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Abstract 
 
The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for 
high-power, low-input-voltage to high-output-voltage applications. These converters are 
increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo 
voltaic based energy systems. Applications include systems for emergency power back-up 
(UPS), de-centralized combined heat and power systems, traction applications such as hybrid 
electrical vehicles, forklift trucks and special applications such as low emission power 
generation for truck and ship containers, and remote power generation for light towers, camper 
vans, boats, beacons, and  buoys etc. 
 
In chapter 2, a review of current state-of-the-art is presented. The best performing converters 
achieve moderately high peak efficiencies at high input voltage and medium power level. 
However, system dimensioning and cost are often determined by the performance at the system 
worst case operating point which is usually at minimum input voltage and maximum power.  
Except for the non-regulating V6 converters, all published solutions exhibit a very significant 
drop in conversion efficiency at minimum input voltage and maximum output power. 
 
In chapter 3, a detailed analysis of dominant loss factors in high power converters for low 
voltage applications is presented. The analysis concludes that: 
 

 Power transformers for low voltage high power, if properly designed, will have 
extremely low leakage inductance. 

 If optimally designed, boost converters will be much more efficient than comparable 
buck type converters for high power low voltage applications. 

 The use of voltage clamp circuits to protect primary switches in boost converters is no 
longer needed for device protection. On the other hand, they will dramatically increase 
power losses. Moreover, if a converter is properly designed, primary side voltage clamp 
circuits will not even work in low voltage high power converters. 

 Very high conversion efficiency can be achieved. Peak efficiency of 98% and worst case 
minimum efficiency of 96.8% are demonstrated on a 1.5 kW converter. 

 
In chapter 4, the ability to - and challenges involved in - scaling of power converters for low 
voltage applications in the power range of 1-10 kW are analyzed. The analysis concludes that 
power MOSFETs needs to be paralleled extensively to scale power level to 10 kW. Maintaining 
fast current switching and reliable current sharing is essential. Further, the high ac-current 
carrying loop on the converter primary side will become increasingly difficult to scale due to 
fundamental issues such as physical size of components and penetration depth in copper. 
 
Finally in chapter 5, a new method for partial paralleling of multiple primary power stages in 
isolated boost converters is presented. Maximum benefit of scaling in terms of higher efficiency 
and lower cost is preserved by only paralleling primary switches and the critical high ac-current 
loop. Dynamic current sharing is inherently guaranteed between parallel power stages. The 
principle can be applied to all isolated boost type converters and, in principle, an unlimited 
number of power stages can be paralleled. Feasibility and operation of the new topology are 
demonstrated on a dual 3 kW and a quad 10 kW prototype converter. Measured peak efficiency 
is 98.2% and worst case minimum efficiency is between 96.5% and 96.9%. 
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Resumé 
 
Emnet for denne Ph.d. afhandling er design af effektelektroniske dc-dc konvertere med meget 
høj virkningsgrad til anvendelser med høj udgangseffekt, lav indgangsspænding samt høj 
udgangsspænding. Disse konvertere anvendes i stigende grad indenfor vedvarende 
energisystemer baseret på brændselsceller, batterier eller solceller. Anvendelserne omfatter 
nødstrømsanlæg (UPS), decentrale mikro-kraftvarmeanlæg, transportsystemer så som elektriske 
hybridbiler, gaffeltrucks samt særlige anvendelser indenfor generering af elektrisk energi til 
kølecontainere på lastvogne og skibe samt forsyning af fjerntliggende fyrtårne, campingvogne, 
både, afmærkningsbøjer m.m. 
 
I kapitel 2, gennemgås state-of-the-art på området. De bedste af de præsenterede konvertere 
opnår rimelige høje virkningsgrader ved høje indgangsspændinger og lavere effekter. Men da de 
fleste systemers størrelse og pris afhænger af virkningsgraden i det kritiske arbejdspunkt, bliver 
virkningsgraden ved minimal indgangsspænding og maksimal udgangseffekt afgørende for det 
samlede system. Bortset fra en ureguleret V6 konverter udviser alle offentliggjorte konvertere 
dog kraftigt faldende virkningsgrader ved lav indgangsspænding og høj udgangseffekt. 
 
I kapitel 3, foretages en detaljeret analyse af de væsentligste tabsfaktorer i konvertere til høje 
effekter og lave indgangsspændinger. Analysen konkluderer at: 
 

 Korrekt dimensionerede effekttransformatorer til lav indgangsspænding og høj effekt vil 
have særdeles lav spredningsinduktans. 

 Hvis boost konvertere designes optimalt, vil disse kunne opnå langt højere virkningsgrad 
end tilsvarende buck konvertere. 

 Anvendelsen af voltage clamp kredsløb til beskyttelse imod overspændinger på switch-
kontakterne i boost konvertere vil øge tabene kraftigt. Voltage clamps er ikke længere 
nødvendige og virker i øvrigt ikke, hvis konverteren er korrekt designet. 

 Det er muligt at opnå særdeles høj virkningsgrad. Virkningsgrader på op til 98% er 
demonstreret på en 1,5 kW konverter. Worst case virkningsgraden er 96,8%. 

 
I kapitel 4, gennemgås mulighederne for at skalere udgangseffekten på konverteren i området 
fra 1-10 kW. Der skal parallelkobles et stort antal power MOSFETs for at opnå en 
udgangseffekt på 10 kW. Der er behov for pålidelig og robust parallelkobling, som ikke 
nedsætter switch tiderne. Endvidere viser analysen, at de høje vekselstrømme på primærsiden vil 
være svære at skalere p.g.a. komponenternes fysiske størrelse kombineret med 
indtrængningsdybden i kobber. 
 
Endelig, præsenteres der i kapitel 5 en ny metode til delvis parallelkobling af flere effekttrin i 
isolerede boost konvertere.  Ved at begrænse parallelkoblingen til de få kritiske områder med 
høj belastning opnås en kosteffektiv løsning med høj virkningsgrad. Løsningen sikrer 
automatisk strømdelingen mellem alle parallelkoblede effekttrin. Løsningen kan endvidere 
anvendes i alle typer boost konvertere og kan – i princippet – udvides til parallelkobling af et 
ubegrænset antal effekttrin. Det nye princip er demonstreret i 2 prototype konvertere; en dobbelt 
3 kW konverter og en firdobbelt 10 kW konverter. Der er målt virkningsgrader op til 98,2%, og 
de laveste virkningsgrader ved lav indgangsspænding og højeste udgangseffekt ligger imellem 
96,5% og 96,9%. 
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Nomenclature 
 

D  Switch duty cycle 
DL  Inductor duty cycle 
fS  Converter switching frequency 
T  Converter period time, T=1/fS 
TL  Inductor period time, TL=T/2 
T1  Period time one 
n  Transformer turns ratio, n=NS/NP 
FR  AC resistance factor, FR=Rac/Rdc 

FR,P  AC resistance factor of primary winding 
FR,S  AC resistance factor of secondary winding 
FR,T  AC resistance factor of complete transformer 
h  Height of conductor 
hP  Height of Pth winding portion 
hΔ  Height of primary-secondary intersection 
hw  Total height of transformer winding 
H  Magnetic field strength 
B  Flux density 
w  Stored energy in magnetic volume 
δ  Penetration depth in material 
φ  Conductor height in penetration depth at fundamental frequency, φ = h/ δ 
p  Winding portion 
m  Number of layers in winding portion 
lw  Mean turn length 
bw  Breadth of winding 
M  Number of primary-secondary intersections 
N  Number of winding turns 
NP  Number of primary turns 
NS  Number of secondary turns 
µ0  Permeability of free space 
Ve  Magnetic volume 
x  Distance from H-field zero crossing, 0 ≤ x ≤ hP  
EC  Stored energy in diode capacitance 
κ  Primary switch loss factor 
Nsw  Number of parallel power MOSFETs in switch 
LLK  Transformer leakage inductance 
LLK,P  Transformer leakage inductance referred to primary side 
LLK,S  Transformer leakage inductance referred to secondary side 
LCS  Common source inductance 
LX  Commutation inductance, LX = LSP + LLK + LSS/n

2 
LSP  Primary stray inductance 
LSS  Secondary stray inductance 
LS  Stray inductance of interconnection wiring 
Lloop  Total parasitic circuit inductance of loop 
η   Converter conversion efficiency 
Vin  Converter input voltage 
Vo  Converter output voltage 
Vin,min  Converter minimum input voltage 
V(BR)DSS Rated drain-source break down voltage 
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vLCS  Induced voltage across common source inductance 
vGS  Instantaneous gate-source voltage 
VGS  Gate-source dc voltage 
vg  Gate driver output voltage 
VC  Voltage clamp level 
VS4  Switch drain-source voltage 
VD  Diode forward voltage drop 
VR  Diode reverse voltage 
vL  Loop voltage driving current change 
IS,rms  Switch rms current 
Iin  DC input current 
IL1  Inductor L1 current 
iDS  Drain-source current 
Io  DC output current 
iT1  Transformer current 
IS4  Switch current 
ID  Diode current 
RDS(on)  Power MOSFET drain-source on-resistance 
RS(on)  Total primary switch on-resistance 
Rin,min  Minimum converter dc input resistance 
Pin,max  Maximum converter input power  
PDS,con  Power MOSFET conduction loss 
PCL  Total current commutation loss 
PCC-VL  Converter current commutation loss in voltage limited mode (mode 1) 
PCC-CL  Converter current commutation loss in current limited mode (mode 2) 
PD,con,  Diode conduction loss 
PD,SW  Diode switching loss (capacitive) 
PR  Total converter rectifier losses 
PR,con  Total converter rectifier conduction losses  
PR,SW  Total rectifier switching losses 
PFB,con  Total primary full-bridge conduction loss 
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1  Introduction 

1.1  Scope 
 
The scope of this report is to present the results obtained in the PhD project “Modular Power 
Electronic Converters with Galvanic Isolation in the Power Range 1 to 10 kW,” performed by 
the author during the period from September 2006 through January 2010. Many of the scientific 
results obtained in the project have been published in the form of peer reviewed conference and 
journal papers and a patent application. The published papers form an integral part of this thesis 
and are included in appendix [A1]-[A7]. 
 
The objective of this report is to supplement the already published information in [A1]-[A7] by 
placing the published papers in the context of the overall project and thereby present a more 
coherent and complete overview of the work and results obtained.  
 
Further, it is the hope that this thesis can serve as a small condensed “designer’s theoretical 
handbook” on key fundamental issues related to the design and optimization of high power 
converters for low voltage applications. 

1.2  Background and Motivation  
 
The background and motivation for this work is the emerging need for high power converters to 
boost voltage levels from low voltage electrical power sources to higher voltages required by the 
load. Figure 1, presents the typical power architecture of these systems.  
 

 
 

Fig. 1.  Typical power system architecture for high-power low-voltage application. 
 
An isolated dc-dc converter boosts the unregulated low voltage supply to a much higher dc 
voltage, typically 400 V for single phase and 7-800 V for three phase utility grid interface. Wide 
input voltage range, typically in the range of 30-60 V, is normally required. 
 
Subsequently, a dc-ac inverter will typically convert high voltage dc output into single- or three 
phase ac voltage for interface to the utility grid or control of electrical motors etc.  
 
Since the dc-ac converter operates at high voltage and is well known from other high power 
applications such as in UPSs, motor drives, solar inverters etc., the objective of this study is to 
focus on achieving high efficiency in the critical low voltage to high voltage dc-dc converter. 
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Typical systems include fuel cell systems, battery powered systems and even some photovoltaic 
systems. Applications include systems for emergency power back-up (UPS), de-centralized 
combined heat and power systems, traction applications such as hybrid electrical vehicles, 
forklift trucks and special applications such as low emission power generation for truck and ship 
containers and remote power generation for light towers, camper vans, boats, beacons, and  
buoys etc. [1]-[2]. 
 
Common to all of these applications is that cost of initial investment is high due to high cost of 
fuel cells, batteries or solar cells. Low conversion efficiency in the power electronic converter 
will significantly increase the required investment since more/larger cells will be needed.  
High cost of fuel (hydrogen etc.) will further add to the total cost. Even size and cost of the 
electronic power converter itself may increase as a consequence of higher dissipated power and 
consequently increased thermal stress of components and system.  
 
Achieving higher conversion efficiency in the power electronic converter required for boosting 
the low source voltage to the higher voltage required by the application, will therefore become a 
major competitive parameter in these applications. 
 
In recent years, significant research effort has been devoted internationally to address the 
diminishing conversion efficiency which has been seen in high power low voltage applications 
[1]-[3].  
 
A large number of alternative converter topologies and implementations have been proposed 
[4]-[5], [9]-[37] typically achieving high conversion efficiency at the medium to high input 
voltage range and at medium power levels. Best designs achieve peak efficiencies up to 96% 
[4], [9], [10], [15], [27], [28], [32]-[35]. At maximum output power and minimum input voltage, 
however, efficiency typically drops significantly to 90 % or below. 
 
In fuel cell applications (and many others), peak power is reached at minimum input voltage, 
and available system peak power is directly affected by the decreased efficiency of the power 
converter. Thus, power source needs to be oversized in order to compensate for the reduced 
efficiency of the power converter. Furthermore, thermal design of the power converter itself 
needs to be dimensioned for this high peak power dissipation further increasing size and cost of 
the power electronic converter. 

1.3  Project Objectives 
 
The primary objective of this project is to study and demonstrate the absolutely maximum 
achievable conversion efficiency in high power converters for low-input-voltage to high-output-
voltage applications. 
 
In view of the requirements for fuel cell applications, the project focuses on solutions that 
provide galvanic isolation between input and output and are capable of operating over a wide 
input voltage range of typically a factor 2:1 [38].  
 
Special consideration has to be given to achieving high conversion efficiency in the worst case 
operating point i.e. at maximum output power and minimum input voltage. 
 
A second objective is to analyze and suggest the most efficient way - in terms of conversion 
efficiency and cost – to scale power level in the power range from 1 to 10 kW. 
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1.4 Common Specification 
 
To ensure clear and ambitious goals for the research work, a list of high level converter 
requirements was formulated, see table I. The purpose of the list is to ensure that the project 
outcome will be adaptable to the relevant applications and thus constitute useful solutions.  
 
A second purpose is to allow comparison of achieved results with a similar PhD study being 
conducted by Mr. Pawel Klimczak at the University of Aalborg on non-isolated converters for 
the same specification.  
 
In order to avoid unnecessary limitation of creativity, the list of requirements only contain 
fundamentally needed high level requirements thus ensuring that solutions can realistically be 
applied to the applications foreseen [1]-[3], [38]-[41]. 
 
Thus, the primary focus is to achieve maximum conversion efficiency while still satisfying real 
life requirements to input voltage range, current and voltage control, and ripple currents. Such 
that presented results are realistic, and conclusions are valid for typical applications. 
 

TABLE I.  
CONVERTER SPECIFICATION 

Parameter Value Comments 

Output power Pout 1000 W 
Maximum achievable power in 
single converter 

Input voltage range Vin 30-50 VDC Start-up voltage up to 60V 

Output voltage Vo 400 VDC Galvanic isolation required 

Efficiency target η 98 % 
Converter efficiency to be optimized 
at low input voltage. 

Output power regulation 0-100 % 
For full control of input current 
transients 

Input current ripple 
>10kHz 

<15 % For load range 15-100% 

Input current slew rate <3 A/s Slow dynamics of fuel cell 

 

1.5 Project Plan and Content 
 
A flow chart presenting the work packages carried out during this PhD project is shown in fig. 2. 
The flow chart also illustrates how the published papers, articles, and the patent application 
relate to key parts of the work carried out.  
 
Following definition of project objectives including the target specification presented in table I, 
a state-of-the-art analysis is performed in order to establish current status on achievable 
conversion efficiency and proposed solutions. 
 
In parallel with the detailed design of a 1.5 kW isolated boost converter [A1]-[A2], a detailed 
analysis of converter losses in high power converters for low voltage applications is carried out. 
The analysis confirms the choice of boost converter as the most efficient converter topology - 
but only because voltage rating of primary switches has been dramatically reduced by 
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eliminating primary side clamping circuits. To further verify the analysis, an isolated full-bridge 
buck converter is designed, built, tested, and compared with the 1.5 kW boost converter [A3]. 
 
Next phase is to analyze and suggest possibilities for increasing power level within the power 
range of 1-10 kW. Instead of immediately reverting to paralleling of complete converter 
modules - which will definitely be feasible - it is decided to identify those particular areas in the 
boost topology, where scaling of power is critical – and thus will benefit the most from 
paralleling. Apart from the obvious need to parallel power MOSFETs, it is found that the high 
ac-current loop from primary switches to the transformer primary windings is a particularly 
critical area with respect to scaling of power level. 
 
A new method for partial paralleling of isolated boost converters is then proposed [A5]-[A7]. A 
patent application covering the new principle is filed [A7]. Two prototype converters are 
designed, built, and tested to demonstrate the feasibility of the new principle. The 3 kW dual 
version is published in [A5] and the quad 10 kW converter is published in [A6].  
 

1.6 Thesis Structure and Content 
 
The structure, organization and content of this PhD thesis is visualized in the flow chart 
presented in fig. 3. 
 
The published journal paper, conference papers and the patent application [A1]-[A7] form an 
integral part of this PhD thesis and are therefore appended. As illustrated in fig. 2, the published 
papers cover a broad range of the work performed in this PhD study. 
 
The purpose of this report is therefore to complement the already published papers by providing 
a condensed and coherent presentation of the overall project and its results. Special focus will be 
devoted to presenting a coherent derivation of the key fundamental theoretical aspects of this 
project. 
 
Since most of the experimental results are already included in the published material [A1]-[A7], 
they are only included in a very restricted form in this thesis. And mostly where it serves the 
purpose of extending analysis of experimental results in order to verify or illustrate significance 
of the theoretical results. 
 
Generally, the thesis is organized to reflect the general research approach adopted in the project 
i.e. definition of objective => state-of-the-art analysis => detailed design and analysis => 
demonstration of single converter => extension of power level => conclusion. The intension of 
this thesis organization is to present the project results in a condensed and straightforward 
manner. 
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PhD Project Overview 

 
Fig. 2. PhD project work plan. 
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Fig. 3.  PhD thesis structure. 
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2 State­of­the­Art 
 
The purpose of this chapter is to present an overview of the present state-of-the-art within 
isolated dc-dc converters for low voltage high power applications. Recent published literature 
primarily in the form of journal papers, conference papers and tutorial notes, has been searched 
and analyzed to establish the present state-of- the-art. Main focus has been devoted to material 
presenting technical results, preferably supported by experimental results, useful for or relating 
to the overall specification defined for this project (table I). 
 
In recent years, research on improving conversion efficiency in high power low voltage dc-dc 
converters for fuel cell applications, has attracted widespread international attention. 
Consequently, a significant amount of scientific literature has been published on the subject. 
Despite this fact, achieved efficiency results are often not published. Even when results are 
published, test conditions are often not reported. Further, measuring efficiencies in the high 
nineties are not trivial requiring strict attention to measurement tolerances and calibration of test 
set-up. Reliable efficiency results are thus scarce and generally very difficult to compare across 
alternative solutions. 
   
Despite the general lack of reliable efficiency data, this chapter attempts to present an overview 
of published solutions, techniques and correspondingly achieved efficiencies for low voltage 
high power dc-dc converters. 
 
For each published solution, a short description of the proposed solution is given together with a 
short summary of the published efficiency data. For a more in-depth presentation of the 
published material, the reader is referred to the full papers on the CD-ROM attached in the back 
of this thesis. 
 
To best be able to compare efficiency data across the many different solutions, two sets of data 
have been selected. The maximum (or peak) efficiency achieved simply because it is often the 
only available data published i.e. the data that everyone wants to publish. However, much more 
useful data is the efficiency at minimum input voltage and maximum output power. Since this is 
most often the system-wise worst-case-point and therefore the driving parameter for overall 
system performance, size, and cost. 
 
Papers published as part of this project are not included in the state-of-the-art analysis, they are 
attached in appendix A. However, they are included for reference in table II: “Comparative 
efficiency of low voltage high power converters.” 

2.1 Isolated Boost Type Converters 
 
This section lists selected published isolated boost type converter designs intended for high 
efficiency conversion of low input voltage high power to high output voltage. For each 
published design, a brief description of the topology used and the published efficiency results 
are provided.  
 
Figure 4, presents a generic isolated boost converter including voltage clamp circuit across 
primary switches.  
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Fig. 4.  Isolated full-bridge boost with voltage doubler and voltage clamp circuit. 

2.1.1 Isolated Push­Pull Boost Converter 
 
PP Boost 1: 
A 1 kW fuel cell converter consisting of an isolated push-pull boost dc-dc converter followed by 
an H-bridge dc-ac converter is presented in [4]. The push-pull converter is hard switched and 
uses a common voltage clamp circuit across both primary switches. 
 
Input voltage range is 25-45 V, and output voltage is 350-400 V. Maximum measured efficiency 
reaches 96.4% at 300 W output and 42 V input. At maximum output power and minimum input 
voltage (900 W at 25 V input) efficiency is 91%. 
 
PP Boost 2: 
A 1.5 kW fuel cell power converter consisting of an isolated resonant push-pull dc-dc converter 
followed by an H-bridge dc-ac converter is presented in [5]. A voltage doubler on output is used 
to tune converter current resonance such as to reduce output diode reverse recovery losses. 
Active clamp circuits are used across the two primary switches. 
 
Input voltage range is 30-70 V and dc-dc converter output voltage is 350 V. System peak 
efficiency reaches 94% at 70 V input and 700 W output. Minimum efficiency is 92.5% at 1.5 
kW output and 30 V input. No separate efficiency measurements for the dc-dc converter are 
provided. 

2.1.2 Isolated Two­Inductor Boost Converter 
 
The isolated two-inductor boost converter was first presented by P. J. Wolfs in 1993 [6]. The 
converter topology is the boost version of a HY-Bridge rectifier, also known as the current 
doubler, invented by O. S. Seiersen [7]-[8]. 
 
A large number of papers related to the high power low input voltage application of the two-
inductor boost have been published, among these [9]-[15].  
 
TI Boost 1: 
A 500 W isolated two-inductor boost with active clamping is presented in [9]. An active clamp 
and reset circuit is used to clamp the allegedly severe voltage overshoot on primary switches due 
to the stored energy in the transformer leakage inductance. Primary switch currents are 
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triangular having large rms values. Input voltage range is not published, output voltage is 380 V. 
Peak efficiency is 96% measured at 300 W output and approximately 52 V input. 
 
TI Boost 2: 
A 1 kW modified isolated two-inductor boost with active clamping and reset is presented in 
[10]. Two transformers with individual rectifiers are effectively in parallel on input and in series 
on output. Due to the active clamping switch currents are triangular. Input voltage range is 26-
50 V and output voltage is 400 V. Measured maximum efficiency is 95.6% at 600 W output 
power. Input voltage condition for the measured efficiency is not published. 
 
TI Boost 3: 
Two phase shifted two-inductor boost power stages are interleaved in [11]. Two voltage doubler 
rectifiers are in parallel on output sharing the same capacitors. By operating close to 
discontinuous conduction mode, current sharing between parallel power stages is achieved. A 
200 W prototype converter verifies operation. 
 
TI Boost 4: 
A 1 kW two-inductor boost converter with active clamping is presented in [12]. Input voltage is 
48 V and output voltage is 350 V. Peak efficiency of approximately 87% is reached at 500 W. 
At 1 kW output, efficiency has dropped to 77%. A comparable full-bridge boost converter is 
claimed to be 6-10% less efficient. 
 
TI Boost 5 
A 1 kW two-inductor boost stage is presented in [13] as part of a two-stage dc-dc converter for 
fuel cell applications. Input voltage is 80 V and output voltage is 400 V. At 750 W output 
power, efficiency is 67%. 
 
TI Boost 6: 
In [14], a 300 W two-inductor boost with soft turn-off snubbers is presented. Input voltage range 
is 18-32 V and output voltage is 48 V. Maximum efficiency is 92% at 28 V input and 300 W 
output power. 
 
TI Boost 7: 
A 1.5 kW bi-directional two-inductor boost intended for bi-directional interface between a 28 V 
and a 270 V aircraft power bus is presented in [15]. Active clamping and reset is used on low 
voltage side to clamp switch overvoltage. A phase-shift plus pulse-width modulation is used to 
create near square-wave low rms switch currents. Input voltage range is 22-32 V. Peak 
efficiency in boost mode is 96% at 32 V input and 750 W output. At 22 V input and 1.5 kW 
output, efficiency drops below 89%. 

2.1.3 Isolated Full­Bridge Boost Converter 
 
Isolated full-bridge boost converters have also been proposed extensively for high power low 
voltage applications, among these [16]-[27]. 
 
FB Boost 1: 
A 5 kW isolated full-bridge boost converter is proposed for fuel cell electrical vehicles in [16]. 
Input voltage is 24 V and output voltage is 300 V. A passive voltage clamp circuit is used to 
limit voltage spikes across primary switches due to transformer leakage inductance. Peak 
efficiency at maximum output power is 94%. Very few design details or test results are given. 
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FB Boost 2: 
A 1.2 kW interleaved isolated full-bridge boost converter is presented in [17]. Two separate 
isolated full-bridge boost converters with voltage doubler rectifiers are series connected on 
output and parallel connected on input. The series connected outputs guarantee average current 
sharing between converter stages, but at the expense of higher rectifier losses. Voltage clamp 
circuits across primary switches are used to clamp over voltages caused by transformer leakage 
inductance. Input voltage is 33 V and output voltage is 400 V. Maximum measured efficiency is 
90.5% at 1.2 kW output. 
 
FB Boost 3: 
A 1 kW isolated full-bridge boost converter with zero current switching (ZCS), is presented in 
[18]. Large series resonant inductance and parallel capacitance form a slow resonant 
commutation during primary switch overlap time i.e. the storage inductor charging time. Zero 
current turn-on and zero current turn-off in primary switches are thereby obtained. Voltage- and 
load regulation is performed by wideband frequency modulation in order to achieve constant 
storage inductor charging time and thereby maintain zero current switching. Input voltage range 
is 22-27 V and output voltage is 1 kV. Peak efficiency is 92% at 1 kW output and 27 V input. At 
22 V input and 1 kW output, efficiency is 88%. 
 
FB Boost 4: 
A 1.4 kW resonant isolated full-bridge boost converter is presented in [19]. Adding resonant 
capacitors across primary switches in addition to the series parallel resonant tank used in [18], a 
full resonant converter is obtained. Zero voltage and current turn-on and zero voltage turn-off 
are achieved. Regulation is performed by narrowband frequency control (250-370 kHz). Input 
voltage is 100 V and output voltage is 374 V. Maximum efficiency is below 90%. 
 
FB Boost 5: 
A 20 kW isolated full-bridge boost converter is analyzed in [20]-[22]. Input voltage range is 90-
200 V and output voltage is 700 V. The converter is only tested up to 10 kW input power and no 
efficiency results are published. An active voltage clamp circuit designed to clamp 5-10% of 
converter output power is presented in [22]. At 9 kW input power, measured clamping energy is 
505 W. Measured transformer stray inductance is 750 nH. Primary switches are rated for 600 V. 
 
FB Boost 6: 
Three bi-directional isolated full-bridge boost converters intended for electrical vehicles are 
presented in [23]-[25]. Specifications are quite similar, low voltage battery terminal is 8-15 V 
and output voltage is in the range of 250-450 V.  
 
In [23]-[24] maximum boost mode power is 1.6 kW and maximum buck mode power is 5 kW. 
An active voltage clamp circuit as described in [26] is used to clamp primary switch over 
voltages caused by large transformer leakage inductance. Following a design rule of thumb in 
[24], voltage rating on primary switches is 55 V i.e. more than 3 times maximum input voltage.  
 
In [25], boost power is up to 3 kW and maximum buck power is 2 kW. A soft commutation 
method to reduce voltage clamping energy is presented. By keeping secondary switches on, 
transformer secondary winding is shorted during current commutation right after primary 
switches have been turned off. The full clamp voltages are thus available for current 
commutation thereby reducing current switching time and consequently clamp energy.  
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Maximum efficiency in boost mode is approximately 94% at 10 V input and 1500 W output 
power. At 2.5 kW output and 8.5 V input, efficiency drops below 82%. 
 
FB Boost 7: 
A 500 W three phase isolated boost converter with active clamp circuit is presented in [27]. 
Three half-bridge primary switching legs operate in interleaved mode, each sequentially 
transferring the input current to output through three power transformers and a three phase 
rectifier. Due to the active clamp circuit, switch current is triangular having high rms value. 
Input voltage is 30-60 V and output voltage is 400 V. Maximum efficiency is 96% at 200 W 
output. Input voltage condition for the measured efficiency is not published. 

2.2 Isolated Buck Type Converters 
 
This section lists selected published isolated buck type converter designs intended for high 
efficiency conversion of low input voltage high power to high output voltage. For each 
published design, a brief description of the topology used and the published efficiency results 
are provided.  
 
Figure 5, presents a generic isolated buck converter.  
 

 
 

Fig. 5.  Isolated full-bridge buck converter with full-bridge rectifier. 

2.2.1 Isolated Full­Bridge Buck Converters 
 
A number of isolated full-bridge buck converters for high power low voltage applications have 
been presented, among these [28]-[32]. 
 
FB Buck 1: 
A 75 kW isolated full-bridge buck converter for fuel cell applications is presented in [28]. Input 
voltage range is 200-380 V and output voltage is 380 V. Measured efficiency is approximately 
95%. No design details are published. 
 
FB Buck 2: 
A 5 kW isolated full-bridge buck converter is presented as part of a power system for fuel cell 
applications [29]. A single primary full-bridge inverter supplies two power transformers in 
parallel, each having separate full-bridge rectifiers and output filters. The two outputs are series 
connected in order to reduce rectifier voltage stress. Input voltage range is 22-41 V and output 
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voltage is 400 V. Measured efficiency of dc-dc converter is 90% at 4.4 kW output. Input voltage 
condition for the measured efficiency is not published. 
 
FB Buck 3: 
A system of multiple phase-shifted full-bridge buck converters is proposed in [30]. By 
introducing storage inductors between primary inverter phase legs of neighboring phase shifted 
power stages, conduction loss of primary switches is reduced. The design of a 500 W per bridge 
converter is analyzed. No test results are published. Simulated efficiency projects an efficiency 
of 95% for a 24-40 V input and 400 V output converter – when switching at 256 kHz. 
 
FB Buck 4: 
A 1.2 kW isolated full-bridge buck converter with a lossless output diode clamp circuit is 
presented in [31]. Using a new lossless output diode clamp circuit and phase shift control of 
primary switches, zero voltage and zero current switching of primary switches can be achieved. 
Input voltage range is 27-46 V and output voltage is approximately 200 V. Maximum measured 
efficiency is 94.2% at 32 V input and 700 W output power. At 28 V input and 1.2 kW output, 
efficiency is 92.5%. 
 
FB Buck 5: 
Finally, a 3 kW isolated full-bridge converter for fuel cell applications is proposed in [32].  The 
converter is unregulated operating at fixed 50% duty cycle. Adaptation to variable input voltage 
(due to fuel cell output voltage drop) is achieved by sequentially adding transformer secondary 
windings - by means of relay switching - to increase transformer turns ratio. Input voltage range 
is 44-96 V and output voltage is variable in the range 217-310 V. A maximum efficiency of 
approximately 96.5% is achieved at 60 V input and 1 kW output power. Efficiency drops to 
94% at 45 V input and 2 kW output power. 

2.2.2 Isolated Three Phase Full­Bridge Buck Converters 
 
This section is mainly devoted to the much published three phase isolated buck converter also 
known as the V6 topology. Although it is basically an interleaved derivative of the phase shift 
controlled full-bridge buck converter, the number of publications related to this topology – and 
its apparently high performance – justifies the creation of a special section. 
 
FB Buck V6: 
The isolated three phase V6 converter presented in [33]-[37] consists of three phase-shift 
controlled full-bridge inverter stages which are interleaved by means of phase-shifting each 
inverter stage 120 degree apart. Each H-bridge inverter stage drives the primary winding of a 
single phase transformer. The secondary windings of the three power transformers are star-
connected (Y-connected) and fed to a common 6-pulse three phase rectifier followed by a single 
storage inductor and output capacitor.  
 
Since all three power stages are controlled by the same phase angle (however phase shifted 120 
degree apart), a single common controller can control all three power stages. Current sharing 
between power stages is guaranteed by the common output inductor. Due to cancellation, input 
ripple current is significantly reduced and ripple frequency at input and output is tripled.  
 
The star-connection of transformer secondary windings reduces transformer turns ratio by a 
factor of two. Input power is shared between three parallel power stages, reducing ac-current 
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levels in each power stage by a factor of 3 thereby reducing susceptibility to resistive and 
inductive losses (i2R and Li2) in interconnections. 
 
Very high efficiencies have been reported for this topology. In [33]-[34], a 3 kW converter 
intended for fuel cell applications is presented. Input voltage range is 20-50 V and output 
voltage is 200 V. Measured efficiency seems to peak just below 97% at half output power. At 
maximum output power, efficiency is 96%. Measurement tolerances are however ±1% and input 
and output voltage conditions for the measured efficiency curve are not published.  
 
Furthermore, the converter is tested in the efficiency sweet spot at a phase angle of 150 degree 
where the converter is operating as a dc-transformer without any possibility of control. At phase 
angles below 120° when converter is in regulation, rms-current in primary switches will be 
significantly higher than in comparable full-bridge buck converters. Published efficiency data 
for the V6 converter operated in regulated mode (α<120°) has not been found. 

2.3 Summary of State­of­the­Art Analysis 
 
Twenty-two different converter designs intended for low voltage high power applications have 
been identified and analyzed. In table II, the published efficiency performance is listed for 
comparison.  
 
Unfortunately, published efficiency results are generally rare and difficult to compare since 
important operating test conditions such as input voltage level, output voltage levels and 
measurement tolerances are often not published. 
 
To perform the best possible comparison of the available data, both best case efficiency and the 
more important worst case efficiency data are compared. 
 
For comparison, efficiency data from the three boost converters [A1]-[A2], [A5], and [A6], as 
well as the buck converter [A3], published as part of this PhD project is included in table II. 
 
The system performance, cost, and size critical worst case efficiency column is highlighted in 
red. Best performance within each topology group is highlighted in light blue, and overall best 
performance is highlighted in blue. 
 
In addition to the comparison of achieved efficiencies, a number of observations and 
conclusions can be drawn from the study of the published literature: 
 

1. Many converter designs achieve modest to high efficiency at high input voltage and 
medium power. However, except for the V6 converters (though not in regulation) and 
the converters presented in this PhD project, all converters exhibit a very significant drop 
in efficiency in the critical low-input-voltage and maximum-output-power point. 

2. High power transformers for low voltage applications have high leakage inductance [9], 
[20]-[22]. Further, power transformers with high turns ratio have high leakage 
inductance [24], [33], [35], [42]. Large transformer leakage inductance is generally 
considered a significant source of switching losses in boost type converters. None of the 
published papers have substantiated this claim or analyzed transformer ac-resistance and 
leakage inductance. 
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3. Primary switch voltage rating must be oversized by a factor of 2-3 in boost converters 
[10], [20]-[25] to allow headroom for the voltage clamp circuits to operate. 
Alternatively, active clamp- or reset circuits introduce additional switches and create 
triangular current waveforms thus increasing conduction losses. 

4. Voltage clamp circuits are needed on boost converter primary switches [2], [4], [9], [10], 
[12], [14], [15], [20]-[27]. As a consequence of the allegedly large transformer leakage 
inductance, many forms of voltage clamping techniques and circuits are widely used to 
clamp voltage spikes across primary switches in boost type converters. 

5. Soft switching is needed to achieve high conversion efficiency in low voltage 
applications [2], [3], [26], [27], [33], [35]. None of the published papers have presented 
any measured or analyzed data on switching losses. 

