Corrosion of refractories and ceramic materials

Agersted, Karsten

Publication date: 2012

Citation (APA):
Corrosion of refractories and ceramic materials

Karsten Agersted
kagn@dtu.dk

DTU Energy Conversion
Department of Energy Conversion and Storage
Outline

- Introduction, materials, fundamentals and share of experience
- Ever fascinating corrosion in glass furnaces
- Corrosion in gassification furnaces
- Aqueous corrosion of technical ceramics
- Degradation of zirconia electrolytes in solid oxide cells
Acidity

Lewis acid-base; electron pair acceptor-donor

<table>
<thead>
<tr>
<th></th>
<th>Acid</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>NO$_x$</td>
<td>SO$_3$</td>
</tr>
<tr>
<td></td>
<td>SO$_2$</td>
<td>CO$_2$</td>
</tr>
<tr>
<td></td>
<td>BO$_x$</td>
<td>VO$_x$</td>
</tr>
<tr>
<td>Solid</td>
<td>SiO$_2$</td>
<td>TiO$_2$</td>
</tr>
<tr>
<td></td>
<td>ZrO$_2$</td>
<td>Fe$_2$O$_3$</td>
</tr>
<tr>
<td></td>
<td>Cr$_2$O$_3$</td>
<td>Al$_2$O$_3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Neutral</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>VO$_x$</td>
<td>Na</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Solid</td>
<td>Al$_2$O$_3$</td>
<td>FeO</td>
</tr>
<tr>
<td></td>
<td>NiO</td>
<td>MnO</td>
</tr>
<tr>
<td></td>
<td>MgO</td>
<td>CaO</td>
</tr>
<tr>
<td></td>
<td>Na$_2$O</td>
<td>K$_2$O</td>
</tr>
</tbody>
</table>

DTU Energy Conversion, Technical University of Denmark
Refractory groups

- **Ceramic bonded**
 Some have glassy grain boundaries, some have not
 Some are very porous, some are not
 Some are “basic”, some are “acidic”, some are “neutral”

- **Chemically bonded**
 Often MgCl$_2$ and MgSO$_4$ bonded magnesite or phosphate bonded high-alumina

- **Carbon bonded**
 Often Magnesite, Magnesia, Alumina or Zircon based

- **Fused**
 Often Mullite, Alumina, Chrome-magnesite and Zirconia based

- **Monolittic; stamping, gunning, grouting**
 Often a combination of cement-bonding or phosphate bonding with pre-firing

- **Fibrous**
 Often resin- or phosphate-bonded high-temperature fibres, eg. alumina.
Binder types in refractories

- **Cements** – High alumina cements; AH, AH₃, C₃AH₆, C₂AH₈, CAH₁₀
 Magnesia cements; MgCl₂ and MgSO₄

- **Phosphates** – polyphosphates, Hₙ₊₂PₙO₃n₊₁,
 Aluminium phosphate, MAP, Al(H₂PO₄)₃
 Sodium phosphate, “NaCaPO₄” w. Mg(H₂PO₄)₂ > MgP₂O₇
 Aluminium chloro phosphate, APCH, Al(HPO₄)Cl·4H₂O

- **Polymeric silicates**; Na₂SiO₃, Si(OEt)

- **Carbon and tar**

- **Resins**; Phenol- and fural-based resins

- **Other**; Clay, Boric acid, Boehmite (Rho-alumina)
Refractory materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesite (>60% MgO)</td>
<td>Steel furnaces</td>
</tr>
<tr>
<td>Magnesia-carbon</td>
<td>High wear resistance in steel industry</td>
</tr>
<tr>
<td>Chrome-magnesite</td>
<td>Wall lining in Siemens-Martin steel furnaces</td>
</tr>
<tr>
<td>Magnesia-alumina</td>
<td>Cement furnace linings, crucible linings for steel</td>
</tr>
<tr>
<td>Dolomite (CaMg)(CO₃)</td>
<td>Slag resistant lining</td>
</tr>
<tr>
<td>Forsterite (2MgO-SiO₂)</td>
<td>Furnace lining</td>
</tr>
<tr>
<td>Chamotte</td>
<td>Cheap lining, medium temperature resistance, alkali</td>
</tr>
<tr>
<td>Graphite-chamotte</td>
<td>Crucibles for metal processing (>2000y)</td>
</tr>
<tr>
<td>High-alumina (>45%Al)</td>
<td>Versatile, higher slag resistance</td>
</tr>
<tr>
<td>Alumina-carbon</td>
<td>Used in contact with liquid metals</td>
</tr>
<tr>
<td>Silicate</td>
<td>Furnace linings, high mechanical strength at HT</td>
</tr>
<tr>
<td>Zirconia</td>
<td>Glass furnaces, tubings for metal industry, saggers</td>
</tr>
<tr>
<td>Silicon Carbide</td>
<td>Kiln furniture, aluminium industry, incinerators</td>
</tr>
<tr>
<td>Silicon nitride</td>
<td>Linings in aluminium production</td>
</tr>
</tbody>
</table>
Never look only at the overall chemical composition

Always focus on binder phases

Material composition:
15% A, 80% B, 5% C

Binder phase composition:
20% A, 60% B, 20% C

Given that all C is in the binder phase, melt composition is:
40% A, 20% B, 40% C at operating temperature of 1500°C

All C is dissolved => liq. Phase ~50% of binder and 12.5% of the entire material

Will this material then be mechanically stable at 1500°C?
Selected “classics”

