

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 20, 2025

Real-Time Full-Volume Row-Column Imaging

Præsius, Sebastian Kazmarek; Jørgensen, Lasse Thurmann; Jensen, Jørgen Arendt

Published in:
I E E E Transactions on Ultrasonics, Ferroelectrics and Frequency Control

Publication date:
2025

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Præsius, S. K., Jørgensen, L. T., & Jensen, J. A. (in press). Real-Time Full-Volume Row-Column Imaging. I E E
E Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

https://orbit.dtu.dk/en/publications/fc08c425-80ba-42af-8ee4-623ab4cd56a7

1

Real-Time Full-Volume Row-Column Imaging
Sebastian Kazmarek Præsius, Graduate Student Member, IEEE ,

Lasse Thurmann Jørgensen, Member, IEEE ,
and Jørgen Arendt Jensen, Fellow, IEEE

Abstract— An implementation of volumetric beamforming
for row-column addressed arrays (RCAs) is proposed, with
optimizations for Graphics Processing Units (GPUs). It is
hypothesized that entire volumes can imaged in real time
by a consumer-class GPU at an emission rate ≥ 12 kHz. A
separable beamforming algorithm was used to reduce the
number of calculations with a negligible impact on the im-
age quality. Here, a single image was beamformed for each
emission and then extrapolated to reproduce the volume,
which resulted in 65 times fewer calculations per volume.
Reusing computations and samples among adjacent pix-
els and frames reduced the amount of overhead and load
instructions, increasing performance. A GPU beamformer,
written in CUDA C++, was modified to implement the dual-
stage imaging with optimizations. In-vivo rat kidney data
was acquired using a 6 MHz Vermon 128+128 RCA probe
and a Verasonics Vantage 256 scanner. The acquisition
used 96 defocused emissions at a 12 kHz rate for a volume acquisition rate of 125 Hz. Processing time, including
all pre-processing, was measured for an NVIDIA GeForce RTX 4090 GPU, and the resulting beamforming rate was
1440 volumes per second, greatly exceeding the real-time rate. Based on the GPU’s floating-point throughput,
this corresponds to 22% of the theoretically achievable rate. High efficiency was also shown for an RTX 2080 Ti
and RTX 3090, both achieving real-time imaging. This shows that 3D imaging can be performed in real time with
a setup similar to 2D imaging: Using a single graphics card, one scanner, and 128 transmit/receive channels.

Index Terms— Synthetic aperture imaging, row-column addressed probes, separable beamforming, array signal
processing, parallel processing, volumetric imaging, beamforming

I. INTRODUCTION

ULTRASOUND imaging is widely used due to its safety,
affordability, and ability to image at the patient’s bedside

in real-time. Most examinations use two-dimensional imaging,
meaning the sonographer must manually position the probe to
find the proper views, which is time-consuming. Another issue
is poor work posture; for example, the sonographer may rotate
their wrist to rotate the probe, which will cause physical strain,
and surveys indicated 80-90% of sonographers scan with pain,
most often located in their shoulder, neck, and wrist [1], [2].

Furthermore, standard measurements use assumptions, such
as that a kidney’s volume can be measured from two (assumed)
orthogonal planes using the ellipsoid volume formula [3], [4],
or that the image plane is at a specific angle to blood flow [5].
While finding a proper scan plane may be difficult, finding the
same plane again is even more challenging, making it hard to
replicate measurements in follow-up examinations [3], [6].

Volumetric ultrasound enables entire volumes to be acquired
and visualized, alleviating many of the aforementioned issues.
Probe motions can then be emulated retrospectively by moving
or rotating the reconstructed volume, and by extracting slices,
any plane within the field of view may be displayed regardless

of the probe’s orientation [7]. Measurements can then be made
with higher accuracy [8]–[12], velocities in all three directions
can be estimated to better quantify blood flow [13]–[15], and
the average scan time may be shortened, e.g., from 15 minutes
to four minutes in one case [11], improving patient throughput.

To remain competitive with 2D imaging, comparable image
quality is needed for all planes within the volume at high frame
rates. This may achieved by using 2D arrays, as shown in 1991
[16]–[18]. However, the array’s width and height determine the
lateral and elevational resolution. Thus, to match an N -element
1D array in both transverse directions, this 2D array must have
on the order of N2 elements, assuming it has a matching pitch.
While many scanners support N = 128 receiving RF channels,
using N2 = 16384 channels would not be practical as it would
result in large cables and data rates. Hence, a channel reduction
is often necessary in practice for 3D imaging with 2D arrays.

Row-column addressed 2D arrays (RCAs) were proposed as
a solution in 2003 [19]. They reduce the number of channels
from N2 to N +N by aggregating the signals along the rows
and columns [20]–[22], enabling high-quality 3D imaging with
a large 2D aperture [23], [24]. The RCA must be ≈ 36% wider
and taller than a corresponding matrix array to have a matching
resolution, as measured by the full width at half max (FWHM)

2

Highlights

• A novel multi-pixel beamforming optimization improved performance by reducing the number of load instructions.

• Real-time beamforming was achieved at a rate of 1440 volumes per second.

• The processing time is no longer a limitation for 3D imaging with the 6 MHz Vermon 128+128 row-column array.

[25], and high image contrast can be attained with apodization
on the row and column edges [26]. To attain high volume rates,
synthetic aperture or plane wave sequences are often used [26],
[27], e.g., for 3D flow estimation [28] or super-resolution [29],
[30]. Other methods have been proposed to reduce the channel
count, such as sparse 2D arrays [31], [32], micro-beamforming
[33], [34], mechanically scanning 1D arrays [35], multiplexing
[36], and synthetic aperture sequential beamforming [37]–[39].
These technologies provide trade-offs in imaging rate, contrast,
field-of-view, resolution, and hardware complexity. For RCAs,
higher image quality in the elevation requires more emissions.

After RF data is acquired, it must be beamformed. However,
volumetric beamforming is challenging since each 3D volume
essentially contains hundreds of 2D images to be beamformed.
Separable beamforming algorithms sacrifice the image quality
slightly to reduce this computational complexity considerably.
Introduced for frequency-domain beamforming in 1997 [40],
and for standard time-domain beamforming in 2011 [41], [42],
these algorithms use a two-stage process to focus the acquired
RF data in each direction (e.g., x, then y) [38], [43], and they
handle the 2D array as a set of 1D arrays. The volume acquired
by such a 1D array (with no elevation-focusing acoustic lens)
will appear smeared in the elevation direction; then, separable
beamformers approximate this volume by computing only one
image, which they extrapolate (i.e., smear) in the out-of-plane
direction to get the approximated volume. While beamforming
a volume containing M planes costs M times more operations
than a 2D beamforming, separable beamforming requires only
1+M/N (usually less than 2.5) times more operations, where
N is the 1D array channel count. Thus, separable beamforming
brings the number of computations for 3D imaging to the same
order of magnitude as 2D imaging with this 2D array.

In the dual-stage RCA beamformer from 2023 [44], a single
plane is beamformed for each emission, and the planes are then
extrapolated into volumes and summed to get the final volume.
This separable RCA imaging showed a negligible loss in image
quality, where the FWHM was increased by 1.19%. However,
the number of delay-and-sum operations was NM/(N+M) =
56 times lower than with the conventional method from [26].
(Number of channels N = 128, number of planes M = 100.)

A high emission rate is used to reduce RCA motion artifacts
[45], but this increases the computational throughput required
for real-time imaging. High-throughput hardware is therefore
needed, and specialized hardware such as field-programmable
gate arrays (FPGAs) [46]–[48], digital signal processors [49],
and application-specific integrated circuits (ASICs) [50]–[54]
have historically been used for beamforming. An ASIC design
was proposed in 2020 [54], capable of real-time beamforming
for a 32×32 receiver array at a high emission rate of 13 kHz.

Each imaging point (voxel) can be computed independently
while beamforming, making it an embarrassingly parallel task.
Modern Graphics Processing Units (GPUs) are specialized for
parallel computations but are also general-purpose processors,
like CPUs. They support the data transfer rates commonly used
in ultrasound (1-6 GB/s) [55], and their software is written in,
e.g., C++ with Compute Unified Device Architecture (CUDA)
from NVIDIA to enable efficient use of their GPU hardware.
Several open-source GPU-based beamformers exist [56], [57].

Real-time GPU beamforming was presented in 2010 [58],
and it has since been demonstrated for the 3D case [59], [60].
However, the number of computations to image the full volume
often limits how many emissions can be processed in real-time.
Real-time RCA imaging was achieved using GPU in 2021 [61]
with 120 emissions beamformed per second in the full-volume
case; this beamformer was implemented with CUDA C++, and
it was used as the first stage of the dual-stage beamformer [44],
with the second stage implemented in MATLAB, to achieve a
beamforming of 1805 emissions per second for entire volumes.
For this paper, a CUDA implementation of the second beam-
forming stage was created to further improve the performance.

Finding the real-time beamforming rate should be easy since
each GPU model can do a certain number of calculations every
second. However, a far lower rate is often achieved in practice.
GPUs are not specialized only for beamforming, making them
less efficient compared to, e.g., ASICs, as GPUs must use load
instructions and address calculations to fetch RF channel data
from memory [54]. Our novel contribution is the optimization
multi-pixel beamforming, where loaded RF samples are reused
for neighboring voxels to reduce the load instructions required.
Along with other optimizations, it enabled beamforming to be
performed more efficiently with GPUs.

The hypothesis is that a GPU-optimized implementation of
the dual-stage beamformer will allow for real-time full-volume
imaging using a consumer GPU at a pulse-repetition frequency
of 12 kHz. This rate is sufficiently fast for flow estimation with
RCAs [62], allowing blood flow dynamics to be captured in 3D
and displayed at the bedside for diagnostics.

The paper is organized as follows: The beamforming theory
is first outlined. Next, the optimizations used to speed up pro-
cessing are described. Finally, the implementation is evaluated
on in-vivo rat kidney data acquired at 125 volumes per second
with 96 emissions per volume using a 12 kHz emission rate.

II. THEORY

This section outlines the theory behind the dual-stage RCA
beamforming algorithm from [44], which reduces the number
of calculations used for volumetric beamforming with RCAs.
The number of calculations per voxel is still relatively high, so

3

a minimum number of voxels per cubic meter is derived in the
final parts of this theory section. To summarize the algorithm:
One xz-plane per emission is computed using the conventional
synthetic aperture delay-and-sum beamformer from [26], after
which it is extrapolated with a second beamforming stage from
[44] to get a low-resolution volume. The final high-resolution
volume is then computed as a sum of low-resolution volumes.

The delays (time-of-flight), extrapolations and apodizations
were well-described in the works [26], [44], [63], respectively.
Synthetic aperture imaging in 2D is first outlined since initially
xz-planes are beamformed.

A. Synthetic Aperture Imaging
Synthetic aperture imaging [64]–[67] uses multiple converg-

ing or diverging emissions to produce a high-resolution image.
Each emission produces a low-resolution image (LRI), calcu-
lated as a weighted delay-and-sum of received pulse-echo data

LRI(x, z) =

Nrx∑
i=1

αi(x, z) · ri
(
ToFi(x, z)

)
, (1)

where ri(t) is the data from receiver i = 1, 2, ..., Nrx, and the
time-of-flight, ToFi, is used to look up the sample from the RF
channel data corresponding to an echo from the location (x, z)
for the specific receiver in this emission. The apodization αi is
applied to reduce sidelobes, and it is often varied dynamically.
A simple case of dynamic apodization is [63]

αi(x, z) = A

(
F# · x

rx
i − x

|z|

)
, (2)

where xrx
i is the lateral position of receiver i, and A is some

window function, which is zero outside the interval [−0.5, 0.5].
(E.g., a von Hann window is A(u) = cos2(πu) for |u| ≤ 0.5.)
This scheme grows the effective aperture with the depth, z, to
maintain an approximately constant F-number of F#. The F-
number is the imaging depth divided by aperture width, and it
determines the lateral image resolution [68]. Thus, a spatially
uniform resolution is approximated with this scheme as long as
there are receivers to support the growing apodization window.
The final high-resolution image (HRI) is computed as

HRI(x, z) =

Ntx∑
j=1

αtx
j (x, z) · LRIj(x, z), (3)

where LRIj is the low-resolution image from emission j, and
αtx
j is some transmit apodization. Thus, the 2D imaging entails

summing NrxNtx RF channel data values per pixel.

B. Dual-Stage Row-Column Array Imaging
The dual-stage algorithm [44] was used to lower the number

of operations per voxel from NrxNtx to less than Nrx+Ntx,
where Nrx and Ntx are the number of receivers and emissions.
RCAs usually receive with the columns after emitting with the
rows (or vice versa) [26], such that Nrx is half of the elements;
and, to avoid confusion, the lateral direction x will be defined
as the direction where those receiving elements are distributed.

Each emission generates one low-resolution volume (LRV),
which is approximately constant in a trajectory along yz [44].

Fig. 1. The volume acquired by a row-column array can be computed
by beamforming one plane (per emission) and extrapolating it [44]. Here,
the primary xz-plane at y0 = −2.4 mm was extrapolated to produce
two other planes. The emission is shown at (x, y, z) = (x, y0, 4), and
the red curves give examples of where the volume is constant-valued.

