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Summary
Fossil fuels such as oil and gas play a crucial role in global energy demand (accounting
for over 80% of the world’s energy supply), and more than a quarter of today’s oil
and gas supply is produced offshore. As hydrocarbon reservoirs in the Danish North
Sea mature, the maximization of recovery from these mature reservoirs and the man-
agement of discharged liquids have become the main focus of offshore oil and gas pro-
duction. The produced water contains oil and other pollutants and must be cleaned
before it is discharged to the surrounding sea. In addition, Oil and gas consumption
is also a significant source of CO2 emissions. The cement production, however, also
contributes significantly to global carbon emissions, accounting for around 30%

The subject of this thesis is model predictive control (MPC) for optimal operation
and zero-emission/discharge of industrial processes. Specifically, we develop real-time
advanced process control (RT-APC) solutions based on the MPC algorithms for 1)
the optimal operation and Oil-in-Water (OiW) control of the offshore produced water
treatment system and 2) the optimal control of the cement raw-mix blending process.
This PhD thesis aims to test and validate the proposed MPC and RT-APC solutions
so they can be used in practice.

In this work, we 1) develop a linear-quadratic (LQ) discretization toolbox for
the numerical discretization of linear-quadratic optimal control problems (LQ-OCPs)
with time delays, 2) develop a CT-LMPC toolbox for the design, development and
discrete-time implementation of continuous-time-designed linear model predictive con-
trol (LMPC), 3) describe the RT-APC system framework for industrial process con-
trol, 4) develop a CT-LMPC based RT-APC software application for the optimal oper-
ation and OiW control of the offshore PWT system. In the LQ discretization toolbox,
we introduce three numerical methods for solving differential equation systems associ-
ated with the discrete-time system matrices of LQ-OCPs. In addition, we describe the
distribution of stochastic costs of stochastic LQ-OCPs. We apply an explicit-explicit
Euler-Maruyama (EM) discretization scheme to discretize the stochastic cost function
and provide the numerical approximation of its mean and variance. The CT-LMPC
formulation consists of an estimator and a regulator. The estimator applies a discrete-
time linear Kalman filter with memory to handle missing and delayed observations.
The regulator involves a continuous-time designed objective function, containing 1)
the reference tracking objective, 2) the input regularization objective, 3) the input
rate-of-movement (ROM) objective, 4) the economics objective, and 5) the soft con-
straint penalty function. We apply the LQ discretization toolbox to discretize the
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continuous-time-designed objective function for the discrete-time implementation of
CT-LMPC. We describe the RT-APC system framework for industrial process control.
The RT-APC system consists of 1) the real-time simulator module for real-time sim-
ulation of the process plant, 2) the open-platform-communication (OPC) module for
the data communication between the RT-APC system and the process plant, 3) the
APC database module for data storage and sharing data between various modules, 4)
the APC process controller module for computing the optimal control solutions and
prediction of the system’s future trajectory, and 5) the user interface module for data
visualization and controller tuning. Additionally, we present a case study of a sim-
ulated cement raw-mix blending process to test and validate the proposed RT-APC
system. We apply the mass balance modeling methodology to describe the models
of the gravity separator (GS) and de-oiling hydrocyclones (HC). We present step
response experiments for the input-output model identification around an optimal
steady state operation point. The optimal steady state operation point is obtained
by solving an optimal steady state operation optimal control problem (OCP). We
introduce an input-regularization based control strategy and compare it with the con-
ventional fixed set-point control strategy. We apply the CT-LMPC toolbox to develop
two MPCs based on the two control strategies. We present numerical experiments to
test and compare the two MPCs. The results indicate that the input-regularization
based MPC has a much lower variance in oil and gas production and achieves a higher
profit than the conventional control strategy based MPC while keeping all operational
variables within a safety range. We develop an RT-APC software application with
the input-regularization based MPC solution. We test the RT-APC software appli-
cation on a simulated offshore PWT system in real time. The real-time simulation
results demonstrate that the RT-APC software application can control the simulated
offshore PWT system without violating the OiW concentration constraint.

This thesis consists of an extended summary report and a collection of seven
research papers. Five papers are published or accepted for publication in conference
proceedings.
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CHAPTER1
Introduction

Concerns regarding climate change and environmental sustainability have driven in-
dustries to adopt measures aimed at reducing emissions. Among various strategies,
advanced control technologies, particularly Model Predictive Control (MPC), have
emerged as popular methods. MPC is an advanced process control algorithm that
utilizes a dynamic model of the process to predict future behavior and optimize per-
formance accordingly. In industrial applications, MPC offers several advantages over
traditional control methods such as Proportional–integral–derivative (PID) control.

The subject of this PhD thesis is the development of new MPC formulations and
real-time advanced process control (RT-APC) systems for the optimal operation and
emission/discharge control of industrial processes. Specifically, we develop RT-APC
systems based on the new MPC formulations for 1) the cement raw-mix blending
process and 2) the offshore produced water treatment (PWT) system. We consider
that the implementation of MPC in complex industrial processes can lead to enhanced
efficiency, reduced operational costs, and, most importantly, minimized environmental
impact and eventually reach zero-emission.

1.1 Motivation
The global energy demand continues to rise, driven by population growth, industrial-
ization, and increasing urbanization. According to the International Energy Agency
(IEA), despite significant growth in renewable energy, fossil fuels such as oil and gas
still play a crucial role in meeting the energy demand and account for over 80% of
the world’s energy supply. Figure 1.1 illustrates the world’s energy consumption and
share of global primary energy based on the Statistical Review of World Energy pub-
lished by the Energy Institute (EI). It shows that oil (around 30%) and gas (around
25%) accounted for over half of the total energy demand in 2022. Meanwhile, the
share of renewable energy was below 10%. Therefore, oil and gas remain critical in the
world’s energy consumption, even as the world transitions towards greater reliance
on renewable energy.

Offshore is the major resource of the oil and gas supply, and more than a quarter of
today’s oil and gas is produced offshore [5]. As hydrocarbon reservoirs in the Danish
North Sea mature, the maximization of recovery from these mature reservoirs and
the management of discharged liquids have become the main focus of offshore oil and
gas production. Figure 1.2 illustrates the volume of produced oil and water and the
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CHAPTER2
Numerical

discretization of
LQ-OCPs

In this chapter, we introduce the numerical discretization of linear-quadratic optimal
control problems (LQ-OCPs). LQ-OCPs involve optimizing a quadratic cost function,
with the control system being linear. These problems are associated with advanced
control algorithms, such as MPC. In this thesis, we focus on the discretization of LQ-
OCPs with and without time delays. Time delays are common in industrial processes,
such as offshore oil and gas production and cement manufacturing, as illustrated in
Figures 1.5 and 1.7. Therefore, discretization schemes for LQ-OCPs with time delays
are crucial for implementing MPC practically.

This chapter is based on papers presented in Appendices D, E and F. Section 2.1
introduces two linear systems: the state space and transfer function models. In Sec-
tion 2.2, we discuss the discretization of deterministic and stochastic LQ-OCPs with
time delays. We describe the formulations of differential equation systems associated
with the desired discrete-time system matrices. Section 2.3 introduces numerical
methods for solving the proposed differential equation systems, including 1) the or-
dinary differential equation (ODE) method, 2) the step-doubling method, and 3) the
matrix exponential method. Section 2.4 presents an LQ discretization toolbox. This
section also describes numerical experiments based on papers presented in Appen-
dices D, E and F. In Section 2.5, we investigate the distribution of the stochastic
costs and provide the numerical approximation of the mean and variance. Section 2.6
discusses different risk measures for stochastic LQ-OCP. Conclusions are presented
in Section 2.7.
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2.1 Linear systems in state space and transfer function
forms

In this section, we introduce two linear systems: the state space and the transfer
function model. Specifically, we focus on the linear systems with time delays and the
corresponding discrete-time equivalent.

2.1.1 State space models
In this subsection, we introduce the discretization of state space systems.

2.1.1.1 State space models without time delays

Consider the following standard continuous-time state space model

ẋ(t) = Acx(t) +Bcu(t); (2.1a)
z(t) = Ccx(t) +Dcu(t); (2.1b)

where x 2 Rnx is the state vector, u 2 Rnu is the input vector and z 2 Rnz is
the output vector. We assume that the initial state x(t0) = x0 is known and the
system matrices Ac 2 Rnx�nx , Bc 2 Rnx�nu , Cc 2 Rnz�nx and Dc 2 Rnz�nu are
time-invariant.

