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Abstract: Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are 
reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and 
strain response, and tested their performance in a prototype accelerometer.  
©2010 Optical Society of America 
OCIS codes: (060.2310) Fiber optics; (060.2370) Fiber optics sensors; (060.3735) Fiber Bragg gratings 

  
1. Introduction 
Polymer Optical Fibers (POFs) made of polymethyl methacrylate (PMMA) have a low Young’s Modulus of 3.2GPa 
compared to the 72GPa of Silica [1]. Bragg gratings written into PMMA POFs could therefore be ideal as the 
sensing element in fiber-optical accelerometers, because they potentially could provide better sensitivity and a 
wider dynamic range than silica fibers [2-4].  This of course requires that the length of the PMMA POF is short, due 
to the large loss of PMMA, and that one does not want to operate at high temperature, due to the low melting 
temperature of PMMA. 

In order to maximize the sensitivity and the dynamic range of an accelerometer based on FBGs, the outer 
diameter and the length of the sensing fiber segment should be as small as possible. To this end the phase-mask 
technique and a 325nm HeCd cw laser have been used to fabricate 3mm FBGs in a commercial PMMA single-
mode step-index POF of diameter 115 micron from Paradigm Optics. To minimize the loss problem of PMMA, we 
have used 1cm POF sections with FBGs in the center and glued them to standard Silica SMF-28 fibers. We use the 
Paradigm POF directly and we try to anneal it before use, in order to check whether the annealing improves its 
properties. The annealing is done at 80°C over 2 days. The POF FBGs have been characterized in terms of 
temperature and strain to find operating regimes with no hysteresis and loss of reflection. Our experiments show 
that annealing the POF FBG can offer more stable and linear performance at both higher temperatures and larger 
strain.  

A prototype accelerometer, equipped with our 3mm POF FBG, has been designed. It will be characterized by a 
fast commercial wavelength interrogator (kHz) to track the response of the FBG to external vibrations.  
 
2. Experimental results 
The temperature response of a 3mm grating in both an annealed POF and a normal POF, is shown in Fig. 1(a) and 
1(b), respectively. The grating section of the polymer fiber was heated up with a resistive hot stage. A thermo 
couple was used to measure the real temperature around the polymer grating with an uncertainty around 0.3°C. All 
gratings were fabricated with the same exposure time of 60 minutes. Twenty minutes was allowed for the 
temperature of the grating to stabilize at each new temperature setting before the resonance wavelengths and the 
peak intensity were measured [2,3]. A linear response is observed up to a critical temperature of 60°C in the normal 
POF. By annealing the POF we see that the critical temperature is increased to about 80°C. In both cases the 
sensitivity below the critical temperature is about -100pm/°C. 

Two new gratings were temperature-cycled to study hysteresis. First we heat them up to 75°C and 55°C, 
respectively (red dots), followed by cooling down to room temperature (red triangles). These temperatures are 
below the critical temperature and as expected we see in Figs. 1(a-b) a linear response and no hysteresis. Then we 
heat both up to 85°C (black squares), which is above the critical temperature, followed by cooling down to room 
temperature (black triangles). Now we observe a marked hysteresis of the resonance wavelength at room 
temperature. For the annealed POF we measure a permanent shift in the resonance wavelength of about -4 nm (Fig. 



1(a)), but there is no noticeable drop in the reflected peak intensity (not shown). For the normal POF the shift is 5 
times stronger, about -20dB (Fig. 1(b)) and there is a drop of 6dB in the reflected peak intensity.  

We have also characterized the static strain response of the POF FBGs. The ends of the POF were clamped to 
two micro-translation stages. One stage was fixed and used to butt-couple the POF to the silica fiber. The other 
stage can move longitudinally to manually apply axial strain to the grating with a low loading speed [3]. The 
gratings were left to stabilize for about 10 minutes each time the tensile strain was changed, before measuring the 
reflection spectrum. The results are shown in Figs. 1(c-f). In Figs. 1(c-d) we see that the wavelength sensitivity is 
approximately constant over the shown strain region, with a value of about at 1.37 pm/με and 1.30 pm/με for the 
annealed and normal POF, respectively. In contrast, the reflected peak intensity drops suddenly above a certain 
critical strain, which is increased from about 2.5% to 3.0% by annealing the fiber. 

A strain loading cycle experiment was carried out in order to examine whether any hysteresis could be 
detected. The POF FBG’s were stretched by 3.75% and released again. The results, shown in Figs. 1(e-f), showed 
no noticeable hysteresis for the annealed fiber, whereas the normal POF showed a small difference in the resonance 
wavelength of about 3nm. 

 

 
Fig. 1. (a-b) Bragg wavelength versus temperature during heating and cooling cycles. (c-d) Strain sensitivity of Bragg wavelength and reflected 
peak intensity. (e-f) Same strain sensitivity during loading with 3.75% strain and downloading again. Top row shows the annealed POF. Bottom 
row shows the normal POF. 

 
3. Future work 
A prototype vibration/acceleration sensor equipped with 3mm POF FBGs has been designed as sketched in Fig. 2. 

 
Fig.2. Sketch of the vibration sensor that will be characterized in terms of its dynamic response. 

 
Preannealing the fiber can greatly optimize the performance of POF FBGs and at the same time keep all the 

advantages of POFs. The prototype vibration sensors using 3mm POF FBGs will be characterized by a commercial 
fast wavelength interrogator (KHz), to track the dynamic response of the thin POF FBGs to the longitudinal strain 
imposed on it by a transducer element, as a result of acceleration. The design will be optimized for maximum gain 
sensitivity and dynamic range. New POF FBGs with resonance wavelength around 850nm will also be explored. 
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