 
The validity of these five key-design-assumptions will be analyzed in the next chapter. 

TABLE II.  
COMPARATIVE EFFICIENCY OF LOW VOLTAGE HIGH POWER CONVERTERS 

Topology No. 
Power 
Level 
[W] 

Input 
Voltage 

[V] 

Output 
Voltage 

[V] 

Best case 
Efficiency 

Worst case  
Efficiency Reference 

η Vin Pout η Vin Pout 

Push-Pull 
Boost 

1 1000 25-45 350-400 96.4 42 300 91 25 900 [4] 

2 1500 30-70 350 94 70 700 92.5 30 1500  [5]1 

Two-
Inductor 

Boost 

1 500 --60 380 96 52 300 - - - [9] 
2 1000 26-50 400 95.6 - 600 - - - [10] 
3 200 - - - - - - - - [11] 
4 1000 48 350 87 48 500 77 48 100 [12] 
5 1000 80 400 67 - 750 - - - [13] 
6 300 18-32 48 92 28 300 - - - [14] 
7 1500 22-32 270 96 32 750 <89 22 1500 [15] 

Full-
Bridge 
Boost 

1 5000 24 300 94 24 4500 - - - [16] 
2 1200 33 400 90.5 33 1200 - - - [17] 
3 1000 22-27 1000 92 27 1000 88 22 1000 [18] 
4 1400 100 374 <90 100 1000 - - - [19] 
5 10000 90-200 700 - - - - - - [20]-[22] 
6 3000 8-15 250-450 94 10 1500 <82 8 2500 [23]-[26] 
7 500 30-60 400 96 - 200    [27] 
8 1500 30-60 400 98 50 1200 96.8 30 1500 [A1]-[A2]2 
9 3000 30-60 400 98 50 2900 96.9 30 2850 [A5]2 

10 10000 30-60 7-800 98.2 50 9000 96.5 30 10000 [A6]2 

Full-
Bridge 
Buck 

1 75000 
200-
380 

380 95 200 75000 - - - [28] 

2 5000 22-41 400 90 - 4400 - - - [29] 
3 500 24-40 400 - - - - - - [30] 
4 1200 27-46 200 94.2 32 700 92.5 28 1200 [31] 
5 3000 44-96 217-310 96.5 60 1000 94 45 2000 [32]3 
6 1500 30-60 400 96.7 30 600 95.4 30 1500 [A3]2 

Full-
Bridge 

V6 
1 3000 20-50 200 <97 - 1500 96 - 3000 [33]-[35]3,4 

 
-     No data available. 
1 Efficiency data include dc-ac converter losses 
2 Converter designs published in this project 
3 Converter operated in unregulated dc-transformer mode 
4     Input voltage and output voltage conditions are not published  
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3  Design of High­Power Low­Voltage Converters 
 
In this chapter some fundamental issues related to design of high-power low-voltage converters 
are analyzed. 
 
In the state-of-the-art analysis in chapter 2, a number of more or less generally accepted and 
widely adopted design approaches (myths) were identified: 
 

1. High power transformers for low voltage applications and power transformers with high 
turns ratio have high leakage inductance. 

2. Primary switch voltage rating must be oversized by a factor of 2-3 in boost converters. 

3. Voltage clamp circuits are needed on boost converter primary switches. 

4. Soft switching is needed to achieve high conversion efficiency in low voltage 
applications. 

Following the analysis and presentation in this chapter, it becomes evident that all of these 
assumptions are wrong. Further, this chapter points out the special design issues that are 
particularly important in achieving high conversion efficiency in high-power low-voltage 
converters. These are: 
 

a) Extensive interleaving of transformer windings is needed to reduce/avoid high 
conduction losses due to proximity effect. 

b) Transformer leakage inductance does not depend on transformer turns ratio. 

c) Transformer leakage inductance is proportional to number of turns squared. 

d) The extensive interleaving required to reduce proximity effect in combination with the 
low number of primary turns will result in extremely low primary side transformer 
leakage inductances. 

e) Voltage clamp circuits are effectively bypassed by the extremely low transformer 
leakage inductance rendering voltage clamps superfluous. 

f) Current switching speed is critical in achieving high conversion efficiency. 

g) Low stray inductance and low ac-resistance layout are very important in high-power 
low-voltage converters. 

 
Finally, comparative analysis of buck and boost converters for low voltage high power 
applications shows that boost converters have fundamentally lower conduction losses in primary 
switches as well as lower reverse voltage stress on rectifier diodes. Thus, properly optimized 
boost converters will achieve higher conversion efficiency than comparable buck converters. 
 
These findings are obviously very important in the process of selecting optimum converter 
topology and in the detailed design and optimization of high-power low-voltage converters. 
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3.1Low Impedance Level in High­Power Low­Voltage Converters 
 
High-power low-input-voltage converters have extremely low primary side impedance levels. 
 
Minimum converter steady state dc input resistance is given by  
 

ܴ௜௡,௠௜௡ ൌ
௜ܸ௡,௠௜௡
ଶ

௜ܲ௡,௠௔௫
.                                                                ሺ1ሻ 

 
The extremely low impedance levels seen on converter primary side essentially turn the 
converter circuit into a current switching circuit where resistive and inductive elements are far 
more important to losses than capacitive elements. 
 
In order to process power efficiently at these low impedance levels, all circuit elements 
including primary switches, transformers and interconnection wiring have to exhibit 
comparatively low impedance levels. For a 1% power loss, any resistive series element has to be 
lower than 1% of the minimum input impedance.  
 
All circuit impedances in a high efficiency circuit therefore have to scale according to the 
minimum circuit impedance level. From (1), it therefore becomes evident that it is extremely 
important to achieve low conduction impedances (resistances and inductances) in low-voltage 
high-power circuits. 

3.2  Basic Operation of Isolated Full­Bridge Converters 
 
As a reference for the analysis made in the following chapters, the basic operating principles of 
the isolated full-bridge boost and full-bridge buck converters are presented in the following 
sections.  

3.2.1 Isolated Full­Bridge Boost Converter 
 
A schematic of the isolated full-bridge boost converter is presented in fig. 6. Timing diagram 
with basic operating waveforms is presented in fig. 7. 
 
Output rectifier configuration is a voltage doubler, effectively saving two rectifier diodes and 
reducing transformer turns ratio by a factor of two at the expense of larger output capacitors. 
The input capacitor, Cin, effectively removes the residual input ripple current i.e. the inductor 
ripple current, ∆iL1. 
 
3.2.1.1 Basic isolated boost converter operation 
 
Primary switches, S1-S4, are hard switched and operated in pairs, S1-S2 and S3-S4 respectively. 
Drive signals are 180 degree phase shifted. Switch transistor duty cycle, D, is above 50 percent 
to ensure switch overlap and thus a continuous current path for the inductor, L1, current. 
 
Basic converter operation can be divided into four main states, T1-T4. 
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Fig. 6.  Isolated full-bridge boost converter with voltage doubler. 

 

 
 

Fig. 7.  Timing diagram and basic waveforms for isolated full-bridge boost converter. 
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State 1, First inductor charging period, T1: 
A first inductor charging period, T1, starts when switches, S1-S2, are turned on. All switches, 
S1-S4, are on and the inductor current, iL1, is increasing. The inductor current is shared between 
the two parallel branches, S1-S4 and S3-S2. Both rectifier diodes, D1-D2, are off and current in 
the transformer secondary winding is zero. The small transformer magnetizing current circulates 
in the transformer primary winding through switches, S2-S4 and/or S1-S3. Output capacitors, 
C1 and C2, supply the load current. The period ends when primary switches, S3 and S4, are 
turned off. The duration of the inductor charging period is  
 

ଵܶ ൌ ௅ܦ ௅ܶ ൌ ൬ܦ െ
1
2
൰ܶ                                                          ሺ2ሻ 

 
Where the inductor duty cycle, DL, and inductor period time, TL, is defined as 
 

௅ܦ ؠ ܦ2 െ 1                                                                     ሺ3ሻ 
And 

௅ܶ ؠ
ܶ
2
                                                                           ሺ4ሻ 

 
State 2, First energy transfer period, T2:  
A first energy transfer period, T2, starts when switches, S3 and S4, are turned off. Inductor 
current, iL1, flows through primary switch, S1, transformer, T1, rectifier diode, D1, and output 
capacitor, C1, and returns to input through primary switch S2. Inductor current, iL1, discharges. 
The period ends when primary switches, S3 and S4, are turned on again. The duration of the 
energy transfer period is 
 

ଶܶ ൌ ሺ1 െ  ሻܶ.                                                                   ሺ5ሻܦ
 
State 3, Second inductor charging period, T3: 
A second inductor charging period, T3, similar to the first is initiated when switches, S3 and S4 
are turned on. Only minor difference from the first inductor charging period is that transformer 
magnetizing current is flowing in the opposite direction in the transformer primary winding. The 
period ends when switches, S1 and S2, are turned off. Period time is equal to the first inductor 
charging period, ଷܶ ൌ ଵܶ. 
 
State 4, Second energy transfer period, T4:  
Finally, a second energy transfer cycle, T4, starts when switches, S1 and S2, are turned off. 
Inductor current iL1, flows through switch, S3, transformer, T1 (in opposite direction compared 
with first energy transfer period), rectifier diode, D2, and output capacitor,, C2, and returns to 
input through primary switch, S4. The period ends when switches, S1 and S2, are turned on 
again. Period is equal to the first energy transfer period time, ସܶ ൌ ଶܶ. 
 
Total converter period time is the sum of the four state period times, T1-T4. 
 

ܶ ൌ ଵܶ ൅ ଶܶ ൅ ଷܶ ൅ ସܶ                                                           ሺ6ሻ 
 
The ideal lossless converter transfer function in continuous steady state is: 
 

௢ܸ

௜ܸ௡
ൌ

݊
1 െ ܦ

                                                                    ሺ7ሻ 
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Where transformer turns ratio is defined as the ratio of secondary winding turn number to 
primary winding turn number. 
 

݊ ؠ ௌܰ

௉ܰ
                                                                         ሺ8ሻ 

 

3.2.2 Isolated Full­Bridge Buck Converter 
 
A schematic of the isolated full-bridge buck converter is presented in fig. 8. (Same as fig. 5, but 
repeated here for convenience). Timing diagram with basic operating waveforms are presented 
in fig. 9. 
 
To minimize the voltage on output rectifiers as much as possible, a full-wave full-bridge 
rectifier consisting of D1-D4 is used. Since buck type converters have large discontinuous input 
currents, a large input ripple filter, represented by C1, is required to reduce input ripple current 
to acceptable levels. 
 
3.2.2.1 Basic isolated buck converter operation 
 
Primary switches, S1-S4, are hard switched and operated in pairs, S1-S2 and S3-S4 respectively. 
Drive signals are 180 degree phase shifted. Switch transistor duty cycle, D, is below 50 percent 
to avoid switch overlap and thus short circuit of input. 
 
Basic converter operation can be divided into four main states. 
 
State 1, First on-period, T1: 
A first converter on-period, T1, starts when switches, S1-S2, are turned on. Switches, S3-S4, and 
diodes, D3-D4, are off. Reflected inductor current flows from input capacitor, C1, through 
switch, S1, transformer, T1, diode, D1, and inductor, L1 to the output, and returns to input 
through diode, D2, and switch, S2. The period ends when switches, S1 and S2, are turned off 
again. Duration of the on-period is 
 

ଵܶ ൌ  ሺ9ሻ                                                                        .ܶܦ
 
State 2, First off-period, T2:  
A first converter off-period, T2, starts when switches, S1 and S2, are turned off. All primary 
switches are off. Inductor current, iL1, is free-wheeling through the two parallel branches, D1-D4 
and D3-D2, to output. Inductor current is discharging. Transformer magnetizing current 
circulates in the transformer secondary winding and the diodes, D1-D3 and/or D2-D4. The 
period ends when switches, S3 and S4 are turned on.  
 
State 3, Second on-period, T3: 
A second on-period similar to the first is initiated when switches, S3 and S4,, are turned on. 
Reflected inductor current flows from input capacitor, C1, through switch,, S3, transformer, T1, 
(in opposite direction compared to first on-period) diode, D3, and inductor, L1, to the output. 
Current returns to input through diode, D4, and switch, S4. The period ends when switches, S3 
and S4, are turned off again. Period time is equal to the first on-period, ଷܶ ൌ ଵܶ. 
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Fig. 8.  Isolated full-bridge buck converter. 

 

 
 

Fig. 9.  Timing diagram and basic waveforms for isolated full-bridge buck converter. 
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State 4, Second off-period, T4:  
Finally, a second off-period starts when switches, S3 and S4, are turned off. All primary 
switches are off. Inductor current, iL1, is free-wheeling through the two parallel branches, D1-D4 
and D3-D2, to output. Inductor current is discharging. Transformer magnetizing current 
circulates in the transformer secondary winding (in opposite direction to first off-period) and the 
diodes, D1-D3 and/or D2-D4. The period ends when switches, S1 and S2, are turned on. Period 
time is equal to the first off-period time, ସܶ ൌ ଶܶ. Duration of the off-period is 
 

ଶܶ ൌ ൬
1
2
െ  ൰ܶ.                                                                ሺ10ሻܦ

 
Total converter period time is the sum of the four state period times T1-T4, and given by (6). 
 
The ideal lossless converter transfer function in continuous steady state is: 
 

௢ܸ

௜ܸ௡
ൌ  ሺ11ሻ                                                                      ܦ2݊

3.3 Transformer Design for High­Power Low­Voltage 
Converters 

 
Transformer design for high power converters with high voltage gain is basically not different 
from designing any other high frequency power transformers. However, there seems to be a 
widespread misconception that high transformer turns ratio, as required in high gain 
applications, will result in large transformer leakage inductance [24], [33], [35], [42].  
 
This assumption of large transformer leakage inductance due to high turns ratio has led to the 
proposal of numerous new topologies and techniques to deal with the supposedly high 
transformer leakage inductance. Proposed techniques include regenerative voltage clamp 
circuits [14], [15] and active clamp and transformer reset circuits [5], [9], [10], [12], [15], [22]-
[24], [26], [27] as well as new topologies with lower transformer turns ratio such as the three 
phase V6 topology [33]-[37], [42]. 
 
However, as will be explained in section 3.3.1 below, the real issue in designing high frequency 
power transformers with high current windings is to avoid high winding ac-resistance due to 
severe proximity effect. 
 
An analysis of transformer leakage inductance, in section 3.3.2, shows that not only does 
transformer leakage inductance not depend on transformer turns ratio, but that the extensive 
interleaving of primary and secondary windings needed to reduce proximity effect will 
dramatically reduce transformer leakage energy.  
 
Finally, as the leakage inductance referenced to a particular winding is proportional to the 
number of turns squared, the very few primary turns needed on the low voltage primary winding 
will yield extremely small primary side leakage inductance. 
 
The widespread acceptance that a high power transformer for low input voltage, having high 
turns ratio, will have high leakage inductance, is simply not correct. 
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3.3.1 Proximity Effect in Low­Voltage High­Power Transformers 
 
High input current in high power fuel cell converters requires large wire copper cross section 
area in transformer primary windings. 
 
Foil windings are very efficient in providing large copper cross section areas with a minimum 
conductor thickness. However, as power levels increase, even foil winding thicknesses quickly 
approach or exceed penetration depths in copper. Proximity effect can thereby cause very 
significant increases in winding ac-resistances thus leading to significantly increased power 
losses [43], [44]. 
 
In principle, Litz wire could be used. However, the very large copper cross section and few turns 
required on transformer primary side, make use of Litz wire difficult and impractical. 
Furthermore, due to the large number of individually insulated strands in Litz wires, copper 
space-factor is much lower than in solid copper foil windings leading to increased dc-resistance. 
 
Using the work of Dowel [43] and Hurley [45], the increase in winding ac-resistance, Rac, 
relative to winding dc-resistance, Rdc, at a specific frequency i.e. with sinusoidal excitation, due 
to eddy current effect is 
 

ோܨ ൌ
ܴ௔௖
ܴௗ௖

ൌ ߮
sinh 2߮ ൅ sin 2߮
cosh 2߮ – cos 2߮

 .                                              ሺ12ሻ 

 
For single layer windings ߮ ൌ ݄ ⁄ߜ , and for half layer windings  ߮ ൌ ݄ ⁄ߜ2 .  
 
In multi layer windings (m > 1) an additional term covering the proximity effect is added, thus 
the resistance factor becomes 
 

ோܨ        ൌ
ܴ௔௖
ܴௗ௖

ൌ ߮
sinh 2߮ ൅ sin 2߮
cosh 2߮ – cos 2߮

൅
2ሺ݉ଶ െ 1ሻ

3
߮
sinh߮ െ sin߮
cosh߮ ൅ ߮ݏ݋ܿ

.                   ሺ13ሻ 

 
Where  ߮ ൌ ݄ ⁄ߜ . 
 
Since number of turns and winding thickness are different on primary and secondary windings 
(n ≠ 1), ac-resistance factors have to be calculated separately for primary, FR,P , and secondary, 
FR,S, windings. The combined effective ac-resistance for the transformer can be found as the 
weighted sum of the primary and secondary factors. If primary and secondary windings occupy 
equal winding spaces, the weighting factor becomes 0.5. 
 

்,ோܨ ൌ  
 ோ,௉ܨ ൅ ܨோ,ௌ

2
                                                             ሺ14ሻ 

 

3.3.2 Leakage Inductance in Low­Voltage High­Power Transformers 
 
Again, using the work of Dowel [43] and Snelling [44], an analytical expression of the 
transformer low frequency leakage inductance can be derived. This analytical expression is very 
useful in fully understanding the impact of transformer turns ratio and winding technique on 
transformer leakage inductance. 
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Stored energy in a magnetic volume, Ve, is 
 

ݓ ൌ ௘ܸ න ܪ ܤ݀
௱஻

଴
                                                             ሺ15ሻ 

 
Where flux density of free space is B = µ0 H. 
 
The transformer windings can be grouped into a number of winding portions and intersections 
according to their magnetomotive force (m.m.f.) diagram as presented in fig. 10. Winding 
intersections constituting small volumes, VΔ = lwbwhΔ, of constantly high magnetic field strength 
H. Portions being volumes, VP = lwbwhP, of winding space where magnetic field strength, H, is 
increasing linearly from zero to maximum. 
 
 

,, 
 

Fig. 10.  Transformer winding configuration with 8 intersections, 16 portions and ½ layer primary winding. 
 
To find the stored energy in each volume element, we integrate magnetic field strength squared, 
H2, over the height of the volume element  
 
 

ሺݓ ௉ܸሻ ൌ
1
2
μ଴݈௪ܾ௪ න ሻଶݔሺܪ

௛ು

଴
ݔ݀ .                                               ሺ16ሻ 

 
Where x, is the distance from the zero crossing of the magnetic field strength, H, (and m.m.f.) 
and is defined in the range 0 ≤ x ≤ hP. 
 
Knowing the shape of the magnetic field strength as presented in each of the winding 
configuration drawings fig. 11, we can calculate the stored energy. 
 
In each portion of the winding, the magnetic field strength H, will either be increasing or 
decreasing having the numerical magnitude 
 
 

|ሻݔሺܪ| ൌ
ܫܰ

௪݄௉ܾܯ
 ሺ17ሻ                                                          .ݔ
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The corresponding magnetic field strength in the intersection between primary and secondary 
windings is 
 

|ሺ݄௱ሻܪ| ൌ
ܫܰ
௪ܾܯ

.                                                                ሺ18ሻ 

 
Due to symmetry we only need to calculate the values for 1 portion and 1 intersection and then 
multiply by number of portions and intersections respectively. 
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ݔܫܰ
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By definition 
 

ݓ ؠ
1
2
 ଶ.                                                                      ሺ20ሻܫܮ

 
Now we can find an analytical expression for the leakage inductance, LLK 

 

௅௄ܮ ൌ μ଴
ܰଶ݈௪
ଶܾ௪ܯ

൭
1
3
෍݄௉

ଶெ

௉ୀଵ

൅෍݄௱

ெ

௱ୀଵ

൱                                            ሺ21ሻ 

 
If hΔ<<hP transformer leakage inductance is approximately 
 

௅௄ܮ ൌ μ଴
݈௪݄௪
3ܾ௪

ܰଶ

ଶܯ .                                                             ሺ22ሻ 

 
From (21) and (22) it is clear that extensive interleaving of primary and secondary windings, as 
required in high-power low-voltage transformers, will lead to very small stored energy in 
transformer leakage inductance.  
 
Further, it becomes evident that with leakage inductance being proportional to number of turns 
squared N2, the few turns required on primary windings of low-voltage high-power 
transformers, will inherently have extremely small leakage inductance. 
 
Finally, transformer leakage inductance for a given winding - as expressed in (21) and (22) - 
does not depend on number of turns on any other windings. Therefore leakage inductance in a 
transformer is not a function of transformer turns ratio but only depends on winding technique 
and number of turns on the specific winding in question. 

3.3.3 Analysis of Four Alternative Winding Designs 
 
To illustrate the importance of controlling eddy current and proximity effect losses in high 
frequency power transformers for low input voltage applications, we will use the analytical 
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expressions developed in section 3.3.1 and 3.3.2 to analyse winding ac-resistance and leakage 
inductance of the 4 alternative winding configurations shown in fig. 11 (a)-(d). 
 
A power transformer for a 1.5 kW isolated boost converter operating down to 30 V input 
requires a transformer turns ratio of 1:4 [A1], [A2]. Switching at 45 kHz, an EE55/21 ferrite E-
core with 4 primary turns can transfer the power. Thus, sixteen secondary turns are required. 
 
At 45 kHz, penetration depth in copper is only 0.34 mm. A primary winding with 4 turns on an 
EE55/21 core, will allow each of the 4 primary turns to be up to 0.6 mm thick. The 16 turn 
secondary winding can be realized by using 0.15 mm copper foil. 
 
Using (12)-(14), transformer winding ac resistance factors for the 4 alternative winding 
configurations of fig. 11 (a)-(d) are calculated and presented in table III. Notice, that primary 
winding ac resistance in the winding configuration of fig. 11 (a) is 13 times larger than in 
winding configuration fig. 11 (d). 
 
This clearly illustrates that to achieve low ac-resistance in high frequency high-current 
transformer windings, extensive interleaving of primary and secondary windings is required. 
 
Using (21), the leakage inductances for the 4 alternative winding configurations in fig. 11 (a)-(d) 
are calculated and presented in table III. Notice that leakage inductance in the winding 
configuration of fig. 11 (d) is approx. 35 times smaller than the corresponding leakage 
inductance in the winding configuration of fig. 11 (a). 
 

            
                         (a)                                                                           (b) 
 

             
 
                              (c)                                                                           (d) 

 
Fig. 11.  Alternative transformer winding configurations. Without interleaving (a), single interleaving (b), double 

interleaving (c) and quadruple interleaving (d). 
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Also notice that this analysis does not include any stray inductance or ac-resistance effects 
caused by transformer terminal leads. 
 
Summarizing, the need to reduce proximity effect in high-power low-voltage transformers 
requires extensive interleaving of windings. This extensive interleaving will dramatically reduce 
transformer leakage inductance, and thereby stored energy in transformer leakage inductance. 
Finally, the few primary turns required in transformers for low input voltage, will result in 
power transformers having exceptionally low leakage inductance. 

TABLE III.  
CALCULATED AC-RESISTANCE FACTOR AND TRANSFORMER LEAKAGE INDUCTANCE FOR 4 ALTERNATIVE WINDING 

DESIGNS  

Winding design A B C D 

Intersections M 1 2 4 8 

FR,P 13.3 3.96 1.63 1.05 

FR,S 2.07 1.27 1.07 1.02 

FR,T 7.7 2.6 1.35 1.04 

LLK,P [nH] 249 70 21 7.2 

LLK,S [nH] 3,976 1,114 339 115 

3.3.4 Experimental Verification/Results 
 
The transformer corresponding to the configuration in fig. 11 (d), was manufactured and leakage 
inductance and ac resistance were tested on an Agilent 4294A Precision Impedance Analyzer.  
 
Leakage inductance and ac resistance are measured into secondary winding with primary 
winding shorted. Test result is shown in fig. 12. 
 
 

 
 

Fig. 12. Measured secondary side ac resistance (upper curve) and leakage inductance (lower curve) of 1.5 kW 
transformer. 
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Transferred to primary side, ac resistance at 45 kHz is 1.9 mΩ and leakage inductance is only 11 
nH. Notice, the measured ac resistance and leakage inductance even include the parasitic 
resistance and stray inductance of the transformer terminal leads. 
 
The leakage inductance in percentage of primary magnetizing inductance is only 0.01%.  
 
The experimental test results therefore confirm the theoretical analysis and demonstrate the 
extremely low leakage inductances that are achieved in optimally designed high power 
transformers for low voltage applications. 
 
The transformer is used in the 1.5 kW converter published in appendixes [A1], [A2], and also in 
the 3 kW converter published in appendix [A5]. 

3.4 Power MOSFET Losses  
 
At present, power MOSFETs constitute the best available technology for low voltage switches. 
Alternative technologies such as IGBTs have much slower switching speed and in particular 
high saturation voltages which at a minimum voltage of only 30 V will result in very large 
power losses. 
 
In the following, the significant loss factors involved when using power MOSFETs as primary 
switches in high-power low-voltage converters will be analyzed.  

3.4.1 MOSFET Conduction Losses  
 
Due to the very high input current, primary switch conduction losses are dominant loss factors 
in high-power low-voltage converters. Thus, optimum design and selection of primary switches 
are obviously very important in achieving high conversion efficiency. 
 
In the on-state, power MOSFET conduction loss is purely resistive and switch conduction loss is 
given by 
 

஽ܲௌ,௖௢௡ ൌ ܴ஽ௌሺ௢௡ሻܫ஽ௌ,௥௠௦
ଶ .                                                      ሺ23ሻ 

 
For a constant power MOSFET chip area, two factors therefore determine the switch conduction 
losses – switch rms current, IS,rms, and switch on-resistance, RDS(on).  Switch rms current is a 
function of selected converter topology [A3]. 
 
For a constant chip area, power MOSFET on-resistance increases exponentially with rated 
drain-source breakdown voltage, V(BR)DSS [46]. 
 

ܴ஽ௌሺ௢௡ሻ ן ሺܸ஻ோሻ஽ௌௌ
ଶ.ହ ௧௢ ଶ.଻                                                           ሺ24ሻ 

 
Due to terminal resistances from leads and bonding wires becoming significant at lower 
voltages, the exponential coefficient is closer to 2 in the power and voltage range (75-150 V) 
considered in this project. Comparing the two International Rectifier power MOSFETs, 
IRFB3077 and IRFP4321, rated for 75 V and 150 V respectively and having typical on-
resistances of 2.8 mΩ and 12 mΩ [47], we get an exponential coefficient of 2.1. To be 
conservative, we will use an exponential coefficient of 2 in the following analysis. 
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For a given chip size and technology, power MOSFET conduction losses are thus proportional 
to 
 

஽ܲௌ,௖௢௡ ן ሺܸ஻ோሻ஽ௌௌ
ଶ ஽ௌ,௥௠௦ܫ

ଶ .                                                     ሺ25ሻ 
 
From (25), it is evident that any possibility of reducing device voltage stress and consequently 
rated device voltage will dramatically reduce conduction losses in the primary switches and thus 
significantly increase converter efficiency.  
 
If the switch voltage rating can be reduced by a factor of 2, (from 150 V to 75 V) the total 
switch conduction losses would be reduced by minimum a factor of 4. Alternatively, the number 
of switches needed could be reduced by a factor of 4, thus dramatically saving component cost, 
size, drive power and switching losses. 
 
The primary switch rms current in an isolated boost converter can be expressed as [A3] 
 

ௌ,௥௠௦,஻௢௢௦௧ܫ ൌ ௜௡ܫ
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                                       ሺ26ሻ 

 
If the inductor ripple current is much smaller than the dc input current, ∆iL1<<Iin, then switch 
rms current becomes approximately 
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Total conduction losses in the primary switches of a full-bridge boost converter thus become 
 

ிܲ஻,௖௢௡,஻௢௢௦௧ ൌ ܴ஽ௌሺ௢௡ሻሺ3 െ ሻܦ2 ൬ ௢ܲ
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                                        ሺ28ሻ 

 
The corresponding equations for the full-bridge buck converter are [A3] 
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                                            ሺ29ሻ 

 
If the switch ripple current is much smaller than the reflected input current, ∆iS<<nIo, then the 
switch rms current becomes approximately 
 

ௌ,௥௠௦,஻௨௖௞ܫ ൎ ܦ√௢݊ܫ ൌ ௢ܲ

௢ܸ
 ሺ30ሻ                                                  ܦ√݊

 
Total conduction losses in the primary switches of a full-bridge buck converter thus become 
 

ிܲ஻,௖௢௡,஻௨௖௞ ൌ 4ܴ஽ௌሺ௢௡ሻܦ ൬
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If a buck and a boost converter are using the same primary switches, their relative switch 
conduction losses for the same operating point will be 
 

ிܲ஻,௖௢௡,஻௢௢௦௧
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                 ሺ32ሻ 

 
From the experimental comparison of the two converters published in [A3], we have the 
following comparable data for maximum output power and minimum input voltage: 
 
Vo=400 V, Vin,min=30 V, nBuck=16, ηBoost=0.967, DBoost=0.7 and DBuck=0.425.  
 
Using (32), the ratio of the primary switch conduction losses at maximum output power and 
minimum input voltage become  
 

ிܲ஻,௖௢௡,஻௢௢௦௧

ிܲ஻,௖௢௡,஻௨௖௞
ൌ 0.70                                                           ሺ33ሻ 

 
Even if we base the comparison on the ideal lossless transfer functions for each of the two 
converter topologies given by (7) and (11) and further assuming that operating duty cycle of the 
buck converter can reach 50% i.e. not having any regulation headroom left, we will still see 
larger losses in the buck converter primary switches due to the inherently larger rms currents. 
The theoretical, however unrealistic, numbers would be: 
 
Vo=400 V, Vin,min=30 V, nBuck=13.33, nBoost=3.33,  ηBoost=1, DBoost=0.75 and DBuck=0.5.  
 
Again using (32), we get a theoretical best case ratio between the squared primary switch rms 
currents - and thereby their conduction losses - of 
 

ቆ
ௌ,௥௠௦,஻௢௢௦௧ܫ

ௌ,௥௠௦,ி஻ ஻௨௖௞ܫ
ቇ
ଶ

ൌ 0.75                                                      ሺ34ሻ  

 
This means, that fundamentally the rms currents in the primary switches of the isolated boost 
converter are smaller than in the isolated full-bridge buck converter. If the same power 
MOSFETs can be used in buck and boost converters, the conduction losses in primary switches 
of the boost converter will be significantly lower than in comparable buck converters.  
 
Theoretically, boost converters have at least 25% less conduction losses in primary switches. In 
practice this difference will be even higher since the buck converter cannot reach the full 
theoretical maximum duty cycle of 50%. In the comparative experimental study presented in 
[A3], the boost converter has 30% less conduction losses than a comparable buck converter. 
 
To quantify the importance of conduction losses in the primary switches, we can use (28) to 
calculate the total primary switch conduction loss in the 1.5 kW boost converter in [A2]. Typical 
drain-source on-resistance of the IRFB3077 power MOSFET is 3.5 mΩ at 60°C [47]. At 30 V 
input and 1.5 kW output, converter duty cycle is D=0.7 and measured efficiency is η=0.968 
[A2]. Total conduction losses in the 4 primary switches are 
 

ிܲ஻,௖௢௡,ଵ.ହ ௞ௐ ൌ ܴ஽ௌሺ௢௡ሻሺ3 െ ሻܦ2 ൬ ௢ܲ
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൰
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ൌ 14.9 ܹ.                               ሺ35ሻ 
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Corresponding to a 1% loss of efficiency - or 30% of all converter losses - at maximum output 
power and minimum input voltage. 

3.4.2 Power MOSFETs rated for repetitive avalanche 
 
Modern power MOSFETs are rated for repetitive avalanche [47]. Failure mode is purely 
thermal, occurring at temperatures well in excess of rated device temperatures [47]. This 
effectively means that as long as device ratings are not exceeded, devises can operate under 
repetitive avalanche conditions. Thus, voltage clamping circuits traditionally used to avoid 
avalanche in these devices are no longer needed for device protection. 
 
Special care has to be taken during device paralleling, since current sharing during avalanche 
cannot be guaranteed between paralleled devices. Avalanche voltage levels will differ between 
paralleled devices, thus the device having the lowest avalanche voltage will receive the full 
current from all parallel devices, potentially overstressing current rating and thermal rating of 
that device [48]. 

3.4.3 Power MOSFET Turn­off Losses 
 
During a hard switched power MOSFET turn-off, drain-source voltage first has to commutate in 
order to open an alternative current path before drain current can start to decay. This first turn-
off phase – the voltage switching phase - is well known from literature and described in many 
power electronic textbooks [46].  
 
During power MOSFET turn-off, voltage rise time is controlled by the ability of the gate driver 
circuit to sink the current being delivered to the gate by the gate-drain Miller-capacitor as the 
drain voltage increases and thus charges the gate-drain capacitor. If the gate driver current 
exceeds the power MOSFET gate-drain feedback current during voltage switching, power 
MOSFET transistor will be off during the capacitive charging of the power MOSFET output 
capacitance, COSS. In boost converters (and many others), this charging is performed by an 
inductive element and charging is thus lossless. 
 
During hard switched turn-on, the stored capacitive charge in the power MOSFET output 
capacitor, COSS, is however dissipated in the power MOSFET channel. At higher voltage levels 
and/or high switching frequencies such as in off-line applications, voltage switching losses can 
become a dominant loss factor. Consequently, many soft switching schemes have been 
developed to save voltage switching losses in high-input-voltage applications [49]. 
 
Since voltage switching losses have traditionally been the main concern with regard to switching 
losses in switch-mode power converters, the topic has been extensively treated in literature and 
in many power electronic textbooks [46] and will thus not be treated any further here. 
 
In high input current applications however, power MOSFET current switching losses can 
become a very significant source of power losses. Furthermore, since efficiency critical high 
input current applications are relatively new, high-frequency high-current switching has not yet 
received a similar attention in literature.  
 
The following sections will present a detailed analysis of power MOSFET current switching 
behavior and its impact on converter switching losses. 
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Power MOSFET common source inductance and gate driver voltage determine maximum power 
MOSFET current turn-off speed. 
 
In boost converters, the ratio of commutation inductance to power MOSFET common source 
inductance will determine in which of two alternative current commutation modes the converter 
will operate.  
 
In the following, the two current commutation modes will be analyzed in detail. Analytical 
expressions for converter commutation losses in each of the two modes are developed together 
with an expression for the boundary condition between the two modes. 
 
These analytical expressions are therefore very useful in designing and optimizing high input 
current converters for high conversion efficiency.  
 
Finally, the analytical results are verified by comparing measured current switching 
performance from two prototype converters - a 1.5 kW and a 10 kW isolated full-bridge boost 
converter. 
 
 
3.4.3.1 Power MOSFET Current Switching Speed 
 
Common source inductance sets a fundamental upper limit to the current switching speed in a 
power MOSFET during turn-off [50].  
 
The equivalent circuit in fig. 13, represents the situation during power MOSFET current switch 
off.  
 

 
Fig. 13.  Power MOSFET with parasitic common source inductance feedback to gate. 

 
Total common source inductance is represented by a lumped parasitic inductance LCS, common 
to the load current, represented by iDS, and the gate driver loop. The lumped common source 
inductance is the sum of device internal parasitic bond wire inductance, device package 
common source parasitic lead inductance (determined by lead length) and any additional circuit 
layout related common stray inductance. 
 
While the external common stray inductance can be controlled by proper circuit layout (Kelvin 
type layout), the device related internal bond wire inductance and parasitic lead inductance, is 
purely a function of device package design. 
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Using a fast gate drive circuit, gate drive output voltage, vg, will have reached its off-potential 
long before device drain current starts to decay.  
 