Define the sampling time Ts, assuming zero-order-hold parameterization (ZOH)
on the input

u(t) = uk; for tk � t < tk + Ts; (2.2)
and the corresponding discrete equivalent of (2.1) is

xk+1 = Axk +Buk; (2.3a)
zk = Cxk +Duk; (2.3b)

It is well known that how discrete state space matrices can be computed,
�
A B
0 I

�
= exp

��
Ac Bc
0 0

�
Ts

�
: (2.4)

where
A(Ts) = eAcTs ; B(Ts) =

Z Ts

0
eAcsBcds; C = Cc; D = Dc: (2.5)

For the stochastic case, we consider the following linear stochastic differential equa-
tions (SDEs):

dx(t) = (Acx(t) +Bcu(t)) dt+Gcd!(t); (2.6a)
z(t) = Ccx(t) +Dcu(t); (2.6b)

y(tk) = z(tk) + vk; (2.6c)
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B1(t) = Bo;1(t)e1
m+1 =

Z t

0
eAcsdsB1c; (2.12c)

B2(t) = Bo;2(t)e2
m+1 = v

Z t

0
eAcsds(B2c �B1c); (2.12d)

Bo(t) = Bo;1(t)e1
m+1 +Bo;2(t)e2

m+1 = B1(t) +B2(t): (2.12e)

Here, ũk = [uo;k;uk] is the augmented input vector and uo;k = [uk�m; � � � ;uk�1] is
the history input vector that contains all inputs from the time step tk�m to tk�1. We
introduce the vector ep

m+1 = [0 � � � 1 � � � 0] for selecting uk�(m+1)+p from ũk, such that

uk�(m+1)+p = ep
m+1ũk; for p = 1; 2; : : : ;m+ 1; (2.13)

and
B1c = Bce1

m+1; B2c = Bce2
m+1: (2.14)

Setting t = Ts, we can obtain the discrete equivalent of (2.10) with expressions (2.11).
However, it is not a standard-form state space model. Appendix E describes a
standard-form discrete-time state space representation of (2.10),

=x̃k+1z }| {�
xk+1
uo;k+1

�
=

=Ãz }| {�
A Bo;1
0 IA

�
=x̃kz }| {�
xk
uo;k

�
+

=B̃z }| {�
Bo;2
IB

�
uk; (2.15a)

zk =
=C̃z }| {�

Cc Do;1
�
x̃k +

=D̃z}|{
Do;2 uk; (2.15b)

where the system matrices are

Bo;1 = Bo(:; 1 : end � nu); Bo;2 = Bo(:;mnu : end); (2.16a)
Do;1 = Do(:; 1 : end � nu); Do;2 = Do(:;mnu : end); (2.16b)

IA =

2

6664

0 I : : : 0
...

... . . . ...
0 0 : : : I
0 0 : : : 0

3

7775
; IB =

2

6664

0
...
0
I

3

7775
: (2.16c)

When considering stochastic systems, we will have the following expressions

dx(t) = (Acx(t) +Bcu(t� �)) dt+Gcd!(t); (2.17a)
z(t) = Ccx(t) +Dcu(t� �): (2.17b)

Since no time delay is considered in the stochastic part, the discrete equivalent
of (2.17) can be written as

x̃k+1 = Ãx̃k + B̃uk + G̃wk; (2.18a)
zk = C̃x̃k + D̃uk; (2.18b)

where the stochastic input matrix G̃ = [I; 0] and the stochastic variable wk �
Niid(0; Rww) is described in (2.9).
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where the system coefficients are

B1c;ij = Bc;ijejE
mij
m̄+1; B2c;ij = Bc;ijejE

mij+1
m̄+1 ; (2.23a)

C̄j = diag(Cc;1j ; Cc;2j ; : : : ; Cc;nzj); for j = 1; 2; : : : ; nu; (2.23b)

D̄c;i =
nuX

j=1

Dc;ijejE
mij
m̄+1; for i = 1; 2; : : : ; nz: (2.23c)

For the stochastic systems, we have

dxij(t) = (Ac;ijxij(t) +Bc;ijuj(t� �ij)) dt+Gc;ijd!(t); (2.24a)
zij(t) = Cc;ijxij(t) +Dc;ijuj(t� �ij): (2.24b)

Based on the stochastic discrete-time state space expressions introduced in (2.18), we
have

x̃k+1 = Ãx̃k + B̃uk + G̃wk; (2.25a)
z̃k = C̃x̃k + D̃uk; (2.25b)

where the stochastic input matrix G̃ = [I; 0] and the stochastic variable wk �
Niid(0; Rww) is described in (2.9) with Gc = diag(Gc;11; Gc;21; : : : ; Gc;nznu).

2.1.2 Transfer functions
The transfer function describes the input-output relationship of a linear system using
polynomials. It is expressed in the frequency domain using the Laplace transform.
The transfer function representation allows us to explicitly express time delays. Con-
sider the following continuous-time input-output model

Z(s) = G(s)U(s) +H(s)W (s); (2.26a)
Y (s) = Z(s) + V (s); (2.26b)

with the deterministic and stochastic transfer functions G(s) and H(s)

G(s) =

2

64

g11(s) � � � g1nu(s)
... . . . ...

gnz1(s) � � � gnznu(s)

3

75 ; H(s) =

2

64

h11(s) � � � h1nw (s)
... . . . ...

hnz1(s) � � � hnznw (s)

3

75 ; (2.27)

in which U and W are the deterministic and stochastic inputs to the system. Z and Y
are the output and measurement. The measurement is corrupted by the measurement
noise V .

We assume that the SISO deterministic transfer function gij(s) for i = 1; 2; : : : ; nz,
j = 1; 2; : : : ; nu is proper. It describes the dynamics between the ith output and
jth input. The SISO stochastic transfer function hip(s) for i = 1; 2; : : : ; nz, p =
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In Appendix E, we introduce the corresponding discrete-time equivalent of (2.36).
Here, we thus consider the following discrete-time LQ-OCP

min
x;u

� =
X

k2N

lk(xk; uk) (2.39a)

s:t: x0 = x̂0; (2.39b)
xk+1 = Axk +Buk; k 2 N ; (2.39c)

with the stage cost function lk(xk; uk)

lk(xk; uk) = 1
2

�
xk
uk

�0

Q
�
xk
uk

�
+ q0

k

�
xk
uk

�
+ �k; k 2 N ; (2.40)

where the discrete-time state space (2.39c) is introduced in (2.15). The affine and the
constant terms are defined as

qk = Mz̄k; �k =
Z tk+1

tk

lc(z̄k)dt = lc(z̄k)Ts; k 2 N : (2.41)

The discrete-time weight matrices Q and M of (2.40) are

Q =
�
Qxx Qxu
Q0

xu Quu

�
=
Z tk+1

tk

Γ(t)0QcΓ(t)dt; (2.42a)

M =
�
Mxz
Muz

�
=
Z tk+1

tk

�Γ(t)0Qcdt; (2.42b)

and
Γ(t) =

�
Cc Do

� �A(t) Bo(t)
0 I

�
; (2.43)

where A, Bo, Cc and Do are the state space system matrices described in (2.11)
and (2.12).

2.2.2 Stochastic linear-quadratic optimal control problems
Consider the following stochastic continuous-time LQ-OCP

min
x;u;z;z̃

 = E
(

� =
Z t0+T

t0

lc(z̃(t))dt

)

(2.44a)

s:t: x(t0) � N(x̂0; P0); (2.44b)
d!(t) � Niid(0; Idt); (2.44c)
u(t) = uk; tk � t < tk+1; k 2 N ; (2.44d)
dx(t) = (Acx(t) +Bcu(t� �))dt+Gcd!(t); t0 � t < t0 + T; (2.44e)
z(t) = Ccx(t) +Dcu(t� �); t0 � t < t0 + T; (2.44f)
z̄(t) = z̄k; tk � t < tk+1; k 2 N ; (2.44g)
z̃(t) = z(t) � z̄(t); (2.44h)
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2.2.3 The system of differential equations for LQ discretization
From the previous descriptions, we can see that the key of LQ discretization, is to
compute the discrete-time system matrices (A;B;Q;M;Rww). In Appendix D, E
and F, we introduce the system of differential equations for describing these matrices.
The system of differential equations

Ȧ(t) = AcA(t); A(0) = I; (2.50a)
Ȧv(t) = V AcAv(t); Av(0) = I; (2.50b)
Ḃ1(t) = A(t)B1c; B1(0) = 0; (2.50c)
Ḃ2(t) = Av(t)B̄2c; B2(0) = 0; (2.50d)
Q̇(t) = Γ(t)0QcΓ(t); Q(0) = 0; (2.50e)
Ṁ(t) = �Γ(t)0Qc; M(0) = 0; (2.50f)

Ṙww(t) = Φ(t)Φ(t)0; Rww(0) = 0; (2.50g)

where

B̄2c = V (B2c �B1c); Φ(t) = A(t)Gc; Γ(t) =
�
Cc Do

� �A(t) Bo(t)
0 I

�
; (2.51)

may be used to compute (A = A(Ts), Bo = B1(Ts)+B2(Ts), Q = Q(Ts), M = M(Ts),
Rww = Rww(Ts)) for the discretization of LQ-OCPs with time delays.

