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An all-optical signal processing circuit capable of
parity calculations is demonstrated using a single
integrated all-active SOA-based MZI, exploiting
the integrated SOAs for feedback amplification.

1, Introduction

At present, all signal processing is done in the
electronic domain, Issues ‘such as power con-
sumption, footprint requirements, and cost of
high-speed electronics will make optical solutions
more attractive as the bit rate increases, and thus
simpler signal processing tasks may move into the
optical domain [1]. Significant progress has been
reported on optical signal processing circuits

based on SOAs in fiber interferometers, including
memory functionality through optical feedback
[2-4]. Examples include an all-optical parity
checker based on two TOADs [2], and a UNI
based circulating shift register (CSR) with an
mverter [4]. In both configurations an EDFA
amplifies the output, which is fed back to the
switch as & control signal. Since an EDFA con-
tains many meters of fiber, it defines the latency
of the circujt. This was identified as a problem in
[2], and a bit-differential design was employed, in
which an m-bit input word was injected m times
before the parity of the word could be detected at
the output. This is not realistic in a real system,
and to solve the problem two things must be done:
first, the time-of-flight (TOF) of the switch itseif
must be reduced. The only solution to this prob-
lem is integration, leaving SOA-based interferom-
eters as prime candidates. Secondly, a feedback
amplifier with minimum TOF, but stili with suffi-
cient output power to facilitate switching must be
employed. The natural choice is the SOA, since
ultimately integration with the switch and the
feedback waveguide is desirable to further mini-
mize the total TOF, The replacement of the EDFA
with an SOA has already been demonstrated
using the hybrid UNI [3], reducing the TOF of the
feedback of an all-optical CSR to <10 ns. This
peper reports on what we betieve is the first dem-
onstration of an all-optical signal processing cir-
cuit with feedback, based on a single integrated
all-active MZI switch with (integrated) SOAs as
feedback amplifiers. The circuit has a wide range
olf; a%(plications, e.g. parity calculation and parity
check.

2. Principle, applications, and experiments

Fig. | (a) shows a schematic of an XOR gate with
a feedback, Depending on the TOF of the feed-
back, the circurt has different applications: for a
total delay Dr (incl. TOF through XOR gate) of
one timeslot the circuit is an adjacent-bit parity
calculator/checker, where the 1% bit is XOR’ed
with the 2" the result of which is XOR’ed with
the 3", etc, Assuming instead, that the data con-
sists of slotted packets of fixed number of bits N,
and Dy is adjusted to match the TOF of one
packet, the output will represent the accumulated
parity of a specific (payload) bit. Inserting the
parity-bits into the header will enable perfor-
mance monitoring downstream through re-calcu-
lation of the parity and comparison with header-
bits. Fig. 1 (b) shows the implementation in terms
of the experimental setup: a 10GHz clock at
1556.8nm from a gain-switched DFB laser (GS-
DFB 1), is modulated with a periodic sequence IN
from pulse pattern generator 1 (PPG 1), consisting
of Np, bits at 10Gb/s, and launched into port #1 of
the all-active MZI. The interferometer arms are
1200um long, while all access-SOAs are 400um.
GS-DFB 2 emits a 10GHz clock at 1560.1nm,
which is modulated with a gating sequence of
period N effectively reducing the clock fre-
quency 0? CLK to (10/Ng;) GHz, before it is
injected into port #4 of the device. Without the
feedback loop the output from port #3 represents
the logic funciion IN AND CLK [3), which hasa
period of Pynn=LCM(Np,¥g) (LCM:Least Com-
mon Multigfg? By coupling this result into port
#2 via the feedback loop, exploiting amplification
in SOA #3 and SOA #2, and synchronizing the
bits to the input sequence, the output of the circuit
will represent the adjacent-bit parity calculator if
Ng=1 and Dy=1 (timeslots of 100 ps). This is the
case because the MZ1 works as a 2-input XOR
gate for signals launched into ports #1 and #2 [5].
Alternatively, by setting Ng=Dy~packet length
N, the output will be the accumulated parity of a
specific (payload) bit. In general though, the out-
put will represent the complex logic function
OUT()=(IN(n) XOR (IN(#-Dy) AND
CLK(n-D 7)) AND CLK(n), where » is a bit
counter. By studying this function it can be shown
that for a total delay Dy = XxLCM(Np, NgtT,
where X belongs to N and Y to ¥y, the period
N, ,of the cutput is given by the following, provided that
¥=0 or ¥ can be divided by Ng: N,,,=DxLCM(N),
NVGCD(LCM(Np, Ng), ), where GCD: Greatest
Common Divisor. The requirements c¢orrespond
to the output from port #3 arriving at port #2 syn-