During power MOSFET current turn-off, the negative current slope created by the decaying 
drain-source current, diDS/dt, induces a negative voltage across the common source inductance. 
Since the common source inductance is also in series with the gate-source loop, the negative 
voltage induced across the common source inductance appears as a positive gate-source voltage 
on the power MOSFET. 
 
When power MOSFET gate-source voltage reaches the voltage level required to conduct the 
drain-source current, VGS(iDS), the device will be operating in its active linear mode having high 
drain-source voltage. Due to the negative feedback, the power MOSFET will effectively limit 
rate-of-current-decay i.e. negative diDS/dt to a fixed upper limit. Any tendencies to exceed this 
upper limit will increase power MOSFET gate-source voltage further, causing power MOSFET 
to reduce the slope of the negative diDS/dt, thereby effectively controlling maximum current 
switch off speed. 
 
Induced voltage across common source inductance is given by 
 

௅௖௦ݒ ൌ ஼ௌܮ
݀݅஽ௌ
ݐ݀

.                                                               ሺ36ሻ 

 
Gate-source voltage is given by 
 

ௌீݒ ൌ ௚ݒ െ  ௅௖௦                                                               ሺ37ሻݒ
 
The maximum power MOSFET current switch off speed can be found by combining (36) and 
(37). 
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For a gate driver output voltage of zero, we have a maximum power MOSFET current turn-off 
speed of  
 

݀݅஽ௌ
ݐ݀

ൌ െ
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                                                          ሺ39ሻ 

 
From (38) we can also see that by applying negative gate driver output voltage during power 
MOSFET turn-off, current switching speed can be increased. This, however, comes at the 
expense of added gate driver complexity and increased gate drive losses. 

3.4.3.2 Voltage  Limited Current Commutation – Mode 1 
 
In isolated boost converters having large commutation inductance, current commutation speed is 
limited by clamp voltage. 
 
An isolated full-bridge boost converter is presented in fig. 14. A voltage clamp circuit 
represented by diode, D3, and voltage source, VCL, limit primary switch overvoltage during 
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commutation of current to output. Commutation inductance, LX, is the sum of transformer 
leakage inductance, LLK, primary stray inductance, LSP, and reflected secondary stray 
inductance, LSS/n2. 
 

 
 

Fig. 14.  Isolated full-bridge boost converter with voltage clamp circuit and commutation inductance. 
 

A timing diagram showing waveforms for the voltage limited current commutation period 
is  presented  in  fig.  15.  Referring  to  fig.  14,  and  fig.  15,  the  basic  current  commutation 
process is explained.  
 
Turn‐off process starts when S3 and S4 gate driver output switches to its low state voltage 
at t0=DT.  
 
Voltage switching period (T1=t1­t0): 
Drain‐source  voltage  rises  quickly,  gate‐source  voltage  is  charged  to VGS(iD)  by  the  gate‐
drain Miller  capacitor.  Current  stays  in  switches  since no  alternative  current path  is  yet 
open. 
 
MOSFET current switch off period (T2=t2­t1): 
When drain‐source voltage reaches reflected output voltage, drain current starts to decay 
at  its maximum current switching speed set by common source  inductance. Transformer 
current  increases  linearly  at  a  rate  determined  by  the  commutation  inductance  and  the 
clamp  voltage  minus  reflected  output  voltage.  Remaining  inductor  current  flows  into 
clamp circuit. At  the end of  the period,  current  in switches, S3 and S4,  reaches zero and 
transistors are turn‐off. Duration of period is given by maximum power MOSFET di/dt and 
inductor current level. 
 
Inductor current clamping period (T3=t3­t2): 
Inductor  current  is  now  shared  between  clamp  circuit  and  transformer.  Transformer 
current continues to increase at the same rate, and clamp circuit current is reduced at the 
same rate. At the end of the period, all inductor current has commutated into the output. 
 
Total  power  loss  during  current  commutation  is  given  by  the  integral  of  transformer 
current from t1 to t3 multiplied by the clamp voltage.  
 
The  current  going  into  the  clamp  circuit  can  potentially  be  recovered  by  conversion  to 
input or output. 
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Fig. 15.  Timing diagram for voltage 
limited current commutation – mode 1. 

Fig. 16.  Timing diagram for power MOSFET 
limited current commutation – mode 2. 
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The  converter  has  two  current  commutation  cycles  in  each  switching  period.  Total 
commutation  loss  is  the  sum  of  clamp  circuit  power  and  power  loss  in  switches  and  is 
given by 
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Where the commutation inductance is defined as 
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Since transformer current has to  increase from zero to  inductor, L1, current during total 
commutation time we have 
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Where peak inductor, L1, current is given by 
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By combining (40) – (44), we get an expression for the total converter clamping power 
 

஼ܲ஼ି௏௅ ൌ
௦݂ ஼ܸ

஼ܸ െ
௢ܸ
2݊

௅ଵ,௣௘௔௞ܫ௑ܮ
ଶ                                                     ሺ45ሻ 

 
In  the  typical  case  where  clamping  voltage,  VC  ,  is  approximately  2  times  the  reflected 
output voltage i.e.  ஼ܸ ൎ 2 ௢ܸ ݊⁄  , and secondary stray inductance transferred to primary side 
can be ignored due to high transformer turns ratio, and finally that inductor ripple current 
is much lower than maximum input dc current, converter clamping power becomes 
 

஼ܲ஼ି௏௅ ൎ 2 ௦݂ሺܮௌ௉ ൅ ௜௡ܫ௅௄ሻܮ
ଶ                                                      ሺ46ሻ 

 
Where Iin, is the converter dc input current. 

3.4.3.3 Power MOSFET Limited Current Commutation – Mode 2 
 
If we reduce the commutation inductance (or increase the power MOSFET common source 
inductance) in the isolated boost converter of fig. 14, converter current commutation will change 
into being controlled by power MOSFET maximum turn-off current speed.  
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In this mode, switch voltage levels never reach clamp voltage levels and converter current 
commutation is therefore controlled by power MOSFET maximum current turn-off di/dt. In 
chapter 3.4.3.1, we found that maximum current turn-off speed in a power MOSFET is 
controlled by the common source inductance which minimum value is again given by package 
layout. This means that for a given device package design, the fastest converter current 
commutation achievable, and thus the lowest losses, is obtained when converter current 
commutation is limited only by the power MOSFET maximum turn-off di/dt. 
 
Timing diagram with voltage and current waveforms for the current commutation period is 
presented in fig. 16. Referring to fig. 14 and fig. 16, the basic current commutation process is 
explained.  
 
Turn-off process starts when S3 and S4 gate driver output switches to its low state voltage at 
t0=DT.  
 
Voltage switching period, (T1=t1­t0): 
Drain-source voltage rises quickly, gate-source voltage is charged to VGS(iD) by the gate-drain 
Miller capacitor. Current stays in switches since no alternative current path is yet open. 
 
MOSFET current switch off period (T2=t2­t1): 
When drain-source voltage reaches reflected output voltage, drain current starts to decay at its 
maximum current switching speed set by common source inductance. Due to low commutation 
inductance, drain-source voltage does not reach voltage clamping level. Thus, clamping circuit 
is not activated. Transformer current increases linearly at the same rate as the decaying switch 
current. Converter current commutation is completed when current in switches, S3 and S4, 
reaches zero, and transistors are turned off. Duration of current commutation is given by the 
maximum power MOSFET di/dt and inductor, L1, current level. 
 
Total power loss during current commutation is given by the integral of transformer current 
from t1 to t3 multiplied by the switch drain-source voltage, vS4. 
 
The converter has two current commutation cycles in each switching period. Total converter 
commutation loss shared by the four switches is given by 
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During current commutation, the transformer current changes from zero to peak inductor current 
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Using (49) and (50), we can find the duration of the current commutation 
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By combining (48) and (49), we can find an expression for the switch drain-source voltage 
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Combining (47), (49), (52) and (55), we can now find an expression for the full-bridge boost 
converter total current commutation losses in the current limited case 
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Total current commutation loss in mode 2 becomes 
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3.4.3.4 Mode 1 versus Mode 2 Current Commutation 
 
By comparing the two power loss equations for current commutation mode 1 and mode 2 
ሺ45ሻ and ሺ55ሻ, we get an expression for the boundary condition between the two current 
commutation modes.  
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If the ratio of commutation inductance, LX, to common source inductance, LCS, is larger than 
the right hand side expression in ሺ56ሻ, converter current commutation operates in mode 1 
and  is  controlled  by  commutation  inductance  and  available  clamp  or  avalanche  voltage 
according to ሺ45ሻ.  
 
Condition for mode 1 operation is therefore: 
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If, however, the commutation inductance can be reduced to a level lower than the critical 
ratio given by ሺ56ሻ, the converter current commutation operates in mode 2, and we have 
the following condition for mode 2 current commutation: 
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In mode 2, converter current commutation is only limited by the power MOSFET current 
turn‐off speed which is determined by the common source inductance according to ሺ55ሻ. 
 
Comparing losses in the two modes, we can see that mode 2 operation will always be more 
efficient than mode 1 operation. 
 
Since common source inductance, LCS, is a function of power MOSFET package design and 
physical layout, then a given power MOSFET will have the same current turn‐off waveform 
in mode 1 and mode 2 operation fig. 15, and fig. 16. Since switch voltage in mode 2 does 
not reach clamp voltage level – and is therefore lower than in mode 1 ‐ current switching 
losses in mode 2 will be smaller than in mode 1.  
 
In addition to these non‐recoverable losses in the power MOSFETs, current commutation 
mode 1 will also have power losses associated with the clamping current, iCL, in periods, T2 
and T3. If voltage clamping is performed by an external circuit as shown in fig. 14, most of 
this clamp energy can be recovered to input or output by a dedicated converter ሾ14ሿ, ሾ20ሿ, 
ሾ23ሿ, ሾ25ሿ or the use of active clamp circuits ሾ9ሿ, ሾ10ሿ, ሾ12ሿ, ሾ15ሿ, ሾ21ሿ‐ሾ24ሿ, ሾ26ሿ, ሾ27ሿ. This 
will, however, require much higher voltage rating on primary switches and thereby lead to 
a dramatic increase in primary switch conduction losses as explained in chapter 3.4.1. 
 
To conclude,  if we can reduce commutation  inductance to a  level below the critical ratio 
given  by  ሺ56ሻ,  we  can  eliminate  the  voltage  clamp  circuit  and  at  the  same  time  reduce 
current  commutation  losses. Without  the  voltage  clamp  circuit,  we  can  now  reduce  the 
primary  switch  voltage  rating  by  approximately  a  factor  of  2  ሾ10ሿ,  ሾ20ሿ‐ሾ25ሿ  thereby 
reducing  conduction  losses  in  primary  switches  by  a  factor  of  4,  thus  achieving  a  very 
significant increase in converter conversion efficiency. 

3.4.3.5 Experimental results 
 
To illustrate the usefulness of the above analysis and the importance of achieving fast current 
switching, measured power MOSFET turn-off waveforms from the 1.5 kW isolated boost 
converter [A1], [A2] and the 10 kW isolated R4 boost converter [A6] are analyzed and 
compared in this subsection. 
 
In fig. 17, measured power MOSFET switch-off waveforms on a 1.5 kW isolated boost 
converter [A2] at full load and minimum input voltage (1500 W & 30 V) are presented.  
 
Straight-line approximations are superimposed on top of the measured oscilloscope traces in 
order to ease interpretation and measurement of waveform data. Red lines on top of light blue 
current trace and black lines on top of green voltage trace.  
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Fig. 17. Measured switch S4 turn-off sequence in 1.5 kW isolated boost converter. Time base is 20 ns/div. 
 
By measuring the power MOSFET switch-off current di/dt and using (39), we can estimate the 
total power MOSFET common source inductance, LCS, in the converter prototype. The power 
MOSFET is an IRFB3077 in a TO-220AB package from International rectifier. Typical gate-
source voltage as function of drain current can be found in the product data sheet [47]. 
 
Measured turn-off di/dt in fig. 17, is 
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Power MOSFET gate-source voltage at 28 A is typically: ܸீ ௌ,ூோி஻ଷ଴଻଻ሺ28 ܣሻ ൎ 3.9 ܸ [47]. 
 
Using (39), we can then find an estimated value of the total power MOSFET common source 
inductance 
 

஼ௌܮ ൎ
െܸீ ௌሺ݅ௌସሻ
݀݅ௌସ
ݐ݀

ൌ  ሺ60ሻ                                                     ܪ݊ 2.2

 
By evaluating the straight-line approximated curve forms in fig. 17, and using (47), the total 
converter turn-off losses can be estimated 
 

ௌܲௐିଵ.ହ ௞ௐ ൌ 2 ௦݂ න ௌସ்݅ଵݒ
௧మ

௧భ

 ݐ݀ ൎ 2 ௦݂∆ݒௌସ∆݅ௌସ∆ݐ ൌ 5.3 ܹ                            ሺ61ሻ 

 
Corresponding to only 0.35% loss of efficiency at 1500 W. 
 
Similarly, measured power MOSFET switch-off waveforms from a 2.5 kW power stage in a 10 
kW isolated boost converter [A6] is presented in fig. 18. The converter is operating at full power 
and minimum input voltage (10 kW & 30 V).  
 
By measuring the power MOSFET switch-off current di/dt and using (39), we can estimate the 
total power MOSFET common source inductance, LCS, in the converter prototype. The power 
MOSFET is an IRFP4368 in a TO-247AC package from International rectifier. Typical gate-
source voltage as function of drain current can be found in the product data sheet [47]. 
 

vDS,S4  (50V/div) 

iDS,S4  (40A/div) 
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Fig. 18.  Measured switch S3 turn-off sequence in 10 kW isolated boost converter. Time base is 100ns/div. 
 

Measured turn-off di/dt in fig. 18, is 
 

݀݅ௌଷ
ݐ݀

ൌ
∆݅஽ௌ,ௌଷ
ݐ∆

ൎ െ0.67
ܣ
ݏ݊
.                                                      ሺ62ሻ 

 
Power MOSFET gate-source voltage at 48 A is typically: ܸீ ௌ,ூோி௉ସଷ଺଼ሺ48 ܣሻ ൎ 4.3 ܸ [47]. 
 
Using (39), we can then find an estimated value of the total power MOSFET common source 
inductance 
 

஼ௌܮ ൎ
െܸீ ௌሺ݅ௌଷሻ
݀݅ௌଷ
ݐ݀

ൌ  ሺ63ሻ                                                       ܪ݊ 6.4

 
By using (47) and the straight-line approximated curve forms in fig. 18, the total commutation 
loss for all four parallel power stages is  
 

ௌܲௐିଵ଴ ௞ௐ ൌ 8 ௦݂ න ௌସ்݅ଵݒ
௧మ

௧భ

ݐ݀ ൎ 8 ௦݂∆ݒௌସ∆݅ௌସ∆ݐ ൌ 181 ܹ                           ሺ64ሻ 

 
Corresponding to a 1.8 % loss of efficiency at 10 kW output. 
 
Note, since the commutation inductance will provide zero current turn-on (see chapter 3.4.4 
below), the measured losses constitute the total converter switching losses. 
 
Comparing the results from the two converters, there is a factor of 5 increase in relative losses 
between the two converters. The larger TO-247AC package utilized in the 10 kW converter has 
almost three times larger parasitic common source inductance. The much slower power 
MOSFET current turn-off speed in combination with the much higher current being switched, 
result in current commutation times - and thereby losses - that are five times larger in the 10 kW 
converter. 
 
This comparative analysis of converter current switching performance clearly demonstrates the 
importance of achieving very fast current switching in high-power low-voltage applications. 
Further, it highlights a critical scaling problem, where larger parasitic inductances in larger 
power components, significantly contributes to deteriorating conversion efficiency as power 
levels are increased.  
 

iDS,S3  (40A/div) 

vDS,S3  (50V/div) 
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To reduce the effect of increasing parasitic common source inductance in high current power 
MOSFETs, semiconductor manufacturers could provide device packages with an additional 
source pin for gate drive purposes.  

3.4.4 Switch Turn­on Losses 
 
Zero voltage switching was developed in order to reduce capacitive losses during switch turn-on 
in high input voltage converters operating at high switching frequencies [49] and has since then 
been widely adopted in many such applications.  
 
A repeated argument [2], [3], [27], [33], [35] is that high power converters for low input voltage 
also require zero voltage switching to achieve high conversion efficiency.  
 
However, in [A2], [A6] we can see that even the exceptionally small commutation inductance 
realized in these converters is sufficient to delay current rise at switch turn-on such that zero 
current turn-on is created in the primary switches. The only remaining power loss during switch 
turn-on is therefore the capacitive discharge of the stored energy in the power MOSFET output 
capacitor. 
 
To illustrate the insignificance of the capacitive turn-on losses, the capacitive turn-on losses of 
the 1.5 kW isolated boost converter presented in [A2] is calculated below.  
 
Each of the 4 primary power MOSFETs (IRFB3077) are turned on once in each switching cycle 
of the fundamental switching frequency of 45 kHz. The drain-source voltage prior to turn-on is 
equal to the reflected output voltage seen on the transformer primary winding.  
 
Total capacitive charge stored during switch turn-off and dissipated during device turn-on 
becomes: 

௟ܲ௢௦௦,௧௨௥௡ି௢௡ ൌ 4 ௦݂ܧ஼ሺ ஽ܸௌ ൌ 50 ܸሻ ൌ 0.27 ܹ                                    ሺ65ሻ 
 
Where the reflected output voltage is 50 V and the typical stored energy in the IRFB3077 power 
MOSFET output capacitor is EC(VDS=50 V)=1.5 µJ [47]. 
 
The total converter loss-of-efficiency due to primary switch turn-on is only 0.02% of maximum 
output power. 

3.5 Circuit Design and Interconnections 
 
Switch mode converters for high-power low-voltage applications, need to conduct very high dc- 
and ac currents while keeping conduction losses at a minimum. This requires components, 
circuits and interconnections that have extremely low resistances. Further, to be able to perform 
high frequency, high efficient switching of these high currents, we need to be able to change 
circuit currents very quickly.  
 
Current switching speed of a circuit is fundamentally limited by the circuit parasitic inductance 
and given by 

݀݅
ݐ݀

ൌ
௅ݒ

௅௢௢௣ܮ
                                                                   ሺ66ሻ 
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Where vL is the available circuit voltage i.e. the voltage driving the change of current, which in 
low voltage converters is naturally low and LLoop is the total parasitic circuit inductance of that 
loop.  
 
Since increasing the driving voltage will increase voltage stress on the switching 
semiconductors and thus dramatically increase their conduction losses, see chapter 3.4.1, it is 
apparent from (66) that the parasitic circuit inductance, LLoop, is the only parameter by which we 
can increase the current switching speed. 
 
In the following two chapters, we will analyze the impact of parasitic stray inductance and how 
to achieve low stray inductance in high current circuits. 

3.5.1 Voltage Clamp Circuits 
 
An isolated boost converter with a typical primary side clamp circuit to limit voltage spikes 
across primary switches during current commutation is presented in fig. 19. Diode, D3, 
capacitor, CCL, and load, RCL, act as a zener clamp across primary switches, S1-S4, during 
transistor switch-off. 
 
In fig. 20, the equivalent circuit for the situation just after S4 has been switched off is presented. 
The intended operation being that parasitic stray inductance in clamp circuit, LCKT, is much 
smaller than the transformer primary leakage inductance, LLK,P, such that S4 drain-source 
voltage is essentially limited to clamp voltage, VCL, while transformer current, iT1, rises with the 
rate of 

்݀݅ଵ
ݐ݀

ൌ

஼ܸ௅ െ ௢ܸ
2݊ൗ

௅௄,௉ܮ
.                                                             ሺ67ሻ 

 

 
 

Fig. 19. Isolated full-bridge boost converter with primary side RCD clamp circuit. 
 

 
 

Fig. 20. Equivalent circuit of fig. 20, during switch S4 turn-off. 
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To limit rise time of transformer current, iT1, and the associated clamp power, clamp voltage, 
VCL, needs to be significantly larger than the reflected output voltage, Vo/2n. However, voltage 
rating of primary switches needs to be significantly higher than clamp voltage, VCL, in order to 
allow clamp circuit to operate without reaching rated device voltage. 
 
For primary clamp circuits to be effective, they must present significantly lower impedance at 
the clamping point than the circuit which is being clamped i.e. LCKT << LLK,P. This is easily 
achieved in high-voltage and/or low-power converters, where transformer leakage inductances 
are much higher. 
 
In high-power low-voltage converters however, transformer leakage inductances are much 
smaller while clamp circuit stray inductances stay virtually unchanged as they depend on diode 
and capacitor terminal lead length and interconnecting wiring.  
 
The result is clamp circuits that are only catching small fractions of the clamp energy. The major 
part being clamped by the converter output through the transformer. Furthermore, since the 
reflected output voltage on the transformer primary side is much lower than the clamp circuit 
voltage, VCL, the transformer will present a lower voltage at the clamping point, leaving higher 
voltage across the transformer leakage inductance thus drawing the majority of the clamp 
current. 
 
The extremely low transformer leakage inductance in high-power low-voltage converters thus 
renders primary side clamp circuits ineffective and superfluous.  
 
Modern low voltage power MOSFETs are rated for repetitive avalanches and are very robust to 
unclamped inductive switching. Failure mechanisms are purely thermal and occurring at 
temperatures much in excess of rated junction temperature [47], [51]. Therefore, clamp circuits 
are not needed anymore for device protection. 

3.5.2 Low Inductance and AC Resistance Interconnection 
 
To achieve high conversion efficiency in ultra low impedance circuits, we need low ac resistive 
and low inductive interconnections capable of achieving fast current switching and conducting 
high ac currents without excessive losses.  
 
Achieving low resistance levels obviously requires large copper cross sections, but the high ac 
frequency reduces current penetration depth, making copper thicknesses larger than one 
penetration depth useless. Thus, wide thin copper foil strips are the only way to achieve the 
required active copper cross sections. 
 
The physical size of power components increases as a function of power level. Consequently, 
physical distance between these larger components will likewise increase, leading to increasing 
required wire length of the critical high-switching-current-interconnections. Thus, implementing 
low inductance layout is therefore vital in achieving fast and efficient high current switching. 
 
To analyze ac resistance and stray inductance of interconnecting wiring, we can use the same 
methods and equations developed for the analysis of transformer ac resistance and leakage 
inductance in chapter 3.3.1 and 3.3.2. 
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The pair of foil strip interconnecting wires in fig. 21, can be seen as an uncoiled single-turn 
single-layer winding of a 1:1 turns ratio transformer with one intersection (M=1).  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 21.  Low inductance and low ac-resistance interconnection. 

 
Ratio of ac to dc resistance due to eddy currents can be calculated using (12) from chapter 3.3.1. 
 

ோܨ ൌ
ܴ௔௖
ܴௗ௖

ൌ ߮
݄݊݅ݏ 2߮ ൅ ݊݅ݏ 2߮
݄ݏ݋ܿ 2߮ – ݏ݋ܿ 2߮

 .                                               ሺ12ሻ 

 
Where ߮ ൌ ݄ ⁄ߜ , since there is only penetration from one side corresponding to a single layer 
winding. 
 
Similarly, we can use (21) from chapter 3.3.2 to estimate the stray inductance of the 
interconnection in fig. 22. 
 

௅௄ܮ ൌ μ଴
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൭
1
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൱                                             ሺ21ሻ 

 
If N=M=1, and the conductor height represent the height of a transformer portion, ݄ ൌ ݄௉, the 
stray inductance of the interconnection wiring can be expressed by 
 

ௌܮ ൌ μ଴
݈௪
ܾ௪

൬
2
3
݄ ൅ ݄௱൰.                                                         ሺ68ሻ 

 
Where ݈௪, is the wire length, ܾ௪ is the wire width, h, is the copper foil thickness and ݄௱ is the 
distance between the two conductors.  
 
Since copper foil thickness exceeding the penetration depth will not contribute to the conduction 
of ac currents, we can only lower ac resistance by increasing the foil width, bw, (which will also 
reduce the stray inductance). Also notice that stray inductance is proportional to distance 
between the two parallel foil conductors. The foil conductors should therefore be kept closely 
together in order to reduce parasitic inductance. 
 
Similar to the principle of interleaving transformers windings to reduce ac resistance and 
leakage inductance, interleaved foil conductors could be used to achieve lower ac resistance and 
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stray inductance. The interconnection of the conductor layers at each end will, however, become 
quite complicated given the copper cross section needed. 
 
A thin wire in free space will have an inductance of approximately 1.26 µH per meter. 
Alternatively, using (68), two copper foil strips of 30 mm width and 0.3 mm thickness which are 
spaced 0.1 mm apart, will have an inductance of only 12 nH pr. meter corresponding to a factor 
100 decrease in stray inductance.  
 
Wide copper foil conductors are therefore extremely efficient in achieving low ac resistance and 
low stray inductance in magnetic windings and interconnections as required to achieve high 
efficiency in high-power low-voltage converters. 

3.6 High Voltage Silicon Carbide Schottky Diodes 
 
High voltage rectifiers, as required in converters for high output voltage, are generally 
performing poorer in terms of switching speed and conduction losses than similar lower voltage 
devices. 
 
In isolated boost converters, rectifying diodes are placed directly across output capacitors. Thus, 
output capacitors act as lossless voltage clamps, effectively limiting diode voltage stress to 
output voltage levels. In boost converters, rectifier diodes rated for 600 V will be sufficient for 
400 V outputs. 
 
In isolated buck type converters such as in the full-bridge converter fig. 8, required diode 
voltage rating is much higher. Even using full-bridge rectifiers, diodes in wide input voltage 
range converters (2:1) will be subjected to blocking voltages of at least twice the output voltage 
level. In addition to this, transient voltages caused by parasitic resonance will further increase 
voltage stress. Buck type converters therefore require rectifying diodes that are rated for at least 
1200 V on a 400 V output. Alternatively, two outputs each using 600 V diodes can be series 
connected. In any case, rectifier cost and power loss will be substantially higher in buck type 
converters. 
 
Silicon carbide (SiC) Schottky diodes are widely available in voltage rating up to 600 V and are 
also becoming available in 1200 V rating. Since SiC Schottky diodes do not suffer from reverse 
recovery, they can operate at much higher switching frequencies and be switched off much 
faster than traditional epitaxial PN diodes, while exhibiting much less switching losses.  
 
The slightly higher forward voltage drop in SiC Schottky diodes compared to fast recovery PN 
junction diodes is more than compensated for by the fast and low loss turn-off behaviour 
resulting in overall lower converter losses. 

3.6.1 Rectifier Conduction Losses 
 
During conduction, diode voltage drop can be modelled by a fixed forward voltage drop, VD, in 
series with a resistive element, RD. Thus, diode conduction loss is given by 
 

஽ܲ,௖௢௡ ൌ ஽ܸܫ஽,஺௏ ൅ ܴ஽ܫ஽,௥௠௦
ଶ                                                       ሺ69ሻ 
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In an isolated boost converter with voltage doubler output, the average diode current is 
 

஽,஺௏ܫ ൌ ௢ܫ ൌ
௢ܲ

௢ܸ
                                                                 ሺ70ሻ 

 
And the corresponding diode rms current is 
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If ∆iL1<<Iin, we have 
 

஽,௥௠௦ܫ ൎ
௜௡ܫ
݊
√1 െ  ሺ72ሻ                                                             ܦ

 
Total rectifier conduction loss in an isolated boost converter with voltage doubler (two diodes) 
thus becomes 
 

ோܲ,௖௢௡ ൌ 2 ቈ ௢ܲ
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൰
ଶ

቉                                         ሺ73ሻ 

3.6.2 Rectifier Switching Losses 
 
Switching losses in SiC Schottky diodes arise from the charging and discharging of the stored 
capacitive charge and is independent of the current slope [52]. 
 
In the 1.5 kW isolated boost converter presented in fig. 6, [A1]-[A2], the capacitive switching 
losses in the SiC output rectifiers can viewed as the charging and discharging of two (nonlinear) 
capacitors once every switching cycle. As the two diodes are in series and placed across the 
output, they share the same constant output voltage. Charging one diode thus automatically 
means discharging the other since the sum of their voltages is constant (=Vo). Charging and 
discharging these parasitic capacitors do not result in any power loss being dissipated in the 
diodes. Any switching losses associated with the charging and discharging of the capacitors are 
thus dissipated in the external circuits as a consequence of how this charging/discharging 
process is performed. 
 
In the isolated boost converter (fig. 6), the charging and discharging of the parasitic output diode 
capacitors, are performed by the on/off switching action of the primary switches. 
 
During the primary switch turn-off, the charging of parasitic capacitive elements such as 
MOSFET output capacitance and diode capacitance is performed inductively during the initial 
voltage switching part of the turn-off process. This charging process is a lossless transfer of 
charge to the parasitic capacitive elements. 
 
Primary switch turn-on as described in chapter 3.4.4, is lossless apart from discharging of the 
stored energy in the internal parasitic MOSFET output capacitance. Current at turn-on is 
delayed due to the parasitic leakage and stray inductances such that MOSFET voltage can drop 
to zero before current increases thus creating zero current turn-on. However, the stored 
capacitive charge in the output diodes will be discharged in the form of a damped oscillating 
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current formed by the parasitic diode capacitance and the commutation inductance LX. Thus the 
stored energy in the parasitic diode capacitance, will be dissipated as conduction losses in 
wiring, transformer windings and switch on-resistances.  
 
Total capacitive switching losses in the rectifier output diodes (2 pcs.) are therefore 
 

஽ܲ,௦௪ ൌ 2 ௦݂ܧ஼ሺ ோܸሻ                                                             ሺ74ሻ 
 
Where EC(VR), is the stored energy in the diode capacitance as a function of reverse voltage 
[52]. 

3.6.3 Analysis of Rectifier Losses in 1.5 kW Boost Converter 
 
To illustrate the relative significance of these losses, the diode losses in the 1.5 kW isolated 
boost converter presented in [A1], [A2], is calculated. 
 
The diodes used are 2 pcs. IDT10S60C, 600 V SiC Schottky diodes from Infineon.  
 
Data for converter operating point is given in table IV. 

TABLE IV.  
1.5 KW BOOST CONVERTER WORST CASE OPERATING POINT DATA.  

Parameter Data 

Switching frequency 45 kHz 

Output power 1500 W 

Output voltage 400 V 

Input voltage 30 V 

Transformer ratio 4 

Duty cycle 70% 

Converter efficiency 96.8% 

 
The diode data obtained from the data sheet [52] are: 
  

VD=0.9V, RD=0.065Ω and EC(400V)=5.8 µJ 
 
Using (73), total rectifier conduction losses are 
 

ோܲ,௖௢௡ ൌ 2 ቈ ௢ܲ

௢ܸ
஽ܸ ൅ ܴ஽ሺ1 െ ሻܦ ൬ ௢ܲ

݊ߟ ௜ܸ௡
൰
ଶ

቉ ൌ 13.3 ܹ                               ሺ75ሻ 

 
Using (74), total rectifier switching losses are 
 

ோܲ,௦௪ ൌ 2 ௦݂ܧ஼ሺ400 ܸሻ ൌ 0.52 ܹ                                                 ሺ76ሻ 
 
At maximum output power, the total rectifier switching losses constitute a loss of efficiency of 
only 0.03%.  
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Total calculated rectifier losses are  
 

஽ܲ ൌ ஽ܲ,௖௢௡ ൅ ஽ܲ,௦௪ ൌ 13.8 ܹ                                                 ሺ77ሻ 
 
Corresponding to a loss of efficiency of 0.92 % at maximum output power. 
 
Measured diode switching waveforms can be seen in [A2]. 

3.7 Experimental results from 1.5 kW Boost Converter  
 
To verify the theoretical results presented in this chapter and demonstrate the achievable 
conversion efficiency, a 1.5 kW isolated full-bridge boost converter was designed, built and 
tested. The results have been published in [A1] and in the invited journal paper [A2]. A very 
short summary of the achieved results is repeated here, but for full details please consult the 
attached appendix [A1]-[A3]. 
 
The converter is designed to fulfill the requirements in table I. The converter circuit is shown in 
fig. 6. The detailed design will not be repeated here, since data can be found in the published 
papers [A1]-[A3], and even further details have been given throughout chapter 3.  
 
Measured converter waveforms are shown in fig. 22. Notice, although no snubber circuits have 
been used in the circuit, measured waveforms are very clean with only very limited spikes and 
ringings. 
 
In fig. 23, measured converter efficiency is presented. To make sure that results are correct, very 
significant effort went into ensuring high precision of the efficiency measurement set-up. 
Measurement tolerances are less than +/- 0.1%. Measurements include gate driver losses. 
Maximum efficiency is 98% at 50 V input. In the worst case operating point at maximum power 
and minimum input voltage, efficiency is still 96.8%. 
 
A photo of the prototype converter is presented in fig. 24. 
 

 
 

Fig. 22. Measured converter waveforms at 30V input and 1.5 kW output power. From top: Converter input ac-
current Iin,ac (1A/div), inductor L1, ac current (10A/div), switch S4 drain current (40A/div), and S4 drain-source 
voltage (50V/div). Time base is 5µs/div. 
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Fig. 23. Measured converter efficiency including drive power. 
 

 
 

Fig. 24. Photo of 1.5 kW prototype isolated full-bridge boost converter. 

3.8 Conclusion on Design of High­Current Converters 
 
The following is a list of some of the conclusions that can be drawn from the analyses presented 
in this chapter. 
 

 High-power low-voltage converters have extremely low input impedances, requiring 
extremely low impedance levels in circuits, components and interconnections to achieve 
high conversion efficiency. 

 Extensive interleaving is needed to avoid proximity effect in transformer windings. 

 Interleaving of windings and low number of primary turns provide extremely low 
transformer leakage inductance and stored leakage energy. 

 Primary side switch voltage clamp circuits will be bypassed by the extremely low 
transformer leakage inductance and will thus not work. 
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 Power MOSFET losses are proportional to the product of device rms current squared and 
device voltage rating squared. To achieve high efficiency, this product must be 
minimized. 

 Modern low voltage MOSFETs are rated for repetitive avalanche and do therefore no 
longer need voltage clamping circuits for device protection. 

 Boost converters have lower switch rms currents than buck converters 

 Minimum current switch-off losses in hard switched power MOSFETs are achieved 
when common source inductance are minimized to achieve fast current switching. If 
commutation inductance can be reduced to a level below the critical ratio for mode 2 
current commutation, voltage clamp circuits cannot reduce switching losses any further. 

 By eliminating voltage clamp circuits, power MOSFET voltage rating can be reduced by 
approximately a factor of 2, reducing primary switch conduction losses by more than a 
factor of 4. Thus, boost converter primary switches can achieve lower losses than buck 
converter switches. 

 Voltage rating of boost converter rectifying diodes is less than half of the corresponding 
voltage rating of buck converter rectifying diodes. Furthermore, boost converters have 
inherently lossless clamping of rectifying diodes. Boost converters can therefore utilize 
lower voltage rating diodes and achieve higher rectification efficiency. 

 Proper circuit layout is vital in achieving low circuit impedance and fast current 
switching. Thin wide foil type conductors in close proximity to return current path, will 
produce low stray inductive and low ac resistance interconnections. 

 Boost converters can achieve both lower primary switch losses and lower rectifying 
losses and thus overall higher conversion efficiency in high power low voltage 
applications. 

 Using these facts, very high conversion efficiency can be achieved. Test results from a 
1.5 kW isolated full-bridge boost converter achieve maximum efficiency of 98%. In the 
worst case operating point at minimum input voltage and maximum output power, 
efficiency is still 96.8%. 

