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We derive a theory for transmission through disordered finite superlattices in which the interface roughness
scattering is treated by disorder averaging. This procedure permits efficient calculation of the transmission
through samples with large cross sections. These calculations can be performed utilizing either the Keldysh or
the Landauer-Bu¨ttiker transmission formalisms, both of which yield identical equations. For energies close to
the lowest miniband, we demonstrate the accuracy of the computationally efficient Wannier-function approxi-
mation. Our calculations indicate that the transmission is strongly affected by interface roughness and that
information about scale and size of the imperfections can be obtained from transmission data.
@S0163-1829~99!01946-3#

I. INTRODUCTION

Semiconductor superlattices continue to attract substantial
interest both among fundamental and applied researchers.
One motivating factor is the possibility of tailoring the mini-
band structure1–3 for device purposes. Furthermore, a large
variety of other physical phenomena such as the formation of
Wannier-Stark ladders,4 negative differential conductance,5

and Bloch oscillations6 can be observed in superlattices.
The presence of minibands has been probed directly by

investigating the transmission of ballistic electrons through
short semiconductor superlattices.7,8 In recent experiments
the quenching of the miniband structure by an applied elec-
tric field was also demonstrated.9 Comparison of further ex-
periments with theoretical calculations indicated a strong in-
fluence of scattering on the transmission, and it was argued
that interface roughness might cause significant deviations
from pure ballistic transmission through the sample.10,11

A good understanding of the transmission characteristics
through short superlattices is important as these structures
are used as energy filters. For example, in quantum cascade
lasers, superlattice filters are used to selectively populate the
upper energy level of the active region.12 The most straight-
forward way to calculate the transmission through a super-
lattice is the transfer-matrix method.13 Alternatively, the
Schrödinger equation of the superlattice can be solved di-
rectly. These methods typically assume homogeneity in the
direction perpendicular@the (x,y) plane# to the superlattice.
The momenta in the (x,y) plane are then good quantum
numbers and decouple from the superlattice direction, reduc-
ing the problem to a one-dimensional calculation; see, e.g.,
Ref. 14. The one-dimensional calculation can handle
fluctuations15 in the well or barrier thickness. However, real
samples also exhibit a lack of periodicity in the (x,y) plane
due to the presence of impurities and interface roughness.
This can change the transport properties essentially, as the
states with different parallel momenta couple to each other.
This (x,y) plane inhomogeneity can be tackled by solving

the Schro¨dinger equation on a mesh for the full three dimen-
sional structure.16 Alternatively, the method of Green func-
tions, based on Ref. 17, may be used~see Ref. 18 for an
easily accessible presentation of the method!. Recently such
an approach has been presented for a full calculation of the
current through a resonant tunneling diode where both inter-
face roughness and phonon scattering have been taken into
account.19 However, these simulations use a fine grid and are
hence unsuitable for longer structures such as superlattices
consisting of many wells, since the number of grid points
increases dramatically.

In this paper we propose a method for such calculations
which significantly reduces the computational complexity.
We treat the inhomogeneity in the (x,y) plane by averaging
over disorder configurations. The number of grid points in
the z direction is reduced significantly by restricting to the
basis set to the Wannier functions localized in the wells. This
Wannier approximation is shown to be valid near the reso-
nance condition if the energy gap between the minibands is
large compared to the bias and the widths of the minibands
themselves. We compare our results to calculations on a fi-
nite grid and find good agreement. Our method has the ad-
vantage that it corresponds to infinitely large cross sections
and hence, unlike the finite-grid calculations, does not show
configuration dependent fluctuations.

The paper is organized as follows. We present the general
model within which our calculations are performed in Sec.
II. In Sec. III, we describe the approximations which allow
us to perform practical calculations of extended superlattice
structures. Our results are presented in Sec. IV and we con-
clude with a summary. Appendix A shows the equivalence
of the Landauer-Bu¨ttiker transmission formalism with the
approach by nonequilibrium Green functions for the case of
impurity averaging. In Appendix B we justify the approxi-
mations used in Sec. III. As many different symbols appear
in this paper, for easy reference we display the frequently
used ones in Table I.
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II. GENERAL FORMALISM

In this paper, we study transport through a superlattice
contacted to external voltage sources via leads. We model
the superlattice as an active central region coupled to nonin-
teracting lead regions. This is the general approach described
in Refs. 17, 18, 20, 21, and 22. In this section we briefly
review this approach, introduce our notation, and discuss the
issue of impurity averaging.

We divide the sample into a central region C and lead
regions, indexed byl. The Hamiltonian is

Ĥ5ĤC1(
l

Ĥ l1Ĥ lC1Ĥ lC
† . ~1!

Here ĤC and Ĥ l are the terms for the central structure and
leads, respectively, andĤ lC is the coupling term from the
center to the leadl. In this paper, we ignore electron-electron
interactions beyond Hartree so all the above terms are single-
particle-like.

The central structure has states with the wave function
fC, j (rW), where j is the eigenstate index. We assume that
each leadl is disorder-free so that the eigenstates can be
separated into transverse and longitudinal parts,f laq(rW)
5x la(r )wq

l (z), wherez is the spatial coordinate in the direc-
tion towards the central structure andr is a two-dimensional
vector perpendicular toz. The indexa numbers the modes
within a given lead. The indexq denotes the behavior far
away from the central region wherewq

l (z);eiqz is assumed.

