The effective index method and its application to semiconductor lasers

Buus, Jens

Published in: I E E E Journal of Quantum Electronics

Link to article, DOI: 10.1109/JQE.1982.1071659

Publication date: 1982

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
The Effective Index Method and Its Application to Semiconductor Lasers

JENS BUUS, MEMBER, IEEE

Abstract—By the effective index method a two-dimensional field problem is transformed to a problem for a one-dimensional effective waveguide. This method is applied to semiconductor lasers having a gradual lateral variation in the complex permittivity. For the special case of a parabolic variation, analytical formulas for the required gain in the center and the half width of the intensity distribution are derived. The results are compared with a numerical method and very good agreement is found except in some cases where convergence problems occur for the numerical method. This agreement is taken as evidence for the validity of results obtained using the effective index method for analysis of semiconductor laser structures.

I. INTRODUCTION

The effective index method was originally proposed for analysis of rectangular dielectric waveguides [1]. By this method a two-dimensional problem is transformed to a problem for a one-dimensional effective waveguide; this latter problem can then be solved analytically or by simpler methods than required for the two-dimensional case. The method has been shown to be better than other simple methods for rectangular dielectric waveguides.

The analysis of waveguiding in semiconductor lasers is a two-dimensional problem and the effective index method has been used in different forms to simplify the solution of this problem, e.g., [2]–[6].

In this paper some general formulas related to the analysis of waveguiding in laser structures are presented. For the special case of parabolic permittivity variation the general formulas are used to derive analytical expressions for the gain in the center of the active region required to overcome the loss, and for the full width at half intensity of the field distribution in the junction plane.

For the parabolic profile a numerical method was presented in [7], this method is summarized in Section III and it is shown how the method can be somewhat simplified, reducing the required computing time considerably.

Finally, in Section IV the results from the two methods are presented and discussed.
II. FIELD CALCULATION BY THE
"EFFECTIVE INDEX METHOD"

A. Slab Structure

We first consider a simple slab structure with permittivity variation in the x-direction only, as shown in Fig. 1. Using the scalar wave equation we find the propagation constant for the TE modes (y polarization) (e.g., [8])

$$\left(\frac{\beta^2}{k} \right)^2 = e_{\text{eff}} = b \epsilon_1 + (1 - b) \epsilon_2$$ \hspace{1cm} (1)

where the normalized propagation constant b is the solution to the characteristic equation, which for the fundamental mode reads

$$v \sqrt{1 - b} = \arctan \sqrt{\frac{b}{1 - k}}$$ \hspace{1cm} (2)

$$v = k t \sqrt{\epsilon_1 - \epsilon_2}$$ \hspace{1cm} (3)

The imaginary parts of ϵ_1 and ϵ_2 are much smaller than the real parts and hence we consider the imaginary parts as perturbations of the corresponding slab structure with real indexes. This gives for the effective refractive index

$$n_{\text{eff}} = \text{Re} \left\{ \sqrt{e_{\text{eff}}} \right\} = \frac{1}{k} \text{Re} \left\{ \beta_2 \right\} = \sqrt{b_0 n_1^2 + (1 - b_0) n_2^2}$$ \hspace{1cm} (4)

where b_0 is the solution to the characteristic equation (2) with the normalized frequency v replaced by the real number v_0

$$v_0 = k t \sqrt{n_1^2 - n_2^2}.$$ \hspace{1cm} (5)

We now introduce an effective permittivity for each plane given by a value of y according to (1)

$$e_{\text{eff}} = \frac{\beta^2}{k^2} = \frac{n_2^2}{n_1^2 - n_2^2} \left(b_0 + (1 - b_0) \right)$$ \hspace{1cm} (6)

$$\Delta v = j \frac{v_0}{n_1^2 - n_2^2} \frac{n_1 \alpha + n_2 \alpha}{2k}.$$ \hspace{1cm} (7)

