Rural electrification in Sub Saharan Africa in a context of fluctuating oil-prices

Nygaard, Ivan; Bindner, Henrik W.; Katic, Ivan

Published in:
Energy solutions for CO2 emission peak and subsequent decline

Publication date:
2009

Citation (APA):
Rural electrification in SSA in a context of fluctuating oil prices

Is the time ready to move from SHS to hybrid PV-diesel systems?

Ivan Nygaard, UNEP Risø Centre, RISØ DTU, Denmark
Henrik Bindner, Wind Energy Division, RISØ DTU, Denmark
Ivan Katic, Energy & Climate Division, Technological Institute, Denmark
Outline of Presentation

• Rural electrification – the context
• Solar PV and development aid
• Changing economic conditions
• Hybrid PV-diesel for small isolated grids
• Simulation results
• Conclusion
Rural electrification in SSA

- Electricity is one among other preconditions for development
- Per capita CO₂ emissions are low, so priorities are
 - Increased access
 - Clean development path
- Increase still slow:
 - Liberalization
 - New structures

Historically low electrification in Africa, 27% in SSA
Rural electrification technologies

Price per kWh

Individual use

Collective use

Lighting

Communication

Productive use

Dry Cell Batteries

Car batteries
PV – gen. set

Mini-grids
Diesel - hybrid

Grid connection
Fossil - renewable
Solar PV (SHS) historically

- High expectations in the 1970’s
 - high and increasing oil prices
 - rapid development of technology
 - aspirations of economic development in rural areas
- Converging interests between donors and industry
 - green movement, decentralisation, SHS as a liberal approach, climate change concerns
 - PRS contract (10 % of annual EU production of PV panels in 1989)
- Seemingly good arguments
 - leap-frog technology, high solar irradiation, long lifetime, low maintenance, difficult access to fossil fuel
SHS - status in the new millennium

Bad reputation
- Donor driven agenda
- Second best solution
 - SHS mainly for communicative and not for productive use
 - Not an alternative to grid connection
- Donated systems to schools, health centres, community centres have a high failure rate
- Theft a great problem

Matured technology
- Increasing markets
 - 2.5 million SHS worldwide
 - > 0.5 million SHS in Africa
- Especially in a few countries
 - Kenya 200,000
 - South Africa 150,000
 - Morocco 100,000
 - Mali 70,000
 - Zimbabwe 15,000
Solar PV in hybrid systems

• PV hybrid is more flexible compared to SHS
 – Supply to mini-grids
 • productive use, standard appliances
 • future grid connection, useful for building up load

• PV hybrid (wind) is mainly used for specific purpose
 – isolated nature camps (Thailand)
 – small islands communities
 – test plants (ex. 500 kW in Thailand)
 – Gobabeb research centre, Namibia
 – SYS-LAB test system at Risø DTU

• Increasing no. of reports that hybrid systems are competitive to diesel systems
Hybrid PV-diesel system in Mali

• Technical Specifications:
 – Diesel 100 kVA
 – PV, 72 kWp
 – Battery, 24720 Ah
 – Present max load, 25 kW
 – Consumers, 217

• Economy
 – Investment 512,000 EUR
 – Subsidy 60 %
 – Import tax exemption, 100 %
 – Consumer price: 0.27 EUR/kWh

Sources: Presentation by Amadou Isaac Diallo, Director General of Yeelen Kura, Presentation by Djibril SEMEGA, Technical responsible at SSD-EN SA at meeting in Club Agences en charge d’ER-Bamako 2008
Changing conditions: oil prices

Inflation Adjusted Monthly CRUDE OIL PRICES (1946-Present) In November 2008 Dollars
©www.InflationData.com
Updated 1/8/2009

Dec. 1979 Monthly Ave. Peak $106.43 in Nov 2008 Dollars
June 2008 Monthly Ave. Oil Price $122.64 in Nov. 2008 Dollars
Nominal Peak $38 (Mo. Ave. Price) Intraday Prices peaked much higher
Inflation Adjusted Oil Price
Nominal Oil Price

Source of Data:
Oil Prices - www.iogs.com/Special/crudeoil_Hist.htm
CPI-U Inflation Index - www.bls.gov
Oil prices forecast, DOE

Crude Oil Prices

- West Texas Intermediate (WTI)
- Average Refiner Acquisition Cost (RAC)

Dollars per barrel

Forecast

Short-Term Energy Outlook, August 2009
Price reduction of PV modules

Doubling of cumulated production reduces prices by 20 %

Accumulated capacity, 1995-2008

Solar module retail prices
Simulation preconditions

- Retail price EUR/liter:
 - 0.3
 - 0.4
 - 0.5
 - 0.6
 - 0.7

- Oil price $/barrel:
 - 0
 - 0.1
 - 0.2
 - 0.3
 - 0.4
 - 0.5
 - 0.6
 - 0.7

- Load Profile (Synthesized Data):
 - Demand (kW):
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
 - Hour:
 - 0
 - 6
 - 12
 - 18
 - 24

- Global Horizontal Radiation:
 - Daily Radiation
 - Clearness Index

- Efficiency Curve:
 - Efficiency:
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25
 - 30
 - 35
 - Output (%):
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
Production costs for diesel, PV-hybrid and PV alone

Small system (37 kW)

Large system (150 kW)
Production costs for diesel, PV-hybrid and PV alone

Oil price 25 USD/barrel

Oil price 75 USD/barrel
Simulation conclusion

• SHS will increasingly be interesting for
 – dispersed villages and outskirts of nucleated villages,
 – not competitive to mini-grid systems
• PV – hybrid systems for mini-grids are feasible compared to diesel systems, but depending on context
• Calculations are sensitive to:
 – system size, system configuration
 – existing and future load patterns
 – battery lifetime
Policy recommendations

• Ensure a level playing field for PV and diesel solutions
 – fuel subsidies, (fuel tax)
 – Equal tax on material (also replacements)

• Increase project volume to reduce costs
 – Move from single projects to programmes
 – Economy of scale and reducing technology risk

• Institutional framework
 – Rural electrification agencies (planning)
 – Utilities
 – Concession: Mali (EDF), Senegal (ONE), SA (several)

• Given continuing high oil prices
 – It is likely that PV-hybrid systems will prevail in rural electrification schemes in SSA within the next 10 years
Thanks for your attention!