

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 18, 2021

A Unified Component Modeling Approach for Performance Estimation in
Hardware/Software Codesign

Grode, Jesper Nicolai Riis; Madsen, Jan

Published in:
Euromicro Conference, 1998. Proceedings. 24th

Link to article, DOI:
10.1109/EURMIC.1998.711778

Publication date:
1998

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Grode, J. N. R., & Madsen, J. (1998). A Unified Component Modeling Approach for Performance Estimation in
Hardware/Software Codesign. In Euromicro Conference, 1998. Proceedings. 24th (Vol. 1, pp. 65-69). [711778]
IEEE Computer Society Press. https://doi.org/10.1109/EURMIC.1998.711778

https://doi.org/10.1109/EURMIC.1998.711778
https://orbit.dtu.dk/en/publications/55986243-6559-4f97-a306-8e63f0305714
https://doi.org/10.1109/EURMIC.1998.711778

A Unified Component Modeling Approach for Performance Estimation in
HardwareBoftware Codesign

Abstract

Jesper Grode and Jan Madsen
Department of Information Technology

Technical University of Denmark
2800 Lyngby, Denmark

email: Unrgj an] @it.dtu.dk

This paper presents an approach for abstract modeling
ojrhardware/software architectures using Hierarchical Col-
oivd Petri Nets. The approach is able to capture complex
behavioral characteristics often seen in software and hard-
ware architectures, thus it is suitable for high level code-
sign issues such as performance estimation. In this papec
the development of a model of the ARM7 processor [.5] is
described to illustrate the full potential of the modeling ap-
piroach. To further illustrate the approach, a cache model
is also described. The approach and related tools are cur-
rently being implemented in the LYCOS system 1121. De-
tails and the basic characteristics of the approach can be
jbund in [8].

1. Introduction
The complexity of todays electronic digital designs has,

within a range of application areas, dramatically increased
the need for new approaches to system design. System de-
siigners have to handle both hardware and software issues at
the same time, making all components of a system work to-
gether in a feasible manner. In hardwareisoftware codesign,
the design of the hardware and software that, in the end,
will comprise the whole system, is considered concurrently.
This often proves to be a feasible approach that makes the
final system comply with various design constraints such
as tight performance constraints (digital signal processing,
telecom), high demands for low power (portable applica-
tiions), etc.

Figure 1 shows the important stages in the early phase
of a codesign trajectory: The selection of components for
a Target Architecture (TA) and the evaluation of this selec-
tiion with respect to the application that should be imple-
mented on the TA. When a feasible TA has been found,
the codesign trajectory proceeds with synthesis, i.e. code-
generation, hardware generation (high-level synthesis), etc.
The evaluation of the TA can be with respect to different
aspects such as performance estimation of the final system,
power consumption estimation, estimation of memory us-
age, etc. In the final implementation of the system, the ap-
plication is split up and implemented on different parts of

Application Component Library

Figure 1. The early stages in codesign

the TA in order to meet the design constraints. Thus, an
important aspect of the TA evaluation is to investigate the
feasibility of each individual component. The evaluation of
a component's feasibility relies on component models.

This paper presents an abstract hardwarehoftware archi-
tecture modeling approach. In this approach, different com-
ponents like hardware accelerators (HW), micro-processors
(SW), memories, peripheral units, etc., are described using
Hierarchical Colored Petri Nets (HCPNs) [lo]. This has
several advantages over previous approaches:

High flexibility Using a unified modeling approach makes
it possible to combine the models, thus yielding a high
degree of flexibility in the modeling approach. This
makes it possible to build advanced models from more
simple models. E.g. incorporate a memory model in a
micro-processor model, or incorporate a cache-model
in a hardware accelerator model.

Higher accuracy Using HCPNs, the models can be made
arbitrary precise (if inhibitor arcs are included in the
CPNs, the modeling power of Petri Nets are raised to
the level of Turing Machines [141).

Furthermore, using a unified approach to describe the com-
ponent models, the performance estimation scheme be-
comes simpler. This is illustrated in figure 2. If differ-
ent approaches are used to describe different architectures

1089-6503/98 $10.00 0 1998 IEEE
65

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 13:19:47 UTC from IEEE Xplore. Restrictions apply.

(shown as grey boxes), different estimators will have to be
used (shown as grey ellipses). However, when the unified
modeling approach is employed, the estimators merges into
one estimator.

