Maximum likelihood estimation of the attenuated ultrasound pulse

Rasmussen, Klaus Bolding

Published in:
IEEE Transactions on Signal Processing

Link to article, DOI:
10.1109/78.258144

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Maximum Likelihood Estimation of the Attenuated Ultrasound Pulse
Klaus Bolding Rasmussen

Abstract—The attenuated ultrasound pulse is divided into two parts: a stationary basic pulse and a nonstationary attenuation pulse. A standard ARMA model is used for the basic pulse, and a nonstandard ARMA model is derived for the attenuation pulse. The maximum likelihood estimator of the attenuated ultrasound pulse, which includes a maximum likelihood attenuation estimator, is derived. The results of this correspondence are of great importance for deconvolution and attenuation imaging in medical ultrasound.

Manuscript received July 10, 1991; revised July 15, 1993. The associate editor coordinating the review of this paper and approving it for publication was Dr. David Rossi.

The author is with the Electronics Institute, Technical University of Denmark, Lyngby, Denmark.

IEEE Log Number 921330.

I. INTRODUCTION

In medical ultrasound, a short pressure pulse is emitted from a transducer. The ultrasound pulse then propagates in a narrow beam in the tissue. When the pulse arrives at inhomogeneities in the tissue, a part of the pulse is scattered back and received by the transducer. By mechanically or electronically changing the beam direction, an image of the acoustical properties of the tissue can be formed. Usually, only the envelope of the received signal is displayed. The attenuation of the tissue is not displayed directly. As the attenuation of the tissue is a clinically relevant feature, several attenuation estimation methods have been developed, e.g., the spectral-shift method and the spectral-difference method [3], [4]. However, none of these attenuation estimation methods are based on the maximum likelihood principle. Attenuation estimation is of interest in medical ultrasound for another reason. The resolution of the envelope-detected image is poor because of the extent of the ultrasound pulse. The resolution can be improved by deconvolution, e.g., [6], but an estimate of the attenuated ultrasound pulse is needed by the deconvolution algorithm. This applies to both the axial and to the lateral direction, but only the axial (1-D) case is treated in this correspondence. As the maximum likelihood estimate of the attenuated ultrasound pulse includes a maximum likelihood attenuation estimate, it is seen that there is a close connection between attenuation estimation and pulse estimation.

This correspondence is organized as follows. In Section II, a nonstandard ARMA model of the attenuated ultrasound pulse is derived. The maximum likelihood estimator of the attenuated ultrasound pulse in a constant attenuating medium is derived in Section III. Section IV presents an example, and the conclusion is given in Section V.

II. A PARAMETRIC MODEL OF THE ATTENUATED ULTRASOUND PULSE

The propagation of ultrasound waves takes place in three dimensions, but we consider 1-D effects only. The attenuated ultrasound pulse can be divided into two parts: a stationary basic pulse and a nonstationary attenuation pulse. The basic pulse consists mainly of the electromechanical response of the transducer and the scattering function; see [7, ch. 8].

The signal $y(n)$ received by the transducer is given by

$$y(n) = H_1(z)H_2(z,n)u(n)$$

where $u = 1, ..., N$ denotes the discrete-time index, $z = e^{j\omega}$ the z-transform variable, $H_1(z)$ the stationary basic pulse, and $H_2(z,n)$ the nonstationary attenuation pulse. The radial frequency is denoted ω. The 1-D reflection sequence $u(n)$ is assumed Gaussian i.i.d. with zero mean and variance σ^2. A standard ARMA model is used for the basic pulse

$$H_1(z) = \frac{B(z)}{A(z)}$$

$$B(z) = 1 + \sum_{k=1}^{N} b_k z^{-k}$$

$$A(z) = 1 + \sum_{k=1}^{N} a_k z^{-k}.$$
If the basic pulse \(H_2(z) \) is not known a priori, then we will assume it is minimum phase and estimate it along with the attenuation parameters. If the reflection sequence is non-Gaussian distributed, then the minimum phase assumption can be relaxed \[8\], but this issue is not examined further in this correspondence. For the purpose of finding the likelihood function, a scaled version of the signal \(y(n) \) is introduced:

\[
\sigma_e(n) = \exp(-\alpha(n)/2) \quad \sigma_0.
\]

We then have that the received signal \(y(n) \) is given by the convolution of a monic minimum phase filter, and the signal \(e(n) \) (see (5))

\[
y(n) = \frac{1 + c(n)z^{-1}}{1 - c(n)z^{-1}} A(z)e(n).
\]