A. Green functions and current through structure

The current through a structure can be determined by the
Green function of the structurein the presence of coupling to
the leads, given by a matrixG with matrix elements

Gi j
,~ t,t8!5 i ^ ĉ j

†~ t8!ĉi~ t !&, ~2a!

Gi j

ret
adv~ t,t8!57 i ^$ĉi~ t !,ĉ j

†~ t8!%&u@6~ t2t8!#. ~2b!

Here ĉi
†( ĉi) are fermion creation~annihilation! operators of

statesfC,i in the central region, and$ . . . , . . .% denote an-
ticommutators.

In the following we consider time-independent problems,
so thatG only depends ont2t8, and we work in energy-
space by Fourier transformingG with respect tot2t8. The
net current from modea in lead l into the structure is given
by20,22

Jla52
ie

\ E dE

2p
Tr„Gla~E!$G,~E!1 f la~E!

3@Gret~E!2Gadv~E!#%…. ~3!

Here f la(E) gives the occupation of a state with energyE in
leadl for the modea, e,0 is the charge of the electron, and
Gl ,a is a parameter describing the coupling between the
states in the central region and the leads@see Eq.~6! below#.
The factor of 2 is for spin.

To describe transmission through the superlattice, we
need to obtain expressions for the right-hand side of Eq.~3!.
We do so as follows. We first defineĤC,0 and ĤC8 , as the
ordered, solvable part and the disordered part of the central
region Hamiltonian, respectively, andĤC5ĤC,01ĤC8 . The
retarded Green function for the structure is determined by the
equation~see Ref. 22, Chap. 12!

S E2HC,02SC
ret2(

la
Sla

ret~E! DGret~E!51. ~4!

The termSC
ret is the irreducible self-energy due toĤC8 . In

cases whereĤC8 contains interparticle interactions,SC
ret is of-

ten very difficult to calculate; however, for static disorder,
simply SC

ret5HC8 . The term Sla
ret(E) gives the self-energy

contributions due to the coupling of the central region to lead
l and modea,

S la,i j
ret ~E!5(

q
^fC,i uĤ lC

† uf laq&^f laquĤ lCufC, j&glaq
ret ~E!

5
Ll

2pE0

`

dEq

2

\vq
^fC,i uĤ lC

† uf laq&

3^f laquĤ lCufC, j&glaq
ret ~E!, ~5!

TABLE I. Table of various symbols used in this paper.

l ,l 8 lead index
a,b sub-band index~in leads!
C central region
uf laq& state in leadl, subbanda with wave numberq
ufC,i& state in central region
i , j index of central region states
n,m index of quantum well
f la(E) distribution function of leadl, sub-banda
G Green function in central region~matrix with respect

to i , j or n,m)
S self-energy in central region
G i (Sret2Sadv)
ret,adv,, retarded, advanced, ‘‘, ’ ’ component of Keldysh

functions

Ḡ impurity average~in central region! of G

k wave vector in (x,y) plane~i.e., planei to
superlattice interfaces!

Eq ‘‘longitudinal’’ kinetic energy in lead\2q2/2m
~assumedl ,a independent!

Ela ‘‘transverse’’ kinetic energy of leadl, subbanda
Ea energy of middle of miniband in central region
vq longitudinal velocity of particle\q/m in lead
Ul applied potential in leadl
Ll length of leadl
Jla currentinto central region froml ,a
e charge of the electron (e,0)
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where we have taken the continuum limit(q

→Ll /2p*2`
` dq (Ll is the length of leadl ). The factor 2

results from the two possible values6q for a given energy
Eq , glaq

ret (E)51/(E2Eq2Ela1 i01) is the free-particle
Green function of the lead in absence of the central region,

Eq5\2q2/2m* , vq5\q/m* andEl ,a is the lateral energy of
the modea. Here m* is the effective electron mass. Note
thatGi j

adv(E)5@Gji
ret(E)#* , since we have a time-independent

system.
The coupling parameterGla is defined by

G la,i j ~E!5 i @S la,i j
ret ~E!2S la,i j

adv ~E!#

[
2Ll^fC,i uĤ lC

† uf laq(E2Ela)&^f laq(E2Ela)uĤ lCufC, j&

\vq(E2Ela)
Q~E2Ela!, ~6!

where q(E)5A2m* E/\. Q(x) is the Heaviside function
with Q(x)51 for x>0 and Q(x)50 for x,0. Note that
G la,i j (E)50 for E,Ela since there are no propagating
states into which the central-region states can tunnel.

G,(E) can be obtained by the Keldysh relation23

G,~E!5Gret~E!S,~E!Gadv~E!, ~7!

where

S,~E!5SC
,~E!1(

la
Sla

, ~E!. ~8!

Here,SC
, is the self-energy resulting from scattering inside

the structure. For a fixed disorder potential, this term is iden-
tically zero. The termSla

, (E) is the self-energy due to the
presence of the coupling to the leads,

S la,i j
, ~E!5(

q
^fC,i uĤ lC

† uf laq&^f laquĤ lCufC, j&glaq
, ~E!

5 iG la,i j ~E! f la~E!, ~9!

where we have usedglaq
, (E)522i f la(E)Im$glaq

ret (E)%, The
occupation functionf la(E) in lead l and is given by the
externally imposed conditions. Usually, the leads are as-
sumed to be in thermal equilibrium and hence a Fermi dis-
tribution with chemical potentialm l , independent ofa, is
used. In contrast, the different modes can be populated indi-
vidually by injection, as discussed later, so that we want to
keep the full functionf la(E).

