Single Electrode Heat Effects
I. Peltier Entropies of Gas Electrodes in Carbonate Paste Electrolytes

Jacobsen, Torben; Broers, G. H. J.

Published in:
Journal of The Electrochemical Society

Link to article, DOI:
10.1149/1.2133267

Publication date:
1977

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Single Electrode Heat Effects

I. Peltier Entropies of Gas Electrodes in Carbonate Paste Electrolytes

T. Jacobsen

Fysisk-Kemisk Institut, The Technical University of Denmark, DTH 2800 Lyngby, Denmark

and G. H. J. Broers

Inorganic Chemistry Department, State University at Utrecht, Utrecht, The Netherlands

ABSTRACT

Standard Peltier entropies for the reactions

\[\frac{1}{2} \text{O}_2 + \text{CO}_2 + 2e^- \rightarrow \text{CO}_3^- \]

\[2\text{CO}_2 + 2e^- \rightarrow \text{CO} + \text{CO}_3^- \]

in molten carbonate paste electrolytes at 1000\(^\circ\)K have been determined from thermogalvanic measurements. The results are \(-217\) and \(-118\) J/mole\(^\circ\)K, respectively. No dependence on electrolyte composition is observed. The reversible part of the Peltier entropy for the oxygen electrode reaction is estimated from thermodynamic data and reasonable agreement with the experimental results is found. It is concluded that the main contribution to the Peltier entropy arises from the transition from gaseous to liquid state, whereas the transfer entropies of the ionic species are of minor importance.

In power-producing electrochemical cells, heat is liberated from the electrode reactions and the irreversible losses. In most cells working on solid- or liquid-state reactants, the entropy of reaction will in practice be of minor importance compared to the contributions from ohmic resistance and electrode polarization. However, if the electrode reactions have a net consumption or production of gaseous components, the entropy change will be considerable, due to the transition of state, and has to be taken into account. On the basis of the over-all heat evolved in a single cell during load, the temperature distribution in fuel cell batteries has been treated (1-3), but so far little attention has been paid to the single electrode heat balance and temperature gradients inside single cells caused by nonsymmetrical heat evolution at cathode and anode.

The heat evolved at a reversible electrode is determined by the Peltier entropy of the electrode reaction, which may be found from thermogalvanic measurements. Previously, the Peltier entropies of high temperature gas electrodes in ionic conducting oxides like ZrO\(_2\) (4) and ThO\(_2\) (5) have been investigated, and we have reported some preliminary results for carbonate electrolytes (6), which still left some uncertainty about the dependence on temperature and carbonate composition.

In this paper, the Peltier entropies of the \(\text{O}_2 + \text{CO}_2\) and the \(\text{CO} + \text{CO}_2\) electrode are determined. In part II of this paper, the heat evolved at the electrode during the irreversible passage of current is related to the Peltier entropies and some effects of the temperature gradients created are discussed.

Theory

For the thermogalvanic cell involving a mixture of molten carbonates

\[\text{Pt}(T) \text{CO} + \text{CO}_2 \text{Me}_2\text{CO}_3 \text{Me}_2\text{CO}_3 \text{Pt}(T + \Delta T) \]

with the electrode reaction

\[\frac{1}{2} \text{O}_2 + \text{CO}_2 + 2e^- \rightarrow \text{CO}_3^- \]

the Peltier entropy \(\Delta S_P(\text{O}_2, \text{CO}_2)\) may be determined from the thermogalvanic force \(\Delta TGF\) by the equation (7)

\[2F \frac{\Delta TGF}{\Delta T} = \Delta S_P(\text{O}_2, \text{CO}_2) = \Delta S_P(\text{CO}_2) + R \ln p(\text{O}_2) \frac{1}{2} p(\text{CO}_2) \]

where the standard Peltier entropy is given by

\[\Delta S_P(\text{CO}_2) = [S_0(\text{CO}_3^-) - \frac{1}{2} S_0(\text{O}_2) - S_0(\text{CO}_2) - 2S_0(e^-)] + \Delta S \]