 

The analysis and experimental verification presented in this chapter have therefore proved that 
the 4 widely accepted and adopted design hypothesis (or myths) identified in the state-of-the-art 
analysis are wrong. 
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4 Scalability of Converter 
 
Following the analysis, design and demonstration of an ultra high efficiency single stage 1.5 kW 
converter in chapter 3, a second objective of this project is to analyze and suggest efficient and 
low cost methods to extend power level in the range of 1 to 10 kW. 
 
With the aim of achieving the best possible scaling of the converter in terms of conversion 
efficiency per cost, this chapter will review alternative methods for extending power level of 
isolated boost converters. 
 
A minimum paralleling approach is suggested in chapter 4.2. Fundamental limitations to 
converter scaling are reviewed in chapter 4.3.    

4.1 Paralleling of Converters 
 
One obvious method to scale power to higher levels is simply to parallel the required number of 
complete converter modules in order to reach the desired new power level. All input terminals 
and output terminals of all modules are directly paralleled. An additional control is required to 
balance power levels between paralleled modules (active current sharing, output voltage droop 
etc.). 
 
This method, although being fairly simple, has the advantage of being very modular allowing 
reuse of existing designs, components, and will ideally mirror performance and relative cost of 
its basic modules. The method of paralleling complete modules has essentially unlimited power 
scaling potential in the sense that basically an unlimited number of power modules can be 
paralleled to reach an unlimited level of power. 
 
The drawback of simple paralleling of power modules are, however, that potential benefits from 
scaling in terms of increased conversion efficiency, reduced size or cost per kilowatt etc. are 
lost, since these parameters are essentially fixed at the module level performance. 
 
Other motivations for a direct paralleling of similar modules could, however, be to reduce 
development cost by reusing existing modules to satisfy lower quantity needs for higher power 
levels, achieving flexibility in power level (system growth potential) and/or achieving high 
reliability and maintainability by including extra spare modules. 

4.1.1 Interleaving of Converters 
 
Interleaving of converters is a special form of paralleling where clock phases of paralleled 
converters are phase shifted to achieve reduced input and/or output ripple [1]-[3], [11], [17], 
[30], [42]. 
 
The objective is to reduce the amount of ripple current or ripple voltage coming in- and/or out of 
paralleled converters. By de-phasing clock signals for each of the paralleled converter modules, 
fundamental frequency of input and output ripple are multiplied and absolute ripple magnitude 
is reduced rather than increased.  
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Significant ripple reduction can thus be achieved when paralleling converters already having 
high terminal ripple currents such as input ripple of buck type converters or output ripple of 
boost type converters. This saving can directly be translated into a reduction of input and/or 
output filter component size compared to non-interleaved converters. 

4.1.2 Serial Connection of Inputs­ and/or Outputs 
 
Serial connection of either input- or outputs of paralleled converter modules is another special 
form of converter paralleling [1], [10], [17]. 
 
By series connecting multiple smaller voltage rated inputs (or outputs) on a high voltage input 
(or output), voltage stress on semiconductor devices can be reduced thereby allowing power 
electronic conversion at voltage levels much in excess of available semiconductor voltage 
ratings. 
 
Series connecting full converters with internal voltage control will provide automatic current 
sharing since outputs (or inputs) are chained.  
 
Series connecting at semiconductor level, however, requires careful attention to dynamic and 
steady state voltage sharing to avoid overstressing individual switches leading to catastrophic 
failures.  

4.2 Minimum Paralleling Approach 
 
In order to achieve the lowest cost and highest performance in terms of conversion efficiency, 
we will try to employ a minimum-paralleling-approach to scaling of high-power low-input-
voltage converters.  
 
The objective of the minimum-paralleling-approach is to obtain maximum economies-of-scale - 
in terms of improved ratio of conversion efficiency to cost - for a given output power. If 
inductors and diodes become more efficient and cheaper per watt of output power at higher 
output power, avoiding paralleling will create a more competitive product. Similarly, if a single 
control and protection circuit can control a larger converter, cost is saved.  
 
The idea of the minimum-paralleling-approach is to limit paralleling to those few components or 
circuits where scaling of power level is either impossible due to lack of higher rated 
components, or scaling is fundamentally unfavorable, leading to lower conversion efficiency. 
The objective is thus to reach a minimum complexity by creating a partial paralleling solution 
where only critical high-stress-components are paralleled. 
 
In chapter 3 and in [A3] it has been shown that isolated boost converters can achieve higher 
conversion efficiency than buck type topologies in high-power low-voltage applications. The 
starting point for the analysis is thus the 1.5 kW isolated full-bridge boost converter presented in 
[A1]-[A2]. Key parameters such as input voltage, output voltage, and switching frequency are 
kept constant in order to simplify comparison of results. 
 
By sequentially analyzing each converter element for its ability to scale power level, the few 
critical high-stress-areas are identified. Once these components/areas and their limitation are 
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known, we can start to conceive solutions that exactly target this limitation without employing 
solutions/components to areas that are not yet scalability limited. 

4.3 Scalability Limitations in Isolated Boost Converters 
 
Each component of the isolated full-bridge boost converter in fig. 25, will be analyzed for its 
ability to be up-scaled without sacrificing conversion efficiency. The red marked area in fig. 25, 
symbolizes the high-ac-current-loop in the converter. 
 

 
 

Fig. 25.  Isolated full-bridge boost converter showing the critical high-ac-current-loop. 

4.3.1 Input filter Scalability 
 
The boost converter having the storage inductor, L1, in series with the input, inherently has very 
low input current ripple. Compared to buck converter topologies having large discontinuous 
input currents, the boost converter requires only very small additional input capacitance, Cin, for 
input ripple current attenuation. In terms of input capacitance, Cin, required, there is no converter 
scaling limitations in the power range of 1-10 kW. 
 
The detailed consequences of scaling the storage inductor to a power level of 10 kW have been 
analyzed, tested, and presented in [A4]. Since the [A4] is already an integral part of this report, 
only a very brief summary of the conclusions will be included here. 
 
At 10 kW output power and 30 V input, a storage inductor of 1.8 µH @ 345 Adc will be needed 
at 45 kHz switching frequency. Inductor ripple frequency will be 90 kHz.  
 
The 10 kW inductor is realized as 5 turns on a Magnetics Kool Mµ EE80 00K8020E40µ core. 
The winding window area allows each of the 5 turns to be 3.1 mm thick and 45 mm wide copper 
foil, providing a cross section of 140 mm2, corresponding to a current density of 2.5 A/mm2. 
Maximum dc winding loss will be 13.4 W. 
 
Even though the ac current ripple is only approx. 67 AP-P, and that flat foil windings are used, 
severe proximity effects will increase ac-resistance by a factor of 222 compared to winding dc-
resistance. The large ac-resistance factor creates an ac winding loss of 9.3 W, thus almost 
doubling the winding losses. A larger inductor size will be required to allow this level of power 
dissipation. 
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Fig. 26.  Cross sectional view of 10 kW/345 A inductor winding. 
 
A two winding solution is presented in fig. 26. A thin inner winding will mainly conduct ac 
ripple current, and a thick outer dc-winding will mainly conduct the large dc-current. Using this 
winding technique, ac-resistance is reduced by a factor of almost 7, whereas dc-resistance is not 
affected. 
 
Worst case total winding loss in the two-winding 10 kW inductor is only 14.9 W corresponding 
to only 0.15 % loss of efficiency. 
 
Using  the proposed two-winding design for the converter storage inductor L1, even the storage 
inductor does not present any scalability limitations in the power range from 1-10 kW. 

4.3.2 Scaling of Output Rectifiers 
 
The output rectifier, consisting of the two SiC Schottky diodes D1-D2, and the voltage doubling 
capacitors C1-C2, is highly favoured by the high output voltage. However, as power levels 
increase, diode and capacitor currents in the simple voltage doubler configuration start to 
become a limiting factor.  
 
At higher power level a full-bridge rectifier will be more appropriate. Transformer turns ratio 
will have to be doubled, reducing diode currents by a factor of two compared with the voltage 
doubler configuration. Four diodes of the same voltage and current rating (600 V, 10 A) will be 
able to handle twice the output power at the same efficiency. Also the ripple current in the 
output capacitor is greatly reduced and shifted to twice the switching frequency. 
 
For grid tied systems beyond approximately 5 kW, it is likely that output voltage requirement 
would be increased to 7-800 V in order to allow interface to the three phase utility grid. 
Transformer turns ratio would have to be increased to 1:16 which would complicate transformer 
design and manufacturing. The rectifying diodes can still be scaled as 4 pcs. 1200 V/20 A SiC 
Schottky diodes will be able to handle 10 kW output power [A6]. 
 
In conclusion, by changing rectifier configuration to full-bridge rectifiers, current rating of 
diodes is reduced by a factor of two. Transformer turns ratio, however, has to be increased by a 
factor of two, slightly complicating transformer design and manufacturing. The high output 
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voltage and the change of rectifier configuration into full-bridge type allow the rectifier to be 
scaled in the power range from 1-10 kW. 

4.3.3 Scaling of Primary Switches 
 
The primary switches are definitively scalability limited in the power range of 1-10 kW. At a 
minimum input voltage of 30 V, maximum input current will reach 345 A at 10 kW output 
power. No single standard power MOSFET rated for 75 V can handle this current level today, so 
extensive paralleling of power MOSFETs is required to scale power level to 10 kW. 
 
To determine the minimum number of parallel power MOSFETs required for a given 
application, we can use (28) to calculate the maximum allowable switch on-state resistance, 
RS(on), for a given acceptable primary switch loss-factor, κ. 
 

ܴௌሺ௢௡ሻ ൌ
ߟ൫ߢ ௜ܸ௡,௠௜௡൯

ଶ
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                                                        ሺ78ሻ 

 
The minimum number of parallel switches required is the integer number higher than 
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Where RDS(on),max, is the maximum operating on-state resistance of the power MOSFETs to be 
used i.e. on-resistance at maximum operating junction temperature. 
 
Alternatively, we can use (78) to find the maximum power we can transfer in a full-bridge boost 
converter when using a specific power MOSFET and limiting switch conduction losses to a 
defined level. 
 
For a 1% maximum conduction loss, 4 pcs. International Rectifier IRFB3077 power MOSFET 
with a typical on-state resistance of 3.5 mΩ at 60°C will be able to transfer  
 

௢ܲ,௠௔௫ሺ1%ሻ ൌ
0.01൫ߟ ௜ܸ௡,௠௜௡൯

ଶ

ܴ஽ௌሺ௢௡ሻ,௠௔௫ሺ3 െ ሻܦ2
ൌ 1512 ܹ.                                    ሺ80ሻ 

 
To scale a single power stage to 10 kW, each of the 4 primary switches would need at least 7 
IRFB3077 power MOSFETs in parallel to keep conduction losses below 1% at maximum output 
power. To guarantee dynamic current sharing (also in avalanche) between 7 power MOSFETs in 
parallel and at the same time achieve fast current switching will be a very difficult task. 

4.3.4 Transformer Scalability 
 
From the analysis of the transformer winding ac-resistance in chapter 3.3.1, we can see that the 
height of any winding portion has to be limited to twice the penetration depth δ, that is 
 

݄௉ ൑  ሺ81ሻ                                                                       ߜ2
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As presented in [A2], this limit has already lead to the need to interleave each primary winding 
between sections of secondary windings in the 1.5 kW isolated full-bridge boost converter 
presented in [A1]-[A2]. 
 
Increasing transformer power level further under the same operating conditions, will require 
proportionally higher level of winding interleaving in order to keep winding ac-resistance low. 
 
Further, if core geometry is unchanged (but scaled with power), number of required primary 
turns will be reduced as power level is increased. One way to achieve the same maximum height 
of winding portions when having fewer primary turns and larger total winding height is to 
parallel multiple primary windings – each being interleaved between sections of secondary 
windings. 
 
Although paralleling of multiple primary windings is possible, it will complicate transformer 
design even further. 

4.3.5 Scaling of Interconnection Wiring 
 
Power loss from ac-resistance as analyzed in chapter 3.3.1 is proportional to rms currents 
squared. Similarly, power losses from parasitic stray inductances as analyzed in chapter 3.4.3 is 
proportional to peak current squared. To keep the same relative losses and thus maintain 
efficiency, parasitic ac-resistances and stray inductances have to reduce inversely proportional 
to increases in power level. 
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However, as presented in chapter 3.5.2, useful thickness of single layer interconnections is 
limited by penetration depth of copper (0.34 mm @ 45 kHz). Larger copper cross section as 
required at higher current levels can only be achieved by using wider tracks or complicated 
interleaving of wiring.  
 
Furthermore, since physical size of primary switches and power transformers increases as power 
level increases, the length and thus the ac-resistance and stray inductance of this critical 
interface increases even further. 
 
Lowering ac-resistance and parasitic inductances of interfaces as power level increases therefore 
becomes increasingly difficult eventually leading to poor scaling and lower conversion 
efficiency. 
 
High ac-current interfaces such as seen between primary switches and power transformers in 
high-power low-voltage converters thus constitute a critical area of poor scaling.  
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4.4 Summary/Conclusion on Scalability 
 
To summarize, when trying to scale high input current converters to even higher power levels, 
we will be faced with increasing challenges in the following areas: 
 

 Large numbers of Power MOSFETs have to be operated in parallel to scale power level 
to 10 kW. Dynamic current sharing between parallel power MOSFETs has to be 
guaranteed – also in avalanche mode – while still achieving very fast current switching. 

 Transformer windings have to be paralleled in order to allow even higher levels of 
winding interleaving on fewer primary turns to keep ac-resistance low. 

 Scaling of the critical high-ac-current-interface between primary switches and 
transformer windings is potentially very difficult to achieve. Parasitic ac resistances and 
stray inductances have to reduce inversely proportional to output power while size of 
components increases and conductor thickness is limited by penetration depth.  
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5  New Partial Paralleling Method 
 
Inspired by the conclusions in chapter 4, a new converter concept for partial paralleling of 
multiple power stages in isolated boost converters is suggested [A5]-[A7].  
 
Since the new converter concept has already been described in the patent application in 
appendix [A7], and in the two conference papers in appendix [A5] and [A6], only a short 
overview description will be included here. For further details readers are referred to the 
included publications. 
 
The objective of the new concept is to achieve a minimum paralleling solution which exactly 
target and resolves the converter scalability limitations found in chapter 4. Added complexity is 
thus held at an absolute minimum while a simple, efficient and scalable solution is achieved.  
 
The new partial parallel isolated boost converter is depicted in fig. 27. 
 

 
 

Fig. 27.  Partial parallel isolated full-bridge boost converter. 
 
Two primary side inverter bridges consisting of S1-S4 and S5-S8 respectively operate in-
synchronism and in-phase utilizing the same control signals. Each inverter bridge supplies a 
power transformer.  
 
Series connection of transformer secondary windings insures current sharing during energy 
transfer cycle when power is transferred to output. During inductor, L1, charging when all 
switches are turned on, a small current balancing transformer, T3, will maintain current sharing 
between the two parallel branches. Small volt-time product imbalances between the two power 
stages as caused by small differences in gate driver delays, power MOSFET switching speed, 
and/or parasitic circuit elements are absorbed by the current balancing transformer. 
 
Balancing of the two primary currents, iP1 and iP2, is required. Since any differences in currents 
developing during the inductor charging period will be clamped (and thus dissipated) in the 
primary switches having the highest primary current during the subsequent energy transfer 
period.  
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A single output rectifier with associated output capacitor is shared between the two power 
stages. Also the storage inductor on the input side can be shared. Since input ripple current is 
much smaller than in comparable buck type converters, a small input filter will be enough to 
completely attenuate input ripple current. 
 
To achieve fast on/off switching and thus low switching losses, all power MOSFETs have 
individual gate-drivers circuits.  
 
The new paralleling method splits the critical primary high-ac-current-loop into two smaller 
loops. Each of the new smaller loops only need to switch half of the input current thereby 
achieving much faster current switching and thus higher conversion efficiency. 
 
Each of the two parallel power stages thus operates as if they were part of two individual single 
converters, each having a continuous feed of input current that exactly matches the current in the 
parallel branch such that no transient interaction between branches can occur. The circuit 
therefore has inherent current sharing and does not need any additional control to guarantee 
current balancing between power stages. 
 
Since the two power transformers share input current and power level. Design and 
manufacturing of these transformers are significantly simplified. Furthermore, since transformer 
secondary windings are in series, required transformer turn ratio in each of the two transformers 
is reduced by a factor two, even further simplifying transformer design.  
 
The ideal continuous steady state transfer function is 
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The partial paralleling method can also be applied to all other isolated boost converters. As an 
example, the implementation of a partially paralleled two-inductor-boost converter is presented 
in fig. 28. 
 
The two storage inductor currents iL1 and iL2, are each split into two equal currents iL11, iL12 and 
iL21, iL22 for each of the two power stages consisting of switches S1, S2, T1 and S3, S4 and T2. 
 

 
Fig.  28.  Partial parallel isolated two-inductor boost converter. 
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Extension to higher number of paralleled converter stages is possible by adding an extra current 
balancing transformer for each extra paralleled power stage. For even numbers of paralleled 
power stages, the current transformer turns ratio should be 1:1. For odd numbers of paralleled 
power stages, one current transformer needs to have a turns ratio of 2:1, with the winding having 
the higher number of turns supplying the extra odd number power stage. 
 
Inductor and current transformer configuration for a 3-paralleled power stage converter is shown 
in fig. 29. Fig. 30, show the configuration for a 4-paralleled power stage converter. In general, 
N-1 current balancing transformers are needed for paralleling N power stages. 
 

 
 

Fig. 29. Storage inductor and current balancing arrangement for a triple parallel isolated boost converter. 
 
 

 
 

Fig. 30. Storage inductor and current balancing arrangement for a quad parallel isolated boost converter. 
 
The advantages of the partial paralleling method are that 
 

 A minimum amount of paralleling is utilized to achieve a very simple, low cost, safe and 
efficient parallel operation of multiple primary switching bridge-stages. 

 Current switching losses are reduced by splitting primary side high-current ac-loops into 
multiple smaller loops with only fractional switching currents. Current switching losses 
are thereby significantly reduced. 

 Small current balancing transformers in combination with serial connected transformer 
secondary windings, guarantee current sharing in all switch transistors. Selection and 
matching of switch transistors are therefore not required and avalanche operation can be 
utilized without risk of switch overstress. 

 Transformer power level, primary current and turn ratios are reduced by the number of 
parallel power stages, thereby greatly simplifying transformer design and manufacturing. 
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5.1  New Partial Parallel 3 kW Isolated Boost Converter 
 
To verify and demonstrate the feasibility and advantages of the new concept, a 3 kW isolated 
full-bridge boost converter with two parallel power stages was designed, built, tested, and 
published [A5]. Converter circuit is shown in fig. 27. The achieved results are briefly presented 
in the following. 
 
To allow easy comparison with the single power stage 1.5 kW converter presented in [A1]-[A2], 
the exactly same type and design of the power components were used. The primary side power 
MOSFETs were same type from same batch, power transformer was exactly same design, and 
also the output rectifier SiC diodes were similar. All operating conditions such as input voltage 
range, output voltage, and switching frequency are also kept constant. 
 
Measured waveforms of the two primary currents iP1 and iP2, is presented in fig. 31. Notice that 
currents are completely alike. If the oscilloscope off-set between the two traces are removed, 
traces coincide completely. 
 

 
 

Fig. 31.  Measured converter waveforms. From top: Drive signal for primary switches S1-S2 and S5-S6, primary 
current iP1 (10A/div), primary current iP2 (10A/div) and bottom trace is S4 drain-source voltage (50V/div). Time 
base is 5µs/div. 
 
Measured converter efficiency is presented in fig. 32. Blue curve is measured at 50 V input and 
red curve is measured at 30 V input. Measurement tolerances are better than +/- 0.1%. 
Measurements include gate-driver losses. 
 

 
 

Fig. 32. Measured converter efficiency of 3 kW isolated boost converter with parallel power stages. 
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A photo of the current balancing transformer is presented in fig. 33, and fig. 34, is a photo of the 
3 kW prototype converter. For further details, the reader is referred to appendix [A5].  
 
 

 
 

Fig. 33. Photo of current balancing transformer for 3 kW converter. 
 
 

 
 

Fig. 34. Photo of 3 kW isolated boost converter with two parallel power stages. 
 

5.2  New Partial Parallel 10 kW Isolated Boost Converter 
 
The next step in the demonstration and verification of the new of concept was to design a quad 
partially parallel isolated boost converter for 10 kW [A6], thus achieving the maximum power 
range considered in the project. Fig. 35, is a diagram of the quad partially parallel isolated boost 
converter. 
 
Considering the power level involved, it was decided to increase output voltage level to 7-800 V 
to allow interface to the three phase utility grid.  
 
Four 2.5 kW power stages operate in parallel using the same control signals. Power MOSFETs 
are IRFP4368 from International Rectifier [47]. Rated on-resistance is 1.85 mΩ and transistor is 
packaged in a TO-247AC package. 
 
For comparison, switching frequency is kept at 45 kHz. An EE65 ferrite core is used for each 
power transformer. Each transformer has two primary windings in parallel. Each primary 
winding is interleaved between sections of secondary windings. Due to the series connection of 
all secondary windings, the transformer turn ratio is only 1:4.  

Driver 1 T1 
L1 

C1 Driver 2 T2 

T3 
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Fig. 35. Quad partial parallel isolated boost converter. 
 
Detailed analysis and design of the common storage inductor, L1, is given in [A4]. 
 
The continuous steady state transfer function for the converter is 
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Measured converter curve forms are presented in fig. 36, and measured converter efficiency 
including gate drive losses are shown in fig. 37. Notice, that compared with the 3 kW converter 
in chapter 5.1, worst case efficiency at minimum input voltage and maximum output power is 
lower. The drop in efficiency is a consequence of slower current switching in the power 
MOSFETs as explained in chapter 3.4.3.5. Further, an effect of poor scaling of parasitic 
inductances in the critical primary side high-ac-current loop – as explained in chapter 3.5.2, is 
also seen. Regardless of these beginning signs of poor scalability, the converter achieves the 
highest measured efficiency at 50 V input. 
 
A photo of the three integrated current balancing transformers is presented in fig. 38. The 
complete 10 kW prototype converter is shown in fig. 39. For further details, please consult the 
published papers in [A4] and [A6]. 
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Fig. 36.  Measured waveforms on a 10 kW quad partial parallel isolated boost converter. From top: switch drive 
signal, inductor L1 ac-current (50A/div), switch S3 current (100A/div) and switch S3 drain-source voltage 
(50V/div). Time base is 5 µs/div. Input voltage is 30 V and output power is 10 kW. 
 
 

 
 

Fig. 37. Measured efficiency of 10 kW isolated boost converter. 
 
 
 

 
 

Fig. 38.  Photo of 3 integrated current balancing transformers for 10 kW converter. 
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Fig. 39.  Photo of 10 kW prototype converter. 

5.3  Conclusion on Extending Power in 1­10 kW Range 
 
A new method for extending power level of isolated boost converters has been presented. 
 

 The critical high-ac-current-loop consisting of primary switches, power transformer, and 
interconnection, is effectively broken-up into several smaller loops with fractional 
currents. Much faster and thus more efficient current switching is obtained.  

 
 Current sharing between all switches and stages is guaranteed by series connection of 

secondary windings and the use of small current balancing transformers on primary side. 
 

 A simple common controller can control all power stages. 
 

 Power transformer design is greatly simplified since power level, primary current, and 
turns ratio are reduced by the number of parallel power stages. 

 
 Input filter, output filter, and rectifier are common to all power stages, thus achieving 

higher efficiency and lower cost. 
 

 Test results from a dual parallel 3 kW converter and a quad 10 kW converter prototype 
have been presented. Very high conversion efficiency has been demonstrated. 

 
A very simple and low cost yet very high performing converter topology is achieved. 
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6  Conclusion and Future Work 

6.1  Summery and Conclusion 
 
An extensive state-of-the-art analysis has been performed to create an overview of current 
results and techniques being used. The analysis revealed that: 
 

 Many full-bridge buck and boost derived topologies have been proposed, but except for 
the V6 topology they all suffer from low conversion efficiency in the critical low input 
voltage maximum output power point. However, no published data for the V6 converter 
efficiency in regulated mode has been found. 

 
 Boost type topologies and V6 topology are preferred due to their lower transformer turns 

ratio. As this was claimed to be a critical source of high transformer leakage inductance 
and thus low conversion efficiency. 
 

 Boost type converters are generally designed using voltage clamp circuits or active 
clamp/reset circuits to limit primary switch over voltages during current commutation. 
Primary switch voltage rating is typically rated at three times the maximum input voltage 
when voltage clamp circuits are used. Active clamp circuits and reset circuits require 
additional switches and create high rms currents. In both cases leading to significantly 
increased conduction losses in primary switches. 
 

In order to verify - or reject - these assumptions and to identify, if possible, the most efficient 
converter topology, a detailed analysis of power transformer design and power losses in low 
voltage high power applications was conducted. This analysis revealed that: 
 

 High power and low input voltage create very low converter input impedance levels, 
requiring extraordinary low circuit impedances, in terms of ac resistance and parasitic 
stray inductances, to achieve high conversion efficiency. 

 
 Large input current requires large conductor cross sectional areas in transformer primary 

windings. To avoid severe proximity effects, extensive interleaving of primary and 
secondary windings is needed.  

 
 Contrary to the general understanding, very low transformer leakage inductances can be 

achieved. Due to the few primary turns, extremely low primary side leakage inductances 
can be achieved. 
 

 Boost type topologies have inherently lower primary switch rms currents than 
comparable buck type topologies. For similar switch voltage rating, boost converters will 
thus have lower conduction losses in primary switches. 
 

 Boost type converters have inherently lower peak reverse voltage on output rectifier 
diodes than comparable buck type converters. For similar input voltage range, buck 
converter rectifier diodes have twice as high peak reverse voltage as comparable boost 
type converters. Furthermore, boost rectifiers are naturally clamped to output voltage 
capacitors providing effective and lossless clamping of voltage spikes. Requiring much 
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lower voltage rating of rectifier diodes, boost converters have much lower rectification 
losses. 
 

 The widely used voltage clamp circuits and techniques used to limit primary switch 
voltage spikes during current commutation in boost type converters require extensive 
(>2 times) over sizing of primary switch voltage rating to work. As power MOSFET 
conduction losses increase exponentially with device voltage rating, over sizing of 
switch voltage rating in boost converters leads to dramatically increased conduction 
losses and thus low conversion efficiency. 
 

 If power transformers and circuit layout are optimized for high power low voltage 
applications, primary side voltage clamp circuits will be bypassed by the exceptionally 
low impedance and reflected voltage seen on power transformer primary side. Voltage 
clamp circuits will therefore not work in properly designed high power low voltage 
applications. 
 

 Modern low voltage power MOSFETs are fully rated for operation under repetitive 
avalanche conditions. Failure modes are purely thermal and occurring at temperatures 
much in excess of maximum operating junction temperature. Voltage clamping circuits 
are therefore no longer needed for device protection. 
 

 SiC Schottky diodes do not suffer from reverse recovery and thus allow very fast current 
turn-off without power losses being affected. 
 

 Therefore, since stored leakage energy in power transformers for high power low voltage 
applications is exceptionally low, and over sizing of primary switch voltage rating leads 
to dramatically increased conduction losses, a very large efficiency improvement in 
isolated boost converters can be achieved by simply eliminating primary side clamping 
circuits and reducing voltage rating on primary switches.  
 

 Even more, if the ratio of commutation inductance to common source inductance can be 
kept below a defined ratio, a minimum current commutation loss condition is reached 
where voltage clamp circuits no longer has any effect. 
 

Having identified isolated full-bridge boost converters as being the most efficient converter 
topology for low voltage high power applications, the next objective of this study was to find the 
most efficient way - in terms of conversion efficiency and cost – to scale power level in the 
range of 1 kW to 10 kW.  
 
Many suggestions for paralleling and interleaving of multiple converters have been proposed in 
literature. A significant drawback of paralleling is, however, that potential gains in efficiency 
and relative cost per watt are lost, since paralleling of complete power converters will fix cost 
and performance at module power level.  
 
With the aim of suggesting a minimum paralleling solution in which only critical functions and 
circuits are paralleled, a study of potentially poor converter scalability was performed. The 
conclusions of this study are that: 
 

 Boost converter input filter is not scalability limited in the power range 1-10 kW. Using 
a two winding technique to reduce inductor proximity effect, even the high current 
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storage inductor can be scaled and thus achieve even higher efficiency as power 
increases. 

 
 Having high output voltage levels, ripple current levels on output can easily be managed 

in this power range. 
 

 Also rectifier diodes can be scaled in this power range. In particular, since output voltage 
levels are likely to increase at higher power levels in order to interface to the three phase 
grid. In this aspect the boost converter has a huge advantage in the low rectifier voltage 
stress. 
 

 However, the power MOSFETs in the primary switches quickly need to be paralleled. 
Although paralleling of multiple power MOSFETs in principle is possible, special 
precautions are required to ensure dynamic current sharing without loss of switching 
speed. Parameter screening and matching of power MOSFETs is one way of improving 
current sharing but at a higher cost. In avalanche mode, instantaneous power is high and 
current sharing becomes even more critical. Unfortunately, avalanche voltage levels can 
vary significantly between devices. Thus, current sharing cannot be guaranteed. 
 

 Increasing power level in transformers for low voltage high power applications will 
require even more extensive interleaving of primary and secondary windings in order to 
control proximity effect. Although this is possible, winding complexity increases 
complicating design and manufacturing even more. 
 

 Finally, scaling of the critical high ac-current interface between primary switches and 
transformer primary winding becomes very critical as current levels increases. To 
maintain efficiency, stray inductance and ac resistance of this interface have to scale 
inversely proportional to output power i.e. reduced by a factor of two for every doubling 
of output power. But as physical size of power components increases with power level, 
also distance between them invariably increases. Moreover, penetration depth in 
conductors effectively limits conductor thickness to one penetration depth requiring very 
complicated interleaved multilayer interconnections to maintain efficiency at higher 
power levels. 
 

Based on the above results, the critical scalability limited area requiring duplication is identified 
as the high ac-current carrying loop from primary switches to power transformer primary 
winding. 
 
A new method for partial paralleling isolated boost converters is proposed. Only the high ac-
current carrying components i.e. primary switches and transformer are paralleled. Series 
connection of transformer secondary windings and small current balancing transformers ensure 
current sharing between parallel power stages. Parallel primary bridges operate in synchronism 
using the same control signal. The converter behaves and acts as if it was a single large 
converter, only requiring a single controller. Dynamic current sharing between all switches is 
guaranteed without sacrificing switching speed or requiring component screening, matching, or 
selection. The method can be applied to all isolated boost converter topologies. 
 
Three isolated boost prototype converters covering the power range from 1.5 kW to 10 kW have 
been designed, built and tested to validate the theoretical analysis and demonstrate feasibility of 
the new paralleling method.  All converters achieve maximum efficiencies of 98% or above and 
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worst case minimum efficiency at maximum output power and minimum input voltage are 
between 96.5 and 96.9 percent. 

6.2  Future Work 
 
Additional research and development effort is required to commercialize the suggested new 
paralleling principle.  
 
A complete controller with start-up sequence, protection circuitry, voltage control, and/or 
current control as required by the specific application will need to be developed and 
demonstrated. 
 
Since the power transformer requires extensive interleaving of primary and secondary windings, 
large capacitive coupling from input to output is inevitable. Study of common mode noise 
rejection and alternative approaches to achieve it will be a general need in high power low 
voltage converters. 
 
Finally, bi-directional converters for high power low voltage applications are required in 
applications such as for recovering brake energy in electrical and hybrid electrical vehicles. The 
slow dynamics in fuel cell systems require large additional energy storage in order to isolate fuel 
cell from load transients and to supply output power during slow start-up and load transients. 
 
One way to provide such extended low frequency filtering at converter output is to use a bi-
directional dc-dc converter to charge and/or discharge energy from a storage energy bank 
realized by super capacitors. Developing a low cost high efficiency bi-directional converter, 
preferably utilizing the cost and efficiency advantages developed in this project will be a highly 
needed and attractive product. 
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Abstract—A new low-leakage-inductance low-resistance 
design approach to low-voltage high-power isolated boost 
converters is presented. Very low levels of parasitic circuit 
inductances are achieved by optimizing transformer design 
and circuit lay-out. Primary side voltage clamp circuits can 
be eliminated by the use of power MOSFETs fully rated for 
repetitive avalanche. Voltage rating of primary switches can 
now be reduced, significantly reducing switch on-state 
losses. Finally, silicon carbide rectifying diodes allow fast 
diode turn-off, further reducing losses. Test results from a 
1.5 kW full-bridge boost converter verify theoretical 
analysis and demonstrate very high efficiency. Worst case 
efficiency, at minimum input voltage maximum power, is 
96.8 percent and maximum efficiency reaches 98 percent. 

Keywords—Switched-mode power supply, fuel cell system, 
efficiency, transformer, SiC-device. 

I. INTRODUCTION

High-power fuel cell or battery powered applications 
such as for transportation, forklift trucks or distributed 
generation, are often faced with the need for boosting the 
low input voltage (30-60V) to the much higher voltage 
(360-400V) required for interfacing to the utility grid fig. 
1, [1]. 

For safety as well as for EMC reasons, galvanic 
isolation between source and utility grid is often desirable 
or required. 

Fuel Cell
or

Battery

Low Voltage Bus High Voltage Bus

DC-DC Converter DC-AC ConverterEnergy Source Load

Utility
Grid

Low
voltage

side High
voltage

side

Fig.1.  Fuel cell power system with isolated high gain DC-DC 
converter.

In particular fuel cells, exhibit significant output 
impedance reducing output voltage as output power is 
increased. System peak power is therefore reached at 
converter minimum input voltage. Drop in converter 
efficiency at minimum input voltage and maximum output 
power therefore directly reduces available system peak 
power. While the converter is required to operate over a 
wide input voltage range, typically up to a factor 1:2, high 
converter efficiency becomes particular important at 
minimum input voltage maximum power [1]. 

Isolated boost converters has some inherent advantages 
when used in fuel cell applications. With the storage 
inductor placed at the input side, ripple current is 
inherently low, only requiring limited extra filtering at the 
input side. 

Output rectifying diodes are placed directly across 
output capacitors, ensuring minimum voltage stress and 
effective voltage clamping.  

In a 400 V output application, 600 V rated diodes will 
be sufficient in boost type topologies, whereas buck type 
topologies would require 1200 V diodes or stacking of 
multiple outputs. Voltage stress on boost topology diodes 
are thus less than half of the corresponding voltage stress 
on a buck derived topology. Buck type topologies will 
therefore have significantly larger rectifying losses than 
boost type topologies. 

The draw back of the boost type topologies is the need 
for clamping voltage spikes on primary switches caused 
by transformer leakage inductance and parasitic circuit 
inductances. Clamping is typically performed by some 
sort of voltage clamp circuit or by implementing active 
reset circuits [2-7]. This however requires significantly 
increased voltage rating on primary switches severely 
penalising conduction losses. 

A large number of isolated boost converters for fuel cell 
applications have been presented, among these [2-7]. Ref. 
[2-4] have input voltage range and power level that are 
comparable to the converter presented in this paper. Ref. 
[5-7] are isolated bi-directional full-bridge boost 
converters intended for electrical vehicles. Input voltage is 
12 V (8-15V), output voltage is typically 250-420 V and 
power range, in boost mode, is from 1.5 kW [5,6] to 3 kW 
[7]. 

Even though vastly different designs are represented 
(hard switched push-pull boost [2], actively clamped, two-
inductor boost [3], bi-directional, actively clamped, two-
inductor boost [4], and bi-directional soft switching full-
bridge boost converters [5-7]), a general efficiency trend 
is clear. All converters achieve high efficiencies in the 
medium to high input voltage range, typically peaking at 
94-96 percent at medium power. At low input voltage, 
high power, efficiency however reduces significantly to 
approx. 90 percent or below. 

In this paper, the design of a simple, wide input voltage 
range, isolated full-bridge boost converter with very high 
efficiency at low input voltage is presented. 