A single slice LRI(x, z) = LRV(x, y0, z), at some elevation,
y0, may therefore be beamformed using the 3D delay-and-sum
beamformer from [26] to represent the entire LRV compactly
as an extrapolated plane (as illustrated in Fig. 1). This assumes

LRV(x, y, z) = LRI(x, f(y, z)), (4)

where f(y, z) is used to look up the LRI-pixel corresponding
to the LRV at the voxel position (x, y, z). The resulting dual-
stage beamformer computes the high-resolution volume (HRV)
by extrapolating and summing such low-resolution images [44]

HRV(x, y, z) =

Ntx∑
j=1

αtx
j (y, z) · LRIj(x, fj(y, z)), (5)

where LRIj is the image from emission j = 1, 2, ..., Ntx, and
αtx
j is a transmit apodization. For any fixed x, (5) is equivalent

to (1), where now yz-planes are produced from LRI(f(y, z)),
(x omitted) instead of producing xz-planes from r(ToF(x, z)).
Thus, one might implement the second beamforming stage (5)
as a 2D beamforming for each x, which computes an yz-plane.

Dual-stage RCA imaging of a volume with My voxels along
the elevation direction requires Ntx evaluations of apodization
and LRI-extrapolations per voxel. But since the LRIs must also
be computed, Ntx+(NrxNtx/My) operations are used in total,
where Nrx and Ntx are the number of receivers and emissions.
Typically, My > Ntx, and 3D imaging then requires less than
Nrx+Ntx summations per voxel, as is the case in this paper.
The ToF and f used in this work can be found in Appendix A,
along with pseudo-code for the beamforming in Appendix C.

C. Sampling and Interpolation

The RF data, r, is sampled discretely in a digital system, and
interpolation is therefore used to find values between samples.
Perfect reconstruction is possible using sinc interpolation if the
sampling rate is greater than twice the highest frequency in the
signal [69] (denoted as its Nyquist rate). If the data is sampled

4

0 BW/2 f0 fs/2

Frequency - t

0

1

2

E
ne

rg
y

de
ns

ity BW

Fig. 2. The spectra of different input data types. The sampling rate, fs,
should be greater than the Nyquist rate (twice the highest frequency).
Quadrature sampling [74] reduces the sufficient sampling to f IQ

s > BW,
which is half or less than the Nyquist rate for real-valued data: 2f0+BW,
where f0 is the signal’s center frequency, BW is its bandwidth, and Hr
is the complex-valued envelope of r, a.k.a. its analytic representation,
defined as Hr(t)= r(t) + is(t), where s is the Hilbert transform of r.

at an even higher rate, then inexpensive methods such as linear
interpolation can be used with a limited loss in accuracy [70].
Cubic Lagrange interpolation [71] is used in this paper because
it needs less oversampling to obtain a sufficient image quality
than linear interpolation [72]. This reduces memory footprints,
which will be shown to be beneficial for optimizations. Hence,
r(t) is calculated as a weighted sum of the four samples closest
in time to t.

An image or volume should be beamformed according to its
spatial Nyquist rate since interpolation can increase the density
of pixels/voxels using far fewer calculations than beamforming
additional in-between points. Assuming the RF data is sampled
at its Nyquist rate, then a sufficient lateral density for each term
r(ToF(x, z)) in the beamforming sum (1) is given by

max
x,z

∣∣∣∣∂ ToF(x, z)

∂x

∣∣∣∣ < ∆t

∆x
, (6)

where ∆t = 1/fs is the time between RF channel data samples
and ∆x is the lateral spacing between pixels. Approximations
were used for (6) – the proof and limitations are found in [73].
For row-column array beamforming with dynamic apodization,
the sufficient voxel density from (6) is (derived in Appendix B)

∆x,∆y <
c

fs

√
(2F#)2 + 1 and ∆z <

c

2fs
, (7)

where F# is the F-number in the dynamic apodization, c is the
speed of sound, and fs = 1/∆t is the RF data sampling rate.

D. Quadrature Sampling
Quadrature sampling was introduced for ultrasound in 1979

[75], and it reduces the RF Nyquist rate by a factor of (at least)
two without loss of information. However, the samples become
complex-valued with the real and imaginary parts denoted as
the in-phase (I) and quadrature (Q) components. The idea from
[75] is summarized here with Fig. 2, which shows how I/Q data
may be sampled according to the original RF data’s bandwidth.

One benefit comes from the volume beamformed with I/Q data
inheriting this property because the axial direction corresponds
to time under an approximation, meaning the number of voxels
can be (at least) halved. For the proof and limitations, see [74].
Thus, quadrature sampling is used to lower the sampling rates
for both inputs (RF channel data) and outputs in beamforming,
which can reduce memory usage and speed up the processing.

III. OPTIMIZATIONS

This section covers the optimizations applied to the 3D RCA
beamformer from [61] to improve its processing speed. They
are described for 2D imaging for simplicity, but also because
both beamforming stages are essentially 2D (see Section II-B),
where the last stage computes every yz-plane in the volume.

Beamforming with cubic interpolation involves the weighted
summation of four RF samples for each pixel (x, z), receiver,
and emission. Every delay-and-sum term is the 3-step process

1) Calculate the time-of-flight (ToF), interpolation weights,
and apodization. A square root must be evaluated for the
time of flight and a division for the dynamic apodization.
A float-to-integer conversion (i.e., rounding) is also used
to convert the time-of-flight to the address to load from.

2) Read the four samples nearest t = ToF(x, z) using four
load operations, as these are needed for the interpolation.

3) Calculate the delay-and-sum (see (1)) as the dot product
between the four interpolation weights and four samples,
multiplied by the apodization. This requires at least four
multiplications and additions.

A model of the number of operations used in the beamforming,
per delay-and-sum term, is therefore given by

Work = 4 · Load + 4 ·Multiply + 4 · Add + Overhead, (8)

where ”Overhead” covers all operations that do not depend on
the RF data, including but not limited to all operations from the
first step in the 3-step process above. Then, 4 · Load refers to
four load instructions for the second step that fetch RF channel
data from the GPU’s RAM so it may be used in the third step,
where four fused multiply-add instructions carry out the sum.

The model (8) shows the quantity of each type of operation
in the initial case to allow comparison with optimizations later.
However, performance must be measured to see if there is an
improvement in practice, as the time for beamforming is given
by the number of operations only when instructions are issued
every clock cycle in every multiprocessor (parallel GPU core).
Issuing an instruction takes one clock cycle, meaning (8) costs
at least eight cycles. Instructions take multiple cycles to finish
executing, but GPUs have latency-hiding mechanisms to avoid
wasting time waiting for instructions to finish. For example,
due to instruction-level parallelism [76], other instructions may
be issued after a load instruction and run concurrently with it.
Since instructions can run in parallel, their latency is irrelevant
to the computation time if no cycles are spent waiting on them,
so, e.g., computing a square root is not necessarily very costly;
however, each load instruction may run for hundreds of cycles
[77], often making them expensive as cycles are spent waiting.
Initially, though, most of the time went to overhead operations.

5

Multi-Frame Beamforming

Fram
e

5

Fram
e

4

Fram
e

3

Fram
e

2

Fram
e

1

x (lateral)

z (depth)

Same x and z
Same ToF(x, z)

Fig. 3. Illustration of multi-frame beamforming using B = 5 frames,
where a thread computes the same pixel (red highlights) for five frames.
The time-of-flight and apodization values can then be reused five times.

In the beamformer, without the optimizations of this section,
every thread (parallel worker) computed one pixel. By instead
making every thread compute three pixels for multiple frames,
the amount of overhead and load operations was reduced since
redundant computations could be reused. Quadrature sampling
then minimized the number of delay-and-sum terms, and zero-
weight terms could be skipped using an early exit optimization.
Threads get assigned to multiprocessors in blocks. Therefore,
letting each block compute a small rectangle of pixels enabled
load operations to be accelerated by the multiprocessor’s mem-
ory cache, as adjacent pixels often required the same samples.
Finally, declaring some variables that did not vary as constants
in the code allowed for additional optimizations. The following
sections describe each of these optimizations in greater detail.

A. Multi-Frame Beamforming
All overhead was reduced by making every thread compute

the same pixel for multiple frames in one pass. This is because
the time-of-flight and apodization do not vary between frames,
and such frame-invariant computations can be reused to reduce
overhead by a factor of B if a batch of B frames is processed.

The case of B = 5 is illustrated in Fig. 3, and a pseudo-code
example is given in Appendix C, Algorithm 3. The operations
that are used per frame, pixel, receiver, and emission become

WorkMF = 4 ·Load+4 ·Multiply+4 ·Add+
Overhead

B
, (9)

where RF channel data for B frames must be acquired before
beamforming. This method of batching was introduced in [78].

B. Quadrature Sampling
Quadrature sampling halves the number of points that must

be beamformed (see Section III-B). This was used to halve the
amount of overhead and load operations for the beamforming.

The I/Q samples must be returned to the original frequency,
f0 (see Fig. 2), to get the correct beamforming sum in (1) [74],
which was realized by multiplying with exp(2iπf0ToF(x, z))

Multi-Pixel Beamforming

∆x

11 22 33

x (lateral)

z (depth) t (time)

Sample #1

Sample #2

Sample #3

Sample #4

Sample #5

Sample #6

11

22

33

Different x
Different ToF(x, z)

∆t

Fig. 4. Illustration of multi-pixel beamforming of laterally adjacent pixels.
By computing three pixels (red highlights), the thread only needs to load
samples #1-6 once to evaluate the term r(ToF(x, z)) for three pixels.
The time-of-flight t = ToF(x, z) of each pixel is indicated by a circle on
the right, and since evaluating r(t) requires the four samples nearest t,
one can see that, for example, the second pixel must use samples #2-5.

after having interpolated the low-frequency complex RF data.
This interpolation used eight multiplications and additions, and
the exponential was evaluated as a sine and cosine, increasing
overhead slightly. Their complex product was computed using
four multiplications and two additions, and the operations per
pixel part (I or Q), pixel, receiver, and emission became

WorkQS = 2 ·Load+6 ·Multiply+5 ·Add+
Overhead

2
. (10)

This equation can be directly compared with (8) as each pixel
now contains two parts, but the number of pixels is also halved.

The overhead is halved since there are half as many pixels,
and the number of load operations is halved because a complex
number can be loaded with a single vectorized load instruction.
(A pair of 32-bit numbers can be loaded as one 64-bit number.)
The increased number of multiplications and additions was not
an issue in practice since most of the time was spent on loading
samples after multi-frame beamforming reduced the overhead.

C. Multi-Pixel Beamforming
The number of load operations was halved by making every

thread compute three laterally adjacent pixels. This allowed RF
channel data to be reused because three of the samples loaded
to evaluate the term r(ToF(x, z)) in the beamforming (1) were
the same samples needed to beamform the two adjacent pixels.

The cubic interpolation of r(t) uses the four samples nearest
t. Consequently, a neighboring pixel requires at least three of
the same samples if its time-of-flight ToF(x+∆x, z) satisfies∣∣ToF(x+∆x, z)− ToF(x, z)

∣∣ < ∆t, (11)

where ∆t = 1/fs is the time between consecutive RF samples,
and ∆x is the lateral pixel spacing. If N adjacent pixels satisfy
(11), then N+3 samples are sufficient for their interpolations.
Three pixels were used in this instance, as illustrated in Fig. 4,
reducing the operations per pixel, receiver, and emission to

WorkMP = 2 ·Load+4 ·Multiply+4 ·Add+Overhead. (12)

6

-12 -8 -4 0 4 8 12
Lateral position - x [mm]

5

9

13

17

21

D
ep

th
 -

 z
 [

m
m

]
50

100

150

200

250

300

Sa
m

pl
e

#

Fig. 5. The initial index of the four samples that were loaded to complete
the evaluation of r(ToF(x, z)) for one term/receiver in (1) is shown. All
pixels of a matching color loaded exactly the same four samples for their
interpolation, and high-contrast colors are used in the zoomed-in patch
to highlight this case. Note that only 14 unique RF samples are used by
the pixels in the rainbow arc, meaning there is great overlap in accesses.

Threads were made to first load the four RF samples for the
evaluation/interpolation of r(ToF(x, z)) for their second pixel.
It was assumed three of these already-loaded samples could be
reused for the other two pixels, and the delay-and-sum term for
the first, second, and third pixel was computed (in this order),
while only loading at most two additional samples if necessary.
The pseudo-code for this is found in Appendix C, Algorithm 4.

An error would be raised if the assumption was not satisfied,
meaning it could be verified by simply beamforming one frame
and checking for errors. There will be no error in the common
case, where the imaging is sampled densely, and this is because
when (6) is satisfied, it implies that (11) holds for every pixel.
To prove this claim, let f(c) = ToF(c, z) for any lateral c, then
by the mean value theorem there exists some c0 ∈ [x, x+∆x]
(open interval), where

f ′(c0) =
f(x+∆x)− f(x)

∆x
. (13)

The exact place c0 is unimportant because assuming (6) holds,∣∣f ′(c)
∣∣ < ∆t/∆x for any c, and also for c0. The result is that∣∣f ′(c0)

∣∣∆x =
∣∣f(x+∆x, z)− f(x, z)

∣∣ < ∆t, (14)

which is equivalent to
∣∣ToF(x+∆x, z)− ToF(x, z)

∣∣ < ∆t.
This shows that multi-pixel beamforming can be utilized when
the image is oversampled to the same degree (or more) as the
RF channel data is oversampled. Note that ∆t is doubled when
quadrature sampling is used, so is ∆z, but ∆x stays the same
(assuming all three are maximized). This eases the criteria (11)
and doubles the rate of overlapping sample accesses laterally.