The minus-log-likelihood function is (see Sec. 7.4 of \[5\])

\[
V \equiv \sum_{n=1}^{N} V(n)
\]

where

\[
V(n) = \frac{\epsilon(n)^2}{2\sigma_e(n)^2} + \log(\sigma_e(n)) + \log(2\pi)/2
\]

\[
\epsilon(n) = \frac{A(z)}{B(z)} e(n)
\]

\[
v(n) = \frac{1 - c(n)z^{-1}}{1 + c(n)z^{-1}} y(n).
\]

The prediction error \(\epsilon(n) \) is, unlike the signal \(e(n) \), a function of the assumed parameter vector \(\theta \). The statistics of the signal \(e(n) \) are a function of the true parameter vector \(\theta_{TRUE} \). The difference between \(\epsilon(n) \) and \(e(n) \) is illustrated in Fig. 2. In Fig. 2, it is also illustrated that the signal \(v(n) \) is a function of the assumed parameter vector \(\theta \) and that the statistics of the signal \(y(n) \) are a function of the true parameter vector \(\theta_{TRUE} \). The maximum likelihood estimate \(\theta_{MLE} \) is the value of \(\theta \) that minimizes the minus-log-likelihood function \(V \). The maximization of the likelihood function is done by a Gauss–Newton-type algorithm; see \[9\] for details. The algorithm in this section is extendable to multiple independent received 1-D signals and to the case of varying attenuation \[9\] as well.
IV. EXAMPLE

The synthetic generated signal \(y(n) \) shown in Fig. 3 has the following data:

\[
N = 1500 \\
H(z) = 1 \\
\sigma_0 = 1 \\
\alpha(1) = 0 \\
\alpha_1(n) = \begin{cases} 0.01 & \text{for } 501 \leq n \leq 1000 \\ 0 & \text{otherwise} \end{cases} \\
\alpha(1500) = 5
\]

Using the fixed values

\[
H(z) = 1 \\
\alpha(1) = 0
\]

and the initial guess

\[
\alpha_1 = 0 \\
\sigma_0 = 2
\]

it took six iterations to find

\[
\alpha_1 = 0.0100 \pm 0.0004 \\
\sigma_0 = 0.9918 \pm 0.0004
\]

for 501 \(\leq n \leq 1000 \). The values after \(\pm \) are the estimated standard deviations. The spectral-difference approach [3], [4] resulted in

\[
\alpha_1 = 0.0089 \pm 0.0006
\]

using the two nonoverlapping segments 501 \(\leq n \leq 750 \) and 751 \(\leq n \leq 1000 \).

V. CONCLUSION

The information utilized by the maximum likelihood attenuation estimator is essentially the same information utilized by a short-time Fourier-transform-based method like the spectral-difference approach. However, because the received signal is nonstationary, even in the case of constant attenuation, the spectral-difference approach has to use overlapping and small segments if the spectral-difference approach is to perform as well as the maximum likelihood approach.

ACKNOWLEDGMENT

The author greatly appreciates the helpful suggestions from Dr. P. Gerstoft, Dr. J. A. Jensen, Dr. J. Larsen, Assoc. Prof. P. K. Møller, Dr. B. Stage, and Dr. J. E. Wilhjelm.

REFERENCES

Conditions for Third-Order Stationarity and Ergodicity of a Harmonic Random Process

Harish Parthasarathy, Surendra Prasad, and S. D. Joshi

Abstract—The finite data estimates of the complex third-order moments of a signal consisting of random harmonics are analysed. Conditions for the third-order stationarity and ergodicity are obtained. Explicit formulas for the estimation error and its variance, as well as their limiting large sample values are derived. A special case relevant to quadratic phase coupling is considered, and these results are stated for this case. The variance is shown to comprise an ergodic and a nonergodic part.

I. INTRODUCTION

The bispectrum has been shown to be a very useful tool in signal processing in the recent past, especially in nonstationary signal processing, gaussian noise cancellation, detecting phase relations among the harmonic components of a signal and in the study and identification of nonlinear and nonminimum phase systems [1]–[4]. One of the issues that arises in the practical implementation of any algorithm that uses the bispectrum or alternately the third-order moments is whether their estimates based on a finite observation interval of the signal are consistent or not. Brillinger or Rosenblatt [5], [6] have obtained fairly general results on the asymptotic statistics of the kth-order spectral estimates. However, a formal treatment of the exact statistics of the bispectral estimates of a harmonic random process is desired.

Manuscript received January 6, 1992; revised January 5, 1993. The authors are with the Department of Electrical Engineering, Indian Institute of Technology, New Delhi, 110016, India.

IEEE Log Number 9213285.