

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Sep 12, 2024

Model-independent differences

Könemann, Patrick

Published in:
ICSE Workshop on Comparison and Versioning of Software Models, 2009. CVSM '09

Link to article, DOI:
10.1109/CVSM.2009.5071720

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Könemann, P. (2009). Model-independent differences. In ICSE Workshop on Comparison and Versioning of
Software Models, 2009. CVSM '09 (pp. 37-42). IEEE. https://doi.org/10.1109/CVSM.2009.5071720

https://doi.org/10.1109/CVSM.2009.5071720
https://orbit.dtu.dk/en/publications/9941f500-a041-4848-a5a9-2396e66a4322
https://doi.org/10.1109/CVSM.2009.5071720

Model-Independent Differences∗

Patrick Könemann
Technical University of Denmark, Informatics and Mathematical Modelling

Richard Petersens Plads, DK-2800 Kgs. Lyngby, Denmark
pk@imm.dtu.dk

Abstract

Computing differences (diffs) and merging different ver-
sions is well-known for text files, but for models it is a very
young field – especially patches for models are still matter
of research. Text-based and model-based diffs have differ-
ent starting points because the semantics of their structure
is fundamentally different. This paper reports on our ongo-
ing work on model-independent diffs, i.e. a diff that does not
directly refer to the models it was created from. Based on
that, we present an idea of how the diff could be generalized,
e.g. many atomic diffs are merged to a new, generalized diff.
One use of these concepts could be a patch for models as it
already exists for text files. The advantage of such a gener-
alized diff compared to ’normal’ diffs is that it is applicable
to a higher variety of models.

1 Introduction

Text-based differencing and merging is used to compute

differences between two different versions and merge them,

e.g. if many developers are working on the same files. It

is well-known in software development, but only applicable

to text files. In the time of model-driven software engineer-

ing, models are used for software development and, in par-

ticular, for generating code. This makes differencing and

merging for models desirable as well.

A textual diff can be stored as a patch, which is a self-

containing file describing all differences between two ver-

sions of one or more text files. Its intention is to store the

diff and make it applicable to other files, maybe on another

workspace on which the original text files are not available.

Moreover, a patch describes both states, before and after

the change. This makes it possible during application of a

patch to identify whether it was already applied or not; in

addition, a patch can also be used in reverse direction, i.e.

the changes can be undone.

∗Supported by DTU grant; Project: Model-synchronization Technol-

ogy for Model-Based Software Engineering

Support for differencing and merging of models is pro-

vided by some tools like RSA [6] and EMF Compare [1],

and both are able to store the diff in a file for later re-

use. However, it is always fixed to the models it was cre-

ated from, hence it depends on the models and cannot be

used similarly as patches for text files. This paper gives an

overview of a way to describe model-based diffs indepen-
dently from the models they were created from, hence such

a model-independent diff can probably be used as a patch

for models; further technical details are given in [5].

The paper is structured as follows. The overview in

Sect. 2 motivates our work and gives the overall picture.

Sect. 3 explains the key ideas of model-independent diffs,

which are used in Sect. 4 for the generalization. Sect. 5

discusses related work and Sect. 6 concludes the paper.

2 Overview

This section outlines as challenges the main differences

between text- and model-based diffs (structure, referencing,

storing diffs) and derives the main requirements for model-

based diffs (in italics).

Structure. A text-file always contains lines, each con-

sisting of a string. However, models may consist of ar-

bitrary elements, having attributes, references, and maybe

other properties – so the structure of models may vary.

In order to support comparisons for models, we have to
agree on a common meta model which describes the struc-
ture of our models. Our choice is the Eclipse Modeling
Framework1, because its meta model (ECore) is an imple-
mentation of EMOF, a subset of the Meta Object Facility

(MOF, [8]) which is the basis for many modeling languages
such as UML [10].

Element referencing. In text files, each place can be

addressed using a line number – but this is not the case for

models. In some settings, each element might be addressed

via a unique ID, but that depends on whether the meta model

enforces unique IDs for each element. In any case, the struc-

1http://www.eclipse.org/modeling/emf

CVSM’09, May 17, 2009, Vancouver, Canada
978-1-4244-3714-6/09/$25.00 © 2009 IEEE ICSE’09 Workshop37

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:51:38 UTC from IEEE Xplore. Restrictions apply.

ture of the model or the values of the elements can be used

to match common elements.