Figure 2. Performance estimation

Previous work within component modeling have tra-
ditionally been divided between HW and SW architec-
tures, that is, between models of hardware accelerators
and processor-like architectures. Traditional compiler tech-
niques [2] and more advanced retargetable techniques [3,
4, 131 can be used to estimate component performance,
but they are all targeted towards processor-like architec-
tures. In [6, 71 a more high-level approach to perfor-
mance estimation is taken. However, this technique is also
guided towards processors. Techniques to describe hard-
ware accelerator-like architectures obviously include lan-
guages like VHDL or Verilog. But they are too low level
to describe the abstract behavior of processor-like archi-
tectures. In the TOSCA framework [151, the processor in-
struction set is modeled using VHDL, but unfortunately, the
model is based on a generic instruction set which means that
it can only model a given class of processors. Currently, the
ACE environment [9] is used in the LYCOS system, but the
approach has some deficiencies concerning the description
of data-dependent behaviors such as pipeline stalls, cache
misses, etc.

In the design environment ADEPT [1 I], component
models are represented as CPNs and using VHDL. The
CPN models are used for analytical approaches to analy-
sis such as dependability analysis and the VHDL models
are used for verification through simulation. However, the
modeling approach is “hardware-near” in the sense that a
predefined library of “hardware-near” basic building blocks
is used to build more advanced models. Our approach diff-
fers in two areas: 1) it is truly unified because it describes
software behavior in the same way as hardware behavior,
and 2) when designing models, a top-down design approach
is used instead of bottom-up as in the ADEPT environment.

To show the full potential of the unified modeling ap-
proach, this paper describes the development of a model of
the ARM7 pipeline processor [1, 51 and of a cache model.
It is, however, important to stress the fact that the approach
can be used to model a wide variety of components often
used in codesign target architectures. Section 2 will briefly
describe the main aspects of the unified component model-
ing approach and how it is used for performance estimation.
Details of the modeling approach can be found in [SI. The
remainder of the paper will be devoted the description of
the ARM7 processor model and the cache model.

2. The HW/SW modeling approach
A component model consists of two parts: an implemen-

tation view and a service model. The implementation view
is the structural view of the component model and is not a
topic for this paper. The service model gives information on
which services the component provides. Asewice is a func-
tional behavior that can execute a given application opera-
tion or function. The service model answers the following
questions:

1. Which services are provided by the component? Ex-
amples of services are: 1) Simple instructions like ad-
dition and multiplication, 2) More complex behaviors
like functions, 3) Other behaviors like ADiDA conver-
sions, memory reads and writes, etc.

2. How is a service requested for execution and when
will it finish execution? How many services can be
requested at the same time?

3. How do concurrently running services interrelate? For
instance, can one service delay another concurrently
running service?

In order to answer these questions, it is necessary first to
take a look at how applications are represented in the over-
all codesign framework. An application is represented as a
hierarchical ControliData Flow Graph (CDFG). The CDFG
is implemented as a tree where the leaves are simple Data
Flow Graphs (DFGs) and the internal nodes represent loops,
conditionals and functional hierarchy. The nodes in the
leave DFGs represent the basic operations of the applica-
tion. As indicated in figure 2, the performance estimation is
based on a schedule of the application. The performance es-
timator will use the following scheme (much like list-based
scheduling) to generate a schedule of each of the DFGs in
the application. These can then be used to produce a perfor-
mance estimate for the whole application:

1. All operations in the DFG are successively requested
to be executed by the services provided by the service
model until all operations have been serviced.

2. In the current cycle, as many operations as possi-
ble are sought to be serviced without violating data-
dependencies between the DFG operations and with-
out exceeding the capacity of the service model. The
capacity of the service model are the currently avail-
able services.

3. When all service requests in the current cycle have
been made, the next cycle is entered by issuing a global
update event. The services just requested have now
started execution, and a new set of service requests can
be made (repeat from 2).

Since the service model indicates when a service finishes
execution, the performance estimator will be able to anno-
tate each node in the DFG with the start-cycle and end-cycle
(a service might take more than one cycle), thus producing
a schedule which can be used as a performance estimate in
the overall target architecture evaluation.

Some details in the above approach, especially the rep-
resentation of timekycles, will be highlighted as the ARM7
service model is presented in the following section.