Overlap in loaded samples is very common in beamforming.
This is illustrated in Fig. 5, which shows the index (sample #)
of the first RF channel data sample that was loaded to compute
the cubic interpolation for some arbitrary delay-and-sum term.
Figure 5 essentially shows ToF(x, z)/∆t after a rounding: All
pixels that needed samples #1-4 were assigned the value 1, and
pixels that needed samples #2-5 were assigned the value 2, and
so on. All pixels whose apodization is zero are shown as blank
because they are irrelevant (this is explained in Section III-D).
One might interpret Fig. 5 as a zoomed-out version of Fig. 4.

-12 -8 -4 0 4 8 12
Lateral position - x [mm]

5

9

13

17

21

25

D
ep

th
 -

 z
 [

m
m

]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fr
eq

ue
nc

y
of

 e
ar

ly
 e

xi
t

Fig. 6. The number of beamforming terms that are skipped due to early
exit. Not all Nrx = 128 terms have to be summed when beamforming
the image (see (1)), as zero-weight terms may be skipped. This resulted
in 32% fewer delay-and-sum operations per image.

Laterally adjacent pixels used the same or adjacent samples
in Fig. 5, meaning multi-pixel beamforming may be used here.
Pixels with the same time-of-flight need the same RF samples,
as highlighted by the rainbow arc in Fig. 5, in which the pixels
only need 14 different RF data samples. Essentially, this curve
is the solution to ToF(x, z) = k for some constant k; however,
since the time-of-flight is usually different for each term in (1),
the set of pixels that use the same samples vary for each delay-
and-sum term, making it difficult to reuse samples among more
than a few pixels. When the time-of-flight is nearly constant:
∂ ToF/∂x ≈ 0 (as in the bottom of the rainbow arc in Fig. 5),
the number of load operations in (12) is further reduced from
(N + 3)/N = 2 sample loads per pixel to just 4/N = 1.33.
Thus, using laterally adjacent pixels promotes this special case,
which would be rare if axially adjacent pixels were used since
typically ∂ ToF/∂z > 0 in pulse-echo ultrasound – this is also
evident from Fig. 5, where the sample # increases with depth.
Only N = 3 pixels were used because the per-thread memory
is limited, and each thread must store NB sums if multi-frame
beamforming is also used with the batch size B. This means
increasing N quickly has diminishing returns for performance.
Note that multi-pixel beamforming does not change the output,
meaning it does not affect image quality.

In summary, multi-pixel beamforming of three neighboring
pixels reduces the load operations per delay-and-sum term (1)
from four to at most two, and this can be used if (6) is satisfied.

D. Early Exit
Early exit was used to effectively skip delay-and-sum terms

if their apodization was zero. It is zero when the argument to
the window A(u) in (2) does not satisfy |u| ≤ 0.5. In this case,
there is no need to load any samples for the cubic interpolation.

Figure 6 shows the frequency of zero-weight terms for the
sum in (1). This delay-and-sum was implemented using a loop,
and early exit was performed by jumping to the next iteration
(next RF channel) if the current term has zero weight, as shown
in Appendix C, Algorithm 1, at Line 7. Terms with zero weight
are overhead since the RF data samples do not influence them.
This optimization was also used in [78].

7

E. Rectangular Thread Blocks
Load operations could be accelerated by effectively reusing

samples in a larger area than through multi-pixel beamforming.
Threads are grouped in blocks of typically 128 to 512 threads,
and threads in the block share the same first-level (L1) memory
cache. Thus, RF channel data can be loaded quicker if another
thread in the block recently loaded it and it’s still in the cache,
for instance, in 32 cycles instead of 188 on one GPU [77].

The zoomed-in 8×6 patch in Fig. 5 has an access footprint
of just 14/(8·6) = 0.29 RF samples per pixel, which illustrates
how the number of samples used in a large area can be small.
A block of threads can beamform such a rectangular area, and
its size can be tuned to maximize the cache hit rate, reducing
the time spent on load operations without changing the number
of operations. This was also done in [79], and the thread block
size is a common consideration for GPU programs.

For example, a 8× 16 thread block would manage a 8× 16
patch of pixels. But with multi-pixel beamforming, each thread
covers three pixels, and the block then manages 24×16 pixels.
If multi-frame beamforming is used with a batch size B, then
the memory footprint is B times greater as data for B frames is
accessed. This makes the block size crucial for performance at
large batch sizes. One can, therefore, measure the performance
of different block sizes using a large batch size to optimize it.

F. Compile-Time Constants
Turning some inputs into compile-time constants improved

performance as the compiler could apply more optimizations
when translating the source code into machine instructions.

The memory hardware should primarily be used to fetch RF
channel data. Therefore, the receiver positions were computed
from a parametrization instead of loading them from an array.
Likewise, apodizations were evaluated directly instead of using
linear interpolation. For Hann windowing, the direct evaluation
of A(u) = cos(πu)2 used only four instructions instead of 16
(which included two load instructions for linear interpolation).

When applying multi-pixel or multi-frame beamforming, the
batch size, B, was specified at compile time. The main reason
is that the partial sums were stored in an array with B elements
(3B in the multi-pixel case). If such a thread-local array is not
indexed using only compile-time constants (e.g., if B varies),
it gets stored in RAM and accessed with load instructions [76].

Lastly, giving the total number of samples per frame allowed
address calculations to be reused in multi-frame beamforming.
Every load instruction for RF data uses an initial sample index
(see Fig. 5), plus a relative offset of 0, 1, 2, or 3, to load each
of the four samples for cubic interpolation. But for multi-frame
beamforming, B sets of four samples were loaded, which used
the offsets c+ bS for c = 0 . . . 3 and b = 0 . . . B− 1 (relative
to the initial sample in the first frame), where S = NsNrxNtx

was the number of RF samples between frames. If this access
stride S is not known at compile-time (or it is too large1), then
the values bS must be computed at run-time, and (9) should be
corrected to include B − 1 integer multiplications. However,
with this optimization, the compiler just computes every offset
c+bS during compilation and stores it in the load instruction.

1Only 24-bit values were supported, allowing a stride up to 16-megabytes.

TABLE I
OVERVIEW OF DATA ACQUISITION PARAMETERS

Subject Rat kidney (in-vivo)
Scanner Verasonics Vantage 256
Transducer Vermon 128+128 RCA
Center frequency, f0 6 MHz (λ = 257µm)

Element pitch 200 µm
Transmit voltage 96 V
Sampling rate of RF channel data, fs 31.25 MHz
Number of emissions per volume, Ntx 96
Number of receiving channels, Nrx 128
Number of RF channel data samples, Ns 894
Pulse-repetition frequency, fprf 12 kHz
Volume acquisition rate, fprf/Ntx 125 Hz
RF data rate, 16 bits ·NsNrxfprf 2.75 GB/s

TABLE II
OVERVIEW OF BEAMFORMING PARAMETERS

Voxels per volume, Mx ×My ×Mz 133× 115× 250

Volume dimensions 25.8× 25.8× 20 mm3

Volume start depth 5 mm
Matched filter size, Nf 23 coefficients
Apodization window Hann in all cases
F-number for dynamic apodization 0.6 (40° acceptance angle)
Decimation factor for I/Q RF data 3 (two of three discarded)
Measured center frequency, f̂0 5.12 MHz (λ̂ = 301µm)

Measured bandwidth, BW 5.36 MHz at -36 dB

The different versions of the beamformer were pre-compiled
and dispatched as needed. This demonstrates how flexibility is
not necessarily lost with compile-time constants. Alternatively,
any version can be just-in-time compiled at run-time and used.

IV. METHOD

A. Data Acquisition
In-vivo data from a Sprague Dawley rat kidney was used.

The acquisition parameters are shown in Table I, and they are
similar to those used in [15]. The synthetic aperture sequence
contained 96 evenly-spaced virtual sources at an F-number of
-1 (ztx = −6.4 mm) to 32 Hann-apodized emitting elements.
The role of rows and columns as transmitter and receiver was
swapped with each frame, resulting in a volume rate of 62.5 Hz
if both configurations are desired for the 3D imaging.

B. Beamforming Parameters
The beamforming parameters are shown in Table II. These

were chosen to minimize the sampling rates while still obeying
the Nyquist limits (see Fig. 7). To compare the data types, real
data, and I/Q data, two setups were created:

1) Real-valued input and output throughout the processing,
with twice as high axial voxel density as the other setup.

2) Real-valued input, converted I/Q samples before beam-
forming. Here, both beamforming stages use I/Q inputs.

Efficiency should increase if the image/volume is oversampled
since more overlap in accesses leads to more L1/L2 cache hits.
However, this would also result in a lower volume rate because

8

-36

-24

-12

0

E
ne

rg
y

[d
B

]
RF data

BW

Raw
Filtered
Predicted

HRV (xz) HRV (yz)

Fig. 7. The spectra of the input and outputs are shown in a 36 dB range.
The axis limits of each spectrum correspond to the sampling rate used.
The red fans encircling the volume’s spectra show the sampling criteria
(7) for I/Q outputs, with width c

f̂0+BW/2

√
(2 F#)2 + 1 and height c

2 BW .

more interpolations would be needed. Thus, the I/Q data setup
was created with a minimized (but sufficient) spatial sampling,
while the real-valued data setup was made to be comparable.

The spectrum of RF channel data is shown in Fig. 7, where
the bandwidth, BW, was measured as the width of the band of
frequencies above a -36 dB threshold after a matched filtering
(while the center frequency was the center of this band). Fig. 7
shows the following spectra from the first acquired volume:

SRF(ξt) =

Ntx∑
j=1

Nrx∑
i=1

∣∣Ftrij(ξt)
∣∣ , (15)

SHRV(ξx, ξz) =

∫
y∈R

∣∣FxFzHRV(ξx, y, ξz)
∣∣ , (16)

SHRV(ξy, ξz) =

∫
x∈R

∣∣FyFzHRV(x, ξy, ξz)
∣∣ , (17)

where Ft is the fast Fourier transform in t, rij is the RF data of
receiver i for emission j, and HRV is the beamformed volume.
For Fig. 7, the rectangular window apodization A(u) = 1 was
used, showing that in this case, (7) gives a conservative bound
for sufficient sampling of volumes based on the F-number, F#.
The large black margins above and below the volume’s spectra
in Fig. 7 show that the volume was oversampled by a factor of
around 1.6-2 axially. There was almost no oversampling for x
and y in order to minimize the number of voxels to beamform.
The LRIs from the first stage must be axially oversampled to
allow cubic interpolation in the second stage. However, HRVs
do not always need to be oversampled, depending on use [44].
Here, the same sampling was used for the HRVs to find out if
complex-valued dense volumes can be computed in real-time,
as this is the most computationally intense case that is relevant
in practice. Note that LRIs from the first stage were taller than
the output from the second stage to cover all observed look-up
positions given by z′ = f(y, z) (see Table IV and (5)).

C. Processing Setup
An overview of the setup is given in Table III. The GPU was

locked to a 2.7 GHz clock rate and a power limit of 600 W for
a throughput of 88.47 TeraFLOPS (trillion 32-bit floating-point

TABLE III
OVERVIEW OF PROCESSING SETUP

GPU NVIDIA GeForce RTX 4090 @ 2.70 GHz
GPU driver Version 550.54.14
GPU connection PCI Express 3.0, 8 lanes (Same as the scanner.)
Software CUDA 11.8, MATLAB R2021b, Ubuntu 20.04.1

arithmetic operations per second). The processing kernels were
written in CUDA C++ and used in MATLAB R2021b with the
MEX interface from [61]. The host had 768 GB DDR4 RAM,
which held the RF data before moving it to the GPU’s RAM.
The host processor was an Intel© Xeon© W-3223 CPU with a
3.5 GHz clock rate, but processing was offloaded to the GPU.
The host-to-GPU connection matched the host-to-scanner con-
nection of the Verasonics Vantage 256 scanner and can transfer
approximately 6 GB/s in both directions simultaneously.

Measurements were repeated using GPUs from two previous
generations, a GeForce RTX 3090 and GeForce RTX 2080 Ti,
to validate that the performance gains were not device-specific.
Both of their peak clock rates were measured to be 1.95 GHz.