If IDs are available, they would be the easiest way to ad-
dress elements. Otherwise we need heuristics to find ele-
ments. The combination of the elements’ structure and their
attribute values is a very common strategy that is often used.
But maybe this is not the best strategy either – we cannot
decide a proper strategy for each model! To stay general,
we propose an interface and some implementation ideas for
referencing model elements as symbolic references; imple-
mentations may use e.g. IDs, heuristics, or other strategies.

Storing the addition of new model elements. A patch
for text-files contains the added lines (i.e. strings) and some

line numbers. This works, because lines are independent

of the rest of the file. But that is not so easy for models

for two reasons: first, what does it mean that an element is

contained in a model. Second, model elements may have

a more complex structure than just strings; they may have

different attributes, maybe even sub-elements – hence we

need to store sub-models. Third, the newly added element

may contain references to other model elements, which is

again the previous challenge. This problem does not occur

in text files, because they do not have cross-references.

We need some kind of descriptor which sufficiently de-
scribes a sub-model, including multiple elements and ref-
erences to other elements that may not be contained in this
particular sub-model. It should work to use the same kind
of symbolic references described previously.

Definition of terms

A difference (diff in short) describes structural changes

made to a model which one can compute by comparing the

model versions before and after the changes. Although it

may consist of many small changes, we use the term diff to

refer to all changes. A diff is model-dependent if it refer-

ences the models (its versions resp.) it was created from.

A model-independent diff, in contrast, is self-contained, i.e.

the changes are described without refering to other models.

How model-independent diffs work

Next, we give the overall picture of our idea. We plan to use

an existing differencing framework which already supports

many differencing capabilities, e.g. EMF Compare [1], in

order to create a model-dependent diff first. Then we fo-

cus on the model-independent representation of diffs, so we

do not need to consider the diff creation process. Figure 1

gives an overview of the creation and application of model-

independent diffs:

First, create a model-dependent diff from two versions of

model A with an existing tool. The diff does not contain the

actual differences, it just refers to the changed elements of

Model A’

Model A

• matchmodel
• diffmodel

emfdiff
EMF Compare

references

references
1. transformation

•extended matchmodel
•extended diffmodel

independent diff• no model references
• contains all changes

(and their values)

Model B’ *

Model B

• matchmodel
• diffmodel

emfdiff *
EMF Compare

references

references

2. transformation

* produced by 2nd transformation

(create diff)

(apply diff)

Figure 1. Transformations between model-
dependent and model-independent diffs

the source and the target model, and gives some information

about the difference itself.

Second, the 1st transformation is used to transform the

model-dependent diff into a model-independent diff with

respect to the three main challenges described above.

Third, in order to apply the diff to another model B, the

references need to be restored and conflicts need to be iden-

tified. To do so, the 2nd transformation creates a new diff

and a temporary model B’. Then, the same tool from the first

step can be used to visualize and resolve potential conflicts.

The concepts covered in this paper focus on the proper-

ties of the first transformation and gives some thoughts how

to realize the second transformation.

3 Differencing models

Due to the three challenges for model-independent diffs,

we derived the following requirements for our work:

1. The model-independent diff must describe all differ-

ences independently from the originating models, i.e. it

must contain the actual values which changed (EMF Com-

pare, in contrast, refers to the models and describes where
something was changed – the actual differences are implicit

and are computed from the models on the fly).

2. It must contain information to find the changed ele-

ment in arbitrary models; for instance by using IDs or struc-

38

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:51:38 UTC from IEEE Xplore. Restrictions apply.

tural properties.

3. We consider 9 types of changes: elements, attributes,

and references, each may be changed, added, or removed.

Conflicts are not considered because we only want to

store non-conflicting diffs. Later, if changes are applied to

a particular model, there might be conflicts – but this is not

of interest at the moment.

Example with unique IDs

Figure 2 shows a simple library meta model2, in which

books have a title and a catalogue number (which identi-

fies a book uniquely). A model (in the middle of the figure)

just contains one book titled Galaxy. On the right-hand side

of the figure, the name of the book is changed to Guide.

Figure 2. Parts of a model-independent diff
for a changed attribute

The important part of the model-independent diff for this

change is shown as an object diagram, containing an object

of type IndepAttributeChange, which represents the actual

change, and an object of type IdEmfReference, which we

call a symbolic reference to the changed element. To be

model-independent, the diff must not contain a direct refer-

ence to the models (as a patch for text files is also indepen-

dent from the text files it was created from). So we need to

store some information to point to the changed element, in

this case the unique ID catalogueNr of the book.

