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In the limit of high amplitude oscillating electromagnetic fields, a sequence of kink antikink shaped optical
waves has been found in the Maxwell’s equations coupled to a single Lorentz oscillator and with Kerr
nonlinearity. The individual kinks and antikinks result from a traveling wave assumption and their stability has
been assessed by numerical simulations. For typical physical parameter values the kink width is of the order of
tens of femtoseconds.
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I. INTRODUCTION

Optical pulse propagation in fibers is usually studied us-
ing the nonlinear SchrödingersNLSd equation that is valid
for slow envelope dynamics of the pulsef1g. However, for
ultrashort pulses a first principles approach has been pro-
posed that is based on the vector Maxwell’s equations
coupled to one or more Lorentz oscillators modeling the in-
teraction between light and mediaf2,3g. The Lorentz oscil-
lators provide dispersion. For high intensity pulses, the con-
stitutive relation between the displacement current and the
electric field includes a cubic Kerr nonlinearity.

Optical envelope pulses in the nonlinear Maxwell-Lorentz
system can be described by the NLS equation or extended
versions of the NLS equation taking into account higher or-
der dispersion and nonlinearities. In Refs.f4,5g the NLS
equation and extended versions of the NLS equation have
been derived and a comparison between full numerical solu-
tions of the Maxwell-Lorentz system and the NLS equation
show remarkable agreement even for very short pulses with
only 3–4 oscillation periods. In the literature not only have
envelope pulses been studied but single humped localized
pulses can be found in models of the Maxwell’s equations
coupled to linear as well as nonlinear oscillatorsf6–8g.
These pulses are traveling solitary waves with solitonlike
properties and are expected to be found in studies of atomic
physics by means of photoionization leading to intense and
nonoscillatory electromagnetic fields. Experimental observa-
tions of traveling waves in lasers have been reported inf9g.

For the Maxwell’s equations coupled to one Lorentz os-
cillator, we show that the oscillating electromagnetic field
converges toward a train of traveling kinks and antikinks
with a period going toward infinity as the oscillation ampli-
tude increases. The individual kinks rise from a plateau of
negative constant electric field to a plateau of positive con-
stant electric field of the same absolute value. The antikink
decreases from a positive plateau to a negative plateau. The
change of the electric field value takes place over a time
interval of the order of tens of femtoseconds in strongly non-
linear materials as optical polymersf10,11g. These kink and
antikink solutions have been found by a traveling wave as-
sumption and their stability is verified by numerical simula-
tions. Referencef12g investigates the dispersion equation of
the Maxwell-Lorentz system and compares bright and soli-
tary waves of the appropriate NLS equations, for the case of
cubic and quintic Kerr nonlinearities. The latter investigation
shows that blowup or collapse does not occur in the
Maxwell-Lorentz system. However, for the case of quintic
nonlinearity, the vector Maxwell system does exhibit an ini-
tial collapse similar to the quintic NLS equation, but the
collapse is eventually arrested.

After describing the modelsSec. IId we present a phase
plane analysis of the kink solutionsSec. II Ad followed by
numerical simulations of kink anti-kink pairs that verify their
stability sSec. IIId. Our summary is given in Sec. IV.

II. MAXWELL-LORENTZ MODEL

Consider the propagation of light in media with dispersion
and nonlinearity by using Maxwell’s equations. Assuming
transverse plane waves propagating in thez-axis direction we
introduce the electric fieldE=(Esz,td ,0 ,0), the magnetic
field B=(0,Bsz,td ,0), and the displacement currentD
=(Dsz,td ,0 ,0). The governing Maxwell’s equations become

]B

]t
= −

]E

]z
,

]D

]t
= −

1

m0

]B

]z
. s1d

The parameterm0 is the permeability of vacuum. Following
the notation in Ref.f2g, the displacement current is related to
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the electric field and the polarization through the constitutive
equation

D = «0f«`E + F + auEu2Eg. s2d

In the above equationF denotes the retarded or residual
linear polarization response to an applied electric field and
«` is the infinite relative frequency permittivity arising from
instantaneous polarization response. The nonlinear polariza-
tion is assumed to be an instantaneous cubic Kerr nonlinear-
ity of strengtha. The linear retarded response we shall model
by a Lorentz oscillator, with resonance frequencyv0,
coupled to the electric fieldf2g

]2F

]t2
+ G

]F

]t
+ v0

2F = bv0
2E. s3d

The parameterb is the difference between the static«s and
the infinite frequency relative permittivitiesb=«s−«`. The
residual Raman molecular vibration response can be mod-
eled using a similar linear oscillator but coupled to the field
intensity uEu2. However, in this study we neglect the Raman
term. The term inG describes a linear damping, which plays
a key role in absorption experiments. However, in the limit
of kink-antikink propagation the frequency goes toward zero
and these nonlinear oscillations are far from resonance. The
damping effect is to slowly deplete the waves as they propa-
gate, a situation very much different from linear theory.