D. Processing

The imaging consisted of transferring RF data to the GPU,
applying pre-processing, and finally, beamforming the volume.
Two GPU kernels carried out the processing:

1) Matched filter: This kernel pre-processed the RF data.
The raw RF channel data was converted to 32-bit floating point
numbers in this kernel because it was stored as 16-bit integers.
Matched filtration was then performed as the convolution

(r ∗ f)[n] =
Nf∑
j=1

r[n− j + 1] · f [j], (18)

where the output spans n = 1 to n = Ns+Nf −1. Here, r[k]
denotes the k’th acquired channel data sample, with r[1] being
the first acquired RF sample and the last being r[Ns] = r[894].
The number of coefficients for the FIR-filter f was Nf = 23.
The definition in (18) would lead to out-of-bounds accesses in
the sample data, such as r[0] or r[Ns+1], which was handled
by zero-padding the data, i.e. defining r[k] = 0 for k /∈ [1, Ns].
Only a convolution was applied to produce real-valued outputs.
For complex outputs (see Section III-B), the Hilbert transform,
H, was applied to the filter, because H(r∗f) = Hr∗f = r∗Hf .
Thus, the only difference from the real-valued case is that the
kernel argument f ∈ RNf was replaced by some pre-computed
Hf ∈ CNf to get (r ∗Hf)[n]. Finally, to produce I/Q outputs,
these complex samples were multiplied by exp(−2iπf̂0∆t n)
(see Fig. 2) before writing them to the GPU RAM. Here, f̂0 is
the estimated center frequency of r∗f (see Fig. 7 and Table II),
and ∆t = 1/fs is the time between samples, where fs = 31.25
MHz is the RF data sampling rate. For I/Q data, a decimation
was also applied to reduce the output-rate by a factor of three,
i.e., getting f IQ

s = 31.25/3 = 10.4 MHz. This was performed
by only computing every third output, resulting in a total of
(Nf+Ns−1)/3 (rounded up if non-integer) I/Q samples being
computed and written to memory for the case of I/Q outputs.

9

Each thread computed one output for four batched channels,
with 128 threads in a block. The block began by cooperatively
converting input samples and moving them to shared memory,
which is also where zero-padding was applied. Shared memory
is an L1 cache partition shared within the block for fast access.
Then, the block moved the filter to shared memory, after which
a block-level synchronization was performed to ensure threads
were finished writing to shared memory. The convolution (18)
was finally computed using a loop of Nf iterations, where the
samples and filter coefficients were read from shared memory,
and the output was written to the GPU’s RAM in the end.

The filter and RF samples were transferred from GPU RAM
to shared memory by distributing the work among threads. For
example, the j’th thread in the block moved f [j], and it would
write the j’th RF sample used in the block to shared memory.
Note that the first sample used in the block might be padding.
For instance, the first block needed r[k] for k ∈ [1−Nf , 128]
to compute outputs n = 1 . . . 128 (assuming no decimation,
for the I/Q case, k ∈ [1−Nf , 128·3] and n ∈ {1, 3, . . . , 385});
here, the first thread would write r[1−Nf] = 0 (zero-padding),
while the Nf ’th thread would be the one to load r[1], convert it
to 32-bit floating-point format, and store it in shared memory.

Since four channels were batched, all non-padding samples
needed four load instructions to retrieve their value from RAM.
By writing these four samples to shared memory as a vector,
storing and loading could be done using single fully vectorized
(128-bit) shared memory instructions. Thus, batching reduced
the number of load operations required as well as the overhead.

2) Beamformer: The beamformer from [61] was used, with
the optimizations described in Section III. For 3D imaging, the
beamformer was first used to calculate each LRI (xz-planes at
an elevation position, y0, that matches the emission source).
Then, the beamformer was applied again for each x (yz-plane)
in the volume to extrapolate and sum the LRIs by (5) and thus
produce the final high-resolution volume.

The beamforming kernel’s register usage (a fast thread-local
memory) was tuned manually because the compiler’s heuristic
was not always optimal. There are a finite number of registers,
so if each thread uses too many registers, it reduces the number
of threads that can be active on the GPU, lowering occupancy
[76]. A high occupancy is usually preferable for performance,
but the multi-frame beamforming optimization benefits from
more registers because this enables even more load instructions
to be issued earlier to better mitigate latencies (see Section III).
CUDA launch bounds were used to specify the register usage,
which allows one to set the minimum number of thread blocks
that should fit each multiprocessor (allowing the register usage
to be increased till no less than this number of blocks can fit).

In the experiment, where the RF channel data was streamed
from the host to the GPU while beamforming, this data transfer
was overlapped with computations to avoid having to wait for
transfers to complete; this was done by processing each LRI
in a separate CUDA stream, enabling the LRIs to be computed
concurrently. For example, then the second LRI could have its
RF data transferred while the first LRI was being beamformed.
In the experiment without compile-time constants, the receiver
position array was moved to shared memory for faster loading.
For further technical details, see Appendix D.

TABLE IV
THE THEORETICAL THROUGHPUT FOR THE GEFORCE RTX 4090.

Real Data I/Q Data
xz-plane size (1st stage) 133× 544 133× 271

yz-plane size (2nd stage) 115× 500 115× 250

Interpolations (1st stage) Ntx · 5 804 364 Ntx · 2 888 478
Interpolations (2nd stage) Mx · 4 733 065 Mx · 2 363 733
FLOP per interpolation 8 22
Total FLOP per volume 9 493 732 712 13 016 748 294
Theoretical rate [volumes/s] 9319 6797

The kernels were compiled with the use_fast_math flag
for faster calculation of square root, division, sine, and cosine.
The flag reduced each of these calculations to 1-2 instructions,
with a minor reduction in accuracy (see section 13.2 of [76]).

E. Measuring Performance
The processing time was measured from RF channel data to

the final volumes with the MATLAB function ”gputimeit”,
which was called 25 times. The volume rate is the rate at which
volumes are beamformed, and it was calculated as the average

R =
1

25

25∑
i=1

F

Ti
, (19)

where Ti was the 25 reported timings, and F ≥ 68 was the
number of volumes beamformed each time. Real-time imaging
is achieved when R exceeds the acquisition rate of 125 Hz.

Three other metrics may aid in comparing performance with
other beamformers: 1) The voxel rate, which makes it easier
to compare cases with different volume sampling densities. 2)
The beamforming operation rate, which shows the throughput.
3) The efficiency, which shows how well the GPU is utilized.
Here, 100% efficiency means every multiprocessor uses every
clock cycle to issue arithmetic instructions for delay-and-sum.
The voxel rate is

Rvoxel = CR ·MxMyMz (20)

where R is the volume rate, MxMyMz is the number of voxels
per volume (see Table II), and C = 1 for real-valued voxels.
For complex or I/Q voxels, C = 2, to allow a fair comparison
with the real-valued case, which requires twice as many voxels
(Section III-B), but uses half as many calculations per voxel.

The beamforming operation rate, Ω, is the number of delays
and summations per second that were attained. In the simplest
case, this would be Ω = CR(MxMzNrxNtx+MxMyMzNtx)
(see Tables I and II). However, zero-weight terms are skipped
due to early exit, and the LRIs in the first stage were taller than
the volume. The exact number of non-zero beamforming terms
was therefore instead counted empirically (see ”interpolations”
in Table IV) and multiplied with CR to get Ω. This means Ω
is not improved by early exit, even though R is. But Ω allows
one to compare different beamformers, even GPUs vs. ASICs.

Beamforming efficiency is defined as the measured volume
rate divided by a theoretical volume rate. Each GPU device can
perform some number of floating-point operations per second
(FLOPS), and assuming these are only used for interpolations,
a theoretical volume rate can be found. Other operations inside

10

(d)(c)

6 10 14 18 22
Depth - z [mm]

-12

-8

-4

0

4

8

12

E
le

v
at

io
n

 p
o

si
ti

o
n

 -
 y

 [
m

m
]

(b)

-12 -8 -4 0 4 8 12
Lateral position - x [mm]

6

10

14

18

22
D

ep
th

 -
 z

 [
m

m
]

-60

-50

-40

-30

-20

-10

0
dB

Fig. 8. Three views of the volume are shown in the same 60 dB dynamic
range. (a) The images in space. (b) A xz-slice at y = 0. (c) A yz-slice
at x = 0. (d) A maximum intensity projection at z = 15.8 ± 0.5 mm,
highlighting specular reflections from anatomical structures within the rat
kidney; this oblique viewing angle is possible since the entire volume is
reconstructed, meaning any plane in the field of view can be visualized.

or outside the kernel are considered reducible as optimizations
showed, e.g., load operations and overhead could be reduced.
Interpolations are irreducible since all ToF(x, z)-values could
be unique and without redundant structure. Thus, the efficiency
measures how much can be gained from further optimizations.
The theoretical volume rate is shown in Table IV.

V. RESULTS

Examples from a volume are shown in Fig. 8. Volumes were
resized ×4, to remove any pixelated appearance in the display,
with an FIR-based interpolation (see [70]) with 49 coefficients
given by ”resample(HRV, 4, 1, 6, 8)” in MATLAB.

A. Quality
The differences from using the use_fast_math compiler

flag were in a similar range as floating-point rounding errors.
Subtracting one volume created with this flag from one without
it resulted in deviations below -75 dB, where 0 dB is the peak
value from the volume created without the flag, showing that
this flag does not significantly alter the beamforming accuracy.

The dual-stage beamformer with all optimizations enabled
can be compared with the conventional beamforming method
without any optimizations in Fig. 9. The number of interpola-
tions is ≈ 49 times greater without the dual-stage algorithm,
requiring over 90% efficiency to attain real-time 3D imaging.

B. Tuning
The beamformer’s block size and batch size were optimized

sequentially to find the best overall beamformer configuration.

conventional beamformer
5

10

15

20

D
ep

th
 -

 z
 [

m
m

]

dual-stage beamformer

-10 -5 0 5 10
Lateral position - x [mm]

5

10

15

20

D
ep

th
 -

 z
 [

m
m

]

-60

-50

-40

-30

-20

-10

0

dB

Fig. 9. A slice from the volume computed with the conventional method
[26] (without any optimizations), and one computed using the dual-stage
RCA beamforming algorithm, with optimizations for GPU processing.

To find the optimal block size in the first beamforming stage,
the rate of matched filtering and first-stage beamforming was
measured while the block size was varied. After this, the first
beamforming stage block size was locked to its optimal value,
and the matched filtering and dual-stage beamforming rate was
measured while varying the second-stage block size to find the
optimal size for the second stage. The candidate block sizes in
this process were 1×128, 2×64, 4×32, . . . , 64×2, 128×1,
and a batch size of B = 13 was used. It was found that blocks
of 128 threads spread laterally or axially would result in a 24-
54% lower performance than the optimal size in the first stage.
Thus, block size tuning significantly improves performance.

The optimal batch size was found while using the previously
optimized block sizes for each stage. The same batch size was
used in both stages, with the results shown in Fig. 10. One can
see how the beamforming rate scales better with the batch size
when I/Q data is used (compared to real-valued data). Further
improved scaling comes with multi-pixel beamforming, which
decreases the number of load instructions. However, the multi-
pixel setup performs poorly for B ≥ 16 because it reaches the
per-thread register memory limit of 255 registers – additional
local memory is instead stored in RAM using load instructions,
which is detrimental to performance, but this may be detected
at compile-time with the warn-on-spills compiler flag.

There is a dip in performance after B = 7 for real data, and
the other curves would have had similar dips if register counts
were not manually tuned. However, a better register count was
not found for this specific case.

11

Performance vs Batch Size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Batch Size, B

0

200

400

600

800

1000

1200

1400

1600

V
ol

um
es

 p
er

 s
ec

on
d

I/Q data, multi-pixel
I/Q data
real data

Fig. 10. The beamforming rate with different batch sizes and input data
types. The markers show the best configuration for each case (Table V).

TABLE V
PERFORMANCE FOR THE NVIDIA GEFORCE RTX 4090

Input RF channel data type
Real I/Q I/Q*

Volume rate [volumes/s] 840 1221 1440
Voxel rate [Mvoxels/s] 6424 9339 11012

Beamforming efficiency 10% 19% 22%
(1st stage) Block size 16× 8 16× 8 16× 8

(2nd stage) Block size 16× 8 32× 4 8× 16

Batch size 15 13 13
∗with multi-pixel beamforming.

C. Overall Performance

Performance was measured with the RF data already on the
GPU using the tuning process of the previous section. Metrics
for the RTX 4090 device are shown in Tables V and VI, and it
can be seen that the best-performing configuration was multi-
pixel beamforming using I/Q RF data, with 13 frame batches,
achieving a real-time rate of 1440 full 3D volumes per second.

D. Performance of Alternatives

Without using early exit (which occurred 22% of the time),
the volume rate was 16% lower. The rate became 13% lower if
compile-time constants were not used. For 2D imaging, 3018
HRI/s (xz-planes) could be computed, which was also the rate
for producing the 96 LRIs in the first stage; this corresponds to
47% of the total processing time. Thus, beamforming a volume
took approximately twice as long as beamforming one image.
The efficiency for 2D imaging was also 22% (214 Mpixels/s).

When transferring RF data while beamforming, the rate was
209 volumes/s; at most, 273 volumes/s can be achieved in this
setup since, at most, 6 GB/s can be transferred to the GPU.

The beamforming rate for the RTX 3090 was 638 volumes/s,
and for the RTX 2080 Ti, it was 388 volumes/s, corresponding
to an efficiency of 20% and 32% for these devices; this shows
that the high efficiency is carried over to previous generations.
The 2080 Ti has higher efficiency because Turing generation
GPU devices have half as many FP32 cores per multiprocessor

when compared to later generations [80], halving the achiev-
able FLOPS and the theoretical beamforming rate; this means
that the high efficiency here is a result of hardware limitations.