The other parts of the diff are simple: the old as well as

the new value of the changed attribute are stored in oldValue
and newValue. The information of which attribute of the

referenced element was changed, is given in a reference to

the library meta model.

Our complete meta model for model-independent diffs

is given in [5]. Next, we focus on how to use symbolic

references without unique identifiers.

2In fact, this simple example shows a library model; however, our in-

tention is to work with meta models later, e.g. UML.

3.1 Symbolic references

A model-independent diff needs to point to changed ele-

ments without directly referring to them. We use symbolic
references (in literature also indirect references) to separate

the diffs from the models. “A symbolic reference is a char-
acter string that gives the name and possibly other infor-
mation about the referenced item – enough information to
uniquely identify [it]” (from the book “Inside the Java Vir-

tual Machine”).

Unlike direct references, symbolic references do not re-

quire the referenced items to be available; however, a sym-

bolic reference can be resolved to a direct reference which

can be seen as a direct pointer to the de-referenced item.

The example in Fig. 2 already motivated the need of such

references. Instead of using a character string, we use the

following meta model for describing symbolic references in

model-independent diffs.

Meta model for symbolic references

As explained before in Sect. 2, there might be different

ways of pointing to model elements. If elements have a

unique ID, symbolic referencing can easily be done using

the unique ID, which – by definition – identifies the element

uniquely during its entire life-cycle. In the other case, we

need some other information about the referenced item, for

example its attribute values, some structural information,

or its neighbour elements. The diagram in Fig. 3 indicates

three possible implementations for symbolic references.

Figure 3. Meta model for symbolic references

The class IdEmfReference can be used to refer to ele-

ments which have an attribute marked as a unique identi-

fier. For all other classes, we need to store some other in-
formation.The ElementSetReference has a set of conditions,

e.g. in OCL (Object Constraint Language [9]), which can

be used to identify one or a set of elements. This seems

39

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:51:38 UTC from IEEE Xplore. Restrictions apply.

to be the most flexible and powerful way referencing ele-

ments, due to the expressiveness of the conditions. We will

see an example for that later in Sect. 4. The StructureEm-
fReference, on the other hand, contains a sub-model, which

is supposed to contain sufficiant information to identify that

particular item in a model. Then, the reference elementDe-
scriptor points to the referenced item in the sub-model (an

example for that is given in [5]).

3.2 Descriptor for sub-models

Model-independent diffs need to describe added ele-

ments, which may again contain other elements. The ex-

ample in Fig. 4 shows such a case, two books with the

stereotype add as well as some references have been added.

There are actually two logical changes made to the model:

first, a new book with a CD was added; second, a reference

from the book Galaxy to the new book was added. Next

we will see how these changes are expressed in a model-

independent diff.

:Library

Galaxy:Book

- catalogueNr: String = 567-890

«add»
Hitchhiker:Book

- catalogueNr: String = 543-210

«add»
HitchhikersTricks:CD

- nr: String = 1234-1

Universe:Book

- catalogueNr: String = 111-222

«add»
+references

«add»
+references «add»

«add»

Figure 4. Two elements are added as a sub-
model

We say that elements are added to a model, if they are

contained in the later version but not in the earlier one. We

consider containments as the main structure for all models,

as it is the common case for EMF models. This has two

important consequences: First, all changes concerning ele-

ments are based on containments, hence the addition, dele-

tion, and movement of model elements. Second, although

containments are a special type of references, they are not

covered as reference changes.

With regard to the challenge in Sect. 2, there are several

aspects we have to consider: 1. we have to store an entire

hierarchy of model elements, 2. including their attribute val-

ues, and 3. also their references to other model elements.

According to our approach, both elements Hitchhiker
and HitchhikerTricks are part of an addition and thus need

to be described in a self-contained way in the diff, i.e. with-

out references to the model in Fig. 4. Furthermore, it has

to store the reference from Hitchhiker to Universe, because

it is part of one of the newly added elements. Fig. 5 shows

our meta model for such model descriptors.

Figure 5. Meta model for sub-models

The reference from EModelDescriptor to EClass points

to the type the particular model descriptor represents. In

this case it would point to the EClass Book of the library

meta model (cf. Fig. 2). Moreover, there are three maps

for a model descriptor. The ERefToElementRefMap takes

EReferences as a key (the reference from Hitchhiker to Uni-
verse, for example), and an IElementReference as the value.

