

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 02, 2021

Design of Embedded Real-time Systems: Developing a Method for Practical Software
Engineering

Løvengreen, Hans Henrik; Ravn, Anders P.; Rischel, Hans

Published in:
IEEE International Conference on Computer Systems and Software Engineering

Link to article, DOI:
10.1109/CMPEUR.1990.113649

Publication date:
1990

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Løvengreen, H. H., Ravn, A. P., & Rischel, H. (1990). Design of Embedded Real-time Systems: Developing a
Method for Practical Software Engineering. In IEEE International Conference on Computer Systems and
Software Engineering (pp. 385-390). IEEE. https://doi.org/10.1109/CMPEUR.1990.113649

https://doi.org/10.1109/CMPEUR.1990.113649
https://orbit.dtu.dk/en/publications/8e8ff0a5-cda5-426c-8f3b-43c526ed3be0
https://doi.org/10.1109/CMPEUR.1990.113649

Design of embedded, real-time systems:
Developing a method for practical software engineering'

Hans Henrik LGvengreen, Anders P. Ravn and Hans Rischel

Department of Computer Science,
Technical University of Denmark,

DK-2800 Lyngby, Denmark

Abstract
The methodological issues and practical problems in de-
velopment and industrial use of a theory-based design
method for embedded, real-time systems are discussed.
The method has been used for several years in a num-
ber of smaller industries, which develop both electronics
and software for a professional market. The design is ex-
pressed in a notation for communicating sequential pro-
cesses; while data types and operations are expressed in a
not,ation built on mathematical set theory. Our main con-
tribution has been to delineate an order in which to use the
notations, a technique for deriving states and operations,
and systematic checks of a design with respect to system
requirements.

1 Introduction
During the last decade theories of communicating processes
have matured [6,13], and in the same period mathemati-
cally based notations for describing data and operations on
data [2,10,19] have been used, though not widely accepted
in software development. As researchers at a technical uni-
versity we believe that use of these and presumably other
theories is an important factor in making software creation
a professional engineering discipline.

Our beliefs were put to the test, when we in 1984 were
asked by a company manufacturing high-quality electronic
instrument,s whether we had any good ideas about "de-
sign tools" for embedded software systems. Their develop-
ment teams were worried because 70 % of their develop-
ment costs went to software development, an area without
professional standards. Given this challenge, we produced
a one week course for engineers. The course was developed
for an independent institution - the Danish Institute of
Technology and we benefited from their experience with
the field. The course was tuned over a period of one year
by giving it to development engineers, and then turned
over to the staff of the Institute of Technology. The ma-
terial [18] is used in our own teaching. Although it, is not
a standard in any company we know of, it is used by a
growing number of development teams. In ea.rly 1988 it
was proposed to build a too1 to support the method, and 8
companies agreed to make an initial payment without any
guarantee for delivery. This tool is now developed by a
consortium, and is to be completed this year.

'This work has been partially supported by the Danish National
Agency of Technology. Some of the results were published in [16]

CH2867-0/90/0000/0385$01 .OO 0 1990 IEEE

The main part of this paper concerns methodology, i.e.
the issues in making a method, and our solutions to
t,he problems of integrating functional and temporal con-
straints in a design, and how a design can be checked
against requirements. These are contained in a section
which outlines our methodological decisions and our the-
ory base, and a section with a simplified case study to
illustrate the techniques of the method. A final section
discusses methodology, techniques and theory in a closer
comparison with Jackson System Development (JSD) [SI,
which was an initial inspiration for us.

2 Methodology
During a design activity a number of decisions are made
and written down. The design is the produced docu-
ment(s). The design method we want should provide:

A defined sequence of stages. In each stage the de-
signer decides on a solution to a limited aspect of the
problem or evaluate a solution.

Notations to write down decisions.

Checks, i.e. means of checking functionality and per-
formance of a design against requirements.