VI. DISCUSSION

A. Volume Rate
The real-time volumetric imaging rate was greatly exceeded.

However, in a live acquisition scenario, the volumes cannot be
shown before they are acquired, so in this setting, the imaging
would be limited to 125 Hz, which was exceeded in all cases.
Higher processing rates, in this case, means that

1) The pulse-repetition frequency might be set to 138 kHz.
2) Real-time 3D imaging may be achieved with a lower-end

GPU or with a lower clock rate and energy consumption,
reducing the carbon footprint and other costs.

3) There is time left over for display and further processing
as only 9% of the time per frame is spent beamforming.

The emission rate will be limited by other factors in practice,
but processing time is no longer a problem. The additional time
may be spent on tasks such as resizing the volume, extracting
slices, 3D velocity estimation [62], and visualizing the volume.

The upper limit for the emission rate is fs/Ns ≈ 35 kHz if
emissions must not overlap in time because this corresponds to
continuous sampling and emitting every Ns sample. Lowering
the sample count, Ns, will raise this limit but reduce Mz since
the depth of the volume corresponds to the number of samples.
Thus, the emission rate is essentially physics-limited, and the
GPU-optimized RCA beamformer supports any realizable rate.

The optimizations are also applicable for 2D beamforming.
In fact, the first beamforming stage is equivalent to imaging an
un-steered plane-wave emission in 2D, and the same efficiency
was achieved for this stage (Section V-D). One may also apply
the optimizations to separable beamforming for matrix arrays,
where similar efficiency gains would be expected.

Finally, the results may be compared to other beamformers
in Table VI, where it can be seen that delays-and-summations
per second, Ω, is in the same order of magnitude as for ASICs,
with the benefit that the GPU can be used for additional tasks
such as 3D flow estimation, image analysis, and visualization.
Table VI also shows the efficiency, and the beamformer in [61]
had a 32/2.2 = 14.5 times lower efficiency than the RTX 2080
Ti (a device from the same generation as the Titan V). Note,
[54] used nearest-neighbor interpolation (after ×4 resampling),
which is less efficient on the GPU than cubic interpolation.

B. Voxel Density
Before applying any optimizations, the most important step

is to minimize the number of pixels/voxels since each point is
expensive to beamform. To further reduce the LRI axial pixel
density, the cubic Lagrange interpolation might be replaced by
Lanczos interpolation. [81], which requires less oversampling;
the cost of evaluating interpolation weights may be higher, but
multi-frame beamforming significantly reduces such overhead.

One can also apply FIR-based interpolation (image resizing)
to the LRIs to increase their degree of axial oversampling suffi-
ciently for the second stage, even if they are only beamformed
at an axial pixel density very close to their spatial Nyquist rate.

12

TABLE VI
COMPARISON OF VOLUMETRIC BEAMFORMERS

Source Main Processor Array Type Nrx Volume [voxels] Emis. rate∗ [Hz] BOP/emis. Efficiency Ω [BOPS]

2013 [50] ASIC: Sonic Millip3De 128×96 Matrix 1024 50× 50× 4096 192 10 486 M 2 013 G
2020 [54] ASIC: Tetris ×2 32×32 Matrix 1024 32× 32× 1679 13 020 123 M 2 621 G
2020 [54] GPU: Titan Xp 32×32 Matrix 1024 32× 32× 1679 81 123 M 0.2% 10 G
2021 [61] GPU: Titan V 64+64 RCA 64 63× 63× 557 120 283 M 2.2% 34 G
2023 [44] GPU: GeForce RTX 3090 128+128 RCA 128 100× 100× 200 1 805 14 M 0.7% 26 G
This work GPU: GeForce RTX 4090 128+128 RCA 128 133× 115× 250 138 240 12 M 22% 1 650 G

∗The number of emissions processed per second, not necessarily the pulse-repetition frequency that was used during acquisition.

C. Multi-Frame Beamforming
Multi-frame beamforming gave the largest improvement of

all the optimizations applied, increasing the imaging rate by a
factor of three when combined with multi-pixel beamforming.
A drawback is that if B = 13 volumes must be beamformed in
one pass, this would introduce a noticeable delay of 104 ms to
wait for 13 frames. The solution is to batch other dimensions.

The only difference between LRIs was the emission source
y-position, but each was beamformed at an elevation matching
their respective emission source, canceling out this difference.
(See the time-of-flight function that was used in Appendix A.)
Thus, all LRIs may be beamformed in a batch in the first stage.
All yz-planes in the volume can always be batch-beamformed
in the second stage because this is uniform for each x (see (5)).
Therefore, the dual-stage beamformer can use large batch sizes
(e.g., 96 in this case) without introducing additional buffering.

D. Transfer Rates
Volumes can be displayed without a data transfer to the host

[76] as the computer screen is connected directly to the GPU.
Each volume used MxMyMzC · 32 bits = 30.6 MB of space,
meaning (6 GB/s)/(30.6 MB) = 196 volumes per second can
be transferred to the host over the 8-lane PCIe 3.0 connection.
However, the RTX 4090 can transfer 24 GB/s (784 volumes/s)
using a 16-lane PCIe 4.0 connection, meaning an emission rate
of 35 kHz is supported since this is 11 GB/s (364 volumes/s).

An 11 GB/s data rate might seem extreme (this corresponds
to 1000 GB after 1.5 minutes), but if the sampling rate, fs, and
the number of receivers, Nrx, are doubled to support a higher
center frequency, the resulting RF and volume data could be
in this order of magnitude. The main limitation is the scanner,
and there is a future need for research scanners for high-quality
3D imaging to support RF data transfer rates beyond 6 GB/s.
It is possible to transfer this RF data directly from the scanner
to the GPU, but the rate will still be limited to 6 GB/s.

E. Performance Limitations
The profiler NVIDIA Nsight™ Compute indicated that the

latency of load operations was limiting the performance, with
over 50% of cycles spent on waiting for load instructions. This
might be reduced by further improving the L1 cache hit rates.
For example, each block manages a rectangle of pixels, which
ensures they are computed using the same L1 cache. However,
there is no guarantee that adjacent rectangles share caches, but
one may use locality-aware thread block scheduling [82], [83]
to control which blocks (and pixel computations) share caches.

F. Limitations

An efficiency of 22% was achieved. Thus, the beamforming
can only be made around four times faster without using fewer
summations or switching to 16-bit numbers (half-precision).

Multi-frame beamforming assumes all values stay the same
between frames except for the RF channel data. For example,
it cannot be used if motion correction is performed by varying
voxel positions between frames, as in [45]. Motion correction
could help reduce motion artifacts from the (1/125 Hz) = 8 ms
acquisition duration, which is a limitation of the RCA imaging.
Alternatively, fewer emissions could be used for faster imaging
but with lower image quality elevationally, or all 96 emissions
could be fired (at a 35 kHz rate) in a burst every 8 ms to attain
the same 125 Hz frame rate with fewer motion artifacts.

The time for post-processing of volumes was not measured
since processing after beamforming depends on the use case.
Any display-related processing should be performed 60 times
per second if that is the screen’s refresh rate, and then the GPU
is free 95% of the time for this post-processing since it finishes
beamforming in 1/(1440 Hz) ≈ 0.7 ms. An example of such
post-processing is the volume resizing before display in Fig. 8,
which used 98 FLOP/voxel. This resizing of three slices costs
98 · (MxMy +MxMz +MyMz) · 4+98 · (MxMy +MxMz +
MyMz)·4·4 = 148 406 400 FLOP, which is approximately 3%
of the cost of the beamforming, which used 1702 FLOP/voxel.
However, one does not need to beamform the entire volume if
only a few slices are displayed, but this enables more advanced
3D visualization, and arbitrary slices can be extracted from it.

VII. CONCLUSION

An imaging rate of 1440 volumes per second was achieved,
greatly exceeding the 125 Hz acquisition rate. The processing
time is no longer a limitation for volumetric beamforming with
the 128+128 Vermon row-column array (RCA), even when the
volumes have to be computed in real-time at high volume rates.
Specifically, dense Nyquist-sampled volumes of the entire field
of view could be processed, meaning any plane can be shown.

The proposed beamformer achieved 22% of the volume rate
that is achievable using the NVIDIA GeForce RTX 4090 GPU,
and a similar efficiency was also demonstrated for GPUs from
two previous generations (along with real-time beamforming).

Volumetric imaging can thus be performed with row-column
arrays in real-time at the patient’s bedside with a setup similar
to 2D imaging: one GPU, scanner, and 128 receiving channels,
making this method of 3D imaging translatable to the clinic.

13

VIII. ACKNOWLEDGEMENTS

This work was financially supported by European Research
Council’s (ERC) Synergy Grant #854796. The authors thank
Nathalie Sarup Panduro, Sofie Bech Andersen, Karin Larsen,
and Charlotte Mehlin Sørensen (Dept. of Biomedical Sciences,
University of Copenhagen, DK-2200, Copenhagen, Denmark)
for setting up and performing the rat kidney acquisition.

REFERENCES

[1] K. Evans, S. Roll, and J. Baker, “Work-related musculoskeletal disor-
ders (WRMSD) among registered diagnostic medical sonographers and
vascular technologists: A representative sample,” Journal of Diagnostic
Medical Sonography, vol. 25, no. 6, pp. 287–299, 2009.

[2] G. Harrison and A. Harris, “Work-related musculoskeletal disorders in
ultrasound: Can you reduce risk?,” Ultrasound, vol. 23, no. 4, pp. 224–
230, 2015.

[3] J. Bakker, M. Olree, R. Kaatee, E. E. D. Lange, K. G. M. Moons, J. J.
Beutler, and F. J. A. Beek, “Renal volume measurements: Accuracy and
repeatability of US compared with that of MR imaging,” Radiology,
vol. 211, no. 3, pp. 623–628, 1999.

[4] S. H. van Vuuren, H. A. M. Damen-Elias, R. H. Stigter, R. van der Doef,
R. Goldschmeding, T. P. V. M. de Jong, P. Westers, G. H. A. Visser, and
L. R. Pistorius, “Size and volume charts of fetal kidney, renal pelvis and
adrenal gland,” Ultrasound Obstet. Gyn., vol. 40, no. 6, pp. 659–664,
2012.

[5] H. Baumgartner, J. Hung, J. Bermejo, J. B. Chambers, A. Evangelista,
B. P. Griffin, B. Iung, C. M. Otto, P. A. Pellikka, and M. Quiñones,
“Echocardiographic assessment of valve stenosis: EAE/ASE recommen-
dations for clinical practice,” J. Am. Soc. Echocardiog., vol. 22, no. 1,
pp. 1–23, 2009.

[6] B. Cheong, R. Muthupillai, M. F. Rubin, and S. D. Flamm, “Normal
values for renal length and volume as measured by magnetic resonance
imaging,” Clin. J. Am. Soc. Nephrol., vol. 2, no. 1, pp. 38–45, 2007.

[7] D. D. Johnson, D. H. Pretorius, N. E. Budorick, M. C. Jones, K. V. Lou,
G. M. James, and T. R. Nelson, “Fetal lip and primary palate: Three-
dimensional versus two-dimensional US,” Radiology, vol. 217, no. 1,
pp. 236–239, 2000.

[8] B. L. Partik, A. Stadler, S. Schamp, A. Koller, M. Voracek, G. Heinz,
and T. H. Helbich, “3D versus 2D ultrasound: Accuracy of volume mea-
surement in human cadaver kidneys,” Investigative Radiology, vol. 37,
no. 9, pp. 489–495, 2002.

[9] J. Zamorano, P. Cordeiro, L. Sugeng, L. Perez de Isla, L. Weinert,
C. Macaya, E. Rodrı́guez, and R. M. Lang, “Real-time three-dimensional
echocardiography for rheumatic mitral valve stenosis evaluation: An
accurate and novel approach,” J. Am. Coll. Cardiol., vol. 43, no. 11,
pp. 2091–2096, 2004.

[10] I. A. Sebag, J. G. Morgan, M. D. Handschumacher, J. E. Marshall,
F. Nesta, J. Hung, M. H. Picard, and R. A. Levine, “Usefulness of three-
dimensionally guided assessment of mitral stenosis using matrix-array
ultrasound,” Am. J. Cardiol., vol. 96, no. 8, pp. 1151–1156, 2005.

[11] B. R. Benacerraf, C. B. Benson, A. Z. Abuhamad, J. A. Copel, J. S.
Abramowicz, G. R. Devore, P. M. Doubilet, W. Lee, A. S. Lev-
Toaff, E. Merz, T. R. Nelson, L. D. Platt, D. H. Pretori, and I. E.
Timor-Tritsch, “Three- and 4-dimensional ultrasound in obstetrics and
gynecology: Proceedings of the american institute of ultrasound in
medicine consensus conference,” J. Ultrasound Med., vol. 24, no. 12,
pp. 1587–1597, 2005.

[12] E. Altiok, M. Frick, C. G. Meyer, G. Al. Ateah, A. Napp, A. Kirschfink,
M. Almalla, S. Lotfi, M. Becker, L. Herich, W. Lehmacher, and
R. Hoffmann, “Comparison of two- and three-dimensional transthoracic
echocardiography to cardiac magnetic resonance imaging for assessment
of paravalvular regurgitation after transcatheter aortic valve implanta-
tion,” Am. J. Cardiol., vol. 113, no. 11, pp. 1859–1866, 2014.