The first term in Eq. (3) is the reversible entropy of transfer, whereas \(\Delta S\) is the entropy of transfer corresponding to the homogeneous part of the thermogalvanic force, i.e., the thermal diffusion potential in the electrolyte and the electrode leads. \(\Delta S\) is composed of the transfer entropies of the species carrying the current according to

\[\Delta S = t(\text{CO}_3^-) S(\text{CO}_3^-) - 2t(\text{Me}^+) S(\text{Me}^+) - 2S(e^-) \]

These excess entropies of transfer arise from the fact that transported particles are not average particles but a selected ensemble, thus carrying an excess entropy, the transfer entropy (8). Compared to the equilibrium term in Eq. (3), involving a transition from gaseous to liquid state, the transfer term (4) is expected to be of secondary importance.

For the cell

\[\text{Pt}(T) \text{CO} + \text{CO}_2 \text{Me}_2\text{CO}_3 \text{CO} + \text{CO}_2 \text{Pt}(T + \Delta T) \]

having the electrode reaction

\[2\text{CO}_2 + 2e^- \rightarrow \text{CO} + \text{CO}_3^- \]

we obtain the expressions

1 The entropy of transfer \(\hat{S}\) is related to the transported entropy \(S^*\) used in Ref. (7) by the equation \(\hat{S} = S^* - S\).

2 It is noted that since the single electrode potential is not a measurable quantity, the numerical separation of the thermal emf into contributions from the homogeneous and heterogeneous transfer processes can only be performed on the basis of a convention.
This yields in combination with [2] and [8]

\[\Delta S \text{ is also determined by Eq. [4].} \]

\[\Delta S_{p}(CO, CO_{2}) - \Delta S_{p}(O_{2}, CO) = S_{0}(CO) - \frac{1}{2} S_{0}(O_{2}) - \frac{1}{2} S_{0}(CO) \] (8)

which shows that Peltier entropies of different electrodes in the same media are related by well-known thermodynamic magnitudes, not involving single ion or transport properties.

When a cell similar to [B] contains an equilibrated mixture of "C-H-O" gases (such as reformed hydrocarbons), the only species of importance above the carbon deposition temperature are the gases H_{2}, CO, CH_{4}, H_{2}O, and CO_{2} (9). Their equilibrium partial pressures are given by the reactions

\[H_{2} + CO_{2} \rightleftharpoons H_{2}O + CO \] (9)

\[K_s = \frac{p(H_2) p(CO)}{p(H_2O) p(CO_2)} \] (10)

\[4H_{2} + CO_{2} \rightleftharpoons CH_{4} + 2H_2O \] (11)

\[K_m = \frac{p(CH_4) p(H_2O)^2}{p(H_2)^4 p(CO_2)} \] (12)

The Peltier entropy of this cell can be found from simple thermodynamic equilibrium considerations for the isothermal cell

(a) Pt(T)|C-H-O|Me_{2}CO_{3}|O_{2} + CO_{2}|Pt(T) (c) [C]

The "C-H-O" electrode reaction is a superposition of CO, H_{2}, and CH_{4} oxidation reactions. In the case of an equilibrated gas mixture, these reactions will be linear combinations of the CO equilibrium [5] and the gas phase equilibria [9] and [11]. The Peltier entropy for the mixed "C-H-O" electrode reaction can, therefore, be calculated from the temperature dependence of the emf on the basis of the CO electrode reaction [5] when the change in gas phase composition is taken into account.

\[\Delta S = 2F \frac{dE}{dT} = \Delta S_{p}(O_{2}, CO_{2}) - \Delta S_{p}(C-H-O) \]

\[\Delta S = - \frac{1}{2} S_{0}(O_{2}) - S_{0}(CO) + S_{0}(CO_{2}) + R \ln \left[\frac{p(O_2) p(CO)}{p(H_2) p(CO_2)} \right] + R \frac{d}{dT} \left[\ln \left(\frac{p(CO)}{p(CO)^2} \right) \right] \] (13)