Noninstantaneous response results from inertia, i.e., the
term Ftt, in Eq. s3d. Subscripts denote partial derivatives
with respect to the subscript variable. In addition we can
have nonlocal effects and wave guiding effects which for
simplicity are not taken into account in this first approach.
The Lorentz model describes a change of refractive index
and it is added to the background indexfsee Eqs.s2d and
s3dg. Therefore, negative relative permittivity is not possible.
For numerical examples we shall use the representative
physical valuesf2,10,13g

«s = 5.25, «` = 2.25,

v0 = 4.113 1014 Hz, a = 2.73 10−19m
2

V2 . s4d

These parameter values correspond to electronic polarization
in a highly nonlinear polymer. A resonance frequency of or-
der 1014 Hz is typical for bounded electrons and the value
stated for the third-order nonlinear parametera=xs3d has
been reported for a heterocyclic ladder polymer, nonether
polyphenylquinoxalinef10g. Fused silica has a typical non-
linearity parameter of order 10−22m2/V2 f5g.

A. Traveling wave

As the damping merely weakly depletes the oscillation in
the off resonance case, we shall first neglect the influence of
damping. Let us introduce the traveling wave assumption for
the electric fieldEsz,td=Esjd, wherej=z−vt, and similarly
for the magnetic fieldB, the displacement currentD, andF.
Inserting this solution ansatz into Eqs.s1d–s3d we obtain the
ordinary differential equation system

dE

dj
= Y, s5d

dY

dj
=

6av2EY2 − v0
2fsc2/v2 − «sdE − aE3g

c2 − «`v2 − 3av2E2 . s6d

In order to write the final equation forE as a system of two
first-order ordinary differential equations we have introduced
Y=E8, where the prime denotes differentiation with respect
to j. For v,c/Î«s there exist three stationary solutions
sfixed pointsd of the above system and they are

sE,Yd = s0,0d and sE,Yd = S±
1
Îa
Îc2

v2 − «s,0D . s7d

In order to access the stability and the phase plane flow pat-
tern around these three fixed points, we need to determine
the eigenvalues of the Jacobian of the functions on the right
hand sides of Eqs.s5d and s6d evaluated at the fixed points.
In doing so we find the eigenvaluesl of the Jacobian taken
at sE,Yd=s0,0d to be

l = ± iv0Îc2/v2 − «s

c2 − «`v2 . s8d

From this we learn that the stationary pointsE,Yd=s0,0d is a
center and in thesE,Yd phase plane we have elliptic circu-
lating solution curves close tosE,Yd=s0,0d. These solutions
are marginally stable. At the two other stationary points the
Jacobian possesses identical eigenvalues, which are

l = ± Î2v0Î c2/v2 − «s

s3«s − «`dv2 − 2c2 . s9d

For the velocity lying in the interval

cÎ 2

3«s − «`

, uvu , c
1

Î«s

, s10d

we observe that the stationary points with nonvanishing val-
ues ofE in Eq. s7d are hyperbolic fixed points.

III. NUMERICAL SIMULATION RESULTS

In our numerical simulations we have rescaled the depen-
dent and independent variables according to

z= kzz̃, t = ktt̃, j = kzj̃ = kzsz̃− ṽt̃d, v =
kz

kt
ṽ,

Esjd = kEẼsj̃d,

Ysjd = kYỸsj̃d, kt =
1

v0
, kz =

c

v0
Î«`

, kE =Î«`

3a
,

kY =
«`v0

cÎ3a
. s11d

The scaled and dimensionless variables are indicated by a
tilde. In the scaled coordinates Eqs.s5d and s6d transform
into
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dẼ

