line in window space coordinates



Figure 3: The intensity, Ip, of a fragment centered at p is computed
based on the window space distances d1;d2, and d3 to the three
edges of the triangle.

and let ai be the barycentric coordinates of a point p with respect
to pi. d is an af�ne function of p and åi ai = 1, it follows that

d(p) = d(a1p1 +a2p2 +a3p3) = a1d1 +a2d2 +a3d3 ;

which has the important implication that we can compute the dis-
tance to the line per vertex and interpolate the distance to every
fragment using linear interpolation in window space. In the case of
triangles, we only need to compute the distance to the opposite edge
for every vertex since it shares the two other edges with its neigh-
boring vertices. For quadrilaterals we need the distance to two lines
and so on. The distance from a vertex i to the line spanned by the
segment jk is computed

d jk
i =

j(p j�pi)� (pk�pi)j
kpk�p jk

(1)

2.1 Technical Details

There used to be a slight problem; graphics hardware performs per-
spective correct interpolation rather than linear interpolation. This
problem is �xed by the latest graphics standards (Direct3D and
OpenGL) which de�ne a simple linear interpolation mode. How-
ever, even when this is not available in the API or supported by
the hardware, there is a simple solution: For any datum that re-
quires linear interpolation, we multiply the datum by the vertex w
value before rasterization and multiply the interpolated datum by
the interpolated 1=w in the fragment stage. This simple procedure
negates the effects of perspective correction, and the trick works for
arbitrary polygons: Although different modes of interpolation may
be used [Segal and Akeley 2004], the interpolation is always linear
(once perspective correction has been negated) thus af�ne functions
must be reproduced.

In summary, for each vertex of an N-gon, before rasterization we
need to

G1 compute the world to window space transformation of all ver-
tices.

G2 compute the distance from vertex i to all edges.

G3 output an N vector d of distances for each vertex. For instance,
for a triangle and a given vertex with index i = 1, this vector is
d0 = [0d23

1 0]T w1 where d23
1 is the distance from the �rst vertex

to its opposite line. If non-perspective correct interpolation is not
supported, each vector is premultiplied by the w value of vertex i.

After rasterization, i.e. in the fragment shader we receive the inter-
polated d and

R1 compute the minimum distance: d = min(d12;d23; :::;dn1)
(having �rst multiplied d by the interpolated 1=w if required).

R2 output the fragment color: C = ClI(d)+(1� I(d))C f

Step G1 is generally always performed in the vertex shader. Step
G2 should be performed in the geometry shader since the geometry
shader has access to all vertices of the polygon (provided it is a tri-
angle). Consequently, if the geometry shader is not used, the vertex
shader needs to receive the other vertices as attributes in order to
compute the distances. This entails that the application code is not
invariant to whether the wireframe method is used, that additional
data needs to be transmitted, and, �nally, that the use of indexed
primitives is precluded since the attributes of a vertex depend on
which triangle is drawn. The appendix contains GLSL shader code
for hardware which supports geometry shaders and disabling of tex-
ture correct interpolation.

One concern was raised in [Gateau 2007]. If one or two vertices of
the polygon are behind the eye position in world coordinates, these
vertices do not have a well-de�ned window space position. As a
remedy, 2D window space representations of the visible lines are
computed and sent to the fragment shader where the distances are
computed. While this greatly complicates matters and makes the
fragment shader more expensive, the case is rare which entails that
the more complex code path is rarely taken.

2.2 Computing the Intensity

The convolution of a line and a symmetric �lter kernel is a function
of distance only in the case of in�nite lines. Hence, other methods
must be used to handle line segments and junctions of segments.
To ensure that lines have rounded end points other authors combine
several distance functions per line [McNamara et al. 2000], and to
compose multiple lines, blending is sometimes used [Chan and Du-
rand 2005]. In this work, we take a slightly different approach and
compute the pixel intensity always as a a function, I(d), of the dis-
tance, d, to the closest polygon edge.

Thus, our method does not perform pre�ltering in the sense of ex-
act continuous domain convolution of a line image and a kernel1,
and, in fact, I is not even a tabulation of convolutions. However,
the choice of I is important; I should be a smooth, monotonically
decreasing function such that I(0) = 1, and I(dmax)� 0 where dmax
is the largest value of d that is evaluated. We advocate the use of
the GLSL and CG library function exp2. Speci�cally, we use the
intensity function

I = exp2(�2d2) ; (2)

which is never identically 0, but has dropped to 0:011 at d = 1:8.
We generally �nd it safe to ignore values for d > 1:8 and set dmax =
1:8. This combination of I and dmax yields lines that appear thin
while having very little visible aliasing.