2.2.4 Comparison with the standard discrete-time LQ-OCP
In most studies, e.g., see [22, 24, 32–35], a standard, finite-horizon, continuous-time
linear quadratic regulator (LQR) problem (without the terminal cost) can be defined
as

J =
Z t0+T

t0

(x(t)0Qc;xxx(t) + u(t)0Qc;uuu(t)) dt; (2.52)

with the weight matrices Qc;xx � 0 and Qc;uu � 0.
The previous study [24] introduces a ZOH method to discretize the continuous-

time LQR problem, such that

J =
N�1X

k=0

(x0
kQxxxk + u0

kQuuuk) ; (2.53)

where the discrete-time weight matrices are

Qxx = Qc;xxTs; Quu = Qc;uuTs: (2.54)

However, this approximation is rough and the approximation error will increase as
the increment of the sampling time [27].
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where the system coefficients (Λ, Λv, Θ1, Θ2, Ω, B̄1c, B̄2c, M̄c, Q̄c) are identical to
the ODE method and

Λ̄ = diag(Λ;Λv); Θo =
�
Θ1 Θ2

�
; B̄oc = [B̄1c; B̄2c]; (2.66a)

M̃c = h
sX

i=1

biΩ0
iE

0
1M̄c; Q̃c = h

sX

i=1

biΩ0
iE

0
1Q̄cE1Ωi: (2.66b)

In Appendices D, E and F, we introduce the step doubling method for solving the
matrices introduced in (2.64) based on the squaring and scaling algorithms described
in [37–39]. Let f(n) for f 2

�
Ã; B̃o; H̃; M̃ ; Q̃; R̃

�
, the step-doubling expressions of

f(n) can be written as

f(1) ! f(2) ! f(4) ! � � � ! f(N
2

) ! f(N); (2.67a)

and

f(2n) = F (f(n)); n 2
�
1; 2; 4; : : : ; N

2

�
; (2.67b)

where F (x) is the step-doubling function for computing f(n). Table 2.1 describes the
step-doubling functions for the matrices introduced in (2.64).

The step-doubling method takes f(n) ! f(2n), i.e., compute the double step’s
result with the half step’s result. Consequently, we only take j steps to get the same
results as the fixed-time-step ODE method with N integration steps.

2.3.3 Matrix exponential method
The previous work [40, 41] describes the discretization of continuous-time LQR prob-
lems via the matrix exponential introduced in [42]. Appendix E extends the results
to the stochastic time-delay case.

The matrix exponential problems

�
Φ1;11 Φ1;12

0 Φ1;22

�
= exp

��
�H 0

c E0
1Q̄cE1

0 Hc

�
t
�
; (2.68a)

�
I Φ2;12
0 Φ2;22

�
= exp

��
0 I
0 H 0

c

�
t
�
; (2.68b)

�
Φ3;11 Φ3;12

0 Φ3;22

�
= exp

��
�Ac R̄ww;c

0 A0
c

�
t
�
; (2.68c)
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2.5 Distribution of stochastic costs
In Appendix D, we apply the explicit-explicit Euler-Maruyama (EM) discretization
scheme to discretize the stochastic cost function of stochastic LQ-OCPs. Let �t = Ts

n
be the time step, and n is the number of the integration step of the EM discretization.
The EM expression of the augmented state vector [x̃k;uk] introduced in (2.45a) is

�
x̃k
uk

�
=
�
xk
ũk

�
=

Φ̄x;kz }| {�
Ak

n
0

�
x0 +

Θ̄u;kz }| {�
Θu;k
Iu;k

�
UN +

Θ̄w;kz }| {�
Θw;k

0

�
W N ;

(2.71)

with the EM discretization coefficients

Ai = (I + �tAc)i; B1;i =
i�1X

j=0

Aj�tB1c; (2.72a)

Av;i = (I + �tV Ac)i; B2;i =
i�1X

j=0

Av;i�tV (B2c �B1c); (2.72b)

Bo;i = B1;i +B2;i; Γi =
�
Cc Do

� �Ai Bo;i
0 I

�
; (2.72c)

Gi =
�
Ai�1Gc Ai�2Gc � � � 0n�i

�
; i = 1; 2; : : : ; n; (2.72d)

Θu;k =
�
Ak�1

n Bo;nIu;k�1 Ak�2
n Bo;nIu;k�2 � � � 0N �k

�
; k 2 N ; (2.72e)

Θw;k =
�
Ak�1

n Gn Ak�2
n Gn � � � 0N �k

�
; k 2 N ; (2.72f)

where x̃ = [xk;uo;k] is the augmented state vector introduced in (2.25). UN =
[uk�m̄;uk�m̄+1; : : : ;uk+N�1] contains the input from time tk�m̄ to tk+N�1 such that
ũk = Iu;kUN . W N is the vector of random and wk = Iw;kW N and wk is the
vector of sub-sampling random variables of the EM discretization, and its covariance
is Pw = diag([I�t; I�t; : : : ; I�t]).

Here, we use the EM discretization expression (2.71) to replace the decision vari-
able [xk;uk] of the stochastic cost function (2.45a), we thus can obtain the following
isolated stochastic form

� =
X

k2N

lk(xk; uk) + ls;k(xk; uk)

�
1
2

�
x0

W N

�0

QN

�
x0

W N

�
+ q0

N

�
x0

W N

�
+ �N :

(2.73)

Note that the above expression is the numerical approximation of the stochastic cost
function using explicit-explicit EM discretization. The decision variable [x0; W N ] is
defined as

�
x0

W N

�
� N(m̄; P̄ ); m̄ =

�
x0
0

�
; P̄ =

�
P0 0
0 Pw

�
: (2.74)
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The system matrices are computed as

Φzw =
n�1X

i=0

�tQcCcGi; Φxw =
n�1X

i=0

�tΓ0
iQcCcGi; (2.76a)

Qxx;N =
X

k2N

Φ̄0
x;kQΦ̄x;k; Qxw;N =

X

k2N

Φ̄0
x;k(QΘ̄w;k + ΦxwIw;k); (2.76b)

Γ̄k =
�
Φ̄x;k Θ̄u;k

�
; Qww;N =

X

k2N

Θ̄0
w;k(QΘ̄w;k + 2ΦxwIw;k); (2.76c)

Mz;N =
X

k2N

Γ̄0
kM + I 0

w;kΦ0
zw; Mu;N =

X

k2N

(Γ̄0
kQ+ I 0

w;kΦ0
xw)Θ̄u;k; (2.76d)

Qu;N =
X

k2N

Θ̄0
u;kQΘ̄u;k; qu;N =

X

k2N

Θ̄0
u;k(Mz̄k) =

X

k2N

Θ̄0
u;kqk; (2.76e)

where �̄x;k, Θ̄u;k and Θ̄w;k are augmented system parameters introduced in (2.71).
Q, M are discrete weight matrices introduced in (2.50).

The previous work [43] describes the theory of integrating the normal distribution
in the quadratic domain, stating that the stochastic cost function � = lc(z̃(t)) follows
a generalized �2 distribution. In Appendix D, we describe the mean and variance of
the stochastic cost function with the EM reformulated expressions introduced in (2.73)

E f�g = 1
2
m̄0QN m̄+ q0

N m̄+ �N + 1
2

tr
�
QN P̄

�
; (2.77a)

V f�g = q0
N P̄ qN + 2m̄0QN P̄ qN + m̄0QN P̄QN m̄+ 1

2
tr(QN P̄QN P̄ ): (2.77b)

Note that the above expressions are numerical approximations of the stochastic cost’s
mean and variance using EM discretization. Thus, the original cost is equivalent to
the discrete cost when taking the limit n ! 1.

Figure 2.3 describes the likelihood of the costs of stochastic LQ-OCPs with 30000
Monte Carlo simulations presented in Appendix D. The simulation results indicate
that the continuous-time cost has the same distribution as the discrete-time cost and
EM reformulated stochastic costs. There is an offset between the analytic expectation
(E(Φ) = 11:90) and the other numerical expectations (12.18 for Cont., Dist., and
EM.). We consider it reasonable as it is impossible to take the limit N ! 1 in
experiments. However, there is a significant difference (in the distribution) between
the standard discrete-time cost (E(Φ) = 12:63) and the previous three costs.

2.6 Stochastic costs with different risk measures
In most cases, stochastic optimization problems consider the expectation of the
stochastic costs Ψ = E(�), e.g., see [22, 33]. However, the expectation measure
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of the stochastic costs may not adequately represent other important factors, such as
the risk and the shape of the stochastic cost distribution. In this section, we explore
and discuss LQ-OCPs with a collection of different risk measures.

2.6.1 Discounted LQ-OCPs
When considering potential risks and uncertainties in the future, the discounted cost
functions are of practical interest because they can balance immediate costs against
long-term costs in control strategies. This class of problems is popular when consid-
ering trade-offs between the present and future costs or rewards in control strategies,
e.g., reinforced learning and risk-sensitive optimal control problems [44–50].

In Appendix F, we introduce the discounted LQ-OCP with the following dis-
counted cost function

lc(z̃(t)) = 1
2
e��t kWz z̃(t)k2

2 = 1
2
e��t (z̃(t)0Qcz̃(t)) : (2.78)

Here, the output z̃(t) = z(t) � z̄(t) and z(t) is described by the continuous-time sys-
tem (2.6) and the exponential function e��t is described by the exponential discount
factor � 2 R+.