2.1 Stages
What to consider important aspects a t a certain point of
the design activity is not a question of notation or the-
ory. Our delimitation of stages is based on pragmatics -
good practice - within the application area. Fortunately
we had a well-defined application area and could build on
traditions, parts of which have been formulated in [5] and
more specifically for the particular application area in [3].
The outcome was the following sequence of stages:

1. Interface Definition defining the events which form

2. Event Structuring defining the behaviour of the
system in terms of a partial, temporal ordering of
events.

3. Program Structuring defining the relationship of

4. Functionality Check check of interface to entities.

5. Timing Analysis estimating performance.

the interface to the system.

output values to input values.

385

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 05:14 from IEEE Xplore. Restrictions apply.

6. Functional Decomposition arranging functions in

The selected sequence of stages represent three major de-
cisions:

1. To assume that the requirements are known by the
designer. At the time we found no sa.tisfactory the-
ory on which to base an analysis of the requirements
in order to produce a rigorous specification. The so-
lution we offer is to proceed with the design and then
check i t against the requirements a t later stages.

2. To suppress knowledge of functional relationships be-
tween event values until the (temporal) behaviour has
been defined. This reflects that in the application
domain, synchronization of events is a more intricate
problem than design of the sequential operations on
state variables.

3. To postpone performance considerations till the func-
tionality is believed to be correct. Furthermore only
to add input-output buffers or parallel algorithms if
analysis indicates that it is required. By this line of
action a considerable amount of unnecessary, com-
plex mechanisms in the resulting design is avoided.

modules.

2.2 Notation
Notation is needed to write down the design. Our main
criteria for the syntaz of the notation is brevity. This made
us choose linear, textual notations as the designers main
working tool. Diagrams to summarize a design can be de-
rived from the text. The rationale for brevity is that a de-
sign document has to be rewritten many times and is read
many more times. In order to make the method useful for
real problems our goal was that the method should pro-
duce documents which are an order of magnitude smaller
than the resulting high level programs. From completed
projects we can estimate that we have achieved a factor of
6 - which we find acceptable.

Another concern is that a notation should have a clear
meaning in order to understand the design and its conse-
quences, and be able to manipulate the design when check-
ing it. We have tried to insist that the semantics of our
notations should be rooted in accepted computer science
theory. Thus we rely on the work of [11,4]. In analysis of
time performance of concurrent processes, we did not find
a satisfactory solution in the available theory. Here we had
to rely on informal definitions. One point worth noticing is
that the method as presented to the user does not include
formal semantics for the notations. It is a responsibility of
the producers of notations and not a concern of the users.

2.3 Checking functionality and perfor-
mance

A good design team is very intent on getting things right;
but in a larger design misconceptions of informal require-
ments do occur. In the absence of a formal specification, we
decided that checks on a design should be based on system-
atic manipulation of the formulae of the design document.
The idea being that a software engineer, like any other en-
gineer, checks a design by computing certain consequences
of the design.

3 Application of the method
In the following we describe the method in more detail to
illustrate techniques for resolving design decisions within
each stage. The description is based on a small, simplified
case. The requirements for the case system are:

An embedded system used in an aviation con-
trol center (ACC) should have the following
functions :
A radar is connected to the computer system.
The radar produces coordinates for observed
objects (00-coordinates), which are collected
by the system and classified as positions for new
or already-known flying objects (FO’s). The
FO’s together with identifying codes (FOid’s)
are shown on a graphic display. The operator
may enter informations for FO’s and the infor-
mation is then shown on the display alongside
the FO’s. The system should handle up to 500
FO’s at the same time, refreshing the display
two times a second.

3.1 Interface Definition
The interface of the computer system to its environment,
in which it is embedded, is characterized by the smallest
units of atomic interaction, called events. Events are de-
scribed by named event (classes), and are classified as input
or output according to the flow of data. The domain (i.e.
contents or abstract structure) of the data of each event
is defined by a formula. Events define the observable in-
terface to named entities in the environment. There is no
concept of internal events. Internal events are avoided be-
cause they would reflect a premature functional decompo-
sition. Premature, because the need for certain functions
is only known when input-output relations are examined
in the Program Structuring stage. For the ACC-system we
arrive at the list shown on figure 1.