Figure 4 shows a comparison of three methods, namely 16 times
super-sampling (left), our method (in the middle) and pre�ltering
by direct convolution (right) with a unit variance Gaußian. The
Gaußian �lter was used by Chan et al. [Chan and Durand 2005].
Another popular �lter is the cone function [Gupta and Sproull 1981;
McNamara et al. 2000].

Both our method and Gaußian pre�ltering produce lines that are
visibly smoother than even 16 times super-sampling. The main dif-
ference between our method and direct convolution is that using the

1In fact, that is true of all pre�ltering approaches to line drawing due
to the mentioned issues related to line segments and the need to handle
multiple lines that are intersecting or close together.



Figure 4: A set of lines of unit width drawn using 4�4 super sam-
pling (left), distance �ltering using I(d) = 2�2d2

(middle), and di-
rect convolution with a Gaußian (right).

latter method the intersections of several lines appear to bulge a bit
more. Conversely, our method produces lines that seem to contract
slightly where several lines meet (cf. Figure 3). However, both
phenomena are perceptible only if I(d) is signi�cantly greater than
zero for very large d as in Figure 3.

3 The ID Bu�er Method

The strength of the single pass method is its simplicity and the
ef�ciency which is due to the fact that the method is single pass
and requires very little work per fragment. In a generalization to
non-convex polygons, more work is required per fragment since the
closest polygon feature is sometimes a vertex and not a line. Un-
fortunately, distance to vertex is not an af�ne function and it must
be computed in a fragment program. Moreover, N-gons for very
large N are only possible to handle if they are triangulated. Thus,
our generalization of the single pass method works on triangulated
N-gons, and unfortunately this means that the quality depends, to
some extent, on the triangulation.

Due to these issues, we propose the following method for com-
pletely general polygons. The method subsumes a technique for
pre�ltered line drawing which resembles the one proposed by Chan
et al. [Chan and Durand 2005] but differs in important respects:

First of all, Chan et al. use the OpenGL line primitive to gener-
ate the fragments covered by the �ltered line. In this work, we
use a rectangle represented by a quad primitive since there are re-
strictions on the maximum line thickness supported by OpenGL
and even more severe restrictions in the Direct3D API. Second, we
compute the intensity based on the distance to the actual line seg-
ment whereas Chan et al. and McNamara et al. [McNamara et al.
2000] compute the intensity based on the four distances to the outer
edges of the rectangle that represents the line. Our method allows
for more precise rounding of the ends of the line segment as shown
in Figure 6.

The position of each quad vertex is computed in a vertex program
using the following formulas

p0 = v0; p0:xy += S (�a�b) t v0:w
p1 = v1; p1:xy += S (+a�b) t v1:w
p2 = v1; p2:xy += S (+a+b) t v1:w
p3 = v0; p3:xy += S (�a+b) t v0:w ;

(3)

where v0 and v1 are the line vertices in clip coordinates. t is the line
thickness in window coordinates, a and b are unit vectors along and
perpendicular to the line in window coordinates and S is a matrix
transforming from window to normalized device coordinates from

whence scaling by w brings us back to clip coordinates. The terms
are illustrated in Figure 6.

The window space positions of vi are passed to the fragment pro-
gram where the distance from the fragment center to the line seg-
ment is computed. In fact, we only need the square distance for the
intensity function (2) which is not costly to compute.

Figure 6: This �gure illustrates how a single pre�ltered line is
drawn. The two endpoints are projected and then the line is made
longer and wider in 2D.

When lines are drawn in a separate pass, the problem is to ensure
that a line fragment is drawn if the line is the edge of the polygon
which is drawn to the same pixel position. For this purpose, an ID
buffer - which is simply a window size texture containing unique
polygon IDs - is used [Markosian 2000]. Markosian uses a slightly
more involved method than we do. In our implementation, we only
need to sample the ID buffer in pixel centers which renders the
method far simpler than if one needs to sample arbitrary locations
in window space. See [Markosian 2000] for details.

The ID buffer is suf�cient except in the case where the edge be-
longs to the silhouette of the object. If a line fragment belongs to
a line along the silhouette, the pixel in the ID buffer either contains
0 (background) or the ID of a polygon below the silhouette line.
In either case, the line fragment is closer than the polygon below.
Hence, we can use the depth buffer without the need for offsetting
to distinguish this case.