dj̃
= Ỹ,

dỸ

dj̃
=

2ṽ2ẼỸ2 − s1/ṽ2 − «s/«`dẼ + Ẽ3/3

1 − ṽ2 − ṽ2Ẽ2
. s12d

The phase plane flow pattern is shown in Fig. 1, obtained
numerically by solving Eqs.s12d. The scaled unstable fixed

points are given byẼ=Î3fs1−ṽ2d / ṽ2−b /«`g. The upper
heteroclinic trajectory connecting the left hyperbolic fixed
point to the right hyperbolic fixed point forms the kinklike
solution shown in Fig. 2ssolid curved. The antikink results
from connecting the right hyperbolic fixed point with the left
one along the lower heteroclinic curve. We stress that the
kinklike solution is not an envelope for an oscillating carrier
wave. Squaring theE field gives a wave form which to some
extent resembles a dark solitary wave. However, due to the
absence of the carrier wave it is quite distinct from the usual
dark soliton. The existence of the above kink shaped travel-
ing wave solution does not imply that it is stable. In order to
assess its stability, we have solved Eqs.s1d–s3d numerically
using the scaled variables and by choosing initial conditions
which are not exactly equal to the heteroclinic kink solution

shown as the solid curve in Fig. 2. By choosingẼsz̃,0d
=Akinktanhfsz̃−z0d /wg we start the simulations with an initial
condition which is a fairly good approximation to the solu-

tion, both nearj̃=0 and foruj̃u→`. The amplitudeAkink and
width w are determined by matching the approximate tanh-
kink solution to the one obtained numerically from Eqs.s12d.
The comparison is shown in Fig. 2 where the dashed curve
represents the tanh approximation.

In Fig. 1 the origin is a center point and nearby closed
trajectories are elliptic curves corresponding to linear oscil-
lating solutions. The dispersion relation for the linearized
Eqs. s1d–s3d, including the dampingG, lead to a refractive
index n given by f14g

n2 = c2 k2

v2 = «` +
b

1 − sv/v0d2 − igv/v0
. s13d

Here k is the wave number of the plane wave ansatzE
=E0e

iskx−vtd, with v being the frequency ofE. In the above
expressiong=G /v0 is a normalized damping. The real part
of the index of refraction, Refng, is shown as function of
v /v0 in Fig. 3sad. In Fig. 3sbd we show the imaginary part
k=Imfng of n as function ofv /v0, which is the absorption
line. Rather arbitrarily we have choseng=0.1. For vanishing
damping the spectrum will show a forbidden gap in the fre-
quency interval corresponding to negative slope of the real
part of n in Fig. 3sad.

We can now investigate the transition from the above lin-
earized case to the nonlinear case by solving Eqs.s12d nu-
merically. The results are shown in Fig. 4. Usingṽ=0.6545,

the initial conditions(Ẽs0d ,Ỹs0d)=s0,Ỹ0d, and increasingỸ0,
the oscillating solutions progressively become more nonlin-
ear and hence different from the picture in Fig. 3. The oscil-
lation period increases and the frequency decreases. The fre-
quencies of the oscillations in the three figures areva/v0
=0.930,vb/v0=0.571, andvc/v0=0.307, respectively, and
the resonance frequency of the linearized system isv0
=2.87310−2. Comparing with Fig. 3sad it is observed that as
the oscillation amplitude increases, the frequency moves
away from the resonance case close tov0 leading to a sub-
stantial decrease of the absorption. Eventually, the solution
turns into a form close to a train of kink-antikink nonlinear
waves. In the phase plane plot this is a solution path follow-
ing closely the heteroclinic orbits within their closure. This
train of nonlinear solitary waves should be easy to obtain by
increasing the amplitude of an external driving electromag-
netic field.

FIG. 1. Phase plane flow pattern calculated numerically from
the scaled Eqs.s12d, using the parameters in Eq.s4d and ṽ
=0.6545.

FIG. 2. Solid curve: The kink solution,Ẽ versusj̃, calculated
numerically from the scaled Eqs.s12d. Dashed curve: The approxi-

mation Ẽsj̃d=Akinktanhfsj̃−239.2d /wg, Akink=5.7336310−2 and w
=32.32. The parameters are given in Eq.s4d and ṽ=0.6545.

