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Theory of transmission through disordered superlattices

Andreas Wacker
Institut fir Theoretische Physik, Technische UnivertsBarlin, Hardenbergstrasse 36, 10623 Berlin, Germany

Ben Yu-Kuang Hu
Mikroelektronik Centret, Danmarks Tekniske Universitet, DK-2800 Lyngby, Denmark
and Department of Physics, 250 Buchtel Commons, University of Akron, Akron, Ohio 44325-4001
(Received 1 April 1999

We derive a theory for transmission through disordered finite superlattices in which the interface roughness
scattering is treated by disorder averaging. This procedure permits efficient calculation of the transmission
through samples with large cross sections. These calculations can be performed utilizing either the Keldysh or
the Landauer-Bttiker transmission formalisms, both of which yield identical equations. For energies close to
the lowest miniband, we demonstrate the accuracy of the computationally efficient Wannier-function approxi-
mation. Our calculations indicate that the transmission is strongly affected by interface roughness and that
information about scale and size of the imperfections can be obtained from transmission data.
[S0163-18299)01946-3

[. INTRODUCTION the Schrdinger equation on a mesh for the full three dimen-
sional structuré® Alternatively, the method of Green func-

Semiconductor superlattices continue to attract substantidions, based on Ref. 17, may be usege Ref. 18 for an
interest both among fundamental and applied researchersasily accessible presentation of the mejh&kcently such
One motivating factor is the possibility of tailoring the mini- an approach has been presented for a full calculation of the
band structurk for device purposes. Furthermore, a largecurrent through a resonant tunneling diode where both inter-
variety of other physical phenomena such as the formation oface roughness and phonon scattering have been taken into
Wannier-Stark laddersnegative differential conductanée, account® However, these simulations use a fine grid and are
and Bloch oscillatiorfscan be observed in superlattices.  hence unsuitable for longer structures such as superlattices

The presence of minibands has been probed directly b¥onsisting of many wells, since the number of grid points
investigating the transmission of ballistic electrons throughcreases dramatically.
short semiconductor superlattice$.In recent experiments In this paper we propose a method for such calculations

the quenching of the miniband structure by an applied elecypic significantly reduces the computational complexity.

trlc_ﬂeld twas.tﬁlfr? den:_onlstraltécf:(:_mparls(;)_n (:f (fjurth(:r €X- " We treat the inhomogeneity in the,§) plane by averaging
periments wi eoretica caicuiations Indicated a srong N, e gisorger configurations. The number of grid points in

fluence of scattering on the transmission, and it was argue T - i
. : S -2 e z direction is reduced significantly by restricting to the
that interface roughness might cause significant deviations ~ : : : . . .
asis set to the Wannier functions localized in the wells. This

from pure ballistic transmission through the sam3I&* . imation is sh 0 be valid h
A good understanding of the transmission characteristicg[vannler approximation 1S shown to be valid near the reso-

through short superlattices is important as these structurd@@nce condition if the energy gap between the minibands is
are used as energy filters. For example, in quantum cascadff9& compared to the bias and the widths of the minibands
lasers, superlattice filters are used to selectively populate tHB€mselves. We compare our results to calculations on a fi-
upper energy level of the active regiéhThe most straight-  Nite grid and find good agreement. Our method has the ad-
forward way to calculate the transmission through a supervantage that it corresponds to infinitely large cross sections
lattice is the transfer-matrix methdd. Alternatively, the and hence, unlike the finite-grid calculations, does not show
Schralinger equation of the superlattice can be solved di<onfiguration dependent fluctuations.

rectly. These methods typically assume homogeneity in the The paper is organized as follows. We present the general
direction perpendiculdithe (x,y) plang to the superlattice. model within which our calculations are performed in Sec.
The momenta in thexy) plane are then good quantum II. In Sec. lll, we describe the approximations which allow
numbers and decouple from the superlattice direction, reduass to perform practical calculations of extended superlattice
ing the problem to a one-dimensional calculation; see, e.gstructures. Our results are presented in Sec. IV and we con-
Ref. 14. The one-dimensional calculation can handleclude with a summary. Appendix A shows the equivalence
fluctuations® in the well or barrier thickness. However, real of the Landauer-Btiiker transmission formalism with the
samples also exhibit a lack of periodicity in the¥) plane  approach by nonequilibrium Green functions for the case of
due to the presence of impurities and interface roughnes&mpurity averaging. In Appendix B we justify the approxi-
This can change the transport properties essentially, as thmations used in Sec. Ill. As many different symbols appear
states with different parallel momenta couple to each otherin this paper, for easy reference we display the frequently
This (x,y) plane inhomogeneity can be tackled by solvingused ones in Table I.
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TABLE |. Table of various symbols used in this paper.

