Experimental and theoretical investigation of electro-optic and all-optical implementations of wavelength converting 2R-regenerators

Wolfson, David; Mikkelsen, Benny; Danielsen, Søren Lykke; Poulsen, Henrik Nørskov; Hansen, Peter Bukhave; Stubkjær, Kristian

Published in: Technical Digest Optical Fiber Communication Conference and Exhibit

Link to article, DOI: 10.1109/OFC.1998.657246

Publication date: 1998

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

WB2 Fig. 3. BER for conversion of a 1552-nm PRBS of length $2^{23} - 1$ to 1560 nm at 2.5 Gbit/s. The penalty of 2 dB is caused by a combination of extinction ratio degradation (to 11 dB) and intersymbol interference effects. No error floors are observed.

Dynamic operation of the device is demonstrated by means of the bit-error-rate measurements presented in Fig. 3, which show wavelength conversion at 2.5 Gbit/s from 1552–1560 nm. Although the lossy waveguides limit the speed and thus add to the conversion penalty, a clean and open eye was observed for the converted signal, and error-free wavelength conversion has been obtained.

In summary, a Mach-Zehnder wavelength converter with variable input and output wavelengths has been presented. The integrated signal and probe pre-amplifiers potentially reduce input power requirements. Around 25-dB extinction ratio has been demonstrated, as well as operation at 2.5 Gbit/s.

*AT&T Laboratories-Research, Newman Springs Laboratory, Red Bank, New Jersey 07701

WB3 9:00am

Experimental and theoretical investigation of electro-optic and all-optical implementations of wavelength converting 2R-regenerators

D. Wolfson, B. Mikkelsen, S.L. Danielsen, H.N. Poulsen, P.B. Hansen, K.E. Stubkjaer, Center for Broadband Telecommunications, Dept. of Electromagnetic Systems, Technical University of Denmark, Bldg. 348, DK-2800 Lyngby, Denmark

Wavelength-division multiplexing (WDM) networks will require bit-rate transparent wavelength converters/adapters to interface fiber links utilizing different sets of wavelengths. Additionally, suppression of noise at the interfaces will be needed. Hence, wavelength converters with a 2R functionality (re-amplification and re-shaping) are highly desired.

In this paper we investigate and compare the regenerative capability of electro-optic (E/O) wavelength converters based on electrically controlled external Mach-Zehnder (MZ) modulators and all-optical (A/O) wavelength converters based on all-optically controlled external MZ-modulators. The latter incorporates semiconductor optical amplifiers (SOAs) as optically controlled phase shifters. Experiments demonstrate a 5–6 dB noise suppression capability for both the electro-optic and the all-optical implementation of the wavelength-converting regenerators. The performance can be further improved by cascading two converters resulting in 8-dB noise suppression. This is considered a realistic approach for the compact all-optical converter. The experiments are supported by detailed modeling.

The two wavelength converters are shown schematically in Fig. 1. The E/O-converter consists of a detector/front-end, an electronic amplification stage followed by an external MZ modulator used to modulate a cw-source. V_{pp} of the modulator is 4 Volt and the 3-dB modulation bandwidth of the entire converter is 4 GHz. The all-optical converter is a polarization-insensitive interferometric wavelength converter where SOAs are monolithically integrated into an interferometric structure.

Due to the sinusoidal transfer function of both converters a noise reduction capability is obtained when they are deployed between noise

Electro-optical converter

Amplifier

λ_{in}

λ_{out}

~10 cm

All-optical converter

SOA

λ_{in}

λ_{out}

~2 mm

WB3 Fig. 1. Schematic of an electro-optic and all-optical converter.
sources, e.g., erbium-doped fiber amplifiers (EDFAs) adding amplified spontaneous emission (ASE) or receivers adding thermal noise. The noise reduction by the E/O-converter is demonstrated in Fig. 2, where the penalty as function of the input power to an EDFA is shown for the case with and without a converter following the EDFA. In this experiment, a 2.5-Gbit/s signal is converted from 1555 to 1557 nm. As seen, the E/O-converter allows 5 dB lower input power to the EDFA (@ 1 dB penalty). Replacing the E/O-converter with an all-optical converter results in a further improvement of 1 dB due to a steeper transfer function of the latter.

The transfer function of a wavelength-converting regenerator can be made steeper by cascading two converters, and thereby improving the reshaping. Figure 2 also gives the experimental results when the EDFA is succeeded by two all-optical converters. In this case an almost 8 dB lower input power to the EDFA is possible @ 1 dB penalty. The measured distributions for marks and spaces after the EDFA and after the two converters are shown in Fig. 3. A clear redistribution of the noise after the converters is seen and when thermal noise is added in the receiver this redistribution results in a lower penalty. A model that takes the redistribution into account has been developed and the results (also given in Fig. 2) show very good agreement with experiments.

In summary, we have demonstrated and compared the reshaping capability of E/O and all-optical wavelength converters. Besides being compact and featuring low power consumption, the all-optical converter have the best regenerative capability. Finally, we have demonstrated that the noise reduction can be further improved by cascading converters, which is considered to be practical only for the all-optical implementation due to its compactness.
Efficient wavelength conversion based on difference frequency mixing in LiNbO₃ waveguides with integrated coupling structures

M.H. Chou, J. Hauden,* M.A. Arbore, M.M. Fejer, E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305; E-mail: choumh@leland.stanford.edu

Wavelength conversion is a useful function required for wavelength-division multiplexed (WDM) networks. Among numerous wavelength-conversion technologies, difference-frequency mixing (DFM) is attractive because it offers strict transparency to amplitude, frequency, and phase information, excess-noise-free and chirp-reversed signal output, extremely high input dynamic range and a bit rate limited only by the extremely wide parametric conversion bandwidth. DFM-based devices can also convert multiple wavelengths simultaneously. Wavelength conversion using DFM in AlGaAs and annealed proton exchanged LiNbO₃ waveguides has been demonstrated. One practical issue is the low efficiency. 17-dB conversion loss with a 90-nm conversion bandwidth for 65 mW of pump power. Another critical problem with guided-wave DFM is the launching of short-wavelength (typically half the signal wavelength) pump light into the fundamental mode of a multimoded (at the pump wavelength) waveguide required for confining a single mode of the signal. In this paper, we address the mode launching problem using integrated mode coupling structures, resulting in mixing efficiency, normalized to the pump power, of 259%/W and wavelength conversion loss of 7 dB.

Our integrated waveguide structure is shown in Fig. 1. Pump light is coupled into a single-mode waveguide (mode filter). A subsequent adiabatic taper permits efficient coupling of the pump radiation into the fundamental mode of the highly multimoded (at the pump wavelength) waveguide, which is optimized for wavelength conversion. The signal is routed into the wavelength conversion region with a directional coupler. Both the mode filter and the taper are implemented using periodically segmented waveguides, allowing for independent optimization of each section.

Static wavelength conversion tests were performed using a cw Ti:sapphire laser at 784 nm for the pump and a cw tunable erbium-doped fiber laser for the signal. During the measurement, the sample was maintained at 60−90°C. Figure 2 shows a measured optical spectrum for a signal at 1539 nm and its converted output, which has been shifted 58 nm to 1597 nm. The central peak at 1568 nm is the second-order spectrometer response of the pump wavelength of 784 nm. The wavelength conversion loss is 7 dB, corresponding to an internal mixing efficiency of ~259%/W. (After correction for waveguide propagation losses and Fresnel losses.)