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Abstract—Microwave imaging for breast-cancer detection has
received the attention of a large number of research groups in
the last decade. In this paper, the imaging system currently being
developed at the Technical university of Denmark is presented.
This includes a description of the antenna system, the microwave
hardware, and the imaging algorithm.

I. INTRODUCTION

An increasing number of research groups are pursuing

microwave imaging for biomedical applications, especially

breast-cancer detection [1]–[5]. The use of microwave imaging

for breast-cancer detection is based on the contrast in electro-

magnetic parameters between the healthy and the cancerous

tissue which has been reported by several authors [6]–[8].

Both nonlinear inverse scattering (also known as microwave

tomography) [3], [4], [9] and UWB radar techniques [1],

[2], [5] have been proposed for microwave imaging of the

breast. When using UWB-based techniques, the resulting

images show the point-of-origin of the reflections caused by

the tumors while the inverse scattering algorithms reconstruct

the spatial distribution of the constitutive electromagnetic

parameters, i.e., permittivity and conductivity, of the breast.

At the Technical University of Denmark, a microwave imag-

ing system for breast-cancer screening based on a 3D nonlinear

inverse scattering algorithm is currently being developed, and

the prototype of this system is described in this paper. The

principle of the imaging system is illustrated in Fig. 1. During

the examination, the patient is to lie prone atop an examination

table with her breast suspended through an aperture in the

table. Beneath this aperture, a measurement tank filled with a

liquid (glycerin-water mixture) with constitutive parameters

close to those of the breast to maximize the coupling of

microwave energy to the interior of the breast is positioned.

The breast is then irradiated by a single antenna at a time

using a single-frequency signal and the response measured on

the remaining antennas of the system. By using each antenna

in the system as both a transmitter and a receiver, a large

number of measurements may be obtained and used as input

in an inversion algorithm in which the forward model is based

on Maxwell’s equations.

This paper is organized as follows: In Section II, the antenna

system used in the system is described and in Section III, the

microwave hardware which has been developed for performing

Fig. 1. Imaging principle used in the microwave imaging system. One antenna
at a time transmits a sinusoidal signal and the phase and amplitude of the
resulting signals are measured by the remaining antennas.

the measurements is presented. Finally, in Section IV, the

imaging algorithm is described.

II. ANTENNA SYSTEM

A schematic of the antenna system used in the imaging

system is shown in Fig. 2. It consists of 32 horizontally

oriented monopole antennas positioned in a cylindrical setup

with a radius of 8 cm. Although only a single frequency is
used in the reconstruction algorithm, the system has been

designed for operating at any given frequency in the range

from 500 MHz to 3 GHz, thereby allowing for choosing the
optimum frequency for the reconstruction.

When designing the antenna setup, three major issues have

to be addressed: The first is how to ensure that the imaging

system is sensitive to changes in the entire imaging domain,

i.e., to ensure that a change in the constitutive parameters of

the breast will be detected whether the change is close to the

chest wall of the patient or close to the nipple. The second

issue concerns the modelling of the field from the antennas: In

order to reduce the artifact level in the images, the field used in

the imaging algorithm should be identical to the field radiated

by the antennas. Any differences will result in an increased

artifact level in the reconstructed images. The third and final

thing to take into account is the mechanical complexity and
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Fig. 2. Schematic of the antenna setup. The antennas are indicated by the
black and white lines (white lines indicating the stripped part of the outer
conductor). The lid of the measurement tank is indicated by the grid at z =

0 cm and the imaging domain is indicated by the light-gray hemisphere.

Fig. 3. One of the 32 monopole antennas used in the imaging system.The
antenna consists of a coaxial cable from which the outermost 3.5 cm of the
outer conductor has been stripped.

size of the antennas. Since a large number of antennas must be

positioned in a relatively small volume, the antennas must be

small and to prevent the antennas from becoming prohibitively

expensive to manufacture, as well as to ensure that the 32

antennas are identical, the antennas should be kept simple.

To fulfill these requirements, the design using a cylindrical

setup with 32 horizontally oriented monopole antennas has

been adapted. A photo of one of the antennas is shown in

Fig. 3. This type of antenna was first reported used for mi-

crowave imaging in [10] and is easy to manufacture, small in

size, and computationally inexpensive to include in numerical

models. When inserted in the lossy coupling liquid, the return

loss is better than 6 dB throughout the applied frequency range.

The horizontal orientation of the antennas has been chosen

to ensure full coverage of the imaging domain. Although a

setup using vertically oriented antennas has also been consid-

ered due to the increased coupling of the microwave energy

between the antennas in such a setup, it has been found that

vertically oriented monopoles are less sensitive to changes in

the upper part of the imaging domain, close to the chest wall.