(NN
a,B

|¢Iaq>
lpc,i)
i
n,m
fi1o(E)
G

3
r

ret,adv<

lead index

sub-band indexin leads

central region

state in lead, subbandx with wave numbeig
state in central region

index of central region states

index of quantum well

distribution function of lead, sub-bandx

Green function in central regiofmatrix with respect
toi,j orn,m)

self-energy in central region

i(zret_ zad\/)

retarded, advanced, <’ component of Keldysh
functions

impurity averaggin central region of G

wave vector in ,y) plane(i.e., plane| to
superlattice interfaces

“longitudinal” kinetic energy in leadh2g?/2m
(assumed, « independent

“transverse” kinetic energy of leatl subbandx
energy of middle of miniband in central region
longitudinal velocity of particleig/m in lead
applied potential in leadl

length of lead

currentinto central region from,«

charge of the electrone&0)

Il. GENERAL FORMALISM
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A. Green functions and current through structure

The current through a structure can be determined by the
Green function of the structuie the presence of coupling to
the leads given by a matrixG with matrix elements

G (tt)=i(c/(t)ci(b), 23

ret

GaM,t) = Fi({Ci(),cf (1o =(t—t)].  (2b)

Here Ef(ﬁi) are fermion creatiorfannihilatior) operators of
states¢c; in the central region, anfl. . ., ...} denote an-
ticommutators.

In the following we consider time-independent problems,
so thatG only depends ori—t’, and we work in energy-
space by Fourier transforming with respect tat—t’. The
net current from moder in lead| into the structure is given

by20,22

ie (dE _
szﬂ ST (E){G(E) +f14(E)
X[G™(E)—G*ME)]}). )

Heref,,(E) gives the occupation of a state with eneigin
leadl| for the modex, €<0 is the charge of the electron, and
Il , is a parameter describing the coupling between the
states in the central region and the lepsle Eq(6) below].

The factor of 2 is for spin.

In this paper, we study transport through a superlattice To describe transmission through the superlattice, we
contacted to external voltage sources via leads. We modeleed to obtain expressions for the right-hand side of(8x.
the superlattice as an active central region coupled to noning/e do so as follows. We first defin%!c,o and ﬂé, as the
teracting lead regions. This is the general approach describeffdered, solvable part and the disordered part of the central
in Refs. 17, 18, 20, 21, and 22. In this section we b”eﬂyregion Hamiltonian, respectively, arﬁ’c:':'c,oﬂq'c- The

review this approach, introduce our notation, and discuss thF‘etarded Green function for the str

issue of impurity averaging.

We divide the sample into a central region C and lea

regions, indexed bY. The Hamiltonian is

A=Hc+> A+HAc+AL. (1)
|

de

ucture is determined by the
quation(see Ref. 22, Chap. 12

E—Hc,o—EEet—lE SI(E) |G®Y(E)=1. ()

The termX%' is the irreducible self-energy due fé(. In
ret

Here Hc andH, are the terms for the central structure andcases wherél(, contains interparticle interaction&' is of-
leads, respectively, anfl,c is the coupling term from the t€n very difficult to calculate; however, for static disorder,

ret__

center to the leatl In this paper, we ignore electron-electron SIMply 2¢'=H¢. The termX5(E) gives the self-energy

interactions beyond Hartree so all the above terms are singl&ontributions due to the coupling of the central region to lead

particle-like.
The central structure has states with the wave function

¢C'j(r*), wherej is the eigenstate index. We assume that R R

each lead is disorder-free so that the eigenstates can be [Zt,i,-(E)=§ (il Hicl d1aq) Dragl Hicl dc ) Oog(E)

separated into transverse and longitudinal pamﬁlq(F)

=)(|a(r)golq(z), wherez is the spatial coordinate in the direc-
tion towards the central structure ands a two-dimensional
vector perpendicular ta. The indexa numbers the modes
within a given lead. The indexg denotes the behavior far
away from the central region whegaé](z)fveiqZ is assumed.

| and modex,

L| * 2 ~t
:Efo quﬁ_Vq<¢C,i|HIC|¢Iaq>

X{PaglFicl de, ) aeg(E), (5)
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where we have taken the continuum limi, Eq:h2q2/2m*, vqy="hg/m* andE, , is the lateral energy of
—L/27f~ dqg (L, is the length of lead). The factor 2 the modea. Herem* is the effective electron mass. Note
results from the two possible valuesq for a given energy thath}d"(E)z[GJT?‘(E)]*, since we have a time-independent
Eq. Oi%g(E)=1(E—E,—E,+i0") is the free-particle ~system.

Green function of the lead in absence of the central region, The coupling parametdr,, is defined by

|
Ty (E)=i[3[% (E) =2 (E)]

B 2L (bl Alcl brage-g, ) Prage—, ) Hicl be )

O(E-E,), (6)
hvqe-g,)
|
where q(&£)=+2m*&lfh. O(x) is the Heaviside function )
with ®(x)=1 for x=0 and®(x)=0 for x<0. Note that F(E):'[E[:et(E)_zgdv(E)H% I'a(E) (11
I'.,j(E)=0 for E<E, since there are no propagating
states into which the central-region states can tunnel. resulting from scattering inside the structure and transitions
G=(E) can be obtained by the Keldysh relatidn into the leads. If the scattering within the structure itself is
_ o _ ady purely elastic and is treated in a particular fixed configuration
G™(E)=G™{(E)X~(E)G*(E), D asa potential in Eq(4), then F'=H{ and X(E)=0;
where hence we may"in_sert Eq67) and (:ZLO) into Eq. (3) and find
the Landauer-Biiker expressioff-?*
TUE)=3c(B)+ X I (B). ® e(d