Test results from a 1.5 kW demonstration model 
achieve peak efficiency of 98 percent. Worst case 
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efficiency at minimum input voltage and maximum power 
is 96.8 percent. 

II. ISOLATED FULL-BRIDGE BOOST CONVERTER

The proposed full-bridge boost converter is presented in 
fig. 2. Timing diagrams and basic operating waveforms 
are presented in fig. 3. 

Fig.2. Isolated full-bridge boost converter with voltage doubling 
rectifier. 
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Fig.3. Basic operating waveforms of isolated full-bridge boost 
converter. 

A. Basic converter operation 
Primary switches S1-S4, are hard switched and 

operated in pairs S1-S2, and S3-S4, respectively. Drive 
signals are 180 degrees phase shifted. Switch transistor 
duty cycle D, is above 50 percent to ensure switch overlap 
and thus a continuous current path for the inductor L1, 
current. 

Energy transfer to output starts when switches S3 and 
S4 are turned off. Inductor current iL1, flows through 
primary switch S1, transformer T1, rectifier diode D1, 
output capacitor C1 and returns to input through primary 
switch S2. Inductor current iL1, discharges. The period 
ends when primary switches S3 and S4 are turned on 
again.

During switch overlap, when all switches S1-S4, are 
turned on, inductor current iL1, is charged. Current in the 
transformer secondary winding is zero and diodes D1 & 
D2 are off. Transformer magnetizing current circulates in 
the transformer primary winding through switches S2-S4 
and/or S1-S3. Capacitors C1, C2, supply the load current. 
The period ends when primary switches S1and S2 are 
turned off. 

A second energy transfer cycle starts when switches S1 
and S2, are turned off and ends when S1 and S2 are turned 
on again. Inductor current iL1, flows through switches S3, 
T1, D2, C2, and returns to input through S4. 

Finally, a second inductor charging interval similar to 
the first follows. 

The converter transfer funct n in continuous steady 
state is: 

io

        
Where n=Ns/Np is the transformer turns ratio, and D is the 
switch duty cycle (0.5  D<1).

The corresponding inductor duty cycle DL, and period 
time TL, is defined as: 

        (3) 

         (2) 

Where T=1/fS is the period time for switches, diodes and the 
transformer.

III. CONVERTER DESIGN

The four primary switches S1-S4, are 75 V, 2.8 m
International Rectifier IRFB 3077 Power MOSFET which 
are fully repetitive avalanche rated [8]. The two rectifier 
diodes D1-D2, are 600 V Infineon IDT 10S60C SiC 
Schottky diodes. The inductor L1, core is a Magnetics 
Kool M  77439. The transformer core is an EE55/21 
ferrite core in 3F3 material. Switching frequency is 45 
kHz.

Low current switching times increase efficiency since 
less charge is being diverted from output into primary side 
clamp circuits. Current switching times are limited by 
transformer leakage inductance and primary side stray 
inductances as well as MOSFET common source 
inductance whichever is worst case [9]. 

Transformer leakage inductance can be reduced by 
extensive interleaving of primary and secondary windings. 
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Careful primary side lay-out is required to reduce primary 
side stray inductances. MOSFET common source 
inductance is a function of package internal wiring 
(bonding wire length) as well as source external lead 
length [9]. 

B. Transformer design 
The low input voltage, high power in fuel cell 

converters, causes high currents to flow in transformer 
primary windings requiring large copper cross sections in 
primary windings. 

Foil windings are very efficient in providing large 
copper cross sections with a minimum conductor 
thickness. However, as power levels increases, even foil 
winding thicknesses quickly approach or exceed 
penetration depths in copper. Proximity effect can thereby 
cause very significant increases in winding AC resistances 
and thus lead to significantly increased power losses 
[10,11]. 

At 45 kHz, penetration depth in copper is only 0.34 
mm. A primary winding with 4 turns on an EE55/21 core 
would allow up to approximately 0.6 mm cobber thickness 
for each of the 4 primary turns. Winding these 4 turns in a 
single 4 layer section, would increase AC resistance 
approximately 13 times compared to winding DC 
resistance (FR=RAC/RDC=13) [10,11].  

The more frequent case of a single interleaving 
(primary winding interleaved between two sections of 
secondary windings), increases AC resistance by a factor 
3.5 compared to winding DC resistance. 

To avoid severe proximity effect, penetration from both 
sides of each primary turn can be obtained by interleaving 
each primary turn between sections of secondary 
windings. The corresponding increase in AC resistance is 
now only 5 percent (FR=1.05).

Keeping AC resistances low in high frequency high-
current transformers therefore requires extensive 
interleaving of windings. 

Since interleaving of windings also has the well known 
effect of reducing transformer leakage inductance 
[snelling], these transformers will not only have small AC 
resistances but also extremely low leakage inductances. 

AC resistance and leakage inductance of the 
transformer used in a 1.5 kW isolated boost converter with 
a turn ratio of 4, are presented in fig. 4. Transferred to 
primary side, the AC resistance is only 1.9 m  and 
leakage inductance is only 11 nH. The leakage inductance 
in percent of primary inductance is only 0.01 percent. 

Fig.4. Measured secondary side AC resistance (upper curve) and 
leakage inductance (lower curve) of 1.5 kW transformer. 

C. Primary switch voltage clamping 
At low input voltage and high power levels, conduction 

losses in primary switches are a dominant loss factor. In 
the voltage range 60-200V, MOSFET on-resistance 
RDS,ON, typically increases quadratic with increasing  
drain-to-source breakdown voltage V(BR)DSS. Voltage 
rating of primary switches therefore has very significant 
impact on converter conduction loss and thereby on 
converter efficiency. 

To allow clamp circuits to clamp voltage spikes caused 
by transformer leakage inductance and circuit stray 
inductances, voltage rating of primary switches, in 
isolated boost converters, is typically rated at 2-3 times the 
maximum input voltage [6]. 

For primary clamp circuits to be effective, they need to 
present significantly lower impedance at the clamping 
point than the circuit which is being clamped. However, 
with the very low levels of transformer leakage 
inductances that are achieved in low voltage high power 
transformers, it becomes indeed very difficult for clamp 
circuits to present lower impedances than that of the 
transformer itself. 

This result in clamp circuits only taking (small) 
fractions of the clamp energy, since the major part is being 
clamped by the transformer which even has lower 
reflected voltage and thus higher driving voltage across 
the leakage inductance. 

Fortunately, due to the very low leakage inductance in 
the transformer, the leakage energy in the transformer is 
very small. 

Some new low voltage power MOSFETs are rated for 
repetitive avalanche and are very robust to unclamped 
inductive switching [8,12]. 

With careful primary side lay-out and low leakage 
design of transformers, converter leakage energy is very 
small. Using avalanche rated MOSFETs, primary side 
clamp circuits can be eliminated and switch voltage rating 
reduced, significantly reducing MOSFET conduction 
losses.

Since silicon carbide Schottky diodes do not suffer 
from reverse recovery, they can work at much higher 
switching frequencies and in particular at much faster 
current switching speed (turn-off di/dt) without excessive 
losses.

IV. EXPERIMENTAL RESULTS

Experimental results from 1.5 kW demonstration model 
are presented in the following. 

Fig. 4, is a plot of transformer leakage inductance and 
AC-resistance measured on secondary side. Transferred to 
primary side (dividing by transformer turns-ratio squared), 
the transformer leakage inductance is only 11 nH and the 
AC-resistance at 45 kHz is only 1.9 m .

Fig. 5, is a plot of voltages and currents in the 
converter. Transformer current is measured on secondary 
side in order to avoid adding extensive stray inductance to 
the primary circuit. 

Fig. 6, is an expanded view of fig. 5, showing that at 
turn off output current rise is only delayed approximately 
30 ns from transist voltage rise. Total avalanche loss, 
shared ed to: 

or
between  4 primary switches, can be estimat

         (4) 

2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008) 129

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 15, 2009 at 10:45 from IEEE Xplore.  Restrictions apply. 



130 2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 15, 2009 at 10:45 from IEEE Xplore.  Restrictions apply. 



2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008) 131

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 15, 2009 at 10:45 from IEEE Xplore.  Restrictions apply. 



High Efficiency Power Converter for Low Voltage High Power Applications 

 
  - 84 -   

Appendix A2 
 
M. Nymand, M. A. E. Andersen, “High-efficiency isolated boost dc-dc converter for high-power 
low-voltage fuel cell applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 505-514, Feb. 
2010. 
 
 
  



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 2, FEBRUARY 2010 505

High-Efficiency Isolated Boost DC–DC Converter for
High-Power Low-Voltage Fuel-Cell Applications

Morten Nymand, Member, IEEE, and Michael A. E. Andersen, Member, IEEE

Abstract—A new design approach achieving very high conver-
sion efficiency in low-voltage high-power isolated boost dc–dc con-
verters is presented. The transformer eddy-current and proximity
effects are analyzed, demonstrating that an extensive interleav-
ing of primary and secondary windings is needed to avoid high
winding losses. The analysis of transformer leakage inductance
reveals that extremely low leakage inductance can be achieved,
allowing stored energy to be dissipated. Power MOSFETs fully
rated for repetitive avalanches allow primary-side voltage clamp
circuits to be eliminated. The oversizing of the primary-switch
voltage rating can thus be avoided, significantly reducing switch-
conduction losses. Finally, silicon carbide rectifying diodes allow
fast diode turn-off, further reducing losses. Detailed test results
from a 1.5-kW full-bridge boost dc–dc converter verify the theo-
retical analysis and demonstrate very high conversion efficiency.
The efficiency at minimum input voltage and maximum power is
96.8%. The maximum efficiency of the proposed converter is 98%.

Index Terms—DC–DC converter, fuel-cell system, high effi-
ciency, switched-mode power supply, transformer.

NOMENCLATURE

D Switch duty cycle.
DL Inductor duty cycle.
fS Converter switching frequency.
T Converter period time, = 1/fS .
TL Inductor period time, = T/2.
n Transformer turns ratio, = NS/NP .
FR AC resistance factor, = Rac/Rdc.
FR,P AC resistance factor of primary winding.
FR,S AC resistance factor of secondary winding.
FR,T AC resistance factor of complete transformer.
h Height of conductor.
hP Height of P th winding portion.
hΔ Height of primary-secondary intersection.
hw Total height of transformer winding.
H Magnetic field strength.
B Flux density.
w Stored energy in magnetic volume.
δ Penetration depth in material.
p Winding portion.
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Fig. 1. Fuel-cell power system with isolated high-gain dc–dc converter.

m Number of layers in winding portion.
lw Mean turn length.
bw Breadth of winding.
M Number of primary–secondary intersections.
N Number of winding turns.
NP Number of primary turns.
NS Number of secondary turns.
μ0 Permeability of free space.
LLK Transformer leakage inductance.
LLK,P Transformer leakage inductance referred to primary

side.
LLK,S Transformer leakage inductance referred to secondary

side.

I. INTRODUCTION

H IGH-POWER fuel-cell or battery-powered applications,
such as for transportation, forklift trucks, or distributed

generation, are often faced with the need for boosting the
low input voltage (30–60 V) to the much higher link volt-
age (360–400 V) required for interfacing to the utility grid
(Fig. 1), [1].

For safety and electromagnetic compatibility reasons, gal-
vanic isolation between source and utility grid is often required.

High output impedance reduces fuel-cell output voltage
at maximum output power. System peak power is therefore
reached at converter minimum input voltage. A drop in con-
verter efficiency at minimum input voltage and maximum
output power therefore directly reduces the available system
peak power. While the converter is required to operate over a
wide input-voltage range, typically up to a factor of 1 : 2, high
converter efficiency is particularly important at minimum input
voltage and maximum power.

Isolated boost converters have some inherent advantages
when used in fuel-cell applications. With the storage inductor
placed at the input side, input ripple current is inherently low,
requiring only limited additional decoupling at the input side.

Output rectifying diodes are placed directly across output ca-
pacitors, ensuring minimum voltage stress and effective voltage

0278-0046/$26.00 © 2010 IEEE
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Fig. 2. Isolated full-bridge boost converter with voltage doubling rectifier.

clamping. In a 400-V output application, 600-V rated diodes
will be sufficient in boost-type topologies.

As opposed to this, buck-derived topologies require 1200-V
diodes or stacking of multiple outputs. Moreover, clamp circuits
will be required across rectifier diodes in buck-derived topolo-
gies. Diode voltage stress in boost topologies are thus less than
half of the corresponding voltage stress in buck-derived topolo-
gies. In high-voltage-output applications, buck-type topologies
therefore have inherently larger rectifying losses than boost-
type topologies.

The drawback of boost-type topologies is the need for the
clamping of voltage spikes on primary switches caused by
parasitic inductances, i.e., transformer leakage inductance and
circuit stray inductances. Clamping is typically performed by
voltage clamp circuits [2]–[4] requiring significantly increased
primary-switch voltage rating (up to three times oversizing
of voltage rating [5]), thus dramatically increasing switch-
conduction losses. Alternatively, active clamping or reset cir-
cuits are used [4]–[10], requiring more switches and creating
large triangular switch currents [4]–[7] with increased rms
values. In [8]–[10], switch current is shaped by careful switch
timing [8], [9] or resonance [10] in order to reduce switch-
conduction losses.

A large number of isolated boost converters for fuel-cell
applications have been presented, among these are [2]–[16].
References [2], [8], and [10]–[13] have voltage and power
levels that are comparable with the converter presented in this
paper. References [3]–[5], and [14] are isolated bidirectional
full-bridge boost converters intended for electrical vehicles.
Input voltage is 12 V (8–15 V), and output voltage is typically
250–420 V. Power range is from 1.5 kW [4], [5] to 3 kW [3]
in boost mode. A 5-kW two-stage dc–dc converter solution
is proposed in [15], and a current-fed converter with reduced
output ripple current is presented in [16].

Although quite different designs are represented (hard-
switched push–pull boost [2], bidirectional, actively clamped,
two-inductor boost [8], actively clamped resonant push-pull
[10], interleaved full-bridge boost [11], and resonant full-bridge
boost [12]), there seems to be a general efficiency trend. Most
converters achieve high efficiencies in the medium to high
input-voltage range, typically peaking at 94%–96% at approx-
imately half power. At minimum input voltage and maximum
power, efficiency drops significantly to approximately 90% or

below. The best performance is achieved by that in [10], which
has an efficiency of 92.5% including dc–ac inverters.

In [17], the design of a simple wide-input-voltage-range
isolated full-bridge boost converter with very high conversion
efficiency was presented. This extended paper presents a de-
tailed analysis of transformer ac resistance for four alternative
transformer-winding designs. The analysis demonstrates that,
to avoid severe proximity effect in high-power low-voltage
transformers, an extensive interleaving of primary and sec-
ondary windings is required.

Furthermore, this paper presents a detailed analytical analy-
sis of transformer leakage inductance. The analysis shows
that stored energy in transformer leakage inductance does not
depend on transformer turns ratio. Second, due to the few
primary turns, primary-side leakage inductance is very small.
Furthermore, the extensive interleaving of primary and sec-
ondary windings required to keep winding ac resistances low
creates exceptionally low transformer leakage inductance.

Finally, analysis shows that the extremely low transformer
primary-side leakage inductance and the low reflected output
voltage will act as primary-switch voltage clamp circuit, effec-
tively bypassing traditional clamp circuits.

Analytical results are verified by test results from a 1.5-kW
prototype dc–dc converter. Transformer leakage inductance and
ac resistance measurements confirm the extremely low leakage
inductance. Detailed measurements of switch transistor, trans-
former, and diode voltage and current waveforms are presented.
Finally, the measured prototype efficiency is presented. The
worst case efficiency at minimum input voltage and maximum
power is 96.8%. The maximum efficiency of the proposed
converter is 98%.

II. ISOLATED FULL-BRIDGE BOOST CONVERTER

The proposed full-bridge boost dc–dc converter is shown in
Fig. 2. The timing diagrams and basic operating waveforms are
shown in Fig. 3.

A. Basic Converter Operation

Primary switches S1–S4 are hard switched and operated in
pairs, i.e., S1–S2 and S3–S4, respectively. The drive signals
are 180◦ phase shifted. Switch-transistor duty cycle D is above
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Fig. 3. Basic operating waveforms of isolated full-bridge boost converter.

50% to ensure switch overlap and, thus, a continuous current
path for the inductor L1 current.

The energy transfer to output starts when switches S3 and
S4 are turned off. Inductor current iL1 flows through primary
switch S1, transformer T1, rectifier diode D1, and output
capacitor C1 and returns to input through primary switch S2.
Inductor current iL1 discharges. The period ends when primary
switches S3 and S4 are turned on again.

During switch overlap, when all switches S1–S4 are turned
on, the inductor current iL1 is charged. The current in the
transformer secondary winding is zero, and diodes D1 and D2
are off. The transformer magnetizing current circulates in the
transformer primary winding through switches S2–S4 and/or
S1–S3. Capacitors C1 and C2 supply the load current. The
period ends when primary switches S1 and S2 are turned off.

A second energy-transfer cycle starts when switches S1 and
S2 are turned off and ends when S1 and S2 are turned on again.
The inductor current iL1 flows through switches S3, T1, D2,
and C2 and returns to input through S4.

TABLE I
CONVERTER SPECIFICATIONS

Finally, a second inductor charging interval similar to the first
follows.

The converter transfer function in continuous steady state is

Vo

Vin
=

n

1 − D
. (1)

The corresponding inductor duty cycle DL and period time
TL is defined as

DL ≡ 2D − 1 (2)
TL ≡T/2. (3)

III. CONVERTER DESIGN

The converter requirement specification is listed in Table I.
The four primary switches S1–S4 are 75-V 3.3-mΩ Inter-

national Rectifier IRFB 3077 power MOSFETs which are fully
rated for repetitive avalanches [18]. Rectifier diodes D1–D2 are
600-V Infineon IDT 10S60C SiC Schottky diodes. The inductor
L1 core is a Magnetics Kool Mμ 77439. The transformer core
is an EE55/21 ferrite core in 3F3 material. Switching frequency
is 45 kHz.

Fast current-switching speed increases efficiency since less
charge is being diverted from output into primary-side clamp
circuits. Current-switching times are limited by transformer
leakage inductance and primary-side stray inductances as well
as MOSFET common source inductance whichever is worst
case [19].

Transformer leakage inductance can be reduced by extensive
interleaving of primary and secondary windings.

A careful primary-side layout is required to reduce primary-
side stray inductances. MOSFET common source inductance is
a function of package internal wiring (bonding wire length) as
well as source external lead length [19].

A. Transformer AC Resistance

A transformer turns ratio of 1 : 4 is selected. At 45-kHz
switching frequency, an EE55/21 ferrite E-core with four pri-
mary turns can transfer 1.5 kW at 30-V input. Sixteen sec-
ondary turns are thus required.

High input current in high-power fuel-cell converters re-
quires a large copper cross-sectional area of transformer pri-
mary winding wires.

Authorized licensed use limited to: Morten Nymand. Downloaded on January 13, 2010 at 13:55 from IEEE Xplore.  Restrictions apply. 



508 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 2, FEBRUARY 2010

Foil windings are very efficient in providing large copper
cross-sectional areas with a minimum conductor thickness.
However, as power levels increase, even foil-winding thick-
nesses quickly approach or exceed penetration depths in copper.
Proximity effect can thereby cause very significant increases in
winding ac resistances, thus leading to significantly increased
power losses [20], [21].

In principle, a Litz wire could be used. However, the very
larger copper cross section and the few turns required on the
transformer primary side make the use of a Litz wire difficult
and impractical. Furthermore, due to the large number of indi-
vidually insulated strands in Litz wires, the copper space factor
is much lower than in solid copper foil windings, leading to
increased dc resistance.

At 45 kHz, penetration depth in copper is only 0.34 mm. A
primary winding with four turns on an EE55/21 core allows
each of the four primary turns to be up to 0.6 mm thick. The
16-turn secondary winding can be realized by a 0.15-mm
copper foil.

To illustrate the importance of controlling eddy-current- and
proximity-effect losses, the works performed by Dowell [20]
and Hurley et al. [22] are used to analyze the winding ac
resistance of four alternative winding configurations, as shown
in Fig. 4(a)–(d).

The increase in ac resistance Rac, compared with dc resis-
tance Rdc at a specific frequency, i.e., with sinusoidal excita-
tion, due to the eddy-current effect is

FR =
Rac

Rdc
= ϕ

sinh 2ϕ + sin 2ϕ
cosh 2ϕ + cos 2ϕ

. (4)

For single-layer windings, ϕ = h/δ, and for half-layer wind-
ings, ϕ = h/2δ.

In multilayer windings (m > 1), an additional term cover-
ing the proximity effect is added; thus, the resistance factor
becomes

FR =
Rac

Rdc

=ϕ
sinh 2ϕ + sin 2ϕ
cosh 2ϕ − cos 2ϕ

+
2(m2 − 1)

3
ϕ

sinhϕ − sinϕ

cosh ϕ + cosϕ
(5)

where ϕ = h/δ.
Since turn numbers and winding thickness are different on

primary and secondary windings (n �= 1), ac resistance factors
have to be calculated for both primary FR,P and secondary
FR,S windings. The combined effective ac resistance for the
transformer can be found as the weighted sum of the primary
and secondary factors. If primary and secondary windings
occupy equal winding spaces, the weighting factor becomes 0.5

FR,T =
FR,P + FR,S

2
. (6)

Using (4)–(6), the transformer-winding ac resistance factors
for the four alternative winding configurations in Fig. 4(a)–(d)
are calculated and presented in Table II. Notice that the
primary-winding ac resistance of the winding configuration in
Fig. 4(a) is 13 times higher than that in the winding configura-
tion in Fig. 4(d).

Fig. 4. Alternative transformer-winding configurations. (a) Without inter-
leaving, (b) single interleaving, (c) double interleaving, and (d) quadruple
interleaving.

Authorized licensed use limited to: Morten Nymand. Downloaded on January 13, 2010 at 13:55 from IEEE Xplore.  Restrictions apply. 



NYMAND AND ANDERSEN: ISOLATED BOOST DC–DC CONVERTER FOR FUEL-CELL APPLICATIONS 509

TABLE II
CALCULATED AC RESISTANCE FACTOR AND TRANSFORMER LEAKAGE

INDUCTANCE FOR FOUR ALTERNATIVE WINDING DESIGNS

Keeping ac resistance low in high-frequency high-current
transformers therefore requires an extensive interleaving of
primary and secondary windings.

B. Transformer Leakage Inductance

Again, using the works of Dowell [20] and Snelling [21], an
analytical expression of the transformer low-frequency leakage
inductance can be derived. This analytical expression is very
useful in fully understanding the impact of the transformer turns
ratio and winding technique on transformer leakage inductance.

The stored energy in a magnetic volume Ve is

w = Ve

ΔB∫
0

HdB (7)

where the flux density of free space is B = μ0H .
The transformer winding can be grouped into a num-

ber of winding portions and intersections according to their
magnetomotive-force diagram, as shown in Fig. 4(a)–(d).
Winding intersections constitute small volumes VΔ = lwbwhΔ

of constantly high magnetic field strength H . Portions are
volumes VP = lwbwhP of winding space where magnetic field
strength H is increasing linearly from zero to maximum.

To find the stored energy in each volume element, we inte-
grate the squared magnetic field strength H2 over the height of
the volume element

w(VP ) =
1
2
μ0lwbw

hP∫
0

H(x)2dx. (8)

Knowing the shape of the magnetic field strength, as shown
in each of the winding configuration drawings in Fig. 4, we can
calculate the stored energy.

In each portion of the winding, the magnetic field strength
H will either be increasing or decreasing, having the numerical
magnitude

|H(x)| =
NI

MbwhP
x. (9)

Moreover, the corresponding magnetic field strength in the
intersection between the primary and secondary windings is

|H(hΔ)| =
NI

Mbw
. (10)

Due to symmetry, we only need to calculate the values for
one portion and one intersection and then multiply by the
number of portions and intersections, respectively

w =
1
2
μ0lwbw

⎡
⎣ 2M∑

P=1

hP∫
0

(
NIx

MbwhP

)2

dx+
M∑

Δ=1

(
NI

Mbw

)2

hΔ

⎤
⎦

w =
1
2
μ0lw

N2I2

M2bw

(
1
3

2M∑
P=1

hP +
M∑

Δ=1

hΔ

)
. (11)

By definition

w ≡ 1
2
LI2. (12)

Now, we can find an analytical expression for the leakage
inductance LLK

LLK = μ0
N2lw
M2bw

(
1
3

2M∑
P=1

hP +
M∑

Δ=1

hΔ

)
. (13)

If hΔ � hP , transformer leakage inductance is
approximately

LLK ≈ μ0
lwhw

3bw

N2

M2
. (14)

From (13) and (14), it is clear that the extensive interleaving
of primary and secondary windings, as required in high-power
low-voltage transformers, will lead to very small stored energy
in transformer leakage inductance. Furthermore, it becomes
clear that, with leakage inductance being proportional to the
squared number of turns N2, the few primary turns of low-
voltage high-power transformers have inherently extremely
small leakage inductance.

Using (13), the leakage inductances for the four alternative
winding configurations in Fig. 4(a)–(d) are calculated and pre-
sented in Table II. Notice that the leakage inductance of the
winding configuration in Fig. 4(d) is approximately 35 times
smaller than that of the winding configuration in Fig. 4(a).

Furthermore, the analysis does not include any stray induc-
tance effects of transformer termination leads.

In summary, the need to reduce the proximity effect in high-
power low-voltage transformers requires an extensive inter-
leaving of windings, which, at the same time, significantly
reduces the transformer leakage inductance and, consequently,
the stored energy in the transformer leakage inductance.

C. Primary-Switch Voltage Clamping

At low input voltage and high power levels, the conduction
loss in primary switches is a dominant loss factor.

Slow current switching caused by high circuit inductances
is another significant loss factor in high-power low-voltage ap-
plications. The slow current-switching speed creates extended
voltage and current overlap time in primary switches dur-
ing switching transitions, thus being responsible for increased
switching losses.
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Fig. 5. Isolated full-bridge boost converter with primary-side voltage clamp
circuit.

Fig. 6. Equivalent circuit of Fig. 5 during switch S4 turn-off.

In the voltage range of 60–200 V, the MOSFET on-resistance
RDS,ON typically increases proportional to the square of the
rated drain-to-source breakdown voltage V(BR)DSS. The volt-
age rating of primary switches therefore has very significant
impact on converter conduction loss and, thereby, on converter
efficiency.

To allow clamp circuits to clamp voltage spikes caused by the
transformer leakage inductance and circuit stray inductances,
the voltage rating of primary switches, in isolated boost con-
verters, is typically rated at two to three times the maximum
input voltage [5].

An isolated boost converter with a typical voltage clamp
circuit is shown in Fig. 5. Diode D3, capacitor CCL, and load
RCL act as a Zener clamp across primary switches S1–S4,
during transistor switch-off.

In Fig. 6, the equivalent circuit for the situation just after
S4 has been switched off is shown. The intended operation is
that the parasitic stray inductance in the clamp circuit LCKT is
much smaller than the transformer primary leakage inductance
LLK,P, such that the S4 drain–source voltage is essentially
limited to clamp voltage VCL while the transformer current iT1

rises with the rate of

diT1

dt
=

VCL − Vo/2n

LLK,P
. (15)

To limit the rise time of the transformer current iT1 and
the associated clamp power, the clamp voltage VCL needs to
be significantly larger than the reflected output voltage Vo/2n.
However, the voltage rating of primary switches needs to be
significantly higher than the clamp voltage VCL in order to
allow the clamp circuit to operate without reaching the rated
device voltage.

For primary clamp circuits to be effective, they must present
a significantly lower impedance at the clamping point than the

circuit which is being clamped, i.e., LCKT � LLK,P. This is
easily achieved in high-voltage and/or low-power converters,
where transformer leakage inductances are much higher.

In high-power low-voltage converters, however, transformer
leakage inductances are much smaller while clamp-circuit stray
inductances stay virtually unchanged as they depend on the
diode and capacitor terminal lead length and interconnecting
wiring.

The result is clamp circuits that are only catching (small)
fractions of the clamp energy, with the major part being
clamped by the converter output through the transformer. Fur-
thermore, since the reflected output voltage on the transformer
primary side is much lower than the clamp circuit voltage VCL,
the transformer will present a lower voltage at the clamping
point, leaving a higher voltage across the circuit leakage induc-
tance and thus drawing the majority of the clamp current. The
extremely low transformer leakage inductance in high-power
low-voltage converters thus renders primary-side clamp circuits
ineffective and superfluous.

Modern low-voltage power MOSFETs are rated for repetitive
avalanches and are very robust to unclamped inductive switch-
ing. The failure mechanism is purely thermal and occurring at
temperatures much in excess of the rated junction temperature
[18], [23]. Therefore, clamp circuits are no longer needed for
device protection.

Silicon carbide Schottky diodes do not suffer from reverse
recovery. Consequently, they can work at much higher switch-
ing frequencies and allow much faster current-switching speed
(turn-off di/dt) without excessive losses.

D. Converter Start-Up

In boost converters, special considerations have to be given to
the control of converter inrush current at start-up and handling
of possible overload situations. It is well known that boost
converters cannot control the output current when the output
voltage drops below the input voltage. Similarly, isolated boost
converters cannot control the current when the reflected output
voltage drops below the converter input voltage. Unlike the
nonisolated boost converters, isolated boost converters can be
disconnected from an overload by simply turning all primary
switches off.

Several techniques for limiting inrush current in isolated
boost converters during start-up exist.

1) An active inrush limiter by means of a current limiter or
a parallel combination of a charging resistor and a bypass
switch can be placed in series with the input.

2) Similarly, an active current limiter can be placed at the
output between the first small ripple filter and the main
energy storage capacitor bank.

3) If overload protection is not required, the active current
limiter can simply be placed in series with the main
energy-storage capacitor bank on the output.

4) A small auxiliary start-up converter can be placed in
parallel with the main converter for the charging of the
output capacitors prior to main converter start-up.

5) An auxiliary flyback winding with the associated recti-
fier diode can be added on the boost-converter storage
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inductor and connected to either output [24] [scheme 2)],
[25] or input [26].

6) Finally, the output capacitor can also be charged by a
series of narrow pulses in “buck mode,” as described in
[24] [scheme 1)].

The optimum solution heavily depends on specific applica-
tion requirements, such as the amount of inrush current that
can be accepted, whether output is loaded during start-up and
whether output current limitation is required. For the fuel-cell
applications envisaged in this paper, the dc–dc converter will
be followed by a buck-type voltage-source dc–ac inverter, as in
Fig. 1. The buck-type dc–ac inverter can thus protect the output
from overload and disconnect the external load during start-up.
During start-up, the converter is thus only loaded by a (large)
intermediate bus capacitor bank.

Due to the high input current seen on the primary side, any
series switches or active current-limiting circuits on the primary
side are highly undesirable since they will dramatically reduce
converter efficiency as well as increase the cost and size of the
converter.

Current-limiter circuits on the output side are also an op-
tion but will add significant cost and complexity to the con-
verter. Moreover, the separate start-up converter solution can
be used and even potentially be combined with other desirable
functions.

The use of an extra flyback winding on the input inductor is
yet another option. However, the flyback winding will compli-
cate the inductor manufacturing and reduce the available copper
winding area for the main winding, thereby increasing inductor
losses. More importantly, the voltage rating of primary switches
will have to be increased substantially to allow clamping to
input or output during start-up. As the on-resistance of power
MOSFETs increases exponentially with the device voltage
rating, the increased voltage rating of primary switches will
dramatically increase conduction losses and thus significantly
reduce converter efficiency.

Although, as explained previously, most of the solutions
listed here can be used for reducing inrush current during start-
up, the preferred solution is the method of “pumping” the
converter during the charging of the output capacitors [24].
A series of short and low duty-cycle pulses (D � 0.5) are
fed alternately to a set of diagonal primary switches. A short
and low-magnitude triangular current will be fed to the output
during each switch-conduction cycle. When the switches are
turned off, the (small) stored energy in the input inductor is
clamped by the primary switches. This start-up method can
charge the output voltage until it reaches the reflected input-
voltage level (Vo = 2nVin), at which point, the converter will
be started in normal operating mode (D > 50%). When the
output capacitors are fully charged, the following dc–ac inverter
will be allowed to start. The advantages of this method are the
simplicity, requiring very little extra circuits, and the fact that
converter efficiency is not affected.

E. Converter Control

As seen from the fuel-cell system having slow dynamics
of hydrogen- and oxygen-supply systems, the ideal load pro-

file will be that of a low-bandwidth controlled current sink.
Converter control should therefore try to emulate a constant
current-generator function. This function can be obtained by
an input-current controller with a low-bandwidth outer feed-
back loop from the output voltage. Sufficient energy storage
at the converter output will be needed to limit output-voltage
transients during load changes and transients.

This control has several advantages. First of all, it will
optimally allow the fuel-cell control system to control and
track electrical load. Second, the traditional negative converter
input impedance, caused by the constant power behavior of
output controlled converters, is eliminated. Thus, any risk of
negative impedance oscillations caused by high fuel-cell output
impedance and/or high converter input filter impedances is
effectively eliminated. In many ways, this control system will
be analogous to the traditional control schemes used in active
power-factor controllers.

F. Converter Input Ripple Current

The influence of converter ripple current on fuel-cell behav-
ior has been presented in [27]. High-frequency ripple currents
(f > 10 kHz) are internally bypassed by the fuel-cell double-
layer capacitance effectively short-circuiting the reactance im-
pedance. The effective fuel-cell high-frequency impedance thus
becomes the membrane resistance in series with a small induc-
tance. While high-frequency ripple currents do not have any
(measurable) effects on the electrochemical process as they are
filtered by the double-layer capacitance, the long-term effects
of ripple currents on fuel-cell aging, double-layer capacitance,
and membrane are unknown.

Boost converters have inherently very low inductor ripple
currents at the input, and in the case of the bridge converters,
the fundamental frequency of this ripple current is at twice the
switching frequency (Fig. 3). As a consequence of this, only
very limited amount of capacitive decoupling is required at the
converter input to completely suppress this ripple current.

The advantages of suppressing high-frequency ripple cur-
rents from the fuel-cell interface are, however, multiple. First,
any potential degradation of the fuel cell due to ripple cur-
rents is eliminated. Second, power losses due to rms losses
in the fuel-cell membrane resistance, as well as eddy-current
losses in interface cables, are avoided. Finally, high-frequency
ripple voltages and noise emission from interface cables are
suppressed. Thus, small input decoupling capacitors Cin are
placed across the converter input to effectively eliminate any
of the aforementioned potential hazards.

G. Summary of Converter Design Approach

To avoid high ac resistance in high-power low-voltage trans-
former windings, an extensive interleaving of primary and
secondary windings is required. This extensive interleaving of
transformer windings leads to extremely low transformer leak-
age inductance. Stored energy in transformer leakage induc-
tance can thus be dissipated with minimal impact on converter
efficiency.
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Fig. 7. Measured secondary-side (upper curve) ac resistance and (lower
curve) leakage inductance of a 1.5-kW transformer.

Low-voltage MOSFETs are fully rated for repetitive
avalanches, allowing MOSFETs to clamp stored energy in leak-
age inductances. With the careful primary-side layout and the
low leakage inductance design of transformers, converter stored
leakage inductance energy is very small. Using avalanche-rated
MOSFETs, primary-side clamp circuits can be eliminated, and
the switch voltage rating can be reduced. Very significant
reduction in MOSFET conduction losses is thus achieved.

Finally, the use of silicon carbide Schottky diodes and a low-
inductance layout provides very fast current-switching speed,
significantly reducing switching losses. Combined, this design
approach leads to very high conversion efficiency.

IV. EXPERIMENTAL RESULTS

The experimental results from a 1.5-kW prototype converter
are presented in the following.