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 04:53:28 EST from IEEE Xplore. Restrictions apply.



QS-DFB |
@ 15568 nm |

Lttt mivtalet TS

TUESDAY AFTERNOON / OFC 2003/VOL. 1/275

Lot OS.DFB 2
7 G e B
Gated clock

Fig. 1. (8) Schematic of XOR. gats with feedback. (b) Experimanial setup used to show proof of concept

chronized to CLK at port #4. If they are they not
fulfilled, the output remains IN AND CLK, since
the effect of the feedback wiil not be sampled by
CLK.

The length of the fiber memory loop was ~ 20 m,
and no attempt was made to reduce it, since this
would require an irreversible customization of a
3-fiber-ribbon, while still not reducing Dy to near
1 timeslot. The TOF of the MZI is ~30ps, which
means that the TOF of the feedback loop should
be ~70ps or ~20ps for adjacent-bit parity calcula-
tion at 10 and 20Gb/s, respectively. Integrating a
waveguide between SOAs #3 and #2 with a delay
of ~20ps is technologically possible. Alterna-
tively, the MZI could be placed in a planar light-
wave circuit (PLC) containing a photonic crystal
waveguide with sufficiently low loss, enabling
very sharp bends. Another speed limiting factor is
the counter-propagation induced transit time
effects [6]. However, successful operation at
20Gb/s in counter propagatien, also in a 1200um
long SOA, has been demonstrated (7).

To visualize the output pulse-pattern on a sam-
pling oscilloscope the peried N, of the pattern
must divide the trigger period M The oscillo-
scope can be triggered by either PPG 1 or PPG 2,
which transmit trigger signals with periods of
LCM(Np.128) and LCM(N;256), respectively.
Since the period Pyyp=1.CM NPJVG) of IN AND
CLK is independent of Dy it 1s much easier to
find a combination of Ny, and Ng, for which Pynp
divides Ny than to divide Np by the complex
expression for N, given above. Satisfying the
requirements for obtaining the general output
period, and visualizing the result on the scope,
implies an optimization of Dy (by means of a
delay line) while changing the periods N and Ng
of the input and gating sequences to meet the trig-
geting requirements. This is an extremely difficult
task, so to visualize the output we have chosen
(NpNg)=(8,3), which fulfills the wriggering
requirements using PPG 2, for an output period of
IN AND CLK of LCM(8,3)=24.

Ioput sequence (I7) Period = 8 bits (0.8 )
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Ganng sigasl (CLEY

LU

(Cutpiediene _ Period =34 bt 24 s) |
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Fig. 2. Input scquence (upper), Gating vequence (middle), snd outnut
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Fig. 2 shows pulse traces of the input sequence
{upper}, the gating sequence {middle), and the
output sequence (lower), which unambiguously
represents IN AND CLK.