E
3a=25 | 5= 2 Tiae 1B i(E) = fiig(E)] (12)
Here, 3¢ is the self-energy resulting from scattering inside e
the structure. For a fixed disorder potential, this term is iden{factor of 2 for spin with the transmission matrix

tically zero. The tern,,(E) is the self-energy due to the

presence of the coupling to the leads, Tiac1/g(E)=THI| (E)G™(E)I: 4(E)G*ME)}. 13
13
3o (B)=2 (beil Al draq) Bragl Ficl de ) Orag(E) (There are several alternate ways to derive this result; e.g.,
q Ref. 18 uses spatial discretizatipiNote that Eq.(13) does
=T 45 (E)fo(E), (9) not hold if the scattering process is inelastic or the elastic

scattering by static disorder is described by a self-energy
where we have usegf,,(E) = —2if,,(E)Im{g{5,(E)}, The  obtained by configuration averaging. In both caZgyE)
occupation functionf,,(E) in lead | and is given by the #0 in contrast to the assumption leading to Etp).
externally imposed conditions. Usually, the leads are as-
sumed to be in thermal equilibrium and hence a Fermi dis- C. Impurity averaging
tribution with chemical potentiak,, independent ofy, is ] ) ] ) ) ]
used. In contrast, the different modes can be populated indi- Eduation(13) is exact for a given configuration of impu-

vidually by injection, as discussed later, so that we want tdities and roughness, i.e., for a specifi. However, ob-
keep the full functiorf, ,(E). taining the transmission by simulating individual configura-

tions is not computationally efficient, and hence it is
advantageous to average over impurity configurations. In
particular, such a procedure reestablishes symmetries which

~ The Landauer-Bitiker approach has been used exten-are broken by specific impurity configurations, thus simpli-
sively to study transmission through mesoscopic structuresying the calculation significantly.

and consequently many people are familiar with the formal-  After impurity averaging, we obtain
ism. As the Keldysh formulation is not as widely known, in
this subsection we demonstrate the equivalence of the two __ _ -1
approaches for transport through a system with static disor- G™(E)=|E+i0" —Hco— 2[?‘(E)—2| SNE)|
der.

The retarded and advanced Green functions can be ex-
pressed in terms df via where the overlines indicate averages over disorder configu-
rations in the central region. Note that the disorder averaging

introduces nonzero self-energi@S(E) and 3S(E). As
where the total scattering raté has two contributions: 3.5 (E)#0 one cannot simply use E(L3) with the G’s re-

B. Relation to the Landauer-Bittiker approach

(14)

G'™{(E)— G™*E)=—iG"®{E)['(E)G*E), (10)
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at the left and right contact, respectively. In order to perform

calculations we now specify the basis stage(z,;,j(rﬁ) and
X1(r) for our superlattice structure. The lead indetakes
two different valued. and R, for the left and right contact
region, respectively. For superlattices with a large cross sec-
tion A it is natural to use a basis of plane wae¥s'/\/A for
the transverse coordinates,y) both in the lead regions and
in the superlattice itself. Then the indexof the states in the
leads is replaced bk and we haveE g y=Ex+Uyr,

FIG. 1. Sketch of the structure considered. The energy levels ar@here E, = 7 2k?/2m.
indicated forE,=0, which has to be added for finite parallel mo-
mentumk.

A. Wannier approximation for a superlattice

— , , , Let us now consider the central region; i.e., the superlat-
placed byG. In order to describe configuration-averagedyice structure itself. In order to make a calculation tractable,
elastic scattering within the transmission formalism, the avyye restrict ourselves to a subset of the basis functions of total

eraging must be performed for the total transmission Matrixjjjpert space, ignoring irrelevant high-energy states. With
in Eq. (13), and not just on the individu&™ andG*™. This ~ respect to thez direction inside the superlattice we use a
procedure is similar to the calculation of bulk conductivities y5sis of Wannier functiond’ (z) (n=1, ...N) from the

using the Kubo formula, where it is crucial to include vertexgwest miniband which are maximally localized in welP®

corrections which fulfill the Ward identitysee, e.g., Ref. gch a basis has been successfully applied to superlattice
25). We perform such a calculation in Appendix A for the yanspor” This approximation, which we call the Wannier
superlattice structure discussed in Sec. Ill. We use the sel ipproximation(WA), neglects higher minibands, and its va-
consistent Born approximation for the scattering and thereygity s discussed in Appendix B. There we demonstrate that
fore the appropriate vertex function is the so-called laddegyis™ approximation gives good results for the transmission
approximation. probability provided that the miniband width is smaller than
The application of the more general Keldysh approach t4ne energy of the center of the miniband and the energy
calculate the current in the configuration averaged case ignge of interest is sufficiently below the levels correspond-
more straightforward, in that oneanreplace theG by G in  ing to the higher miniband states. The stafes; within the
Eq. 3. There_fore, in order to evaluate the current, we needuperlattice are, within the WA, given by products
G=<(E) and G™{(E). The general iterative procedure for ¥,(z)e'*"/\/A, which can be labeled byn(k).
computing these is as follows. First the self-ener@iE) Within the superlattice, the Green function is determined
and 3" (E) due to the leads are evaluated by E@®.and by Eq.(4) which in the WA basis reads
(9). As these terms are independent of disorder configura-

tion, these need only be evaluated once and then stored. With z [(E— E2—E,—U.) 8 6
n k’“n,n’

S°4< jnitially set equal to zeroG= andG'™! are calculated. V!