The method is described succinctly below:

Pass 1: With depth testing and depth buffer updates enabled, each
polygon is rendered (�lled) with a unique ID as its color attribute.
The produced image is the ID buffer.

Pass 2: For each polygon, all edges are drawn using the method dis-
cussed above. A given fragment belonging to a line will be written
to the framebuffer either if its ID matches the corresponding pixel
in the ID buffer or if the depth test is passed. The last condition
ensures that silhouette fragments are drawn. The max blending op-
erator is used to ensure that if several fragments pass for a given
pixel, the maximum intensity passes. Depth values are not changed
during this pass.

Pass 3: At this point, the framebuffer contains alpha values and
colors for the lines and depth values for the �lled polygons. Now,
we draw the �lled, shaded polygons with the depth test set to equal.
The polygon fragments are combined with the values in the frame
buffer using blending. A window �lling quad is drawn to perform
blending for silhouette pixels.

While the overall approach resembles that of [Herrell et al. 1995],
there are important differences: Their method was created for a



Figure 5: Left: The Happy Buddha model drawn using the single pass method. Center: The single pass method used on a quad mesh.
Right: ID buffer method used to draw a gear. Hardware antialiasing (16 times) was used only on the center image (since alpha testing would
otherwise introduce aliasing).

�xed function pipeline, it did not use pre�ltered lines, and the loops
have been inverted leading to much fewer state changes and, con-
sequently, greater ef�ciency. Herrell et al. had to perform all oper-
ations for each polygon before moving on.

4 Implementations and Results

The single pass method has been implemented in CG, GLSL and
HLSL. The �rst two implementations are based on the OpenGL
API while the last implementation is based on Direct3D 10. The
ID buffer method has been implemented in GLSL/OpenGL and
HLSL/Direct3D 9.

We have made a number of performance tests based on the
OpenGL/GLSL implementations. For all methods, we strived to
use the fastest paths possible. However,in the pre-Geforce 8 series
hardware that we tested, the single pass method did not allow for
the use of indexed primitives for reasons we have discussed. In all
other cases, we used indexed primitives. We also hinted that geom-
etry should be stored directly in the graphics card memory either as
a display list or vertex buffer object. All hardware antialiasing was
disabled.

Three well known models were used, namely Newell’s Teapot (con-
verted to triangles), the Stanford Bunny, and the Stanford Happy
Buddha. The models were arranged to approximately �t the view-
port (of dimensions 720 � 576) and rotated 360 degrees around a
vertical axis in 3142 steps. For each test, an average frame rate was
computed based on the wall-clock time spent inside the rendering
function.

A variety of hardware was used for testing. We tried to cover a wide
range of graphics cards. Restricting the test to a particular machine
would have been dif�cult for compatibility reasons. Instead, the test
program was ported to the various platforms: Windows XP, Linux,
and Mac OSX. The ID buffer method requires the drawing of a
lot of geometry. On some systems that was too much for either a
single vertex buffer or display list. Rather than using a special code
path for this model, we omitted the test. Note that this problem has
nothing to do with the method per se but only with buffer sizes and
the amount of geometry.

4.1 Discussion

When judging the results, which are shown in Table 1, one should
bear in mind that in order to make a fair performance comparison,
no hardware antialiasing was enabled for any of these tests. Ar-
guably, this lends an advantage to the offset method since hardware
antialiasing is required to get an acceptable result for this type of
method. Despite this, the single pass method outperforms the off-
set method by a factor of up to seven on the Geforce 8800 GTX.
In general, the advantage of the single pass method over the offset
method is greater the more recent the graphics card, and this is un-
doubtedly due to increasing fragment processing power. The offset
method is fastest only on the Quadro FX3000 which is perhaps not
surprising since this graphics card is intended for CAD users. How-
ever, the relative difference is very small for the largest mesh. It is
also interesting to note that the ID buffer method, albeit the slowest,
performs relatively well on the 7800GTX and 8800 GTX.

The use of geometry shaders for the single pass method makes lit-
tle difference on the 8800 GTX, but it makes a great difference on
the less powerful 8600M GT. The latter system is a MacBook Pro
whose drivers supported the disabling of perspective correct inter-
polation. The 8800 GTX is a WinXP system which did not support
this (at the time of testing). However, the 8800 GTX has more
stream processors, and stream processing might have been a bottle-
neck only on the 8600M GT which entails that only this card really
would bene�t from the reduced load.