A photo of the antenna system mounted in the measurement

tank is shown in Fig. 4. The antennas are positioned in a

cylindrical measurement tank which is filled with the glycerin-

water based coupling liquid mimicking the constitutive pa-

rameters of the breast. This liquid is lossy with an effective

conductivity of approximately 0.05 - 0.2 S/m in the frequency
range used by the system, with increasing conductivity with

Fig. 4. Photo of the antenna setup used in the imaging system. The monopoles
are seen beneath the metallic lid. In the clinical-test system, the measurement
tank will be cut off immediately above the metallic lid to allow for the patient
to lie prone with her breast suspended through the aperture in the lid.

increasing frequency. Although this is a relatively low loss it

is still sufficient to ensure that any signals from the outside

of the measurement tank and reflected signals from the wall

of the tank are attenuated and hence will not influence the

measurements.

At the top of the measurement tank, towards the chest wall

of the patient, a metallic lid is used to obtain a known and

well-defined boundary. The shielding effect of the metallic

lid implies that the measured signals are only affected by that

part of the chest wall which is immediately above the aperture.

Hence, the imaging domain needs only to be extended slightly

into the half space above the lid, as indicated in Fig. 2.

III. MICROWAVE HARDWARE

Each antenna has been equipped with its own high-

sensitivity transceiver module to allow for the large dynamic

range required by the system for imaging in the lossy coupling

liquid. These transceiver modules are seen as aluminum boxes

attached to the antennas in the photo of the antenna setup in

Fig. 4.

A schematic of a transceiver modules is shown in Fig. 5.

Each module contains a low-noise amplifier (LNA) and a radio

frequency (RF) amplifier which amplifies the signal received

by the antenna before it reaches the mixer. The local oscillator

(LO) generator is operating at a frequency which is offset

1 KHz from the RF frequency and feeds the 32 transceiver

modules through a 32-way power divider. After the down

conversion, the 1 KHz intermediate frequency (IF) signal is
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Fig. 5. Schematic of transceiver module. Each transceiver module contains an
LNA, an RF amplifier and two IF amplifiers to achieve the necessary dynamic
range. The mixer is fed through a power-divider circuitry while the RF
generator is connected to the transceiver modules through a switching network
which, in combination with the switches in the module itself, minimizes the
leakage from the transmitting to the receiving channel.

amplified by two IF amplifiers and fed to an 18 bit analog-

to-digital converter (ADC) with a built-in 10 kHz analog low-
pass filter.

The digitized signal is processed using a third-order Cheby-

shev band-pass filter and the amplitude and phase of the

resulting sinusoidal signal stored on a computer for later use

in the reconstruction algorithm.

The multiplexing between the transmitting and receiving

mode of the individual antennas are achieved using a single-

pole double-throw (SPDT) switch. However, this switch in

itself does not provide sufficient isolation between the signal

from the RF generator and the signal from the antenna when

this is operating in receive mode. To remedy this, two addi-

tional single-pole single-throw (SPST) switches are included in

the transceiver modules. Additionally, the RF generator feeds

the transceiver modules through a switching network and not

a power-divider network as the LO signal.

In addition to the isolation obtained by inserting the ad-

ditional switches, special attention has been payed to avoid

signal leakage within the transceiver modules. This includes

filtering of the power supply lines and of the digital lines

used for controlling the switches, the use of shielding fences

between the receive and transmit blocks in the modules and

the use of a minimized PCB enclosure.

The signal which leaks from the SPDT switch to the LNA

when a given antenna is acting as transmitter is sampled

simultaneously with the signals from the receiving antennas by

the ADC. This allows for using the leakage signal as reference

when determining the phase of the signals measured by the

receiving antennas.

To illustrate the performance of the transceiver modules

1000 measurements of the amplitude and phase of the signal

received with an antenna on the opposite side of the imaging

domain from the transmitting antenna has been analyzed.

During the measurements the system was operating at 2.0 GHz
and the measurement tank contained only the coupling liquid,

i.e., there were no scattering objects in the imaging system.

The 1000 measurements were performed during a time period

of approximately 2 hours and 40 minutes since pauses of ap-

proximately 10 seconds were inserted between the individual

measurements. The ADC was operating with a sampling rate

of 100 kHz and used 8000 samples pr. measurement.
The average amplitude of the 1 KHz IF signal measured

by the ADC was 0.446 V corresponding to a power level at

the terminal of the antenna of approximately -117 dBm. This

is 130 dB below the 13 dBm signal which is available from

the RF generator and clearly illustrates the need for the very

large dynamic range of the microwave hardware. The standard

deviation of the 1000 measurements is 5.83 mV, corresponding
to 1.3% of the mean amplitude. The mean of the measured
phase was 159.57◦ with a standard deviation of 0.713◦. In
the preliminary tests, this level of accuracy has been found to

be adequate although it may be increased by increasing the

number of samples used by the ADC.