66

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 13:19:47 UTC from IEEE Xplore. Restrictions apply.

3. The ARM7 Service Model
In order to better understand the ARM7 service model

presented shortly, it would have been obvious to present the
ARM7 architecture itself. However, due to limited space we
will have to refer to the literature [1, 51 and instead, the ar-
chitectural details of the ARM7 processor will be discussed
as we go along.

3.1. Service Model Interface
The purpose of the Service Model Interface (SMINT) is

to provide an interface for the performance estimator dis-
cussed above. The SMINT of the ARM7 is shown in fig-
ure 3. From the instruction set, the provided services are
deduced and for each of these, a token is initially put on the
place Services. This place holds tokens representing each
of the services provided (in this case 16 which are listed
in the dashed box). As it happens, most DFG operations
can be serviced by instructions in the ARM7'. Only the
~ i v i s i o n operation is not directly covered by an ARM7 in-
struction (a solution to this problem is explained later).

The service model works in the following manner. The
performance estimator will successively request operations
to be serviced, simply by putting service-tokens on the place
BerviceInitiation. If the same service is present as a token
in the place Services, the transition Pipeline will become
enabled. In a normal Petri Net, a transition is enabled when
there are tokens on all input places. In CPN there is the ad-
ditional enabling constraint that the tokens has to have the
correct color. As an example, consider what happens if the
service A d d is requested in the service model in figure 3.
A, token (A d d , i n t) is placed on the place ServkeIniti-
ation to request the service2 . Since there is and A d d to-
ken on Services, the transition Pipeline is enabled and can
fire. When the transition fires, the token (A d d , i n t) is
absorbed from ServiceInitiation and the token A d d is ab-
sorbed from Services. In return, the token (A d d , i n t)
is produced by the output arc and placed on ServiceDone.
Now, the performance estimator can see that this service has
completed execution after one cycle. Note that the arc be-
tween Services and the transition is double-headed. This
means that the token which is absorbed when the transition
fires is immediately put back on Services thus modeling the
fact that, in general, a new instruction can be started in each
cycle on a pipelined processor.

'The processors instruction-set is far more complex than just to be rep-
resented by the 16 services shown in figure 3. However, the service model
is, used at an early stage in the design flow, and is used for estimation, not
for actual code generation. Therefore, the key issue is to model the ser-
vices required by any application DFG, thus finding the behavioral models
of the services that can execute all types of DFG operations, if possible.

*The integer part of the token is used to distinguish multiple concur-
rently running services of the same kind).

It is important to note, that the SMINT always looks like
in figure 3, no matter which component is modeled. This
is what makes the approach unified. All component models
look the same to the performance estimator. The only dif-
ference between different service model interfaces is in the
number and types of provided services.

At this level of detail it seems that all instructions take
one cycle to execute. This is however a poor model of the
ARM7 instruction set and therefore the model is refined by
letting the transition Pipeline represent a whole new CPN
as described in the following section.

3.2. Service Model Implementation
The ARM7 processor is implemented using a five stage

pipeline. The first two stages are the fetch and decode
stages. Most data manipulating instructions like addition
(Add) and comparison (Less) are executed using just one
extra cycle, namely the execute stage. Store Register takes
one additional cycle and Load Register and Branch takes
five cycles in all (no delayed branch slot). These facts
are used to construct the Service Model Implementation
(SMIMP) shown in figure 4. Note, how conditional arc-
expressions are used to determine the "path" of a given to-
ken. Also note, that the CPN shown in figure 4 is now the
implementation of the transition shown in figure 3. Thus,
we have obtained a more precise model of the services pro-
vided by the SMINT.

When designing a SMIMP, it is important to know how
the service model is executed during performance estima-
tion. In addition to the normal CPN execution rules [IO],
two rules apply for execution of a service model:

1, All enabled transitions fire on the next update event.

2. If two transitions are mutually exclusively enabled
(only one of them can fire), the transition topologically
closest to ServiceDone is chosen to fire.

In figure 4, the three transitions Exe, Sto and Reg all re-
quire an e token from the place IBus. This means that if
for instance a L o a d service is on ES, enabling Sto, and a
token on DE is enabling Exe, it will be Sto that fires on
the next clock event because Sto is topologically closer to
ServiceDone. This makes the L o a d service proceed in the
pipeline, whereas the service on DE is stalled for one cy-
cle. Thus, the enabling-place IBus models the internal bus
which is used by all instructions in their execute phase. No
two instructions can thus be in the execute phase at the same
time (the execute phase of for instance a L o a d extends to
after the Reg phase).