The single pass method is clearly much faster than the ID buffer
method, and while it requires the projected polygons to be convex,
it often degrades gracefully in the case of non-convex polygons as
shown in Figure 7f. Nevertheless, the ID�buffer is more general
since the line rendering is completely decoupled from the polygon
rendering. In addition, since the single pass method draws lines as a
part of polygon rendering, it is not possible to antialias the exterior
side of silhouettes. Figure 7a,b show the corner of a single polygon
drawn using both the single pass method and the ID buffer method.
The two methods produce results which are, in fact, pixel identi-
cal on the inside, but only the ID buffer method draws the exterior
part. As this issue affects only silhouette edges, it is rarely notice-
able. However, for meshes consisting of few large polygons, the ID
buffer method is preferable. Finally, it is possible to �rst draw the
mesh using the single pass method and then overdraw the silhouette



GeForce Quadro GeForce GeForce GeForce Geforce
FX5900XT FX3000 6600GT 7800 GTX 8800 GTX 8600M GT

Teapot, 6320 triangles
offset 209.31 734.76 363.04 482.68 1548.41 439.76
single 254.22 195.81 589.59 1512.09 6226.87 (5822.38) 327.24 (808.72)

ID 22.51 23.32 87.65 263.37 550.40 86.42
Bunny, 69451 triangles

offset 44.26 138.73 65.12 66.44 176.73 124.39
single 97.68 103.65 146.7 348.22 1506.22 (1344.25) 42.30 (380.16)

ID 4.89 5.13 19.8 61.45 114.58 15
Buddha, 1087716 triangles

offset 3.3 9.96 4.23 4.55 11.28 11.64
single 6.56 7.07 5.31 24.19 102.74 (34.12) 2.98 (42.51)

Table 1: Performance measured in frames per second. The best performing method for each combination of mesh and graphics card is
highlighted in red. For the Geforce 8800 GTX and 8600M GT the numbers in parentheses indicate the performance when geometry shaders
are used.

Figure 7: Top: The difference between (a) no disabling of perspec-
tive correction, (b) perspective correction disabled using the method
described in Section 2, and (c) perspective correction disabled us-
ing the Direct3D 10 API. Bottom: The corner of a polygon drawn
using (d) the single pass method and (e) the ID buffer method. In (f)
non-convex quads are drawn using the single pass method. Notice
the fairly graceful degradation.

edges using the ID buffer method along the lines of [Sander et al.
2001].

Both proposed methods draw lines of even thickness regardless of
the distance or orientation of the polygons. However, an important
feature of both our methods is the fact that they are highly con-
�gurable. The line intensity is simply a function of distance, and
it is possible to modulate the distance or choose a different inten-
sity function. In Figure 8 several different line styles are shown in
conjunction with the single pass method.

Figure 8: Wireframe drawing using the single pass method and a
line thickness which varies as a function of the position along the
edge.

Another useful effect (which is not directly possible using the offset
method) is to scale the line width as a function of depth. This adds
a strong depth cue as seen in Figure 5 center and right. For very
dense meshes, it is also useful to fade out the wireframe as a func-
tion of distance since the shading of the �lled polygons becomes
much more visible in this case (see Figure 5 left). Many further
possibilities present themselves. For instance, in the center image
of Figure 5 alpha is also a function of distance and using alpha test-
ing, most of the interior parts of the quadrilaterals are removed.

5 Conclusions and Future Work

In this paper we have advocated the use of pre�ltered lines for wire-
frame rendering and demonstrated that the pre�ltered lines can eas-
ily be drawn on the polygons in the pass also employed for render-
ing the �lled polygons. This leads to a simple, single pass method
which

� is far more ef�cent than the offset based methods,

� does not suffer from the same artifacts,

� produces lines which do not need hardware antialiasing, and

� can easily be adapted to various line styles.

Our results indicate that the gap between polygon and line render-
ing is widening and, in terms of performance, the strength of the
single pass method is that no line primitive is required.

The ID buffer method is less ef�cient but handles all cases � includ-
ing silhouettes � and still at interactive frame rates for meshes such
as the Stanford Bunny. A trivial but useful extension of this work
would be to use the ID-buffer method only for the silhouette cases.
This is likely to produce �awless results in almost all conceivable
cases at the expense of some complexity in the implementation.

References

AKENINE-M ¤OLLER, T., AND HAINES, E. 2002. Real-Time Ren-
dering, 2nd ed. A.K. Peters.

B˘RENTZEN, J. A., NIELSEN, S. L., GJØL, M., LARSEN, B. D.,
AND CHRISTENSEN, N. J., 2006. Single-pass wireframe render-
ing, July. Siggraph sketches are single page refereed documents.