The total measurement time (32 transmitters with 31 re-

ceivers each) during which the breast of the patient must be

suspended through the aperture is approximately 2 minutes pr.

breast, including the time needed to fill the measurement tank

with the coupling liquid.

IV. IMAGING ALGORITHM

To represent the distribution of the constitutive parameters

in the imaging domain, the domain is divided into cubic

cells. In each cell, the constitutive parameters are assumed

constant and the size of the cells is chosen on the basis of

the expected size of the objects to be imaged as well as the

wave length in the coupling liquid. Typically, a cube side

length of between one tenth and one twentieth of a wave

length is used, corresponding to a side length in the order of

2 to 5 mm, depending on the chosen frequency. To represent
the permittivity and conductivity of the individual cells, the

squared complex wave number is applied. Using the time

notation eiωt, the squared wave number is given by

k2(r) = ω2µ0ǫ(r) + iωµ0σ(r) (1)

wherein i is the imaginary unit, ω is the angular frequency, and

µ0 is the free-space permeability. The conductivity is given by

σ and the permittivity by ǫ with r indicating the position.

A nonlinear inverse-scattering algorithm is applied in the

system to reconstruct the three-dimensional distribution of

the constitutive electromagnetic parameters in the imaging

domain. In this algorithm, the distribution is reconstructed by

solving the nonlinear minimization problem

k2 = argmin

{

∥

∥

∥
Smeas − Scalc(k2)

∥

∥

∥

2

2

}

= argmin
{

‖Sres‖
2
2

}

(2)

using an iterative Newton algorithm. Herein, the column

vector Smeas holds the measured data and Scalc holds the

corresponding data calculated assuming the distribution of

squared wave numbers given by k2. The column vector Sres

is the residual vector. The minimization problem is formulated

using the log-magnitude and unwrapped phase formulation

introduced in [11] which has been shown to improve the

performance of the algorithm by emphasizing large relative
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changes and allowing for reconstructions to span multiple

Riemann sheets.

In each of the N iterations of the Newton algorithm, the

following three steps are performed (with n indicating the

iteration number):

1) Calculate the signals resulting from the distribution of

squared wave numbers given by the column vector k2
n

and the corresponding Jacobian matrix Jn. To this end, a

method-of-moments code utilizing the adaptive integral

method and higher-order basis functions [12] is used.

2) Solve the linear problem

∆k2
n

= argmin

{

∥

∥

∥
J

n
∆k2

n
− Sres

n

∥

∥

∥

2

2

}

subj. to regularization. (3)

to determine the update vector ∆k2
n
. This problem is

ill-posed in the classical sense and regularization must

be applied to achieve a suitable solution. To this end

an algorithm using the conjugated gradient least squares

algorithm [13, Sec. 6.3] in combination with a trust-

region [14], the L-curve criterion [13, Sec. 7.5], and a

Euclidean-distance penalty term [15] has been applied.

3) Update the distribution of complex squared wave num-

bers using

k2
n+1 = k2

n
+ αn∆k2

n
(4)

with the scalar αn being the Newton step [16]. The

Newton step is most often unity, although in some

circumstances it is less than one to ensure that the phase

of the calculated signal is unwrapped properly [4].

The most time-consuming task in the reconstruction is solving

the forward problem. This may take as much as 30 min-

utes to complete, although 15 minutes is more typical for

a standard discretization of the imaging domain. After the

forward solution Scalc, and thus Sres, has been found, the

calculation of the Jacobian and the update of the distribution is

found in less than half a minute. The reconstruction algorithm

typically converges within the first 12 iterations, yielding a

total reconstruction time of 3 - 6 hours depending on the time

used solving the forward problem.

Preliminary studies have shown that the system is capable of

detecting spherical scatterers with a diameter less than 5 mm
and a number of reconstructions of phantom measurements

will be presented at the conference.

V. CONCLUSION

A prototype system for microwave imaging of the breast

was presented. The system consists of three major parts; an

antenna system, a set of microwave transceiver modules and

an ADC for storing the measured data, and, finally, a recon-

struction algorithm. The antenna system has been designed

to achieve a near-uniform coverage of the imaging domain

and minimum influence from the surroundings while the

transceiver modules has been designed for quick examination

with a dynamic range of more than 130 dB. The nonlinear in-

version algorithm applies the log-magnitude unwrapped phase

formulation to improve its performance as well as a method-

of-moments algorithm which has been optimized for use in

the reconstruction.
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