This yields in combination with [2] and [8]

\[\Delta S_{p}(C-H-O) = \Delta S_{p}^{\rho}(CO, CO_{2}) - \Delta S_{p}^{\rho}(O_{2}, CO_{2}) \]

\[- R \ln \left(\frac{p(CO)}{p(CO)^2} \right) - RT \frac{d}{dT} \ln \left(\frac{p(CO)}{p(CO)^2} \right) \] (14)

Equation (14) reduces to [6] for the pure CO, CO_{2} cell [B]. The last two terms in (14) can be calculated from the equilibrium constants K_{s} and K_{m} and the corresponding standard reaction enthalpies \(\Delta H_{p}^{\rho} \) and \(\Delta H_{m}^{\rho} \) when C/H/O atomic ratios of the fuel gas are given. An example is given in part II of this paper.

Experimental

Figure 1 shows the experimental arrangements. The electrolyte, a rather stiff paste of 45 weight percent (w/o) Me_{2}CO_{3} and 55 w/o MgO prepared by careful mixing of the dry powders, heating overnight at 750°C in an Al_{2}O_{3} crucible, and subsequent grinding in an alumina ball mill, is pressed into an alumina tube at a temperature just above the melting point.

The platinum electrodes are fixed at the end of the thermocouple protection tubes. During the initial heating of the oven, when the temperature had just passed the melting point of the electrolyte, the thermocouples were pressed against the electrolyte in order to ensure a proper electrode-electrolyte contact.

The gas mixtures were fed to the center of the thermocouple protection tubes. Utilizing the zero suppression feature of these instruments, full scale deflections of 100 \mu V for TGFP and 10 \mu V for TEF are obtained on the recorder.

The experimental procedure is as follows: 45 min after a change of heating coil voltage, \(\Delta TGF \) and \(\Delta TEF \) are recorded for 15 min. Before and after the recording the temperature is read. The recordings are made in order to eliminate the effect of minor instabilities and drift due to voltage fluctuations in the mains. The voltage of the colder heating coil is then increased, thus creating a reverse temperature difference of approximately 15°C and a higher average temperature. After a 45 min equilibration period, the next set of readings is made. When the upper temperature limit of 900°C is reached, the measurements are repeated for decreasing temperature levels till the point of solidification, or in case of CO-CO_{2} mixtures to the carbon deposition temperature of about 760°C (9).

Because of the thermocouple-electrode distance and the rather high thermal conductivity of the alumina tubes, the measured temperature differences are about 10% larger than the actual electrode temperature differences. To correct for this systematization error, the electrolyte is substituted by a Pt 10% Rh wire embedded in MgO and contacting the Pt electrodes. The thermoelectric force of this configurational thermocouple is then determined using the procedure described above. A correction function is calculated from literature data.

Computation procedure

The experimental procedure where only one set of \(\Delta TGF \), \(\Delta TEF \), and TEF readings is obtained at each temperature makes the calculation of the Seebeck
coefficient more complex than with the usual technique, where the Seebeck coefficient is calculated from the slope of a ΔTGF vs. ΔTEF plot at a fixed temperature. On the other hand, the method yields more information from the experimental effort, especially with respect to the temperature dependence.

The relation between the thermogalvanic force and the thermoelectric force of the thermocouples may be written as

$$\Delta TGF = \frac{e_E}{e_T'} [\Delta TEF + A(T)]$$ \[15\]

where e_E and e_T' are the Seebeck coefficients of the electrode and the apparent Seebeck coefficient of the thermocouples containing the systematical temperature error mentioned above. $A(T)$ is the temperature dependent offset error of the thermocouples.