Domains are defined by formulas using basic prede-
fined domains (BOOLEAN, TOKEN, NUMBER, VOID) and
rules for building composite domains (Cartesian product, se-
quences, sets, etc.). Notations and concepts are borrowed
from VDM [2], [lo].

3.2 Event Structuring
The temporal behaviour of the system is described by
the partial ordering of events. Ordered events or (event
alternatives) constitute event sequences. Each event se-
quence is described by an event ezpcpression, using a regular-
expression-like notation (sequencing ‘;’, choice ‘U’, repeti-
tion I * ’) . The mazimum event sequences are written down
and given names.

For the ACC-system, we may arrive at the event se-
quences

collection = 00*
displaying = (Halfsec ; FOout *) *
operation = FOinfo *

In the check stage we shall discuss whether these in fact
reflect the requirements.

386

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 05:14 from IEEE Xplore. Restrictions apply.

TnDut event Domain Comment

00 Airpos Observed object with

FOinfo FOid x Info Info from operator
Airpos = SEQ OF NUMBER

FOid = TOKEN
Info = SET OF TOKEN

position

Halfsec VOID Half-second signal

Output event Domain Comment

FOout FOdisp FO to display
FOdisp = Dispos x FOid x Info
Dispos = NUMBER x NUMBER

Entities: Radar, Operator, Display, Clock

Figure 1: Interface Definition

In the next stage (Program Structuring) each event. se-
quence determines a sequential process. We use a set of
maximal sequences in order to minimize dynamic synchro-
nization among the resulting set of parallel processes. Min-
imal synchronization is attractive because it reduces the
potential for deadlock, and makes analysis of timing less
dependent on the scheduler. Besides, it is also most ef-
ficient for a niultiprogramming implementation. The set
of parallel processes reflect requirements for independent
execution of event sequences - a parallelism which is bet-
ter kept, because it can only be eliminat,ed by use of in-
terleaving choices, which usually leads to a combinatorial
explosion of the control structure of the program.

The notation does not contain a parallel operator, be-
cause nested parallelism would hinder the checks of func-
tionality employed. This does, hovewer, not seem to be any
practical restriction on describing the required behaviour
for embedded systems.

3.3 Program Structuring
Event expressions are translated to an abstract program
for a process following the well-known construction of a
recognizing state machine for a regular grammar (or the
JSP/JSD translation from syntactical structure to program
structure, cf. [7], 181). Given the control structure and the
input-output operations, the required computations and in-
ternal states are derived and added to the abstract program
by the following technique:

Each output value and internal choice in the program
is defined as the result of a named function. The input
parameters to this function can be: The latest input value
for an event - or a state, representing accumulated input
values (when required by the computation).

If a state is introduced, functions to accumulate input
values are named and introduced in the abstract program
immediately after the input operation. The domain of the
function is the Cartesian product of the state type and the
event type, and the range is the state type.

When the functions operating on a given state are de-
fined on events of a single process, the state is local, oth-

erwise it is shared. Each shared state is placed in a state
handler which is independent of the processes. The state
handlers make the internal synchronization and the use of
shared data among the processes explicit.

The abstract program is completed by introducing device
handlers for each entity.

In the ACC-system there is only one output event FOout
in the displaying process. It requires data from processes
collection and operation. Consequently, a state handler
FOtable is introduced and the abstract programs are ex-
tended with proper communication with the state handler
(Device handlers have been left out, they are similar in
structure to a state handler, but have no state).