Fig. 2 does not by itself prove that the feedback
loop is active, since the output sequence is the
same as if the input to port #2 is disconnected. By
changin% the input to a PRB sequence of word
length 2°-1 the output sequence no longer satis-
fies the triggering requirements, and the output
can only be visualized as an eye diagram. By
varying the delay in the memory we expect to

observe an cpen eye diagram corresponding to IN
AND CLK, when the synchronization between
the gating clock and the feedback input to port #2
i $0 poor that the clock samples completely out-
side the switching window generated by the feed-
back signal. When the synchronization is perfect
however, we expect an open eye diagram corre-
sponding to the non-trivial function OUT(n). In-
between these extremes, the eye diagram will be
closed due to partial synchronization. This is
illustrated in Fig. 3 (a), which shows IN, the feed-
back at port #2 for three different synchroniza-
tions spaced by 100ps, and the clock CLK,
respectively. The white set of feedback-bits in the
second row corresponds to a missynchronization
of 100ps between CLK and the feedback at port
#2, As the delay is decreased towards 0, the eye
will close, as the input to port #2 is misaligned
with IN while the resulting distorted XOR switch-
ing window is sampled by the edge of the clock
puises. However, when the synchronization is
perfect {delay = 0), the eye corresponding to
OUT(n) opens up. This situation is shown with
the gray set of bits in Fig. 3 (a). Decreasing the
delay further, the eye will close again due to mis-
alignment, and opens when the delay is -100ps,
corresponding again to IN AND CLK (black set
of bits). The measured eye diagrams in Fig, 3{b)
correspond to delays of (clockwise): 100, 70, 60,
25, and 0 ps, and successfully demenstrate the
transition from the white to the gray scenario in
Fig. 3 (). This proves that the feedback loop is
active, since no change of eye diagram would
have been observed otherwise. The transition of
eye diagrams in Fig. 3(b), and the fact that a simi-
lar transition occurs as the current to SQOA #2 is
varied, are clear indications that the XOR func-
tion, and thus the feedback function, is working,
and that the output does indeed represent the
accumulating bit parity function. This is also veri-
fied by extensive modeling using a detailed time-
domain model of a MZI introduced in [8].

3, Summary

‘We have proposed and demonstrated an all-opti-
cal signal processing circuit with feedback, con-
sisting of a single all-active MZI, and using the
built-in SOAs as feedback amplifiers. The circuit
processed data at 10Gb/s, but is capable of calen-
lating/checking the parity of successive bits at
bitrates =20Gb/s, because of the low latency of
the MZI combined with the promise of a very
short, integrated, feedback owing to the use of
SOAs for amplification. The scheme can also he
used in a tess demanding scheme for parity check-
ing in packet switched networks.

N

Feedback at port #2

Fig. 3. (a) Sketch of different syrchronizations af port #2: 100
(white), 0 (gray), and —100 ps (biack) delay gomp. to CLK. (b)
Measured tye dlagrams showing delay of 100 pato 0
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A novel photonic random access memory uses
all-optical serial-to-parallel and electrical parallel-
to-optical serial conversion, together with an opti-
cal clock-pulse generator and a silicon-based
memory, and is demonstrated for 40-Gbit/s 16-bit
burst optical packets.

L, Introduction

In future large-capacity optical packet-switched
networks, many kinds of processing functions for
high-speed asynchronous burst optical packets,
such as labe] recognition, label swapping, buffer-
ing, bit-rate conversion, and 3R, may be needed.
However, an increase in the optical packet bit rate
will increase the difficulty in using electronic cir-
cuits, We have proposed a novel self-serial-to-
paraliel converter (self-SPC)'[1] with a single
optical clock pulse generator [2] for label recog-
nition of a burst high-speed optical packet [3],
and demonstrated 1-Thit/s 16-bit SPC [4] and
40-Gbit/s 16-bit 1x4 seif-routing [5]. In self-SPC,
all bits of the incoming serial label are automati-
cally converted 10 parallel bits using the single
optical pulse generated based on the first bit of the
label. This makes label recognition using CMOS
electronic circuits easy. An attractive way to solve
the remaining problems is to develop a photonic
random access memory (RAM) that can process
high-speed burst optical packets. So far, fiber-
loop-type buffer memories have been demon-
strated. They can store an optical packet in the
optical domain, but cannot forward the stored
packet at an arbitrary timing. Silicon electronic
memory devices are very amractive because of
their compact size, extremely large storage
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