If $e_T'(T)$ and $A(T)$ are expanded in power series with respect to temperature

$$e_E = \sum_{i=0}^{\infty} e_i(T - T_0) i$$ \[16\]

$$A = \sum_{i=0}^{\infty} a_i(T - T_0) i$$ \[17\]

Eq. [15] may be rewritten

$$\Delta TGF = \frac{1}{e_T'} \left[\Delta TEF \sum_{i=0}^{\infty} e_i(T - T_0) \right]$$

$$+ \sum_{i=0}^{\infty} e_i \sum_{j=0}^{\infty} a_j(T - T_0) j + 1 \right]$$ \[18\]

This equation shows how $e_T'(T)$ may be determined from a multiple regression analysis with respect to $\Delta TEF (T - T_0), i = 0, 1, 2, \ldots$ and $(T - T_0), j = 0, 1, 2, \ldots$ when $e_T'(T)$ is known.

$e_T'(T)$ may be obtained from the calibration experiments, where the thermogalvanic cell is substituted by a differential Pt/Pt 10% Rh thermocouple. In this case the thermoelectric coefficient of Pt/Pt 10% Rh relative to e_T' may be determined from Eq. [18]. Comparing this power series with literature data (10), also expanded in a power series, yields an analytical expression for e_T' and allows the calculation of the Seebeck coefficients for the electrodes on the basis of Eq. [18].

Results and Discussion

In all cases, the colder electrode constituted the experimental positive pole of the cell. Tables I and II give the experimental Seebeck coefficients and the standard Peltier entropies for the $O_2 + CO_2$ and the $CO + CO_2$ electrode. No temperature dependence is observed in any case. It is noted that the deviations between values obtained for identical electrolytes are larger than expected from the standard deviations calculated in the regression analysis. This indicates that the main error source is the reproduction from one experiment to another of electrode and thermocouple position inside the oven. Thus no significant dependence of the Peltier entropy on carbonate composition is found. This very small dependence of the Peltier entropy on the melt composition is expected, since the main entropy contribution originates from the transition from gaseous to liquid state, whereas the change with composition is in the order of mixing entropies.

As a check on the experimental values, the difference between the Peltier entropies for the two electrodes may, according to Eq. [8], be calculated and compared to literature data. Using the mean values in Tables I and II we obtain

$$S^0(CO_2) - \frac{1}{2} S^0(O_2) - S^0(CO)$$

$$= \Delta S^{p=0}(CO_2 - O_2)$$

$$= -217 + 118 = -99 \text{ J/mole} \cdot \text{K}$$

compared to the value of $-87.4 \text{ J/mole} \cdot \text{K}$ at 1000 K given in (11). This discrepancy is somewhat larger than expected from the standard deviations. The CO + CO_2 electrode is, in contrast to the O_2 + CO_2 electrode, very sensitive to minor changes in gas phase composition, which may be caused by convective mixing at the electrodes with partly decomposed gas from colder parts of the oven. Thus, the Peltier entropy determined for the CO + CO_2 electrode is less reliable and may be responsible for the deviation.

The reversible part of the Peltier entropy can be estimated on the basis of thermodynamic data. However, in order to obtain the entropy of the carbonate ion, it is necessary to know the contributions from vibration and rotation of the polyatomic ion. This difficulty may be avoided if, for example, the oxygen electrode reaction [1] is separated into the reactions

$$\frac{1}{2} O_2 + 2e^- \rightarrow O^-$$ \[19\]

$$O^- + CO_2 \rightarrow CO_3^- \quad (\text{solvation of } O^-)$$ \[20\]

From literature data the entropies of alkali oxides in the liquid state have been estimated as a function of temperature (12). Distributing the entropy equally among the ions and neglecting the mixing entropy, we obtain for an equimolar mixture of LiO and NaO at 1000 K the value

$$S^0(O^-) = \frac{(152 + 204)}{6} = 59 \text{ J/mole} \cdot \text{K}$$

For the combination of O^- and CO_2, Andersen (12, 13) has determined the free energy and entropy change in different carbonate melts. Using the value for (Li,Na)_2CO_3 gives

$$\Delta S^p(2O) = -126 \text{ J/mole} \cdot \text{K}$$

which yields the estimate on the entropy of the carbonate ion in the liquid state