This gives a complex value for e_{eff} when (6) is used in (1), and we introduce an effective gain g_{eff} defined by (neglecting $(g_{\text{eff}}/k)^2$)

$$e_{\text{eff}} = n_{\text{eff}}^2 + j \frac{n_{\text{eff}} g_{\text{eff}}}{k}.$$ \hspace{1cm} (8)

Use of (6) and (7) in (1) gives

$$g_{\text{eff}} = 2 \text{Im} \left\{ \beta_2 \right\} = k \text{Im} \left\{ e_{\text{eff}} \right\} = \frac{1}{n_{\text{eff}}} \frac{1}{n_{\text{eff}}} \text{Re} \left\{ \beta_2 \right\} = \frac{1}{n_{\text{eff}}} \left(n_1 g + (1 - \Gamma) n_2 \alpha \right)$$ \hspace{1cm} (9)

where the weighing factor Γ is given by

$$\Gamma = b_0 + \frac{v_0}{2} \frac{dB}{dv} \bigg|_{v = v_0} = b_0 + (1 - b_0) \frac{v_0 \sqrt{b_0}}{1 + v_0 \sqrt{b_0}}.$$ \hspace{1cm} (10)

Γ is also defined as the fraction of the intensity propagating in the guiding layer; direct calculation gives the same expression as (10).

Equation (9) can alternatively be derived in the following way [9]: the scalar field equation is multiplied by the complex conjugate of the field; the resulting expression is integrated from $-\infty$ to ∞. This gives a variational expression for g_{eff}, and taking the imaginary parts of ϵ_1 and ϵ_2 as perturbations, the field (to first order) remains real whereas p becomes complex, taking the imaginary part of p gives $E(x)$ being the field distribution

$$\text{Im} \left\{ \epsilon_{\text{eff}} \right\} = \frac{\text{Im} \left\{ e_{\text{eff}} \right\}}{\text{Im} \left\{ \beta_2 \right\}} = \int_{-\infty}^{\infty} \text{Im} \left\{ |E(x)|^2 \right\} \frac{dx}{\int_{-\infty}^{\infty} |E(x)|^2 \frac{dx}{\int_{-\infty}^{\infty}}}.$$

B. Slab with Lateral e Variation

We now consider the case where ϵ_1 and ϵ_2 are functions of y given by

$$\epsilon_2(y) = \epsilon_1(y) + f_1(y)$$ \hspace{1cm} (13a)

$$\epsilon_3(y) = \epsilon_2(y) + f_2(y)$$ \hspace{1cm} (13b)

$$\epsilon_4(y) = \epsilon_3(y) + f_3(y)$$

$$f_1(0) = 0$$

$$f_2(0) = 0$$

We define an effective permittivity for each plane given by a value of y, according to (1)

$$e_{\text{eff}}(y) = \frac{b(y) \epsilon_1(y) + (1 - b(y)) \epsilon_3(y)}{1 - b(y)}.$$ \hspace{1cm} (14)

For the laser structures considered we have

$$|f_1(y)|, |f_2(y)| \ll |e_1(0) - e_2(0)|.$$ \hspace{1cm} (15)

hence, we only use one term in the expressions of b

$$b(y) = b(0) + \left(\nu(y) - \nu(0) \right) \frac{dB}{d\nu} \bigg|_{\nu = \nu_0}.$$ \hspace{1cm} (16)
Insertion of (16) and (13) in (14) then gives for the variation of \(e_{\text{eff}} \) in the \(y \) direction
\[
\Delta(y) = e_{\text{eff}}(0) - e_{\text{eff}}(y)
\]
\[
= b(0)f_1(y) + (v(0) - v(y)) \frac{db}{dv} \bigg|_{y=0} e_1(0)
\]
\[
+ (1 - b(0))f_2(y) - (v(0) - v(y)) \frac{db}{dv} \bigg|_{y=0} e_2(0)
\]
\[
= b(0)f_1(y) + (1 - b(0))f_2(y)
\]
\[
v(y) = kv \sqrt{(e_1(0) - f_1(y)) - (e_2(0) - f_2(y))}
\]
\[
\approx v(0) \left(1 - \frac{f_1(y) - f_2(y)}{2(e_1(0) - e_2(0))} \right).
\]
Using the expression for the derivative of \(b \) with respect to \(v \) [also used in (10)] (17) and (18) give
\[
\Delta(y) = \Gamma f_1(y) + (1 - \Gamma) f_2(y).
\]
In (19) \(\Gamma \) is the filling factor for the simple real slab guide, i.e., (10) with \(v_0 \) given by (5) and hence independent of \(y \). This formula, of course, is valid only when the expansion (16) is valid, i.e., (15) must be satisfied. If this is not the case the definition of \(e_{\text{eff}}(y) \) given in (14) must be used directly.