B. Relation to the Landauer-Büttiker approach

The Landauer-Bu¨ttiker approach has been used exten-
sively to study transmission through mesoscopic structures,
and consequently many people are familiar with the formal-
ism. As the Keldysh formulation is not as widely known, in
this subsection we demonstrate the equivalence of the two
approaches for transport through a system with static disor-
der.

The retarded and advanced Green functions can be ex-
pressed in terms ofG via

Gret~E!2Gadv~E!52 iGret~E!G~E!Gadv~E!, ~10!

where the total scattering rateG has two contributions:

G~E!5 i @SC
ret~E!2SC

adv~E!#1(
la

Gla~E! ~11!

resulting from scattering inside the structure and transitions
into the leads. If the scattering within the structure itself is
purely elastic and is treated in a particular fixed configuration
as a potential in Eq.~4!, then SC

ret5HC8 and SC
,(E)50;

hence we may insert Eqs.~7! and ~10! into Eq. ~3! and find
the Landauer-Bu¨ttiker expression20,24

Jla52
e

\E dE

2p (
l 8b

Tla← l 8b~E!@ f la~E!2 f l 8b~E!# ~12!

~factor of 2 for spin! with the transmission matrix

Tla← l 8b~E!5Tr$Gla~E!Gret~E!Gl 8b~E!Gadv~E!%.
~13!

~There are several alternate ways to derive this result; e.g.,
Ref. 18 uses spatial discretization.! Note that Eq.~13! does
not hold if the scattering process is inelastic or the elastic
scattering by static disorder is described by a self-energy
obtained by configuration averaging. In both casesSC

,(E)
Þ0 in contrast to the assumption leading to Eq.~12!.

C. Impurity averaging

Equation~13! is exact for a given configuration of impu-
rities and roughness, i.e., for a specificHC8 . However, ob-
taining the transmission by simulating individual configura-
tions is not computationally efficient, and hence it is
advantageous to average over impurity configurations. In
particular, such a procedure reestablishes symmetries which
are broken by specific impurity configurations, thus simpli-
fying the calculation significantly.

After impurity averaging, we obtain

Ḡret~E!5FE1 i012HC,02S̄C
ret~E!2(

l
Sl

ret~E!G21

,

~14!

where the overlines indicate averages over disorder configu-
rations in the central region. Note that the disorder averaging
introduces nonzero self-energiesS̄C

ret(E) and S̄C
,(E). As

S̄C
,(E)Þ0 one cannot simply use Eq.~13! with the G’s re-
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placed byḠ. In order to describe configuration-averaged
elastic scattering within the transmission formalism, the av-
eraging must be performed for the total transmission matrix
in Eq. ~13!, and not just on the individualGret andGadv. This
procedure is similar to the calculation of bulk conductivities
using the Kubo formula, where it is crucial to include vertex
corrections which fulfill the Ward identity~see, e.g., Ref.
25!. We perform such a calculation in Appendix A for the
superlattice structure discussed in Sec. III. We use the self-
consistent Born approximation for the scattering and there-
fore the appropriate vertex function is the so-called ladder
approximation.

The application of the more general Keldysh approach to
calculate the current in the configuration averaged case is
more straightforward, in that onecan replace theG by Ḡ in
Eq. ~3!. Therefore, in order to evaluate the current, we need
Ḡ,(E) and Ḡret(E). The general iterative procedure for
computing these is as follows. First the self-energiesSl

ret(E)
and Sl

,(E) due to the leads are evaluated by Eqs.~5! and
~9!. As these terms are independent of disorder configura-
tion, these need only be evaluated once and then stored. With
S̄C

ret,, initially set equal to zero,Ḡ, andḠret are calculated.

TheseḠ’s are used to calculate theS̄C’s, via an appropriate
approximation scheme. The updatedS̄C’s are used to gener-
ate newḠ’s via Eqs.~7! and~14!, and the process is iterated
until convergence is achieved. Finally, the current is evalu-
ated with Eq.~3!.

In Appendix A we show explicitly that the ladder ap-
proximation for the vertex function in the transmission for-
mulation yields the same equations as the Keldysh approach
within the self-consistent Born approximation, demonstrat-
ing the equivalence of the two methods for impurity scatter-
ing. Nevertheless the Keldysh approach seems to be concep-
tually easier as there is only one place within this
formulation where an approximation is made; i.e., in the self-
energy. In contrast, with the transmission formalism, errors
can occur if the vertex function does not fulfill the Ward
identity, providing a pitfall to trap the uninitiated and un-
wary.

III. APPLICATION TO A SUPERLATTICE STRUCTURE

Let us consider the superlattice structure sketched sche-
matically in Fig. 1. The superlattice consists ofN identical
wells embedded inN11 barriers. A biasU is applied to the
structure yielding constant potentialsUL and UR5UL1eU

at the left and right contact, respectively. In order to perform
calculations we now specify the basis statesfC, j (rW) and
x la(r ) for our superlattice structure. The lead indexl takes
two different valuesL and R, for the left and right contact
region, respectively. For superlattices with a large cross sec-
tion A it is natural to use a basis of plane waveseik•r/AA for
the transverse coordinates (x,y) both in the lead regions and
in the superlattice itself. Then the indexa of the states in the
leads is replaced byk and we haveE(L/R,k)5Ek1UL/R ,
whereEk5\2k2/2m.