$$S^0(CO_3^-) = \Delta S^p(2O) + S^0(CO_2) + S^0(O^-)$$

$$= -126 + 269 + 59 = 202 \text{ J/mole} \cdot \text{K}$$

The transported entropy, $S^e(e^-)$, of the electron is calculated from the absolute thermoelectric force of Pt at 1000 K (10)

$$S^e(e^-) = S^p(e^-) + \frac{S^p(e^-)}{17.1} \times 96,500$$

$$= 1.65 \text{ J/mole} \cdot \text{K}$$

The reversible part of the Peltier entropy is now calculated as

Table I. Peltier entropy for the reaction $1/2O_2 + CO_2 + 2e^- \rightarrow CO_3^-$ in the temperature range 800°-1150°K

<table>
<thead>
<tr>
<th>Electrolyte equimolar</th>
<th>mV/K</th>
<th>Std dev. mV/K</th>
<th>pCO_2 atm</th>
<th>pCO atm</th>
<th>$\Delta S^e, J/\text{mole} \cdot \text{K}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LLNa)_2CO_3</td>
<td>-1.10</td>
<td>0.02</td>
<td>0.65</td>
<td>0.35</td>
<td>-223</td>
</tr>
<tr>
<td>(LLNa)_2CO_3</td>
<td>-1.14</td>
<td>0.07</td>
<td>0.65</td>
<td>0.35</td>
<td>-218</td>
</tr>
<tr>
<td>(LLK)_2CO_3</td>
<td>-1.14</td>
<td>0.01</td>
<td>0.65</td>
<td>0.35</td>
<td>-213</td>
</tr>
<tr>
<td>(LLK)_2CO_3</td>
<td>-1.14</td>
<td>0.02</td>
<td>0.67</td>
<td>0.33</td>
<td>-212</td>
</tr>
<tr>
<td>(LLK)_2CO_3</td>
<td>-1.20</td>
<td>0.02</td>
<td>0.65</td>
<td>0.35</td>
<td>-223</td>
</tr>
<tr>
<td>Average</td>
<td>-1.20</td>
<td>0.02</td>
<td>0.65</td>
<td>0.35</td>
<td>-217</td>
</tr>
</tbody>
</table>

Table II. Peltier entropy for the reaction $2CO_2 + 2e^- \rightarrow CO + CO_3^-$ in the temperature range 1050°-1150°K

<table>
<thead>
<tr>
<th>Electrolyte equimolar</th>
<th>mV/K</th>
<th>Std dev. mV/K</th>
<th>pCO_2 atm</th>
<th>pCO atm</th>
<th>$\Delta S^e, J/\text{mole} \cdot \text{K}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LLNa)_2CO_3</td>
<td>-0.66</td>
<td>0.02</td>
<td>0.50</td>
<td>0.50</td>
<td>-123</td>
</tr>
<tr>
<td>(LLK)_2CO_3</td>
<td>-0.64</td>
<td>0.02</td>
<td>0.55</td>
<td>0.45</td>
<td>-119</td>
</tr>
<tr>
<td>(LLK)_2CO_3</td>
<td>-0.63</td>
<td>0.01</td>
<td>0.50</td>
<td>0.50</td>
<td>-116</td>
</tr>
<tr>
<td>Average</td>
<td>-0.63</td>
<td>0.03</td>
<td>0.50</td>
<td>0.50</td>
<td>-115</td>
</tr>
</tbody>
</table>
\[\Delta S_{P, RT}^o(O_2, CO_2) = S^o(CO_2^\text{--}) - \left(\frac{1}{2} S^o(O_2) \right) \]

\[= S^o(CO_2) - 2S^e(e^-) \approx 181 \text{ J/mole K} \]

which is rather close to the experimental Peltier entropy of \(-217 \text{ J/mole K}\). The uncertainties introduced by the assumptions made above may readily account for the discrepancy. Thus, as expected the entropies of transfer only constitute a minor part of the Peltier entropies of gas electrodes in molten carbonates.