FIG. 3. The real part Refng sad and the imaginary partk sbd of
the index of refractionn from Eq.s13d as function of the frequency
ratio v /v0. The normalized damping coefficient isg=0.1.
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Figure 5 shows a kink and antikink pair traveling in the
same direction. The reason for presenting a kink-antikink
pair is due to our use of periodic boundary conditions in the
numerical scheme, thereby allowing for simulating over long
time stretches in a small spatial area without using adaptive
grid generation. Only pairs of kinks and antikinks can satisfy
these boundary conditions. Other types of boundary condi-
tions could easily be imposed to handle single kinks but it
will require more extensive simulations. Initially the kinks
adjust their shape to the exact solution by shedding off linear
radiation waves. After a transient period the kinks attain the
shape given by the heteroclinic curves in Fig. 1. Our numeri-
cal simulations indicate that the kink shaped optical pulse is
stable.

In normalized units the kink rises fromẼ=−5.7336

310−2 sin physical units −9.5563107 V/md to Ẽ
= +5.7336310−2 within a space interval of length about
59.3, taking as the full width at half maximumsFWHMd of

Ỹ, the j̃ derivative of the electric field. From Eq.s11d this
corresponds to a physical distance of 28.8mm. The speed of
the traveling kink wave isṽ=0.6545 and the associated
physical wave speed becomesv=sc/Î«`dṽ=1.313108 m/s
fsee Eq.s11dg. Using the parameter values in Eq.s4d, the
change in the kink profile takes place within a time interval
of about 220 fs, measured as the FWHM for the spatial de-
rivative of the electric fieldssee Table Id.

In Table I we present two other cases with different non-
linearity parametera and plateau values of the electric field
E. The two first lines present results for a nonlinearity pa-
rameter a representative of a highly nonlinear polymer
f10,13g. The third line corresponds to fused silica. The width
of the kink decreases as the electric field increases and the
nonlinearity increases, which is to be expected.

IV. SUMMARY

The vector Maxwell equations coupled to a single Lorentz
oscillator with instantaneous Kerr nonlinearity possess a kink
shaped traveling wave solution. Numerical simulations of
initial conditions perturbed from the exact solution indicate
that the kink solution is stable. Starting from linear oscillat-
ing plane waves and increasing the amplitude, the solution

TABLE I. The full width at half maximum ofỸ for kinks in materials with different nonlinearity param-
etersa and for different electric field strengthsE splateau valued. The physical kink velocity is denotedv and
the normalized velocity is denotedṽ. The value of the nonlinearity parametera in the first two lines is
representative for a highly nonlinear polymer. In the third line thea value is representative for fused silica.

a v ṽ snormalizedd E E snormalizedd FWHM

sm2/V2d sm/sd F sV/md F sfsd

2.7310−19 1.313108 0.6545 9.563107 5.73310−2 220

2.7310−19 1.203108 0.60 1.923109 1.15 15.2

1.03310−22 1.303108 0.65 2.7131010 0.317 38.6

FIG. 4. Numerical solutions of Eqs.s12d. sad Oscillating waves

corresponding to the nearly linear case starting from(Ẽs0d ,Ỹs0d)
=s0,0.001d. sbd Initial conditions(Ẽs0d ,Ỹs0d)=s0,0.001 75d. scd A
solution close to a train of kink-antikinks using the initial conditions

(Ẽs0d ,Ỹs0d)=s0,0.001 774 36d. ṽ=0.6545.E and t in the figure la-

bels refer to the scaled variablesẼ and t̃.

FIG. 5. A traveling kink and antikink wave, forming a square-
like pulse, using the parameter values in Eq.s4d. The initial data for

the kink are Ẽsz̃,0d=Akink tanhfsz̃−z1d /wg where Akink=5.7336
310−2, w=32.32,ṽ=0.6545, andz1=400. For the antikink we used
Akink=−5.7336310−2, w=32.32,ṽ=0.6545, andz1=800.E, z, andt

in the figure labels refer to the scaled variablesẼ, z̃, and t̃.
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will become close to a train of kinks and antikinks with a
frequency converging toward zero. This approach indicates
that it should be experimentally easy to obtain the sequence
of wave patterns close to kinks and antikinks. From known
material parameters of silica and polymersf10,13g, we point
to the possible physical realization of such a train, so far
without taken into account wave guiding effects, spatially
nonlocal effects, and Raman scattering. The kink solution in
its nature is related to nonlinear localized optical pulses as
described in Refs.f6–8g.
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