

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jan 21, 2022

A Systems Design Course Emphasizing Interfaces

Staunstrup, Jørgen

Published in:
Proceedings of MSE'97

Link to article, DOI:
10.1109/MSE.1997.612537

Publication date:
1997

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Staunstrup, J. (1997). A Systems Design Course Emphasizing Interfaces. In Proceedings of MSE'97 (pp. 36-39).
IEEE. https://doi.org/10.1109/MSE.1997.612537

https://doi.org/10.1109/MSE.1997.612537
https://orbit.dtu.dk/en/publications/da79bfd8-7382-443d-affe-9a4782a522ec
https://doi.org/10.1109/MSE.1997.612537

A Systems Design Course Emphasizing Interfaces

Jeirgen St aunstrup
Department of Information Technology, Building 344,

Technical University of Denmark, DK-2800 Lyngby, Denmark*

Abstract
T h i s paper describes a n experimental course where

s tuden t s develop a (small) s y s t e m focusing on t h e i n -
terfaces between dif ferent componen t s of t he s y s t e m .
T h e componen t s are developed independent ly of each
o ther using W e b based documen ta t ion and focusing
o n techniques f o r modeling and analysis o f interfaces .
T h e s e techniques are supported by prototype tools.

1 Introduction
The potentials of the Internet/Intranet as a means

for sharing and updating common information has a
significant potential for improving communication in
large (systems) design projects. This paper describes
an experimental systems design course where students
develop a (small) system using Web based documen-
tation supported by prototype tools focusing on mod-
eling and checking the interfaces between the different
components of a systems design.

Using Web based documentation in an engineer-
ing/design environment allows participants to share
and update common information such as specifica-
tions, design details, and status information. To fully
utilize Web based information in a systems design en-
vironment it is important to avoid confusion and mis-
interpretation because of ambiguities. In person to
person communication some imprecision in the shared
documentation can be tolerated and compensated by
direct personal interaction. This possibility is reduced
if one relies on Web based (or other written) documen-
tation where lack of precision is not compensated by
direct human interaction.

2 Interface design
A common source of errors and delays in design and

development projects is misunderstandings caused by
inconsistent views of common interfaces. However, in-
sisting that all components have exactly the same view
would be too restrictive. It is important to allow them

'Work supported by the Danish Technical Research Council,
project Codesign. E-mail and WWW address of the author:
jstQit.dtu.dk, http://www.it.dtu.dk/-jst

to have different views as long as these are not in con-
flict. To illustrate this, consider a packet in a commu-
nication protocol. One component may treat this as
an uninterpreted collection of bits to be transmitted
whereas another component may impose a structure
on the packet with different fields indicating addresses,
control, and checksum.

The following is a simple example of an interface.
Consider a device that can be reserved by manipulat-
ing two signals (could be bits in a register, lines on a
bus, variables, or wires): request and grant. Use of
the device follows a simple four-phase protocol where
a request is followed by a grant, after which the device
can be used. When the use has finished, the request is
removed and this is followed by the device removing
the grant. The interface consists of the two signals
plus the four-phase protocol. In Java the interface
could be described as follows:

c l a s s device{
p r i v a t e boolean r e q u e s t ;
p r i v a t e boolean g r a n t ;

1

In addition to the syntactical information specifying
the number, names and types of the signals the inter-
face defines a protocol requiring the pair (request,
grant) to change as follows:

(f a l s e , f a l s e) -> (t r u e , f a l s e) -> (t r u e , t r u e)
-> (f a l s e , t r u e) -> (f a l s e , f a l s e) -> . . .

The device is only assumed to work properly if all use
of it follows this protocol. It is therefore an integral
part of the interface that should be part of the written
documentation.

In a systems design components from very differ-
ent technologies are put together, and the interface
description should be able to bridge the gaps between
a range of technologies such as software (for a general
purpose computer), software (for a specialized con-
troller), various programmable hardware technologies
such as FPGA, special purpose dedicated processors,
synthesizable circuitry and hand-crafted ASICS.

36
0-8186-7996-4/97 $10.00 0 1997 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:10:41 UTC from IEEE Xplore. Restrictions apply.

http://www.it.dtu.dk/-jst

Dial

Keypad

Hook detector

Transfer
Loudspeaker

Microphone

Connect

P

UN1

Figure 1: Overview of telephone switch

-

Memory

/-+

Arbiter

~ -

3 Teaching interface design
One goal of the experimental systems design course

mentioned in this paper is to teach the students the
importance of interface design. Designing and main-
taining an interface require a delicate balance between
specialization that can be exploited in the implemen-
tation of the module and generalization that makes
the component more usable in a range of environ-
ments. A typical mistake made by many engineering
students is to exploit some clever optimization based
on implicit assumptions restricting the interface. By
focusing on the importance of interface design and by
insisting on consistency checks, such optimization can
only be done when they do not violate the assumptions
explicitly stated in the interface specification.

3.1
To illustrate the approach and to allow students to

get some hands-on experience they are asked to design
a simplified digital telephone switch (a simplified ver-
sion of the Tigerswitch [l]). Fig. 1 gives an overview of
the switch that can handle the switching of a number
of phones. There is a separate unit for handling each
phone, this unit has physical parts like the connector
for plugging in the telephone and abstract parts for
doing the necessary computation. The switch has an
arbiter that reserves the buffers needed for commu-
nication and resolves conflicts like two phones calling
the same receiver. Finally, the memory contains the
buffers needed for exchanging data. As illustrated in
Fig. 1, the switch is divided into five kinds of compo-
nents (Dial, Connect, Transfer, Memory, and Arbiter).