Acknowledgments

The authors are indebted to F. Haslev and L. Christiansen for their participation in the experimental work. The many valuable discussions with B. K. Andersen and other colleagues are greatly appreciated. This work has been supported by Statens Teknisk Vidneskabelige Fond.

Manuscript submitted May 27, 1976; revised manuscript received Aug. 1, 1976. This was Paper 171 presented at the New York, New York, Meeting of the Society, May 4-9, 1969.

Any discussion of this paper will appear in a Discussion Section to be published in the December 1977 JOURNAL. All discussions for the December 1977 Discussion Section should be submitted by Aug. 1, 1977.

LIST OF SYMBOLS

- \(E \): electromotive force (V)
- \(F \): Faraday constant (C/mole)
- \(\Delta H \): enthalpy of reaction (J/mole)
- \(p \): partial pressure (atm)
- \(t \): transport number
- \(T \): temperature (°K)
- \(\text{TEF} \): thermoelectric force (V)
- \(\text{TGF} \): thermogalvanic force (V)
- \(S \): entropy (J/mole K)
- \(\Delta S^p \): Peltier entropy (J/mole K)
- \(S^* \): entropy of transported species (J/mole K)
- \(\xi \): excess entropy of transported species (J/mole K)
- \(r \): Seebeck coefficient (V/°K)
- \(K \): equilibrium constant

REFERENCES

Abstract

The heat evolution at a single irreversibly working electrode is treated on the basis of the Brønsted heat principle. The resulting equation

\[\frac{dQ}{dt} = \left(T \frac{\Delta S^p}{nF} + \eta \right)t \]

is analogous to the expression for the total heat evolution in a galvanic cell with the exception that \(-\Delta S\) is substituted by the Peltier entropy, \(\Delta S^p\), of the electrode reaction. \(\eta\) is the overvoltage at the electrode. This equation is applied to a high temperature carbonate fuel cell. It is shown that the Peltier entropy term by far exceeds the heat production due to the irreversible losses, and that the main part of heat evolved at the cathode is reabsorbed at the anode.

Finally, effects like thermal corrosion, caused by internal temperature gradients, are discussed.

Key words: heat evolution, molten carbonate fuel cells, Peltier entropy, thermal corrosion.

Single Electrode Heat Effects

II. Single Electrode Heat Evolution

T. Jacobsen

Fysisk-Kemisk Institut, The Technical University of Denmark, DTH 2800 Lyngby, Denmark

and G. H. J. Broers

Inorganic Chemistry Department, State University at Utrecht, Utrecht, The Netherlands

Abstract

The heat evolution at a single irreversibly working electrode is treated on the basis of the Brønsted heat principle. The resulting equation

\[\frac{dQ}{dt} = \left(T \frac{\Delta S^p}{nF} + \eta \right)t \]

is analogous to the expression for the total heat evolution in a galvanic cell with the exception that \(-\Delta S\) is substituted by the Peltier entropy, \(\Delta S^p\), of the electrode reaction. \(\eta\) is the overvoltage at the electrode. This equation is applied to a high temperature carbonate fuel cell. It is shown that the Peltier entropy term by far exceeds the heat production due to the irreversible losses, and that the main part of heat evolved at the cathode is reabsorbed at the anode. Finally, effects like thermal corrosion, caused by internal temperature gradients, are discussed.

Most treatments of heat effects in galvanic cells are based on the over-all heat evolution calculated from the reversible heat evolution, \(-\Delta S\), and the polarization losses. So far, little attention has been paid to the single electrode heat evolution. In galvanic cells working on solid- or liquid-state reactants and products, the main heat evolution is caused by the polarization losses, whereas in most fuel cells involving a net consumption of gaseous components, the single electrode reactions contribute considerably to the heat evolution at moderate loads. They may give rise to rather large temperature gradients inside the cell. In porous gas diffusion electrodes, temperature gradients may cause convection in the electrolyte film through gradients in