CHAN, E., AND DURAND, F. 2005. Fast pre�ltered lines. In GPU
Gems 2, M. Pharr, Ed. Addison Wesley, Mar.

GATEAU, S. 2007. Solid wireframe. NVIDIA Whitepaper WP-
03014-001 v01, February.

GUPTA, S., AND SPROULL, R. F. 1981. Filtering edges for
gray-scale displays. In SIGGRAPH ’81: Proceedings of the 8th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 1�5.

HERRELL, R., BALDWIN, J., AND WILCOX, C. 1995. High-
quality polygon edging. IEEE Comput. Graph. Appl. 15, 4, 68�
74.

ISENBERG, T., FREUDENBERG, B., HALPER, N.,
SCHLECHTWEG, S., AND STROTHOTTE, T. 2003. A de-
veloper’s guide to silhouette algorithms for polygonal models.
IEEE Computer Graphics and Applications 23, 4, 28�37.

MARKOSIAN, L. 2000. Art-based Modeling and Rendering for
Computer Graphics. PhD thesis, Brown University.

MCNAMARA, R., MCCORMACK, J., AND JOUPPI, N. P.
2000. Pre�ltered antialiased lines using half-plane distance
functions. In HWWS ’00: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
ACM Press, New York, NY, USA, 77�85.

MCREYNOLDS, T., AND BLYTHE, D., 1999. Advanced graphics
programming techniques using opengl. SIGGRAPH ‘99 Course.

ROSE, D., AND ERTL, T. 2003. Interactive visualization of large
�nite element models. In Proceedings of Vision Modeling and
Visualization 2003, Akademische Verlagegesellschaft, T. Ertl,
B. Girod, G. Greiner, H. Niemann, H.-P. Seidel, E. Steinbach,
and R. Westermann, Eds., 585�592.

SANDER, P. V., HOPPE, H., SNYDER, J., AND GORTLER, S. J.
2001. Discontinuity edge overdraw. In SI3D ’01: Proceedings
of the 2001 symposium on Interactive 3D graphics, ACM Press,
New York, NY, USA, 167�174.

SEGAL, M., AND AKELEY, K. 2004. The OpenGL Graphics Sys-
tem: A Speci�cation (Version 2.0). SGI.

WANG, W., CHEN, Y., AND WU, E. 1999. A new method for
polygon edging on shaded surfaces. J. Graph. Tools 4, 1, 1�10.

Appendix: Shaders

In the following, we list the vertex, geometry, and fragment shaders
for the variation of the single pass method which employs the ge-
ometry shader. Note that almost all complexity is in the geometry
shader.

// ------------------ Vertex Shader --------------------------------
#version 120
#extension GL_EXT_gpu_shader4 : enable
void main(void)
{

gl_Position = ftransform();
}

// ------------------ Geometry Shader --------------------------------
#version 120
#extension GL_EXT_gpu_shader4 : enable

uniform vec2 WIN_SCALE;
noperspective varying vec3 dist;
void main(void)

{
vec2 p0 = WIN_SCALE * gl_PositionIn[0].xy/gl_PositionIn[0].w;
vec2 p1 = WIN_SCALE * gl_PositionIn[1].xy/gl_PositionIn[1].w;
vec2 p2 = WIN_SCALE * gl_PositionIn[2].xy/gl_PositionIn[2].w;

vec2 v0 = p2-p1;
vec2 v1 = p2-p0;
vec2 v2 = p1-p0;
float area = abs(v1.x*v2.y - v1.y * v2.x);

dist = vec3(area/length(v0),0,0);
gl_Position = gl_PositionIn[0];
EmitVertex();

dist = vec3(0,area/length(v1),0);
gl_Position = gl_PositionIn[1];
EmitVertex();

dist = vec3(0,0,area/length(v2));
gl_Position = gl_PositionIn[2];
EmitVertex();

EndPrimitive();
}

// ------------------ Fragment Shader --------------------------------
#version 120
#extension GL_EXT_gpu_shader4 : enable

noperspective varying vec3 dist;
const vec4 WIRE_COL = vec4(1.0,0.0,0.0,1);
const vec4 FILL_COL = vec4(1,1,1,1);

void main(void)
{
float d = min(dist[0],min(dist[1],dist[2]));

float I = exp2(-2*d*d);
gl_FragColor = I*WIRE_COL + (1.0 - I)*FILL_COL;

}