The result (19) is also derived in [10], [11] and was first used in [3]. In [12] the \(y \) dependence and imaginary part of \(b \) is neglected, thus giving an equation similar to (19) but with \(\Gamma \) replaced by \(b_0 \). When the imaginary part of \(b \) is included (but the \(y \) dependence ignored) one again gets an equation similar to (19), but with \(b_0 \) as weighing factor for the real part and \(\Gamma \) for the imaginary part [5], [13]. If the guiding parallel to the active layer is dominated by variations in the thickness of the active layer we get [2]
\[
\Delta(y) = (b(0) - b(y)) (e_1(0) - e_2(0)).
\]
In this case, the imaginary part of \(b \) and the \(y \) dependence of \(e_1 \) and \(e_2 \) are unimportant for the guiding.

The effective index method was originally proposed for rectangular structures [1]. The method is shown [14] to be better than another simple method [15] for rectangular dielectric waveguides.

The \(y \) variation of the effective index gives a \(y \) variation of the field which can be described by a lateral propagation constant \(\beta_y(\beta_y) \ll |\beta_z| \) if (15) is satisfied. Compared with the slab without variations in the \(y \) direction we now get modified values of the propagation constant, the effective index, and the effective gain (mode gain), which we define as
\[
\beta^2_y = \sqrt{\beta^2_z - \beta^2_y}
\]
\[
n^\prime_{\text{eff}} = \frac{1}{k} \text{Re} \{\beta^2_y\}
\]
\[
G = 2 \text{Im} \{\beta^2_y\}
\]
where \(\beta_y \) is the result for the slab guide without \(y \) variations \((f_1(y) = f_2(y) = 0)\). Expansion of the square root of \(\beta^2_y \) in (22) and (23) and use of (4) and (9) gives
\[
n^\prime_{\text{eff}} = n_{\text{eff}} - \frac{\text{Re} \{\beta^2_y\}}{2n_{\text{eff}} k^2}
\]
\[
G = \frac{\text{Im} \{\beta^2_y\}}{n_{\text{eff}} k}.
\]
C. The Parabolic Profile

We now apply the results to the case of a parabolic variation of index and gain in the active layer [7]
\[
\begin{align*}
 f_1(y) &= a^2 y^2 \\
 f_2(y) &= 0
\end{align*}
\]
where \(a \ll (n_1 - n_2) \) is the change of the real part of the refractive index going from \(y = 0 \) to \(y = \pm y_0 \). Thus
\[
a^2 y_0^2 = \frac{n_1 n_0}{k} (R + j)
\]
with the ratio \(R \) between the variation in the real and imaginary parts of \(e_1 \) (note that \(R \) is defined differently in [7])
\[
R = \frac{2k}{n_0}.
\]
The effective guiding is described by \(a_{\text{eff}} \)
\[
a_{\text{eff}} = \sqrt{\frac{\Gamma n_0}{k y_0}(R + j)}.
\]
As is well known, the solution to the field equation with an effective permittivity variation given by (27) is Hermite-Gauss functions and the field variation in the \(y \)-direction for the fundamental mode becomes
\[
E(y) = e^{-ka_{\text{eff}}(y^2/2)}
\]
with the intensity variation
\[
I(y) = |E(y)|^2 = e^{-k \text{Re} \{a_{\text{eff}}\} y^2}
\]
and eigenvalue (square of lateral propagation constant)
\[
\beta^2_y = ka_{\text{eff}}.
\]
Thus (24) and (25) give
\[
n^\prime_{\text{eff}} = n_{\text{eff}} - \frac{\text{Re} \{a_{\text{eff}}\}}{2n_{\text{eff}} k^2}
\]
\[
G = \frac{\text{Im} \{a_{\text{eff}}\}}{n_{\text{eff}} k}.
\]
In the lasing state the required mode gain \(G_{\text{req}} \) must balance mirror and internal scattering losses (i.e., losses not included in the net material gain); using (9), (36), and (31) this condition can be written as
\(G_{\text{req}} = \alpha_{\text{mirror}} + \alpha_{\text{scattering}} = \frac{\Gamma n_1 g_o - (1 - \Gamma) n_2 \alpha}{n_{\text{eff}}} \)