The place ExBus models the external in-data bus. This
bus is used in each cycle to fetch the opcode of the next in-
struction, but it is also used to load data-values from mem-
ory. Thus, a fetch and a load also excludes each other. If the
situation occurs, the load is allowed to continue, whereas
the fetch is stalled for one cycle (according to rule 2 above).

Note how this approach makes performance estimation
more accurate. Instead of statically determining an estimate
for each service execution time, service execution time will

67

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 13:19:47 UTC from IEEE Xplore. Restrictions apply.

in this approach depend on the basic behavior of each ser-
vice and on the order in which services are requested. In
the ARM7 model, a Sub takes three cycles, but if the Sub
request follows a Load request, the Sub service will take
five cycles (three basic cycles plus two stall cycles).

Two services are not modeled correctly in the model in
figure 4. This is the Mu1 tiplication and Division service.
In the ARM7 processor, multiplication is implemented us-
ing a hardware implemented Booth multiplication algo-
rithm which occupies the execute stage for at most 4 cycles
(worst-case). Division is not implemented in the pipeline
hardware and a call to the Div instruction will result in an
undefined trap that can subsequently be handled by a soft-
ware routine or attached co-processor (which can also be
modeled by a CPN).

The modeling of multiplication on the ARM7 can be
made more correct by refining the Exe transition. The im-
plementation of this transition is shown in figure 5 . All ser-
vices except for the Mu1 t service simply passes through
after one cycle (the transition MT1). The multiplication ser-
vice will however have to pass through all four transitions in
the SMIMP in figure 5. Note, that when a multiplication is
executing, no other instruction can enter the execute phase.
This is ensured because the place IBus is a mirror of the
place IBus in figure 4. Thus, the number of tokens on the
two places is at all times the same.

Note, that when a transition is substituted by another
CPN (Pipeline in figure 3 is substituted by the net in figure 4
and Exe in figure 4 is substituted with the net in figure 5) ,
the substituted transition no longer “exists”. This means
that the substitution mechanism is a replacement strategy
that implements hierarchy. A substituted transition has zero
execution time.

3.3. Modeling a cache
The ARM7 service model can be extended to include

service operand dependencies (instruction operands) so that
for instance addressing modes can be modeled. However,
due to limited space, a smaller example of operand depen-
dencies will be outlined. To do this, a cache service model
is used as an example.

A cache SMIMP is shown in figure 6. Note, that it is not
complete. Only the cache-miss mechanism is shown, but

the cache-hit mechanism is similar.
An operation in a DFG-like addition has two source

operands. If these operands are allocated to memory, a
Load service for each operand will have to be requested
before requesting the Add service. Initially, all possible
operands are placed on NotInCache. When requesting a
Load service, the operand that should be loaded is used as
an additional request token. To request a Load service in
the cache model, the token (Load, in t) is placed on Ser-
viceInitiation while the token (ltaIt, int) is placed on
OperandRequest, assuming that the symbol that should be
loaded is a I!. The integer argument in both tokens should
be the same so that the service request and the correspond-
ing operand request can be related to each other.

If the operand is not on the place InCache, a cache-miss
has occurred and the transition M1 is enabled. When M1
fires, several things occur. Firstly, the cache becomes tem-
porarily disabled because the enable token from CacheNot-
Busy is removed. Secondly, the token a is removed from
NotInCache. Thirdly, a token is put on CacheMiss, indi-
cating a miss. Now, M2 becomes enabled. The place Filled
holds an integer-token that indicates how many free places
are left in the cache (initially, 2 places are free). When
M2 fires, the number of free places is decremented by one,
if it was not already zero. The requested operand is put
on InCache indicating that the operand has been fetched
from memory and is now in the cache. Also, if there were
no more free places in the cache, a random operand (ro)
from InCache is removed and instead put on NotInCache.
The cache is re-enabled by putting an enable-token back on
CacheNotBusy.

In the cache SMIMP, a miss only takes one extra cy-
cle which is not realistic for most caches. To model miss-
penalty and different cache-write strategies (such as write-
back and write-through), the transition M2 could be re-
placed by a CPN that models these aspects. Also, loads and
stores (reads and writes) have different behaviors, which
can also be modeled in the new CPN.