[13] M. Correia, J. Provost, M. Tanter, and M. Pernot, “4D ultrafast ultra-
sound flow imaging: in vivo quantification of arterial volumetric flow
rate in a single heartbeat,” Phys. Med. Biol., vol. 61, no. 23, pp. L48–
L61, 2016.

[14] M. S. Wigen, S. Fadnes, A. Rodriguez-Molares, T. Bjåstad, M. Eriksen,
K. H. Stensæth, A. Støylen, and L. Løvstakken, “4-D intracardiac
ultrasound vector flow imaging-feasibility and comparison to phase-
contrast MRI,” IEEE Trans. Med. Imag., vol. 37, no. 12, pp. 2619–2629,
2018.

[15] L. T. Jørgensen, M. B. Stuart, and J. A. Jensen, “Transverse oscillation
tensor velocity imaging using a row-column addressed array: Experi-
mental validation,” Ultrasonics, vol. 132, p. 106962, 2023.

[16] S. W. Smith, H. G. Pavy, and O. T. von Ramm, “High speed ultrasound
volumetric imaging system – Part I: Transducer design and beam steer-
ing,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 38, pp. 100–
108, 1991.

[17] O. T. von Ramm, S. W. Smith, and H. G. Pavy, “High speed ultrasound
volumetric imaging system – Part II: Parallel processing and image
display,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 38, pp. 109–
115, 1991.

[18] D. H. Turnbull and F. S. Foster, “Beam steering with pulsed two-
dimensional transducer arrays,” IEEE Trans. Ultrason. Ferroelec. Freq.
Contr., vol. 38, pp. 320–333, July 1991.

[19] C. E. Morton and G. R. Lockwood, “Theoretical assessment of a crossed
electrode 2-D array for 3-D imaging,” in Proc. IEEE Ultrason. Symp.,
pp. 968–971, 2003.

[20] C. H. Seo and J. T. Yen, “A 256 x 256 2-D array transducer with row-
column addressing for 3-D rectilinear imaging,” IEEE Trans. Ultrason.
Ferroelec. Freq. Contr., vol. 56, pp. 837–847, April 2009.

[21] C. E. M. Démoré, A. W. Joyce, K. Wall, and G. R. Lockwood, “Real-
time volume imaging using a crossed electrode array,” IEEE Trans.
Ultrason., Ferroelec., Freq. Contr., vol. 56, no. 6, pp. 1252–1261, 2009.

[22] A. Sampaleanu, P. Zhang, A. Kshirsagar, W. Moussa, and R. Zemp,
“Top-orthogonal-to-bottom-electrode (TOBE) CMUT arrays for 3-D
ultrasound imaging.,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,
vol. 61, no. 2, pp. 266–276, 2014.

[23] J. A. Jensen, M. Schou, L. T. Jørgensen, B. G. Tomov, M. B. Stuart,
M. S. Traberg, I. Taghavi, S. H. Øygaard, M. L. Ommen, K. Steenberg,
and et. al., “Anatomic and functional imaging using row-column arrays,”
IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 69, pp. 2722–2738,
October 2022.

[24] M. R. Sobhani, M. Ghavami, A. K. Ilkhechi, J. Brown, and R. Zemp,
“Ultrafast orthogonal row-column electronic scanning (uFORCES) with
bias-switchable top-orthogonal-to-bottom electrode 2-D arrays,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 69, no. 10, pp. 2823–2836, 2022.

[25] H. Bouzari, M. Engholm, S. I. Nikolov, M. B. Stuart, E. V. Thomsen, and
J. A. Jensen, “Imaging performance for two row-column arrays,” IEEE
Trans. Ultrason. Ferroelec. Freq. Contr., vol. 66, no. 7, pp. 1209–1221,
2019.

[26] M. F. Rasmussen, T. L. Christiansen, E. V. Thomsen, and J. A.
Jensen, “3-D imaging using row–column-addressed arrays with inte-
grated apodization — Part I: Apodization design and line element
beamforming,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 62,
no. 5, pp. 947–958, 2015.

[27] M. Flesch, M. Pernot, J. Provost, G. Ferin, A. Nguyen-Dinh, M. Tanter,
and T. Deffieux, “4D in vivo ultrafast ultrasound imaging using a row-
column addressed matrix and coherently-compounded orthogonal plane
waves,” Phys. Med. Biol., vol. 62, no. 11, pp. 4571–4588, 2017.

[28] S. Holbek, T. L. Christiansen, M. B. Stuart, C. Beers, E. V. Thomsen, and
J. A. Jensen, “3-D vector flow estimation with row-column addressed
arrays,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 63, no. 11,
pp. 1799–1814, 2016.

[29] J. Sauvage, J. Porée, C. Rabut, G. Férin, M. Flesch, B. Rosinski,
A. Nguyen-Dinh, M. Tanter, M. Pernot, and T. Deffieux, “4D functional
imaging of the rat brain using a large aperture row-column array,” IEEE
Trans. Med. Imag., vol. 39, pp. 1884–1893, June 2020.

[30] J. A. Jensen, M. L. Ommen, S. H. Øygard, M. Schou, T. Sams, M. B.
Stuart, C. Beers, E. V. Thomsen, N. B. Larsen, and B. G. Tomov, “Three-
dimensional super resolution imaging using a row-column array,” IEEE
Trans. Ultrason. Ferroelec. Freq. Contr., vol. 67, no. 3, pp. 538–546,
2020.

[31] A. Austeng and S. Holm, “Sparse 2-D arrays for 3-D phased array
imaging - design methods,” IEEE Trans. Ultrason. Ferroelec. Freq.
Contr., vol. 49, pp. 1073–1086, August 2002.

[32] A. Ramalli, E. Boni, E. Roux, H. Liebgott, and P. Tortoli, “Design,
implementation, and medical applications of 2-D ultrasound sparse
arrays,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., pp. 1–1, 2022.

[33] J. D. Larson, III, “2-D phased array ultrasound imaging system with
distributed phasing.” Patent US 5229933, July 1993.

[34] P. Santos, G. U. Haugen, L. Løvstakken, E. Samset, and J. D’hooge,
“Diverging wave volumetric imaging using subaperture beamforming,”
IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 63, no. 12, pp. 2114–
2124, 2016.

[35] A. Fenster, D. B. Downey, and H. N. Cardinal, “Three-dimensional
ultrasound imaging,” Phys. Med. Biol., vol. 46, pp. R67–R99, 2001.

14

[36] J. Provost, C. Papadacci, J. E. Arango, M. Imbault, M. Fink, J. L.
Gennisson, M. Tanter, and M. Pernot, “3-D ultrafast ultrasound imaging
in vivo,” Phys. Med. Biol., vol. 59, no. 19, pp. L1–L13, 2014.

[37] J. Kortbek, J. A. Jensen, and K. L. Gammelmark, “Sequential beam-
forming for synthetic aperture imaging,” Ultrasonics, vol. 53, no. 1,
pp. 1–16, 2013.

[38] J. Zhou, S. Wei, R. Jintamethasawat, R. Sampson, O. D. Kripfgans, J. B.
Fowlkes, T. F. Wenisch, and C. Chakrabarti, “High-volume-rate 3-D
ultrasound imaging based on synthetic aperture sequential beamforming
with chirp-coded excitation,” IEEE Trans. Ultrason. Ferroelec. Freq.
Contr., vol. 65, no. 8, pp. 1346–1358, 2018.

[39] J. Zhou, S. K. Mandal, B. L. West, S. Wei, U. Y. Ogras, O. D. Kripfgans,
J. B. Fowlkes, T. F. Wenisch, and C. Chakrabarti, “Front-end architecture
design for low-complexity 3-D ultrasound imaging based on synthetic
aperture sequential beamforming,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 29, no. 2, pp. 333–346, 2021.

[40] A. Tawfik, S. Stergiopoulos, and A. Dhanantwari, “A generic beamform-
ing structure allowing implementation of adaptive processing schemes
for 2-D & 3-D arrays of sensors,” in Proc. MTS/IEEE OCEAN, vol. 1,
pp. 369–373, Oct 1997.

[41] K. Owen, M. I. Fuller, and J. A. Hossack, “Application of X-Y separable
2-D array beamforming for increased frame rate and energy efficiency
in handheld devices,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,
vol. 59, no. 7, pp. 1332–1343, 2012.

[42] K. Owen, “Separable beamforming for ultrasound array.” Patent US
9433398B2, 2016.

[43] M. Yang, R. Sampson, S. Wei, T. F. Wenisch, and C. Chakrabarti,
“Separable beamforming for 3-D medical ultrasound imaging,” IEEE
Trans. Sig. Proc., vol. 63, no. 2, pp. 279–290, 2015.

[44] L. T. Jørgensen, S. K. Præsius, M. B. Stuart, and J. A. Jensen, “Row-
column beamformer for fast volumetric imaging,” IEEE Trans. Ultrason.
Ferroelec. Freq. Contr., vol. 70, no. 7, pp. 668–680, 2023.

[45] L. T. Jørgensen, M. Schou, M. B. Stuart, and J. A. Jensen, “Tensor veloc-
ity imaging with motion correction,” IEEE Trans. Ultrason. Ferroelec.
Freq. Contr., vol. 68, no. 5, pp. 1676–1686, 2020.

[46] J. A. Jensen, H. Holten-Lund, R. T. Nilsson, M. Hansen, U. D. Larsen,
R. P. Domsten, B. G. Tomov, M. B. Stuart, S. I. Nikolov, M. J. Pihl,
Y. Du, J. H. Rasmussen, and M. F. Rasmussen, “SARUS: A synthetic
aperture real-time ultrasound system,” IEEE Trans. Ultrason. Ferroelec.
Freq. Contr., vol. 60, no. 9, pp. 1838–1852, 2013.

[47] J. Amaro, B. Y. S. Yiu, G. Falcão, M. A. Gomes, and A. C. H. Yu,
“Software-based high-level synthesis design of FPGA beamformers for
synthetic aperture imaging,” IEEE Trans. Ultrason. Ferroelec. Freq.
Contr., vol. 62, no. 5, pp. 862–869, 2015.

[48] E. Boni, L. Bassi, A. Dallai, F. Guidi, V. Meacci, A. Ramalli, S. Ricci,
and P. Tortoli, “ULA-OP 256: A 256-channel open scanner for develop-
ment and real-time implementation of new ultrasound methods,” IEEE
Trans. Ultrason. Ferroelec. Freq. Contr., vol. 63, no. 10, pp. 1488–1495,
2016.

[49] C. R. Hazard and G. R. Lockwood, “Theoretical assessment of a
synthetic aperture beamformer for real-time 3-D imaging,” IEEE Trans.
Ultrason. Ferroelec. Freq. Contr., vol. 46, pp. 972–980, 1999.

[50] R. Sampson, M. Yang, S. Wei, C. Chakrabarti, and T. F. Wenisch,
“Sonic Millip3De: A massively parallel 3D-stacked accelerator for 3D
ultrasound,” IEEE 19th International Symposium on High Performance
Computer Architecture, pp. 318–329, 2013.

[51] P. A. Hager, A. Bartolini, and L. Benini, “Ekho: A 30.3W, 10k-channel
fully digital integrated 3-D beamformer for medical ultrasound imaging
achieving 298M focal points per second,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 5, pp. 1936–1949, 2016.

[52] E. Kang, Q. Ding, M. Shabanimotlagh, P. Kruizinga, Z. Y. Chang,
E. Noothout, H. J. Vos, J. G. Bosch, M. D. Verweij, N. D. Jong, and
M. A. Pertijs, “A reconfigurable ultrasound transceiver ASIC with 24x40
elements for 3D carotid artery imaging,” IEEE J. Solid-State Circuits,
vol. 53, no. 7, pp. 2065–2075, 2018.

[53] D. Wildes, W. Lee, B. Haider, S. Cogan, K. Sundaresan, D. M. Mills,
C. Yetter, P. H. Hart, C. R. Haun, M. Concepcion, J. Kirkhorn, and
M. Bitoun, “4-D ICE: A 2-D array transducer with integrated ASIC in
a 10-Fr catheter for real-time 3-D intracardiac echocardiography,” IEEE
Trans. Ultrason. Ferroelec. Freq. Contr., vol. 63, no. 12, pp. 2159–2173,
2016.

[54] B. L. West, J. Zhou, R. G. Dreslinksi, O. D. Kripfgans, J. B. Fowlkes,
C. Chakrabarti, and T. F. Wenisch, “Tetris: Using software/hardware co-
design to enable handheld, physics-limited 3D plane-wave ultrasound
imaging,” IEEE Trans. Comput., vol. 69, no. 8, pp. 1209–1220, 2020.

[55] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, “Medical image

processing on the GPU - past, present and future,” Med. Image Anal.,
vol. 17, no. 8, pp. 1073–1094, 2013.

[56] R. Göbl, N. Navab, and C. Hennersperger, “SUPRA: open-source
software-defined ultrasound processing for real-time applications: A 2D
and 3D pipeline from beamforming to B-mode,” Int. J. Comput. Assist.
Radiol. Surg., vol. 13, no. 6, pp. 759–767, 2018.