PROCESS collection ;
LOOP

radar ? 00;

FOtable ! newobs(oo)
END LOOP

END PROCESS;

PROCESS operation;
LOOP

operator ? foinfo;
FOtable ! newinfo(foinf0)

END LOOP
END PROCESS;

PROCESS displaying;
LOOP

clock ? Halfsec;
FOtable ! initscan;
LOOP WHEN FOtable ? done EXIT;

FOtable ? getfo(fodsp);
display ! FOout(fodsp);
FOtable ! nextfo

END LOOP
END LOOP

END PROCESS;

381

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 05:14 from IEEE Xplore. Restrictions apply.

STATE HANDLER FOtable;
TYPE Table;
STATE t: Table;
0 P E RAT ION S

newobs: Table x Airpos + Table
newinfo: Table x FOid x Info -+ Table
initscan: Table + Table
getfo: Table + FOdisp
nextfo: Table + Table
done: Table 4 BOOLEAN

E N D HANDLER;

3.4 Functionality Check
We focus on interfaces to entities in the environment, which
will allow us to check:

1. The protocol used for this entity,

2. Sets of events triggering outputs to the entity, and

3. Events used in deriving an output value

For each entity a restricted event sequence is derived by
removing (hiding) events from other entities. This is the
protocol from the system to the entity. For the ACC, we
would have, e.g.

(FOout*)*

for the display - which is the correct protocol (= FOout*).

For each output event the set of event sequences contain-
ing this event is considered, and all prefixes to the event are
calculated. The set of input events in any prefix is called a
trigger set of events for the output event. For the AGC we
have

Halfsec; FOout 1 FOout; FOout

i.e. FOout has the trigger set {Halfsec}, which can be com-
pared with the set of events used in deriving a value:

(00, FOinfo}

The operator might find i t annoying that FOinfo does not
imply FOout. If this is required, the design would have
to be changed, e.g. the sequences displaying and operation
merged to:

((Halfsec 0 FOinfo); FOout*)*

If a design contains more than one event that occur in
different event sequences the design may contain a poten-
tial deadlock. We recommend that a proof of absence of
deadlocks uses a ordering of such events as a basis. This
can possibly lead to design changes.

3.5 Timing Analysis
Real time constraints are found in most embedded sys-
tems. They are checked by estimating the time taken by
certain sequences (“cycles”) of the abstract programs. The
calculations are illustrated in the following.

These estimates are calculated under the assumption
that events occur periodically. The execution time for an
input operation, e.g. the 00-event is then estimated by:

2 + V (O O) , where the 2 time-units is an estimate of inter-
nal processing time and V (O 0) is the (external) waiting
time. For access to a handler, the delay caused by other
processes has to be considered. Assuming queuing disci-
pline for accesses, we can estimate the time for e.g. access
to FOtable as: 2 * N, where N = 3 is the number of pro-
cesses having access.

Calculation would then give a cycle time for the collector
of: 2 t V (O 0) t 6. The requirements state 500/10 0 0 s per
second. Which (assuming a time unit of 1 millisec.) would
leave 50 - 8 time units. The collector is safe, provided that
the interarrival time is greater than 8. If this cannot be
guaranteed an input-buffer would alleviate the problem.

A similar calculation for displaying would (using 500 as
an upper limit for the number of FOout’s) give a cycle time
V(Halfsec)t500*V(FOout)+500*2+8. Even if V(F0out) =
0 this figure exceeds by far 500, so the cycle would not
be completed before the next Halfsec event arrives. We
conclude that the displaying process is going to be too slow
because of an excessive number of FOout operations.

These calculations are engineering calculations, and are
not supported by theory. Some initial investigations sug-
gest, however, that they can be supported by the model of
timed CSP developed by Reed and Roscoe 117).

3.6 Functional Decomposition
This stage uses well-known, informal techniques for func-
tional and modular decomposition (cf. [15]) to refine op-
erations and states of the abstract program.

4 Discussion
Those experiences with the method which we consider of
general interest for developers of methods and theory, and
for software developers in general are summarized in the
following. In order to make certain points, we shall com-
pare certain stages and techniques with similar stages in
JSD, which we consider to be one of the better of the widely
used commercial methods.