\[\Gamma \frac{n_1 g_o}{k y^2} \frac{\text{Im} \{ \sqrt{R + j} \}}{n_{\text{eff}}} \]

which can be rearranged as

\[g_o = \sqrt{G_{\text{req}}} \frac{\text{Im} \{ \sqrt{R + j} \}}{G_{\text{req}}} \]

with \(G_{\text{req}} \) being the required gain in the active region for \(y_o \rightarrow \infty \).

\[g_o = \sqrt{G_{\text{req}}} \frac{\text{Im} \{ \sqrt{R + j} \}}{G_{\text{req}}} \]

We define a new parameter \(C \) as

\[C = \text{Re} \{ \sqrt{R + j} \} = \sqrt{\frac{R + \sqrt{1 + R^2}}{2}} = \frac{1}{2} \frac{1}{\text{Im} \{ \sqrt{R + j} \}} \]

It should be noted that \(C \) is related to the astigmatism factor \(K \), defined in [15]

\[K = \sqrt{1 + \frac{1}{4C^2}} \]

The product of the width of the near and far fields can be shown to be proportional to \(K \), for \(R \gg 1 \) (index guiding)

\[K = 1 \]

Solving (38) for \(g_o \) and the use of (40) gives

\[g_o = \frac{(1 + \sqrt{1 + G_{\text{req}} \Gamma B C^2})^2}{G_{\text{req}} \Gamma B C^2} \]

\[B = 16n_1 k y^2 \]

Note that this formula is somewhat different from the corresponding formula (35) in [7].

The full width at half intensity \(w_o \) is found from

\[I \left(\frac{w_o}{2} \right) = \frac{1}{2} \]

which gives

\[w_o = \frac{4 \sqrt{\ln 2} y_o}{\sqrt{G_{\text{req}} \Gamma B C^2}} \]

\[= \frac{4 \sqrt{\ln 2} y_o}{\sqrt{1 + \sqrt{1 + G_{\text{req}} \Gamma B C^2}}} \]

The expression (35) can now be written as

\[n_{\text{eff}} = n_{\text{eff}} - \frac{2 \ln 2}{n_{\text{eff}} (k w_o)^2} \]

Evaluation of (42) in the two limiting cases for small and large values of the thickness \(d = 2t \) gives

\[d \rightarrow 0 \Rightarrow w_o \rightarrow \frac{4 \sqrt{\ln 2} y_o}{\sqrt{1 + \sqrt{1 + G_{\text{req}} \Gamma B C^2}}} \]

\[d \rightarrow \infty \Rightarrow w_1 \rightarrow \frac{4 \sqrt{\ln 2} y_o}{\sqrt{1 + \sqrt{1 + G_{\text{req}} B C^2}}} \]

\[\frac{w_o(d \rightarrow \infty)}{w_o(d \rightarrow 0)} \leq \frac{\sqrt{n_2}}{n_1 (G_{\text{req}} + \alpha)} \]