A. Wannier approximation for a superlattice

Let us now consider the central region; i.e., the superlat-
tice structure itself. In order to make a calculation tractable,
we restrict ourselves to a subset of the basis functions of total
Hilbert space, ignoring irrelevant high-energy states. With
respect to thez direction inside the superlattice we use a
basis of Wannier functionsCn(z) (n51, . . .N) from the
lowest miniband which are maximally localized in welln.26

Such a basis has been successfully applied to superlattice
transport.27 This approximation, which we call the Wannier
approximation~WA!, neglects higher minibands, and its va-
lidity is discussed in Appendix B. There we demonstrate that
this approximation gives good results for the transmission
probability provided that the miniband width is smaller than
the energy of the center of the miniband and the energy
range of interest is sufficiently below the levels correspond-
ing to the higher miniband states. The statesfC, j within the
superlattice are, within the WA, given by products
Cn(z)eik•r/AA, which can be labeled by (n,k).

Within the superlattice, the Green function is determined
by Eq. ~4! which in the WA basis reads

(
n8k8

F ~E2Ea2Ek2Un!dk,k8dn,n8

2Hnk,n8k82T1dk,k8~dn,n8111dn,n821!

2(
la

S la;nk,n8k8
ret

~E!GGn8k8,mk1

ret
~E!5dk,k1

dn,m .

~15!

Here, Un denotes the potential in the welln ~see Fig. 1!
which is due to an external bias.~The mean-field potential
induced by the carriers in the structure can be added as well.!
T1 is the coupling between the wells andEa is the level
energy of the Wannier state relative to the bottom of the
well. For a given structure, we calculateT1 and Ea as fol-
lows. We consider first an infinite superlattice of the same
composition. The eigenstates in the infinite superlattice are
Bloch functions with the miniband dispersionEa(q). Ea is
then identified as the center of the miniband
d/(2p)*dq Ea(q) and T15d/(2p)*dq Ea(q)cos(qd),
whered is the period of the superlattice;27 i.e., uT1u is about
one-fourth of the miniband width. Finally,Hnk,n8k8 is the
disorder scattering matrix element.

If we average over disorder configurations the transla-
tional invariance in the (x,y) plane is restored, and conse-
quently, all impurity-averaged quantities are diagonal ink
parallel to the (x,y) plane. Therefore we are able to use the

FIG. 1. Sketch of the structure considered. The energy levels are
indicated forEk50, which has to be added for finite parallel mo-
mentumk.
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notation Ḡnk,mk(E)[Ḡnm(k,E) and matricesG(k,E) and
S(k,E) have the componentsGnm(k,E) andSnm(k,E), re-
spectively.

B. Estimating the coupling and wide-band limit

The coupling with the modek in the left contact yields,
from Eq. ~5!, the self-energy

SLk;nk1 ,n8k2

ret
~E!

5dn,1dn8,1dk1 ,kdk2 ,k

3
1

2pE0

`

dEq

2LLuVqu2

\vq

1

E2Eq2Ek2UL1 i01
, ~16!

where Vq5^wq
L(z)uĤLCuC1(z)& is the z-dependent part of

the matrix element for the coupling to the leads. Here we
neglect the coupling to the inner wells (nÞ1), which should
be small. The right contact gives the same term except with
replacementsdn,1→dn,N andUL ,LL→UR ,LR .

If the transmission function is strongly determined by
resonances, only a small energy range ofE'Ea1UL1Ek
contributes to the transmission. In this range we neglect theq
dependence of the coupling and extend the lower limit of the
integration in Eq.~16! to 2`. Then we obtain for the left
lead

SLk;nk1 ,n8,k2

ret
~E!5dn,1dn8,1dk1 ,kdk2 ,k

2 i

2
GL ~17!

with

GL5
2LLuVq(Ea)u2

\vq(Ea)

. ~18!

This approximation is often referred to as wide-band limit.
Note that this limit becomes problematic if the voltage drop
across the first barrier becomes large, as this changes the
relevant values ofE and it cannot be regarded as constant
~see also Appendix B!.

Now we want to estimate the value ofuVqu2. For Eq

'Ea the wave functionwq
L(z) in the left lead behaves like

the Wannier functionC0(z)5C1(z1d) which is localized
in a fictitious additional well on the left side of the structure.
Now wq

L(z) is normalized toLL while the spatial extension
of the Wannier function is given byweff , which should be
slightly larger than the well width, as the function penetrates
into the barriers. Therefore we may setwq

L(z)
;Aweff /LLC0(z). Then we can estimate the matrix element

^wq
LuHuC1&'Aweff

LL
^C0uHuC1&5Aweff

LL
T1 , ~19!

yielding

GL'
2weffT1

2

\vq(Ea)

. ~20!

For the right contact,GR is given by the same value.