Although the switch is quite simple it has a num-
ber of non-trivial interfaces, for example, between the
dial and connect components. Section 3.3 describes
techniques for documenting an interface that enables
the designer to verify that the interface is interpreted

An example: The Telephone Switch

consistently in different components. Type checking
is a first step in that direction.

3.2 A Web based design environment
The design of the telephone exchange is done by a

group of students starting out with an informal verbal
description like the one given above. The students
are divided into groups each designing a separate part
of the exchange. Then an initial interface model is
developed by each group and made available to all
other participants via a set of Web pages. This set-up
has several interesting properties:

U The students work independently of each other.
All documentation is available to everybody at all
times. This is a tremendous strength in an envi-
ronment where participants work on several other
tasks simultaneously (in case of university stu-
dents, it is other courses, but in an industrial en-
vironment it would be other projects), and where
work is done at all times (day and night). Hence,
the need to physically meet to exchange informa-
tion is greatly reduced.

U There is no need to separate documentation doc-
uments from the actual design documents. They
can be one and the same set of files made visible
to others via the Web. By doing this, documen-
tation is always accurate and up to date.

o Ambiguities and misinterpretations are uncovered
by insisting on written documentation as opposed
to informal communication. During the course
students are taught techniques for specifying in-
terfaces and protocols (such as the four-phase
protocol mentioned above).

The importance of interfaces and the penalties paid by
careless treatment of interfaces become painfully clear
in most large systems development projects. However,
it can be difficult to illustrate such problems on smaller
examples of a size that can be handled in the limited
time-frame available in a university course. However,
the Web based set-up for distributed and off-line de-
sign of the telephone switch illustrates the problems
quite well.

3.3 Techniques for checking interfaces
This section briefly sketches a few verification tech-

niques and tools for checking interface consistency.
The interface of a component is t h e externally uisi-
ble behavior such as the syntax and semantic inter-
pretation of its communication with the environment.

37

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:10:41 UTC from IEEE Xplore. Restrictions apply.

An interface model of a component is a rigorous but
possibly partial specification of a components inter-
face. By allowing an int,erface to be partially specified,
one leaves it to the designer to decide what should be
rigorously defined in the interface model. The rigor
makes it possible to decide whether different compo-
nents have a consistent view of their common inter-
face.

A simple form of interface checking is already
routine in most systems design projects using some
form of high level programming language for describ-
ing components. It is common practice to do type-
checking across separately compiled components (the
C header file mechanism is an example which makes it
possible to do a simple check of interface consistency).
However, the idea of type checking common interfaces
can be taken much further [a]. Most modern high-
level languages have a sophisticated module concept
for handling a hierarchical library, the package con-
cept in VHDL and the interface/class constructs in
Java are good examples.

Although these module concepts are useful they
only represent a small step towards what is feasible
in terms of checking interface consistency. Traditional
compilers make syntactical checks ensuring that the
number and type of parameters are consistent. How-
ever, it is also important to avoid semantic inconsis-
tencies such as one module assuming one protocol, for
example, that a high value of a particular value means
“go”, while another module assumes a different proto-
col, e.g., that a high value means stop. The next sec-
tion gives a brief description of how to do such checks.

3.3.1 Interface consistency

This section illustrates a technique for rigorously
checking that different modules have a consistent view
of their common interface.

As an illustration consider two modules X and Y
with a common interface. Assume that I X is a pred-
icate that is satisfies by all the manipulations of the
common interface done by module X . Similarly, I y
is a predicate characterizing the interface manipula-
tions done by Y . In case of the simple arbiter dis-
cussed in section 2 such an interface predicate could
be NOT (grantx AND granty) . In this simple exam-
ple both modules have the same predicate so they are
obviously consistent. However, in general the predi-
cates can be different which raises the possibility of
inconsistency.

In addition to manipulations of the interface, a
module may do local modifications. Assume that
PX and PY are predicates characterizing these. This

means that all changes in module X must satisfy both:
PX AND I X (and similarly for Y) . If PX AND I X
is strong enough to conclude that I y holds, and simi-
larly if Py AND I y is strong enough t o conclude that
I X holds, then we may conclude that neither mod-
ule violates the others requirements on the interface.
Hence, interface verification consists of showing two
implications such as:

P x AND Ix =+ I y

Py AND I y =+ I x

This sufficient condition is discussed in further detail
in [3]. The Web based systems design course men-
tioned several times in this paper uses a suite of pro-
totype tools for specifying and checking interface pred-
icates.

The expressiveness of the notation used for the
predicates is a key issue. The example above used
simple predicates; there are many much more expres-
sive proposals allowing interface predicates to include
tenporal properties. However, the more general the
notation the more difficult it becomes to master it and
to construct tools for automatically checking interface
consistency.

4 Conclusion
The Web based systems design environment and

the prototype interface verification tools sketched in
this paper form the basis of an experimental systems
design course. The students following the course real-
ize the importance of interface design and consistency
checking within a limited time frame and using (rela-
tively) simple examples and tools.

References
[l] Wayne Wolf et. al. Tigerswitch: A case study in

embedded computing system design. In Proceed-
ings from Codes/CASHE ’94, pages 89-96. IEEE
Computer Society Press, September 1994.

[a] John V. Guttag, James J. Horning with S.J. Gar-
land, K.D. Jones, A. Modet, and J.M. Wing.
Larch: Languages and Tools for Formal Specifi-
cation. Springer-Verlag Texts and Monographs in
Computer Science, 1993.

[3] J ~ r g e n Staunstrup and Niels Mellergaard. Local-
ized verification of modular designs. Formal Meth-
ods in System Design, 6(3):295-320, 1995.

38

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:10:41 UTC from IEEE Xplore. Restrictions apply.