4. Conclusion and future work
This paper has presented a unified hardware/software ar-

chitecture modeling approach using Hierarchical Colored

68

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 13:19:47 UTC from IEEE Xplore. Restrictions apply.

if (s=Muk) then
1Is.r) else empty -

if (SoLoad) andalso (s<>StOre) andalso (s<sBramh) andalso (s<>Mult) then 1ys.r) else empty

if (s = Load) orelse (s = Store) orelse (s = Branch) then l'(s,r) else empty -
__

Figure 5. Service model implementation of the Mu1 t service

ys= Operan R uest

Services

l'LoaU+
1'Store

if (Remain.0) then I'ro
else empty I

(!f (Remam>O) then em-_ --,)
- - -~ -- ~ _ _ _ _ _ ~ ~

Figure 6. A (partial) cache service model implementation

Petri Nets (HCPNs). The modeling approach is used at
the early stages in a hardwarelsoftware codesign trajectory
where the designer has to make important decisions on tar-
get architecture composition and thus needs information on
sub-component performance and behavior.

The paper has illustrated the unified modeling approach
by showing the development of a model of the ARM7
pipeline processor and a cache. These two examples shows
the strengths of the approach, namely more precise behav-
ioral modeling capabilities than previous approaches and a
high degree of flexibility using the hierarchical design tech-
niques of HCPNs.

The approach and related tools are currently being im-
plemented in the LYCOS system. The approach is currently
targeted towards performance estimation. However, by at-
tributing the transitions of the models with estimated power
consumption or transition actions that emit assemblycode,
a power estimator or code-generator can be obtained.

References

[11 Advanced RISC Machines Ltd (ARM). ARM7 Datu Sheet,
Dec 1994. Document number: ARM DDI 0020C.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques and Tools. Addison-Wesley, 1986.

[3] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Mar-
wedel, A. Neumann, and D. Voggenauer. The MIMOLA
Language Version 4.1. Technical report, Lehrstul Informatik
XII, University of Dortmund, September 1994.

[4] M. Freericks. The nML Machine Description Formalism.
Technical report, Forschungsberichte des Fachbereichs In-
formatik, Technische Universitat Berlin, 1991.

[5] Furber. ARM System Architecture. Addison-Wesley, 1996.
[6] J. Gong, D. D. Gajski, and S. Narayan. Software Estimation

Using a Generic-Processor Model. In European Design and
Test Conference, 1995.

[7] J. Gong, D. D. Gajski, and S. Narayan. Software Perfor-
mance Estimation for Pipeline and Superscalar Processors.
Technical report, Department of Information and Computer
Science, University of California, Irvine, 1995.

[8] J. Grode, J. Madsen, and A.-A. Jerraya. Performance Esti-
mation for Hardware/Software Codesign using Hierarchical
Colored Petri Nets. In HPC'98, Special Session on Petri Net
Applications and HPC, Boston, USA, 1998.

[9] B. Hald. Architectural Synthesis Using Flexible Libravy
Modules. PhD thesis, Tech. University of Denmark, 1996.

[IO] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Use, volume 1. Springer, 1992.

[1 I] S. Kumar, R. H. Klenke, J. H. Aylor, B. W. Johnson, R. D.
Williams, and R. Waxman. ADEPT A Unified System
Level Modeling Design Environment. In Proc. of the 1st An-
nual RASSP Conference, Arlington, Virginia, August 1994.

[I21 J. Madsen, J. Grode, P. Knudsen, M. Petersen, and A. Hax-
thausen. LYCOS: the Lyngby Cosynthesis System. Design
Automation or Embedded Systems, 2(2): 195 - 235, 1997.

Embedded Processors. Kluwer Academic Publisher, 1995.
[141 J. L. Peterson. Petri Net Theory and the Modeling of Sys-

tems. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.
[15] D. Sciuto, S. Antoniazzi, A. Balboni, S. Milanese, and

W. Fornaciari. The Role of VHDL within the TOSCA Hard-
ware/Software Codesign Framework. In Proceedings of the
European Design Automation Conference, 1994.

[13] P. Marwede f and G. Goossens, editors. Code Generation for

69

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 13:19:47 UTC from IEEE Xplore. Restrictions apply.