TheseQ s a.re used to calculate tf¥&:'s, via an appropriate ~Hunrkr = T18ckr (Bnnr s 1+ Snnr—1)
approximation scheme. The updaf&d’s are used to gener-

ate newG's via Eqgs.(7) and(14), and the process is iterated - e (E)|G™ (E)= 68 1. Onm-
until convergence is achieved. Finally, the current is evalu- o lankn’k n'k’.miy Kl mm

ated with Eq.(3). (15)

In Appendix A we show explicitly that the ladder ap-
proximation for the vertex function in the transmission for- Here, U, denotes the potential in the well (see Fig. 1
mulation yields the same equations as the Keldysh approackhich is due to an external biaéThe mean-field potential
within the self-consistent Born approximation, demonstratinduced by the carriers in the structure can be added as well.
ing the equivalence of the two methods for impurity scatter-T, is the coupling between the wells ar&f is the level
ing. Nevertheless the Keldysh approach seems to be concegnergy of the Wannier state relative to the bottom of the
tually easier as there is only one place within thiswell. For a given structure, we calculafg and E? as fol-
formulation where an approximation is made; i.e., in the selffows. We consider first an infinite superlattice of the same
energy. In contrast, with the transmission formalism, errorgomposition. The eigenstates in the infinite superlattice are
can occur if the vertex function does not fulfill the Ward Bloch functions with the miniband dispersidf(q). E? is
identity, providing a pitfall to trap the uninitiated and un- then identified as the center of the miniband
wary. d/(2w)fdgE*q) and T;=d/(2#)[dqE*q)cosqd),
whered is the period of the superlattié;i.e.,|T,| is about
one-fourth of the miniband width. Finallyd ¢/ is the
disorder scattering matrix element.

Let us consider the superlattice structure sketched sche- If we average over disorder configurations the transla-
matically in Fig. 1. The superlattice consists Mfidentical tional invariance in thex,y) plane is restored, and conse-
wells embedded ilN+ 1 barriers. A biadJ is applied to the quently, all impurity-averaged quantities are diagonakin
structure yielding constant potentidly andUg=U +eU  parallel to the k,y) plane. Therefore we are able to use the

Ill. APPLICATION TO A SUPERLATTICE STRUCTURE
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notation G mk(E)=Gnm(k,E) and matricesG(k,E) and C. Interface roughness
3(k,E) have the componen,(k,E) andX ,(k,E), re- For ideal structures the potentibll, /s in Eq. (15) is
spectively. zero due to the translational invariance within they
plane. However, interface fluctuations leading to well width
B. Estimating the coupling and wide-band limit fluctuationsé,(r) in real samples break this translational in-

variance. If interwell scattering and well-width correlations
between different wells can be neglected, the averaged
square of the scattering matrix element is giveReBY

The coupling with the modé& in the left contact yields,
from Eq. (5), the self-energy

ret
Lk;nkl,n’kz(E)

K2
<|an+p,n’k|2>zrs(p)5n,n' ) (21)

5n,15n’,15k1,k5k2,k
whereK is equal to the change of energf?/dw per well

1 (= 2L |V, 1 width fluctuatiori® and S(p) is the Fourier transformation of
o dE, - g —, (16) the well-width correlation function{&,(r)&.(r'))=1(r
mJo Vg E-Eq—Ex—U_+i0 —r') which is assumed to be independent of the well index.

Where Vo= () RycV.(2)  the zependent part or [ 0T can be etended to accommodate ervel st
the matrix element for the coupling to the leads. Here We(Whig]h may result from a repetition of the microscopic inter-
neglect the coupling to the inner wells£ 1), which should Y P P

be small. The right contact gives the same term except Witﬁace structure over several superlattice peridgsthe inclu-

replacementss, — o, andUy L —Ug,Lg. sion of the appropriate correlation  functions

If the transmission function is strongly determined by<|__|”1."*P'I”ikH”zk+Pvnék>' we use an isotropic exponential
resonances, only a small energy rangeEe¢E2+ U, +E,  distributionf(r)=n“exp(-r/)) yielding
contributes to the transmission. In this range we negleat the

dependence of the coupling and extend the lower limit of the 20
integration in Eq.(16) to —. Then we obtain for the left S(p)= PN———, (22)
lead [l+(p)\)2]3/2

o i where 5 denotes the standard deviation andhe in-plane
Lk;nkl,n’,kz(E): 5n,15n,,15k1,k5k2'k71“,_ a7 correlation !ength of the weII-W|dth fl_uctuatlon. I_t is stralght—
forward to implement more sophisticated distribution func-
with tions, which might be obtained from Monte Carlo simula-
tions of the growth conditionssee, e.g., Ref. 31or x-ray
2L|_|Vq(Ea)|2 characterizations of the superlattice struct(see, e.g., Ref.
-, (18) 32). Within the self-consistent Born approximation we ob-

tain the self energ)Z}_C ,

- ﬁVq(Ea)

This approximation is often referred to as wide-band limit.
Note that this limit becomes problematic if the voltage drop
across the first barrier t_)ecomes large, as this changes the Eélrﬁt(k,E):E <|Hk’,k|2> n<r/|ret(kr7E) (23)
relevant values oE and it cannot be regarded as constant K
(see also Appendix B

Now we want to estimate the value ¢¥,%. For E,
~E? the wave functiongo'a(z) in the left lead behaves like
the Wannier functiontV'o(z) =W ,(z+d) which is localized
in a fictitious additional well on the left side of the structure. IV. RESULTS