4.1 Notations
A positive reaction from the users of the method has been
that the documentation is concise. To quantify that state-
ment, we give the following figures for the documentation
of the software for an instrumentation system that moni-
tors and analyses vibrations in large machinery:

Stage: Pages:

Interface definition 9
Event sequences 7
Abstract programs 38

Total 56

The program source texts are approximately 350 pages.
The manager of the team had previously completed a
project of similar size. In that project they used diagrams
to document their data and function design. This design
document amounted t,o well over 400 pages, and of course

388

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 05:14 from IEEE Xplore. Restrictions apply.

it was not maintained during development (The method
used was not JSD).

Our conclusion is that graphical nota.tions might be easy
to learn, but their use places a superfluous burden on a
professional development team.

4.2 Theory

Apart from our belief that an engineering discipline should
be based on suitable mathematical theories, a theory base
have practical implications:

0 Use of data types for events and in signatures for
operations eliminate introduction of vaguely definied
‘actions’. In JSD and similar methods ‘actions’ and
‘operations’ are uninterpreted symbols - inexperi-
enced or overworked developers may be tempted to
hide problems in perhaps uninterpretable symbols.

Use of process algebra allows systematic checks of a
design by calculations.

There are two points where further development of theory
is urgently needed:

0 Real time models. There is considerable activity in
this area, but the models and theories have to he
based on realistic assumptions about the problem do-
main. We can recommend the discussion in section
111 of [14].

0 A basis for specification that integrates behavioural
specification, state value specification of operations,
and timing specifications. A formal specification lan-
guage would allow the checks on requirements to be
formalized.

4.3 Interface definition

JSD has starting point in real-world entities and analyzes
and model their relevant actions, while we start the de-
sign process from the interface to the system and defines
it in terms of events and data-domains. We certainly agree
on the relevance of modelling in requirements engineering,
but we do not believe that it is possible to obtain useful
generality for a design by modelling “the world” - at least
not in the considered problem area. The modelling gives
the concept,ual framework, but the functional requirements
defines the part thereof to be implemented in the program.

A remark which we have heard from several users, is
that it is hard to get started. It is a nontrivial task to se-
lect events a t the proper level of abstraction. In one case,
which lead to some dismay, the designers started out very
systematically with wire-level signals, and they were un-
able to get meaningful event sequences out of that. Our
diagnosis was that the group had started from the wrong
documents. They had used the specification of prototype
hardware in place of the functional specification (the re-
quirements) for the product.

4.4 Event sequences
The technique of using maximal event sequences leads to
robust and efficient implementations of a design. Getting
nice event sequences takes some time; but there has not
been complaints about that. Most engineers like to discuss
the architecture of a system in terms of its event structures.

In contrast JSD first derives a set of processes for the
behaviour of real-world entit,ies - in a later step transfor-
mations are performed in order to get a sequential pro-
gram. The behaviour of the developed system versus the
requirements plays a secondary role in the JSD develop-
ment process.

4.5 Derivation of computations
Deriving computations from the requirement,s for output
values (and for internal choices) is also accepted as a sound
practice by most designers. Some, however, had to unlearn
approaches learnt in database design, where the aim is to
provide “useful” general functions. We take the stand that
any wanted generality is part of the requirements. The
design is not a place to introduce unst,ated requirements.

4.6 Shared states
A common problem in existing real-time software is miss-
ing discipline in the access to shared data. The symptoms
are lack of data integrit,y (no control of critical regions) or
deadlock (caused by waits for access). State handlers are a
clean way of obtaining integrity of shared data and a t the
same time identifying the entire inter-process communica-
tion.