- Clay bonded SiC looses strength in reducing atmospheres
- SiC is oxidised in oxidising atmospheres
- Bursting seen in Chrome-magnesite materials on changing pO₂ (Fe³⁺ ⇌ Fe²⁺)
- Reduction of free SiO₂ in chamotte materials, when the atmosphere contains hydrogen
- Volume expansion on Si-Al reactions with K from the furnace atmosphere
- Sulphur decreases oxide-melt surface tension, hence facilitate penetration
Refractories in a glass furnace

Mayne Island Glass Foundry
http://www.mayneislandglass.com/170lbinvestedsicfurnace.htm
Refractories in a glass furnace

- MgO:Al$_2$O$_3$
- Fused ZrO$_2$ (Cr,Al)$_2$O$_3$·ZrO$_2$
- Al$_2$O$_3$·ZrO$_2$·SiO$_2$ (BACOR)
- Al$_2$O$_3$ (MgO)
Corrosion in a production furnace for container glass
Insulating boards (Ca-Silicate and Vermiculite)

Moler insulating bricks are relatively cheap and robust insulating materials - of acidic behaviour.

Diatomite or kieselgur

80 to 90% silica, traces of clay minerals ~3% alumina and ~1% iron oxide.

Vermiculite is a group of hydrated laminar minerals which are aluminium-iron-magnesium silicates, resembling mica in appearance. They expand 20-30 times their volume, when heated.
Two “classical” issues
Quite often seen in wood stoves

Overheating, eg. by burning coal or polymers, destroys the oven lining. Vermiculite, \(t > 1100^\circ\text{C} \).

Carbon deposition inside the pores of the refractory grows and causes spallation. Iron Oxide even catalyses the carbon formation from CO, which is formed when oxygen to fuel ratio is low.

On longer exposure to reduced air to fuel ratio, carbon has filled the pores of the flexible Vermiculite, hence increased the overall heat transfer. The picture shows also that the oxygen potential has been low enough to partly reduce the vermiculite material on the cold side – the pale colour.
New Challenges for Refractories with Alternate Fuels

Distribution of thermal energy consumption from alternate fuels in Germany

Adam A. Wajdowicz, Magnesita Refractories
Corrosion issues in a gasifier furnace lining

\[C + H_2O \text{ (gas)} + O_2 \rightarrow CO + H_2 + CO_2 + \text{by-products (g, s, l)} \]
\[(H_2S, CH_4, NH_3, HCN, K, Na, Ca, Si, \ldots)\]

Oxygen

800-1275°C, 1-60 bar, slag & H_2S

C-source

Water

Products (syngas)
- CO
- H_2

By-products
- H_2S
- CO_2
- Slag (Me-oxides)

Gas Clean-Up Before Product Use

Ref: Ronald W. Breault, National Energy Technology Laboratory, DOE
Type and abundance of “by products” strongly depends on the carbon source, eg. wood, straw, industrial waste etc., as well as the gasification temperature

Alkali-attacks (Na, K) are most abundant and severe

All silicate-based materials and binder phases are severely attacked in such applications.

Alkali attacks runs through a combination of chemical reaction and pore penetration leading to spallation.

High Chrome-alumina bricks (neutral acidity) have shown acceptable service life for coal and wood gasification at high temperature (1250-1575°C) good sulphur resistance.

Fused and fused cast magnesia and magnesia-spinel bricks have shown good slag resistance in gasification at moderate and moderately high temperatures (600-1000°C) of black liqueur.
Corrosion of SiC bearings in aqueous environment

Run at 200°C for 20 hr –
UPPER: Conventional SiC-material
LOWER: SiC sintered at optimised conditions

SiC plain bearing after 500 hr in demineralised water at 60°C. Service life time: 1400-6500 hr

DTU Energy Conversion, Technical University of Denmark
Degradation of stabilised zirconia electrolytes, when used in electrolysis cells under high current load (> ca. 1.3 A/cm²@ 850°C)

• Oxygen electrodes degenerate on SOE-cells during electrolysis at high current densities due to a high oxygen potential that builds up below the YSZ-surface, and at grain boundaries.

• Higher cation or hole diffusion may alleviate this
Driving force for cation and hole migration

\[\Pi = \text{electromotive potential} = (\mu_{e^-}/F) \] - provides the driving force for electron (hole) migration
\[\Phi = \text{Galvani potential} = (i/\sigma) \] – provides driving force for migration of oxide ions and the counter migration of cations.

DTU Energy Conversion, Technical University of Denmark
SOEC at high current density

\[2h^o + O_0^{x} \rightarrow \frac{1}{2}O_2 + V_0^{''} \]

- \(h^o \) Mn\(^{2,3+} \)
- \(O^2 \)
- YSZ
- LSM

Grain boundaries:
- high cation (Mn) diffusivity
- high hole conductivity

Dr. C. Chatzichristodoulou

DTU Energy Conversion, Technical University of Denmark
A potential solution

Layer with higher electron conductivity

DTU Energy Conversion, Technical University of Denmark
CONCLUSIONS / Recommendations

- Seek information on the system, characterise if necessary
- Get information on the microstructure of the refractories
- Seek information with producers and similar applications
- Slag penetration, through open porosity and pore sizes, are important issues
- Warm water may be an aggressive medium
- Corrosion is often based on redox-, acid-base and solubility reactions
- Ceramics with mixed conductivity adds electrochemistry here to

DTU Energy Conversion, Technical University of Denmark
Thank you for your attention