Numerical discretization schemes for the above discounted cost function have been
discussed in Appendix F. We show that the discrete equivalent can be described as
the expressions introduced in (2.39) with the stage cost function

lk(xk; uk) = 1
2

�
xk
uk

�0

Qk

�
xk
uk

�
+ (

qkz }| {
Mkz̄k)0

�
xk
uk

�
+ �k; k 2 N ; (2.79)

where

Qk = e��tkQ; Mk = e��tkM; �k = e��tk (1 � e��Ts)
2�

z̄0
kQcz̄k: (2.80)

The discrete weight matrices Q and M can be described as differential equations,
e.g., the differential equation systems introduced in (2.50). In addition, Appendix F
also introduces numerical methods for solving the discrete-time weight matrices of
the discounted LQ-OCP. Appendix F presents numerical experiments for testing and
comparing these numerical methods. Furthermore, Appendix F also discusses the
case that the discount factor � is a diagonal matrix M = diag(�1; �2; : : : ; �nz ) and
describes the corresponding system of differential equations for the discrete weight
matrices.

2.6.2 Mean-variance optimization control problems
One method to measure stochastic costs is the mean-variance (MV) approach, com-
monly encountered in finance, engineering, and other fields. This class of optimization
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problems interprets the standard deviation as a measure of risk and optimally bal-
ances the risk and the profit (mean of the stochastic costs) [16, 51–54].

Consider the LQ-OCP indicated in (2.44), the MV optimization strategy considers
the following cost function

 = �E(�) � (1 � �)V(�); � 2 [0; 1]: (2.81)

In Section 2.5, we describe the distribution of the stochastic costs using the EM
discretization and provide the numerical approximation of the mean and variance.
These expressions can be used in the MV expressions (2.81). It is also possible to
use the standard deviation rather than the variance, and both of them are discussed
in [51, 55].

The MV optimization strategy includes the consideration of risk in the OCP.
However, the mean-variance approach is not sensitive to the stochastic distribution
shape, and other drawbacks are also discussed in the previous work [51, 53, 56, 57].

2.6.3 The worst-case, Var and CVaR optimization problems
In this subsection, we describe the worst-case, Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR) risk measures as well as the corresponding OCPs with these
risk measures. In this context, we consider the following OCP:

min
u

 (�(u; w̄)) (2.82)

and the stochastic cost function � has a distribution, such that

�(u; w̄); Probability : P�(w̄); (2.83)

where  (�(u; w̄)) indicate the risk measure of the stochastic cost function. u is the
decision variable and w̄ = [x0; w] indicates the random variables, i.e., the initial state
and stochastic input.

Figure 2.4 illustrates the mean, VaR, CVaR, and worst-case with the � confidence
level for � 2 (0; 1) in the context of the stochastic cost � (considering � = 95% in
this case). In the following sections, we will discuss these risk measures in detail and
explain their applicability to our problem.

2.6.3.1 The Worst-case optimization strategy

The worst-case considers the maximum possible stochastic cost. In Figure 2.4, the
worst-case is represented by the largest possible value of the stochastic costs, denoted
in green. It is a form of robust optimization that optimizes the worst-case scenario [51,
58, 59]. The worst-case optimization strategy can be expressed as

min
u

max
w̄

[�(u; w̄)] : (2.84)
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where Ψ is the cumulative distribution function (CDF) describes the probability of
the stochastic cost � not exceeding the threshold �.

Here, the �-VaR (2.85b) represents the possible cost with � confidence level. In
other words, we can interpret VaR� as indicating that there is a � possibility that
the cost will not exceed the threshold �. In Figure 2.4, VaR�=95% is marked in blue.
We can see that VaR� provides a threshold � for the stochastic costs. The worst
1 � �=5% scenario (the shaded area) represents the costs exceeding the threshold
�, which is not desired. However, ��VaR does not give any information about the
worst 5% scenario. In addition, the previous studies [51, 54, 62, 64] discuss other
drawbacks of VaR, e.g., the lack of subadditivity, convexity and continuity. These
undesired properties are resolved by CVaR [62].

2.6.3.3 Conditional Value-at-Risk

CVaR, also known as Expected Shortfall (ES), measures the mean of the costs that
have exceeded the VaR� = � threshold. CVaR with confidence level � (�-CVaR)
describes the weighted mean of the worst 1 � �% scenario, such that

� � CVaR : CVaR�(�) = 1
1 � �

Z

�(u;w̄)��

�(u; w̄)P�(w̄)dw̄; (2.86)

��CVaR considers the weighted average of the worst 1�� scenario of the distribution.
In Figure 2.4, CVaR�=95% is denoted in red. We can see that CVaR fills the gap
between the worst-case and VaR, i.e., compared with ��VaR, ��CVaR provides
more information about the tail (the worst 1 � �%) risk.

The previous study [62] introduces an auxiliary function F�(u; �)

F�(u; �) = �+ 1
1 � �

E [max (�(u; w̄) � �; 0)] ; (2.87)

such that the ��CVaR can be characterized by the optimization problem,

CVaR�(�) = min
�2R

F�(u; �): (2.88)

In some sense, we can consider F�(u; �) as the sum of the VaR� and a weighted
average of the stochastic costs exceeding VaR� .

Consequently, we can define the CVaR optimization problem as

min
u

CVaR�(�(u; w̄)); (2.89a)

or as its equivalent formulation

min
u;�

F�(u; �) = �+ 1
1 � �

E [max (�(u; w̄) � �; 0)] : (2.89b)
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vector over the horizon, such that uk = Iu;kUN . The EM discretization coefficients
Φ̄x;k, Θ̄u;k and Θ̄w;k are described in (2.71). The system coefficients QN , qN (UN ) and
�N (UN ) are introduced in (2.75b). Note that qN (UN ) and �N (UN ) are linear combi-
nations of the decision variable UN . Detailed descriptions of the EM reformulation
can be found in Section 2.5.

We can rewrite the expression (2.95b) as

�(UN ; W̄ N ) = 1
2

W̄
0
NQN W̄ N + q0

N W̄ N + �N

= 1
2
U 0

NQu;NUN +
�
qu;N +M 0

u;N W̄ N
�0
UN + �̄N ;

(2.96)

where the stochastic term �̄N is

�̄N = 1
2

W̄
0
NQN W̄ N + (Mz;N Z̄N )0W̄ N + �: (2.97)

In (2.96), the system coefficients Qu;N , qu;N , Mu;N , Mz;N and � are defined as

Qu;N =
N�1X

k=0

Θ̄0
u;kQΘ̄u;k; (2.98a)

qu;N =
N�1X

k=0

Θ̄0
u;k(Mz̄k); (2.98b)

Mu;N =
N�1X

k=0

��
Φ̄x;k Θ̄u;k

�0 Q+ I 0
w;kΦ0

xw

�
Θ̄u;k; (2.98c)

Mz;N =
N�1X

k=0

�
Φ̄x;k Θ̄u;k

�0 M + I 0
w;kΦ0

zw; (2.98d)

� =
NX

k=1

1
2
z̄0

kTQcz̄k; (2.98e)

where Q, M are the discrete-time weight matrices introduced in (2.50). Z̄N is the
tracking reference over the horizon. Φxw and Φzw are two constant coefficients of the
EM discretization. They are described in (2.75b).

Then, we assume that there are random samples
�
W̄ i

N = [xi
0;W i

N ]
	

for i =
1; 2; : : : ;m available. For brevity, we denote the corresponding random term as fol-
lows,

�̄i
N = 1

2
(W̄ i

N )0QN (W̄ i
N ) + (Mz;N Z̄N )0W̄ i

N + �: (2.99)

Consequently, for the l2�norm case, the CVaR optimization problem (2.91) becomes
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2. The numerical approximation of the mean E(�) and the variance V(�) using
EM discretization

3. The discretization of discounted LQ-OCPs with time delays

4. A discussion on a collection of stochastic optimization methods, including the
mean-variance, worst-case, VaR, and CVaR approaches.
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2. A regulator for finding the optimal control solution

The estimator estimates the system state based on the sensors or laboratory measure-
ments of the process plant. The regulator solves the OCP to find the optimal control
solution for the process plant using the estimation results of the estimator.

Delayed and missing observations are common in industrial processes [11, 12, 70,
71], such as the laboratory measurement in the cement raw-mix blending system illus-
trated in Figure 1.7. We implement a discrete-time linear Kalman filter with memory
for the estimator to handle delayed and missing observations. The memory of the
Kalman filter stores historical measurements, allowing delayed measurements to be
included when estimating the system state. The regulator considers a continuous-
time LQ-OCP. We apply the LQ discretization toolbox introduced in Chapter 2 to
obtain the discrete-time equivalent of the continuous-time LQ-OCP. Then, the regu-
lator solves the discrete-time equivalent to find the optimal control solution for the
process plant using the state estimation from the estimator.

This chapter is organized as follows: Section 3.1 discusses and compares the pro-
posed CT-LMPC and standard discrete-time linear model predictive control (DT-
LMPC). Section 3.2 describes the estimator of CT-LMPC. The regulator of CT-
LMPC is introduced in Section 3.3, where different objective functions and their
discretization are described. Section 3.4 focuses on the CT-LMPC toolbox, detailing
the interfaces of the CT-LMPC toolbox’s functions. The summary is provided in
Section 3.5.