This result shows that \(w_o \) is nearly independent of \(d \). For small \(y_o \) (46) gives

\[w_o \approx \sqrt{2 \ln 2} (2y_o) \]

III. Field Calculation by PlaneWave Expansion

Following [7], the field in the active layer of a laser structure with the permittivity given by (26) and (29) is written (retaining a finite number of expansion terms)

\[E(x, y) = \sum_{l=0}^{l_{\text{max}}} A_1 \cos(q_l x) H_l(\sqrt{a}k y) \exp \left(-\frac{a k y^2}{2} \right) I_{\text{even}} \]

\[H_l \] is the Hermite polynomial of order \(l \). Insertion of (52) in the field equation gives relations between \(q_l \) and the propagation constant \(\beta_x \)

\[k^2 e_1(0) - \beta_x^2 = \epsilon_2 + a k(l + 1) \]

\[l = 0, 2, \cdots, l_{\text{max}} \]

Matching (52) to a plane wave expansion at \(x = \pm t \) (see Fig. 1) results in a set of linear equations for the expansion coefficients \(A_1 \) appearing in (52)

\[A'_l = \sum_{l'} A_{l'} \Omega_{l,l'} \]

\[l = 0, 2, \cdots, l_{\text{max}} \]

The matrix elements are calculated in [7] and can be written as

\[\Omega_{l,l'} = \frac{(-1)^{(l+l')} \cos \left(\frac{d}{2} \right)}{q_r \sin \left(\frac{d}{2} \right)} \sqrt{\beta_{x}^2 - \epsilon_2 k^2} I_{l,l'} \]

\[I_{l,l'} = \frac{1}{\sqrt{n_2^2} I_l !} \int_{-\infty}^{\infty} H_l(x) e^{-z^2} \sqrt{1 + A z^2} dz \]

\[A = \frac{ak}{\beta_x^2 - \epsilon_2 k^2} \]

In order to have solutions for (54) we must have

\[\text{Det}(\Omega - \bar{E}) = 0 \]

This condition determines the propagation constant \(\beta_x \) and the required center gain \(g_o \) is determined by varying \(g_o \) [and hence the value of \(a \) given by (29)] until the condition \(2 \text{Im} \{\beta_x^2\} = G_{\text{req}} \) is satisfied, with \(G_{\text{req}} \) being the mode gain required to overcome the loss.

Since a double iteration is needed in order to calculate \(\beta_x \) and \(g_o \), the computing time becomes excessive if (55b) is evaluated by numerical integration. The Hermite-Gauss part
BUUS: THE EFFECTIVE INDEX METHOD

of the integrand in (55b) obtains its maximum value for
\[z = z_{\text{max}} \approx \sqrt{l_{\text{max}}} \] and decreases very rapidly for \[z > z_{\text{max}} \]. If we have \[|z| < 1 \] with \[z = \sqrt{l_{\text{max}}} + 1 \] a power series expansion of the square root in (55b) will be valid in the interval of \(z \) values where the integrand is nonvanishing, for \(l_{\text{max}} = 10 \) the condition is satisfied for all parameter values considered, this will not be the case for extremely small values of the thickness. Thus, retaining \(m \) terms

\[
\sqrt{1 + Az^2} = 1 + \sum_{i=1}^{m} b_i A^i z^i. \tag{57}
\]

Expansion of the powers in Hermite polynomials (\(c_{l,n} \) given in [17])

\[
z^i = \sum_{n=0}^{l} c_{l,n} H_{2n}(z) \tag{58}
\]

gives

\[
\sqrt{1 + Az^2} = 1 + \sum_{i=1}^{m} \left\{ b_i A^i \left(\sum_{n=0}^{l} c_{l,n} I_{2n+1}, i \right) \right\}. \tag{59}
\]