L . . . . .
Now ¢q(2) is normalized tol while the spatial extension Let us consider the transmission of ballistic electrons

of the Wannier function is given by, which should be  hrygh the superlattices considered in recent experiments by
slightly larger than the well width, as the function penetratesy 5 ,chet al® The structure consists dff wells of 6.5-nm
. . L . .
into_the barriers. Therefore we may sepq(z)  GaAs andN+1 barriers of 2.5-nm AlsGa, -As. We obtain
~ VWert/L Wo(2). Then we can estimate the matrix elementthe pand parameter§?=54.5 meV, T,=—5.84 meV, K
=13.25 meV/nm and use4=10.7 nm, where we obtained
West Wett the best agreement with “exact” calculations; see Appendix
(pgIH|W )~ T (WolHIW)=~/7"T:, (19  B.This value is somewhat larger than the well width in good
agreement with the discussion in Sec. Il B. We assume

which provides the functional needed in the procedure
sketched in Sec. Il C.

yielding thickness fluctuations of half a monolayej=0.14 nm
around the nominal value and a correlation length
ZWeﬁTf =5 nm, unless otherwise stated.
L~ AVaen . (20) Motivated by the relatively sharp electron distribution in-

jected into the structure, we assume that the electrons occupy
For the right contactl' is given by the same value. the modek=0 of the left contact at an enerdy=E;,; i.e.,
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i U=0

Tint [meV]

Ty [meV]

Tint [meV]

|‘ —T T e 0
0.04 0.05 0.06 002 001 000 001 002
Ei, [eV] U[V]

FIG. 2. Transmission through superlattices for different lengths FIG. 3. Integrated transmission from E@Q7) through superlat-
and biases: The full line depicts the transmission calculated frontices for different lengths: The full line depicts the transmission
Eq. (24) for a superlattice structure with interface roughness. Thecalculated from Eq(24) for a superlattice structure with interface
dotted line gives the transmission for an ideal superlattice withoutoughness. The dashed line denotes the part of transmission without
scattering. scattering. The dotted line gives the result for an ideal superlattice
without scattering for comparison. The crosses and diamonds give

we havef | (E)= 6, o0(E—E;,) and fg(E)=0. The total the results calculated for the same structure within the model of

current through the right contact is then given by Ref. 11 for two different realizations of the interface roughness.
JRIZ JRk:_i 2 deTr{—iFRk(E)G<(E)}. maxima reach the value 1 for the ideal superlattice. The
K mh K broadening of these peaks results from the coupling to the

(24)  leads and is of the orderI'g+I'|)/N. In contrast the
This can be expressed via EG2) by maxima are lower and the widths are wider for the calcula-
tion including scattering. These effects becomes more pro-
e nounced with increasing superlattice length as the broaden-
=~ 2 TrRky—L,0(Ein)- (25  ing due to scattering dominates with respect to the lead
induced broadening.
For illustrative purpose we calculate the effective transmis- An important quantity is the integrated transmission for a
sion T(E;,) = —Jgrwhl/e in the following. Regarding the ap- given potential drofJ
plied bias we assume a homogeneous electric fieldside
the superlattice and setJ, =0, U,=-(n—1/2)eFd
—eFb/2 andUg=—NeFd-eFb=eU whereb is the bar-
rier width. In the experiments considered, there is no charge Tint(U):f dEiT(Ein;U), (27)
accumulation inside the structure as there is on average less
than one electron inside the structure at a given time. If nec-
essary such effects can be easily taken into account by solwhere the integration is extended over the whole energy

ing the Poisson equation for the electron density given by range of the band. This quantity was measured in Refs. 8 and
10. Results are shown in Fig. 3. Let us compare the result of

the calculations witHfull line) and without roughnes&lot-
Nn= 20A E JdEG (k,B). (26) ted ling first. Without interface roughness, the function
Ti(U) is always symmetric with respect td. This can be
In Fig. 2 we show the effective transmission with andunderstood from the symmetry property of the transmission
without scattering. In both cases we find a series of peaksnatrix Ty, s(E) =T, z_.(E) (see, e.g., Ref. 18For an
equal to the number of quantum wells, which reflect theideal structurek is conserved within the structure and we
eigenstates of the superlattice structure. Bet0 the peak find according to Eq(25)
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100110000000111 8N —
110111000111111 |N=10 1=0.14 nm
110100001011111
000111111000010
011111111000011
0010101111 000010110001111
0001111111 011111110000110
1000011010 001011111000101
1000001111 101011110000011
1100011100 110011111110001
0000001001 100001111000001
1101111100 000011000000101
1111111000 001100000110100
0111111000 000111000111100
0100010100 100011111111110
FIG. 4. Two different realizations of interface structure used
within the model of Ref. 11. The left one is used for the crosses and
the right one for the diamonds in Fig. 3. Here we show the distri- — 1=0.14nm
bution of the second well, the other distributions have identical 2: S ——m=0.2 nm
statistical properties. The spatial discretization is assumed to be 5 0 '(b)l e n|=0.2|8nml
nm. Both distribution give a spatial correlatior((£(r) 002 001 000 001 002