[57] D. Hyun, Y. Li, I. Steinberg, M. Jakovljevic, T. Klap, and J. J. Dahl, “An
open source GPU-based beamformer for real-time ultrasound imaging
and applications,” in Proc. IEEE Ultrason. Symp., vol. 2019-October,
pp. 20–23, 2019.

[58] B. Y. S. Yiu, I. K. H. Tsang, and A. C. H. Yu, “Real-time GPU-based
software beamformer designed for advanced imaging methods research,”
in Proc. IEEE Ultrason. Symp., pp. 1920–1923, 2010.

[59] J. W. Choe, A. Nikoozadeh, O. Oralkan, and B. T. Khuri-Yakub, “GPU-
based real-time volumetric ultrasound image reconstruction for a ring
array,” IEEE Trans. Med. Imag., vol. 32, no. 7, pp. 1258–1264, 2013.

[60] C. Risser, H. Hewener, M. Fournelle, H. Fonfara, S. Barry-Hummel,
S. Weber, D. Speicher, and S. Tretbar, “Real-time volumetric ultrasound
research platform with 1024 parallel transmit and receive channels,”
Applied Sciences, vol. 11, no. 13, p. 5795, 2021.

[61] M. B. Stuart, P. M. Jensen, J. T. R. Olsen, A. B. Kristensen, M. Schou,
B. Dammann, H. H. B. Sørensen, and J. A. Jensen, “Real-time volu-
metric synthetic aperture software beamforming of row-column probe
data,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 68, no. 8,
pp. 2608–2618, 2021.

[62] L. T. Jørgensen, M. S. Traberg, M. B. Stuart, and J. A. Jensen,
“Performance assessment of row-column transverse oscillation tensor
velocity imaging using computational fluid dynamics simulation of
carotid bifurcation flow,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,
vol. 69, no. 4, pp. 1230–1242, 2022.

[63] M. B. Stuart, M. Schou, and J. A. Jensen, “Row-column beamforming
with dynamic apodizations on a GPU,” in Proc. SPIE Med. Imag.,
p. 109550Q, 2019. Paper number 10955-20.

[64] J. J. Flaherty, K. R. Erikson, and V. M. Lund, “Synthetic aperture
ultrasound imaging systems.” Patent US 3,548,642, 1967.

[65] M. Karaman, P. C. Li, and M. O’Donnell, “Synthetic aperture imaging
for small scale systems,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,
vol. 42, pp. 429–442, 1995.

[66] C. H. Frazier and W. D. O’Brien, “Synthetic aperture techniques with a
virtual source element,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,
vol. 45, no. 1, pp. 196–207, 1998.

[67] J. A. Jensen, S. Nikolov, K. L. Gammelmark, and M. H. Pedersen,
“Synthetic aperture ultrasound imaging,” Ultrasonics, vol. 44, pp. e5–
e15, 2006.

[68] J. Y. Lu, H. Zou, and J. F. Greenleaf, “Biomedical ultrasound beam
forming,” Ultrasound Med. Biol., vol. 20, pp. 403–428, 1994.

[69] C. Shannon, “Communication in the presence of noise,” in IEEE, vol. 37,
pp. 10–21, 1949.

[70] R. Schafer and L. Rabiner, “A digital signal processing approach to
interpolation,” Proc. IEEE, vol. 61, no. 6, pp. 692–702, 1973.

[71] E. Waring, “Problems concerning interpolations,” Philos. Trans. R. Soc.,
vol. 69, pp. 59–67, 1779.

[72] J. Kortbek, H. Andresen, S. Nikolov, and J. A. Jensen., “Comparing
interpolation schemes in dynamic receive ultrasound beamforming.,” in
Proc. IEEE Ultrason. Symp., pp. 1972–1975, 2005.

[73] S. Bergner, T. Moller, D. Weiskopf, and D. J. Muraki, “A spectral
analysis of function composition and its implications for sampling in
direct volume visualization,” IEEE Trans. Vis. Comput. Graph., vol. 12,
no. 5, pp. 1353–1360, 2006.

[74] S. M. Gehlbach and R. E. Alvarez, “Digital ultrasound imaging tech-
niques using vector sampling and raster line reconstruction,” Ultrason.
Imaging, vol. 3, no. 1, pp. 83–107, 1981.

[75] R. G. Pridham and R. A. Mucci, “Digital interpolation beamforming for
low-pass and bandpass signals,” Proc. IEEE, vol. 67, no. 6, pp. 904–919,
1979.

[76] NVIDIA, “CUDA C++ Programming Guide (Version 12.3),” tech. rep.,
NVIDIA Corporation, 2024. Accessed March 2024.

[77] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting the
NVidia Turing T4 GPU via microbenchmarking,” tech. rep., Citadel,
2019.

[78] S. K. Præsius, M. B. Stuart, M. Schou, B. Dammann, H. H. B. Sørensen,
and J. A. Jensen, “Real-time super-resolution ultrasound imaging using
GPU acceleration,” in Proc. IEEE Ultrason. Symp., pp. 1–4, 2022.

[79] B. Y. S. Yiu, I. K. H. Tsang, and A. C. H. Yu, “GPU-based beamformer:
Fast realization of plane wave compounding and synthetic aperture
imaging,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 58, no. 7,
pp. 1698–1705, 2011.

15

[80] NVIDIA, “Nvidia Ampere GA102 GPU architecture,” tech. rep.,
NVIDIA Corporation, 2020. Accessed February 2024.

[81] C. E. Duchon, “Lanczos filtering in one and two dimensions,” J. Appl.
Meteorol. Climatol., vol. 18, no. 8, pp. 1016–1022, 1979.

[82] A. Li, S. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal, “Locality-
aware CTA clustering for modern GPUs,” ACM SIGARCH Computer
Architecture News, vol. 45, pp. 297–311, 04 2017.

[83] A. Ukarande, S. Patidar, and R. Rangan, “Locality-aware CTA schedul-
ing for gaming applications,” ACM Trans. Archit. Code Optim., vol. 19,
no. 1, 2021.

APPENDIX

A. Time-of-Flight
For row-column array beamforming of the plane at the same

elevation as the emission source: LRI(x, z) = LRV(x, ytx, z),
the time-of-flight from [26] can be simplified to:

ToF(x, z) =
z +
√
∆x2 + z2

c
(21)

where (x, ytx, ztx) is the emission position, (xrx, y, 0) is the
receiver position, c is the speed of sound, and ∆x = x−xrx.
Note that the time-of-flight in (21) is the same for every LRI.

The extrapolation mapping [44] for the second beamforming
stage (see (4)) was simplified to

f(y, z) = z + 0.5
(√

∆y2 +∆z2 −∆z
)
, (22)

where ∆y = y− ytx and ∆z = z− ztx. The mapping in (22)
is valid for defocused emissions (ztx ≤ 0), assuming that (21)
was the time-of-flight used in the first beamforming stage.

B. Spatial Sampling Criteria
The sampling criteria for LRI(x, z) = α(x, z)r(ToF(x, z))

is given by the rate-of-change of time-of-flight, as stated in (6).
With the ToF from (21), the lateral rate-of-change becomes

∂ ToF(x, z)

∂x
=

1

c
· ∆x√

∆x2 + z2
. (23)

Only points with a non-zero apodization need to be considered.
In case of dynamic apodization (2), it may be non-zero when∣∣F# ·∆x/z

∣∣ ≤ 0.5, giving the following left-hand side for (6):

max
α(x,z)̸=0

∣∣∣∣∂ ToF(x, z)

∂x

∣∣∣∣ = c−1 max
|F#·∆x/z|≤0.5

∣∣∣∣ ∆x√
∆x2 + z2

∣∣∣∣ (24)

= c−1 max
|x/z|≤0.5/F#

∣∣∣∣ x√
x2 + z2

∣∣∣∣ (25)

= c−1 max
|x|/

√
1−x2≤0.5/F#

|x| (26)

= c−1/
√

(2F#)2 + 1 (27)

The coordinate system was first shifted to be centered on the
receiver position (without loss of generality) to arrive at (25).
These coordinates were then scaled such that x2 + z2 = 1 to
get to (26) (also without any loss of generality because z > 0).
Finally, (26) is maximized by maximizing |x|, and the solution
becomes |x| /

√
1− x2 = 0.5/F# ⇔ |x| = 1/

√
(2F#)2 + 1.

Inserting the result (27) in (6) gives the lateral sampling criteria
shown in (7). For the axial sampling criteria, one can see that∣∣∣∣∂ ToF(x, z)

∂z

∣∣∣∣ = c−1

∣∣∣∣1 + z√
∆x2 + z2

∣∣∣∣ (28)

is maximized for ∆x = 0, giving the global maximum of 2/c.

C. Pseudo-code examples
Pseudo-code for the beamforming is shown in Algorithm 1,

where the early exit (Section III-D) in Line 7 should have been
”if |apoidx| ≤ 0.5 and 0 ≤ FractionalAddress(tof) ≤ Ns−1”,
to prevent cubic extrapolations, but this detail is omitted from
Algorithm 1 and other examples for brevity. For completeness,
pseudo-code for auxiliary functions is given in Algorithm 5.

Algorithm 1 Beamforming of a pixel (x, z) for the j’th LRI.
1: function BEAMFORM(x, z)
2: sum← 0 ▷ Initialize the pixel to zero.
3: for i← 1 to Nrx do ▷ This loop implements (1).
4: ∆x← x− xrx

i

5: apoidx← F# ·∆x/z ▷ See (2).
6: tof← (z +

√
∆x2 + z2)/c ▷ See (21).

7: if |apoidx| ≤ 0.5 then ▷ Early exit.
8: apo← cos2(π · apoidx) ▷ Hann apod.

▷ Now evaluate rij(ToFi(x, z)) using cubic interpolation
9: s← FourNearestSamples(rij , tof)

10: w ← CubicWeights(tof) ▷ Interp. weights.
11: delayed← w1s1 + w2s2 + w3s3 + w4s4
12: sum← sum + apo · delayed
13: end if
14: end for
15: LRIj(x, z)← sum ▷ Write pixel to memory.
16: end function

Pseudo-code for the extrapolation is shown in Algorithm 2,
where LRIj(x, ◦) in Line 10 is LRIj(x, z) as a function of z.
To compute the high-resolution volume (HRV), Algorithm 1 is
executed for each pixel in each LRI, after which Algorithm 2
is executed for each voxel in the high-resolution volume.

Algorithm 2 Beamforming of the voxel at (x, y, z).
1: function BEAMFORMSECONDSTAGE(x, y, z)
2: sum← 0 ▷ Initialize the voxel to zero.
3: for j ← 1 to Ntx do ▷ This loop implements (5).
4: ∆y ← y − ytxj
5: ∆z ← z − ztxj
6: apoidx← F# ·∆y/∆z ▷ See (2).
7: fval← z + 0.5(

√
∆y2 +∆z2 −∆z) ▷ See (22).

8: if |apoidx| ≤ 0.5 then
9: apo← cos2(π · apoidx)

10: s← FourNearestSamples
(
LRIj(x, ◦), fval

)
11: w ← CubicWeights(fval)
12: delayed← w1s1 + w2s2 + w3s3 + w4s4
13: sum← sum + apo · delayed
14: end if
15: end for
16: HRV(x, y, z)← sum ▷ Write voxel to memory.
17: end function

▷ Note how x plays an identical role to j in Algorithm 1.

A multi-frame case (Section III-A) is shown in Algorithm 3
for the first stage. Here, LRIs can be multi-frame-beamformed
because tof and apoidx are the same for every LRI (every j).
A multi-pixel (Section III-C) case is shown in Algorithm 4.

16

Algorithm 3 Multi-frame beamforming for LRI j to j +B.
1: function MULTIFRAMEBEAMFORM(x, z)
2: sum[0 . . . B − 1]← 0 ▷ Initialize array of B pixels.
3: for i← 1 to Nrx do ▷ Same as in Algorithm 1.
4: ∆x← x− xrx

i ▷ Also the same.
5: apoidx← F# ·∆x/z ▷ Also the same.
6: tof← (z +

√
∆x2 + z2)/c ▷ Also the same.