IElementReferences are symbolic references, which refer-

ences model elements without directly pointing to them

(cf. Sect. 3.1). The EReferenceToDescriptorMap takes con-

tainment references as keys and contains other model de-

scriptors. In the example, it contains a descriptor for the el-

ement HitchhikersTricks. The EAttributeToObjectMap con-

tains the values for all attributes of the particular element,

in our example it needs to be the catalogueNr and the title.

[5] explains that in more detail.

3.3 Change dependencies lead to groups

Unlike textual diffs, changes in models may depend on
each other. The example in Sect. 3.2 contains two logical

changes, a newly added sub-model and a reference from the

book Galaxy to on of the new books. The second change

obviously depends on the first one, because it uses one of

its elements – consequently, the second change is useless if

the first one is not applied before. We decided to use these

dependencies to logically group changes in our diffs.

This is, of course, only a very simple example. But if we

consider larger models with a lot of changes that depend on

each other, then it would be nice to see structured groups

which logically represent sets of independent changes. The

idea is that these groups do not interfere with each other.

40

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:51:38 UTC from IEEE Xplore. Restrictions apply.

4 Generalization

Normal diffs contain all differences between two mod-

els, usually as a whole bunch of atomic changes. Fig. 6

again shows the library example with some books. There

are three changes made which are structurally similar and

each of them produces an entry in a diff. Three new ref-

erences point from a customer to books, marked with the

stereotype add.

:Library Universe:Book

- catalogueNr: String = 111-222

Galaxy:Book

- catalogueNr: String = 567-890

Hitchhiker:Book

- catalogueNr: String = 543-210
Joe:Customer «add»

«add»

«add»

Figure 6. Similar changes: 3 new references

However, if this diff should be applied to another model

(i.e. similar to a patch), it requires exactly these three books.

So it is not possible to apply this diff to another model with

different books, e.g. with different attributes. It might be

useful in some cases to precisely refer to particular model

elements, but in some cases it might be useful to weaken

the precision of the target model elements in order to cre-

ate a diff that can be used similarly as a patch. We could

re-phrase our three changes to: new references were added
from the customer ’Joe’ to all books in the library the cus-
tomer belongs to. Thus we weaken the description of the

changes in such a way that it fits for all atomic changes at

once, in order to find a more concise and adequat represe-

nation of these changes. Consequently, we can probably

apply this change to other models with other libraries even

with different books. We call this kind of weakening gener-
alization of changes.

Referencing sets of elements

Starting from the example above, we would like to have

one change describing many references from a customer to

many books. To do so, we allow symbolic references to not

only refer to one particular but to a set of elements. Then we

can combine these three changes (which only differ in the

target of the reference) to one that describes a set of target

elements. Fig. 7 shows shows that idea for the example:

IndepAddRefChange is such a combination and uses El-
ementSetReferences (cf. Sect. 3.1) as an implementation of

symbolic references for this purpose. The three classes at

the top are part of the library meta model; all other ele-

Figure 7. Symbolic references for resolving
sets of elements

ments are concrete objects of a generalized diff as a UML

object diagram. The curved arrows are references from the

diff to the meta model as described by our diff meta model.

The left-most ElementSetReference contains an OCL con-

dition, which, if resolved via the context, returns the cus-

tomer Joe. The context is yet another ElementSetRefer-
ence, which resolves a library – here only one library ex-

ists. The right-most ElementSetReference resolves all books

of that particular library, as described by its OCL condition

“self.oclIsKindOf(Book) and context.books.contains(self)”,

where books is the containment between the library and

books at the top.

To summarize, resolving symbolic references to a set of

elements allows us to generalize diffs. The key for this con-

cept is the use of a language for describing such sets. In

our example, we have used OCL conditions to describe the

constraints the particular elements have to fulfill. However,

there are important consequences compared to normal diffs:

Advantages: Model-independent diffs are possible with

symbolic references and sub-model descriptors, because the

diff does not any more depend on the models it was created

from. By generalizing such a diff, it becomes more intu-

itive, concise, and compact, and it can even be the basis

for a patching mechanism to a high variety of models – the

reason is that the language for symbolic reference sets is

powerful enough to resolve elements for different contexts.

41

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:51:38 UTC from IEEE Xplore. Restrictions apply.

Drawbacks: There is some overhead, probably even

user interaction, required to construct such a diff. More-

over, we cannot say whether / how many of the generalized

diffs have already been applied to a particular model, so we

loose bidirectionality. Furthermore, if a change has more

than one element set, the meaning of combining these sets

is ambiguous.

