Use of a Neyman-Scott Rectangular Pulses model for downscaling extreme events for climate change projections

Kjelstrup, L.; Sunyer Pinya, Maria Antonia; Madsen, H.; Rosbjerg, Dan

Publication date: 2011

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Use of a Neyman-Scott Rectangular Pulses model for downscaling extreme events for climate change projections

Lise Kjelstrup¹, Maria Sunyer¹, Henrik Madsen² and Dan Rosbjerg¹*
¹ DTU Environment, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark. *darod@env.dtu.dk.
² DHI Water Environment Health, Agern Allé 5, 2970 Hørsholm, Denmark.

Introduction

In recent years, Weather Generators (WG) have been used in climate change impact studies as a statistical downscaling tool. The Neyman-Scott Rectangular pulses is probably one of the most comprehensive WGs that can be tuned to put emphasis on extreme events.

This study analyses the ability of the NSRP for extreme events and its use as statistical downscaling tool.

Data and Case study

A location in Aarhus (Denmark) has been selected as a case study. Data used in the analysis:
- Observed daily rainfall for 1981-2010.
- Daily rainfall from 20 RCMs from ENSEMBLES1 from 1951-2100.

1) NSRP – Current climate

- Observed daily statistics were used to calibrate the NSRP model. During the calibration weights were assigned to each statistic. 1000 years were simulated.
- Statistics from the simulated time series and the extreme events were compared.

2) NSRP – Future climate (2071-2100)

- Firstly, change factors were calculated.
- The same set of statistics and weights as in the use of NSRP for current climate were used to calibrate the WG. 1000 years were simulated.
- The change in extreme events was then estimated using the synthetic time series for the future and current climate.

Current climate – Observations vs. RCMs

Conclusions

- RCM projections cannot be used directly in climate change impact studies → Need for statistical downscaling.
- NSRP is able to reproduce adequately observed extreme events.
- Large uncertainty in changes projected by the RCMs, especially in skewness and probability of dry days.
- All RCMs considered in this study point to an increase of extreme events in the future (2071-2100) for this region.
- However, there is large uncertainty in the value of the change, the uncertainty increases for large return periods.

References

(1) van der Linden, P., Mitchell, J.F.B. (eds.), 2009. ENSEMBLES: Climate Change and its Impacts. Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 168pp.