—(E(MN)ET )= (&(r"))))=~0.5 exp(=|r—r’|/5 nm) within the Uv]

next two neighbors.£(r) denotes the local fluctuation. FIG. 5. Integrated transmission through superlattices with dif-

ferent correlation length&) and different heightgb) of the inter-
Tint(U):f dEin; Tes- (Lo(EniU) face roughness.
rity averaging presented here gives a smooth behavior which,
in effect, averages the scattered data points obtained from the
previous calculations.
In Fig. 5(@) we have shown the integrated transmission for
:f dEnT(L.0—(r0)(Ein:U). (29) d?ffe_rent_ values of the correlati_on length f_or the roughness
distributions. In the range considered we find that the asym-
metry increases with the correlation length of the interface
Now T o) (r0)(Ein;U)=T(ro)—(,0(Eint€U;—U) due roughness. This indicates that larger islands lead to an en-
to the symmetry of the structure and so we filigi(U)  hancement of scattering even if the average coverage is iden-
=Ti(— V). tical. The reason is that scattering events with low momen-
This argument does not hold for a superlattice with intertum transfer is enhanced. Such scattering events dominate
face roughness as the scattering is able to transfer electrofise transport characteristics of the superlattice due to the en-
from statek=0, where they are injected to a finite value of ergy scales involved in the system. Figur@)5shows the
k. In this case kinetic energly, is transferred to thex(y) increase of the asymmetry with the fluctuation height. The
direction and the electrons leave the superlattice with a lowestrong dependence allows for an estimation of the interface
z component of the enerdy, . This opens up new channels quality by analyzing the experimental transmission data.
for new processes i) >0; see also the discussion in Ref.
11. Therefore the functiofM;,(U) is asymmetric with re-
spect to the biatl as can be clearly seen in Fig(f8ill line).
These findings are in excellent agreement with recent We have presented a formalism to calculate the transmis-
measurements. sion of electrons through a finite superlattice in the presence
In Fig. 3 we have also shown the transmission due tmf scattering processes. Due to impurity averaging the results
electrons traversing the superlattice without scatteringare applicable to samples with large cross sections. We have
(dashed ling This curve is obtained by neglecting the term also shown that reasonable results can be obtained by re-
3S(E) in Eq. (8). It can be clearly seen that this curve is stricting the calculation to a basis of Wannier functions.
symmetric with respect to the bias and its magnitude is deWithin this Wannier approximation all couplings are well
creasing with increasing sample length. defined and can be easily calculated from the superlattice
An alternative way of calculating the transmission hasparameters, with the only slight ambiguity being the effec-
been performed in Refs. 11. There the Green functions werve normalization widthw.;, which is typically a few na-
calculated for a fixed interface potential following Ref. 16. nometers larger than the well width.
For practical reasons the size of the samples is relatively Although we have only presented results for interface
small. The diamonds and crosses refer to two different ranroughness scattering, the formalism is easily applicable to
dom interface potentials as shown in Fig. 4 which both haveother elastic scattering processes, such as impurity scattering,
approximately the same statistical features. The data olms well. With regard to inelastic phonon scattering, the for-
tained for the transmission are not smooth for-0 and malism holds as well if Langreth ruf&s? are taken into
exhibit differences between each other. This indicates thaccount, which provide the more complicated functionals for
significantly larger areas than ¥@0 or 15<15 grid points the retarded and lesser self-energies, see also Ref. 34. Nev-
must be used for reliable calculations utilizing this method ertheless, one encounters the problem that the Green func-
which is not practicable. In contrast the method using impu+tions at different energies couple to each other. Therefore the

= f dEi T(r o) (L,0(Ein;U)

V. SUMMARY AND CONCLUSIONS
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set of equations which has to be solved self-consistently bezonsistent Born approximation, in addition to the impurity
comes significantly larger. The inclusion of electron-electroncontribution to the self-energy, one must keep the ladder
interaction within the mean-field model is straightforward. diagrams in the verteX

Our results show that interface roughness gives an en- We assume that every well has the same uncorrelated ran-
hancement of the electron transmission for positive biasedomly distributed concentration of impurities with areal den-
applied to the superlattice. The shape of the integrated transity n;,,,, and each impurity has a Fourier transformed po-
missions depends strongly on the distribution of the welltential U(q). Within the self-consistent Born approximation
width fluctuations and allows us to study interface roughnesshe retarded self-energy is diagonal within the well coordi-
in semiconductor heterostructures. This prosidea comple-  patesn,m (i.e., fgtnm: fg}ngnm)’ and is given by
mentary approach to the usual method of characterization by
luminescence spectra. . dk’ .
S () =g | 5|0 K—KOIPGEK ).
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(G (K E)am=[GF" (K, E)nm~ Sl ZEH(K.E)

+ 31K, E) 81+ 2 R(K,E) Sl

In this appendix we describe the procedure of disorder
averaging for the superlattice structure discussed in Sec. lll. (A4)
The cross sectio’ of typical superlattices is large enough wheren,m=1, ... N are the well coordinates. The ladder
that the transmission frorh to R is given by the configura- approximation fodI(nk,lk,;E) yields
tional average of impurities. For the sake of transparency we o o
assume that the scattering matrix element is diagonal in the]‘[(nk,l1|<1;E):G[f’rﬁl(ll)(k,E)]“llk(E)Gﬁ“ljz’ll)n(k,E)akkl
well index and that the impurities are uncorrelated between

APPENDIX A: IMPURITY AVERAGING

different wells. The inclusion of both effects is straightfor- N !

ward and the identities derived below hold in a similar way if + > Nimp | 5 |U(k— k")|?
[U(k=K")|? is generalized to (Up n(k—K')Upnr(K’ m=1 (2m)

—k)). X G (k,E)II(mk’ 1,k ;E)G3N(K,E).