Equation (55b) now gives

\[
I_{l', i} = \delta_{l', i} + \frac{1}{\sqrt{n_2}} \sum_{l=1}^{m} \left\{ b_i A^i \left(\sum_{n=0}^{l} c_{l,n} I_{2n+1}, i \right) \right\}. \tag{60}
\]

where [18]

\[
I_{2n+1, i} = \int_{-\infty}^{\infty} H_{2n}(z) H_{l'}(z) H_{l}(z) e^{-z^2} \, dz
\]
\[
= \frac{\sqrt{\pi} 2^{2n} (2n)! (l' + 1)!}{(s - 2n)! (s - l')! (s - l)!}, \quad s = \frac{2n + l' + 1}{2}. \tag{61}
\]

\(I_{l', i} \) differ from 0 only if \(|l' - i| \leq 2n \leq (l' + 1) \). Insertion of (61) in (60) gives

\[
I_{l', i} = \delta_{l', i} + \sum_{i=1}^{m} A^i d_{l', i}. \tag{62}
\]

The coefficients \(d_{l', i} \) need only be calculated once

\[
d_{l', i} = \frac{l'! b_l}{2^{l'}} \sum_{n=0}^{l} \frac{c_{l,n} 2^n (2n)!}{(s - 2n)! (s - l')! (s - l)!}. \tag{63}
\]

This very fast method for calculation of the matrix elements has been compared with results obtained by numerical integration, and fine agreement was found. The computing time is now determined by the time required to solve (56) rather than 55b).

IV. RESULTS

The center gain \(g_0 \) and full width at half intensity \(w_0 \) are first calculated by the effective index method according to (42) and (46). Some results are shown in Figs. 2 and 3.

The planewave expansion method is applied to the following cases: \(n_2 = 3.4, 3.5 \); \(R = -3, -2, -1, 0, 1 \); \(d = 0.1, 0.15, 0.2, 0.4 \, \mu m \); \(y_0 = 2, 4, 6, 8, 10 \, \mu m \), using \(m = 4, 5 \) in (57) and \(l_{\text{max}} \approx 10 \) in (52).

In contrast to [7], very good agreement with the effective index method is found; a few examples are given in Table I. Use of the simple (39b) instead of (39a) in the effective index calculation changes the values for \(g_0 \) in Table I by 4-5 cm\(^{-1}\) and \(w_0 \) by 0.05-0.06 \(\mu m \), thus degrading the agreement with the planewave method significantly.

The normalized intensity distributions corresponding to three of the cases considered in Table I are shown in Fig. 4.

For \(R = -1 \) the result converges rapidly with an increasing number of expansion functions \(l_{\text{max}} \) in (52)), in the case of \(R = -2 \) a shoulder develops for \(l_{\text{max}} > 4 \) and for \(R = -3 \) a large peak appears for \(l_{\text{max}} > 6 \). This behavior is attributed to the complex parameter \(a \) in (52), for increasing negative values of \(R \) the real part of \(a \) decreases and the imaginary part increases. It is to be noted, however, that a correct value of the width of half intensity is found also for large negative \(R \), but a larger value for \(l_{\text{max}} \) is required to give a reliable result. Even for \(R = -3 \) a reasonable value for the center gain \(g_0 \) is found for low values (4 or 6) of \(l_{\text{max}} \).
TABLE I

<table>
<thead>
<tr>
<th>n_p</th>
<th>$R = -3$</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>2.06</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.25</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.10</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.05</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.02</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.01</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.005</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.001</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.0005</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Center gain g_0 and full width at half intensity calculated for
$\lambda = 0.9 \ \mu \text{m}, \ \delta_{\text{g}20} = 50 \ \text{cm}^{-1}, \ \alpha = 20 \ \text{cm}^{-1}, \ n_1 = 3.6, \ n_2 = 3.4,$
$d = 0.2 \ \mu \text{m}, \ \gamma_0 = 6 \ \mu \text{m}.$

Inspection of the expansion coefficients shows a behavior similar to the results in Table I of [7], i.e., an increase of l_{max} only gives very small changes of the coefficients A_l. As seen in Fig. 4(c) the consequences of higher values of l_{max} are a better convergence for low y-values and a shift of the peak to larger y-values.