C. Interface roughness

For ideal structures the potentialHnk,n8k8 in Eq. ~15! is
zero due to the translational invariance within the (x,y)
plane. However, interface fluctuations leading to well width
fluctuationsjn(r ) in real samples break this translational in-
variance. If interwell scattering and well-width correlations
between different wells can be neglected, the averaged
square of the scattering matrix element is given by28,29

^uHnk1p,n8ku2&5
K2

A
S~p!dn,n8 , ~21!

whereK is equal to the change of energydEa/dw per well
width fluctuation30 andS(p) is the Fourier transformation of
the well-width correlation function ^jn(r )jn(r 8)&5 f (r
2r 8) which is assumed to be independent of the well index.
The theory can be extended to accommodate interwell scat-
tering and well-width correlations between different wells
~which may result from a repetition of the microscopic inter-
face structure over several superlattice periods! by the inclu-
sion of the appropriate correlation functions
^Hn1k2p,n

18kHn2k1p,n
28k&. We use an isotropic exponential

distribution f (r )5h2exp(2r/l) yielding

S~p!5h2l2
2p

@11~pl!2#3/2
, ~22!

whereh denotes the standard deviation andl the in-plane
correlation length of the well-width fluctuation. It is straight-
forward to implement more sophisticated distribution func-
tions, which might be obtained from Monte Carlo simula-
tions of the growth conditions~see, e.g., Ref. 31! or x-ray
characterizations of the superlattice structure~see, e.g., Ref.
32!. Within the self-consistent Born approximation we ob-
tain the self energyS̄C ,

S̄C;nn
,/ret~k,E!5(

k8
^uHk8,ku2&Ḡnn

,/ret~k8,E! ~23!

which provides the functional needed in the procedure
sketched in Sec. II C.

IV. RESULTS

Let us consider the transmission of ballistic electrons
through the superlattices considered in recent experiments by
Rauchet al.8 The structure consists ofN wells of 6.5-nm
GaAs andN11 barriers of 2.5-nm Al0.3Ga0.7As. We obtain
the band parametersEa554.5 meV, T1525.84 meV, K
513.25 meV/nm and useweff510.7 nm, where we obtained
the best agreement with ‘‘exact’’ calculations; see Appendix
B. This value is somewhat larger than the well width in good
agreement with the discussion in Sec. III B. We assume
thickness fluctuations of half a monolayerh50.14 nm
around the nominal value and a correlation lengthl
55 nm, unless otherwise stated.

Motivated by the relatively sharp electron distribution in-
jected into the structure, we assume that the electrons occupy
the modek50 of the left contact at an energyE5Ein ; i.e.,
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we havef Lk(E)5dk,0d(E2Ein) and f Rk(E)50. The total
current through the right contact is then given by

JR5(
k

JR k52
e

p\ (
k
E dE Tr$2 i GRk~E!G,~E!%.

~24!

This can be expressed via Eq.~12! by

JR52
e

p\ (
k

T(R,k)←(L,0)~Ein!. ~25!

For illustrative purpose we calculate the effective transmis-
sion T(Ein)52JRp\/e in the following. Regarding the ap-
plied bias we assume a homogeneous electric fieldF inside
the superlattice and setUL50, Un52(n21/2)eFd
2eFb/2 andUR52NeFd2eFb5eU whereb is the bar-
rier width. In the experiments considered, there is no charge
accumulation inside the structure as there is on average less
than one electron inside the structure at a given time. If nec-
essary such effects can be easily taken into account by solv-
ing the Poisson equation for the electron density given by

Nn5
2 i

2pA (
k
E dEḠnn

, ~k,E!. ~26!

In Fig. 2 we show the effective transmission with and
without scattering. In both cases we find a series of peaks,
equal to the number of quantum wells, which reflect the
eigenstates of the superlattice structure. ForU50 the peak

maxima reach the value 1 for the ideal superlattice. The
broadening of these peaks results from the coupling to the
leads and is of the order (GR1GL)/N. In contrast the
maxima are lower and the widths are wider for the calcula-
tion including scattering. These effects becomes more pro-
nounced with increasing superlattice length as the broaden-
ing due to scattering dominates with respect to the lead
induced broadening.

An important quantity is the integrated transmission for a
given potential dropU

Tint~U !5E dEinT~Ein ;U !, ~27!

where the integration is extended over the whole energy
range of the band. This quantity was measured in Refs. 8 and
10. Results are shown in Fig. 3. Let us compare the result of
the calculations with~full line! and without roughness~dot-
ted line! first. Without interface roughness, the function
Tint(U) is always symmetric with respect toU. This can be
understood from the symmetry property of the transmission
matrix Tla← l 8b(E)5Tl 8b← la(E) ~see, e.g., Ref. 18!. For an
ideal structure,k is conserved within the structure and we
find according to Eq.~25!

FIG. 2. Transmission through superlattices for different lengths
and biases: The full line depicts the transmission calculated from
Eq. ~24! for a superlattice structure with interface roughness. The
dotted line gives the transmission for an ideal superlattice without
scattering.

FIG. 3. Integrated transmission from Eq.~27! through superlat-
tices for different lengths: The full line depicts the transmission
calculated from Eq.~24! for a superlattice structure with interface
roughness. The dashed line denotes the part of transmission without
scattering. The dotted line gives the result for an ideal superlattice
without scattering for comparison. The crosses and diamonds give
the results calculated for the same structure within the model of
Ref. 11 for two different realizations of the interface roughness.
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Tint~U !5E dEin(
k

T(R,k)←(L,0)~Ein ;U !

5E dEinT(R,0)←(L,0)~Ein ;U !

5E dEinT(L,0)←(R,0)~Ein ;U !. ~28!

Now T(L,0)←(R,0)(Ein ;U)5T(R,0)←(L,0)(Ein1eU;2U) due
to the symmetry of the structure and so we findTint(U)
5Tint(2U).