7: if |apoidx| ≤ 0.5 then ▷ Also the same.
8: w ← cos2(π · apoidx) · CubicWeights(tof)

▷ Compute the B delay-and-sum terms while reusing w.
9: for b← 0 to B − 1 do

10: s← FourNearestSamples(ri,j+b, tof)
11: delayed← w1s1 + w2s2 + w3s3 + w4s4
12: sum[b]← sum[b] + delayed
13: end for
14: end if
15: end for
16: LRIj...j+B(x, z)← sum[0 . . . B − 1] ▷ Write pixels.
17: end function

Algorithm 4 Multi-pixel beamforming for the j’th LRI.
1: function MULTIPIXELBEAMFORM(x1,x2,x3, z)
2: sum[1 . . . 3]← 0 ▷ Initialize array of three pixels.
3: for i← 1 to Nrx do
4: for p← 1 to 3 do ▷ First check for early exit.
5: ∆x← xp − xrx

i ▷ Note ∆x varies with p.
6: apoidx[p]← F# ·∆x/z

7: tof[p]← (z +
√
∆x2 + z2)/c

8: good[p]←
∣∣apoidx[p]

∣∣ ≤ 0.5 ▷ Early exit.
9: end for

▷ Load four samples only if any pixel does not exit early.
10: if good[1] or good[2] or good[3] then
11: s← FourNearestSamples(rij , tof[2])
12: baseaddr← Address(tof[2]) ▷ Address of s1.
13: end if

▷ At most two additional samples will be loaded below.
14: for p← 1 to 3 do
15: if good[p] then ▷ Early exit.
16: apo← cos2(π · apoidx[p])
17: w ← CubicWeights(tof[p])
18: addrdiff← Address(tof[p])− baseaddr
19: if addrdiff = 0 then ▷ Same samples.
20: delayed← w1s1+w2s2+w3s3+w4s4
21: else if addrdiff = 1 then ▷ Adjacent.
22: s5 ← LoadSample(rij , baseaddr + 4)
23: delayed← w1s2+w2s3+w3s4+w4s5
24: else if addrdiff = −1 then ▷ Adjacent.
25: s0 ← LoadSample(rij , baseaddr− 1)
26: delayed← w1s0+w2s1+w3s2+w4s3
27: else ▷ This should not happen.
28: delayed← NaN
29: end if
30: sum[p]← sum[p] + apo · delayed
31: end if
32: end for
33: end for
34: LRIj([x1, x2, x3], z)← sum[1 . . . 3] ▷ Write pixels.
35: end function

Algorithm 5 Auxiliary functions.

1: function FOURNEARESTSAMPLES(rij , tof)
▷ Loads the four samples nearest ”tof” for an interpolation.

2: baseaddr← Address(tof) ▷ Address of s1.
3: s1 ← LoadSample(rij , baseaddr + 0)
4: s2 ← LoadSample(rij , baseaddr + 1)
5: s3 ← LoadSample(rij , baseaddr + 2)
6: s4 ← LoadSample(rij , baseaddr + 3)
7: return [s1, s2, s3, s4] ▷ Return the vector s.
8: end function

9: function CUBICWEIGHTS(tof)
▷ Weights for Lagrange interpolation [71] on τ ∈ [0, 3].

10: τ ← FractionalAddress(tof)− Address(tof)
11: w1 ← −(τ − 1)(τ − 2)(τ − 3)/6
12: w2 ← τ(τ − 2)(τ − 3)/2
13: w3 ← −τ(τ − 1)(τ − 3)/2
14: w4 ← τ(τ − 1)(τ − 2)/6
15: return [w1, w2, w3, w4] ▷ Return the vector w.
16: end function

17: function FRACTIONALADDRESS(tof)
▷ Convert a time-of-flight to the corresponding RF sample
index using the sampling rate fs and first-sample-time t0.

18: return (tof− t0) · fs
19: end function

20: function ADDRESS(tof)
▷ Convert a time-of-flight to the address offset of s1.

21: addr← FractionalAddress(tof)− 1 ▷ F.Address of s1.
▷ Then, to protect against out-of-bounds array accesses:

22: addr← min(max(addr, 0), Ns − 4)
23: return ⌊addr⌋ ▷ Round down to integer.
24: end function

25: function LOADSAMPLE(rij , addr)
▷ C-style array access for RF data of size Ns×Nrx×Ntx.

26: return r[addr + i ·Ns + j ·NsNrx]
▷ = r[(jS + iNs + baseaddr) + (c+ bS)], where S = NsNrx.

27: end function

28: function LOADSAMPLE(LRIj(x, ◦), addr)
▷ C-style array access for LRI data of size Mz×Ntx×Mx.
▷ Essentially, LRIj(x, ◦) is equivalent to a rjx(◦).

29: return LRI[addr + j ·Mz + x ·MzNtx]
30: end function

31: function PHASEROTATE(delayed, tof)
▷ Apply this after interpolation (Line 11 in Algorithm 1)
to use quadrature sampled RF inputs (see Section III-B).

32: return delayed · (cos(2πf̂0tof) +
√
−1 sin(2πf̂0tof)).

33: end function

34: function PHASEROTATE(delayed, fval)
▷ Apply after Line 12 in Algorithm 2 to use I/Q LRIs.

35: return delayed · exp (2π
√
−1(2f̂0/c)fval)

36: end function

17

D. Further Technical Details
The main result of an imaging rate of 1440 volumes/s was

achieved with the RF data already in the GPU’s memory, and
thus, no memory transfer was necessary for this result. In this
case, the RF data was stored in an int16 MATLAB gpuArray,
which was passed to the MEX file and accessed as a C-style
array using mxGPUGetDataReadOnly. A gpuArray to hold the
beamformed result was created with mxGPUCreateGPUArray
and accessed with mxGPUGetData; thus, both the inputs and
outputs were stored in GPU memory managed by MATLAB.

The first kernel performed matched filtering of the RF data,
and its output was stored inside an internal buffer in the MEX
file (created using cudaMalloc). Likewise, instead of returning
LRIs from the first beamforming stage to MATLAB, they were
simply written to an internal buffer, which was then read from
the second beamforming stage kernel to compute the volume.
These two intermediate result buffers were reused every frame,
meaning there was no ”memory management” in the MEX file
beyond the initial creation of internal buffers for intermediates.

A volume-beamforming consisted of Ntx calls to the MEX
file to launch the matched filtering and first-stage beamforming
kernels and compute Ntx LRIs, followed by one call to create
a volume gpuArray and launch the second beamforming stage.
Each thread executing the first-stage beamformer kernel would
start off by identifying the three pixels it should compute by:

z i d x = b l o c k I d x . x* blockDim . x+ t h r e a d I d x . x
x i d x [0] = (b l o c k I d x . y* blockDim . y+ t h r e a d I d x . y) *3
x i d x [1] = x i d x [0] + 1
x i d x [2] = x i d x [0] + 2

For a thread block size of 16× 8 in the first stage and an LRI
output of 133×271 (see Table V and Table IV), the necessary
launch grid size was ⌈ 2718 ⌉×⌈

133
16·3⌉ = 34×3 blocks to ensure

there were threads computing every pixel. Each kernel launch
thus resulted in 102 blocks or 13056 threads; essentially, 48×
272 threads were used to cover an output size up to 144×272.
This is an excessive amount of threads, so the following guard
is placed at the beginning of the kernel to prevent threads from
writing outside the LRI image bounds (crashing the program)

i f n o t (x i d x [0]<133 and z i d x <271) re turn

Note that x idx [1] and x idx [2] may still go outside the bounds,
but similar a guard was placed at the end of the kernel, where
these two pixels are written to RAM only if they are inside the
bounds. Thus, more threads are created than strictly necessary,
but most excess threads finish executing almost immediately.
This is a standard pattern for distributing work among threads
for GPU parallelization in CUDA; see, e.g., section 2.2 in [76].

The second beamforming stage kernel used a similar scheme

z i d x = b l o c k I d x . x* blockDim . x+ t h r e a d I d x . x
y i d x [0] = (b l o c k I d x . y* blockDim . y+ t h r e a d I d x . y) *3
y i d x [1] = y i d x [0] + 1
y i d x [2] = y i d x [0] + 2
x i d x = b l o c k I d x . z
i f n o t (y i d x [0]<115 and z i d x <250) re turn

Instead of launching this kernel repeatedly Mx = 133 times to
compute every yz-plane in the volume, it was simply launched
once using a three-dimensional grid. The result was a ⌈ 25016 ⌉×
⌈ 1158·3 ⌉ ×Mx = 16× 5× 133 grid with 10640 thread blocks.

The beamforming was essentially the following algorithm,
where loops over pixels and voxels were parallelized on GPU.

/ / F i r s t beamform LRIs .
f o r j = 1 t o Ntx do

f o r x i n x p o s i t i o n s
f o r z i n z p o s i t i o n s

LRI j (x , z) = Beamform (x , z)

/ / Then beamform t h e volume u s i n g t h e s e LRIs .
f o r x i n x p o s i t i o n s

f o r y i n y p o s i t i o n s
f o r z i n z p o s i t i o n s

HRV(x , y , z) = BeamformSecondStage (x , y , z)

Here, ”Beamform” is from Algorithm 1, and ”BeamformSec-
ondStage” is from Algorithm 2. The initial j-loop to produce
LRIs might also be distributed over threads using a 3D grid.
However, it was split into Ntx kernel launches to enable each
emission to be processed on a separate CUDA stream to speed
up processing when the RF data was not already on the GPU
(see Section IV-D.2.) The result of parallelizing computations
by launching the same kernel in separate streams is essentially
the same as using a 3D grid, but it allows for more fine-grained
control of the order of operations, enabling kernel execution to
overlap with memory transfers; see 3.2.8.5 in [76] for details.

All thread-local memory must be held in registers to get the
optimal performance in the beamforming kernels. It is recom-
mended to use the flags ”-Xptxas -warn-lmem-usage”,
”-Xptxas -warn-spills” when compiling to verify this.

As a final detail, when multi-frame beamforming was used,
each yz-plane in the volume was essentially treated as a frame.
When processing F volumes in the second beamforming stage,
the grid dimensions would then be 16× 5× ⌊133F/B⌋, with

x i d x = b l o c k I d x . z *B

Note that ⌊133F/B⌋ is rounded down. If 133F is not divisible
by B, there would be a second kernel launch that used a batch
size of 133F mod B (the remainder of 133F divided by B) to
compute the few remaining planes. This design allows multi-
frame beamforming to be used without having to store multiple
volumes in memory and without having to wait for B frames
since it can be used even for F = 1, as outlined in Section VI-
C. To avoid bias in the performance measurements depending
on whether 133F is divisible by B, it was the case that F = B,
which is why at least 68 volumes were beamformed to measure
the rate in (19). For example, with B = 13, 78 volumes would
be processed in batches of F = B = 13 frames.

18

Sebastian Kazmarek Præsius received the
M.Sc. degree in Mathematical Modelling and
Computation from the Technical University of
Denmark (DTU) in 2022. He is currently a
Ph.D. student at the Center for Fast Ultra-
sound imaging, working on real-time 2-D and 3-
D beamforming, motion estimation, and super-
resolution. His research interests include GPU
acceleration, Deep Learning, and computer
graphics.

Lasse Thurmann Jørgensen received the
M.Sc. degree in 2019 and the Ph.D. Degree
in 2022 from the Technical University of Den-
mark (DTU), Lyngby, Denmark. He is currently
a postdoctoral researcher at the Center for Fast
Ultrasound imaging, Department of health tech-
nologies, DTU, where his research topics in-
clude imaging and motion estimation with 3-D
ultrasound systems.

Jørgen Arendt Jensen (M’93-SM’02-F’12) re-
ceived the M.Sc. degree in 1985, the Ph.D. de-
gree in 1989, and the Dr.Techn. degree in 1996,
all from the Technical University of Denmark.
Since 1993, he has been a Full Professor of
Biomedical Signal Processing with the Depart-
ment of Health Technology, Technical University
of Denmark. He has been the founder and head
of the Center for Fast Ultrasound Imaging since
its inauguration in 1998. CFU has contributed
with innovations in transverse oscillation vector

flow imaging, synthetic aperture flow imaging in 2-D and 3-D, ultrasound
simulation, research scanners, and row-column probes and beamform-
ing. He has published more than 500 journal and conference papers on
signal processing and medical ultrasound and the book Estimation of
Blood Velocities Using Ultrasound (Cambridge Univ. Press), 1996. He
is also the developer and maintainer of the Field II simulation program.
He has been a visiting scientist at Duke University, Stanford University,
and the University of Illinois at Urbana-Champaign. He was the founder
and head of the Biomedical Engineering group from 2007 to 2010.
In 2003, he was one of the founders of the biomedical engineering
program in Medicine and Technology, which is a joint degree program
between the Technical University of Denmark and the Faculty of Health
and Medical Sciences at the University of Copenhagen. The degree
is one of the most sought-after engineering degrees in Denmark. He
was chairperson of the study board from 2003 to 2010 and Adjunct
Professor with the University of Copenhagen from 2005 to 2010. He has
given several short courses on simulation, synthetic aperture imaging,
and flow estimation at international scientific conferences and teaches
biomedical signal processing and medical imaging at the Technical
University of Denmark. His research is centered around the simulation
of ultrasound imaging, synthetic aperture imaging, vector blood flow
estimation, 3-D and super-resolution imaging, row-column probes, and
the construction of ultrasound research systems.

	Introduction
	Theory
	Synthetic Aperture Imaging
	Dual-Stage Row-Column Array Imaging
	Sampling and Interpolation
	Quadrature Sampling

	Optimizations
	Multi-Frame Beamforming
	Quadrature Sampling
	Multi-Pixel Beamforming
	Early Exit
	Rectangular Thread Blocks
	Compile-Time Constants

	Method
	Data Acquisition
	Beamforming Parameters
	Processing Setup
	Processing
	Matched filter
	Beamformer

	Measuring Performance

	Results
	Quality
	Tuning
	Overall Performance
	Performance of Alternatives

	Discussion
	Volume Rate
	Voxel Density
	Multi-Frame Beamforming
	Transfer Rates
	Performance Limitations
	Limitations

	Conclusion
	Acknowledgements
	References
	Appendix
	Time-of-Flight
	Spatial Sampling Criteria
	Pseudo-code examples
	Further Technical Details

	Biographies
	Sebastian Kazmarek Præsius
	Lasse Thurmann Jørgensen
	Jørgen Arendt Jensen