5 Related Work

The concepts described here concern the representation

of diffs in models without considering the graphical nota-

tion, e.g. diagrams. Most approaches deal with diff com-

putation, merging, or concentrate on diagrams, but do not

take model-independence into account [7, 3]. Though some

tools already provide similar functionality.

In [4], we already presented and implemented a model-

independent diff for a particular tool, namely the Enterprise

Architect. It supports automatic diff creation as a list of

changes, and a semi-automatic transfer (with conflict reso-

lution) to other model versions. However, the diff was based

on unique IDs and implemented only for the meta model of

this particular tool. A transfer to another type of model is

not possible because the concepts are hardcoded.

The main purpose of EMF Compare [1] is the support

of differencing and merging for arbitrary models based on

EMF. It provides a GUI for comparing and merging models,

including conflict resolution. However, support for patches

(which can be seen as model-independent diffs) is not yet

included but scheduled for the next release.

The Rational Software Architect is also capable of dif-

ferencing and merging UML models which includes differ-

ence detection, visualization, conflict resolution, and merg-

ing [6]. It relies on unique IDs, but also supports merging

models without IDs (fusion of models). Similar to EMF

Compare, it can store those diffs for later re-use, but they

still refer to the originating models.

[2] has a similar goal but a different strategy. First, they

extend each class in the meta model of the compared mod-

els with three new classes for the addition, deletion, and

change of model elements. Second, the diff between two

models is computed and stored according to the extended

meta model. Third, they create higher-order model trans-

formations on these extended meta models to transfer diffs

to other models. So their approach works for arbitrary mod-

els. However, they did not consider conflicts so far, and their

difference representation is not generalized.

6 Conclusion

The main contribution of this paper is the idea making

diffs model-independent and generalizing them for making

them applicable to a higher variety of models. Technical

details and more example are given in [5].

Generalized changes provide two very interesting im-

provements over atomic changes: namely a more compact

and concise form of describing sets of elements, as well as

much broader application scenarios due to a powerful lan-

guage describing element sets. On the other hand, there are

some important drawbacks which may not be desirable in

some cases – e.g. the loss of bidirectionality. To conclude,

one needs to decide when to use which constructs for de-

scribing changes, depending on the context.

The next step is the application of generalized changes to

other models as mentioned in Sect. 4. It is part of the second

transformation outlined in Fig. 1 and subject of future work.

Acknowledgements

I would like to thank my supervisor Ekkart Kindler for

many helpful discussions and advices.

References

[1] EMF Compare project.

http://www.eclipse.org/emft/projects/compare, 2009.
[2] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. A Meta-

model Independent Approach to Difference Representation.

Journal of Object Technology, 6(9):165–185, 2007.
[3] S. Förtsch and B. Westfechtel. Differencing and Merging

of Software Diagrams – State of the Art and Challenges.

In J. Filipe, M. Helfert, and B. Shishkov, editors, Interna-
tional Conference on Software and Data Technologies (IC-
SOFT), Setubal (Portugal), volume 2. Institute for Systems

and Technologies for Information, Control and Communica-

tion, 2007.
[4] E. Kindler, P. Könemann, and L. Unland. Diff-based model

synchronization in an industrial mdd process. Technical Re-

port IMM-Technical Report-2008-07, Technical University

of Denmark, June 2008.
[5] P. Könemann. Model-independent diffs. Technical Re-

port IMM-Technical Report-2008-20, Technical University

of Denmark, Dec. 2008.
[6] K. Letkeman. Comparing and merging UML

models in IBM Rational Software Architect.

http://www.ibm.com/developerworks/rational/library/05/

712 comp/, July 2005. 7 parts.
[7] T. Mens. A State-of-the-Art Survey on Software Merging.

IEEE Transactions on Software Engineering, 28(5):449–

462, May 2002.
[8] Object Management Group. Meta Object Facility (MOF)

Core, V2.0. http://www.omg.org/cgi-bin/doc?formal/2006-

01-01, Jan. 2006.
[9] Object Management Group. Object Constraint Lan-

guage Specification, V2.0. http://www.omg.org/cgi-

bin/doc?formal/2006-05-01, May 2006.
[10] Object Management Group. Unified Modeling Lan-

guage, Superstructure, V2.1.2. http://www.omg.org/cgi-

bin/doc?formal/2007-11-02, Nov. 2007.

42

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 30,2010 at 09:51:38 UTC from IEEE Xplore. Restrictions apply.