3.1 Why continuous-time model predictive control
Figure 3.2 compares CT-LMPC and DT-LMPC with a reference tracking objective.
The green dashed line indicates the target, while the yellow solid line represents
the output trajectory, marked with diamonds at each time step. The standard DT-
LMPC aims to minimize the sum of discrete-time tracking errors (indicated by blue
solid lines), given by:

�z =
NX

k=1

1
2

kzk � z̄kk2
Qz
: (3.1)

CT-LMPC, on the other hand, minimizes the integral of the tracking error over the
control horizon,

�z =
Z t0+T

t0

1
2

kz(t) � z̄(t)k2
Qcz

dt; (3.2)

where T = NTs is the control and prediction horizon and N 2 Z+.
In Figure 3.2, we apply the explicit Euler method to discretize the continuous-time

problem (3.2), indicated by the blue shadowed bars. The main difference between
CT-LMPC and DT-LMPC arises from the objective function. Figure 3.2 shows that
the two objective functions have different costs for the same objective, and this gap
will increase as the sampling time grows. This raises the question:
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window storing observations over the past Tmem = NmemTs time period. The memory
window consists of a historical measurement matrix Y, a historical input matrix U ,
and a boolean matrix F .

Yk =

2

4yk�Nmem+1 yk�Nmem+2 � � � yk

3

5 ; (3.9a)

Fk =

2

4fk�Nmem+1 fk�Nmem+2 � � � fk

3

5 ; (3.9b)

Uk =

2

4uk�Nmem uk�Nmem+1 � � � uk�1

3

5 : (3.9c)

The memory Kalman filter also stores the mean x̂k�Nmemjk�Nmem and covariance
Pk�Nmemjk�Nmem . We use the boolean matrix F to indicate whether the historical
measurements are available (1 for available and 0 for not available). At each time step,
the memory can be updated with available observations, whether they are current or
delayed.

The memory Kalman filter estimates the states over the horizon of past observa-
tions. We employ the boolean matrix to slice the appropriate vectors and matrices,
i.e., resizing the measurements y, output matrix C and covariance matrix Rvv based
on the availability of the measurements at each time step,

yk�Nmem+i = Yk[Fk[:; i]; i]; for i 2 1; 2; : : : ; Nmem; (3.10a)
Ck�Nmem+i = C[Fk[:; i]; :]; for i 2 1; 2; : : : ; Nmem; (3.10b)

Rvv;k�Nmem+i = Rvv[Fk[:; i];Fk[:; i]]; for i 2 1; 2; : : : ; Nmem: (3.10c)

For the time step tk�Nmem+i for i = 1; 2; : : : ; Nmem, we implement the prediction
and filtering indicated in (3.3) and (3.4) with sliced system parameters ys

k�Nmem+i,
Cs

k�Nmem+i and Rvv;k�Nmem+i.

3.3 Optimal control
In this section, we describe the regulator of CT-LMPC. The regulator involves a
continuous-time LQ-OCP with various control objectives. We apply the LQ dis-
cretization scheme introduced in Chapter 2 to obtain the discrete-time equivalent of
the continuous-time LQ-OCP. In the following content, we will introduce different
control objectives of CT-LMPC and present the corresponding discretization.
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the numerical discretization of the remaining objective functions. Consequently, the
corresponding discrete-time equivalent of (3.11) can be expressed as

min
fx;u;�;�g

� = �z + �u + �∆u + �eco + �� + �� (3.18a)

s:t: x0 = x̂0; (3.18b)
xk+1 = Axk +Buk; k 2 N ; (3.18c)
zk = Cxk +Duk; k 2 N ; (3.18d)
umin;k � uk � umax;k; k 2 N ; (3.18e)
∆umin;k � ∆uk � ∆umax;k; k 2 N ; (3.18f)
zk+1 � zmin;k+1 � �k+1; k 2 N ; (3.18g)
zk+1 � zmax;k+1 + �k+1; k 2 N ; (3.18h)
�k+1 � 0; k 2 N ; (3.18i)
�k+1 � 0; k 2 N : (3.18j)

where the discrete-time objective functions �z, �u, �∆u, �eco, �� and �� are

�z + �u =
N�1X

k=0

1
2

�
xk
uk

�0

Q
�
xk
uk

�
+ q0

k

�
xk
uk

�
+ �k; (3.19a)

�∆u + �eco =
N�1X

k=0

1
2

�
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�0

Q∆u

�
uk
uk�1

�
+ q0

ecouk; (3.19b)

�� + �� =
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1
2

�
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�k

�0
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�
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�k

�
+ q0

s

�
�k
�k

�
: (3.19c)

In above expressions, the discrete-time system matrices Q and qk = M [z̄k; ūk] of the
reference tracking and input regularization objectives are described in (2.50). The
discrete-time weight matrices of the remaining two objectives are defined as

Q∆u =
�
Q∆u �Q∆u

�Q∆u Q∆u

�
; Q∆u = Qc∆u

Ts
; qeco = Tsqceco; (3.20a)

Qs =
�
Q� 0
0 Q�

�
=
�
TsQc� 0

0 TsQc�

�
; qs =

�
q�
q�

�
=
�
Tsqc�
Tsqc�

�
: (3.20b)

In Appendix G, we convert the discrete-time LQ-OCP (3.18) into the following QP,

� = 1
2

2

4
u
�
�

3

5
0

H

2

4
u
�
�

3

5+ g0

2

4
u
�
�

3

5 ; (3.21)







3.5 Summary 59

1. Both MPCs can control and stabilize the SISO example system with a small
controller sampling time T c

s = 5 seconds.

2. The CT-LMPC and DT-LMPC will obtain a similar optimal control solution
(when T c

s is small enough) with identical system parameters.

3. The gap in control performance between the two MPCs will increase with the
increment of the controller sampling time.

3.5 Summary
In this chapter, we present the design and discrete-time implementation of CT-LMPC.
We begin with an introduction to the CT-LMPC concept and compare it with the
standard DT-LMPC, highlighting the potential advantages of CT-LMPC in terms of
controller sampling time tuning and closed-loop performance.

In Section 3.2, we introduce the state estimation process using a discrete-time
Kalman filter with memory to handle delayed and missing observations. We apply
the Kalman filter with the NS state space representation in this case. It allows us to
perform the state estimation with only the stochastic part of the system.

Next, we describe the regulator of CT-LMPC in Section 3.3. The objective func-
tion of CT-LMPC is a continuous-time LQ-OCP with constraints. We present the
discretization of various objective functions based on the LQ discretization scheme
introduced in Chapter 2. In addition, we implement a CT-LMPC toolbox in both
MATLAB and Python, which integrates the LQ discretization toolbox. Section 3.4
introduces the CT-LMPC toolbox and provides the MATLAB implementations of
the CT-LMPC toolbox’s functions. To test the proposed CT-LMPC formulation and
compare it with standard DT-LMPC, we present a series of closed-loop simulations
on a SISO transfer function model based on the paper presented in Appendix G. The
closed-loop simulation results indicate that the proposed CT-LMPC has the following
features:

1. When using an appropriate sampling time and well-tuned weight matrices, CT-
LMPC has a control performance that is highly similar to that of the standard
DT-LMPC.

2. The proposed CT-LMPC has a better closed-loop performance than the stan-
dard DT-LMPC when the controller sampling time is large. This gap will
increase with the increase in controller sampling time.





CHAPTER4
Real-time advanced

process control system
for industrial processes

This chapter discusses a real-time advanced process control (RT-APC) system de-
signed for industrial process control. APC technology encompasses various sophisti-
cated control algorithms, such as robust control and MPC. This thesis introduces the
RT-APC system with the CT-LMPC formulation described in Chapter 3.

Appendix C describes the fundamental principles and concepts for implementing
the RT-APC system. It also presents a simulation experiment where the RT-APC
system, implemented using the C programming language, controls a simple ODE
system. The numerical experiment demonstrates how closed-loop control can be
simulated in real time with a shared data architecture using concurrent processes.

In this thesis, we introduce an RT-APC framework adapted based on the paper
presented in Appendix C. The proposed RT-APC system is primarily developed in
Python. We apply two numerical optimization toolsets, the LQ discretization, and the
CT-LMPC toolboxes, for the real-time implementation of CT-LMPC. We employ a
database in the RT-APC system as a shared memory for data communication between
various APC modules. A case study based on an industrial process, as described in
Appendix A and B, is presented to test the proposed RT-APC system.