Using an Agilent 4294A precision impedance analyzer, the
ac resistance and leakage inductance of a 1.5-kW prototype
transformer are measured (Fig. 7). The transformer design cor-
responds to the winding configuration in Fig. 4(d). Transferred
to the primary side, the ac resistance at 45 kHz is 1.9 mΩ, and
leakage inductance is only 11 nH. The leakage inductance in
percentage of primary inductance is only 0.01%.

Fig. 8 shows the plots of transformer primary voltage, pri-
mary winding current, and secondary current. Figs. 9–11 show
the plots of transistor S4 voltages and current waveforms.
Notice that, except for internal capacitances, there are no turn-
on losses. At turn-off, the voltage and current overlap time Δt
is measured to 26 ns in Fig. 11. The total turn-off loss shared
between all four switches is approximately

Poff,S1−S4 ≈ iL1,peakvS4,avΔtfs = 4.6 W (16)

corresponding to only 0.3% loss of efficiency.
Figs. 12–14 show plots of the rectifier diode D2 voltage

and currents. Notice the well-clamped diode voltage, the fast
current switching, and the absence of reverse recovery.

Measurement tolerances become very important when mea-
suring efficiency in the range of 97%–98%. Extensive care has
to be taken to ensure very high precision and stability of the
efficiency test setup.

Fig. 8. Measured transformer waveforms at 30-V input and 1.5-kW output
power. (From top) Transformer primary voltage (50 V/div), transformer pri-
mary current (40 A/div), and transformer secondary current (25 A/div). Time
base is 5 μs/div.

Fig. 9. Measured converter waveforms at 30-V input and 1.5-kW output
power. (From top) Converter input ac current Iin,ac (1 A/div), inductor L1,
ac current (10 A/div), switch S4 drain current (40 A/div), and S4 drain–source
voltage (50 V/div). Time base is 5 μs/div.

Fig. 10. Expanded view of Fig. 9, showing S4 turn-on sequence. Time base
is 50 ns/div.

The measured converter efficiency, including transistor-drive
losses, is shown in Fig. 15. The maximum efficiency at 30-V
input is 97.5%. The efficiency at full load is between 96.8%
and 97.9%. The maximum efficiency of the proposed converter
is 98%. A photo of the 1.5-kW prototype converter is shown in
Fig. 16.
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Fig. 11. Expanded view of Fig. 9, showing S4 turn-off sequence. Time base
is 20 ns/div.

Fig. 12. Measured converter waveforms at 30-V input and 1.5-kW output
power. (Top) Diode D2 voltage (100 V/div). (Bottom) Diode D2 current
(10 A/div). Time base is 5 μs/div.

Fig. 13. Expanded view of Fig. 12, showing diode D2 turn-on sequence. Time
base is 50 ns/div.

V. CONCLUSION

A new design approach to achieve very high efficiency in
low-voltage high-power isolated boost dc–dc converters has
been presented. High-power low-voltage transformers require
an extensive interleaving of windings to keep ac resistances low.
Extremely low primary leakage inductances are achieved, al-
lowing the dissipation of stored leakage energy. Thus, the volt-
age rating of switches rated for unclamped inductive switching
can be reduced, greatly improving converter efficiency. Silicon
carbide Schottky diodes have no reverse recovery and allow
very fast current switching, further increasing efficiency. Test

Fig. 14. Expanded view of Fig. 12, showing diode D2 turn-off sequence.
Time base is 50 ns/div.

Fig. 15. Measured converter efficiency including drive power.

Fig. 16. Photo of 1.5-kW prototype isolated full-bridge boost converter.

results from a 1.5-kW prototype converter confirm the achieve-
ment of fast current switching, low parasitic circuit inductance,
and very high efficiency. The worst case efficiency at maximum
load and minimum input voltage is 96.8%. The maximum
efficiency of the proposed converter is 98%.
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Abstract- Among many converter topologies that have been 
proposed and developed for low voltage fuel cell applications, 
isolated full-bridge Buck and Boost converters appear to be the 
most popular.  Although the Buck topology is considered to be 
superior in performance, particularly for being more efficient, 
this claim has never been proved with a ‘proper’ comparison to 
the Boost topology.  This paper presents a comprehensive 
comparison between Buck and Boost topologies, which are 
designed for the same specifications and tested under the same 
and stringent operating conditions using precision measuring 
equipment.  Experimental results of two 1.5 kW prototype Buck 
and Boost converter units are presented with detailed 
discussions, and the paper explains why, in contrary to the 
popular belief, a properly designed Boost topology is superior in 
performance to Buck topology and more appropriate for low 
voltage fuel cell applications, as indicated by measured results.  

 

1. INTRODUCTION 

Selection of an appropriate converter topology is an 
important and fundamental aspect of the design process of 
power converters used in fuel cell applications as the 
converter alone plays a major role in its overall performance.  
At present there are numerous converter topologies with 
different levels of sophistication, performance, cost, etc, and 
they may be suitable for a variety of applications.  Selection 
of the best from these available topologies for a particular 
application, in this case a fuel-cell, would therefore be a 
challenging task as it invariably involves analysis of various 
parameters and aspects under various operating conditions.  
One approach is to design and implement a few selected 
topologies, and subsequently choose the best, based on 
results.   However, such an approach may not always be 
economically viable owing to both time and resource 
constraints.  Another approach is to use the information and 
analysis published in technical documents but this is also 
difficult as the information provided may be for designs, 
which have been optimized for different specifications and 
applications, using circuit components that may not 
necessarily be available in the current market.  This difficulty 
is further compounded by the fact that important data such as 
efficiency measurements are not often provided or measured 
either under different or unknown conditions, negating any 
possible direct comparisons.  Finally, even if all of the above 
difficulties could be overcome, still the results published 
would quickly become somewhat obsolete as previously 
made comparisons may not be valid with new components or 
technological discoveries. 

In fuel cell applications, efficiency of the converter is a key 
parameter of the overall design process.  This is because the 
size, cost, efficiency and reliability of the overall system 
largely depend on the losses of the converter at minimum 
input voltage, where input current is maximum when 
delivering maximum power.  A power converter with very 
high efficiency is thus an essential requirement for fuel-cell 
applications.  However, as discussed above, selection of a 
converter topology, which is efficient over the entire 
operating range and appropriate for fuel-cell applications, is 
not an easy task,    

According to literature, isolated full-bridge Buck converter 
and isolated full-bridge Boost converter are the two 
topologies that have been identified as most appropriate for 
fuel-cell applications [1-14].  Traditionally, for a given input 
voltage range, Boost converters are most efficient at high 
input voltage whereas Buck converters are more efficient at 
low input voltage. This implies that Buck converters are the 
preferred topologies for fuel cell applications, since the 
efficiency at low input voltages has a major impact on the 
overall design and subsequent performance.  Prime example 
is the V6 topology reported in [1-3], which demonstrated a 
very high efficiency at low input voltage and maximum 
power.  However, Boost topologies have characteristics, such 
as continuous input current, low input ripple current, good 
clamping of output diodes requiring less than half of the 
voltage rating of rectifier diodes, etc, which are ideal for fuel 
cell applications, and therefore despite the inclination towards 
the Buck topology at low input voltage, many attempts have 
also been made to improve the efficiency of Boost topology 
at low input voltage, making it the ideal choice for fuel-cell 
applications [6-13]. These attempts include optimizing the 
transformer design to achieve very low leakage inductances, 
taking advantage of modern power MOSFETs repetitive 
avalanche ratings and Silicon Carbide (SiC) Schottky diode’s 
very fast di/dt ability during turn off and eliminating the need 
for a voltage clamp circuit [13].  Consequently, Boost 
converters now appear to offer comparable performance even 
at low input voltages.  Unfortunately, these superior claims 
on performance have only been made using converters that 
have been designed, analyzed and tested on individual basis 
and under different operating conditions.   

A comprehensive comparison between these two 
topologies, which are designed for the same specifications 
and tested under the very same operating conditions, is yet to 
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be reported, and would be of significant benefit to both the 
research and industry community.   The purpose of this paper 
is therefore to fulfill this long overdue need by providing a 
comprehensive comparison between these two topologies, 
including methodical design and experimental testing.  The 
paper details the design aspects of each converter topology, 
highlighting the importance of optimizing the high frequency 
inductor and transformer windings, which has greater impact 
on the efficiency.  Implementation and prototyping issues of a 
1.5 kW unit of each type, using most recent technological 
advances such as SiC Schottky diodes and very low 
impedance power MOSFETs, are then discussed.  Finally, a 
comprehensive comparison between the two prototype units, 
tested under same and stringent operating conditions, is 
provided with experimental analysis to show that the Boost 
topology is indeed superior in performance over the entire 
operating range of a typical fuel-cell application. 

 

2. DESIGN CONSIDERATIONS 

 
  
 
 
 
 
 
 

Fig. 1  A typical fuel-cell system 
 
Fig. 1 shows the system configuration of a typical fuel cell 

application, where the DC-DC converter is powered by low 
voltage DC bus to produce a high voltage DC bus.  The two 
possible Buck and Boost topologies that may be used for this 
DC-DC converter are designed in accordance with the 
specifications given in Table I.  Theoretical voltage and 
current waveforms of the two converter topologies are 
illustrated in Fig. 3, and Fig. 6, respectively. The following 
common design practices are adhered to during the design of 
both converters. 

Having very high input currents, both converters are hard 
switched in order to keep conduction losses at a minimum 
while avoiding circulating currents. 

Transformer design is based on careful multiple 
interleaving of primary and secondary windings to avoid 
severe proximity effect due to high current in the primary 
winding. 

SiC Schottky diodes are used as high voltage rectifiers, 
since they do not suffer from reverse recovery. Consequently, 
very fast diode turn-off can be achieved without sacrificing 
efficiency. 

To reduce stray leakage inductances and ac resistances, all 
high current conductors are made as short as possible, using 
wide copper foil conductors in close proximity to the return 
current path. 

Low impedance foil type capacitors are used for filter 
capacitors to ensure low ac losses. 

Both converters are designed to operate at 45 kHz 
switching frequency with input and out ripple frequency at 90 
kHz. 

Each design is individually optimized for the same 
specifications, given in Table I, using similar components and 
technologies where relevant.  State-of-the art components are 
used in each converter to achieve the best possible efficiency. 

TABLE I.  
CONVERTER SPECIFICATIONS 

Parameter Value Comments 
Output power Pout 1500 W  

Input voltage range Vin 30-50 VDC Start-up voltage up to 60V 
Output voltage Vout 400 VDC Galvanic isolation required 

Efficiency target η 98 % 
Converter efficiency to be 

optimized at low input 
voltage. 

Output power regulation 0-100 % For full control of input 
current transients 

Input current ripple >10kHz <15 % For load range 15-100% 
Input current slew rate <3 A/s Slow dynamics of fuel cell 

 

 3.  ISOLATED FULL-BRIDGE BUCK CONVERTER DESIGN 

An isolated Buck converter topology is shown in Fig. 2 and 
its typical waveforms are illustrated in Fig. 3.  Steady state 
voltage transfer function for the converter, shown in Fig. 2, is 
given by (1). 
  

 nD2
in

0
V
V =  (1) 

 
Where D is the primary switch duty cycle (D<0.5) and n = 

Ns/Np, is the transformer turns ratio.  A transformer turns 
ratio of n=16 is chosen to allow for a sufficient voltage 
margin to compensate for internal voltage drops, control 
dynamics and overlap protection at the minimum input 
voltage.  If the voltage spikes are ignored, the rectifier diodes 
D1-D4, can be regarded as subjected to a reverse voltage of 
 
 max,inRRM,D nVV =  (2) 
 

 
 

Fig. 2  Isolated full-bridge Buck converter  
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Fig. 3 Typical waveforms of isolated Buck converter 
 
At 60 V input, the diode reverse voltage will thus be in 

excess of 960 V. When using normal silicon based epitaxial 
diodes, reverse recovery losses become excessive at voltage 
rating above approximately 600 V. Thus, the traditional 
solution is to use two series connected secondary’s, each 
using 600 V diodes. While this solution reduces reverse 
recovery losses, it doubles the forward voltage drop.  In 
contrast, SiC Schottky diodes, being relatively more 
expensive, do not suffer from reverse recovery, and are 
becoming available at ratings up to 1200 V.  Therefore in this 
design, to achieve maximum efficiency, a single rectifier 
stage, using four 1200 V SiC Schottky (C2D05120) diodes 
from Cree, is used. 

Power MOSFETs of 3.3 mΩ/75 V in standard TO-220 
packages are used for the primary switches.  The RMS 
current flowing in the switches is given by 

 

[ ] 2
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For situations, where Δ Is1 << nIo, 

 DnDnII
o

o
V
P
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The components used in the design are given in Table II.   

TABLE II.  
FULL-BRIDGE BUCK CONVERTER COMPONENTS 

Component Type Specification 

S1-S4 IRFB 3077 3.3 mΩ/75 V 

D1-D2 C2D05120 5 A/1200 V 

L1 Magnetics Kool Mu 77439 1.6mH @ 3.8 A 

T1 EE55/21 3F3 n=NS/NP =16 

C1 MWR1105330 - MKT 6x 33µF/100 V 

C2 MKP 4 x 1µF/630 V 

 

TABLE III.  
TRANSFORMER DESIGN OF  FULL-BRIDGE BUCK CONVERTER 

Transformer data: 
Core E55/28/21 – N87 

Primary 4 turns 25x0.6 mm Cu foil 
Secondary 64 turns. 48 turns 2x0.78 + 

16 turns 6x0.48 mm 
Turns ratio 16 
Insulation 3 layer 50 µm Kapton 

Intersections 8 
Primary leakage 14 nH @45 kHz (measured) 

Primary DC-resistance 1.4 mΩ (measured) 
Primary AC-resistance 1.8 mΩ @45 kHz (measured) 

Core loss 1.2 W @ 60 °C 
Winding loss 6.4 W @ (Vin=30 V, Pout=1.5  kW) 

Total loss 7.6 W 
Efficiency 99.5 % @1.5 kW 

 
 

 
 
 

Fig. 4 Measured ac resistance (upper curve) and leakage inductance (lower 
curve) of Buck transformer 

 
The detailed transformer design is presented in table III.  

To avoid excessive proximity effect, each of the 4 primary 
windings has to be interleaved between sections of secondary 
windings. The high transformer turns ratio required, further 
complicates the transformer design and manufacturing. 

Fig. 4 shows measured ac resistance and leakage 
inductance of the transformer referenced to secondary side. 
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As can be seen from the presented loss data and the measured 
impedances, even though the transformer design has been 
challenging, the final performance was outstanding, having 
an efficiency of approximately 99.5 % at minimum input 
voltage and maximum power. 

 
4.  ISOLATED FULL-BRIDGE BOOST CONVERTER DESIGN 

 

 
 

Fig. 5   Isolated full-bridge Boost converter 
 
An isolated Boost converter and its typical waveforms are 

shown in Fig. 5 and Fig. 6, respectively.  A voltage doubler is 
employed at the output, effectively reducing the transformer 
turns ratio by a factor two, and saving two rectifier diodes at 
the expense of a larger output capacitor. 

Steady state voltage transfer function of the isolated full-
bridge boost converter is given by (5). 

 

 D1
n

V
V

in

0
−=  (5) 

 
Where D (> 0.5) is primary switch duty cycle and n=NS/NP 

is transformer turns ratio.  For the prototype, a transformer 
turns ratio of 4 is used. 

As evident from Fig. 5, since the rectifier diodes are placed 
directly across the output capacitors, diode reverse voltage is 
effectively limited to output voltage. Both 600 V silicon 
diodes and SiC Schottky diodes can therefore be used.  
However, SiC Schottky diodes, which facilitate much faster 
turn-offs, are used to reduce switching losses.  As in the case 
of the Buck design, the same power MOSFETs of 3.3 mΩ/75 
V are used for the active switches of the Boost converter.   
The RMS current flowing in the switches is given by 
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For situations, where Δ IL1 << Iin, 
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Fig. 6    Typical waveforms of isolated Boost converter 

TABLE IV.  
FULL-BRIDGE BOOST CONVERTER COMPONENTS 

Component Type Specification 

S1-S4 IRFB 3077 3.3 mΩ/75 V 

D1-D2 IDT 10S60C 10 A/600 V 

L1 Magnetics Kool Mu 77439 10µH @ 51 A 

T1 EE55/21 3F3 n=NS/NP =4 

C1 MKP 2x 10µF/630 V 

 
 Component selection of the prototype Boost converter 
design is shown in Table IV while the detailed transformer 
design is presented in Table V. The primary winding is 
similar to that of the Buck converter transformer thus 
requiring the same level of interleaving. The secondary 
winding is however much simpler since the turns ratio is only 
1:4. 
 Fig. 7 shows the measured ac resistance and leakage 
inductance of the transformer referenced to secondary side.  
Notice that the leakage inductance referred to the secondary 
side is only 178 nH in contrast to 3.6 µH in the full-bridge 
Buck transformer. As can be seen from the test results in the 
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subsequent section, this lower leakage indu
reduce characteristic impedance of pa
circuits.  The transformer efficiency a
voltage and maximum power is 99.6 %, an
full-bridge Buck transformer. 

TABLE V.  
TRANSFORMER DESIGN FULL-BRIDGE BOOST

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7   Measured ac resistance (upper curve) and leak

curve) of Boost transformer 
 

5. EXPERIMENTAL VERIFICAT

To make a fair comparison, a Buck and 
were built, carefully optimizing the des
losses.  The two 1.5 kW prototype Buck an
built for the study, are shown in Fig
respectively. 

Fig. 10, shows the measured voltages a
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1.5 kW full-bridge Boost converter, opera
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maximum power, the Buck converter eff

Transformer data: 
Core E55/28/21

Primary 4 turns 25x0.6 
Secondary 16 turns 25x0.15
Turns ratio 4 
Insulation 3 layer 50 µm

Intersections 8 
Primary leakage 11 nH @45 kHz

Primary DC-resistance 1.6 mΩ (me
Primary AC-resistance 1.9 mΩ @45 kH

Core loss 1.7 W @ 
Winding loss 3.8 W @ (Vin=30 V

Total loss 5.5 W
Efficiency 99.6 % @ 
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Fig. 8   A prototype 1.5 kW F
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9   A prototype 1.5 kW F
 
 

 
Fig. 10   Measured Buck converter w
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Measured efficiency at low input voltag
13. At maximum power, Buck converter ef
whereas Boost converter efficiency is still 9
power dissipation in the Buck converter is
Boost converter maximum power dissipatio

 

  
Fig. 11  Measured Boost converter waveforms at 3
output. From top: inductor L1, ac current (10A/div), 
(40A/div), Primary switch drain-source voltage (50V
(20V/div). Time base is 5µs/div. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 12   Measured converter efficiency for Buck an

50V input. 
 

 
 

Fig. 13   Measured converter efficiency for Buck an
30V input. 
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Abstract- Foil windings are preferable in high-current high-
power inductors to realize compact designs and to reduce dc-
current losses.  At high frequency, however, proximity effect will 
cause very significant increase in ac resistance in multi-layer 
windings, and lead to high ac winding losses.  This paper 
presents design, analysis and experimental verification of a two 
winding technique, which significantly reduces ac winding losses 
without compromising dc losses.  The technique uses an inner 
auxiliary winding, which is connected in parallel with an outer 
main winding.  The auxiliary winding is optimally designed with 
low ac resistance and leakage inductance to carry the ac current 
while the outer winding is designed for the large dc current.  
Detailed analysis and design of a 350 A, 10 kW inductor with the 
proposed technique are presented with discussions.  
Experimental results of a prototype 350 A inductor, used in a 10 
kW fuel cell dc-dc converter, are also presented to demonstrate 
the validity of the proposed technique and its superior 
performance.  

 

I. INTRODUCTION 

Storage inductors, such as those used in PWM controlled 
dc/dc converters, are generally designed to operate under high 
dc bias current conditions with a limited ac current ripple. To 
minimize inductor size and maximize efficiency, it is 
therefore preferable to use core materials with saturation flux 
density as high as possible while keeping the dc-resistance of 
the winding at a minimum.  Since ac currents, and thus ac 
flux, are much smaller, core hysteresis losses and winding ac-
resistances can be somewhat higher as a compromise to a 
inductor with smaller size and higher efficiency.  Usually, for 
low to medium power levels, torroid cores in powdered iron 
material, such as Magnetics Kool Mu and others, with single 
layer round wire windings are very efficient solutions for 
storage inductors [1]. 

However, as the current level increases, the required copper 
cross section also invariably increases. As a consequence, ac-
resistances in the winding will increase to a point, due to eddy 
current effects, beyond which the ac loss in the winding 
becomes significant and cannot be further ignored.  This 
effect could be alleviated to a certain extent by paralleling 
multitude of smaller diameter wires [1], but would eventually 
become impractical and impossible as the required copper 
cross section becomes simply too large to handle with single 
layer windings made with discrete wires. 

Many techniques to reduce eddy current losses in inductor 
windings have been proposed with their own merits and 
limitations [2-7].  A planar Litz winding is proposed for high 
ac current applications in [2], while [3] utilizes braided and 
transposed individually isolated wires for a similar 
application.  However, Litz wires are expensive and 
invariably have very poor fill factors.  Consequently, in both 
cases the reduction in eddy current losses was achieved at the 
expense of high dc losses, caused by the significant increase 
in the dc resistance.   

Another solution for this problem is to use E cores with 
copper foil windings. Copper foil windings offer very high 
fill factors, and are relatively easy to wind with large copper 
cross sections.  However, as discussed in this paper, even 
copper foil windings will exhibit very large ac resistances due 
to proximity effects, unless the winding is optimally 
designed.  In [4], a comparison of foil and helical windings in 
a 150 kW Boost converter application is presented.  At 15 
kW, inductor losses are higher than 175 W and correspond to 
a 1.2 % loss of efficiency. 

Use of foils with uneven foil thickness is suggested in [6].  
This is because inner turns of a winding have the worst 
proximity effect and the shortest turn length, and hence the 
smallest resistance per turn. Therefore according to this 
technique, winding losses can be reduced by 13 % by 
reducing the foil thickness of the inner turns of a winding.  
However, manufacturing foil windings with variable 
thicknesses is very complex and expensive. 

In contrast to the above reported technique, this paper 
proposes a methodical and yet simple technique, whereby the 
ac loss of a winding can be minimized by using multilayer 
foil windings.  Generally, a thin multilayer winding will have 
a much lower ac-resistance, due to lower proximity effect, 
than that of a thick main winding.  But it invariably has a 
higher dc resistance due to lower copper cross section.  
However, with proper and careful design of both main and 
auxiliary windings, the smaller ripple ac current can be 
guided into the thin auxiliary winding, significantly reducing 
ac losses.  The dc losses are kept low as the dc current is split 
between the two windings according to their dc-resistances.  
Both applicability and effectiveness of the proposed 
technique are verified using measured results of a prototype 
350 A inductor in a 10 kW converter. 
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II. MULTILAYER SINGLE WINDING INDUCTORS 

 

 
 

Fig. 1  High-power high-current dc-dc converter for low voltage fuel cell 
applications.   

 
Inductors of typical high power converters, used in typical 

fuel-cell applications as shown in Fig. 1, operate under high 
level of dc bias currents with relatively small ac ripple. The 
winding loss of such a multilayer single winding inductor, 
which carries both dc, Idc, and ac, iac, currents, can be 
represented by the sum of dc power loss, PW,dc, and the ac 
power loss, PW,ac, as defined by the following equations. 

 
 PW,dc ൌ ܴௗ௖ܫௗ௖ଶ ൌ ఘ೎ ௟ೢ஺ ௗ௖ଶܫ                     (1) 
  
 ௐܲ,௔௖ ൌ כ௥ܴ௪ܭ ௔௖,௥௠௦ଶܫ                             (2) 

 
Where ρc (Ωm) is the specific resistivity of copper, lw (m) 

is the length of the winding and A (m2) is the cross section of 
the wire, R*

w is the dc resistance of a winding with the 
thickness of one penetration depth, δ (m), at the fundamental 
ripple frequency, and Kr is the normalized effective ac 
resistance factor as defined in [8]. 

Fig. 2 shows the normalized effective ac resistance factor 
Kr of a winding carrying a triangular ac current, plotted as a 
function of relative conductor height, h/δ, and number of 
layers, m [8].  As evident, inductors with multiple layers and 
large conductor cross sections, where the ratio between 
conductor height and penetration is invariably large, suffer 
from severe proximity effect. Consequently, Kr of such 
windings is substantially large, and hence the ac winding 
resistance is several orders of magnitude of its dc winding 
resistance.  In some situations, Kr is too large to the extent 
that the ac loss cannot be simply ignored even though the ac 
current is only a small fraction of the dc current. 

One solution to this problem is to use individually isolated 
thin wires or Litz wires or braided wires in bundles as 
reported in [2], [3].  This will effectively reduce the ac-
resistance, but the dc-resistance will also be dramatically 
increased as the copper fill factor becomes much lower and 
the wire length is increased. Usually, the dc current in storage 
inductors is much higher than the ac ripple current, and 
therefore any increase in dc resistance is highly undesirable. 

 

 
 

Fig. 2. Normalized effective ac resistance factor Kr, as function of 
conductor height in penetration depth.  

 
Alternatively, a marginal reduction of approximately 13 % 

could be obtained by using uneven conductor thicknesses, 
whereby the winding foil thickness can be gradually 
increased from the inner most turn to the outer turn, as 
proposed by [6].  However, this approach will not 
significantly reduce the ac losses, and are very difficult to 
implement. 

 

III. PROPOSED OPTIMALLY DESIGNED TWO WINDING 
INDUCTOR 

For a fixed operating point of an inductor with same core 
and inductance, R*w and I2

ac,rms will be constant, and thus the 
ac power loss of a winding is directly proportional to its Kr 
factor, as expressed below. 

 
  ௪ܲ,௔௖ ൌ כ௥ܴ௪ܭ ௔௖,௥௠௦ଶܫ ן ௥ܭ                                       (3) 

 
In Fig. 2 we can see that for multi layer windings (m ≥ 2), 

the Kr factor reaches a minimum value for ratio of conductor 
height to penetration depth h/δ, somewhere in the region of 
0.4 < h/δ ≤ 1.  As the ratio of conductor height to penetration 
depth is generally much higher than one, h/δ is typically in 
the range of 5-10 in high-current high-power inductors.  This 
implies that if the ac part of the inductor current is forced to 
flow in a thinner winding, which is in parallel with a thicker 
winding, then the ac loss could be significantly reduced.  This 
steering or forcing of the ac current into a thinner winding 
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can be obtained by adding an auxiliary ac-winding inside the 
main dc-winding, as illustrated in Fig. 3. 

 
 

 
 

Fig. 3  A winding with an inner auxiliary ac-winding W2, and outer main 
dc-winding W1. 

 
 
 The winding, shown in Fig. 3, can be represented by an ac 

model in Fig. 4, where LLK,W1, LLK,W2, RW1,ac(nωL), and 
RW2,ac(nωL) are the leakage inductances and ac resistances of 
the two windings. 

Because of invariably larger Kr factor, the main dc-winding 
W1 will have a significantly larger ac-resistance, which is in 
series with the relatively large leakage inductance of the outer 
dc-winding.  The inner ac-winding W2 will have a 
significantly lower ac-resistance (but higher dc-resistance), 
and also a smaller leakage inductance, primarily from 
terminations. 

Since the impedance of inductor L1 is much larger than the 
two winding ac impedances Z1 and Z2, the majority of the 
applied voltage will appear across L1.  The ac inductor 
current iL1,ac thus becomes a triangular current as illustrated in 
Fig. 5. 

 
  

 
 

 
 
 
 
 
 

 
 

 
Fig. 4. Equivalent circuit diagram of a two-winding inductor. 
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Fig. 5. Inductor voltage and ac current at 50 % inductor duty cycle DL. 
 
  The RMS value of the triangular inductor ripple current 

iL1,ac, can be found by the following relationship 
  ݅௅ଵ,௔௖,௥௠௦ ൌ  ௅ଵ2√3                                                              ሺ4ሻ݅߂

 
Using Fourier analysis, the inductor ac current at 50 % duty 

cycle can be expressed as 
 ݅௅ଵ,௔௖ ൌ ଶߨ௅ଵ݅߂4 ෍ …ଶ௡ୀଵ,ଷ,ହ݊ݐ௅߱݊ ݏ݋ܿ                                   ሺ5ሻ 

 
Where n=1, 3, 5… is the harmonic number and ωL= 2πfL = 

2π/TL, and TL is the period of the ac ripple current in the 
inductor as shown in Fig. 5. 

 
Since the two winding ac impedances Z1 and Z2 share the 

same voltage, the current sharing between the windings, at 
each harmonic frequency, is defined as 

 ݅ௐଵሺ݊߱௅ሻ݅ௐଶሺ݊߱௅ሻ ൌ ܼ2ሺ݊߱௅ሻܼ1ሺ݊߱௅ሻ ൌ ݆݊߱௅ܮ௅௄,ௐଶ ൅ ܴௐଶ,௔௖ሺ݊߱௅ሻ݆݊߱௅ܮ௅௄,ௐଵ ൅ ܴௐଵ,௔௖ሺ݊߱௅ሻ    ሺ6ሻ 

 
The ac resistance of the windings at the nth harmonic 

frequency, RW1,ac(nωL) and RW2,ac(nωL), are the proximity 
effect factor FR(nωL), at the nth harmonic frequency 
multiplied by the winding dc resistance 
        ܴௐ,௔௖ሺ݊߱௅ሻ ൌ ோሺ݊߱௅ሻܴௐ,ௗ௖ܨ ൌ 
 ൌ ቈ߮௡ sinh 2߮௡ ൅ sin 2߮௡cosh 2߮௡ – cos 2߮௡   ൅ 2ሺ݉ଶ െ 1ሻ3 ߮௡ sinh ߮௡ െ sin ߮௡cosh ߮௡ ൅ ௡቉߮ݏ݋ܿ ܴௐ,ௗ௖.        ሺ7ሻ 

 
Where h is the conductor height, m, is the number of layers 

and ߮௡ ൌ ݄ ⁄௡ߜ  where ߜ௡ ൌ ට2ߩ஼ μ଴μ௥݊߱௅ൗ  is the 
penetration depth at the nth harmonic frequency. 
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From the above, it becomes clear that current sharing 
between the two windings will vary with frequency i.e. with 
the harmonic content of the inductor current. 

In (5) we can see that the amplitude of the current 
harmonics falls exponentially with the harmonic number. 
Since further the power loss is proportional to the square of 
the RMS current, then most of the power losses will be 
concentrated at the fundamental frequency and the lower 
harmonics. 

In this particular case, the ac impedances of the two 
windings are dominated by the inductive voltage drops across 
the two winding leakage inductances.  Therefore 

 
 ห݆݊߱௅ܮ௅௄,ௐଶห ب ܴௐଶ,௔௖ሺ݊߱௅ሻ  

 
and 

  
 ห݆݊߱௅ܮ௅௄,ௐଵห ب ܴௐଵ,௔௖ሺ݊߱௅ሻ  

 
And the sharing of winding currents becomes simply 
 ݅ௐଵ,௔௖݅ௐଶ,௔௖ ൌ ௅௄,ௐଵܮ௅௄,ௐଶܮ ൌ  ሺ8ሻ                                       .ݐ݊ܽݐݏ݊݋ܥ

 
As can be seen from (8), the current sharing is simply 

controlled by the ratio of the winding leakage inductances. 
The shapes of the currents are triangular, hence similar to the 
total inductor ac current iL1,ac. 

Under this condition, the power loss can be calculated 
using (8), and the relative reduction in the ac winding losses 
of the inductor becomes 

 ௐܲଵ,௔௖ ൅ ௐܲଶ,௔௖ௐܲ,௅ଵ,௔௖ൌ ௥ሺܹ1ሻ݈ௐଵሺ∆݅ௐଵሻଶܭ ൅ 1ሻ݈ௐ,௅ଵሺ∆݅ௐଵܮ௥ሺܭ௥ሺܹ2ሻ݈ௐଶሺ∆݅ௐଶሻଶܭ ൅ ∆݅ௐଶሻଶ       ሺ9ሻ 

 
 Where lW1, lW2 and lW,L1 are the lengths of wires of winding 

1, 2 and the single winding, respectively. 
 

IV. EXPERIMENTAL VERIFICATION 

 
In order to validate the proposed design, a prototype 10 kW 

isolated boost converter intended for applications such as fuel 
cell hybrid electrical vehicles, was built with a high power 
inductor.  For the converter to operate from 30 V input at a 
switching frequency of 45 kHz, a 1.8 µH and 350 A storage 
inductor with an ac ripple at 90 kHz, is needed.  The required 
inductor was built, using five turns on a Magnetics Kool Mµ 
EE80 core 00K8020E40µ, and allowing 40% reduction in 
initial permeability at maximum current.  The available 
window area of the core allowed the use of up to 3.1 mm 
thick and 45 mm wide turns for the two windings, providing a 

copper cross section area of 139.5 mm2, corresponding to a dc 
current density of 2.5 A/mm. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 6  Prototype 350 A boost inductor used in the 10 kW converter. 
 
 

 
 

Fig. 7. From top: Control signal, Main dc-winding ac current 25A/div, 
Auxiliary ac-winding ac current 20A/div, primary switch voltage 50 V/div. 

 
The low impedance ac or auxiliary winding W2, with five 

turns, was made of 0.1 mm x 45 mm copper foil, and was 
placed inner most close to the centre leg of the core.  Outside 
this ac winding, the main dc-winding was placed. The dc-
winding W1, has five turns, each consisting of 6 layers of 0.5 
mm x 45 mm copper foil.  The ac inner and dc outer windings 
were interconnected at the winding terminals. 

Once the inductor with two windings was built, as shown 
in Fig. 6, and tested on its own, it was integrated into the 10 
kW fuel cell boost converter, shown in Fig. 1. At full output 
power and minimum input voltage, ripple currents in both 
windings were measured using two Rogowski current probes, 
and the results are shown in Fig. 7.  It can be noted that the 
winding currents are almost triangular, with only minor 
deviation. The peak-to-peak current ripple in the main 
winding ΔiW1, is 22 AP-P. The ripple current in the auxiliary 
winding ΔiW2, is 45 AP-P. 

For the built prototype inductor with two windings, the 
penetration depth of the copper at 90 kHz and 60 0C is 0.24 
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mm, and the total lengths of the dc and ac
0.83 m and 0.50 m, respectively.  If only a
considered, then the total length of th
approximately 0.83 m. 

The dc input current at 30 V input and 10
A. Using (1) the inductor dc winding losses
 

PW,dc ൌ ܣ௖ ݈௪ߩ ௗ௖ଶܫ ൌ 13.4 ܹ                      
 

 A single winding inductor L1, on the sa
5 turns of 3.1 mm height and a total leng
ripple current will be 67 AP-P. Using (2) 
effective resistance factor Kr, from the curv
the ac winding losses for a single winding i
 

ௐܲ,௅ଵ,௔௖ ൌ כ1ሻܴ௪ܮ௥ሺܭ ൬∆݅௅ଵ2√3൰ଶ ൌ 9.3 ܹ.
 

The total winding loss of the single w
thus 22.7 W. 

The two-winding inductor will have the
losses, but the ac winding losses will be t
winding losses. Using the measured rippl
winding (Fig. 7.) and the Kr value for 
winding ac losses for the main winding W2
winding W2, can be calculated. 