This argument does not hold for a superlattice with inter-
face roughness as the scattering is able to transfer electrons
from statek50, where they are injected to a finite value of
k. In this case kinetic energyEk is transferred to the (x,y)
direction and the electrons leave the superlattice with a lower
z component of the energyEq . This opens up new channels
for new processes ifU.0; see also the discussion in Ref.
11. Therefore the functionTint(U) is asymmetric with re-
spect to the biasU as can be clearly seen in Fig. 3~full line!.
These findings are in excellent agreement with recent
measurements.10

In Fig. 3 we have also shown the transmission due to
electrons traversing the superlattice without scattering
~dashed line!. This curve is obtained by neglecting the term
SC

,(E) in Eq. ~8!. It can be clearly seen that this curve is
symmetric with respect to the bias and its magnitude is de-
creasing with increasing sample length.

An alternative way of calculating the transmission has
been performed in Refs. 11. There the Green functions were
calculated for a fixed interface potential following Ref. 16.
For practical reasons the size of the samples is relatively
small. The diamonds and crosses refer to two different ran-
dom interface potentials as shown in Fig. 4 which both have
approximately the same statistical features. The data ob-
tained for the transmission are not smooth forU.0 and
exhibit differences between each other. This indicates that
significantly larger areas than 10310 or 15315 grid points
must be used for reliable calculations utilizing this method,
which is not practicable. In contrast the method using impu-

rity averaging presented here gives a smooth behavior which,
in effect, averages the scattered data points obtained from the
previous calculations.

In Fig. 5~a! we have shown the integrated transmission for
different values of the correlation length for the roughness
distributions. In the range considered we find that the asym-
metry increases with the correlation length of the interface
roughness. This indicates that larger islands lead to an en-
hancement of scattering even if the average coverage is iden-
tical. The reason is that scattering events with low momen-
tum transfer is enhanced. Such scattering events dominate
the transport characteristics of the superlattice due to the en-
ergy scales involved in the system. Figure 5~b! shows the
increase of the asymmetry with the fluctuation height. The
strong dependence allows for an estimation of the interface
quality by analyzing the experimental transmission data.

V. SUMMARY AND CONCLUSIONS

We have presented a formalism to calculate the transmis-
sion of electrons through a finite superlattice in the presence
of scattering processes. Due to impurity averaging the results
are applicable to samples with large cross sections. We have
also shown that reasonable results can be obtained by re-
stricting the calculation to a basis of Wannier functions.
Within this Wannier approximation all couplings are well
defined and can be easily calculated from the superlattice
parameters, with the only slight ambiguity being the effec-
tive normalization widthweff , which is typically a few na-
nometers larger than the well width.

Although we have only presented results for interface
roughness scattering, the formalism is easily applicable to
other elastic scattering processes, such as impurity scattering,
as well. With regard to inelastic phonon scattering, the for-
malism holds as well if Langreth rules33,22 are taken into
account, which provide the more complicated functionals for
the retarded and lesser self-energies, see also Ref. 34. Nev-
ertheless, one encounters the problem that the Green func-
tions at different energies couple to each other. Therefore the

FIG. 4. Two different realizations of interface structure used
within the model of Ref. 11. The left one is used for the crosses and
the right one for the diamonds in Fig. 3. Here we show the distri-
bution of the second well, the other distributions have identical
statistical properties. The spatial discretization is assumed to be 5
nm. Both distribution give a spatial correlationŠ„j(r )
2^j(r )&…„j(r 8)2^j(r 8)&…‹'0.52 exp(2ur2r 8u/5 nm) within the
next two neighbors.@j(r ) denotes the local fluctuation.#

FIG. 5. Integrated transmission through superlattices with dif-
ferent correlation lengths~a! and different heights~b! of the inter-
face roughness.
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set of equations which has to be solved self-consistently be-
comes significantly larger. The inclusion of electron-electron
interaction within the mean-field model is straightforward.

Our results show that interface roughness gives an en-
hancement of the electron transmission for positive biases
applied to the superlattice. The shape of the integrated trans-
missions depends strongly on the distribution of the well
width fluctuations and allows us to study interface roughness
in semiconductor heterostructures. This provides a a comple-
mentary approach to the usual method of characterization by
luminescence spectra.
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APPENDIX A: IMPURITY AVERAGING

In this appendix we describe the procedure of disorder
averaging for the superlattice structure discussed in Sec. III.
The cross sectionA of typical superlattices is large enough
that the transmission fromL to R is given by the configura-
tional average of impurities. For the sake of transparency we
assume that the scattering matrix element is diagonal in the
well index and that the impurities are uncorrelated between
different wells. The inclusion of both effects is straightfor-
ward and the identities derived below hold in a similar way if
uU(k2k8)u2 is generalized to ^Un1n

18
(k2k8)Un2n

28
(k8

2k)&.

1. Transmission formulation

The formalism described here is similar to one used in
Ref. 35, except that that work was concerned with a resonant
tunneling device~i.e., one well in the structure!, and the scat-
tering was calculated only to lowest order. Hence only single
scattering events were included, whereas the formalism de-
scribed here takes multiscattering events into account. This is
important for superlattices, as it is unlikely for an electron to
pass through a relatively long structure with only one colli-
sion.