From the calculations it is found that the boundary between convergence [as in Fig. 4(a)] and development of a peak [as in Fig. 4(c)] can be described by the following empirical relation:

$\Gamma_c \approx 0.2.$

(64)

Below the curve given by (64) the planewave method may still be used to calculate center gain and intensity width, but it cannot give correct intensity distributions far from the center. In extreme cases of large negative R values and small values of l_{max} the thickness d, reliable results cannot be obtained even for $l_{\text{max}} = 10$. The validity of the expansion in (57) has been checked and it was found that the influence of a finite number of terms (i.e., $m = 5$) was negligible except in a few extreme cases where the results were wrong anyway.

The bad agreement between the two methods reported in [7] is probably mainly due to the use of a formula for the gain g_0, somewhat different from (42).

As noted in [19] the far field in the $x = 0$ plane is easily computed. We have considered the three examples from [19] which can be described by $\Delta n = 0.1, \ \delta = 0.1 \ \mu \text{m}, \ R = -0.35, \ -0.70, \ \text{and} \ -1.05$. As these values lie below the $\Gamma_c = 0.2$ curve shown in Fig. 5, it is not surprising that the same convergence problems as seen for the near field occurs. The shape of the far fields depends on the number of expansion terms in (52), and the shoulders reported in [19] are numerical. For an infinite parabolic profile in the active layer the effective index method always gives Gaussian far fields. For other profiles such as $(\cosh^2)^{-1} [20], [21], \text{Lorentzian} [21], \text{and truncated parabolic} [21], \text{more peculiar far fields appear.}
Fig. 5. The relation \(r'C = 0.2 \), where \(r' \) is defined in (10) and \(C \) in (40), plotted as function of the parameter \(R \) for \(n_1 = 3.6 \) and two values of \(\Delta n = n_1 - n_2 \).

V. CONCLUSION

Application of the effective index method to the special case of a laser structure with a parabolic profile in the active layer results in simple formulas for center gain and half intensity width. These are compared with results obtained by a numerical plane wave expansion method, and very good agreement is found for all cases where the numerical method gives reliable results. This agreement does not mean that the parabolic profile is a good description of the guiding in the laser, only that for this particular case the effective index method is both efficient and precise. The planewave expansion is only of practical interest for profiles where the field in the active layer and its Fourier transform can be expressed analytically. The good agreement for the parabolic case, however, gives good evidence for the validity of the effective index method also for other profiles.

The small difference in the expression used for the required gain in case of a broad active region (39a) and the usual expression (39b) is only of theoretical interest and will not affect practical laser design.

ACKNOWLEDGMENT

The author would like to thank Dr. M. J. Adams, University of Southampton, Dr. G.H.B. Thompson, Standard Telecommunication Laboratories, and Dr. W. Streifer, Xerox Palo Alto Research Center for a large number of stimulating discussions on the effective index method. Furthermore, Dr. M. J. Adams, Dr. G. Jacobsen, Technical University of Denmark, and Dr. W. Nakwaski, Technical University of Łódź, Poland, are gratefully acknowledged for comments on the manuscript.

F. Birkedahl and J. Thode, both students at Electromagnetics Institute, Technical University of Denmark, are acknowledged for programming work.

REFERENCES

[13] The fact that the difference between [5], [12] and other references, e.g., [3], [4], [6], [10] is due to the omission of the last term in (16) was pointed out by G.H.B. Thompson.

Jens Buus (S'76-M'79) was born in Copenhagen, Denmark, on August 8, 1952. He received the M.Sc. and Ph.D. degrees from the Technical University of Denmark, Lyngby, while doing research on the modeling of the properties of semiconductor lasers. From March to June of 1979 he was a Research Associate at the University of Wales, Cardiff, Wales. Since August of 1979 he has been a Post Doctoral Research Associate at the Electromagnetics Institute, Technical University of Denmark, working on semiconductor lasers, in particular waveguiding problems.