 

ௐܲଵ,௔௖ ൌ כ௥ሺܹ1ሻܴ௪ܭ ൬∆݅ௐଵ2√3 ൰ଶ ൌ 1.05 ܹ
  

ௐܲଶ,௔௖ ൌ כ௥ሺܹ2ሻܴ௪ܭ ൬∆݅ௐଶ2√3 ൰ଶ ൌ 0.41 ܹ
                
  The total winding ac losses is thus reduced
single winding inductor to only 1.46 W i
inductor, corresponding to an 84 % reduc
losses. The total winding losses are reduce
the single winding inductor to 14.9 W in
inductor corresponding to only 0.15 % loss 

Fig. 8  Measured efficiency of prototype 10 kW is
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Abstract—A new simple and low cost method for 
paralleling multiple power stages in high-power high-gain 
isolated full-bridge boost converters is presented. A small 
current balancing transformer and serial connection of 
transformer secondary windings provides ideal current 
sharing between paralleled power stages. Effective and safe 
parallel operation of multiple switching stages can thus be 
performed. By splitting high-current ac-loops into multiple 
smaller loops of smaller ac-currents, switching losses are 
reduced. Transformer turns ratio and power level is 
reduced, simplifying transformer design and 
manufacturing. Extension of the principle to other isolated 
boost converter topologies are demonstrated as well as 
extension to higher numbers of parallel operated power 
stages. Test results from a 3 kW experimental prototype 
converter are presented, verifying converter operation and 
demonstrating current sharing capability. Very high 
converter efficiency is achieved. Worst case efficiency at 
minimum input voltage and maximum power is 96.9 %. 
Maximum efficiency is 98 %. 

I. INTRODUCTION 
Distributed generation systems, back-up systems or 

traction systems based on fuel cells or batteries, requires 
high-power high-gain dc-dc converters to boost the low 
source voltage (30-60 V) to a higher dc-link voltage (350-
400 V). For safety or EMC reasons, transformer isolation 
are often required or preferred. 

As power levels increase, input currents quickly reach 
levels where paralleling of primary switches become 
necessary. Since transistors are often operated close to 
their maximum drain current rating, direct paralleling of 
MOSFET’s may require screening and parameter 
matching of on-resistance, gain and/or threshold voltages. 
Slowing switching speed by increasing gate impedance or 
addition of source inductance may also be required [1]. 

Variation in device avalanche voltage will cause all 
currents, in parallel connected unclamped power 
MOSFETs, to flow into the device having the lowest 
avalanche voltage, thereby potentially overstressing the 
device [2]. 

Full- or partial paralleling of converters in order to 
share primary current among paralleled branches can be 
an attractive alternative [3-8]. Cost of screening and 
matching is saved and converter efficiency is not 
sacrificed by reduced switching speed. 

Power dissipation is distributed among several smaller 
components providing improved thermal management. 
Lower currents and smaller size components simplify 
interconnecting wiring and reduce size of ac-current loops 
thus reducing switching times and losses. 

Lower power converters generally allow operation at 
higher switching frequencies thereby further reducing 
overall size. Standard components and assembly 
technologies can be utilized, taking advantages of cost 
savings from mass production. 

Disadvantage of paralleling converters, is clearly the 
potential increase in number of components required and 
the associated increase in cost and complexity. The 
challenge is therefore to find solutions that best balance 
the advantage of paralleling high-ac-current circuit parts 
against the need to keep total cost and complexity at a 
minimum. 

In recent years, several approaches to scaling converter 
power level by paralleling have been proposed. A three 
phase full-bridge buck type topology (V6) is presented in 
[3-5]. Three phase-shift controlled full-bridge converters 
are interleaved on primary side. Secondary windings are 
Y-connected and fed to a common three phase bridge 
rectifier. In [6] multiple phase-shift controlled full-bridge 
converters are interleaved by means of variable phase-
shift control. 

Interleaving of isolated boost converters are suggested 
in [7]. Single ended isolated boost converters in a 
primary-parallel-secondary-series structure are presented 
in [8]. 

The isolated full-bridge boost converter in fig. 1, has 
demonstrated very high conversion efficiencies in the 
range of 97-98 % in high-power high-gain applications 
[9]. 

The purpose of this paper is to present a new, simple 
and low cost method to extend power level in isolated 
boost converters by means of minimum paralleling of 
critical high-ac-current circuit parts. 

 

 
Figure 1. Isolated full-bridge boost converter. 
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II. PROPOSED CONVERTER 
Boost type topologies, with their inherent low input 

current ripple (continuous input current), requires only 
limited additional filtering of input ripple current in high-
power fuel cell and battery powered applications. Further, 
having the high ripple current content (discontinuous 
current) on the high voltage output side, also output filter 
size is quite small. 

In buck derived converters for high-power fuel cell 
applications, input ripple current are much higher 
requiring much larger input filters. When scaling buck 
derived converter topologies for higher power levels by 
paralleling converter stages, a common approach to 
reduce magnitude of input ripple, is thus to employ 
interleaving techniques [3-6]. However, interleaving of 
converters requires duplication of all converter functions 
including inductors and rectifiers, as well as independent 
current control of each converter stage in order to 
guarantee current sharing in continuous inductor 
conduction mode (CCM). 

A potential cost saving therefore exist in boost type 
converters, since scaling of power level by means of 
parallel operation of power stages does not necessary 
require use of interleaving technique to reduce input ripple 
current. Partial paralleling of boost type converters, only 
duplicating high-stress-parts, is a low cost option to 
paralleling of full converters. 

The proposed converter is presented in fig. 2. The 
converter is a hard switched full-bridge isolated boost 
converter with paralleled primaries. Two transformers T1, 
T2, operate in parallel on primary side and in series on 
secondary side. A single common rectifier stage D1-D4, 
rectifies all output power.  

Switches S1-S4, drive primary winding of transformer 
T1, and switches S5-S8 drive transformer T2. The two 
bridges are driven synchronously and in-phase using the 
same control signals but with individual driver stages. The 
series connected transformer secondaries in combination 
with a small current balancing transformer T3, effectively 
split the inductor L1, current iL1, into two equally sized 
continuous currents iP1, iP2, for each of the full-bridge 
primaries. 

The current balancing transformer T3, absorbs any 
differential voltages between the two parallel branches 
caused by mismatches in switch transistor parameters, 
transformer- and circuit impedances or differences in 
driver delay times. Current sharing between all primary 
switches is thus guaranteed. 

Any need for selection and parameter matching of 
primary switches or slowing of switching speed to 
guarantee current sharing between switches is therefore 
eliminated. Also during unclamped inductive switching, 
avalanche currents are shared between switches. Finally, 
keeping transformer primary currents equal under all 
operating conditions, avoids primary side clamping losses 
due to differences in currents. 

The converter has a minimum degree of paralleling; 
only high-current ac-loops are paralleled i.e. primary 
switches and transformers. This paralleling effectively 
split the primary side high-current ac-loop into two 
smaller loops with only half the switching currents, 
thereby reducing current switching times and losses. 

All control and protection circuits, output rectifiers, 
input and output filters etc. are common to both branches, 
significantly reducing cost. Transformer turns ratio is 
reduced by a factor two, simplifying transformer design 
and manufacturing.  

Basic converter operating waveforms are presented in 
fig. 3. 

Converter steady state t nction is: ransfer fu
                

௢ܸ

௜ܸ௡
ൌ

݊
1 െ ܦ                               ሺ1ሻ 

 
The principle can be readily applied to other isolated 

boost converter topologies, such as push-pull boost, two-
inductor boost or even single ended boost converters. A 
primary-parallel isolated two-inductor boost converter is 
presented in fig. 4. 
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Figure 2. New primary-parallel isolated full-bridge boost converter. 
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Extension to higher numbers of paralleled converters is 

possible by adding an extra current transformer for each 
extra paralleled power stage. For even numbers of 
paralleled power stages, the current transformer turns 
ratio should be 1:1. For odd numbers of paralleled power 
stages, one current transformer needs to have a turns ratio 
of 2:1, with the winding having the higher turns number 
supplying the extra odd number power stage. 

Inductor and current transformer configuration for a 3-
paralleled power stage converter is shown in fig. 5. Fig. 
6, show the configuration for a 4-paralleled power stage 
converter. In general, N-1 current balancing transformers 
are needed for paralleling N power stages. 

III. EXPERIMENTAL VERIFICATION 
A 3 kW experimental prototype converter was 

designed, built and tested to verify operation of the 
converter and demonstrate achievable efficiency. Input 
voltage range is 30-50 V and output voltage is 360-400 V. 

Primary switches S1-S8, are 75 V, 3.3 mΩ avalanche 
rated MOSFET devices rated at 75 A maximum 
(International Rectifier IRFB3077). Rectifier diodes D1-
D4, are 600 V, 12 A SiC Schottky diodes (Infineon 
IDT12S60C). 

Transformers T1, T2, use E55 cores in N87 material. 
Turns ratio is 1:4 (n=4). A Magnetics Kool Mµ E core 
(00K5528E060) is used for the storage inductor L1. 
Transformer T3, core is a planar EELP32. Copper foil 
windings are used for all transformer and inductor 
windings. Extensive interleaving of transformer windings 
is used to decrease ac-resistances and leakage inductances. 
Switching frequency is 45 kHz, with input- and output Fig.3. Basic converter waveforms. 
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Figure 4. New primary-parallel isolated two-inductor boost converter. 
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ripple at 90 kHz. 
Low leakage inductance design of transformers and the 

use of avalanche rated switches allow primary voltage 
clamp circuits to be eliminated and voltage rating of 
primary switches to be reduced significantly. Thus, very 
significant reductions in conduction losses are achieved, 
resulting in very high conversion efficiency [9]. 

Oscilloscope plots of the two primary currents iP1 and 
iP2, and switch S4 drain-source voltage is shown in fig. 7. 
Observe that the two currents are identical. Removing 
oscilloscope offset, causes current traces to fully coincide. 

In fig. 8, measured primary currents of transformer T1 
and T2 are shown together with drain-source voltage and 
gate-source voltage of transistor S1. 

Measured diode D1, current and voltage together with 
transformer secondary current are shown in fig. 9. 

Notice that diode reverse voltage is well clamped to 
output voltage effectively limiting diode voltage stress. 
Also notice that since magnetizing current in transformer 
T1 and T2 is only approx. 6 % of maximum load current, 
primary- and secondary currents are almost identical. 

Converter efficiency measurements, including drive 
power, are presented in fig. 10. Worst case efficiency, at 
minimum input voltage and maximum load, is 96.9 %. 
Maximum efficiency is 98 %. 

Efficiency measurements in the 97-98 % range are not 
trivial. Great care has been taken to ensure very high 
precision of the efficiency measurements. High stability 
(< 10 ppm) 0.1 % shunt resistors were used. Agilent 
34410A high precision multimeters were used for all 
measurements. Current sense signals were shielded and 
fitted with common mode filters. Measurement tolerance 
of the critical output-to-input current ratio Io/Iin, was 
verified by serial connecting current sensors and checking 
measurement results against the ideal sensor ratio. 
Measured error in current ratio was less than 0.01 %. 
Tolerance of efficiency measurements was less than +/- 
0.1 %. 

 
 

Figure 7. Measured converter waveforms at 30 V input. From top: drive 
signal for S1-2, S56, primary current iP1(10 A/div), primary current iP2 

(10 A/div) and bottom trace is S4 drain-source voltage (50 V/div). Time 
base is 5 µs/div. 

 

 
 
Figure 8. Measured converter waveforms at 30 V input and 2.8 kW 
output. From top: Transformer T1, primary current (100 A/div), 
Transformer T2, primary current (100 A/div), S1 drain-source voltage 
(50 V/div) and bottom trace is Si, gate-source voltage.  Time base is 5 
µs/div.  

 

 
 

Figure 9. Measured converter waveforms at 30 V input and 2.8 kW 
output. From top: Diode D1, current (20 A/div), Diode D1, voltage (200 
V/div) and bottom trace is transformer secondary current (25 A/div).  
Time base is 5 µs/div. 

 
 

 
Figure 10. Measured converter efficiency including drive power. 
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Table 1, is a detailed break-down of power losses at 30 
V input and 3 kW output power. Notice that switching 
losses are very small; more than 70 % of all losses are 
conduction losses. 

The current balancing transformer is depicted in fig. 11-
12. The two windings each has one turn of two interleaved 
cobber layers on a planar EELP32 core. Before assembly, 
windings are insulated using Kapton tape. 

 
Figure 11.Disassembled current balancing transformer T3. 

 

Fig. 13, is photo of the 3 kW experimental prototype 
converter. 

 

TABLE I.  
CONVERTER POWER LOSS BREAK DOWN AT 3 KW / 30 V 

Component Loss type Loss 
[W] 

Total 
[W] 

MOSFET 
8 pcs. 

IRFB 3077 

Conduction 28.2 

37.6 
Capacitive 0.54 

Drive 1.44 
Inductive clamp 7.5 

Diodes 
4 pcs. 

IDT12S60C 

Conduction 29.4 
30.2 

Capacitive 0.82 

Transformer 
2 pcs. E55 N87 

Conduction 7.54 
11.0 

Core 3.5 
Inductor 

1 pcs. Kool Mµ E 
core 

00K5528E060 

Conduction 5.5 
7.0 

Core 1.5 

Misc. others Wiring, ac-resistance etc. 14.4 
Converter Measured 100,2 

 
 

IV. CONCLUSION 
A new method for extending power levels in high-

power high-gain isolated boost converters has been 
presented. A minimum amount of paralleling is utilized to 
allow safe and efficient parallel operation of multiple 
primary switching bridge-stages. 

Current switching losses are reduced by splitting 
primary side high-current ac-loops into multiple smaller 
loops with only fractional switching currents. 

Small current balancing transformers in combination 
with serial connected transformer secondary windings, 
guarantee current sharing in all switch transistors. 

Selection and matching of switch transistors are 
therefore not required and avalanche operation can be 
utilized without risk of switch overstress. 

Transformer turns ratio is reduced by the number of 
parallel operated transformers. Paralleling of smaller 
power transformers significantly simplify transformer and 
converter design and manufacturing. 

Test results from a 3 kW experimental prototype verify 
converter operation and demonstrate ideal current sharing 
capability. Very high converter efficiency is achieved. 
Worst case efficiency at minimum input voltage and 
maximum power is 96.9 %. Maximum efficiency is 98 %. 

Low complexity, low cost and very high conversion 
efficiency makes the proposed converter an optimum 
choice for high-power high-gain converter applications. 

 
Figure 12. Assembled current balancing transformer T3. 
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Figure 13. Photo of 3 kW experimental prototype converter. 
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Abstract -- A new very high efficiency 10 kW isolated R4 
boost converter for low-voltage high-power fuel cell applications 
is presented. Using a new concept for partially paralleling of 
isolated boost converters, only the critical high ac-current parts 
are paralleled. Four 2.5 kW power stages, consisting of full-
bridge switching stages and power transformers, operate in 
parallel on primary side and in series on secondary side. 
Current sharing is guaranteed by series connection of 
transformer secondary windings and three small cascaded 
current balancing transformers on primary side. The detailed 
design of a 10 kW prototype converter is presented. Input 
voltage range is 30-60 V and output voltage is 800 V. Test results, 
including voltage- and current waveforms and efficiency 
measurements, are presented. A record high converter efficiency 
of 98.2 % is achieved. The proposed R4 boost converter thus 
constitutes a low cost solution to achieve very high conversion 
efficiency in high input current applications. 
 

Index Terms—Current transformers, fuel cell power system, 
power electronics, pulse width modulation, switched mode 
power supply.  

INTRODUCTION 

In high power fuel cell based systems such as in three 
phase UPS systems and fuel cell electrical vehicles, primary 
currents of many hundreds of amperes (2-400 A) at low input 
voltage (30-60 V) need to be converted to high output voltage 
compatible with the three phase grid (7-800 V) [1-2]. 
Achieving high conversion efficiency at lower power levels 
with input currents in the range of 50 A is a challenge, but to 
maintain this efficiency at much higher input currents is even 
harder. Controlling ac-resistances and parasitic inductances in 
interconnections and switches becomes increasingly difficult. 
An obvious alternative to making one large converter is to 
simply parallel several smaller ones, however due to the 
required duplication of all components this comes at a higher 
cost. 

Three different solutions to a 5 kW output, 22 V input 
converter (>200 A input current) have been presented in [3-5]. 
In [3], a buck derived full bridge with two transformers and 
rectifiers are reported to achieve 90 % efficiency. Another 
buck derived full bridge [4]; the V6, is reported to achieve an 
excellent efficiency of 97 %. In [5], a full bridge Boost 
converter achieves a peak efficiency of 94 %. Analysis of a 
10-20 kW single stage boost converter for higher input 
voltage (1-200 V) is presented in [6]. A 3 kW bidirectional 

boost converter for boosting 12 V battery voltage to 250-420 
V output is presented in [7]. Peak efficiency of 93 % is 
reached at maximum input voltage (15 V). At the minimum 
input voltage of only 8.5 V input current reaches 350 A and 
efficiency drops to approximately 80 %. From the above it is 
clear that maintaining high efficiency in low-input-voltage 
high-power converters becomes a significant challenge at 
input currents above approximately 1-200 A. 

A design approach to achieve very high efficiency in low 
input voltage isolated boost converters is presented in [8]. By 
careful design of transformer and circuit lay-out, very low 
parasitic circuit inductances can be achieved allowing 
traditional clamp circuits to be eliminated. Without the need 
to accommodate clamp circuit voltages, primary switch 
voltage rating can be reduced significantly, dramatically 
reducing switch conduction losses. Using the design approach 
of [8] and a new partial paralleling method [9], this paper 
presents a new 10 kW converter for 30-50 V input and 7-800 
V output, having input currents up to 345 A. 

Test results confirm converter operation and demonstrate 
that very high conversion efficiency can be achieved by a 
simple and low cost converter topology. Measured peak 
efficiency of the prototype converter is 98.2 %. 

 

PROPOSED CONVERTER 

The proposed converter is presented in fig. 1. Four power 
stages, each consisting of a full bridge switching arrangement 
driving the primary winding of a power transformer, work in 
parallel on primary side and in series on secondary side. All 4 
power stages are driven in synchronism using the same two 
phase shifted control signals. Switches S1-S2, S5-S6, S9-S10 
and S13-S14 are all controlled by the same duty cycle signal 
with a duty cycle D, of more than 50 %. Similarly switches 
S3-S4, S7-S8, S11-S12 and S15-S16 are all controlled by the 
180 degree phase shifted PWM signal. During the overlap 
period (D>50 %) input inductor L1, is charged. During 
transistor off-time, energy is transferred to output through the 
opposite phase transistors. 

The series connected secondary windings, force 
transformer currents to be identical during energy transfer 
cycles thus also guaranteeing current sharing between all 
active switches. During inductor charging, when all switches 
are turned on, the current sharing between primary switches 



 

are maintained by the cascaded current balancing 
transformers CT1-CT3. Small difference in switch on-
resistance, circuit impedances, switching speed and driver 
delays accumulates into differential volt-time integrals 
between parallel coupled power stages. A direct paralleling of 
such power stages, having low parasitic stray inductances, 
would lead to unpredictable current distribution between 
switches and potentially catastrophic failures. 

By representing a large circuit inductance towards 
differential currents between power stages, the current 
balancing transformers CT1-CT3, absorb any such 
differential volt-time products between power stages thus 
effectively separating power stages and maintaining current 
sharing between switches. Since imbalances between power 
stages are fairly small, the volt-time product required to be 
blocked by the current balancing transformers is 
correspondingly small, thus requiring only very small current 
balancing transformers. Thus added cost of introducing 
current balancing transformers is minimal. 

Output voltage is rectified by a single common full bridge 
rectifier D1-D4, followed by a common output capacitor C2. 
Since input ripple current in Boost converters is very small, 
only a small additional input capacitor C1, is required to fully 
attenuate input side ripple current. Seen from a control point 
of view, the converter behaves like a single large isolated 
full-bridge Boost converter. Hence a single common current 

controller is sufficient to control the complete converter. 
The need to parallel primary switches to handle higher 

power levels, are thus fully utilized in this converter 
architecture to reduce ac-current magnitudes and size of ac-
current carrying loops. Physically smaller ac current loops 
will exhibit smaller stray inductances and ac resistances. 
Smaller ac current magnitudes and lower stray inductances 
leads to much faster current switching and thus much lower 
switching losses. Similarly, lower ac-current levels and ac 
resistance levels greatly reduce conduction losses. The 
separation of the critical high-ac-current-loop into smaller 
parallel ac-current loops, thus allows this converter to operate 
at much higher switching frequency while achieving much 
higher conversion efficiency. Finally, transformer turns ratio 
(and size) is reduced by a factor of 4, greatly simplifying 
transformer design and manufacturing.  

Inspired by the line-placement of cylinders in a row-4-
cylinder internal combustion engine, this converter topology 
is called an R4 Boost converter.  

The converter steady state transfer function is given by: 
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Where D is the conduction duty cycle of the primary 

switches and n is the transformer turns ratio NS/NP. 
 

 
Fig. 1.  Proposed R4 isolated Boost converter.



 

 

EXPERIMENTAL VERIFICATION 

 
To verify the theoretical design, a 10 kW experimental 

prototype converter was designed, built and tested. Input 
voltage range is 30-50 V with start-up transients up to 60 V, 
output voltage is 700-800 V. 

Primary switches S1-S16, are 1.46 mΩ, 75 V power 
MOSFETs (IRFP4368) from International Rectifiers. Output 
diodes D1-D4, are 1200 V Silicon Carbide (SiC) Schottky 
diodes (C2D20120D) from CREE. Switching frequency is 45 
kHz with input and output ripple of 90 kHz. The 4 power 
transformers T1-T4, are made on EE65 cores in N87 material 
and have a turns ratio of 1:4. The input inductor L1, is made 
on a EE80 CoolMµ core from Magnetics. Output capacitors 
are 8 pcs. (4+4) MKP 3,3 µF/630 V and the input capacitors 
are 6 pcs. MKT 22 µF/100 V capacitors in parallel. 

In the design and construction of the converter extreme 
care has been taken to limit parasitic stray inductances and 
ac-resistances in the circuit. Transformer windings are 
heavily interleaved using foil windings. Conductors and 
interconnections are made as short as possible and using wide 
foil conductors in close proximity to the return path. 

Using a precision impedance analyzer (Agilent 4294A), 
the transformer leakage inductance and ac resistance were 
measured referenced to secondary side, fig. 2. Referenced to 
primary side, transformer leakage inductance is 10.4 nH and 
ac resistance is 0.93 mΩ at the switching frequency of 45 
kHz. 

Converter switching waveforms at minimum input voltage 
and maximum power (30 V, 10 kW) are shown in fig. 3. Fig. 
4, is a detailed view of the transistor S3 turn-on sequence. 
Apart from discharging of internal parasitic capacitances, 
there are no turn-on losses. Fig. 5 is a detailed view of the 
transistor S3 turn-off sequence. Switching time is 
approximately 130 ns with significant overlap of voltage and 
current, primarily caursed by current switching speed being 
limited by common source stray inductance. Compared to the 
30 ns switching time achieved in the 1.5 kW converter 
presented in [8], this is a significant increase in turn-off 
losses. This increase in switching time demonstrates the 
criticality and poor scalability of high-frequency high-current 
switching thus clearly demonstrating the advantage of 
dividing large switching ac-current loops into multiple 
smaller loops. 

Measured efficiency of the 10 kW prototype converter is 
presented in fig. 6. Efficiency measurements are made using 
high precision multimeters and 0.1 % tolerance current shunts 
with only 1 ppm temperature coefficient. Transistor drive

  
power (>6 W) is included in the measurements. Although 
starting to exhibit increased switching losses, this converter 
still achieves an outstanding peak efficiency of 98.2 %. 

The current balancing transformers CT1-CT3 are shown 
on fig. 7, and fig. 8, before and after preparation for mounting. 
Fig. 9, is a photo of the complete 10 kW prototype converter.  

 
 

 
 

Fig. 2.  Measured transformer secondary leakage inductance and ac 
resistance. 

 
 

 
 
Fig. 3.  Measured converter waveforms at 30 V input and 10 kW output. 

From top: switch drive signal, inductor L1 ac-current (50A/div), switch S3 
current (100A/div) and switch S3 drain-source voltage (50V/div). Time base 
is 5µs/div. 
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CONCLUSION 

 
A new principle for extending power levels in low input 

voltage converters for high power applications, such as seen 
in fuel cell powered three phase back-up systems or fuel cell 
electrical vehicles, has been presented. High switching 
frequency reduces size and power losses in passive 
components. Four power stages each consisting of a full-
bridge switching stage and a power transformer, operate in 
parallel on primary side and in series on secondary side. 
Three small current balancing transformers ensure perfect 
current sharing between paralleled primary switches ensuring 
reliable, fast and efficient switching. By dividing the primary 
side high ac-current loop into multiple smaller loops, very 
significant increase in current switching speed is obtained 
thus achieving high efficiency high frequency switching. 
Furthermore, the use of multiple smaller transformers with 
much lower turns-ratio, greatly simplifies design and 
manufacturing of transformers. Limiting paralleling to an 
absolute minimum number of critical high-ac-current-
components, thus leads to a simple, low cost and extremely 
efficient converter. 

The design of a 10 kW prototype converter has been 
presented.  Test results verify converter operation and 
demonstrate very high conversion efficiency at very high 
input currents. At minimum input voltage, peak efficiency 
reaches 97.1 %. Maximum efficiency is 98.2 %. 
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Title: Switch mode pulse width modulated DC-DC Converter with Multiple Power Trans-

formers 

 

The invention relates to a switch mode pulse width modulated dc-dc converter with 

multiple power transformers. 5 

 

Switch mode converters are widely used for converting a given input electrical power to 

a desired output electrical power. The input power is provided from a source to the 

converter through input terminals on an input side, converted by the converter into the 

desired output power and then output through output terminals on an output side pro-10 

vided to a load. The converter comprises switching arrangements for modulating the 

input electrical power in time and for rectifying converted electrical power before it is 

provided to the output terminals. The switches employed in such switching arrange-

ments are typically provided as solid state switches, such as MOS-FET transistors em-

ployed in the modulating input switching arrangements, or diodes employed in the recti-15 

fying output switching arrangements.  

 

The switches are activated by means of a control circuit controlling the time, frequency 

and/or duty cycle of the switches in the switching arrangements to assume an ON-state 

(switch closed) or an OFF-state (switch open). For example, in the case of MOSFET 20 

switches, the control circuit is adapted to provide a gate voltage to switch the source-

drain conduction channel ON (conducting) or OFF (non-conducting) in a timed manner. 

A rectifying diode may also be implemented by a three-terminal device, such as a 

MOSFET, by operating the control circuit driving the three-terminal device in a syn-

chronous rectification mode. 25 

 

The dc-dc converter may be a boost-type converter converting an input voltage to a 

higher output voltage. For a given amount of electrical power transferred from the input 

to the output this means in particular that the input side needs to be adapted to handle 

large currents. 30 

 

The dc-dc converter may be a buck-type converter converting an input voltage to a 

lower output voltage. For a given amount of electrical power transferred from the input 

to the output this means in particular that the output side needs to be adapted to hand-

le large currents. 35 
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The converter may be configured as a bi-directional converter adapted to be operated 

in both directions, i.e. where terminals interchangeably can be operated as input or 

output terminals. 

 

The converter is an isolated converter, where input and output are galvanically isolated 5 

from each other. A galvanic isolation is achieved by employing power transformers for 

transferring the electrical power from the input side to the output side. 

 

An example of a high power application of dc-dc converters is the conversion of electri-

cal power provided by fuel-cells in the form of high current at low voltages into a high 10 

voltage output. Due to the large currents involved in such a conversion, the compo-

nents of the converter circuit are subjected to considerable current and voltage 

"stress". In a converter of the known type, components with large physical dimensions 

may be required to handle the large currents, with increased inductive losses as a con-

sequence. In addition to the reduction in conversion efficiency, excessive heat dissipa-15 

tion may lead to a need for additional cooling and may severely limit the power rating of 

a converter. 

 

Furthermore, the leakage inductance in converter circuits, in particular that associated 

with the switching components and associated connecting leads, tends to increase with 20 

the power converted. In particular, the circuit handling the lower voltage, and therefore 

the higher current, is affected by the leakage.  

 

A way to overcome this problem is by operating a number of converters in parallel. Al-

ternatively, the circuit handling the high currents may be split into a number of stages 25 

operating in parallel and the terminals of the circuit handling high voltages may be con-

nected in series. 

 

US patent application no. 6,297,616 discloses a charge and discharge apparatus for 

electric power storage means. The apparatus comprises an AC power source and a 30 

transforming apparatus with a first side and a second side. One of the two sides com-

prises a number of parallel full bridges converters, which are driven with a constant 50 

percent duty cycle. The apparatus further comprises a number of storage inductors, 

which are charged by leading current through two primary switches coupled in series 

and on through the primary windings and the secondary windings of the transforming 35 

apparatus and finally through two secondary switches. 
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A major disadvantage of the above approaches is the need for additional switching, 

rectifying and/or control units. Furthermore, considerable loss may be introduced due 

to differences between nominally identical components in the parallel stages. The dif-

ferences between nominally identical components arise mostly from fabrication toler-5 

ances. These differences may be reduced to a certain degree by selecting higher qual-

ity components complying with smaller fabrication tolerances. However, this is a costly 

approach; in particular as these circuits themselves require a larger number of compo-

nents. 

 10 

The object of the present invention is to provide a converter reducing power conversion 

losses and overcoming the above mentioned problems by means of a simple converter 

arrangement. 

 

This is achieved by a pulse width modulated switch mode DC-DC boost converter ac-15 

cording to the invention comprising at least one first electronic circuit on a input side 

and a second electronic circuit on a output side, the input side and the output side be-

ing coupled via at least two power transformers, each power transformer comprising a 

first winding arranged in a input side converter stage on the input side and a second 

winding arranged in a output side converter stage on the output side, each of the wind-20 

ings having a first end and a second end. The first electronic circuit comprises termi-

nals for connecting a source or a load, at least one energy storage inductor coupled in 

series with at least one of the first windings of the power transformers, and for each 

power transformer, an arrangement of switches being adapted to switch the current 

through the first winding between a first ON-state, a first OFF-state, a second ON-state 25 

with a polarity opposite to the first ON-state, and a second OFF-state, wherein the at 

least one energy storage inductor is arranged so as to be charged, when all switches of 

the switching arrangements are conducting. The second electronic circuit comprises 

terminals for connecting a load or a source, and a single arrangement of switches be-

ing adapted to switch the current through the second windings of the power transform-30 

ers between a first ON-state, a first OFF-state, a second ON-state with a polarity oppo-

site to the first ON-state, and a second OFF-state, and/or being adapted to provide rec-

tified current to the terminals. The second windings of all power transformers are con-

nected in series and coupled via the single arrangement of switches of the second cir-

cuit to the terminals of the output side. 35 
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The current flowing in the at least one first circuit on the input side is higher than the 

corresponding current in the second circuit on the output side. The current on the input 

side is therefore referred to as high current, while the current flowing on the output side 

is referred to as low current. 

 5 

The arrangement of the first winding together with the corresponding switching ar-

rangement on the input side is referred to as a input side converter stage. The ar-

rangement of the second windings together with the single switching arrangement of 

the output side is referred to as output side converter stage. 

 10 

The input side converter stages are connected to terminals for connecting a source or 

a load. In practice, the different input side converter stages are often connected to the 

same DC-source (or load) so as to operate in parallel. 

 

Alternatively, different input side converter stages may be connected to different DC-15 

sources (or loads), thereby operating independently as different first circuits. Further-

more, in an arrangement of more than one first circuit, it can be conceived that each of 

the first circuits comprises a number of input side converter stages connected in paral-

lel. 

 20 

The terminals in the first circuit may be connected to a source providing a high current 

(low voltage) source output. The high current to be handled on the input side is split up 

and distributed to separate input stages. In each input stage, the current is provided to 

the first winding through its corresponding switching arrangement adapted to control 

the current state in the first winding. By distributing the high current over at least two 25 

input side converter stages, the power handled by each of the input side converter 

stages is divided correspondingly, thereby reducing current stress on the individual 

switching components and losses due to parasitic impedances, such as leakage induc-

tance and/or wiring resistance. The current is via the power transformers transferred to 

the output side output stage and via the terminals of the output side provided as recti-30 

fied output current to a load. Since all second windings are coupled directly in series, 

the current through the second windings is clamped, thereby contributing to an equal 

current distribution between the input side input stages. Furthermore, only a single 

switching arrangement, here a common rectifier circuit, is required, thereby reducing 

circuit complexity and cost. 35 
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The at least one energy storage inductor is charged from the terminals of the input 

side, when all switches of the switching arrangements are conducting, and where no 

current is conducting through the second windings on the output side and/or where the 

arrangement of switches on the output side is blocking the current. 

 5 

Charging of the energy storage inductor is stopped by rendering one or more of the 

switches in the switching arrangement non-conducting so as to disconnect at least one 

end of the energy storage inductor from the source. At the same time one or more 

switches in the switching arrangement are kept conducting so as to maintain a current 

path for transferring the energy stored in the at least one energy storage inductor to the 10 

at least one first winding. 

 

A typical switching cycle of a converter according to the invention operated with input 

from the input side comprises four consecutive parts as associated with the state of the 

current through the at least one first winding: 15 

 

- during the first OFF-state, the energy storage inductor is charged, 

 

- during the first ON-state, the energy is transferred from the energy storage inductor 

to the at least one first winding by running a current in a first direction through the 20 

first winding, 

 

- during the second OFF-state, the energy storage inductor is re-charged, and  

 

- during the second ON-state the energy is transferred from the energy storage in-25 

ductor to the at least one first winding by running a current in a second direction 

opposite to the first direction through the first winding. 

 

The current pulses thus induced in the first windings of the power transformers are 

coupled to the corresponding second windings. The second windings are coupled di-30 

rectly in series, and therefore the current induced in the second windings is limited by 

the power transformer providing the smallest induced current, thereby clamping the 

currents in the other power transformers to an essentially equal distribution. An equal 

distribution reduces the risk for uneven stress on the components in the different con-

verter stages on the input side, reducing the need for dimensioning of components to a 35 

large safety margin and thereby reducing production cost. The current pulses in the 
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second windings are rectified by the single switching arrangement of the second circuit 

and provided as low current rectified output via the terminals on the output side to a 

load. 

 

A further advantage of the converter according to the invention is that the switching ar-5 

rangements of different input side converter stages are typically operated in a synchro-

nous manner in order to simultaneously provide essentially the same current state in all 

of the first windings of the input side converter stages. Therefore, a single control circuit 

is sufficient for driving all input side switching arrangements. This considerably simpli-

fies the overhead circuitry for a converter according to the invention, thereby reducing 10 

production cost. 

 

As mentioned, the at least one energy storage inductor is charged directly through the 

,preferably four, primary switches. Thereby, the losses due to parasitic impedances 

corresponds to the impedance from one switch only. Thus, compared to US patent ap-15 

plication no. 6,297,616, the present invention saves the losses from one primary 

switch, the primary and secondary windings of the transformation stage and two sec-

ondary switches. 

 

Preferably, the pulse width modulated switch mode DC-DC boost converter is con-20 

trolled via the arrangement of switches on the input side. 

 

According to a first advantageous embodiment, the at least one energy storage induc-

tor is coupled to or is part of a current-balancing electrical circuit. The current-balancing 

has been necessitated by the new converter topology in order to minimise losses from 25 

the converter. In practice, the current balancing according to the invention can be 

achieved in two ways, viz. by at least pair-wise magnetically coupling energy storing 

inductors on a common magnetic core so as to equalise their inductance, or by cou-

pling the energy storage inductor in series with at least one current balancing trans-

former on the input side. These embodiments are described later. 30 

 

The current balancing may also be utilised for buck converters. Therefore, according to 

another aspect, the invention provides: a pulse width modulated switch mode DC-DC 

buck converter comprising at least one first electronic circuit on a input side and a sec-

ond electronic circuit on a output side, the input side and the output side being coupled 35 

via at least two power transformers, each power transformer comprising a first winding 
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arranged in a input side converter stage on the input side and a second winding ar-

ranged in a output side converter stage on the output side, each of the windings having 

a first end and a second end. The first electronic circuit comprises terminals for con-

necting a load or a source, and a single arrangement of switches being adapted to 

switch the current through the first winding between a first ON-state, a first OFF-state, 5 

a second ON-state with a polarity opposite to the first ON-state, and a second OFF-

state. The first windings of all power transformers are connected in series and coupled 

via the single arrangement of switches of the first circuit to the terminals of the input 

side. The second electronic circuit comprises terminals for connecting a source or a 

load, at least one energy storage inductor coupled in series with at least one of the 10 

second windings of the power transformers, and for each power transformer, an ar-

rangement of switches being adapted to rectify current. 