(A5)

. This equation can be iterated to yidlti(nk,l k;;E). Note

The formalism described here is similar to one used i ere thal k. acts merelv as a parameter. As we assume that
Ref. 35, except that that work was concerned with a resonan 1% y P :

tunneling devicei.e., one well in the structujeand the scat- particles are injected from the left side into the superlattice
tering was calculated only to lowest order. Hence only single\évé'ltshelze:rol_t;ndsl\(/efg momentum, we need only calculate the
scattering events were included, whereas the formalism de=">"'1 1=
scribed here takes multiscattering events into account. This is

important for superlattices, as it is unlikely for an electron to

1. Transmission formulation

2. Keldysh formulation

pass through a relatively long structure with only one colli-  For comparison, we give below the equations which arise
sion. from the Keldysh formulation of this problem, within the

From Egs.(13) and(16), the averaged transmission ma- same approximations described above. The retarded Green
trix can be written function is determined by Eq$A3) and(A4), as in the pre-

vious subsection. In addition we have

Treoi i (E)=Tra(E)II(NK, I 1k ;E) (A1) "
with gé,n(kyE):nimpJ WlU(k—k’)ﬁEﬁn(k’,E)-
I(nk,| 1kq;E) =Gy (E)Ty x,(E) G2%| (E) "o
A Moy (kg =77 kg T2 =g (1)ky nk (a2  Together with Eqs(7) and(8) we obtain
where the overline denotes impurity averagihgs=L or R, Es(k’E):izl fik(E)T1(E) San 1)

and we definen;(L)=1 andn;(R)=N. This problem is

analogous to the well-known case of impurity scattering in ,

bulk material (see, e.g., Ref. 25 The impurity averaging _ dk AP
_ i : + Nimp S1U(k—=Kk")|
introduces a self-energy"®"2%(k,E) to the Green functions m J (2)

and, as in the bulk case, vertex corrections due to impurity et v,
potential correlations betwedd® andG2%. Within the self- X Gk E)2 (K", E)Gry(K',E). (A7)
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The numerical expense required to find the self-consistent E=U_+2t[codqg,a)—1]. (B4)
solutions for2<(k,E) and to solve for Eq.(Ai) are the For U >E this g ) ) di
same. The final evaluation of G:n,(k,E) or U >E this gives an imaginang corresponding to a

et _ —adv . ] nonpropagating modéFor a practical calculatioft| should
=ZnGam(K E) 20 (KE)Gyy (K,E) is straightforward and  pe Jarger thafE— U, |; otherwise Eq(B4) does not repre-

we can identify sent the effective mass parabola for the lep@sitting of the
leads gives a self-enerdgee Chap. 3.5 of Ref. 18
3 11k | 1ky BV () =Gk E), (AB) texplilqu(B)al) for E>U
i SIE)= ) ", (B9
as both sides are determined by an identical set of equations. texp—|x(E)al) for E<U,
Similarly, one can show where k| (E) is defined byE=U, + 2t[ coshk (E)a—1] for

E<U, . Similar relations hold fof =M with the mode from
s .EY _ (et _ =ady the right contacR. Note that this expression is only valid if
IE T(nk,11k1;B)=Gnn(k,B) = Gnn (k. E) ~ (A9) the coupling from the lead to the central region is given by
o o the same elemertas used in the discretization of the lead
by using the identity G;erf,(k,E) - Gﬁ‘;‘,’(k,E) = itself. The self-energy is added to the potential and we obtain
—iEmG[]er;(k,E)Fm(k,E)Gf‘ndr;’,(k,E) where  I',(k,E) the matrix equation
=i[3I¥(k,E)—32%k,E)] satisfies an equation very much
like Eq. (A7). The identities Eqs(A8) and (A9) show that 10
the Landauer-Bitiker expression Eq.12) with the averaged i
transmission matrix EqAl) is identical to the Keldysh for-
mulation result given by Eq(3). This explicitly demon-
strates the equivalence of the transmission and the KeldyskL -

approaches within the self-consistent Born approximation of

I1ky

E*=54.5meV_ T;=-5.84 meV

(b)

1.0

0.0 T 7 T T T T
h rina. 0.04 0.05 0.06 007 003 004 005 006 007
the scattering E, [eV] B, feV]
E’=54.5meV__ T;=-5.84 meV E=54.5meV__ T;=-5.84 meV

APPENDIX B: THE ACCURACY OF THE WANNIER AND 1© (@ —N=5
WIDE-BAND APPROXIMATION 6

In order to check the accuracy of both the Wannier ap- *]
proximation and the wide-band limit, we will compare our 2
results with a different approach. Calculations in real space ] - oot
have been performed in Refs. 16-18 using a fine spatia 004 002 000 ~ 002 004 -004 002 000 002 004
discretization of lengtta. In the limit a—0, these calcula- - o om
tions in principle yield exact results. Unfortunately, these Lo-2pgen - TphpmeV 50
approaches generate huge matrices, so that we restrict ou ' ]
selves to a one-dimensional structure and neglect xhg) (
direction. This refers to an ideal superlattice, whereztbhad
(x,y) directions decouple. Numbering the discretization - -

points with indices the total Hamiltonian is then given by | s/ A\ . .
0.00 0.02 0.04 0.06 008 010 012 -004 -0.02 0.00 0.02 0.04
Ejp[eV] U