4.1 The framework and modules of the RT-APC system
This section describes the principles and the modules of the RT-APC system. Fig-
ure 4.1 illustrates the RT-APC system framework with the process plant. The RT-
APC system contains the following modules:

1. The real-time simulator module

2. The Open Platform Communications (OPC) module
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with the transfer functions

GD1(s) = PT (s); GD2 = k2

�2s+ 1
e��D2s; (4.3c)

H1(s) = kh1

�h1s+ 1
; H2(s) = kh2

�h2s+ 1
; (4.3d)

ḠD2(s) = GD2(s)GD1(s); H21(s) = GD2(s)H1(s); (4.3e)

where Zi = [Sii; Ali; Fei; Cai; Mgi] for i = 1; 2 are the oxide compositions of the raw
mix at Y1 and Y2. P is the compositional matrix of the raw material piles, and T (s)
indicates the input time delay caused by the conveyor belt transportation.

We set up a real-time simulator based on the input-output model described
in (4.3b). For this case study, we consider a three-feeder cement blending process
with a sampling time Ts=30 seconds, as illustrated in Figure 4.3. In the real-time
simulator’s measurement thread, the input sampling frequency is set to 30 seconds.
Additionally, we assume the online measurement at Y1 is unavailable. To simulate
the missing and delayed measurement at Y2, the sampling frequency for Y2 is set to
1 hour with a random sampling delay between -25 and 25 minutes. The disturbance
thread is configured to generate a piecewise constant disturbance every 7 hours, and
the scenario thread is not considered in this case.

A plant-side OPC-UA server for the cement blending real-time simulator is created
using the OPC-UA server configuration spreadsheet shown in Figure 4.4. The cement
blending real-time simulator operates on a Linux computer. The real-time simulator
and the RT-APC system are set up on different computers to emulate the architecture
introduced in Figure 4.1.

4.2.2 MPC for the cement raw-mix blending process
In the cement blending process, the oxide compositions of the raw meal are usually
controlled based on compositional parameter calculations. The compositional param-
eters are defined as:

L(t) = 100Ca(t)
2:8Si(t) + 1:18Al(t) + 0:65Fe(t)

; (4.4a)

S(t) = Si(t)
Al(t) + Fe(t)

; (4.4b)

A(t) = Al(t)
Fe(t)

; (4.4c)

where L(t) is the Lime Saturation Factor (LSF), S(t) is Silica Modulus (SIM) and
A(t) is Alumina Modules (SIM).

Appendix B shows a closed-loop simulation of a simulated cement blending system
with the standard DT-LMPC and nonlinear MPC (NMPC). The two MPCs consider
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concentration of the produced water (PW) is below 30 ppm [7].
This chapter is organized as follows: Section 5.1 introduces the mathematical

modeling of the separator and hydrocyclone units. Section 5.2 describes an optimal
steady-state operation OCP for identifying the optimal steady-state of the offshore
PWT system based on given disturbance conditions. This section also presents step
response experiments for input-output model identification based on the optimal
steady state. Section 5.3 introduces control strategies and develops corresponding
MPCs based on the described control strategies. Section 5.4 presents the closed-loop
experiment of a simulated offshore PWT system. Section 5.5 describes the RT-APC
software application based on the MPC solution obtained in the previous section, and
the conclusions are given in the final section.

5.1 Models description
This section describes the GS and HC models based on mass balances. The general
mass balance equation can be expressed as:

Accumulated = Inflow � Outflow + Generated: (5.1)

In the above expression, the term ’Accumulated’ indicates the mass change of the
modeled components, i.e., gas, oil, and water in the offshore PWT system. ’Inflow’
and ’Outflow’ refer to the mass changes of components due to inflows and outflows,
respectively. The ’Generated’ term describes the mass change based on the stoichiom-
etry and kinetics of the reactions.

In this section, we describe 1) the GS model adapted based on the previous
work [83, 84] and 2) the HC model introduced in [85].

5.1.1 The gravity three-phase separator
The GS unit is implemented for the primary separation of well fluids. It separates the
well fluids into gas, oil, and water based on gravity. Figure 5.2 illustrates a horizontal
gravity three-phase separator. The separator consists of 1) the inlet section and 2)
the main separation section. The main separation section includes the gas phase (the
white area), the oil phase (the red area), and the water phase (the blue area). In
this work, we assume the separator is a perfect cylinder with length L and radius
r. The inflow of the separator is characterized by 1) the gas inflow F g

in and 2) the
liquid inflow F l

in, and 3) the initial water cut (WC) WCin of the liquid inflow. The
gas directly enters the gas phase and flows out through a mist extractor. In the inlet
section, the liquid inflow becomes two inflows that enter the oil and water phases.
There is a weir (with height hweir) in the liquid phases of the main separation section
to ensure that oil can overflow while keeping water in the bottom section of the
separator. Subsequently, the water flows out from the water outlet on the left side of
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ny = ny;o + ny;w. For the x-direction, we have nx � 1 discretizations for 1) the water
phase and 2) the oil phase on the left side of the weir (we call it the first part of the oil
phase). The length of this part is denoted as Lleft. We only consider the y-direction
discretization for the oil phase on the right side of the weir (we call it the second part
of the oil phase), and this part of the oil phase has a length Lright.

In addition, the y-direction discretization is based on the liquid levels. For the
water phase, the y-direction discretization is performed as ∆yw = hw=ny;w, where
hw is the height of the water phase. In the first part of the oil phase, the y-direction
discretization is based on the hweir and the liquid level hl [m]. For cells below the
weir, we have ∆yo = (hl � hw)=(ny;o � 1) and the y-direction discretization for cells
above the weir can be performed as ∆yo = hl � hweir. For the second part of the oil
phase, the y-direction discretization is ∆yo = ho=ny;o, and ho is the oil level of the
second part of the oil phase.

Figure 5.4 illustrates the front, top, and side views of the main separation section
of the separator based on the finite-volume democratization scheme. Here, we define
the volume of the cells as V [i;j]

c . For cells on the left side of the weir, we have
V [i;j]

c = Ay;j∆x, where ∆x = Lleft=(nx � 1) and Ay;j is the cross-sectional area of the
[1 : nx � 1; j] cells. The cross-sectional area Ay;j is computed based on liquid levels
hl and hw and geometric relationships of the separator. The mathematical details
can be found in the previous work [86]. For the cells in the second part of the oil
phase, we have ∆x = Lright and the volume of the cells is V [i;j]

c = Ay;j∆x. The cross-
sectional area is computed based on the oil level ho and geometric relationships of the
separator. In addition, we denote the horizontal area of the cells as A[i;j]

z = ∆xz[i;j]
seg .

zseg is the width of the segment areas, which can be computed based on the liquid
level hl and water level hw [86].

In the following, we indicate variables (e.g., flows, concentrations, areas, volumes)
in the [i; j] cell with the superscript [i; j].

5.1.1.3 Stoichiometry

We consider that there are Nd = 10 oil and water droplet classes in the liquid phases.
These classes are categorized based on the size of the droplet, with the kth class
droplet being k times larger than the base class i = 1. This relationship can be
expressed as Vd;k = kVd, where Vd;k for k = 1; 2; : : : ; Nd represents the volume of the
kth class droplet, and Vd = Vd;1 indicates the volume of the base class droplet.

Previous research [83] describes the droplet-droplet coalescence within the separa-
tor, indicating that tiny droplets will merge to form large droplets. We assume that
the largest droplet is k = Nd with the volume Vd;Nd , and large droplets will not break
into small droplets. The following reactions can describe the reactive system with
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of moles of the Nd classes of water droplets as follows:

dn̄[i;j]
w

dt
= (q[i;j]

x C̄ [i�1;j]
w + q[i;j]

y;w C̄
[i;j+1]
w ) � (q[i+1;j]

x C̄ [i;j]
w + q[i;j�1]

y;w C̄ [i;j]
w )

+R[i;j]V [i;j]
c ;

(5.24)

where n̄w is a vector containing the number of moles of the Nd classes water droplets
and C̄w is the corresponding concentration.

Then, we will have the following mass balances expressions for the total oil and
water in the first part of the oil phase when considering the oil phase independently,

dnw;o1

dt
= F ol

inC
ol
w;in � (F o

outC
[nx;1]
w + FweirC [nx�1;ny ]

w ); (5.25a)

dno;o1

dt
= F ol

inC
ol
o;in +

nx�2X

i=1

q[i;ny;w]
int;w C [i;ny;w]

o � FweirC [nx;1]
o ; (5.25b)

where nw;o1 and no;o1 indicate the number of moles of water and oil in the first part
of the oil phase.

For the second part of the oil phase, the number of moles of the total water and
oil can be described as

dnw;o2

dt
= FweirC [nx�1;ny ]

w � F o
outC

[nx;1]
w ; (5.26a)

dno;o2

dt
= FweirC [nx;1]

o � F o
outC

[nx;1]
0 : (5.26b)

where nw;o2 and no;o2 indicate the number of moles of water and oil in the second
part of the oil phase.