From Eqs.~13! and ~16!, the averaged transmission ma-
trix can be written

T̄Rk← l 1k1
~E!5GR,k~E!P~Nk,l 1k1 ;E! ~A1!

with

P~nk,l 1k1 ;E!5Gnk,n1( l 1)k1

ret ~E!G l 1k1
~E! Gn1( l 1)k1 ,nk

adv ~E!,

~A2!

where the overline denotes impurity averaging,l 15L or R,
and we definen1(L)51 and n1(R)5N. This problem is
analogous to the well-known case of impurity scattering in
bulk material ~see, e.g., Ref. 25!. The impurity averaging
introduces a self-energyS̄ ret/adv(k,E) to the Green functions
and, as in the bulk case, vertex corrections due to impurity
potential correlations betweenGret andGadv. Within the self-

consistent Born approximation, in addition to the impurity
contribution to the self-energy, one must keep the ladder
diagrams in the vertex.25

We assume that every well has the same uncorrelated ran-
domly distributed concentration of impurities with areal den-
sity nimp , and each impurity has a Fourier transformed po-
tential U(q). Within the self-consistent Born approximation
the retarded self-energy is diagonal within the well coordi-
natesn,m ~i.e., S̄C,nm

ret 5S̄C,n
ret dnm), and is given by

S̄C,n
ret ~k,E!5nimpE dk8

~2p!2
uU~k2k8!u2Ḡnn

ret~k8,E!.

~A3!

Higher-order approximations have been used in Ref. 36 for
the resonant tunneling diode. The impurity-averaged Green
function is obtained from Eq.~4!, and is explicitly given by

@Ḡret21
~k,E!#nm5@G0

ret21
~k,E!#nm2dnm@S̄C,n

ret ~k,E!

1SL
ret~k,E!dn11SR

ret~k,E!dnN#,

~A4!

wheren,m51, . . . ,N are the well coordinates. The ladder
approximation forP(nk,l 1k1 ;E) yields

P~nk,l 1k1 ;E!5Ḡnn1( l 1)
ret ~k,E!G l 1k~E!Ḡn1( l 1)n

adv ~k,E!dkk1

1 (
m51

N

nimpE dk8

~2p!2
uU~k2k8!u2

3Ḡnm
ret ~k,E!P~mk8,l 1k1 ;E!Ḡmn

adv~k,E!.

~A5!

This equation can be iterated to yieldP(nk,l 1k1 ;E). Note
here thatl 1k1 acts merely as a parameter. As we assume that
particles are injected from the left side into the superlattice
with zero transverse momentum, we need only calculate the
casel 15L andk150.

2. Keldysh formulation

For comparison, we give below the equations which arise
from the Keldysh formulation of this problem, within the
same approximations described above. The retarded Green
function is determined by Eqs.~A3! and~A4!, as in the pre-
vious subsection. In addition we have

S̄C,n
, ~k,E!5nimpE dk8

~2p!2
uU~k2k8!u2Ḡnn

, ~k8,E!.

~A6!

Together with Eqs.~7! and ~8! we obtain

Sn
,~k,E!5 i(

l
f lk~E!G lk~E!dnn1( l )

1nimp(
m

E dk8

~2p!2
uU~k2k8!u2

3Ḡnm
ret ~k8,E!Sm

,~k8,E!Ḡmn
adv~k8,E!. ~A7!

16 046 PRB 60ANDREAS WACKER AND BEN YU-KUANG HU



The numerical expense required to find the self-consistent
solutions for S,(k,E) and to solve for Eq.~A5! are the
same. The final evaluation of Ḡnn8

, (k,E)

5(mḠnm
ret (k,E)Sm

,(k,E)Ḡmn8
adv (k,E) is straightforward and

we can identify

i(
l 1k1

P~nk,l 1k1 ;E! f l 1k1
~E!5Ḡnn

, ~k,E!, ~A8!

as both sides are determined by an identical set of equations.
Similarly, one can show

2 i (
l 1k1

P~nk,l 1k1 ;E!5Ḡnn
ret~k,E!2Ḡnn

adv~k,E! ~A9!

by using the identity Ḡnn8
ret (k,E)2Ḡnn8

adv(k,E)5

2 i (mḠnm
ret (k,E)Gm(k,E)Ḡmn8

adv (k,E) where Gn(k,E)
5 i @Sn

ret(k,E)2Sn
adv(k,E)# satisfies an equation very much

like Eq. ~A7!. The identities Eqs.~A8! and ~A9! show that
the Landauer-Bu¨ttiker expression Eq.~12! with the averaged
transmission matrix Eq.~A1! is identical to the Keldysh for-
mulation result given by Eq.~3!. This explicitly demon-
strates the equivalence of the transmission and the Keldysh
approaches within the self-consistent Born approximation of
the scattering.

APPENDIX B: THE ACCURACY OF THE WANNIER AND
WIDE-BAND APPROXIMATION

In order to check the accuracy of both the Wannier ap-
proximation and the wide-band limit, we will compare our
results with a different approach. Calculations in real space
have been performed in Refs. 16–18 using a fine spatial
discretization of lengtha. In the limit a→0, these calcula-
tions in principle yield exact results. Unfortunately, these
approaches generate huge matrices, so that we restrict our-
selves to a one-dimensional structure and neglect the (x,y)
direction. This refers to an ideal superlattice, where thez and
(x,y) directions decouple. Numbering the discretization
points with indicesi the total Hamiltonian is then given by

Hi j 5Vid i , j1t i j ~B1!

with

t i j 52
\2

4a2 S 1

mi*
1

1

mj*
D for nearest neighbors,

~B2!

t i i 5
\2

a2mi*
, ~B3!

where a position dependent effective massmi* has been in-
cluded following Ref. 16. Now we assume that the sample is
translationally invariant in thez direction for discretization
pointsi ,0 andi .M and the coupling term in these regions
is t i ,i 615t,0. Then we may define the region 0< i<M as
the structure and the regionsi ,0 andi .M as leads within
the formalism given above. The solutions forj ,0 are plane
waves sin@qL(E)ja# and we have

E5UL12t@cos~qLa!21#. ~B4!