0.5

Hij:Vi(Sij+Tij (Bl)
’ E'=147 meV _ T;=-2.79 meV E’=14.7meV__ T;=-2.79 meV
) 1.0 @ T A ] 6 (h)
with g hoMoH u=o |
_ ]
A2 1 1 05+ T
_ ; g
Tij=— —| —% 1t | fornearestneighbors, % 2
4a*\mf  mf = e
(B2) 0.0 T 0 s A
0005 0010 0015 0020 0025 -004 002 000 002 004
Ejn [eV] uv]
ﬁ2
Ti= " (B3) FIG. 6. Transmission through ideal superlattics=(5) with-
a‘m;

out interface roughnes$a)—(c) and (e)—(h): Comparison between

here a position dependent effective mm{S has been in- the “exact” model with fine discretizatioffull line) and the Wan-
w posit P v ! nier approximation(dashed ling for superlattices with five wells.

cluded TO”OW'n_g Ref. 16'_ Now we assume tha_t the _San_1pI8 I?d) Comparison of the integrated transmission for different super-
translationally invariant in the direction for discretization |aice lengths using fine discretization. The superlattice has GaAs
pointsi <0 andi>M and the coupling term in these regions \elis with widths of 6.5 nm(@—(f) and 15 nm(g) and (h), and
is 7;;+1=t<0. Then we may define the regior0<M as  A|, ,Ga,As barriers with widths of 2.5 nrie)—(d) and 1 nm(e)—
the structure and the regions:0 andi>M as leads within  (h). The calculated parameters for the center of the minib&hd
the formalism given above. The solutions fex0 are plane and the couplingr; (about one-fourth of the miniband widtlare
waves sifg (E)ja] and we have given on top of each graph.
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[ES ;»—Hij/ —Eirjef]Gﬁ =8 (Be)  comes almost indepe_ndgn_tltlffc_)r largeN. The results from
the WA are almost indistinguishable and not shown here.
which can be inverted to evaluate the Green function. Finally\ote, thatT,,(U) is a symmetric function with respect to
the transmission is gven by the Fisher-Lee relafibsee e pias, which can be shown analytically using the symme-
also Chap. 3.4 of Ref. 18: try properties of the transmission matrix, see Sec. IV.

—At2 o i ret 2 In order to estimate the range of validity of the WA, we
Tru =4t sinau(E)alsinar(E)a] [Cu o B (B7) have also considered different superlattices. By decreasing
which can be inserted in E¢12). the barrier width to 1 nm, we have generated a strong cou-
For comparison we consider a superlattice WNR=5  pling between the wells. Here the miniband width is slightly
wells of 6.5 nm GaAs and 6 barriers of 2.5 nmyABa7AS.  larger than the center of the miniband. Best agreement be-

Then we obtain the band paramet&%=54.5 meV andl;  tween the approaches is found feg;=13.5 nm. This value
=—5.84 meV. The transmission is shown as a function ofis |arger than the one obtained above as the Wannier func-
the injection energyg;, for two different voltages in Figs. tions are less localized due to the small barrier width. As
6(a) and(b). Here we usevez=10.7 nm, where we obtained shown in Figs. ) and (f) the results from the WA deviate
the best agreement. This value is somewhat larger than thgearly from the “exact” result in this case.
well width in good agreement with the discussion in Sec. Finally, we considered the case of a larger well width, 15
lIIB. We see that the transmission function contains fivenm. The calculated miniband width T4) is about 75% of
separate peaks which are related to the five states in th@e the center of the minibari#?. Nevertheless, the agree-
superlattice. The agreement between the approaches is quitgent between both approaches is still satisfactory for low
good. If a bias is applied, the WA gives too higbw) trans-  pjases, as shown in Fig(d. The second miniband extends
missions for low(high) energies. The reason is the fact thatfrom 44.8 to 84.7 meV in this case. Its influence can be seen
the transmission through a barrier increases with energyn the integrated transmission, Figth§ For |U|>0.024 V
which is neglected in the WA. Preliminary results indicatethe applied bias is larger than the gap between the lowest and
that the agreement can be improved significantly, if nextsecond miniband. Then the coupling between the bands be-
nearest-neighbor couplings are included both in E45)  comes important and the integrated transmissimmeases
and(16). [In this case matrix elements liR&[%. 1 »«(E) and  with bias for|U|>0.03 V for the calculation in the discrete
%2k 2«(E) have to be considered as wll. basis. Naturally this effect is not accounted for in the Wan-
The results for the integrated transmissiop,(U) are  nier approximation due to the restriction to the lowest mini-
shown in Fig. éc). We find, that the WA gives good agree- band.
ment with the discrete model for the integrated transmission. In conclusion, we find that the Wannier approximation
The agreement becomes even better if a larger barrier widttogether with the wide-band limit from Secs. Ill A and Il B
is used(not shown herg In Fig. 6d) we examine the length gives good results if the miniband width is smaller than the
dependence of the integrated transmission calculated withianergy of the center of the miniband and the applied bias is
the discrete model. We find that the functidr,(U) be-  smaller than the gap between the minibands.
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