Note that the expressions introduced in (5.22) only apply to the cells that i 2
[1; nx � 2] as the convective flows change their direction after hitting the weir. For
the cells where i = nx � 1 and y = [ny;w + 1 : ny], we have

for j = ny;w + 1; dn̄[i;j]
w

dt
= q[i;j]

x (C̄ [i;j]
w � C̄ [i�1;j]

w ) +R[i;j]V [i;j]
c ; (5.27a)

for j = ny;w + 2 : ny;
dn̄[i;j]

w

dt
= q[i;j]

x C̄ [i�1;j]
w +

j�1X

k=ny;w+1

q[i;k]
x C̄ [i;j�1]

w

�
jX

p=ny;w+1

q[i;p]
x C̄ [i;j+1]

w +R[i;j]V [i;j]
c ;

(5.27b)

For the cells that i = nx, we will have

for j = ny;
dn̄[i;j]

w

dt
= q[i;j]

x C̄ [i�1;j]
w � q[i;j+1]

x C̄ [i;j]
w +R[i;j]V [i;j]

c ; (5.28)

for j = 1 : ny � 1; dn̄[i;j]
w

dt
= q[i;j]

x C̄ [i;j+1]
w � q[i;j�1]

x C̄ [i;j]
w +R[i;j]V [i;j]

c : (5.29)
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5.1.1.7 Thermophysical properties - algebraic equations

The thermophysical properties considered in the GS unit can be described by the
following algebraic equations:

Vol. of gas: gg(Pg; hl; hw; ho) = ngRT � PgVg = 0; (5.30a)

Vol. of oil (part 1): go(Pg; hl; hw; ho) = no;o1
Mo

�o
+ nw;o1

Mw

�w
� Vo;1 = 0; (5.30b)

Vol. of oil (part 2): go(Pg; hl; hw; ho) = no;o2
Mo

�o
+ nw;o2

Mw

�w
� Vo;2 = 0; (5.30c)

Vol. of water: gw(Pg; hl; hw; ho) = no;w
Mo

�o
+ nw;w

Mw

�w
� Vw = 0: (5.30d)

Here, Vg(hl; hw; ho), Vo;1(hl; hw; ho), Vo;2(hl; hw; ho) and Vw(hl; hw; ho) represent the
volumes of the gas phase, the first and second parts of the oil phase as well as the
water phase, respectively. Note that these volumes are computed based on the liquid
levels and geometric relationships of the separator, such that

Vsep = Vg + Vo;1 + Vo;2 + Vw: (5.31)

where Vseq = L(�r2) is the volume of the separator.

5.1.1.8 Differential-algebraic equations for the GS unit

Consequently, based on the mass balances and algebraic equations introduced previ-
ously, the separator can be described in the form of semi-explicit differential-algebraic
equations (DAEs) of index-1:

ẋgs(t) = fgs(xgs(t); ygs(t); ugs(t); dgs(t)); (5.32a)
0 = ggs(xgs(t); ygs(t); ugs(t); dgs(t)); (5.32b)

zgs(t) = hgs(xgs(t); ygs(t); ugs(t); dgs(t)); (5.32c)

with the system variables

xgs = [n̄w; n̄o; ng; no;w; nw;w; no;o1; nw;o1; no;o2; nw;o2]T ; (5.33a)
ygs = [Pg; hl; hw; ho]T ; (5.33b)
ugs = [F g

out; F
o
out; F

w
out]T ; (5.33c)

dgs = [F g
in; F

l
in;WCin]T ; (5.33d)

zgs = [Pg; hl; hw; ho;WiOgs;OiWgs]T : (5.33e)

Here, the state variables n̄w = [n[i;j]
w;k ] and n̄o = [n[i;j]

o;k ] indicate the collection of the
number of moles of the Nd classes of droplets in all cells. The system MVs are the
gas, oil, and water outflows. The system disturbance variables (DVs) are the gas and
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5.1.2.4 Ordinary differential equations for the HC unit

With the finite-volume discretization, we can obtain the following ODEs:

ẋhc(t) = fhc(xhc(t); uhc(t); dhc(t)); (5.38a)
zhc(t) = hhc(xhc(t); uhc(t); dhc(t)); (5.38b)

with the system variables

xhc = [�̄d; d̄d; v̄�]T ; (5.38c)
uhc = Fover; (5.38d)
dhc = [Fin;OCin]T ; (5.38e)
zhc = [Funder;OiWpw;WiOreject]T : (5.38f)

Here, the system states �̄d, d̄d and v̄� indicate the collection of oil fraction, diameter,
and tangential velocity of the oil droplets in all cells. The system MV is the overflow
Fover. The system DVs are considered as the inflow Fin and its oil cut OCin. The
system CVs, OiWpw and WiOreject are the OiW concentration of the underflow Funder
(produced water) and the WiO concentration in the overflow Fover (rejected oil-rich
flow), respectively. These concentrations are computed based on the re-entrainment
expressions introduced in [85]. The model parameters of the HC unit are described
in Table 5.2.

5.1.3 The offshore produced water treatment system
This thesis considers the offshore PWT system described in Figure 5.1, where HCs
are connected with GS for the secondary-stage produced water treatment. Therefore,
the inflow Fin and its OCin of the HC unit correspond to the water outflow Fw

out and
the outflow OiW concentration OiWgs of the GS unit, such that Fin = Fw

out and OCin
= OiWgs � 10�4.

Consequently, we can obtain the following model by combining the separator
DAEs system (5.32) and the cyclone ODEs system (5.38),

ẋ(t) = f(x(t); y(t); u(t); d(t)); (5.39a)
0 = g(x(t); y(t); u(t); d(t)); (5.39b)

z(t) = h(x(t); y(t); u(t); d(t)); (5.39c)
ym(tk) = z(tk) + vk; (5.39d)

with the system variables

x = [xgs; xhc]T ; y = ygs; u = [ugs; uhc]T ; d = dgs; (5.39e)
z = [Pg; hl; hw; ho;WiOgs; ;OiWgs; Funder;OiWpw;WiOreject]T ; (5.39f)

where ym indicates the measurements and vk � Niid(0; Rvv) is the measurement
noise.
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5.2 Optimal steady state operation and input-output
model identification

This section describes the optimal steady-state operation OCP and the step response
experiments for the system identification of the offshore PWT system. One popular
method to identify a linear input-output model is step response. This involves adding
a step input signal to the system and measuring the corresponding output response.
Based on the input-output data obtained from the step response experiment, we
can identify the parameters (gain, zeros, poles, and time delays) of transfer function
models.

It is essential to ensure that the system is running at a steady state before applying
the input step change so that we can obtain reasonable step response experiment
results. In Subsection 5.2.1, we develop an OCP for finding an optimal steady state
operation point with given disturbances. Subsection 5.2.2 demonstrates the step
response experiment for the input-output model identification.

5.2.1 Optimal steady state operation optimal control problem
The main objective of GS is economic, i.e., we aim to increase oil and gas production
to maximize profit. The cost function can be expressed as Jgs = F o

out + F g
out. Addi-

tionally, we consider the following operational constraints to ensure efficient and safe
operation of the separator:

1. The gas pressure constraint: 7:7 bara � Pg � 8:3 bara .

2. The liquid level constraint: 2:2 m � hl � 2:5 m. The liquid level should be
higher than the weir (with a safety margin of 0.2 m) and be lower than the
maximum possible height.

3. The water level constraint 1:5 m � hl � 1:8 m. The water level should be below
the weir (with a back-off of 0.2 m) and higher than a safety level of 1.5 m.

4. The oil level constraint 1:0 m � hl � 1:8 m. The oil level should be below the
weir (with a back-off of 0.2 m).

5. The outflow constraints (input hard constraints): umin;gs � ugs � umax;gs.
The outflow constraints consider the physical limitations of the outflow pipes.
In this thesis, we consider umin;gs = [1:5; 1:0; 0:1] � 103 m3/h and umax;gs =
[3:0; 2:5; 0:5] � 103 m3/h.
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5.2.1.1 The de-oiling hydrocyclone

For HC, we consider maximizing the oil-water separation efficiency, Jhc = �hc. The
separation efficiency can be expressed as

�hc = 1 �
OiWpw � 10�6

OCin
; (5.40)

where OCin = OiWgs � 10�6.
The constraints considered in the HC unit include:

1. The flow split ratio (FS) constraint: 1 % � FS � 5 %. The FS, defined as
FS = 100 � F�Q�p�2�`

F�B�M
, describes the fraction between the inflow and overflow of the

HC unit. It is introduced to indirectly keep a high oil-water separation efficiency
while preserving the flow structure of the HC unit. The typical range of FS is
usually 1-10 % [89, 90]). In this thesis, we consider it to be 1-5 %.

2. The OiW concentration constraint: 0 ppm � OiWpw � 20 ppm. The OiW
concentration in PW should be below 30 ppm (with a back-off of 10 ppm)

3. The overflow constraint (input hard constraint): umin;hc � uhc � umax;hc. In
this thesis, we consider the overflow constraints with umin;hc = 2 m3/h and
umax;hc = 15 m3/h.