For UL.E this gives an imaginaryq corresponding to a
nonpropagating mode.@For a practical calculationutu should
be larger thanuE2ULu; otherwise Eq.~B4! does not repre-
sent the effective mass parabola for the leads.# Cutting of the
leads gives a self-energy~see Chap. 3.5 of Ref. 18!

S00
ret~E!5H t exp„i uqL~E!au… for E.UL

t exp„2ukL~E!au… for E,UL
, ~B5!

wherekL(E) is defined byE5UL12t@coshkL(E)a21# for
E,UL . Similar relations hold forj 5M with the mode from
the right contactR. Note that this expression is only valid if
the coupling from the lead to the central region is given by
the same elementt as used in the discretization of the lead
itself. The self-energy is added to the potential and we obtain
the matrix equation

FIG. 6. Transmission through ideal superlattices (N55) with-
out interface roughness.~a!–~c! and ~e!–~h!: Comparison between
the ‘‘exact’’ model with fine discretization~full line! and the Wan-
nier approximation~dashed line! for superlattices with five wells.
~d! Comparison of the integrated transmission for different super-
lattice lengths using fine discretization. The superlattice has GaAs
wells with widths of 6.5 nm~a!–~f! and 15 nm~g! and ~h!, and
Al0.3Ga0.7As barriers with widths of 2.5 nm~a!–~d! and 1 nm~e!–
~h!. The calculated parameters for the center of the minibandEa

and the couplingT1 ~about one-fourth of the miniband width! are
given on top of each graph.
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@Ed i , j 82Hi j 82S i j 8
ret

#Gj 8 j
ret

5d i , j ~B6!

which can be inverted to evaluate the Green function. Finally
the transmission is given by the Fisher-Lee relation,37 see
also Chap. 3.4 of Ref. 18:

TR,L54t2 sinuqL~E!ausinuqR~E!au uGM ,0
ret ~E!u2, ~B7!

which can be inserted in Eq.~12!.
For comparison we consider a superlattice withN55

wells of 6.5 nm GaAs and 6 barriers of 2.5 nm Al0.3Ga0.7As.
Then we obtain the band parametersEa554.5 meV andT1
525.84 meV. The transmission is shown as a function of
the injection energyEin for two different voltages in Figs.
6~a! and~b!. Here we useweff510.7 nm, where we obtained
the best agreement. This value is somewhat larger than the
well width in good agreement with the discussion in Sec.
III B. We see that the transmission function contains five
separate peaks which are related to the five states in the
superlattice. The agreement between the approaches is quite
good. If a bias is applied, the WA gives too high~low! trans-
missions for low~high! energies. The reason is the fact that
the transmission through a barrier increases with energy,
which is neglected in the WA. Preliminary results indicate
that the agreement can be improved significantly, if next-
nearest-neighbor couplings are included both in Eqs.~15!
and~16!. @In this case matrix elements likeSLk;1k,2k

ret (E) and
SLk;2k,2k

ret (E) have to be considered as well.#
The results for the integrated transmissionTint(U) are

shown in Fig. 6~c!. We find, that the WA gives good agree-
ment with the discrete model for the integrated transmission.
The agreement becomes even better if a larger barrier width
is used~not shown here!. In Fig. 6~d! we examine the length
dependence of the integrated transmission calculated within
the discrete model. We find that the functionTint(U) be-

comes almost independent ofN for largeN. The results from
the WA are almost indistinguishable and not shown here.
Note, thatTint(U) is a symmetric function with respect to
the bias, which can be shown analytically using the symme-
try properties of the transmission matrix, see Sec. IV.

In order to estimate the range of validity of the WA, we
have also considered different superlattices. By decreasing
the barrier width to 1 nm, we have generated a strong cou-
pling between the wells. Here the miniband width is slightly
larger than the center of the miniband. Best agreement be-
tween the approaches is found forweff513.5 nm. This value
is larger than the one obtained above as the Wannier func-
tions are less localized due to the small barrier width. As
shown in Figs. 6~e! and ~f! the results from the WA deviate
clearly from the ‘‘exact’’ result in this case.

Finally, we considered the case of a larger well width, 15
nm. The calculated miniband width (4T1) is about 75% of
the the center of the minibandEa. Nevertheless, the agree-
ment between both approaches is still satisfactory for low
biases, as shown in Fig. 6~g!. The second miniband extends
from 44.8 to 84.7 meV in this case. Its influence can be seen
in the integrated transmission, Fig. 6~h!. For uUu.0.024 V
the applied bias is larger than the gap between the lowest and
second miniband. Then the coupling between the bands be-
comes important and the integrated transmissionincreases
with bias for uUu.0.03 V for the calculation in the discrete
basis. Naturally this effect is not accounted for in the Wan-
nier approximation due to the restriction to the lowest mini-
band.

In conclusion, we find that the Wannier approximation
together with the wide-band limit from Secs. III A and III B
gives good results if the miniband width is smaller than the
energy of the center of the miniband and the applied bias is
smaller than the gap between the minibands.
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