5 Future developments
We are presently advising a consortium which produces
a CASE-tool for the method. In order to have a general
framework in which to define nota.tions both syntactically
and semantically, we have advised them to use the LOTOS
[I21 notation with two exceptions:

1. Iteration (“*”) is used instead of tail recursion. This
leads to introduction of notation for a state of a pro-
cess.

2. BSI/VDM domains[ll] are used instead of algebraic

These changes make t,he notation considerable more com-
pact. Furthermore we believe, though the details have
not yet been worked out, that these constructs can be ex-
panded int,o proper LOTOS.

specifications.

The motives for using LOTOS as a base line are:

1. It assures us that we have consistent syntax and se-
mantics

2. It allows this CASE-tool to use LOTOS-tools, e.g.
simulators.

We are also enganged in the ProCoS project (Provably Cor-
rect Systems, Esprit BRA project 3104, cf. 111). The aim
of ProCoS is to contribute to the science and engineering

389

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 05:14 from IEEE Xplore. Restrictions apply.

of constructing mathematically provably correct systems -
in particular for safety critical applications. The current
activities in ProCoS form in several ways a continuation
(on a firm theory basisj of the work reported in this paper.

References
[l] D. Bjorner, et.al.: A ProCoS Project Description, ES-

PRIT BRA 3104, BULLETIN EATCS 39, 60-73, 1989

[2] D. Bjorner, C.B. Jones: Formal Specification and Soft-
waw Development, Prentice-Hall, 1982

[3] 0. Caprani, S. Lauesen, U. Ougaard: Design Principles
for Dedicated Data Collecting Programs, Large Scale
Integration, Euromicro Symposium, North-Holland
1978

[4] C. George, K. Havelund, M. Nielsen, K.R. Wagner: The
RAISE Language, Method and Tools, in: VDM '88 The
way Ahead, LNCS 328, 376-404, 1988

[5] P. Brinch Hansen: The Architecture of Concurrent PTO-
grams, Prentice-Hall, 1977

[6] C.A.R. Hoare: Communicating Sequential Processes,
Prentice-Hall, 1985

[7] M. Jackson: Principles of Program Design, Academic
Press, 1975

[8] M. Jackson: System Development, Prentice-Hall, 1983

[9] I. Jacobson: FDL: A Language for Designing Large
Real Time Systems, Information Processing 86, 463-
468, (H.-J. Kugler ed.), North-Holland, 1986.

[lo] C.B. Jones: Systematic Software Development using
VDM, Prentice-Hall, 1986

[ll] P. Gorm Larsen: The Mathematical Semantics of the
BSI/VDM Specification Language, Znformation PTO-
cessing 89, 95-100, (G.X. Ritter ed.), North-Holland,
1989

[12] LOTOS - A Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour, (Ed
Brinksma ed.), IS0 8807, 1988

[13] R. Milner: Communication and Concurrency, Prentice-
Hall, 1989

[14] F. Jahanian, A.K-L. Mok: Safety Analysis of Timing
Properties in Real-Time Systems, ZEEE Trans. SE, Vol.
9, (1986)

[15] D.L. Parnas, P. C. Clement, D. M. Weiss: The Mod-
ular Structure of Complex Systems, Proceedings of the
7th International Conference on Software Engineering,
408-417, 1984

[16] A. P. Ravn, Hans Rischel, H. H. Lovengreen: A Design
Method for Embedded Software Systems, BIT 28, 427-
438, 1988

[17] G.M. Reed, A.W. Roscoe: Metric spaces as models for
real-time concurrency, in: Mathematical Foundations
of Programming, LNCS 298

[18] H. Rischel, B. G. Mortensen, A. P. Ravn: Konstruktion
af Formdlsbundne Systemer, Teknisk Forlag 1987 (in
Danish)

[19] M. Spivey, The Z Notation: A reference Manual,
Prentice-Hall, 1989

[20] P. Zave, W. Schell: Salient Features of an Executable
Specification Language and Its Environment, ZEEE
Trans. SE12, 312-325, 1986

390

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 05:14 from IEEE Xplore. Restrictions apply.