5.2.1.2 The steady state operation optimal control problem

Combining the above objectives and constraints, we can obtain the following OCP
for the steady state operation of the offshore PWT system with a given disturbance
ds:

max
fxs;ys;us;sg

J = q1F g
out + q2F o

out + q3�hc � q4s2 (5.41a)

s:t: 0 = f(xs; ys; us; ds); (5.41b)
0 = g(xs; ys; us; ds); (5.41c)
umin � us � umax; (5.41d)
7:7 bara � Pg � 8:3 bara; (5.41e)
2:2 m � hl � 2:5 m; (5.41f)
1:5 m � hw � 1:80 m; (5.41g)
0:5 m � hw � 1:80 m; (5.41h)
1 % � FS � 5 %; (5.41i)
0 ppm � OiWpw � 20 + sppm; (5.41j)
s � 0: (5.41k)
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2. Fixed set-point liquid level controllers are used to control the liquid levels of
the separator.

2. With aggressive liquid level controllers, the inflow fluctuations of the separator
will propagate downstream, resulting in variations at the outlets of the separator
and the inlet of the hydrocyclones [2].

3. A fixed set-point FS controller is implemented to control the flow split ratio. The
FS controller is used to indirectly control the oil-water separation efficiency of
the hydrocyclone, see [89, 90, 95].

Instead of using a fixed-set-point FS controller, a fixed set-point pressure drop ratio
(PDR) controller can also be used. The previous work [89, 90] shows that there is
an approximate linear relationship between FS and PDR, and FS remains constant
when controlling PDR constant. In this thesis, we only consider FS.

Different control algorithms are implemented on the offshore PWT system based
on the conventional control strategy, such as the traditional PID, H1 control and
MPC [2, 83, 85, 96, 98]. The major problem with the conventional control strategy is
the conflicting control targets of the offshore PWT system. In this case, the FS and
liquid level controllers usually go against each other when considering fixed tracking
references. [2, 96, 98].

In this thesis, we introduce an input regularization-based control strategy for the
optimal operation of the offshore PWT system. The proposed input regularization
control strategy can be described as follows:

1. We do not consider any reference tracking objective on the pressure, liquid levels,
and other operational parameters as long as they are within the safety range.

2. We introduce an input regularization objective to control the outflows with the
given input reference.

3. Let the optimal steady state operation OCP (5.41) decide the input reference.

Here, controlling the operational variables to fixed targets is unnecessary as long as
they are kept within a safety range. We consider the separator a buffer tank to take
the variations from the inflows so that these variations will not pass downstream and
to the final products. Additionally, we introduce an input regularization objective
to stabilize the system MVs. Implementing the input regularization objective can
further reduce variations in the oil and gas outflows and improve the quality of final
products. The references for the input regularization are obtained by solving the
optimal steady-state operation OCP (5.41), which acts as the decision maker for the
MPCs.

In the following, we describe the design and development of two MPCs: one based
on the conventional fixed set-point control strategy (MPC 1) and another based on
the input-regularization control strategy (MPC 2).
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can achieve smoother and more reliable control over the offshore PWT system
than the conventional fixed set-point control strategy.

2. MPC 2 achieves a larger profit and better oil quality (WiOgs) than MPC 1.

3. Both two MPCs can control OiWpw within the given boundary (20 ppm) for
most of the time.

5.5 The RT-APC software application for the offshore
PWT system

This section presents the RT-APC software application for the optimal operation
and OiW control of the offshore PWT system. We develop the RT-APC software
application based on the framework and principles of the APC system introduced in
Chapter 4. Since the technical details are described in Chapter 4, we only discuss a
few critical components of the offshore PWT system RT-APC software application.

5.5.1 The real-time offshore PWT process simulator
In this thesis, we set up a real-time offshore PWT process simulator on a Linux com-
puter based on the cement blending real-time simulator implementation introduced
in Section 4.1.1. The sampling time of the simulator is Ts = 1 s. Note that the real-
time simulator module only supports linear models. Therefore, we use the following
linear system that is adapted from the identified input-output model (5.43),

Z(s) = G(s)U(s) +Gd(s) (D(s) + W (s))
= G(s)U(s) +Gd(s)D(s) +Gw(s)W (s);

(5.60a)

and
Y (s) = Z(s) + V (s); (5.60b)

where the covariance matrices for the process noise W (s) and measurement noise V (s)
are identical to the parameters used in the closed-loop simulation. Here, we add time
delays on the transfer functions of the above input-output model to simulate the time
delays introduced by the pipeline transportation of the offshore PWT system.

As introduced earlier, measuring the OiW concentration in traditional offshore
PWT systems is challenging and is usually done manually and offline [102]. In this
work, we consider the OiW measurement device [2] is available for the online OiW and
WiO measurement. Therefore, no missing or delayed measurements are considered in
the offshore PWT system.

Figures 5.11 and 5.12 are screenshots of the offshore PWT system real-time sim-
ulator configuration spreadsheet. We apply the real-time simulator module of the
RT-APC system to set up the offshore PWT real-time simulator on a Linux com-
puter. In this case, we do not consider the scenario thread of the real-time simulator.













120 5 Main result

In Section 5.4, we discuss and compare the conventional fixed set-point and
input-regularization based control strategies. We develop two MPCs based on the
two control strategies. The closed-loop simulation results indicate that the input-
regularization based MPC has a more stable control performance than MPC 1, achiev-
ing a higher profit and keeping all operational variables within the safety range.

Section 5.5 presents the RT-APC software application for the optimal operation
and OiW control of the offshore PWT system. We develop the RT-APC application
based on the principles and framework of the RT-APC system introduced in Chap-
ter 4. We test the application on a simulated offshore PWT system. The real-time
simulation results indicate that the RT-APC software application can control and
stabilize the simulated offshore PWT system. We still need to validate the proposed
offshore PWT RT-APC software application, as the tested plant is a simple input-
output model. The offshore PWT RT-APC software application allows us to quickly
test our solutions in a pilot or physical process plant.
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the stochastic cost function and reformulate it into an isolated stochastic form. We
derived the numerical approximation of the mean and variance of the stochastic cost
function based on the EM discretization. We presented Monte Carlo simulations to
compare the distribution of stochastic cost functions of 1) the continuous-time LQ-
OCP, 2) the discrete-time LQ-OCP obtained using the proposed LQ discretization
method, 3) the EM reformulated LQ-OCP ,and 4) the standard discrete-time LQ-
OCP. The simulation results indicated that 1) the discrete-time LQ-OCP is equivalent
to the original continuous-time LQ-OCP, 2) the stochastic cost function follows a gen-
eralized �2 distribution, and 3) the mean and variance computed from the numerical
approximation will converge to the true solutions when taking the integration step to
infinity. Furthermore, we explored a collection of stochastic optimization strategies,
including the discounted LQ-OCPs, mean-variance, worst-case, VaR, and CVaR.

This thesis introduced a novel CT-LMPC formulation consisting of an estimator
and a regulator. The estimator was a discrete-time linear Kalman filter with memory
for handling missing and delayed observations. The regulator involved a continuous-
time LQ-OCP with time delays. We introduced different objectives, including 1)
the reference tracking objective, 2) the input regularization objective, 3) the input
ROM objective, 4) the economics objective, and 5) the soft output constraint penalty
function. We applied the LQ discretization toolbox to discretize the continuous-time
LQ-OCP for the discrete-time implementation of CT-LMPC. We presented numerical
experiments to test and compare the proposed CT-LMPC and the standard discrete-
time LMPC (DT-LMPC). The simulation results indicated that the proposed CT-
LMPC has a better control performance than the standard DT-LMPC, especially in
scenarios with a larger controller sampling time. When selecting a controller with a
sufficient sampling time and appropriate tuning parameters, CT-LMPC will converge
to the identical optimal control solution as DT-LMPC. We developed a CT-LMPC
toolbox for the design and discrete-time implementation of CT-LMPC.

This thesis presented an RT-APC system framework for industrial process control.
The RT-APC system consists of different modules, including 1) a real-time simulator
module, 2) an Open Platform Communications (OPC) module, 3) an APC database
module, 4) an APC process controller module, and 5) a user-interface module. The
real-time simulator module applied multiple threads with real-time interval timers for
the concurrent, periodic execution of multiple tasks. The OPC module included an
OPC-UA client for the OPC client-server communication between the process plant
and the RT-APC system. The APC database module applied a database, including
tables for data storage and sharing data between APC modules. The APC process
controller module integrated LQ discretization, CT-LMPC, and other functionalities
for the initialization of model predictive controllers. The APC process controller mod-
ule focuses on computing the optimal control solutions and predicting the system’s
future trajectory. The user-interface module provided a web-based graphical user in-
terface (GUI) application for data visualization and controller tuning. We presented a
case study of an industrial cement blending process. The real-time simulation results
validated the proposed principles and framework of the RT-APC system.

This thesis described the MPCs and the RT-APC software application for opti-
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PDEs into ODEs. In these models, some operational variables (such as tem-
perature, pressure in HC, etc.) were assumed to be constant or not considered.
Future work should consider the ignored dynamics.

4. Lastly, we developed an RT-APC software application for the optimal operation
and OiW control of the offshore PWT system. Future work should consider
testing the proposed RT-APC software application on the digital twin or a real
physical plant. Previous work [2] presented both NMPC and H1 solutions
for the optimal operation of the HC unit and tested them on a pilot plant.
The simulations show very promising results compared with the conventional
PID-based control solutions.
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