 

The at least one energy storage inductor is charged, when the current through the first 

winding is in the first ON-state and/or the second ON-state. Typically, this occurs when 15 

two of the switches on the input side are conducting. In one embodiment a first energy 

storage inductor is charged when two of the switches are conducting, and a second 

energy storage inductor is charged when two other switches are conducting. 

 

According to a first advantageous embodiment of the buck converter, the at least one 20 

energy storage inductor is coupled to or is part of a current-balancing electrical circuit. 

In practice, the current balancing according to the invention can be achieved in two 

ways, viz. by at least pair-wise magnetically coupling energy storing inductors on a 

common magnetic core so as to equalise their inductance, or by coupling the energy 

storage inductor in series with at least one current balancing transformer on the output 25 

side. Thus, the methods described for current balancing the boost converter and the 

following described embodiments may also be used for the buck converter. 

 

According to another advantageous embodiment, the arrangement of switches is 

adapted to switch the current through the first windings comprises two parallel coupled 30 

stages, each of the parallel coupled connections comprising a first switch serial con-

nected to a second switch, and wherein the first end of the first winding is coupled to 

the serial connection of one of the two parallel coupled stages, and wherein the second 

end of the first winding is coupled to the serial connection of the other of the two paral-

lel coupled stages. 35 
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According to one aspect of the invention, the converter is adapted for operation as a 

boost converter, wherein the input side converter stages are provided as modulating 

input stages and the output side converter stage is provided as a rectifying output 

stage.  

 5 

In practice, the modulating input stages are – apart from fabrication tolerances – nomi-

nally identical, and the switching arrangements of the modulating input stages are typi-

cally equipped with solid state switches, such as MOSFETs having a source-terminal 

and a drain terminal connected to the source-terminal via a source-drain channel, as 

well as a gate terminal for switching the conductivity of the source-drain channel. The 10 

switching action is timed and driven by a control unit. In order to avoid current and volt-

age stress over individual components, the switching arrangements are driven in a 

synchronous manner. Therefore, a single control unit is often sufficient for controlling 

all solid state switches of the modulating input switches. 

 15 

According to one embodiment, the output stage is provided with a single rectifying ar-

rangement of switches in common for all power transformers. The switches may be di-

odes or three terminal solid state switches driven in a synchronous manner so as to 

render the switches conducting, when current flows in one direction, and non-

conducting, when current flows in the opposite direction, whereby the solid state 20 

switches effectively act as diodes.  

 

In one embodiment of the invention, all modulating input stages are connected in paral-

lel to the common input terminals, and the arrangement of switches in each of the 

modulating input stages is a full-bridge boost arrangement of switches. 25 

 

In another embodiment according to the invention, all modulating input stages are con-

nected in parallel to the common input terminals, and the arrangement of switches of 

the modulating input stages is a push-pull boost arrangement of switches. 

 30 

In yet another embodiment according to the invention, all modulating input stages are 

connected in parallel to the common input terminals, and the arrangement of switches 

of the modulating input stages is a two-inductor boost arrangement of switches. 

 

In a further development of the above mentioned embodiments, the single arrangement 35 

of switches in the output stage is provided by diodes in a rectifying full-bridge arrange-
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ment. Other configurations of the rectifying output stage, such as split secondary recti-

fier or voltage doubler rectifier configurations, may be conceived. 

 

In one advantageous embodiment according to the invention, the input side converter 

stages are connected in parallel to a common pair of terminals. This embodiment is 5 

particularly advantageous, when the DC-power from one high current (low-voltage) 

source, such as a fuel cell arrangement, is to be converted in order to drive a load re-

quiring voltages exceeding the voltage provided by the source. Alternatively, one high 

power load requiring a large current may be supplied from a low current (high voltage) 

source through a converter according to this embodiment of the invention. 10 

 

In a further embodiment according to the invention, each of the input side converter 

stages comprises at least one energy storage inductor connected in series with the first 

winding of said input side converter stage. By arranging an energy storage inductor in 

each converter stage, it is achieved that each energy storage inductor only handles a 15 

fraction of the current. This is particularly advantageous for high power applications, 

where e.g. heat dissipation in a single energy storage inductor otherwise might limit 

scaling of the converter to the required specification. 

 

Further, according to the invention, at least two energy storage inductors, each being 20 

arranged in a different input side converter stage, are at least pair-wise magnetically 

coupled via a common magnetic core so as to equalise their inductance. In practice, 

the magnetic coupling is typically provided by winding the at least two energy storage 

inductors onto a common magnetic core. Consequently, the at least two energy stor-

age inductors may be perceived as a single energy storage inductor having at least two 25 

windings on a common core. 

 

Advantageously, the inductor windings are wound together to form interleaved coils on 

the same magnetic piece. The magnetic coupling ensures a substantially identical in-

ductance for the coupled inductors and that the currents are balanced between the two 30 

coupled stages. The current distribution can effectively be controlled by the power 

transformers. The well-balanced current distribution between the coupled stages thus 

achieved minimises the loss, since the difference in currents otherwise would have to 

be dissipated in a protection circuit on the input side in order to fulfil the condition of 

current limitation to the smallest of the first winding currents as imposed by the direct 35 

serial coupling of the second windings. Furthermore, current and voltage stresses in 
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the converter stage components, such as the solid state switches in the switching ar-

rangements are minimised, thus allowing for a more optimised and consequently more 

cost efficient dimensioning of the components.  

 

In a further embodiment according to the invention, the at least one energy storage in-5 

ductor is provided as a common energy storage inductor for the power transformers. 

This embodiment eliminates artefacts in the current distribution between input side con-

verter stages due to differences between different energy storage inductors, as all input 

side converter stages are supplied from the common energy storage inductor. 

 10 

In a further aspect of the invention, the converter comprises at least one current bal-

ancing transformer on the input side. The current balancing transformer comprises at 

least one primary winding provided in a primary branch in series with the arrangement 

of switches of a first converter stage on the input side, and at least one secondary 

winding provided in a secondary branch in series with the arrangement of switches of a 15 

further input side converter stage. The primary windings and the secondary windings 

are arranged with opposite polarity to magnetically couple the primary branch and the 

secondary branch so as to induce opposite currents in the coupled branches, thereby 

pair-wise balancing the current distribution between the coupled branches at a prede-

termined current balancing ratio.  20 

 

The at least one current balancing transformer provides a coupling between at least 

two input side converter stages, whereby energy can be transferred between the at 

least two converter stages in order to balance the current in the corresponding first 

windings. The current balancing transformer does not have to handle the full power 25 

provided to the respective converter stages, but only balance the deviations from the 

pre-determined balancing ratio and, consequently, the current balancing transformer is 

in practice dimensioned to the expected spread of deviations from the nominal current 

flowing in each of the input side converter stages. The balancing ratio is essentially de-

termined by the transformer ratio, which is adapted to the ratio between the number of 30 

power transformers to be supplied through the primary branch to the number of power 

transformers to be supplied through the secondary branch. Typically, the primary 

branch and the secondary branch will be adapted to distribute current equally to an 

identical number of power transformers and the current balancing ratio is chosen to be 

1:1. 35 
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In a further development of the above mentioned embodiment, a converter comprises 

an even number N=2n of the power transformers, where n is an integer number greater 

than one, and a cascading arrangement of a number M=(2n-1) of the current balancing 

transformers arranged to successively balance the current through the first windings of 

the N power transformers in cascading pairs of coupled branches, wherein each of the 5 

current balancing transformers provides a current balancing ratio of 1:1. 

 

This tree-like arrangement of current balancing transformers is mostly applicable for in-

put side converter stages operated in parallel and being supplied via a common pair of 

terminals from the same source. In particular, a number of 2k power transformers is 10 

well suited for such an arrangement, where k is the number of times the branches are 

divided before the power transformer stage. 

 

In a first step of the cascade, a first branch connected to one terminal on the input side 

is bifurcated into a first primary branch and a first secondary branch. The first primary 15 

branch is coupled to the first secondary branch via a first current balancing transformer 

in order to provide for an equal distribution of currents between the primary and secon-

dary branch. In each further step of the cascade, each of the first primary and secon-

dary branches of that step are bifurcated into primary and secondary branches of the 

next step until the number of branches equals the number of input side converter 20 

stages each comprising one power transformer. The branches of the final step of the 

cascade are then connected so as to supply one input side converter stage each. In 

each step of the cascade, primary and secondary branches are provided with a current 

balancing transformer having a balancing ratio of 1:1 in order to ensure an equal distri-

bution of current into each of the branches, thereby ensuring an equal distribution of 25 

the current to all input side converter stages. 

 

In another development of the above mentioned embodiment, the converter comprises 

an uneven number P=(2n+1) of the power transformers, where n is an integer number 

greater than or equal to one, and a cascading arrangement of a number Q=2n of the 30 

current balancing transformers arranged to successively balance the current through 

the first windings of the N power transformers in cascading pairs of coupled branches, 

wherein at least one of the current balancing transformers provides a current balancing 

ratio of 2:1. This arrangement of current balancing transformers ensures an even dis-

tribution of current over an uneven number (greater than one) of input side converter 35 

stages. This embodiment according to the invention is particularly relevant for convert-
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ers where the number of power transformers to be supplied from one branch can not 

be expressed as a power of two, such as an uneven number of power transformers. 

For example, an equal distribution of current to three input side converter stages, each 

comprising one power transformer, can be achieved in a first step of the cascade by 

providing twice the current to the first primary branch than to the first secondary branch 5 

and subsequently only bifurcating the first primary branch into a further primary and a 

further secondary branch supplied at a current distribution ratio of 1:1. The current dis-

tribution ratio in the first step is balanced by a current distribution transformer with a 

current balancing ratio of 2:1, while the current distribution between the further primary 

branch and the further secondary branch is balanced by a current balancing trans-10 

former with a current distribution ratio of 1:1. The first secondary branch, the further 

primary branch and the further secondary branch are then connected to supply one in-

put side converter stage each. 

 

According to another aspect of the invention the converter is adapted for operation as a 15 

bidirectional converter, wherein all arrangements of switches are provided by switches 

in a full-bridge configuration. In order to operate the converter in both directions, the 

switches in the switching arrangements have to be controllable switches, i.e. three ter-

minal devices. Control circuits have to be provided for both sides of the converter, said 

control circuits being adapted to drive the switches for input modulation when the cor-20 

responding converter stage is operated as input, and to drive the switches for rectifica-

tion when the corresponding converter stage is operated as output. 

 

In a practical implementation of the converter circuit according to the invention, the 

parallel stages of the first circuit may be connected through a clamping and protection 25 

circuit. Furthermore, a low-pass filter is provided, in practice often as a capacitor con-

nected across the input terminals and/or output terminals, in order to remove transients 

and ripples from the dc-current to be provided at the respective terminals. For the sake 

of clarity, such clamping, protection and filtering circuitries are not described in detail. 

 30 

The invention is now explained by exemplifying embodiments with reference to the 

drawings. The drawings show in: 

 

Fig. 1 a prior art isolated boost converter, 

 35 
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Fig. 2 an isolated boost converter with two parallel input stages, each comprising an 

energy storage inductor, 

 

Fig. 3 an isolated boost converter with two parallel input stages and magnetically 

coupled energy storage inductors, 5 

 

Fig. 4 an isolated boost converter with two parallel input stages, one common energy 

storage inductor and a current balancing transformer, 

 

Fig. 5 an isolated boost converter with two parallel input stages, magnetically cou-10 

pled energy storage inductors and a current balancing transformer, 

 

Fig. 6 an isolated boost converter with four parallel input stages and a cascading ar-

rangement of three current balancing transformers, 

 15 

Fig. 7 an isolated boost converter with three parallel input stages and a cascading 

arrangement of two current balancing transformers, 

 

Fig. 8 an isolated buck converter with two parallel output stages with current doubler 

rectifier arrangements, magnetically coupled energy storage inductors and 20 

current balancing transformers, 

 

Fig. 9 an isolated bidirectional converter with two parallel first side converter stages, 

each comprising a current doubler rectifier arrangement, magnetically coupled 

energy storage inductors and current balancing transformers, 25 

 

Fig. 10 an isolated boost converter with independent input side converter stages cou-

pled through a current balancing transformer, and  

 

Fig. 11 the isolated boost converter of Fig. 3 with a protection circuit. 30 

 

Fig. 1 shows a prior art isolated boost converter with one input stage and one output 

stage coupled through a power transformer T1. 
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The input stage is provided with an energy storage inductor L, and a full-bridge ar-

rangement of modulating switches S1, S2, S3, S4 controlling the current through a first 

winding T1a of the power transformer T1. 

 

The output stage comprises a full-bridge rectifier arrangement of diodes D1, D2, D3, 5 

D4 for rectifying the current pulses received from the second winding T1b of the power 

transformer T1. Output power can be provided to a load (not shown) through a pair of 

output terminals B0, B1. The output current is controlled by modulating the pulse width 

of the current pulses through the first winding by controlling the switches S1, S2, S3, 

S4 accordingly by use of a control unit (not shown). When all switches S1, S2, S3, S4 10 

are closed, the energy storage inductor L is charged while the first end and the second 

end of the first winding T1a are short circuited. The current in the first winding T1a is in 

first OFF-state. Opening the pair of switches S1, S4 simultaneously puts the current 

through the first winding T1a in a first ON-state for driving a first current pulse through 

the first winding T1a, thereby transferring energy from the boost inductor to the power 15 

transformer until the switches S1, S4 are closed again and the energy storage inductor 

L is recharged. Subsequently, the remaining pair of switches S2, S3 is activated and a 

second current pulse running opposite to the first is generated. The activation scheme 

of the switches S1, S2, S3, S4 is intended to be operated to always provide a current 

path for discharge of the energy storage inductor in order to avoid an excessive build-20 

up of harmful voltage stress across any of the switches S1, S2, S3, S4. Commonly, a 

protection circuit (snubber, not shown here) is provided in order to absorb excessive 

currents/voltages. 

 

Furthermore, a capacitor C is connected across the output terminals B0, B1 in order to 25 

remove ripple and transients from the output power. The function of the capacitor C is 

the same throughout all embodiments, and therefore the description of the capacitor C 

is omitted in the following. 

 

Fig. 2 shows a first embodiment of a dc-dc converter according to the invention. The 30 

isolated boost converter shown in Fig. 2 has on a input side 1 two input side converter 

stages 3, 4 connected in parallel and coupled through two power transformers T1, T2 

to a output side converter stage 5 on a output side 2. 

 

The input side 1 converter stages 3, 4 are configured as input stages, wherein each 35 

converter stage comprises an energy storage inductor L1, L2, and a full-bridge ar-
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rangement of modulating switches {S1, S2, S3, S4}, {S5, S6, S7, S8} controlling the 

current through the first windings T1a, T2a of the power transformers T1, T2.  

 

The output side 2 converter stage 5 comprises a single full-bridge rectifier arrangement 

of diodes {D1, D2, D3, D4} for rectifying the current pulses received from the second 5 

windings T1b, T2b of the two power transformers T1, T2. The second windings T1b 

and T2b are directly connected in series, the outermost ends being connected to the 

rectifier {D1, D2, D3, D4}. 

 

In operation, high current is provided to the input side through terminals A0, A1. The 10 

current is split at a node N1 according to the impedances of the input side converter 

stages, and fed to the first windings T1a, T2a as modulated by the arrangements of 

switches {S1, S2, S3, S4}, {S5, S6, S7, S8}, respectively. The generated current pulses 

are transferred to the second windings T1b, T2b. Because of the direct serial connec-

tion of the second windings T1b, T2b, the therein induced current is limited to the 15 

smallest of the currents transferred in parallel from the first windings T1a, T2a. The ex-

cess current that can not be transferred from the input side 1 to the output side 2 is 

typically absorbed by a protection circuit (snubber) P on the input side. The absorbed 

energy may either be dissipated in, or in some cases recovered for a later transfer from 

the protection circuit P. The current pulses induced in the series of second windings 20 

T1b, T2b are rectified in a common rectifier unit formed by a single arrangement of 

switches, here shown as a full-bridge arrangement of diodes {D1, D2, D3, D4}. The 

rectified output may be passed through a low-pass filter C and via output terminals B0, 

B1 provided to a load. 

 25 

Fig. 3 shows a modified version of the isolated boost converter shown in Fig. 2, which 

is modified by providing a coupling between the two parallel input stages 3, 4 in order 

to equalise the current distribution to said input stages 3, 4. The coupling is provided by 

magnetically coupling the energy storage inductor L1-1 provided in a first input stage 3 

and the energy storage inductor L1-2 provided in a second input stage 4, for example 30 

by winding the two inductors onto a common magnetic core. The magnetic coupling 

ensures that the coupled energy storage inductors assume essentially the same induc-

tance, and current balancing between the two inductors is controlled during the energy 

transfer state, i.e. the ON-state, by the serial connection of the second windings of the 

power transformers. 35 
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Fig. 4 shows a further embodiment of an isolated dc-dc converter according to the in-

vention. The energy storage inductor is provided as a common inductor L that is placed 

before the bifurcation in node N1. This embodiment is particularly applicable where the 

size and/or power performance of the single energy storage inductor L are not limiting. 

The advantage of this embodiment is that no spread in the current distribution occurs. 5 

This spread typically arises due to differences in inductance between separate energy 

storage inductors L1, L2 placed within the input stages of for instance the embodiment 

shown in Fig. 2. 

 

In the embodiment shown in Fig. 4, the two parallel input stages 3, 4 are coupled by a 10 

current balancing transformer X1. The current balancing transformer X1 comprises a 

primary winding X1-1 arranged in a primary branch 6 in the first input stage 3, and a 

secondary winding X1-2 in a secondary branch 7 in the second input stage 4. 

 

If the currents in the two input stages 3, 4 differ from each other, the transformer X1 15 

balances the currents in the two input stages by "pulling" a voltage from one of the in-

put stages to the other input stage. The current balancing transformer X1 does only 

have to handle the smaller voltages required to balance the currents rather than having 

to handle the full power in each input stage 3, 4. This has a considerable practical ad-

vantage, because the current balancing transformer X1 only requires a fraction of the 20 

power rating as compared to the full power converted. 

 

Fig. 5 shows a combination of the embodiments of an isolated boost converter shown 

in Figs. 3 and 4. Each of the input stages 3, 4 is provided with an energy storage induc-

tor L1-1, L1-2. The energy storage inductors L1-1, L1-2 are magnetically coupled in or-25 

der to equalise their inductance. In addition, a current balancing transformer X1 is pro-

vided to couple the two input stages 3, 4 so as to compensate for differences in the 

currents flowing in the two input stages 3, 4. An embodiment where the energy storage 

inductors L1-1, L1-2 are not magnetically coupled is also anticipated by the invention. 

 30 

Fig. 6 shows an isolated boost converter comprising four power transformers T1, T2, 

T3, and T4 respectively, connected to one of four parallel input stages on the input side 

1, and to a rectifying output stage Re on the output side 2. 

 

Each of the four input stages comprises an energy storage inductor L1-1, L1-2, L1-3, 35 

L1-4, and a full-bridge arrangement of modulating switches for controlling the current 
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through the first winding of the corresponding power transformer T1, T2, T3, T4. In the 

configuration shown, all four energy storage inductors L1-1, L1-2, L1-3, L1-4 are mag-

netically coupled so as to equalise their inductance. 

 

Current is supplied to the input side 1 through a cascading arrangement of bifurcating 5 

nodes N3, N2, N1 splitting the input current provided through terminal A1 so as to pro-

vide equal current input to all four input stages. At each bifurcation N3, N2, N1, the cur-

rent distribution is balanced by a current balancing transformer X3, X2, X1, each com-

prising a primary winding X3-1, X2-1, X1-1, and a secondary winding X3-2, X2-2, X1-2. 

 10 

In order to achieve an equal current distribution, the impedances of all four input stages 

are designed to be essentially the same, and the current balancing ratio as given by 

the transformer ratio is 1:1 for all three current balancing transformers X3, X2, X1.  

 

Embodiments where the energy storage inductors L1-1, L1-2, L1-3, L1-4 are not mag-15 

netically coupled are also anticipated by the invention. 

 

Fig. 7 shows another embodiment of a dc-dc boost converter according to the inven-

tion. The embodiment shown in Fig. 7 comprises three power transformers T1, T2, T3 

supplied from the input side 1 through a cascading arrangement of bifurcating nodes 20 

N4, N1 with current balancing transformers X4, X1, each comprising a primary winding 

X4-1, X1-1, and a secondary winding X4-2, X1-2. Node N1 provides current to two 

nominally identical input stages. Therefore, the current balancing transformer X1 bal-

ances the currents at a balancing ratio of 1:1. Node N4, however, provides current to 

three input stages, viz. two input stages being supplied through the primary winding 25 

X4-1, and one input stage being supplied through the secondary winding X4-2 of the 

current balancing transformer X4. Therefore, the current balancing ratio of the current 

balancing transformer X4 is 1:2, so as to provide twice as much current through the 

primary winding X4-1 as through the secondary winding X4-2. X4-2 therefore com-

prises twice as many windings as X4-1. Embodiments where the energy storage induc-30 

tors L1-1, L1-2, L1-3 are not magnetically coupled are also anticipated by the invention. 

 

Fig. 8 shows an alternative embodiment of a dc-dc converter utilising a current balanc-

ing transformer. The embodiment shown in Fig. 8 is an isolated buck-type converter 

comprising two power transformers T1, T2, where the output side 2 is operated as in-35 

put stage, and the input side 1 comprises two parallel rectifying output stages. 
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On the input side, a single full-bridge-arrangement of switches {S9, S10, S11, S12} 

controls the current through all second windings T1b, T2b coupled in series with each 

other. 

 5 

On the output side, each of the first windings T1a, T2a feeds a current-doubler rectify-

ing circuit. Depending on the direction of the current in the first windings T1a, T2a the 

output is provided in parallel through energy storage inductors L1-1 and L1-2 con-

nected to the input side of the first windings T1a, T2a, or through energy storage induc-

tors L2-1, L2-2 connected to the output side of the first windings T1a, T2a.  10 

 

Corresponding branches of the parallel output stages are coupled in order to ensure an 

equal distribution of currents between the output stages. The corresponding branches 

are those branches that are connected to simultaneously provide current to the output 

terminal A1 through node N5. That is, branch 8 and branch 10 correspond to each 15 

other, and branch 9 and branch 11 correspond to each other. The coupling is achieved 

by magnetic coupling of the energy storage inductors L1-1, L1-2 and L2-1, L2-2 in the 

corresponding branches of the parallel output stages and/or by means of current bal-

ancing transformers X5, X6 for balancing current between the primary winding X5-1 in 

the primary branch 8 and the secondary winding X5-2 in the secondary branch 10, and 20 

accordingly between branch 9 and branch 11 by balancing current between the primary 

winding X6-1 and the secondary winding X6-2 of the current balancing transformer X6, 

respectively. 

 

When S9 and S12 are conducting, the current through the second windings T1b, T2b 25 

are in a first ON-state, and diodes D6 and D8 are OFF. Thus, energy storage inductors 

L1-1 and L1-2 are charged, while energy storage inductors L2-1 and L2-2 are dis-

charged. When S10 and S11 are conducting, the current through the second windings 

T1b, T2b are in a second ON-state, and diodes D5 and D7 are OFF. Thus, energy stor-

age inductors L2-1 and L2-2 are charged, while energy storage inductors L1-1 and L1-30 

2 are discharged. 

 

Embodiments where the energy storage inductors L1-1, L1-2 and/or the energy induc-

tors L1-3, L1-4 are not magnetically coupled are also anticipated by the invention. 

 35 
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Fig. 9 shows a further embodiment of a dc-dc converter according to the invention. The 

embodiment shown in Fig. 9 is an isolated bidirectional converter comprising two power 

transformers T1, T2. The switching arrangements of both sides are provided with con-

trollable switches {S9…S12}, {S13, S14}, {S15, S16}, such as three-terminal solid-state 

switches. Thus, the converter can be operated in both directions. On the side chosen 5 

as the input, the switching arrangement(s) are driven to modulate the input current. On 

the opposite side (chosen as the output), the switching arrangement(s) are driven to 

rectify the current pulses received from the power transformers T1, T2. 

 

Embodiments where the energy storage inductors L1-1, L1-2 and/or the energy induc-10 

tors L1-3, L1-4 are not magnetically coupled are also anticipated by the invention. 

 

Fig. 10 shows an isolated boost-type converter according to the invention comprising 

two power transformers T1, T2. The input side 1 is operated as input, wherein the input 

side converter stages are operated independently. The two input stages on the input 15 

side are coupled to ensure an equal distribution of the current between the two input 

stages. In the embodiment shown in Fig. 10, the coupling is achieved via a current bal-

ancing transformer with a primary winding X7-1 arranged in one input stage and a sec-

ondary winding X7-2 in the other input stage. Alternatively or in addition thereto the en-

ergy storage inductors L1 and L2 may be coupled magnetically, e.g. by winding both 20 

inductors L1, L2 onto a common magnetic core so as to equalise their inductance. 

 

Deviations from the nominal current distribution between the input side converter 

stages or a failure in the controlling unit driving the switches of a switching arrange-

ment can lead to undesired stress on the components and consequently lead to a fail-25 

ure of those components. In order to avoid such stresses, the input circuit is typically 

equipped with a protection circuit P. Many implementations of protection circuits are 

possible. Some protection circuits absorb and dissipate excess energy. Other protec-

tion circuits may provide for an at least partial recovery of the absorbed energy. Fig. 11 

shows an example for a dissipative protection circuit P in the isolated boost converter 30 

of Fig. 3. The protective circuit P may receive excess current from the first input stage 3 

through a node N6 and a diode D9, and from the second input stage 4 through a node 

N7 and a diode D10. The excess energy is absorbed by a large capacitor Cp and even-

tually dissipated through a resistor Rp. 

 35 
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The invention has been described with reference to a preferred embodiment. However, 

the scope of the invention is not limited to the illustrated embodiment, and alterations 

and modifications can be carried out without deviating from said scope of the invention. 
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List of reference numerals 

1   input side 

2   output side 

3, 4   input side converter stages 

5   output side converter stage 5 

6, 8, 9   primary branch 

7, 10, 11  secondary branch 

A0, A1, A2, A3  input side terminal 

B0, B1   output side terminal 

C   capacitor 10 

D1, D2,  … , D10  diode 

L, L1, L2  energy storage inductor 

L1-1, L1-2, L1-3, L1-4 magnetically coupled energy storage inductor 

L2-1, L2-2  magnetically coupled energy storage inductor 

N1, N2,  … , N7  node 15 

Re   rectifier unit 

S1, S2, … , S16  switch 

T1, T2, T3, T4  power transformer 

T1a, T2a  first winding 

T1b, T2b  second winding 20 

X1, X2, … , X7  current balancing transformer 

 

 

 

 25 

 

 

 

 

 30 

 

 

transformer primary winding secondary winding 

X1 X1-1 X1-2 

X2 X2-1 X2-2 

X3 X3-1 X3-2 

X4 X4-1 X4-2 

X5 X5-1 X5-2 

X6 X6-1 X6-2 

X7 X7-1 X7-2 
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Claims 

 

1. A pulse width modulated switch mode DC-DC boost converter comprising at least 

one first electronic circuit on an input side (1) and a second electronic circuit on an out-

put side (2), the input side (1) and the output side (2) being coupled via at least two 5 

power transformers (T1, T2), each power transformer (T1, T2) comprising a first wind-

ing (T1a, T2a) arranged in an input side converter stage (3, 4) on the input side (1) and 

a second winding (T1b, T2b) arranged in an output side converter stage (5) on the out-

put side (2), each of the windings (T1a, T1b, T2a, T2b) having a first end and a second 

end, wherein 10 

 

the first electronic circuit comprising:  

 

- terminals (A0, A1) for connecting a source or a load, 

 15 

- at least one energy storage inductor (L) coupled in series with at least one of the 

first windings (T1a, T2a) of the power transformers (T1, T2),  

 

- for each power transformer (T1, T2), an arrangement of switches being adapted 

to switch the current through the first winding (T1a, T2a) between a first ON-state, a 20 

first OFF-state, a second ON-state with a polarity opposite to the first ON-state, and a 

second OFF-state, and wherein 

 

- the at least one energy storage inductor (L) is arranged so as to be charged, 

when all switches of the switching arrangements are conducting,  25 

 

and 

 

the second electronic circuit comprising:  

 30 

- terminals (B0, B1) for connecting a load or a source, 

 

- a single arrangement of switches being adapted to switch the current through the 

second windings (T1b, T2b) of the power transformers (T1, T2) between a first ON-

state, a first OFF-state, a second ON-state with a polarity opposite to the first ON-state, 35 
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and a second OFF-state, and/or being adapted to provide rectified current to the termi-

nals (B0, B1), and wherein 

 

the second windings (T1b, T2b) of the power transformers (T1, T2) are connected in 

series and coupled via the single arrangement of switches of the second circuit to the 5 

terminals (B0, B1) of the output side. 

 

2. Converter according to claim 1, wherein the pulse width modulated switch mode 

DC-DC boost converter is controlled via the arrangement of switches on the input side 

(1). 10 

 

3. Converter according to claim 1 or 2, wherein the at least one energy storage in-

ductor (L) is coupled to or is part of a current-balancing electrical circuit. 

 

4. Converter according to any of the preceding claims, wherein the arrangement of 15 

switches being adapted to switch the current through the first windings comprises two 

parallel coupled stages, each of the parallel coupled connections comprising a first 

switch serial connected to a second switch, and wherein the first end of the first wind-

ing is coupled to the serial connection of one of the two parallel coupled stages, and 

wherein the second end of the first winding is coupled to the serial connection of the 20 

other of the two parallel coupled stages. 

 

5. Converter according to any of the preceding claims, wherein the input side con-

verter stages (3, 4) are provided as modulating input stages and the output side con-

verter stage (5) is provided as a rectifying output stage. 25 

 

6. Converter according to claim 5, wherein the modulating input stages (3, 4) are 

connected in parallel to the common input terminals (A0, A1) and wherein the ar-

rangement of switches in each of the modulating input stages (3, 4) is a full-bridge ar-

rangement of switches, alternative a push-pull boost arrangement of switches, or alter-30 

native a two-inductor boost arrangement of switches. 

 

7. Converter according to any of the preceding claims, wherein the input side con-

verter stages (3, 4) are connected in parallel to a common pair of terminals (A0, A1). 

 35 
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8. Converter according to any of the preceding claims, wherein each of the input 

side converter stages (3, 4) comprises at least one energy storage inductor (L1, L2) 

connected in series with the first winding (T1a, T2a) of said input side converter stage 

(3, 4). 

 5 

9. Converter according to claim 8, wherein at least two energy storage inductors (L1-

1, L1-2), each being arranged in a different input side converter stage (3, 4), are at 

least pair-wise magnetically coupled via a common magnetic core. 

 

10. Converter according to any of claims 1-7, wherein the at least one energy storage 10 

inductor L is provided as a common energy storage inductor for the power transformers 

(T1, T2). 

 
11. Converter according to any of the preceding claims, further comprising at least 

one current balancing transformer (X1) on the input side, said current balancing trans-15 

former (X1) comprising: 

 

- at least one primary winding (X1-1) provided in a primary branch (6) in series with 

the arrangement of switches of a first converter stage (3) on the input side (1), 

 20 

- at least one secondary winding (X1-2) provided in a secondary branch (7) in se-

ries with the arrangement of switches of a further input side converter stage (4), 

 

wherein the primary windings (X1-1) and the secondary windings (X1-2) are arranged 

with opposite polarity to magnetically couple the primary branch (6) and the secondary 25 

branch (7) so as to induce opposite currents in the coupled branches (6, 7), thereby 

pair-wise balancing the current distribution between the coupled branches (6, 7) at a 

predetermined current balancing ratio. 

 
12. Converter according to claim 11, wherein the converter comprises: 30 

 

- an even number N=2n of the power transformers (T1, T2, …), where n is an inte-

ger number greater than one, and 

- a cascading arrangement of a number M=(2n-1) of the current balancing trans-

formers (X1, X2, …) arranged to successively balance the current through the first 35 

windings (T1a, T2a, …) of the N power transformers (T1, T2, …) in cascading pairs of 
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coupled branches, wherein each of the current balancing transformers (T1, T2, …) pro-

vides a current balancing ratio of 1:1. 

 
13. Converter according to claim 11, wherein the converter comprises: 

 5 

- an uneven number P=(2n+1) of the power transformers (T1, T2, …), where n is an 

integer number greater than or equal to one, and 

 

- a cascading arrangement of a number Q=2n of the current balancing transformers 

(X1, X2, …) arranged to successively balance the current through the first windings 10 

(T1a, T2a, …) of the N power transformers (T1, T2, …) in cascading pairs of coupled 

branches, wherein at least one of the current balancing transformers provides a current 

balancing ratio of 2:1. 

 

14. Converter according to any of the preceding claims, wherein the single arrange-15 

ment of switches in the output stage (5) is provided by diodes in a rectifying full-bridge 

arrangement. 

 

15. Converter according to any of claims 1-13, wherein the converter further is 

adapted for operation as a bidirectional converter. 20 

 

16. Converter according to claim 15, wherein all arrangements of switches are pro-

vided by switches in a full-bridge configuration. 

 

17. Converter according to any of the preceding claims, further comprising a capacitor 25 

(C) connecting the terminals (A0, A1) on the input side (1) and/or a capacitor (C) con-

necting the terminals (B0, B1) on the output side (2). 

 

 

 30 



  26 

  

Switch mode pulse width modulated DC-DC Converter with Multiple Power Transform-

ers. 

 

Abstract 

A switch mode pulse width modulated DC-DC power converter comprises at least one 5 

first electronic circuit on a input side (1) and a second electronic circuit on a output side 

(2). The input side (1) and the output side (2) are coupled via at least two power trans-

formers (T1, T2). Each power transformer (T1, T2) comprises a first winding (T1a, T2a) 

arranged in a input side converter stage (3, 4) on the input side (1) and a second wind-

ing (T1b, T2b) arranged in a output side converter stage (5) on the output side (2), and 10 

each of the windings (T1a, T1b, T2a, T2b) has a first end and a second end. The first 

electronic circuit comprises terminals (A0, A1) for connecting a source or a load, at 

least one energy storage inductor (L) coupled in series with at least one of the first 

windings (T1a, T2a) of the power transformers (T1, T2), and for each power trans-

former (T1, T2), an arrangement of switches being adapted to switch the current 15 

through the first winding (T1a, T2a) between a first ON-state, a first OFF-state, a sec-

ond ON-state with a polarity opposite to the first ON-state, and a second OFF-state, 

and/or being adapted to provide rectified current to the terminals (A0, A1) wherein the 

at least one energy storage inductor (L) is arranged so as to be charged, when all 

switches of the switching arrangements are conducting, and the current through the at 20 

least one first winding coupled in series to the energy storage inductor is in an OFF-

state. The second electronic circuit comprises terminals (B0, B1) for connecting a load 

or a source, a single arrangement of switches being adapted to switch the current 

through the second windings (T1b, T2b) of the power transformers (T1, T2) between a 

first ON-state, a first OFF-state, a second ON-state with a polarity opposite to the first 25 

ON-state, and a second OFF-state, and/or being adapted to provide rectified current to 

the terminals (B0, B1). The second windings (T1b, T2b) of the power transformers (T1, 

T2) are connected in series and coupled via the single arrangement of switches of the 

second circuit to the terminals (B0, B1) of the output side. 

 30 
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